Science.gov

Sample records for magnetic properties complexes

  1. Thermodynamic and magnetic properties of the finite spin complexes of the Ising type

    NASA Astrophysics Data System (ADS)

    Khamzin, A. A.; Nigmatullin, R. R.

    2014-05-01

    In the frame of the static fluctuation approximation (SFA) the analysis of the thermodynamic and magnetic properties of the finite spin clusters in the 1D Ising model is performed It has been shown that under the influence of the magnetic impurity that forms the fixed value of the magnetization on the ends of spin complex the total magnetic ordering of the whole chain becomes possible. The results obtained in the frame of this model can open a way to understanding of magnetic properties of a wide class of the finite cluster systems.

  2. Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles

    NASA Astrophysics Data System (ADS)

    Entel, Peter; Siewert, Mario; Gruner, Markus E.; Herper, Heike C.; Comtesse, Denis; Arróyave, Raymundo; Singh, Navedeep; Talapatra, Anjana; Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Albertini, Franca; Righi, Lara; Chernenko, Volodymyr A.

    2013-02-01

    First-principles calculations are used to study the structural, electronic and magnetic properties of (Pd, Pt)-Mn-Ni-(Ga, In, Sn, Sb) alloys, which display multifunctional properties like the magnetic shape-memory, magnetocaloric and exchange bias effect. The ab initio calculations give a basic understanding of the underlying physics which is associated with the complex magnetic behavior arising from competing ferro- and antiferromagnetic interactions with increasing number of Mn excess atoms in the unit cell. This information allows to optimize, for example, the magnetocaloric effect by using the strong influence of compositional changes on the magnetic interactions. Thermodynamic properties can be calculated by using the ab initio magnetic exchange parameters in finite-temperature Monte Carlo simulations. We present guidelines of how to improve the functional properties. For Pt-Ni-Mn-Ga alloys, a shape memory effect with 14% strain can be achieved in an external magnetic field.

  3. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    NASA Astrophysics Data System (ADS)

    Baba, Shintaro; Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in 13C-nuclear magnetic resonance (13C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  4. Structural, Magnetic and Luminescent Properties of Lanthanide Complexes with N-Salicylideneglycine

    PubMed Central

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-01-01

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)2(H2O)2]∙H2O (1–6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution. PMID:25927576

  5. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    PubMed

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-01-01

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution. PMID:25927576

  6. Magnetic and transport properties of Co-Si-B metallic glasses with complex dopants

    NASA Astrophysics Data System (ADS)

    Yarmoshchuk, Yevhenii I.; Nakonechna, Olesya I.; Semenko, Mykhailo P.; Zakharenko, Mykola I.

    2014-10-01

    The structure, magnetic and resistivity characteristics of Co-Si-B metallic glasses containing complex dopants have been investigated. The intervals of thermal stability of the phases existing in the alloys studied have been determined. The temperature dependences of the resistivity were shown to be essentially nonlinear up to a certain temperature, evidencing for the contribution of several scattering mechanisms. Magnetic and resistivity behavior of these alloys are substantially governed by the phase separation within the region of the amorphous state stability and magnetic clusters formation. In the as-cast alloys these clusters are estimated to contain 2-4 Co atoms. Heat treatment significantly affects the structure and magnetic properties. It leads to increase of the Curie temperature and localized magnetic moment, whereas the crystallization temperature remains almost invariable.

  7. Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical

    SciTech Connect

    Wang, Ya-Li; Gao, Yuan-Yuan; Ma, Yue; Wang, Qing-Lun; Li, Li-Cun; Liao, Dai-Zheng

    2013-06-01

    Five novel Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized, characterized structurally and magnetically: [Ln(hfac)₃(NITPh-3-Br-4-OMe)₂] (Ln(III)=Eu(1), Gd(2), Tb(3), Dy(4), Ho(5); hfac=hexafluoroacetylacetonate; and NITPh-3-Br-4-OMe=2-3´-Br-4´-methoxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide). The single-crystal structures analyses show that these complexes have similar mononuclear tri-spin structures, in which central Ln(III) ions are all eight coordinated by three hfac molecules and two NITPh-3-Br-4-OMe radicals. The variable-temperature magnetic susceptibility studies reveal the antiferromagnetic interactions between the paramagnetic ions (Ln(III) and radicals) in complexes 1, 2, 3 and 5 and ferromagnetic interaction in complex 4. The luminescence characterizations of complexes Eu(1), Tb(3) and Dy(4) are also studied in this paper. - Graphical abstract: Using a novel halogen phenyl-substituted nitronyl-nitroxide radical, we obtained and characterized five isostructural lanthanide mononuclear tri-spin compounds. Highlights: • A new halogen phenyl-substituted nitronyl-nitroxide radical was designed. • Five new Ln(III) radical complexes have been synthesized and characterized. • The reasonable evaluation the magnetic interactions between Ln(III) ions and radical is meaningful. • These complexes show good luminescent properties.

  8. Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis.

    PubMed

    Meffre, Anca; Mehdaoui, Boubker; Connord, Vincent; Carrey, Julian; Fazzini, Pier Francesco; Lachaize, Sébastien; Respaud, Marc; Chaudret, Bruno

    2015-05-13

    Addition of Co2(Co)9 and Ru3(CO)12 on preformed monodisperse iron(0) nanoparticles (Fe(0) NPs) at 150 °C under H2 leads to monodisperse core-shell Fe@FeCo NPs and to a thin discontinuous Ru(0) layer supported on the initial Fe(0) NPs. The new complex NPs were studied by state-of-the-art transmission electron microscopy techniques as well as X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. These particles display large heating powers (SAR) when placed in an alternating magnetic field. The combination of magnetic and surface catalytic properties of these novel objects were used to demonstrate a new concept: the possibility of performing Fischer-Tropsch syntheses by heating the catalytic nanoparticles with an external alternating magnetic field. PMID:25867032

  9. Magnetic properties and moessbauer spectra of several iron (3) dicarboxylic acid complexes

    NASA Astrophysics Data System (ADS)

    Dziobkowski, C. T.; Wrobleski, J. T.; Brown, D. B.

    1980-10-01

    Polymeric iron (3) complexes of malonic, succinic, furmaric, and phthalic acids have been prepared and studied by variable-temperature (15-300 K) magnetic susceptibility, 57Fe Mossbauer spectroscopy, and infrared spectroscopy. In addition, properties of iron(3) acetate have been reinvestigated using these same techniques. The magnetic susceptibilities of these complexes have been described by a theoretical model which includes, in addition to intramodular exchange terms, a parameter describing intermolecular spin-exchange effects. As a consequence of this model it was not necessary to assume an isosceles triangular arrangement of the iron(3) ions in these materials in order to explain the magnetic data. Thus, the inclusion of an intertrimer exchange parameter, which varies from 1/2.1 cm for the acetate complex to 1/11.7 cm for the o-phthalate complex allowed for a complete description of the temperature-dependence of the magnetic susceptibilty of these compounds. Mossbauer and infrared spectroscopic studies were utilized to ascertain the correctness of oxidation state and structural assignments.

  10. Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Morris, Antony; Plümper, Oliver; van Hinsbergen, Douwe J. J.

    2014-04-01

    of ultramafic rocks during hydrothermal alteration at mid-ocean ridges profoundly changes the physical, chemical, rheological, and magnetic properties of the oceanic lithosphere. There is renewed interest in this process following the discovery of widespread exposures of serpentinized mantle on the seafloor in slow spreading oceans. Unroofing of mantle rocks in these settings is achieved by displacement along oceanic detachment faults, which eventually results in structures known as oceanic core complexes (OCCs). However, we have limited understanding of the mechanisms of serpentinization at the seafloor and in particular their relationship with the evolution of OCCs. Since magnetite is a direct product of serpentinization, the magnetic properties of variably serpentinized peridotites can provide unique insights into these mechanisms and their evolution in the oceanic lithosphere. Here we present new results from an integrated, rock magnetic, paleomagnetic, and petrological study of variably serpentinized peridotites from the first fossil OCC recognized in an ophiolite. Integration with existing data from mid-ocean ridge-related abyssal peridotites recovered from several scientific ocean drilling sites yields the first magnetic database from peridotites extending across the complete range (0-100%) of degrees of serpentinization. Variations in a range of magnetic parameters with serpentinization, and associated paleomagnetic data, provide: (i) key constraints on the mechanism(s) of serpentinization at mid-ocean ridges; (ii) insights on the potential for serpentinized peridotites to contribute to marine magnetic anomalies; and (iii) evidence that leads to a new conceptual model for the evolution of serpentinization and related remanence acquisition at OCCs.

  11. Investigating the pharmacodynamic and magnetic properties of pyrophosphate-bridged coordination complexes

    NASA Astrophysics Data System (ADS)

    Ikotun, Oluwatayo (Tayo) F.

    The multidentate nature of pyrophosphate makes it an attractive ligand for complexation of metal cations. The participation of pyrophosphate in a variety of biological pathways and its metal catalyzed hydrolysis has driven our investigation into its coordination chemistry. We have successfully synthesized a library of binuclear pyrophosphate bridge coordination complexes. The problem of pyrophosphate hydrolysis to phosphate in the presence of divalent metal ions was overcome by incorporating capping ligands such as 1,10-phenanthroline and 2,2'-bipyridine prior to the addition of the pyrophosphate. The magnetic properties of these complexes was investigated and magneto-structural analysis was conducted. The biological abundance of pyrophosphate and the success of metal based drugs such as cisplatin, prompted our investigation of the cytotoxic properties of M(II) pyrophosphate dimeric complexes (where M(II) is CoII, CuII, and NiII) in adriamycin resistant human ovarian cancer cells. Thess compounds were found to exhibit toxicity in the nanomolar to picomolar range. We conducted in vitro stability studies and the mechanism of cytoxicity was elucidated by performing DNA mobility and binding assays, enzyme inhibition assays, and in vitro oxidative stress studies.

  12. Syntheses, structure, magnetic and thermodynamics property of novel lanthanide complexes with nitronyl nitroxide radical

    NASA Astrophysics Data System (ADS)

    Song, Mei-Ying; Hou, Yi-Fang; Wen, Long-Mei; Wang, Shu-Ping; Yang, Shu-Tao; Zhang, Jian-Jun; Geng, Li-Na; Shi, Shi-Kao

    2016-03-01

    Four new nitronyl nitroxide radical-Ln(III) complexes, Ln(hfac)3(NITPhSCF3)2 (Ln(III) = Sm(1), Gd(2), Tb(3), Dy(4); NITPhSCF3 = 2-(4-trifluoromethylthiophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl- 3-oxide; hfac = hexafluoroacetylacetonate), have been synthesized and characterized. They are isostructural, which show mononuclear tri-spin structures. The central Ln(III) ion is eight-coordinated by three hfac anions and two NITPhSCF3 molecules. Direct-current magnetic study shows that there exist ferromagnetic interactions between Gd(III) ion and radicals (NITPhSCF3) with JGd-Rad = 1.61 cm-1, and antiferromagnetic interactions between radicals with JRad-Rad = -2.83 cm-1 in complex 2. The magnetic analysis with the rough approximate model show that a ferromagnetic coupling exists between Tb(III) and radical in 3, while a antiferromagnetic coupling between Dy(III) and radical in 4. The thermodynamics properties of four complexes were studied with differential scanning calorimetry (DSC), such as heat capacity, thermodynamic functions (HT-H298.15K), (ST-S298.15K), and (GT-G298.15K).

  13. Synthesis, crystal structure and magnetic properties of a novel copper(II) complex with sulfoisophthalic acid

    NASA Astrophysics Data System (ADS)

    Kurc, Teresa; Videnova-Adrabinska, Veneta; Turowska-Tyrk, Ilona; Duczmal, Marek; Jerzykiewicz, Maria

    2013-12-01

    A new Cu(II) complex, [Cu2(μ2-OH2)2(HSIP)2(H2O)6] (H3SIP = 5-sulfoisophthalic acid), has been synthesized and characterized by single crystal X-ray diffraction, EPR spectroscopy (X- (9.5 GHz) and Q-band (35 GHz)) and magnetic measurements. The solid state structure of the complex consists of coordination dimers [Cu2(μ2-OH2)2(HSIP)2(H2O)6] which are hydrogen bonded into 3D network. The neighbouring metal ions form a rare example of centrosymetric dinuclear core [Cu2(μ2-OH2)2] with equatorial - axial positions of the bridging ligands. The coordination dimers are organized into inorganic monolayers via water-sulfonate hydrogen bond intractions, and further linked in 3D structure via carboxylic-carboxylic hydrogen bond intractions. The magnetic properties and EPR spectra are discussed in terms of crystal structure features. The X- and Q-band EPR spectra exhibit fine structure signals due to S = 1 and the simulated parameters indicate small zero field splitting parameter Dexp (-0.035 cm-1) dominated by Ddip (-0.031 cm-1). A usually forbidden ΔMs = 2 line of lower intensity is observed in the half field region at about 150 mT. The susceptibility data have been analyzed using a spin-ladder model with both ferromagnetic (rungs) and antiferromagnetic (legs) coupling.

  14. Structural and magnetic properties of cobalt(II) complexes with pyridinecarboxamide ligands

    NASA Astrophysics Data System (ADS)

    Dojer, Brina; Pevec, Andrej; Belaj, Ferdinand; Jagličić, Zvonko; Kristl, Matjaž; Drofenik, Miha

    2014-11-01

    The synthesis and characterization of two new cobalt(II) coordination compounds with nicotinamide (nia) and isonicotinamide (isn) are reported. The products were characterized magnetically, structurally by single-crystal X-ray diffraction analysis and spectrally by FT-IR spectroscopy. Using the reaction of cobalt(II) acetate tetrahydrate and nicotinamide in methanol we obtained light-red crystals of the mononuclear complex [Co(nia)2(H2O)4](CH3COO)2·2H2O (1). The synthesis in a system cobalt(II) acetate dihydrathe, isonicotinamide and dimethylformamide-methanol mixture gave a new dinuclear coordination compound with the formula [Co2(CH3COO)4(isn)4]·2C3H7NO (2). In both compounds a trans arrangement of pyridinecarboxamide ligands was found. Intermolecular hydrogen bonds in the crystal structures of both complexes are discussed. The magnetic properties were studied between 2 K and 300 K giving the result μeff = 4.6 BM for 1 and μeff = 4.7 BM for 2 in the paramagnetic region.

  15. New divalent manganese complex with pyridine carboxylate N-oxide ligand: Synthesis, structure and magnetic properties

    SciTech Connect

    Liu Fuchen; Xue Min; Wang Haichao; Ouyang Jie

    2010-09-15

    Two new manganese complexes, [Mn{sub 3}(L{sup 1}){sub 4}(NO{sub 3}){sub 2}]{sub n} (1, HL{sup 1}=nicotinate N-oxide acid) and [MnL{sup 2}Cl]{sub n} (2, HL{sup 2}=isonicotinate N-oxide acid)], have been hydrothermally synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. In 1, the L{sup 1} ligands take two different coordinated modes bridging four and three Mn{sup II} ions. The nitrate anions take chelating coordination modes, leading one type of the Mn{sup II} ions as a 4-connected node. The whole net can be viewed as a 3, 4, 6-connected 4-nodal net with Schlaefli notation {l_brace}4{sup 3{r_brace}}2{l_brace}4{sup 4}; 6{sup 2{r_brace}}4{l_brace}4{sup 6}; 6{sup 6}; 8{sup 3{r_brace}}. Complex 2 has a honeycomb layer mixed bridged by chlorine, N-oxide and carboxylate. The adjacent layers are linked by the phenyl ring of L{sup 2} ligand, giving a 3D framework with a {l_brace}3{sup 4}; 5{sup 4{r_brace}} {l_brace}3{sup 2};4;5{sup 6};6{sup 6{r_brace}} 4, 6-connect net. Magnetic studies indicate that 1 is an antiferromagnet with low-dimensional characteristic, in which a -J{sub 1}J{sub 1}J{sub 2}- coupled alternating chain is predigested. Fitting the data of 1 gives the best parameters J{sub 1}=-2.77, J{sub 2}=-0.67 cm{sup -1}. The magnetic properties of complex 2 represent the character of the 2D honeycomb layer with the J{sub 1}=-2.05 and J{sub 2}=0.55 cm{sup -1}, which results in a whole antiferromagnetic state. - Graphical abstract: The synthesis, crystal structure and magnetic properties of two new MnII complexes with pyridyl-carboxylate N-oxide ligands are reported.

  16. Syntheses, structures, and magnetic properties of homodinuclear lanthanide complexes based on dinucleating Schiff base ligands.

    PubMed

    Gao, Feng; Yang, Feng-Lei; Zhu, Guang-Zhou; Zhao, Yue

    2015-12-14

    The first two families of homodinuclear lanthanide(III) complexes, formulated as [(L(OEt))2Ln2(L1)] and [(LOEt)2Ln2(L2)] (Ln(3+) = Dy(3+), Tb(3+), Ho(3+), Gd(3+), and Y(3+); L1(4-) = 2,2',2'',2'''-[1,2,4,5-benzenetetrayltetrakis(nitrilomethylidyne)]tetrakisphenolate; L2(4-) = 2,2',2'',2'''-[[1,1'-biphenyl]-3,3',4,4'-tetrayltetrakis(nitrilomethylidyne)]tetrakis(4-chlorophenolate); L(OEt)(-) = (η(5)-cyclopentadienyl)tris(diethylphosphito-p)cobaltate(III)), were successfully synthesized based on Kläui's tripodal building block NaL(OEt) and two dinucleating Schiff base ligands, H(4)L1 and H(4)L2, respectively. Single-crystal X-ray analyses show that these lanthanide complexes have two seven-coordinated metal binding sites, linked to each other with a phenyl or biphenyl bridge. Variable temperature dc magnetic measurements reveal the weakly antiferromagnetic coupling between paramagnetic lanthanide ions, while ac magnetic data exhibit the field-induced relaxation of magnetization for the corresponding Dy2 complexes 1 and 6. A further magnetic dilution study for 1 suggests that the slow magnetic relaxation originates from the single-ion magnetic behaviour of Dy(3+) ions. PMID:26537229

  17. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hnninen, Mikko M; Vlivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanp, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals. PMID:23363337

  18. Multiple magnetic relaxation processes, magnetocaloric effect and fluorescence properties of rhombus-shaped tetranuclear rare earth complexes.

    PubMed

    Gao, Hong-Ling; Jiang, Li; Liu, Shuang; Shen, Hai-Yun; Wang, Wen-Min; Cui, Jian-Zhong

    2016-01-01

    Seven new tetranuclear rare earth (RE) complexes [RE4(acac)4L6(μ3-OH)2] (HL = 5-(4-fluorobenzylidene)-8-hydroxylquinoline; acac = acetylacetonate; RE = Y (1), Eu (2), Gd (3), Tb (4), Dy (5), Tm (6) and Lu (7)) have been synthesized and completely characterized. Complex exhibits multiple zero-field slow magnetic relaxation processes typical of Single Molecule Magnets (SMMs). Two distinct slow magnetic relaxation processes, with effective energy barriers of Ueff = 48 K for the slow relaxation (SR) process and Ueff = 121 K for the fast relaxation (FR) process, are mainly attributed to the presence of two crystallographically independent Dy(III) sites. The magnetocaloric effect (MCE) was detected as -ΔSm(T) = 20.8 J kg(-1) K(-1) for complex . The fluorescence properties of complexes 1, 2, 4, 5 and 7 were also investigated. Complexes 2, 4 and 5 show the characteristic peaks for their corresponding RE(III) center, while complexes 1 and 7 show similar emission peaks to the Schiff base ligand when they are excited at the appropriate wavelength. PMID:26600114

  19. Lanthanide salen-type complexes exhibiting single ion magnet and photoluminescent properties.

    PubMed

    Ren, Min; Xu, Zhong-Li; Bao, Song-Song; Wang, Ting-Ting; Zheng, Ze-Hua; Ferreira, Rute A S; Zheng, Li-Min; Carlos, Luis D

    2016-02-21

    Salen-type mononuclear lanthanide complexes with formula (Et3NH)[Ln(3-NO2-salen)2]solvent (Ln = Eu (1Eu), Tb (2Tb), Dy (3Dy), Ho (4Ho), Er (5Er), Yb (6Yb); 3-NO2-salen(2-) = N,N'-bis(3-nitro-salicylaldehyde)ethylenediamine dianion) are reported. These compounds are isostructural in which two crystallographically distinct 3-NO2-salen(2-) act as tetradentate ligands encapsulating the lanthanide ions in a meridional mode forming the [LnN4O4] cores. Slow magnetization relaxation processes associated with single ion magnet (SIM) behaviors are observed in complexes 3Dy, 5Er and 6Yb with the Kramer ions but not in 2Tb and 4Ho with non-Kramer ions. Photoluminescence studies reveal that complexes 1Eu, 5Er and 6Yb exhibit characteristic lanthanide luminescence with sharp and well-separated emission bands. Complex 1Eu is of particular interest in which the organic ligand functioning as a powerful absorbing sensitizer apparently broadens the excitation range into 300-500 nm with the maximum of 460 nm. PMID:26754592

  20. Structures and magnetic properties of several phenoxo-O bridged dinuclear lanthanide complexes: Dy derivatives displaying substituent dependent magnetic relaxation behavior.

    PubMed

    Wang, Wen-Min; Qiao, Wan-Zhen; Zhang, Hong-Xia; Wang, Shi-Yu; Nie, Yao-Yao; Chen, Hong-Man; Liu, Zhen; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin

    2016-05-10

    Nine dinuclear Ln(iii) complexes, [Ln(dbm)2(L)]2 (Ln = Eu (), Tb (), Dy (), Ho (), Er ()) and [Ln(dbm)2(L')]2 (Ln = Tb (), Dy (), Ho (), Er ()) (dbm = 1,3-diphenyl-1,3-propanedione, HL = 2-[[(4-methoxy-phenyl)imino]methyl]-8-hydroxy-quinoline and HL' = 2-[[(4-ethoxyphenyl)imino]methyl]-8-hydroxyquinoline) have been synthesized, and structurally and magnetically characterized. The nine complexes are all phenoxo-O bridged binuclear complexes, in which Ln1 and Ln1a are in an eight-coordinated environment bridged by two phenoxido oxygen atoms of two 8-hydroxyquinoline Schiff base ligands. Although complexes and have very similar structures, magnetic studies reveal that they exhibit different magnetic relaxation behaviors with the effective barriers (ΔE/kB) of 34.5 K for and 67.6 K for . The dissimilar dynamic magnetic behaviors of and mostly result from the different electron-donating effect induced by the two alkoxy (-OCH3 and -OC2H5) of the 8-hydroxyquinoline Schiff base ligands. Meanwhile, for complexes , , and , there are no observed magnetic relaxation behaviors under a zero dc field. In addition, the luminescence properties of , and were studied. PMID:27095548

  1. Synthesis and characterization of monomeric Mn (IV) and pseudo-tetrameric Mn (III) complexes: magnetic properties of Mn (III) complex.

    PubMed

    Yahsi, Yasemin; Kara, Hulya

    2014-06-01

    Two novel monomer Mn (IV) [Mn(3,5-ClL1)2]⋅(CH3OH), (1), [3,5-ClL1H2=N-(2-hydroxyethyl)-3,5-dichlorosalicylaldimine] (1) and hydrogen-bonded pseudo-tetramer Mn (III) [Mn(5-BrL2)(H2O)2]2⋅[Mn(5-BrL2)(H2O)]2⋅2⋅(ClO4), (2), [5-BrL2H2=N,N'-bis(5-bromosalicylidenato)-1,2-diamino-2-methylpropane)] (2) Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. A variable temperature magnetic susceptibility measurement study has been performed for complex (2) and the result indicates there is a very weak antiferromagnetic interaction (J=-0.40±0.016cm(-1)) between the two manganese (III) centers. PMID:24632152

  2. Magnetocaloric and magnetic properties of SmFe0.5Mn0.5O3 complex perovskite

    NASA Astrophysics Data System (ADS)

    Silva-Santana, M. C.; daSilva, C. A.; Barrozo, P.; Plaza, E. J. R.; de los Santos Valladares, L.; Moreno, N. O.

    2016-03-01

    In this paper, we have investigated the physical properties of SmFe0.5Mn0.5O3 complex perovskite samples, synthesized by means of combustion reaction method. X-ray powder diffraction indicates the formation of single phase perovskite with orthorhombic structure. Low magnetic field measurements show remarkable transition at 234 K related to spin reorientation. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at 18 K and at 234 K. The transition about 234 K presents inverse magnetocaloric effect. The entropy variation from magnetocaloric effect shows power law as function of applied magnetic field with maximum entropy change 5.6 J/kg K with field variation of 70 kOe. Critical exponents extracted from ΔS vs. H presents a remarkable sharp peak near antiferromagnetic to weak ferromagnetic transition temperature.

  3. Synthesis, structures, and magnetic properties of tetranuclear CuII-LnIII complexes.

    PubMed

    Costes, Jean-Pierre; Auchel, Magali; Dahan, Françoise; Peyrou, Viviane; Shova, Sergiu; Wernsdorfer, Wolfgang

    2006-03-01

    The copper(II)-gadolinium(III) and copper(II)-terbium(III) complexes studied in this report derive from disymmetric trianionic ligands abbreviated H3Li (i = 4-6). These ligands are obtained through reaction of different aldehydes with "half-units" having an amide function, the latter resulting from the monocondensation of different diamines with phenyl 2-hydroxy-3-methoxybenzoate. Upon deprotonation, the Li ligands (i = 4-10) possess an inner N2O2 coordination site with one amido, one imine, and two phenoxo functions, an outer O2O2 or O2O coordination site, and an amido oxygen atom positioned out of these two sites. The trianionic character of such ligands yields original anionic complexes in the presence of copper(II) or nickel(II) ions, with a 1/1 L/M stoichiometry. The crystal and molecular structures of four complexes, two 3d (1, 5) and two 3d-4f (12, 13) complexes, have been determined. Complex 1 crystallizes in the monoclinic space group C2/c: a = 27.528(2) A, b = 7.0944(7) A, c = 22.914(2) A, beta = 92.130(6) degrees , V = 4471.9(7) A(3), Z = 8 for C(21.5)H(27)CuKN(2)O(6.5). Complex 5 crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 11.0760(9) A, b = 21.454(2) A, c = 15.336(1) A, beta = 101.474(1) degrees , V = 3571.5(5) A(3), Z = 4. Complex 12 crystallizes in the triclinic space group P (No. 2): a = 8.682(2) A, b = 11.848(2) A, c = 11.928(2) A, alpha = 81.77(3) degrees , beta = 89.17(3) degrees , gamma = 85.49(3) degrees , V = 1210.6(4) A(3), Z = 2 for C20H22CuN5O11Tb. Complex 13 belongs to the monoclinic space group C2/c: a = 25.475(5)A, b = 12.934(3)A, c = 15.023(3) A, beta = 91.06(3) degrees , V = 4949.02A3, Z = 8 for C21H25CuN4O12Tb. The structural determinations confirm that the dinuclear entities involved in 12 and 13 are disposed in a head-to-tail arrangement to give tetranuclear complexes in which the copper and lanthanide ions are positioned at the vertexes of a rectangle. In the [Cu-Gd]2 species, there are two different ferromagnetic Cu-Gd interactions. The stronger one is supported by the double phenoxo bridge (CuO2Gd) while the weaker one corresponds to the single amido bridge (Cu-N-C-O-Gd). Replacement of gadolinium ions with anisotropic terbium ions yields tetranuclear entities showing slow relaxation of magnetization and magnetization hysteresis. Detailed relaxation and hysteresis loop studies establish single-molecule magnet (SMM) behavior which is influenced by weak intermolecular interactions. PMID:16499353

  4. Targeted crystal growth of rare Earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity.

    PubMed

    Schmitt, Devin C; Drake, Brenton L; McCandless, Gregory T; Chan, Julia Y

    2015-03-17

    The single-crystal growth of extended solids is an active area of solid-state chemistry driven by the discovery of new physical phenomena. Although many solid-state compounds have been discovered over the last several decades, single-crystal growth of these materials in particular enables the determination of physical properties with respect to crystallographic orientation and the determination of properties without possible secondary inclusions. The synthesis and discovery of new classes of materials is necessary to drive the science forward, in particular materials properties such as superconductivity, magnetism, thermoelectrics, and magnetocalorics. Our research is focused on structural characterization and determination of physical properties of intermetallics, culminating in an understanding of the structure-property relationships of single-crystalline phases. We have prepared and studied compounds with layered motifs, three-dimensional magnetic compounds exhibiting anisotropic magnetic and transport behavior, and complex crystal structures leading to intrinsically low lattice thermal conductivity. In this Account, we present the structural characteristics and properties that are important for understanding the magnetic properties of rare earth transition metal intermetallics grown with group 13 and 14 metals. We present phases adopting the HoCoGa5 structure type and the homologous series. We also discuss the insertion of transition metals into the cuboctahedra of the AuCu3 structure type, leading to the synthetic strategy of selecting binaries to relate to ternary intermetallics adopting the Y4PdGa12 structure type. We provide examples of compounds adopting the ThMn12, NaZn13, SmZn11, CeCr2Al20, Ho6Mo4Al43, CeRu2Al10, and CeRu4Al16-x structure types grown with main-group-rich self-flux methods. We also discuss the phase stability of three related crystal structures containing atoms in similar chemical environments: ThMn12, CaCr2Al10, and YbFe2Al10. In addition to dimensionality and chemical environment, complexity is also important in materials design. From relatively common and well-studied intermetallic structure types, we present our motivation to work with complex stannides adopting the Dy117Co57Sn112 structure type for thermoelectric applications and describe a strategy for the design of new magnetic intermetallics with low lattice thermal conductivity. Our quest to grow single crystals of rare-earth-rich complex stannides possessing low lattice thermal conductivity led us to discover the new structure type Ln30Ru4+xSn31-y (Ln = Gd, Dy), thus allowing the correlation of primitive volumes with lattice thermal conductivities. We highlight the observation that Ln30Ru4+xSn31-y gives rise to highly anisotropic magnetic and transport behavior, which is unexpected, illustrating the need to measure properties on single crystals. PMID:25730512

  5. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    SciTech Connect

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-03-15

    Two new lanthanide-azide complexes, [Ln{sub 2}(N{sub 3})(isonic){sub 2}(OH){sub 3}(Hisonic)(H{sub 2}O)]{sub n} (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln{sup III} ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln{sup III} ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb{sup III} ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln{sub 2}(N{sub 3})(isonic){sub 2}(OH){sub 3}(Hisonic)(H{sub 2}O)]{sub n} (Ln=Yb{sup III} for 1 and Tb{sup III} for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: Black-Right-Pointing-Pointer The research provided a new method for synthesizing lanthanide-azide complexes. Black-Right-Pointing-Pointer The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. Black-Right-Pointing-Pointer The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  6. Synthesis of Au(II) fluoro complexes and their structure and magnetic properties

    SciTech Connect

    Elder, S.H.; Lucier, G.M.; Hollander, F.J.; Bartlett, N.

    1997-02-05

    Gold dissolves at nearly 20{degree}C, with F{sub 2} in aHF acidified with SbF{sub 5}, to give a red solution from which orange crystals of Au{sup II}[SbF{sub 6}]C{sub 2} crystallize. Exhaustive fluorination results in total conversion of the gold to an insoluble crystalline red solid which is Au{sup II}[SbF{sub 6}]C{sub 2} Au{sup II}[C@Au{sup III}{sub 4}F]C{sub 2}. The crystal structures of these materials and their magnetic properties indicate that they are true AU(II) derivatives. This paper describes these properties and the attempts to prepare AuF{sub 2} by treatment with base in aHF, or by solvolysis, which have resulted in disproportionation to gold, and the mixed-valence fluoride Au{sup II}AU{sup III}{sub 2}F{sub 8}. 37 refs., 5 figs., 1 tab.

  7. Structural and magnetic properties of In1-xMnxSb: Effect of Mn complexes and MnSb nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Kochura, A. V.; Aronzon, B. A.; Lisunov, K. G.; Lashkul, A. V.; Sidorenko, A. A.; De Renzi, R.; Marenkin, S. F.; Alam, M.; Kuzmenko, A. P.; Lähderanta, E.

    2013-02-01

    Structural and magnetic properties of the group III-V diluted magnetic semiconductor In1-xMnxSb with x = 0.005-0.06, including the nuclear magnetic resonance (NMR) investigations, are reported. Polycrystalline In1-xMnxSb samples were prepared by direct alloying of indium antimonide, manganese and antimony, followed by a fast cooling of the melt with a rate of 10-12 K/s. According to the X-ray diffraction data, part of Mn is substituted for In, forming the In1-xMnxSb matrix. Atomic force microscopy and scanning tunneling microscopy investigations provide evidence for the presence of microcrystalline MnSb inclusions (precipitates), having a size of ˜100-600 nm, and the fine structure of nanosize grains with a Gaussian distribution around the diameter of ˜24 nm. According to the NMR spectra, the majority of Mn enters the MnSb inclusions. In addition to the single Mn ions, which contribute to the magnetization M (T) only in the low-temperature limit of T < 10-20 K, and MnSb nanoprecipitates responsible for the ferromagnetic (FM) properties of In1-xMnxSb, a superparamagnetic (SP) contribution of atomic-size magnetic Mn complexes (presumably dimers) has been established. The fraction of the MnSb phase, η ˜ 1-4%, as well as the concentration, nsp ˜ (0.8-3.2) × 1019 cm-3, and the magnetic moment of the Mn dimers, μ ˜ 8-9 μB, are determined. The solubility limit of Mn in the InSb matrix, NSL ˜ 1020 cm-3, is estimated. Hysteresis in low (H < 500 Oe) magnetic fields and saturation of the magnetization in high (H > 20 kOe) magnetic fields are observed, indicating a presence of the SP and FM contributions to the dependence of M (H) up to T ˜ 500 K. The hysteresis is characterized by the coercivity field, Hc, decreasing between ˜100 and 75 Oe when T is increased from 5 to 510 K. The values of Hc are in reasonable agreement with the effect of the largest MnSb inclusions. The maximum of M (T), measured in the zero-field-cooled and the field-cooled conditions in a weak field of 500 Oe, is observed at T ˜ 510 K and is attributable to the Hopkinson effect.

  8. Characterizing the Effect of Temperature and Magnetic Field Strengths on the Complex Shear Modulus Properties of Magnetorheological (mr) Fluids

    NASA Astrophysics Data System (ADS)

    Chooi, W. W.; Oyadiji, S. O.

    When a magnetic field is applied across MR fluids, a yield stress is developed, and their rheological properties can then be categorized into two distinct regimes; pre-yield and post-yield. This paper concerns the viscoelastic behaviour of MR fluids in the pre-yield region. Oscillatory tests were carried out to determine the complex shear modulus properties of MR fluids between the temperature range of -20°C and +50°C. The test results show that the storage modulus and loss modulus increased in value as the excitation frequency was increased from 5Hz to 50Hz. The complex modulus was also found to be influenced by changes in temperature; the higher the temperature, the lower the complex modulus. This is consistent with the behaviour of viscoelastic polymers. The sets of temperature-dependent and frequency-dependent data were subsequently condensed using the method of reduced variables into master curves of complex modulus which effectively extended the frequency coverage of the data at the reference temperature.

  9. Formation of a G-quartet-Fe complex and modulation of electronic and magnetic properties of the Fe center.

    PubMed

    Wang, Likun; Kong, Huihui; Zhang, Chi; Sun, Qiang; Cai, Liangliang; Tan, Qinggang; Besenbacher, Flemming; Xu, Wei

    2014-11-25

    Although the G-quartet structure has been extensively investigated due to its biological importance, the formation mechanism, in particular, the necessity of metal centers, of an isolated G-quartet on solid surfaces remains ambiguous. Here, by using scanning tunneling microscopy under well-controlled ultra-high-vacuum conditions and density functional theory calculations we have been able to clarify that besides the intraquartet hydrogen bonding a metal center is mandatory for the formation of an isolated G-quartet. Furthermore, by subtly perturbing the local coordination bonding schemes within the formed G-quartet complex via local nanoscale scanning tunneling microscopy manipulations, we succeed in modulating the d orbitals and the accompanying magnetic properties of the metal center. Our results demonstrate the feasibility of forming an isolated G-quartet complex on a solid surface and that the strategy of modulating electronic and magnetic properties of the metal center can be extended to other related systems such as molecular spintronics. PMID:25347538

  10. Ligand field influence on the electronic and magnetic properties of quasi-linear two-coordinate iron(II) complexes.

    PubMed

    Chilton, Nicholas F; Lei, Hao; Bryan, Aimee M; Grandjean, Fernande; Long, Gary J; Power, Philip P

    2015-06-28

    The 2 to 300 K magnetic susceptibilities of Fe{N(SiMe2Ph)2}2, 1, Fe{N(SiMePh2)2}2, 2, and the diaryl complex Fe(Ar(Pr(i)4))2, 3, where Ar(Pr(i)4) is C6H3-2,6(C6H3-2,6-Pr(i)2)2 have been measured. Initial fits of these properties in the absence of an independent knowledge of their ligand field splitting have proven problematic. Ab initio calculations of the CASSCF/RASSI/SINGLE-ANISO type have indicated that the orbital energies of the complexes, as well as those of Fe(Ar(Me6))2, 4, where Ar(Me6) is C6H3-2,6(C6H2-2,4,6-Me3)2), are in the order d(xy)≈ d(x(2)-y(2)) < d(xz) ≈ d(yz) < d(z(2)), and the iron(II) complexes in this ligand field have the (d(xy), d(x(2)-y(2)))(3)(d(xz), d(yz))(2)(d(z(2)))(1) ground electronic configuration with a substantial orbital contribution to their effective magnetic moments. An ab initio-derived ligand field and spin-orbit model is found to yield an excellent simulation of the observed magnetic properties of 1-3. The calculated ligand field strengths of these ligands are placed in the broader context of common coordination ligands in hypothetical two-coordinate linear iron(ii) complexes. This yields the ordering I(-) < H(-) < Br(-)≈ PMe3 < CH3(-) < Cl(-)≈ C(SiMe3)3(-) < CN(-)≈ SAr(Pr(i)6-) < Ar(Pr(i)4-) < Ar(Me6-)≈ N3(-) < NCS(-)≈ NCSe(-)≈ NCBH3(-)≈ MeCN ≈ H2O ≈ NH3 < NO3(-)≈ THF ≈ CO ≈ N(SiMe2Ph)2(-)≈ N(SiMePh2)2(-) < F(-)≈ N(H)Ar(Pr(i)6-)≈ N(SiMe3)Dipp(-) < OAr(Pr(i)4-). The magnetic susceptibility of the bridged dimer, [Fe{N(SiMe3)2}2]2, 5, has also been measured between 2 and 300 K and a fit of χMT with the isotropic Heisenberg Hamiltonian, Ĥ = -2JŜ1·Ŝ2 yields an antiferromagnetic exchange coupling constant, J, of -131(2) cm(-1). PMID:26006177

  11. Magnetic properties and complex magnetic phase diagram in non-centrosymmetric EuRhGe3 and EuIrGe3 single crystals

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Bonville, P.; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.

    2016-03-01

    We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe3 and EuRhGe3, inferred from magnetisation, electrical transport, heat capacity and 151Eu Mössbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, I4 mm, BaNiSn3-type structure. Single crystals of EuIrGe3 and EuRhGe3 were grown using a high temperature solution growth method using In as flux. EuIrGe3 exhibits two magnetic transition temperatures TN1 = 12.4 K, and TN 2 = 7.3 K, whereas EuRhGe3 presents a single one at TN = 12 K. 151Eu Mössbauer spectra show evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment phase at lower temperature in EuIrGe3. This latter phase alone occurs in EuRhGe3. In both compounds, the magnetisation measured up to 14 T suggests that the equal moment magnetic phase has a spiral spin arrangement. The field induced reorientations are also well documented in the magnetotransport data. A superzone gap is observed for the current density J ∥ [001], which is enhanced by a transverse magnetic field. The magnetic phase diagram constructed from all the data is complex, revealing the presence of many phases in the H - T space.

  12. A trinuclear copper(II) cryptate and its μ3-CO3 cascade complex: thermodynamics, structural and magnetic properties.

    PubMed

    Mateus, Pedro; Delgado, Rita; Lloret, Francesc; Cano, Joan; Brandão, Paula; Félix, Vítor

    2011-09-26

    The 2,4,6-triethylbenzene-capped hexaamine macrobicycle with pyridyl spacers (pyr) was able to coordinate three copper(II) ions within its cavity. Potentiometric studies performed at 298.2 K in MeOH/H(2)O (50:50 v/v) and at ionic strength 0.10 mol dm(-3) in KNO(3) revealed that trinuclear species predominate in solution from pH 5.0, the hydroxo complexes being the main species, which start forming at unusual very low pH values. The single-crystal X-ray determination of the trinuclear complex showed that the three copper centres have square-planar geometry, arranged in an almost equilateral triangle, and have carbonate bridging the three metal centres. The presence of carbonate resulted from fixation of atmospheric CO(2). The present study represents the first μ(3)-CO(3)-bridged trinuclear copper(II) complex located in the interior of a macrobicyclic cavity. The magnetic data of [Cu(3)(pyr)(μ(3)-CO(3))]·(ClO(4))(4) showed ferromagnetic intramolecular interactions [J=3.80 cm(-1), based on the Hamiltonian H=-J(S(1)S(2)+S(2)S(3)+S(1)S(3))] yielding a spin quartet, S=3/2, ground state. Density functional calculations on the experimental geometry of the trinuclear complex showed that the ferromagnetic nature of the magnetic coupling can be attributed to the syn-anti conformation of the carbonato bridge, and a magneto-structural correlation, based on the different conformations (syn-anti, syn-syn and anti-anti), is presented. The interesting properties observed, namely the lowering of the pK(a) of coordinated water molecules to unusual values and the good fit of the carbonate anion between the copper centres, derive from the special architecture of pyr. PMID:21905134

  13. Magnetic properties of variably serpentinized peridotites and their implication for remanence acquisition during the evolution of oceanic core complexes

    NASA Astrophysics Data System (ADS)

    maffione, M.; Morris, A.; Plümper, O.; Van Hinsbergen, D. J.

    2013-12-01

    Serpentinization of olivine-rich, mafic and ultramafic rocks during hydrothermal alteration is a process that profoundly changes the physical, rheological, magnetic and chemical properties of the oceanic lithosphere. There has recently been renewed interest in this process following the discovery that seafloor exposures of serpentinized upper mantle peridotites are widespread along modern slow- and ultra-slow-spreading ridges. One important mechanism for unroofing of mantle rocks in these settings is displacement along oceanic detachment fault systems, leading to the development of uplifted and rotated footwall sections known as oceanic core complexes (OCCs). However, difficulties inherent in direct sampling and observation of abyssal peridotites have limited our knowledge of the mechanisms of serpentinization, particularly during early stages of alteration. Hence, the progress of reactions with time, the amount, size and main features of reaction by-products (i.e. magnetite), and the progressive evolution of serpentinization at OCCs, remain only partially understood. Here we present the results of an integrated, rock magnetic, paleomagnetic and petrological study of 144 variably serpentinized peridotites from a recently documented fossil OCC preserved in the Mirdita ophiolite of Albania. Integration with existing data from peridotites recovered from several Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) sites provides the first complete magnetic database for variably (0-100%) serpentinized peridotites. We show that major reactions and changes in magnetic properties occur at ~60% serpentinization, likely triggered by a dramatic permeability increase, and that the grain-size of newly formed magnetite increases progressively with serpentinization, leading to variation in the stability of components of magnetization acquired at different times. In the context of OCCs, we propose that serpentinization (and associated remanence acquisition) initiates at the detachment surface and migrates into the footwall during unroofing and tilting, potentially continuing once the OCC has become inactive. This conceptual model for the progression of serpentinization reconciles evidence that suggests that the timing of acquisition of serpentinization-related remanences relative to footwall rotation varies between different OCCs. In this model, rocks adjacent to the main detachment surface will acquire early-stage remanences that record substantial footwall rotation, whereas rocks deeper in the footwall may become magnetized after near or complete rotation.

  14. Syntheses and magnetic properties of a pyrimidyl-substituted nitronyl nitroxide radical and its cobalt(ii) complexes.

    PubMed

    Wang, Jian; Li, Jia-Nan; Zhang, Shao-Liang; Zhao, Xin-Hua; Shao, Dong; Wang, Xin-Yi

    2016-04-11

    A new bis-bidentate nitronyl nitroxide radical with a pyrimidyl substituent group and two Co(ii) complexes of this ligand were synthesized and characterized. Field-induced single-molecule magnet behavior was firstly observed in the nitronyl nitroxide radical-bridged complexes. PMID:26983759

  15. Structure, photochemistry and magnetic properties of tetrahydrogenated Schiff base chromium(III) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Chai, Jie; Feng, SiSi; Yang, BinSheng

    2015-04-01

    Four mononuclear chromium(III) complexes [Cr(L(1))(en)]Br0.3Cl0.7 (1), [Cr(L(1))(pr)]Cl (2), [Cr(L(2))(en)]ClO4 (3), [Cr(L(2))(pr)]Cl (4) along with one dinuclear μ-methoxo [Cr(μ-OMe)(L1)]2 (5) were synthesized (en = 1,2-ethanediamine, pr = 1,3-diaminopropane H2L(1) = Tetrahydrosalen = H2[H4]salen = N,N‧-bis(2-hydroxybenzyl)-1,2-ethanediamine, H2L(2) = Tetrahydrosalpr = H2[H4]salpr = N,N‧-bis(2-hydroxybenzyl)-1,3-diaminopropane). The competitive reactions in the presence of EDTA were carried out and the first-order rate constants k(1) = (5.2 ± 0.2) × 10-3 h-1 < k(2) = (6.7 ± 0.3) × 10-3 h-1 < k(3) = (8.0 ± 0.1) × 10-3 h-1 < k(4) = (9.5 ± 0.2) × 10-3 h-1 were obtained by spectroscopic measurements. In addition, photo-induced decomposition was monitored under irradiation of xenon lamp. The sequence of first-order rate constants is k‧(1) = (4 ± 0.1) × 10-4 s-1 < k‧(2) = (6 ± 0.3) × 10-4 s-1 < k‧(3) = (1.1 ± 0.2) × 10-3 s-1 < k‧(4) = (1.4 ± 0.2) × 10-3 s-1, which is in accordance with that of kinetics studies with EDTA. Dinuclear complex 5 exhibits a strong antiferromagnetic coupling with the J = -10.8 cm-1.

  16. Structure, photochemistry and magnetic properties of tetrahydrogenated Schiff base chromium(III) complexes.

    PubMed

    Liu, Bin; Chai, Jie; Feng, SiSi; Yang, BinSheng

    2015-04-01

    Four mononuclear chromium(III) complexes [Cr(L(1))(en)]Br0.3Cl0.7 (1), [Cr(L(1))(pr)]Cl (2), [Cr(L(2))(en)]ClO4 (3), [Cr(L(2))(pr)]Cl (4) along with one dinuclear μ-methoxo [Cr(μ-OMe)(L1)]2 (5) were synthesized (en=1,2-ethanediamine, pr=1,3-diaminopropane H2L(1)=Tetrahydrosalen=H2[H4]salen=N,N'-bis(2-hydroxybenzyl)-1,2-ethanediamine, H2L(2)=Tetrahydrosalpr=H2[H4]salpr=N,N'-bis(2-hydroxybenzyl)-1,3-diaminopropane). The competitive reactions in the presence of EDTA were carried out and the first-order rate constants k(1)=(5.2±0.2)×10(-3) h(-1)complex 5 exhibits a strong antiferromagnetic coupling with the J=-10.8 cm(-1). PMID:25637815

  17. A one-dimensional azido-bridged manganese(III) complex with bidentate Schiff base: Crystal structure and magnetic properties

    SciTech Connect

    Li Wei; Li Zongwei; Li Licun Liao Daizheng; Jiang Zonghui

    2007-10-15

    The synthesis, structural characterization, and magnetic behavior of a novel one-dimensional azido-bridged manganese(III) complex of formula [Mn(L){sub 2}N{sub 3}] (1) is reported, where HL is the bidentate Schiff base obtained from the condensation of salicylaldehyde with 4-methoxy aniline. Complex 1 crystallizes in the monoclinic system, space group P2{sub 1}/n, with a=11.743(4) A, b=24.986(9) A, c=13.081(5) A, {beta}=95.387(7){sup o} and Z=2. The complex is of one-dimensional chain structure with single end-to-end azido bridges and the manganese(III) ion has an elongated octahedral geometry. Magnetic studies show that the weak antiferromagnetic interaction is mediated by the single end-to-end azido bridge with the exchange parameter J=-5.84 cm{sup -1}. - Graphical abstract: A novel azido-bridged manganese(III) complex with bidentate Schiff base ligands has been prepared and characterized structurally and magnetically. The complex is of one-dimensional chain structure with single end-to-end azido bridges in axial positions. Two bidentate Schiff base ligands coordinate in the equatorial mode. The magnetic measurements show that the complex exhibits weak antiferromagnetic interaction.

  18. Synthesis, structures, magnetism and electrochemical properties of triruthenium-acetylide complexes.

    PubMed

    Kuo, Ching-Kuo; Chang, Jung-Che; Yeh, Chen-Yu; Lee, Gene-Hsiang; Wang, Chih-Chieh; Peng, Shie-Ming

    2005-11-21

    A series of triruthenium complexes with arylacetylide axial ligands Ru(3)(dpa)(4)(C(2)X)(2)(BF(4))(y)(dpa = dipyridylamido; X = Fc, y= 0 (1); X = Ph, y= 0 (2); X = PhOCH(3), y= 1 (3); X = PhC(5)H(11), y= 1 (4); X = PhCN, y= 0 (5); X = PhNO(2), y= 0 (6)) have been synthesized. The crystal structures show that the Ru-Ru bond lengths (2.3304(9)-2.3572(5)A) of these compounds are longer than those of Ru(3)(dpa)(4)Cl(2)(Ru-Ru=2.2537(1)A). This is ascribed to the formation of the stronger pi-backbonding from metal to axial ligand which weakens the Ru-Ru interactions and the bond order is reduced in the triruthenium unit. Cyclic voltammetry and differential pulse voltammetry show that compound exhibits electronic coupling between the two ferrocenyl units with DeltaE(1/2) close to 100 mV. Compounds 2-6 display three triruthenium-based reversible one-electron redox couples, two oxidations and one reduction, and the electrode potentials shift upon varying the substituents. A linear relationship is observed when the Hammett constants are plotted against the redox potentials. PMID:16258622

  19. Mononuclear and polynuclear complexes ligated by an iminodiacetic acid derivative: synthesis, structure, solution studies and magnetic properties.

    PubMed

    Puentes, Roberto; Torres, Julia; Kremer, Carlos; Cano, Joan; Lloret, Francesc; Capucci, Davide; Bacchi, Alessia

    2016-03-15

    Two novel families of coordination polymers, [Ln(bzlida)(Hbzlida)]·H2O (Ln = La, Nd) and [Ln2(bzlida)3]·3H2O (Ln = Nd, Sm, Eu, Gd) were prepared by hydrothermal reaction of Ln2O3 with benzyliminodiacetic acid (H2bzlida). The conditions of synthesis, in particular the pH value, were selected on the basis of previous speciation studies reported in this work. The first type of complex consists of 1D chains built by a fully deprotonated ligand bridging two lanthanide ions and protonated Hbzlida(-) ligands connecting three cations. The second type is formed by [Ln2(bzlida)3] bimetallic units in which the ligand has a tridentate NOO coordination mode. This is expanded to a 2D network through carboxylate linkers. Under similar synthetic conditions but including copper acetate in the reaction mixture, a new compound was also obtained and characterized: [Cu(bzlida)2{Er(AcO)(H2O)5}2][Cu(bzlida)2]·6H2O (AcO = acetate). This salt is made up of the [Cu(bzlida)2{Er(AcO)(H2O)5}2](2+) heterotrimetallic complex cation containing an acetato bridge, and the [Cu(bzlida)2](2-) anion. The same reaction produces the monomeric [Cu(Hbzlida)2]·4H2O whose structure was also elucidated. Magnetic properties of the Gd(iii) derivative were studied and analyzed experimentally and theoretically. The results are compared and discussed with respect to those reported in the literature and a magnetostructural correlation is suggested. PMID:26906084

  20. Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties.

    PubMed

    Wang, Shi-Yu; Wang, Wen-Min; Zhang, Hong-Xia; Shen, Hai-Yun; Jiang, Li; Cui, Jian-Zhong; Gao, Hong-Ling

    2016-02-16

    Seven dinuclear complexes based on 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands, [RE2(hfac)4L2] (RE = Y (), Gd (), Tb (), Dy (), Ho (), Er () and Lu (); hfac(-) = hexafluoroacetylacetonate; HL = 2-[(4-chloro-phenylimino)-methyl]-8-hydroxyquinoline), have been synthesized, and structurally and magnetically characterized. Complexes have similar dinuclear structures, in which each RE(III) ion is eight coordinated by two L(-) and two hfac(-) ligands in a distorted dodecahedron geometry. The luminescence spectra indicate that complex exhibits characteristic Tb(III) ion luminescence, while and show HL ligand luminescence. The magnetic studies reveal that features a magnetocaloric effect with the magnetic entropy change of -ΔSm = 16.83 J kg(-1) K(-1) at 2 K for ΔH = 8 T, and displays slow magnetic relaxation behavior with the anisotropic barrier of 6.7 K and pre-exponential factor τ0 = 5.3 × 10(-6) s. PMID:26792239

  1. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties.

    PubMed

    Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack

    2015-03-16

    The reaction of 1,3-adamantanedicarboxylic acid (LH2) with uranyl nitrate under solvo-hydrothermal conditions, either alone or in the presence of additional metal cations (Co(2+), Ni(2+), or Cu(2+)) gives a series of nine complexes displaying a wide range of architectures. While [UO2(L)(H2O)]·1.25CH3CN (1) and [UO2(L)(DMF)] (2) are one-dimensional (1D) species analogous to that previously known, [H2NMe2]2[(UO2)2(L)3]·1.5H2O (3), which includes dimethylammonium counterions generated in situ, is a three-dimensional (3D) framework, and [UO2(L)(NMP)] (4) (NMP = N-methyl-2-pyrrolidone) is a braid-shaped 1D polymer. When 3d block metal ions are present and bound to 2,2'-bipyridine (bipy) coligands, their role is reduced to that of decorating species attached to uranyl-containing 1D polymers, as in [UO2M(L)2(bipy)2]·0.5H2O with M = Co (5) or Ni (6), and [(UO2)2Cu2(L)3(NO3)2(bipy)2]·0.5H2O (9), or of counterions, as in [Ni(bipy)3][(UO2)4(O)2(L)3]·3H2O (7), in which a two-dimensional (2D) assembly is built from tetranuclear uranyl-containing building units. In contrast, the heterometallic 3D framework [UO2Cu(L)2] (8) can be isolated in the absence of bipy. The emission spectra measured in the solid state display the usual uranyl vibronic fine structure, with various degrees of resolution and quenching, except for that of complex 7, which shows emission from the nickel(II) centers. The magnetic properties of complexes 5, 6, 8, and 9 were investigated, showing, in particular, the presence of zero-field splitting effects in 6 and weak antiferromagnetic interactions in 9. PMID:25710676

  2. Novel tetranuclear Ni(II) Schiff base complex containing Ni4O4 cubane core: synthesis, X-ray structure, spectra and magnetic properties.

    PubMed

    Jana, Mahendra Sekhar; Priego, José L; Jiménez-Aparicio, Reyes; Mondal, Tapan Kumar

    2014-12-10

    Novel tetranuclear nickel(II) Schiff base complex having symmetric Ni4O4 cubane-core, [Ni4O2(OAc)2(L)2] (1) has been synthesized. Single crystal of the complex exhibits four nickel atoms in the alternate corner of the cubane and other four sites are occupied by phenolate-O and μ3-O(2-). Variable temperature magnetic moment data suggests the Ni centres are weakly antiferromagnetically coupled with J1=-4.82cm(-1) and J2=-4.83cm(-1). The electronic spectra, emission properties and life time measurement of ligand, HL and complex 1 have been studied. PMID:24996213

  3. Synthesis, crystal structures, magnetic and luminescent properties of unique 1D p-ferrocenylbenzoate-bridged lanthanide complexes

    SciTech Connect

    Yan, P.F.; Zhang, F.M.; Li, G.M.; Zhang, J.W.; Sun, W.B.; Suda, M.; Einaga, Y.

    2009-07-15

    Treatments of p-ferrocenylbenzoate [p-NaOOCH{sub 4}C{sub 6}Fc, Fc=(eta{sup 5}-C{sub 5}H{sub 5})Fe(eta{sup 5}-C{sub 5}H{sub 4})] with Ln(NO{sub 3}){sub 3}.nH{sub 2}O afford seven p-ferrocenylbenzoate lanthanide complexes {l_brace}[Ln(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} [Ln=Ce (1), Pr (2), Sm (3), Eu (4), Gd (5), Tb (6) and Dy (7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {l_brace}[Ce(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (1) and {l_brace}[Pr(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (2) form a unique 1D double-bridged infinite chain structure bridged by mu{sub 2}-OOCH{sub 4}C{sub 6}Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC{sub 6}H{sub 4}COO{sup -} units, two terminal monodentate coordinated H{sub 2}O molecules and four mu{sub 2}-{sup -}OOCH{sub 4}C{sub 6}Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5. - Graphical abstract: Seven p-ferrocenylbenzoate lanthanide coordination polymers were synthesized. Given is the perspective view of a unique 1D double-bridged infinite chain structure of 1, excitation and emission spectra of 6 and plots of chi{sub m}T vs. T and chi{sub m}{sup -1} vs. T of 5.

  4. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    SciTech Connect

    Suzuki, Atsushi; Iguchi, Motoi; Oku, Takeo; Fujiwara, Motoyasu

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.

  5. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu2+-Polyethyleneimine Interpolyelectrolyte-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Demchenko, V.; Shtompel', V.; Riabov, S.; Lysenkov, E.

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex (pectin-Cu2+-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability.

  6. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu(2+)-Polyethyleneimine Interpolyelectrolyte-Metal Complexes.

    PubMed

    Demchenko, V; Shtompel', V; Riabov, S; Lysenkov, E

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Сu(2+) cations in the interpolyelectrolyte-metal complex (pectin-Cu(2+)-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu(2+) cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability. PMID:26659610

  7. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  8. Magnetic adsorbent constructed from the loading of amino functionalized Fe3O4 on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study

    NASA Astrophysics Data System (ADS)

    Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin

    2016-06-01

    A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe3O4 (NH2-Fe3O4) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH2-Fe3O4 and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g-1, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model, which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH2-Fe3O4 on coordination complex modified polyoxometalates

  9. Electronic Structure and Magnetic Properties of Dioxo-Bridged Diuranium Complexes with Diamond-Core Structural Motifs: A Relativistic DFT Study.

    PubMed

    Teyar, Billel; Belkhiri, Lotfi; Costuas, Karine; Boucekkine, Abdou; Meyer, Karsten

    2016-03-21

    Electronic structures and magnetic properties of the binuclear bis(μ-oxo) U(IV)/U(IV) K2[{(((nP,Me)ArO)3tacn)U(IV)}2(μ-O)2] and U(V)/U(V) [{(((nP,Me)ArO)3tacn)U(V)}2(μ-O)2] (tacn = triazacyclononane, nP = neopentyl) complexes, exhibiting [U(μ-O)2U] diamond-core structural motifs, have been investigated computationally using scalar relativistic Density Functional Theory (DFT) combined with the Broken Symmetry (BS) approach for their magnetic properties. Using the B3LYP hybrid functional, the BS ground state of the pentavalent [U(V)(μ-O)2U(V)] 5f(1)-5f(1) complex has been found of lower energy than the high spin (HS) triplet state, thus confirming the antiferromagnetic character in agreement with experimental magnetic susceptibility measurements. The nonmagnetic character observed for the tetravalent K2[U(IV)(μ-O)2U(IV)] 5f(2)-5f(2) species is also predicted by our DFT calculations, which led practically to the same energy for the HS and BS states. As reported for related dioxo diuranium(V) systems, superexchange is likely to be responsible for the antiferromagnetic coupling through the π-network orbital pathway within the (μ-O)2 bridge, the dissymmetrical structure of the U2O2 core playing a determining role. In the case of the U(IV) species, our computations indicate that the K(+) counterions are likely to play a role for the observed magnetic property. Finally, the MO analysis, in conjunction with NPA and QTAIM analyses, clarify the electronic structures of the studied complexes. In particular, the fact that the experimentally attempted chemical oxidation of the U(V) species does not lead straightforwardly to binuclear complexes U(VI) is clarified by the MO analysis. PMID:26930424

  10. Structure and magnetic properties of a non-heme diiron complex singly bridged by a hydroxo group.

    PubMed

    Jullien, Josseline; Juhász, Gergely; Mialane, Pierre; Dumas, Eddy; Mayer, Cédric R; Marrot, Jérôme; Rivière, Eric; Bominaar, Emile L; Münck, Eckard; Sécheresse, Francis

    2006-08-21

    The synthesis of the first singly bridged non-heme diiron complex with a mu-hydroxo bridging ligand, [{(salten)Fe}2(OH)][B(C6H5)4].(CH3CN)x.(H2O)y (1) [H2salten = 4-azaheptane-1,7-bis(salicylideneiminate)], is reported. The complex has been characterized with X-ray crystallography, FTIR, magnetic susceptibility measurements, and Mössbauer spectroscopy. The data have been compared with the results of DFT calculations on both 1 and a model with an unsupported mu-oxo bridge (2) to verify the formulation of the complex as a mu-hydroxo-bridged species. The X-ray structure [Fe-O(H) = 1.997(1) A and Fe-O(H)-Fe = 159 degrees ] is consistent with the DFT-optimized geometry of 1 [Fe-O(H) = 2.02 A and Fe-O(H)-Fe = 151 degrees ]; the Fe-O(H) distance in 1 is about 0.2 A longer than the Fe-O separations in the optimized geometry of 2 (1.84 A) and in the crystallographic structures of diiron(III) compounds with unsupported mu-oxo bridges (1.77-1.81 A). The formulation of 1 as a hydroxo-bridged compound is also supported by the presence of an O-H stretch band in the FTIR spectrum of the complex. The magnetic susceptibility measurements of 1 reveal antiferromagnetic exchange (J = 42 cm(-1) and H(ex) = JS(1).S(2)). Nearly the same J value is obtained by analyzing the temperature dependence of the Mössbauer spectra (J = 43 cm(-1); other parameters: delta = 0.49 mm s(-1), DeltaE(Q) = -0.97 mm s(-1), and eta = 0.45 at 4.2 K). The experimental J values and Mössbauer parameters agree very well with those obtained from DFT calculations for the mu-hydroxo-bridged compound (J = 46 cm(-1), delta = 0.48 mm s(-1), DeltaE(Q) = -1.09 mm s(-1), and eta = 0.35). The exchange coupling constant in 1 is distinctly different from the value J approximately 200 cm(-1) calculated for the optimized mu-oxo-bridged species, 2. The increased exchange-coupling in 2 arises primarily from a decrease in the Fe-O bond length. PMID:16903750

  11. A racemic and enantiopure unsymmetric diiron(III) complex with a chiral o-carborane-based pyridylalcohol ligand: combined chiroptical, magnetic, and nonlinear optical properties.

    PubMed

    Di Salvo, Florencia; Tsang, Min Ying; Teixidor, Francesc; Viñas, Clara; Planas, José Giner; Crassous, Jeanne; Vanthuyne, Nicolas; Aliaga-Alcalde, Núria; Ruiz, Eliseo; Coquerel, Gerard; Clevers, Simon; Dupray, Valerie; Choquesillo-Lazarte, Duane; Light, Mark E; Hursthouse, Michael B

    2014-01-20

    The design of molecule-based systems combining magnetic, chiroptical and second-order optical nonlinear properties is still very rare. We report an unusually unsymmetric diiron(III) complex 1, in which three bulky chiral carboranylpyridinealkoxide ligands (oCBhmp(-)) bridge both metal ions and the complex shows the above-mentioned properties. The introduction of o-carborane into the 2-(hydroxymethyl)pyridine (hmpH) architecture significantly alters the coordination of the simple or aryl-substituted 2-hmpH. The unusual architecture observed in 1 seems to be triggered by the poor nucleophilicity of our alkoxide ligand (oCBhmp(-)). A very rare case of spontaneous resolution takes place on precipitation or exposure to solvent vapor for the bulk compound, as confirmed by a combination of single-crystal and powder X-ray diffraction, second-harmonic generation, and circular dichroism. The corresponding enantiopure complexes (+)1 and (-)1 have also been synthesized and fully characterized. This research provides a new building block with unique geometry and electronics to construct coordination complexes with multifunctional properties. PMID:24338928

  12. Stereochemistry for engineering spin crossover: structures and magnetic properties of a homochiral vs. racemic [Fe(N3O2)(CN)2] complex.

    PubMed

    Wang, Qiang; Venneri, Shari; Zarrabi, Niloofar; Wang, Hongfeng; Desplanches, Cédric; Létard, Jean-François; Seda, Takele; Pilkington, Melanie

    2015-04-21

    The Schiff-base condensation of the R,R-(+)-diamine () with 2,6-diacetyl pyridine in the presence of Fe(II) affords the macrocyclic complex [Fe(dpN3O2)(CN)2] () (dp = diphenyl) with ligand centred chirality comprising of a 1 : 1 mixture of LS 6- and HS 7-coordinate Fe(II) centres. Variable temperature magnetic susceptibility and Mössbauer studies reveal that () undergoes an incomplete thermal SCO transition with a T1/2 = 250 K as well as a LIESST effect. In contrast its racemic counterpart () comprises of mostly LS Fe(II) and exhibits no LIESST properties. PMID:25789944

  13. Closely-related Zn(II)2Ln(III)2 complexes (Ln(III) = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties.

    PubMed

    Ruiz, José; Lorusso, Giulia; Evangelisti, Marco; Brechin, Euan K; Pope, Simon J A; Colacio, Enrique

    2014-04-01

    The reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L) with Zn(NO3)2·6H2O and subsequently with Ln(NO3)3·5H2O (Ln(III) = Gd and Yb) and triethylamine in MeOH using a 1:1:1:1 molar ratio leads to the formation of the tetranuclear complexes {(μ3-CO3)2[Zn(μ-L)Gd(NO3)]2}·4CH3OH (1) and{(μ3-CO3)2[Zn(μ-L)Yb(H2O)]2}(NO3)2·4CH3OH (2). When the reaction was performed in the absence of triethylamine, the dinuclear compound [Zn(μ-L)(μ-NO3)Yb(NO3)2] (3) is obtained. The structures of 1 and 2 consist of two diphenoxo-bridged Zn(II)-Ln(III) units connected by two carbonate bridging ligands. Within the dinuclear units, Zn(II) and Ln(III) ions occupy the N3O2 inner and the O4 outer sites of the compartmental ligand, respectively. The remaining positions on the Ln(III) ions are occupied by oxygen atoms belonging to the carbonate bridging groups, by a bidentate nitrate ion in 1, and by a coordinated water molecule in 2, leading to rather asymmetric GdO9 and trigonal dodecahedron YbO8 coordination spheres, respectively. Complex 3 is made of acetate-diphenoxo triply bridged Zn(II)Yb(III) dinuclear units, where the Yb(III) exhibits a YbO9 coordination environment. Variable-temperature magnetization measurements and heat capacity data demonstrate that 1 has a significant magneto-caloric effect, with a maximum value of -ΔSm = 18.5 J kg(-1) K(-1) at T = 1.9 K and B = 7 T. Complexes 2 and 3 show slow relaxation of the magnetization and single-molecule magnet (SMM) behavior under an applied direct-current field of 1000 Oe. The fit of the high-temperature data to the Arrhenius equation affords an effective energy barrier for the reversal of the magnetization of 19.4(7) K with τo = 3.1 × 10(-6) s and 27.0(9) K with τo = 8.8 × 10(-7) s for 2 and 3, respectively. However, the fit of the full range of temperature data indicates that the relaxation process could take place through a Raman-like process rather than through an activated Orbach process. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Yb(III)-based luminescence in complexes 2 and 3 through an intramolecular energy transfer to the excited states of the accepting Yb(III) ion. These complexes show several bands in the 945-1050 nm region, corresponding to (2)F5/2→(2)F7/2 transitions arising from the ligand field splitting of both multiplets. The observed luminescence lifetimes τobs are 0.515 and 10 μs for 2 and 3, respectively. The shorter lifetime for 2 is due to the presence of one coordinated water molecule on the Yb(III) center (and to a lesser extent noncoordinated water molecules), facilitating vibrational quenching via O-H oscillators. Therefore, complexes 2 and 3, combining field-induced SMM behavior and NIR luminescence, can be considered to be dual magneto-luminescent materials. PMID:24593019

  14. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    SciTech Connect

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  15. Magnetic Properties of Antiferromagnetic Iron Oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R. L.; Sainctavit, P.; Carvallo, C.; ona-Nguema, G.; Morin, G.

    2013-12-01

    Weakly magnetic iron oxyhydroxides such as ferrihydrite, lepidocrocite or goethite are commonly found in diverse geological and environmental setting, including ground waters and streams, sediments, soils, or acid mine drainage. These minerals take part in multiple biological and abiological processes, and can evolve to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. At this meeting, we will present low temperature magnetic properties acquired on fully characterized synthetic samples. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or by studying the early-stages of solid-state alteration (under oxidizing or reducing atmosphere). In particular, we will present recent results about the presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

  16. Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties

    SciTech Connect

    Wang, Xiu-Li; Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin

    2013-02-15

    Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(DNBA){sub 6}] (1), [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(1,3-BDC){sub 3}]{center_dot}2H{sub 2}O (2) and [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(SIP){sub 2}]{center_dot}4H{sub 2}O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid and NaH{sub 2}SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular Cu{sup II}{sub 4} cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear Cu{sup II}{sub 4} clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the Cu{sup II}{sub 4} clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (4{sup 10}{center_dot}6{sup 14}{center_dot}8{sup 4})(4{sup 5}{center_dot}6){sub 2} topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated. - Graphical abstract: Three tetranuclear copper(II) cluster-based complexes based on different carboxylates have been synthesized under hydrothermal conditions. The carboxylate anions play a key role in the formation of three different structures. Highlights: Black-Right-Pointing-Pointer Three new tetranuclear copper(II) cluster-based complexes have been obtained. Black-Right-Pointing-Pointer The atrz conduces to the construction of tetranuclear copper(II) clusters. Black-Right-Pointing-Pointer Carboxylates show important effect on the structures of title complexes. Black-Right-Pointing-Pointer Magnetic properties and electrochemical behaviors have been reported.

  17. Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin

    2013-02-01

    Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu4(μ3-OH)2(atrz)2(DNBA)6] (1), [Cu4(μ3-OH)2(atrz)2(1,3-BDC)3]·2H2O (2) and [Cu4(μ3-OH)2(atrz)2(SIP)2]·4H2O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H2BDC=1,3-benzenedicarboxylic acid and NaH2SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular CuII4 cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear CuII4 clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the CuII4 clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (410·614·84)(45·6)2 topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated.

  18. A 3D complex containing novel 2D Cu{sup II}-azido layers: Structure, magnetic properties and effects of 'Non-innocent' reagent

    SciTech Connect

    Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng; Liu, Fu-Chen; Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060

    2012-12-15

    A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D framework with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.

  19. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    SciTech Connect

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-10-15

    A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.

  20. Family of dumbbell Ni4Ln2 (Ln = Pr, Sm, Eu, Gd, Tb, Ho, Er) complexes: syntheses, structures, luminescent and magnetic properties.

    PubMed

    Liu, Baolin; Liu, Qingxia; Xiao, Hongping; Zhang, Wu; Tao, Ruojie

    2013-04-14

    The synthesis and characterization of a family of heterometallic Ni4Ln2 complexes (Ln = Pr(1), Sm(2), Eu(3), Gd(4), Tb(5), Ho(6) and Er(7)) of the formula [Ni2LnL1L2(OH)(H2O)]2 are reported, where H4L1 is 3,3′-(1E,1′E)-(2,2′-(2-aminoethylazanediyl)bis(ethane-2,1-diyl)bis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxybenzoic acid) and H2L2 is 3-formyl-2-hydroxybenzoic acid. The molecular structures of 1–7 were determined by single-crystal X-ray diffraction and reveal that they are isostructural. In all of these compounds, the six metal ions are held together to form a novel Ni4Ln2O10 core and exhibit a relatively rare dumbbell-type structure. In these compounds, the Ni ions are in slightly distorted square-pyramidal or octahedral environments. An all-oxygen coordination environment (8O) is present around the central lanthanide ion, which is present in a distorted square antiprismatic geometry. The Ln–Ln and Ln–Oavg bond distances in 1–7 show a gradual reduction proceeding from 1 to 7, in accordance with the lanthanide contraction. The luminescent properties of all the compounds have been studied. The magnetic susceptibility analysis demonstrate antiferromagnetic interactions within complex 4. PMID:23396382

  1. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    NASA Astrophysics Data System (ADS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-10-01

    A non-coplanar dicarboxylate ndca (H2ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H2O)]n (1), {[Co(ndca)(bpe)(H2O)]·H2O}n (2), [Co(ndca)(bpa)0.5(H2O)]n (3), [Cd(ndca)(bpe)(H2O)]n (4), {[Cd(ndca)(bpa)(H2O)]·0.5H2O}n (5), and {[Cd(ndca)(bpp) (H2O)]·H2O}n (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)-carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given.

  2. Magnetic superlattices: Static properties

    NASA Astrophysics Data System (ADS)

    Valadares, E. C.; Plascak, J. A.

    1988-11-01

    A simple model for a magnetic superlattice consisting of spin- {1}/{2} Ising layered media intercalated by periodic interfaces described by the spin- {1}/{2}anisotropic Heisenberg model is considered. Phase diagrams and different profiles of magnetization determined by the parameters of the model are discussed within a variational approach based on Bogoliubov's inequality for the free energy.

  3. A Family of {Cr(III)2Ln(III)2} Butterfly Complexes: Effect of the Lanthanide Ion on the Single-Molecule Magnet Properties.

    PubMed

    Langley, Stuart K; Wielechowski, Daniel P; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2015-11-01

    We report the synthesis of several heterometallic 3d-4f complexes which result from the replacement of the Dy(III) ions in the [Cr(III)2Dy(III)2(OMe)2(mdea)2(O2CPh)4(NO3)2] single-molecule magnet (SMM) by the trivalent Pr, Nd, Gd, Tb, Ho, and Er lanthanide ions. The parent {Cr2Dy(III)2} compound displayed an anisotropy barrier to magnetization reversal of 53 cm(-1), with magnetic hysteresis observed up to 3.5 K and with large coercive fields at low temperatures (2.7 T at 1.8 K). Magnetic studies for the new complexes revealed significantly different static and dynamic magnetic behavior in comparison to the parent {Cr(III)2Dy(III)2} complex. When Ln(III) = Pr, a complete loss of SMM behavior is found, but when Ln(III) = Nd or Er, frequency-dependent tails in the out-of-phase susceptibility at low temperatures are observed, indicative of slow magnetic relaxation, but with very small anisotropy barriers and fast relaxation times. When Ln(III) = Tb and Ho, SMM behavior is clearly revealed with anisotropy barriers of 44 and 36 cm(-1), respectively. Magnetic hysteresis is also observed up to 2.5 and 1.8 K (0.003 T/s) for the Tb and Ho complexes, respectively. A large loss of the magnetization is, however, observed at zero-field, and as a result, the large coercivity which is present in the {Cr2Dy2} example is lost. The {Cr2Tb2} and {Cr2Ho2} complexes are rare examples of Tb- and Ho-based SMMs which reveal both slow relaxation in the absence of a static dc field (ac susceptibility) and open hysteresis loops above 1.8 K. PMID:26488451

  4. Hydroxide-bridged cubane complexes of nickel(II) and cadmium(II): magnetic, EPR, and unusual dynamic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Pellechia, Perry J; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-05-01

    The reactions of M(ClO4)2·xH2O (M = Ni(II) or Cd(II)) and m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) in the presence of triethylamine lead to the formation of hydroxide-bridged cubane compounds of the formula [M4(μ3-OH)4(μ-Lm)2(solvent)4](ClO4)4, where solvent = dimethylformamide, water, acetone. In the solid state the metal centers are in an octahedral coordination environment, two sites are occupied by pyrazolyl nitrogens from Lm, three sites are occupied by bridging hydroxides, and one site contains a weakly coordinated solvent molecule. A series of multinuclear, two-dimensional and variable-temperature NMR experiments showed that the cadmium(II) compound in acetonitrile-d3 has C2 symmetry and undergoes an unusual dynamic process at higher temperatures (ΔGLm‡ = 15.8 ± 0.8 kcal/mol at 25 °C) that equilibrates the pyrazolyl rings, the hydroxide hydrogens, and cadmium(II) centers. The proposed mechanism for this process combines two motions in the semirigid Lm ligand termed the “Columbia Twist and Flip:” twisting of the pyrazolyl rings along the Cpz–Cmethine bond and 180° ring flip of the phenylene spacer along the CPh–Cmethine bond. This dynamic process was also followed using the spin saturation method, as was the exchange of the hydroxide hydrogens with the trace water present in acetonitrile-d3. The nickel(II) analogue, as shown by magnetic susceptibility and electron paramagnetic resonance measurements, has an S = 4 ground state, and the nickel(II) centers are ferromagnetically coupled with strongly nonaxial zero-field splitting parameters. Depending on the Ni–O–Ni angles two types of interactions are observed: J1 = 9.1 cm(–1) (97.9 to 99.5°) and J2 = 2.1 cm(–1) (from 100.3 to 101.5°). “Broken symmetry” density functional theory calculations performed on a model of the nickel(II) compound support these observations. PMID:24750135

  5. Tuning the Magnetic Properties of Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Jamison, Andrew C.; Litvinov, Dmitri; Willson, Richard C.; Lee, T. Randall

    2013-01-01

    The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time. PMID:23912237

  6. Tuning the magnetic properties of nanoparticles.

    PubMed

    Kolhatkar, Arati G; Jamison, Andrew C; Litvinov, Dmitri; Willson, Richard C; Lee, T Randall

    2013-01-01

    The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time. PMID:23912237

  7. Emergent properties of magnetic materials

    NASA Astrophysics Data System (ADS)

    Ratcliff, William Davis, II

    In Tolstoy's War and Peace, history is presented as a tapestry spun from the daily interactions of large numbers of individuals. Even if one understands individuals, it is very difficult to predict history. Similarly, the interactions of large numbers of electrons give rise to properties that one would not initially guess from their microscopic interactions. During the course of my dissertation, I have explored emergent phenomena in a number of contexts. In ZnCr2O4, geometric frustration gives rise to a plethora of equivalent ground states. From these, a lower dimensional set of collinear spins on hexagons are selected to form the building blocks of the lattice. In MgTi2O4, quantum spins dimerize and form a unique chiral ordering pattern on the spinel lattice. Descending into two dimensions, differences in size and charge give rise to an ordering between triangular layers of magnetic and nonmagnetic ions. This triangular lattice allows for the possibility of observing the RVB spin liquid state, or perhaps a valence bond crystal and initial measurements are promising. Also, on the spinel lattice, ionic ordering gives rise to one dimensional chains with their own interesting physics. Finally, in the SrCoxTi1-x O3, system we find that upon reduction, tiny clusters of Co metal precipitate out and chemical inhomogeneity on the microscale may determine much of the physics. This has relevance to a number of recent claims of room temperature ferromagnism in dilute magnetic systems. In all of these systems, complex behavior emerges from well understood microscopic behavior. For me, this is the fascination of strongly correlated electronic systems.

  8. Magnetic properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    McIntosh, G.; Aranzaru Revuelta, M.; Pey, J.; Noriega Salmon, R.; Artinano Rodriguez de Torres, B.; Querol, X.; Alastuey, A.

    2012-04-01

    The magnetic and chemical properties of a series of size-fractioned atmospheric particle filter samples (PM10, PM2.5 and PM1) from Barcelona have been studied. These results have been compared with those obtained from dust and particle samples taken from potential geogenic and anthropogenic particle sources (North African dust, Spanish top soils and vehicle-derived particles) and from biomagnetic monitoring (tree leaves, needles and bark). The filter samples are dominated by magnetically soft properties. The ratio of anhysteretic to isothermal remanence increases and the isothermal remanence coercivity decreases, with decreasing size fraction. This is interpreted in terms of smaller average magnetic grain sizes and increased relative importance of superparamagnetic grains. Concentration-dependent magnetic parameters most closely correlate with the concentration of antimony, a tracer element commonly related to vehicle brake dust. The correlation decreases with decreasing size fraction, suggesting it is associated with larger magnetic grains. The dust and vehicle-derived particles can be distinguished on the basis of different combinations of magnetic parameters. Applying these results to the filter samples supports the idea that brake wear particles make an important contribution to the magnetic signal of atmospheric particles, at least in urban settings. It can also be seen that the results obtained from biomagnetic monitoring closely mimic those obtained from filter samples, suggesting a similar control and highlighting their suitability for study in this field.

  9. Low Dimensionality Effects in Complex Magnetic Oxides

    NASA Astrophysics Data System (ADS)

    Kelley, Paula J. Lampen

    Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.

  10. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for better MCE efficiency. PMID:25330279

  11. Two binuclear cyanide-bridged Cr(III)-Mn(III) complexes based-on [Cr(2,2'-bipy)(CN)4]- building block: synthesis, crystal structures and magnetic properties.

    PubMed

    Zhanga, Daopeng; Kong, Lingqian; Zhang, Hongyan

    2015-01-01

    Tetracyanide building block [Cr(2,2'-bipy)(CN)(4)]- and two bicompartimental Schiff-base based manganese(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in two cyanide-bridged CrIII-MnIII complexes: [Mn(L(1))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·2.5H(2)O (1) and [Mn(L(2))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·(3)H(2)O (2) (L1 = N,N'-(1,3-propylene)-bis(3-methoxysalicylideneiminate), L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)). Single X-ray diffraction analysis shows their similar cyanide-bridged binuclear structures, in which the cyanide precursor acting as monodentate ligand connects the manganese(III) ion. The binuclear complexes are self-complementary through coordinated aqua ligand and the free O4 compartment from the neighboring complex, giving H-bond linking dimer structure. Investigation over magnetic properties reveals the antiferromagnetic magnetic coupling between the cyanide-bridged Cr(III) and Mn(III) ions. A best-fit to the magnetic susceptibilities of these two complexes leads to the magnetic coupling constants J = -5.95 cm(-1), j = -0.61 cm(-1) (1) and J = -4.15 cm(-1), j = -0.57 cm(-1) (2), respectively. PMID:25830979

  12. Magnetic properties of electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Heydon, G. P.; Hoon, S. R.; Farley, A. N.; Tomlinson, S. L.; Valera, M. S.; Attenborough, K.; Schwarzacher, W.

    1997-04-01

    Electrodeposited multilayered nanowires grown within a polycarbonate membrane constitute a new medium in which giant magnetoresistance (GMR) perpendicular to the plane of the multilayers can be measured. These structures can exhibit a perpendicular GMR of at least 22% at ambient temperature. We performed detailed studies both of reversible magnetization and of irreversible remanent magnetization curves for CoNiCu/Cu/CoNiCu multilayered and CoNiCu pulse-deposited nanowire systems with Co:Ni ratios of 6:4 and 7:3 respectively in the range 10 - 290 K, allowing the magnetic phases of these structures to be identified. Shape anisotropy in the pulse-deposited nanowire and inter-layer coupling in the multilayered nanowire are shown to make important contributions to the magnetic properties. Dipolar-like interactions are found to predominate in both nanowire systems. Magnetic force microscope (MFM) images of individual multilayered nanowires exhibit a contrast consistent with there being a soft magnetization parallel to the layers. Switching of the magnetic layers in the multilayered structure into the direction of the MFM tip's stray field is observed.

  13. Low-dimensional compounds containing cyanido groups. XXVIII. Crystal structure, spectroscopic and magnetic properties of two copper(II) tetracyanidoplatinate complexes with 1,2-diaminopropane

    SciTech Connect

    Vavra, Martin; Potočňák, Ivan; Dušek, Michal; Čižmár, Erik; Ozerov, Mykhaylo; Zvyagin, Sergei A.

    2015-05-15

    Violet crystals of ([Cu(pn){sub 2}]{sub 2}[Pt(CN){sub 4}])[Pt(CN){sub 4}]·2H{sub 2}O (1, pn=1,2-diaminopropane) and blue crystals of [Cu(pn)Pt(CN){sub 4}]{sub n}·nH{sub 2}O (2) were prepared under hydrothermal conditions and characterized using elemental analysis, IR and UV–vis spectroscopy and by X-ray crystal structure analysis. Different number of ν(C≡N) absorption bands of these two compounds reflects their different structures. An X-ray crystal structure analysis has shown that complex 1 is of ionic character and is formed from trinuclear [Cu(pn){sub 2}–Pt(CN){sub 4}–Cu(pn){sub 2}]{sup 2+} complex cation and discrete [Pt(CN){sub 4}]{sup 2–} anion together with two molecules of crystal water. On the other hand, complex 2 is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN){sub 4}]{sub n} composition and completed by n molecules of crystal water. Magnetic measurements show the presence of a weak antiferromagnetic exchange interaction in complex 1 (Θ=–0.2 K), while the magnetic susceptibility of complex 2 is well described by the model of uniform S=1/2 spin chain with exchange interaction J/k{sub B}=–1.64 K. - Graphical abstract: Two complexes of different structural types from the system Cu(II) – 1,2–diaminopropane – [Pt(CN){sub 4}]{sup 2–} have been isolated. These were characterized by IR and UV–VIS spectroscopy, X–ray crystal structure analysis together with the magnetic measurements. On one hand ([Cu(pn){sub 2}]{sub 2}[Pt(CN){sub 4}])[Pt(CN){sub 4}]∙2H{sub 2}O is of ionic character and is formed from trinuclear complex cation and discrete anion together with two molecules of crystal water. On the other hand, [Cu(pn)Pt(CN){sub 4}]{sub n}∙nH{sub 2}O is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN){sub 4}]{sub n} composition and completed by n molecules of crystal water. - Highlights: • Two complexes of different compositions from one system have been isolated. • First complex is of ionic character and second one is of polymeric character. • Polymeric complex described as a spin chain in contrast to its bilayer structure.

  14. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1? and L2? are N,N-diethyl-N?,N?-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N?,N?-diethylethane-1,2-diamine (L2), N,N-diethyl-N?-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1?) and N-((1H-pyrazol-1-yl)methyl)-N?,N?-diethylethane-1,2-diamine (L2?) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (?-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  15. Magnetism of the oceanic crust: Evidence from ophiolite complexes

    SciTech Connect

    Banerjee, S.K.

    1980-07-10

    The magnetic properties of six ophiolite complexes from around the world, ranging in age from Jurassic to Miocene, are presented. An emphasis is placed in our study on the petrologic and isotopic data from these ophiolite complexes in order to determine first whether the rock samples presently available represent the pristine ocean crust or whether they have been altered subaerially since their formation. Five of the ophiolites are found to be acceptable, and the conclusion is overwhelmingly in favor of a marine magnetic source layer that includes not only the pillow lavas but also the underlying dikes and gabbro. At the moment, however, our observations do not suggest that the magnetic contributions of the basaltic dikes should be overlooked in favor of gabbro. A second important conclusion is that nearly pure magnetite could indeed be a magnetic carrier which contributes to marine magnetic anomanies. It only awaits discovery by deeper ocean crustal penetration by future Deep Sea Drilling Project legs.

  16. Magnetic modeling of the Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Cole, J.; Letts, S. A.; Finn, C.; Torsvik, T. H.; Lee, M. D.

    2009-12-01

    Magnetic modeling of the 2.06 Ga Bushveld Complex presents special challenges due a variety of magnetic effects. These include strong remanence in the Main Zone and extremely high magnetic susceptibilities in the Upper Zone, which exhibit self-demagnetization. Recent palaeomagnetic results have resolved a long standing discrepancy between age data, which constrain the emplacement to within 1 million years, and older palaeomagnetic data which suggested ~50 million years for emplacement. The new palaeomagnetic results agree with the age data and present a single consistent pole, as opposed to a long polar wander path, for the Bushveld for all of the Zones and all of the limbs. These results also pass a fold test indicating the Bushveld Complex was emplaced horizontally lending support to arguments for connectivity. The magnetic signature of the Bushveld Complex provides an ideal mapping tool as the UZ has high susceptibility values and is well layered showing up as distinct anomalies on new high resolution magnetic data. However, this signature is similar to the highly magnetic BIFs found in the Transvaal and in the Witwatersrand Supergroups. Through careful mapping using new high resolution aeromagnetic data, we have been able to map the Bushveld UZ in complicated geological regions and identify a characteristic signature with well defined layers. The Main Zone, which has a more subdued magnetic signature, does have a strong remanent component and exhibits several magnetic reversals. The magnetic layers of the UZ contain layers of magnetitite with as much as 80-90% pure magnetite with large crystals (1-2 cm). While these layers are not strongly remanent, they have extremely high magnetic susceptibilities, and the self demagnetization effect must be taken into account when modeling these layers. Because the Bushveld Complex is so large, the geometry of the Earth’s magnetic field relative to the layers of the UZ Bushveld Complex changes orientation, creating complications in the modeling. Anisotropic magnetic susceptibility may be related to demagnetization in the Bushveld Complex due to well defined, relatively thin layers. Aeromagnetic data are useful for imaging layered intrusions because they often contain highly magnetic layers. However, care must be taken to incorporate the effects of strong susceptibilites (AMS,demagnetisation) and remanence.

  17. A new family of [Cu(II)Ln(III)M(V)] heterotrimetallic complexes (Ln = La, Gd, Tb; M = Mo, W): model systems to probe exchange interactions and single-molecule magnet properties.

    PubMed

    Visinescu, Diana; Alexandru, Maria-Gabriela; Madalan, Augustin M; Jeon, Ie-Rang; Mathonière, Corine; Clérac, Rodolphe; Andruh, Marius

    2016-05-01

    Four isostructural trinuclear 3d-4f-4(5)d heterotrimetallic complexes, with the general formula [L(2)CuLn(H2O)5(μ-NC)M(CN)7], were obtained from the association of binuclear 3d-4f complexes and {M(V)(CN)8}(3-) metalloligands (M = Mo, Ln = La ; M = W, Ln = La ; M = Mo, Ln = Gd ; M = Mo; Ln = Tb , where H2L(2) = 1,2-ethanediylbis(2-iminomethylene-6-methoxy-phenol)). The metalloligand coordinates through a single-cyanido group at the apical position of the copper(ii) ion belonging to the {Cu(II)Ln(III)} binuclear complex. The analysis of the magnetic data for the La(iii) derivatives (compounds and ), in the 1.85-300 K temperature range, shows a weak ferromagnetic exchange interaction between Cu(II) and Mo(V)/W(V) ions across the cyanido bridge (JCuM/kB = 3.6(6) K; g = 2.23(5) for and JCuM/kB = 3.8(6) K, g = 2.21(5) for , with H = -2JCuMSCu·SM). These results were used to simulate the magnetic properties of compound , using the isotropic spin Hamiltonian H = -2JCuMoSCu·SMo - 2JCuGdSCu·SGd. The resulting magnetic interaction between Cu(II) and Gd(III) ions via the phenoxo-bridge was found to be weakly ferromagnetic (JCuGd/kB = +4.5(2) K with JCuMo/kB = +3.6(2) K, gGd = gCu = 2.00 and gMo = 1.98). The dc magnetic properties for compound also show a predominant ferromagnetic interaction, while the ac magnetic measurements indicate the presence of the slow relaxation of the magnetization below 3.5 K. PMID:27052800

  18. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, João; Kumar, Amit; Sarkar, Asit R

    2013-02-21

    Three new complexes of Cu(II) and Ni(II), [Cu(II)(H(2)pydmedpt)](2+)·2Cl(-) (1), [Ni(II)(H(2)pydmedpt)](2+)·2Cl(-) (2) and [Ni(II)(pydmedpt)(OH)](-)·K(+) (3) of the Schiff base ligand [H(2)pydmedpt](2+)·2Cl(-) were synthesized by the in situ reaction of pyridoxal (pyd), a vitamer of vitamin B(6), N,N-bis[3-aminopropyl]methylamine (medpt) and copper(II) acetate or nickel(II) acetate, respectively. The molecular structures of 1 and 2 were determined by single crystal X-ray diffraction studies. The structure of 3 in the solid state was inferred by elemental analysis, diffuse reflectance spectrum, variable temperature magnetic moment studies and DFT calculations. The binding of the Schiff base ligand to the metal centers involves two phenolato oxygens, two imine nitrogens and one amine nitrogen. The coordination geometry around Cu in 1 is distorted square pyramidal and that around the Ni atom in 2 is intermediate between square-pyramidal and trigonal-bipyramidal. In the crystals the compounds form supramolecular one dimensional chain structures stabilized by hydrogen bonding and π-π stacking interactions. Variable temperature magnetic moment data of 2 indicate the presence of a momomeric high spin Ni(II) centre in the complex. The solid state diffuse reflectance spectrum, conductance and elemental analysis suggest that 3 is a Ni(II) complex with a tetragonally distorted octahedral field, the sixth position being occupied by the oxygen atom of a hydroxyl group. The variable temperature magnetic moment of 3 indicates the presence of a ferromagnetic dinuclear species (29.2%) along with the major monomeric species, the intra-dimer exchange term J value being 14.3 cm(-1). The competitive binding of 1 and 2 with DNA was studied in the concentration range 40 to 400 μM, the apparent binding constants being K = 2.9 × 10(3) and 6.7 × 10(3) M(-1), respectively. Human Serum Albumin (HSA) binding studies were carried out at concentrations of 800-1000 μM and 400-500 μM for the complexes and HSA, respectively, in PBS buffer at pH 7.4. Complex 1 binds to HSA, while no binding is observed in case of 2, instead, the complex hydrolyses under the experimental conditions used and the resulting Ni(2+) ions bind with HSA. PMID:23223610

  19. Complexes of selected transition metal ions with 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid: Synthesis, structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Ferenc, Wiesława; Sadowski, Paweł; Tarasiuk, Bogdan; Cristóvão, Beata; Drzewiecka-Antonik, Aleksandra; Osypiuk, Dariusz; Sarzyński, Jan

    2015-07-01

    The new complexes of 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid, HL anion with Mn(II), Co(II), Ni(II), Cu(II) and Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Ho(III), Er(III), Y(III) were synthesized and some of their physico-chemical properties investigated. The complexes form hydrates with two or three molecules of water. The carboxylate groups act as a bidentate bridging or chelating ligand. The compounds of Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Ho(III), Er(III) and Y(III) are amorphous solids while those of Cu(II), Co(II), Ni(II) and Mn(II) crystalline ones that crystallize in monoclinic system. Complex of Cu(II) is the centrosymmetric dinuclear compound. Around both Cu(II) cations the tetragonal pyramide is formed. Being heated in air at 293-1173 K the complexes are decomposed in three steps. The oxides of appropriate metals are the final products of complex decomposition. All analysed compounds obey Curie-Weiss law. They show the paramagnetic properties with the ferromagnetic interactions between molecular centres.

  20. Anion-Directed Copper(II) Metallocages, Coordination Chain, and Complex Double Salt: Structures, Magnetic Properties, EPR Spectra, and Density Functional Study.

    PubMed

    Wu, Jing-Yun; Zhong, Ming-Shiou; Chiang, Ming-Hsi; Bhattacharya, Dibyendu; Lee, Yen-Wei; Lai, Long-Li

    2016-05-17

    A series of Cu(II) metallo-assemblies showing anion-directed structural variations, including five metallocages [(G(n-) )⊂{Cu2 (Hdpma)4 }]((8-n)+) (A(-) )8-n (G(n-) =NO3 (-) , ClO4 (-) , SiF6 (2-) , BF4 (-) , SO4 (2-) ; A(-) =NO3 (-) , ClO4 (-) , BF4 (-) , CH3 SO4 (-) ; Hdpma=bis(3-pyridylmethyl)ammonium cation), a complex double salt, namely, (H3 dpma)4 (CuCl4 )5 Cl2 , and a coordination chain, namely, [Cu2 (dpma)(OAc)4 ], are reported. The influence of the anion can be explained by its coordinating ability, the affinity of which for the Cu(II) center interferes significantly with metallocage formation, and its shape, which offers host-guest recognition ability to engage in weak metal-anion coordination and hydrogen bonding to the organic ligand, which are responsible for metallocage templation. EPR studies of these metallocages in the powder phase at room temperature and 77 K showed a trend of the g values (g|| >2.10>g⊥ >2.00) indicating a dx2-y2 -based ground state with square-pyramidal geometry for the Cu(II) centers. The magnetism of these metallocages can be interpreted as the result of a combination of relatively small magnetic coupling integrals and a substantial contribution of temperature-independent paramagnetism (TIP). The weak magnetic interaction is corroborated by the results of DFT calculations and the EPR spectra. Availability of the low-lying state for spin population was confirmed by a magnetization study, which revealed a magnetic moment approaching 2Nβ, which would explain the presence of the larger TIP term. PMID:27080422

  1. Some Structural Properties of Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ioshpa, B.; Mogilevskii, E.; Obridko, V.

    2007-05-01

    We discuss some results of the study of spatial characteristics of solar magnetic fields. The analysis is based on the magnetic field data obtained with a new spectromagnetograph installed on the IZMIRAN Tower Telescope (Fe I 6302.5 Å) (Kozhevatov et al., 2002), the data of the MSFC solar vector magnetograph (Fe I 5250.2 Å) and the data of longitudinal magnetic 96 m daily maps of SOHO/MDI magnetograph (Ni I 6768 Å) downloaded through Internet. Our study was directed in some different ways: the fractal properties of sunspots; fractal properties of space distribution of the magnetic fields along great distances comparable with the size of active regions or active complexes; fractal properties of active and quiet regions as global entities. To do it we used some different methods, particularly, the well known method using the relation between the area and the perimeter of magnetic field lines (see (Feder, 1988; Meunier, 1999; Nesme-Ribes at al., 1996; Balke et al., 1993)) and technique developed by Higuchi (1988), who applied it to the investigation of long time series. Note also that magnetic structure in terms of the fractal models was developed earlier in (Zelenyi & Milovanov, 1991; Milovanov & Zelenyi, 1993; Mogilevskii, 1994; Mogilevskii, 2001; Abramenko et al., 2002; Abramenko, 2005; Salakhudinova & Golovko, 2005). The main results are: 1. Fractal analysis of sunspot magnetic field indicated the existence of three families of self-similar contour lines roughly belonging to the umbra, penumbra and the ambient photosphere correspondingly. The greatest fractal dimension corresponds to the regions of weakest fields (ambient photosphere), the least one corresponds to the intermediate region (penumbra). 2. More detailed analysis shows that the fractal coefficient has a maximum (about 1.50) near the umbra--penumbra interface. 3. The global fractal numbers of space distribution of magnetic field on solar surface is closely connected with the mean absolute values of the longitudinal magnetic field for this surface. The fractal numbers diminish with the rising of mean magnetic field (from values about 2.0 for the relatively quiet region to 1- 1.2 for very active regions). 4. The dependences of fractal numbers of the space distribution of longitudinal and transversal fields versus mean longitudinal field are similar by their character but the fractal values for transversal field are higher than the corresponding factor values for longitudinal field by factor about 1.5. This means that the distribution of transversal field along the space is more chaotic than the distribution of longitudinal field.

  2. Copper(II) coordination chain complexes with the 3,5-diacetyl-4-methylpyrazole dioxime ligand: Synthesis, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Outirite, Moha; Mernari, Bouchaib; Bentiss, Fouad; Capet, Frederic; Lagrenée, Michel

    2011-03-01

    3,5-Diacetyl-4-methylpyrazole dioxime (dampdoH 3) has been found to form with copper(II), in the presence of different anions (perchlorate, nitrate, triflate and tetrafluoroborate), four new dimeric complexes, [Cu 2(dampdoH 2) 2(ClO 4) 2] ( 1); [Cu 2(dampdoH 2) 2(H 2O) 2]2NO 3 ( 2); [Cu 2(dampdoH 2) 2(CF 3SO 3) 2] ( 3) and [Cu 2(dampdoH 2) 2(BF 4) 2] ( 4). The molecular structure of [Cu 2(dampdoH 3) 2] 2+ which is the common unit for the four complexes is composed of binuclear species where one of the oxime functions has the classical structure while the second function has a zwitterionic structure. For the four complexes these binuclear units are parallel and are bound together by a strong intermolecular bond to create an infinite 1D chain expanding along the crystallographic " a" axis. Variable-temperature magnetic susceptibility measurements for complex 1 indicate a very strong antiferromagnetic exchange coupling intra or/and interdimeric ring, the J1 value of the intradimer coupling being strongest than the interbinuclear coupling J2 ( J1 = -346 cm -1, J2 = -119.15 cm -1).

  3. Complex Magnetic Fields of Compact Stars

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.

    2015-08-01

    Observational evidence for strong magnetic fields of accreting white dwarfs, in cataclysmic binaries, and accreting neutron stars, in low mass X-ray binaries, is reviewed. Increasingly, complex magnetic fields have been involked to explain effects that cannot be modelled with pure dipolar fields. This has been the result of both improved observations, providing stronger field constraints, as well as robust modelling techniques. While observations are often not able to clearly differentiate between dipolar and multi-polar fileds, examples are shown that suggest that complex fields are likely a quite common feature of compact stars.

  4. Coherent transport through spin-crossover magnet Fe2 complexes.

    PubMed

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2016-01-01

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices. PMID:26647165

  5. Magnetic Properties of Friction Stir Processed Composite

    NASA Astrophysics Data System (ADS)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-03-01

    Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

  6. Magnetic Properties of selected Prussian Blue Analogs

    NASA Astrophysics Data System (ADS)

    Shrestha, Manjita

    Prussian Blue Analogs (PBAs) of composition M[M(C,N)6 ] 2.xH2O are bimetallic cyanide complexes, where M and M are bivalent or trivalent transition metals and x is number of water molecule per unit cell. The PBAs form cubic framework structures, which consist mostly of alternating MIIIN6 and MIIC 6 octahedrals. However, occupancies of the octrahedrals are not perfect: they may be empty and the charges are balanced by the guest water molecules at the lattice site (C or N site) or the interstitial site (between the octahedrals) of the unit cell. Most (but not all) PBAs exhibit negative thermal expansion behavior, i.e. volume decrease with increasing temperature. Another area of interest in PBA research is the occurrence of unusual magnetic properties. Similar to other molecular magnets, large crystal-field splitting due to the octrahedral environment may result in a combination of low- or high-spin configurations of the localized magnetic moments, i.e. spin crossover effects may be found. My dissertation focuses on the magnetic properties of the selected 3d transition-metal PBAs, namely metal hexacyanochromates M3[Cr(C,N)6 ]2.xH2O, metal hexcyanoferrates M3[Fe(C,N)6]2.xH2O and metal hexcyanocobaltates M3[Co(C,N)6]2 .xH2O where M = Mn, Co, Ni and Cu. In particular, I analyzed the temperature and field dependencies of the bulk magnetic response of those PBAs. My results show that the magnetic susceptibility of all studied PBAs follows the Curie-Weiss behavior in the paramagnetic region up to room temperature; however, some of the compounds exhibit long-range magnetic order at lower temperatures (ferromagnetic or antiferromagnetic). In particular, the data provide evidence for magnetic ground states for most of the metal hexacyanochromates and all of the metal hexacyanoferrates but none of the hexacyanocobaltates that were studied. For each of the compounds, my analysis provides a measure of the effective magnetic moment, which is then compared with the predicted moments assuming high- and/or low-spin configurations. Finally, I provide a discussion as to whether magnetism may play any role into the occurrence of negative thermal expansion for most PBAs.

  7. Dinuclear (Fe(II), Gd(III)) complexes deriving from hexadentate Schiff bases: synthesis, structure, and Mössbauer and magnetic properties.

    PubMed

    Costes, Jean-Pierre; Clemente-Juan, Juan Modesto; Dahan, Françoise; Dumestre, Frédéric; Tuchagues, Jean-Pierre

    2002-06-01

    The dinuclear (Fe(II), Gd(III)) complexes studied in this report derive from hexadentate Schiff base ligands abbreviated H(2)L(i)() (i = 1, 2, 3). H(2)L(1) = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2'-dimethyl-propane, H(2)L(2) = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane, and H(2)L(3) = N,N'-bis(3-methoxysalicylidene)-1,2-diaminoethane. The crystal and molecular structures of three complexes have been determined at 160 K. Depending on the solvent used in the preparation, L(1)Fe(CH(3)OH)Gd(NO(3))(3)(CH(3)OH)(2), 1, or L(1)Fe((CH(3))(2)CO)Gd(NO(3))(3), 1', is obtained from H(2)L(1). A similar complex, L(2)Fe((CH(3))(2)CO)Gd(NO(3))(3), 2, is obtained from H(2)L(2). Complex 1 crystallizes in the orthorhombic space group Pca2(1) (No. 29): a = 22.141(3) A, b = 9.4159(16) A, c = 15.2075(17) A, V = 3170.4(7) A(3), Z = 4. Complexes 1' and 2 crystallize in the monoclinic space group P2(1)/c (No. 14): 1', a = 9.6264(17) A, b = 19.662(3) A, c = 16.039(3) A, beta = 95.15(2) degrees, V = 3023.6(9) A(3), Z = 4; 2, a = 9.7821(13) A, b = 18.7725(17) A, c = 16.100(2) A, beta = 96.497(16) degrees, V = 2937.5(6) A(3), Z = 4. Complexes 1, 1', and 2 possess an Fe(O(phenoxo))(2-)Gd core. The mononuclear L(3)Fe complex could be prepared from H(2)L(3) but not the related dinuclear (Fe, Gd) species. Mössbauer spectroscopy evidences that the iron center is in the +2 oxidation state for the six complexes. The experimental magnetic susceptibility and magnetization data of complexes 1, 1', and 2 indicate the occurrence of weak Fe(II)-Gd(III) ferromagnetic interactions. Single ion zero-field splitting of the iron(II) must be taken into account for satisfactorily fitting the data by exact calculation of the energy levels associated to the spin Hamiltonian through diagonalization of the full matrix for axial symmetry (1, J = 0.50 cm(-1), D = 2.06 cm(-1); 1', J = 0.41 cm(-1), D = 3.22 cm(-1); 2, J = 0.08 cm(-1), D = 4.43 cm(-1)). PMID:12033896

  8. Coherent transport through spin-crossover magnet Fe2 complexes

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2015-12-01

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices.As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices. Electronic supplementary information (ESI) available: The spin density of SCO magnet Fe2 complexes, the partial DOS of HS Fe cations, zero-bias transmission curves of SCO magnet Fe2 junctions with different anchoring configurations, and bias-dependent transmission curves of SCO magnet Fe2 complexes with the [LS-LS] and [LS-HS] configurations. See DOI: 10.1039/C5NR05601B

  9. Polynuclear complexes with alkoxo and phenoxo bridges from in situ generated hydroxy-rich Schiff base ligands: syntheses, structures, and magnetic properties.

    PubMed

    Ding, Caixia; Gao, Chen; Ng, Seikweng; Wang, Bingwu; Xie, Yongshu

    2013-07-22

    Complexes of new Schiff base ligands generated in situ from the reaction of 1-aminoglycerol, aldehydes, and metal ions are reported. [Cu4(HL(1))4] (1) and [Ni4O(HL(1))3(H2O)3)]⋅6 H2O⋅DMF⋅DMSO (2) have M4O4 cubane cores, with the L/M molar ratios of 4:4 and 3:4, respectively. [Mn(III)3Mn(II)NaOCl4(HL(1))3]⋅3 MeCN (3) has a unique pentanuclear trigonal propeller-shaped Mn(III)3Mn(II)Na core structure, and the coordination assemblies are linked by hydrogen bonds to afford a 3D channel structure. [Cu2(HL(2))2] (4) has a bis(μ2-alkoxo)-bridged Cu2O2 core, with the binuclear species linked by hydrogen bonds to afford a 1D double-chain. [Ni7(OH)2(OCH3)4(H2L(3)2(MeOH)2(H2O)2]-(ClO4)2⋅10 H2O (5) has a heptanuclear structure containing heptadentate di-Schiff base ligands, with the nickel(II) ions bridged by phenoxo, alkoxo, hydroxo, and methoxo groups to afford a very rare face-sharing hexadruple defective cubane core with a Ni@Ni6 arrangement. The lattice water molecules are linked by hydrogen bonds to form helical chains, which are further hydrogen-bonded to the coordination moieties to afford a 2D network. Variable temperature magnetic susceptibility measurements and nonlinear data-fitting revealed that the "2+4" type of cubane complex 1 shows medium intradimeric ferromagnetic interactions and weak interdimeric ferromagnetic interactions. For complexes 2 and 5, coexistent ferro- and antiferromagnetic couplings afford a non-zero spin ground state. However, compound 3 shows antiferromagnetic interactions between Mn(III) and Mn(II) , and ferromagnetic interactions between the Mn(III) centers, resulting in a global antiferromagnetic behavior. In conclusion, the reaction of 1-aminoglycerol with aldehydes and metal salts afforded polynuclear complexes with a rich structural diversity and remarkable magnetic behavior. PMID:23765514

  10. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  11. Magnetic Properties of Nanocrystalline Microwires

    NASA Astrophysics Data System (ADS)

    Talaat, Ahmed; Zhukova, Valentina; Ipatov, Mihail; Blanco, Juan Maria; Varga, Rastislav; Klein, Peter; Gonzalez-Legarreta, Lorena; Hernando, Blanca; Zhukov, Arcady

    2016-01-01

    We studied the magnetic properties of two different kinds of Fe-rich glass-coated microwires with nanocrystalline structure: Finemet-type and Hitperm-type microwires. We have determined that the nanostructure obtained after appropriate annealing conditions of as-prepared samples results in a better magnetic softness. Accordingly, two different nanostructures of either α-FeSi in the case of Finemet, or α-FeCo in the case of Hitperm, with zero and positive magnetostriction sign, respectively, have been observed. As a consequence, we have implemented these findings in order to investigate the giant magneto-impedance (GMI) effect and domain wall dynamics of glass-coated microwires. In the case of Finemet-type microwires, we observed a considerable improvement of both the poor GMI effect and magnetic softness observed in as-prepared microwires after an appropriate annealing at temperature, T ann ≥ 550°C when FeCuNbSiB microwires exhibited nanocrystalline structure. In the case of Hitperm-type microwires, we observed an enhancement of the domain wall velocity as well as of domain wall mobility, owing to the nanocrystallization and structural relaxation processes obtained after a suitable current annealing.

  12. Synthesis, structures, and magnetic properties of novel mononuclear, tetranuclear, and 1D chain Mn(III) complexes involving three related asymmetrical trianionic ligands.

    PubMed

    Costes, Jean-Pierre; Dahan, Françoise; Donnadieu, Bruno; Rodriguez Douton, Maria-Jesus; Fernandez Garcia, Maria-Isabel; Bousseksou, Azzedine; Tuchagues, Jean-Pierre

    2004-04-19

    The manganese(III) complexes studied in this report derive from asymmetrical trianionic ligands abbreviated H(3)L(i) (i = 4-6). These ligands are obtained through reaction of salicylaldehyde with "half-units", the latter resulting from monocondensation of different diamines with phenylsalicylate,. Upon deprotonation, L(i) (i = 4-6) possess an inner N(2)O(2) coordination site with one amido, one imine, and two phenoxo functions, and an outer amido oxygen donor. The trianionic character of such ligands yields original neutral complexes with the L/Mn stoichiometry. The crystal and molecular structures of three complexes have been determined at 190 K (1) or 180 K (2 and 3). Complex 1 crystallizes in the triclinic space group P (No. 2): a = 7.8582(14) A, b = 10.9225(16) A, c = 12.4882(18) A, alpha = 67.231(14) degrees, beta = 72.134(14) degrees, gamma = 82.589(13) degrees, V = 940.6(3) A(3), Z = 2. Complex 2 crystallizes in the orthorhombic space group Pbcn (Nuomicron. 60): a = 23.8283(15) A, b = 11.1605(7) A, c = 26.152(2) A, V = 6954.8(8) A(3), Z = 8, while complex 3 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 11.7443(14) A, b = 7.5996(10) A, c = 18.029(2) A, beta = 100.604(10) degrees, V = 1581.6(3) A(3), Z = 4. Owing to hydrogen bonds and pi-pi stackings, the mononuclear neutral molecules of 1 are arranged in a 2D network while complexes 2 and 3 are tetranuclear and polymeric (1D chain) species, respectively, owing to the bridging ability of the oxygen atom of the amido function. The experimental magnetic susceptibilities of complexes 2 and 3 indicate the occurrence of similarly weak Mn(III)-Mn(III) antiferromagnetic interactions (J = -1.1 cm(-1)). Single ion zero-field splitting of manganese(III) must be taken into account for satisfactorily fitting the data by exact calculation of the energy levels associated to the spin Hamiltonian through diagonalization of the full matrix for axial symmetry in 2 (J = - 1.1 cm(-1), D(1) = 2.2 cm(-1), D(2) = -2.8 cm(-1)), D(1) and D(2) being associated to the six- and five-coordinate Mn ions, respectively. A weaker antiferromagnetic interaction (J = - 0.2 cm(-1)) operates through pi-pi stacking in complex 1. Complex 3 is a weak ferromagnet (ordering temperature approximately 7 K) as a result of the spin canting originating from the crystal packing. PMID:15074994

  13. Magnetic properties of ultra-small goethite nanoparticles

    NASA Astrophysics Data System (ADS)

    Brok, E.; Frandsen, C.; Madsen, D. E.; Jacobsen, H.; Birk, J. O.; Lefmann, K.; Bendix, J.; Pedersen, K. S.; Boothroyd, C. B.; Berhe, A. A.; Simeoni, G. G.; Mrup, S.

    2014-09-01

    Goethite (?-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mssbauer spectroscopy. The ultra-small size of these particles (i.e. that the particles consist of one or only a few grains) allows for more direct elucidation of the particles' intrinsic magnetic properties. We find from ac and dc magnetization measurements a significant upturn of the magnetization at very low temperatures most likely due to freezing of spins in canted spin structures. From hysteresis curves we estimate the saturation magnetization from uncompensated magnetic moments to be ?s = 0.044 A m2 kg-1 at room temperature. Inelastic neutron scattering measurements show a strong signal from excitations of the uniform mode (q = 0 spin waves) at temperatures of 100-250 K and Mssbauer spectroscopy studies show that the magnetic fluctuations are dominated by classical superparamagnetic relaxation at temperatures above 170 K. From the temperature dependence of the hyperfine fields and the excitation energy of the uniform mode we estimate a magnetic anisotropy constant of around 1.0 105 J m-3.

  14. Magnetic Properties of Disordered Fe3Al

    NASA Astrophysics Data System (ADS)

    Nehra, J.; Kabra, K.; Jani, S.; Ranjith, P. M.; Lakshmi, N.; Venugopalan, K.

    2011-07-01

    The magnetic properties of Fe3Al powders prepared by filing the ingot in both as-filed and annealed form are studied. Results of Mössbauer, X-ray diffraction and DC magnetization studies show that the magnetic properties are modified due to formation of non-magnetic Fe3AlC0.5 phase due to C intercalated on filing. The hyperfine fields obtained are explained in terms of nearest and next nearest neighbor configurations of 57Fe.

  15. Dinuclear and 1D iron(III) Schiff base complexes bridged by 4-salicylideneamino-1,2,4-triazolate: X-ray structures and magnetic properties.

    PubMed

    Herchel, Radovan; Pavelek, Lubomír; Trávníček, Zdeněk

    2011-11-28

    Four new iron(III) complexes were obtained by the reaction of 4-salicylideneamino-1,2,4-triazole (Hsaltrz) and selected dinuclear μ-oxo-bridged iron(III) Schiff base complexes [{FeL(4)}(2)(μ-O)], where L(4) represents a terminal tetradentate dianionic Schiff-base ligand. X-ray structural analysis revealed a novel bridging mode of κN,κO of the saltrz ligand to form dinuclear complexes [{Fe(salen)(μ-saltrz)}(2)]·CH(3)OH (1) (H(2)salen = N,N'-ethylenebis(salicylimine)) and [{Fe(salpn)(μ-saltrz)}(2)] (2) (H(2)salpn = N,N'-1,2-propylenbis(salicylimine)), whereas one-dimensional (1D) zig-zag chains were formed in the case of [{Fe(salch)(μ-saltrz)}·0.5CH(3)OH](n) (3) (H(2)salch = N,N'-cyclohexanebis(salicylimine)) and [Fe(salophen)(μ-saltrz)](n) (4) (H(2)salophen = N,N'-o-phenylenebis(salicylimine)). It was also shown that the rigidity of the terminal ligand L(4) can be considered as the key factor for the molecular dimensionality of the products. The thorough magnetic analysis based on SQUID experiments, including the isotropic exchange and the zero-field splitting of both temperature and field dependent data, was performed for dimeric (1 and 2) and also for polymeric compounds (3 and 4) and revealed weak antiferromagnetic exchange mediated by the saltrz anions with much larger D-parameter (|D|≫|J|). PMID:21968851

  16. Pulsed magnetic field magnetic force microscope and evaluation of magnetic properties of soft magnetic tips

    NASA Astrophysics Data System (ADS)

    Zheng, Yangdong; Yoshimura, Satoru; Egawa, Genta; Zheng, Fu; Kinoshita, Yukinori; Saito, Hitoshi

    2015-08-01

    A pulsed magnetic field magnetic force microscope (PMF-MFM) is developed for evaluation of the magnetic properties of nano-scale materials and devices, as well as the characteristics of MFM tips. We present the setup of the PMF-MFM system, and focus on the evaluation of a FeCo soft magnetic tip by PMF-MFM. We find a new theoretical method to calculate tip magnetization curves (M-H curves) using MFM phase signals. We measure the MFM phase and amplitude signals for the FeCo tip during the presence of the pulsed magnetic fields oriented parallel and antiparallel to the initial tip magnetization direction, and acquire the tip coercivity H c ~ 1.1?kOe. The tip M-H curves are also calculated using the MFM phase signals data. We obtain the basic features of the tip magnetic properties from the tip M-H curves.

  17. Magnetic study in high-Tc superconducting oxides by AC-complex magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Okuda, K.; Noguchi, S.; Yoshikawa, M.; Imanaka, N.; Imai, H.; Adachi, G.

    1990-08-01

    Magnetic properties of high-Tc superconducting oxides were investigated by ac-complex magnetic susceptibility ? = ?? - j?. The magnetic penetration depth ?(T) obtained f om ?? was analyzed by the term of BCS gap parameter. A strong correlation between Tc and ?(O) -2 was found. The loss peak of ??(T) in the bulk sample of Bi(Pb)SrCaCuO-Au composites system was measured as a function of field amplitude and frequency. The activation energy of flux was obtained as a function of field amplitude by applying the flux-creep model.

  18. Three ion-pair complexes containing bis(maleonitriledithiolate)copper(II) anion and substituted 2-aminopyridinium cations: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Ou, Shu-Hua; Li, Jin-Ni; Liao, Xiao-Lan; Zheng, Xiao-Xu; Luo, Cui-Ping; Yang, Le-Min; Zhou, Jia-Rong; Ni, Chun-Lin

    2016-04-01

    Three new ion-pair complexes, [2-ClBz-2‧-NH2Py]2[Cu(mnt)2](1), [2-Cl-4-ClBz-2-NH2Py]2[Cu(mnt)2](2) and [2-Cl-4-BrBz-2‧-NH2Py]2[Cu(mnt)2]·C2H5OH(3) ([2-Cl-4-RBz-2‧-NH2Py]+ = 1-(2‧-chloro-4‧-Rbenzyl)-2-aminopyridinium, R = H, Cl, Br; mnt2- = maleonitriledithiolate), were synthesized and characterized by elemental analyses, IR, UV-visible, single crystal X-ray diffraction and magnetic measurements. Both 1 and 2 crystallize in the monoclinic space group P2(1)/c, and the [Cu(mnt)2]2- anions and the cations form a 1D network structure through the N-HṡṡṡN hydrogen bonds. While the anions in 3 form a ladder-like chain through the C-HṡṡṡN interactions between the [Cu(mnt)2]2- anions and CH3CH2OH molecules. Some weak interactions such as πṡṡṡπ, CuṡṡṡN, ClṡṡṡC, and C-HṡṡṡCl, O-HṡṡṡCl, C-HṡṡṡS, N-HṡṡṡO, N-HṡṡṡN and C-HṡṡṡN hydrogen bonds in three molecular solids generate further a 3D network structure. The magnetic measurement reveals that 1 shows a very weak ferromagnetic interaction, and 2 exhibits a transition from ferromagnetic to antiferromagnetic coupling about 15 K, while 3 shows an antiferromagnetic coupling feature with θ = -12.51 K when the temperature is lowered.

  19. Thermoelectric Properties of Complex Zintl Phases

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey

    2008-03-01

    Complex Zintl phases make ideal thermoelectric materials because they can exhibit the necessary ``electron-crystal, phonon-glass'' properties required for high thermoelectric efficiency. Complex crystal structures can lead to high thermoelectric figure of merit (zT) by having extraordinarily low lattice thermal conductivity. A recent example is the discovery that Yb14MnSb11, a complex Zintl compound, has twice the zT as the SiGe based material currently in use at NASA. The high temperature (300K - 1300K) electronic properties of Yb14MnSb11 can be understood using models for heavily doped semiconductors. The free hole concentration, confirmed by Hall effect measurements, is set by the electron counting rules of Zintl and the valence of the transition metal (Mn^+2). Substitution of nonmagnetic Zn^+2 for the magnetic Mn^+2 reduces the spin-disorder scattering and leads to increased zT (10%). The reduction of spin-disorder scattering is consistent with the picture of Yb14MnSb11 as an underscreened Kondo lattice as derived from low temperature measurements. The hole concentration can be reduced by the substitution of Al^+3 for Mn^+2, which leads to an increase in the Seebeck coefficient and electrical resistivity consistent with models for degenerate semiconductors. This leads to further improvements (about 25%) in zT and a reduction in the temperature where the zT peaks. The peak in zT is due to the onset of minority carrier conduction and can be correlated with reduction in Seebeck coefficient, increase in electrical conductivity and increase in thermal conductivity due to bipolar thermal conduction.

  20. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol-gel driven NiFe2O4

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.

    2016-01-01

    Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.

  1. Structural, electrical, and magnetic properties of a series of molecular conductors based on BDT-TTP and lanthanoid nitrate complex anions (BDT-TTP = 2,5-Bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene).

    PubMed

    Cui, Hengbo; Otsuka, Takeo; Kobayashi, Akiko; Takeda, Naoya; Ishikawa, Masayasu; Misaki, Yohji; Kobayashi, Hayao

    2003-09-22

    The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions. PMID:12971784

  2. Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 2. Structures and magnetic properties of novel trinuclear complexes with mu-phenolato-mu-oximato (Cu-Ln-Cu) cores (Ln = La, Ce, Gd).

    PubMed

    Costes, J P; Dahan, F; Dupuis, A

    2000-12-25

    The present paper is devoted to the study of original trinuclear (CuII, LnIII, CuII) complexes (Ln = La, Ce, Gd). They derive from the polydentate ligands H2Li (i = 1, 3, 4) represented in Figure 1. The crystal and molecular structures of two complexes have been determined at room temperature. The (Cu, Gd, Cu) complex of H2L1 1Gd and the (Cu, Ce, Cu) complex of H2L3 3Ce crystallize in the triclinic space group P1 (no. 2) with the following cell parameters: a = 14.005(2) A, b = 14.7581(13) A, c = 11.3549(13) A, alpha = 96.273(9) degrees, beta = 97.648(11) degrees, gamma = 72.946(9) degrees, V = 2217.7(4) A3, and Z = 2 for 1Gd and a = 11.226(2) A, b = 16.927(3) A, c = 11.010(2) A, alpha = 108.67(2) degrees, beta = 110.48(1) degrees, gamma = 92.35(2) degrees, V = 1828.7(5) A3, and Z = 2 for 3Ce. Regarding possible supports for magnetic interactions, it may be noted that, in both complexes, each of the main bridging pathways between the equatorial positions of a copper(II) ion and the related lanthanide ion is double and not symmetrical. It involves a phenolato oxygen atom and an oximato nitrogen-oxygen pair of atoms. The resulting Cu(O,N-O)Gd networks are not planar, but 3Ce displays much larger deviations than does 1Gd. Determination of the thermal dependence of chi M (molar susceptibility) and the field variations of M (magnetization) show that in 3Gd and 4Gd the Cu-Gd interactions are antiferromagnetic while more "usual" ferromagnetic interactions are observed for 1Gd. The possibility of a relationship between structural and magnetic parameters is considered. PMID:11151500

  3. Complex magnetically insulated transmission line oscillator

    SciTech Connect

    Fan Yuwei; Zhong Huihuang; Shu Ting; Li Zhiqiang

    2008-08-15

    A magnetically insulated transmission line oscillator (MILO) is a crossed-field device designed specifically to generate microwave power at the gigawatt level, which is a major hotspot in the field of high-power microwaves (HPM) research at present. It is one of the major thrust for MILO development to improve the power conversion efficiency. In order to improve the power conversion efficiency of MILO, a complex MILO is presented and investigated theoretically and numerically, which comprises the MILO-1 and MILO-2. The MILO-2 is used as the load of the MILO-1. The theoretical analyses show that the maximum power conversion efficiency of the complex MILO has an increase of about 50% over the conventional load-limited MILO. The complex MILO is optimized with KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992), and the simulation results agree with the theoretical results.

  4. Complex magnetically insulated transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Shu, Ting; Li, Zhi-Qiang

    2008-08-01

    A magnetically insulated transmission line oscillator (MILO) is a crossed-field device designed specifically to generate microwave power at the gigawatt level, which is a major hotspot in the field of high-power microwaves (HPM) research at present. It is one of the major thrust for MILO development to improve the power conversion efficiency. In order to improve the power conversion efficiency of MILO, a complex MILO is presented and investigated theoretically and numerically, which comprises the MILO-1 and MILO-2. The MILO-2 is used as the load of the MILO-1. The theoretical analyses show that the maximum power conversion efficiency of the complex MILO has an increase of about 50% over the conventional load-limited MILO. The complex MILO is optimized with KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992), and the simulation results agree with the theoretical results.

  5. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  6. Hexa- and heptacoordinated manganese(II) dicyanamide complexes containing a tetradentate N-donor Schiff base: Syntheses, composition tailored architectures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bhar, Kishalay; Sutradhar, Dipu; Choubey, Somnath; Ghosh, Rajarshi; Lin, Chia-Her; Ribas, Joan; Ghosh, Barindra Kumar

    2013-11-01

    Two 1D coordination polymers [Mn(L)(μ1,5-dca)(MeOH)]n(ClO4)n (1) and [Mn(L)(μ1,5-dca)]n(PF6)n (2) and a dinuclear compound [Mn2(L)2(μ1,5-dca)2(dca)2]ṡH2O (3) [L = N,N'-(bis-(pyridin-2-yl)benzylidene)-ethane-1,2-diamine; dca = dicyanamide] have been isolated using one-pot synthesis of the building components in appropriate molar ratios and characterized. X-ray structural studies reveal that 1 forms a zigzag 1D chain through single Mn-(NCNCN)-Mn units in which each heptacoordinated manganese(II) center adopts a distorted pentagonal bipyramidal geometry with an MnN6O chromophore occupied with four N atoms of L, two nitrile N atoms of monobridged μ1,5-dca and one O atom of MeOH. In 2, each hexacoordinated metal(II) center has a distorted octahedral coordination environment with an MnN6 chromophore bound by four N atoms of L and two nitrile N atoms of two different single bridged μ1,5-dca units; the latter connects other neighboring metal centers in a non-ending fashion affording a linear 1D chain. Complex 3 is dinuclear where two [Mn(L)]2+ units are connected by double μ1,5-dca bridges with a distorted pentagonal bipyramidal environment. Variable-temperature magnetic susceptibility measurements of 1-3 show weak antiferromagnetic interactions among the metal centers through μ1,5-dca bridges.

  7. Improving magnetic properties of ultrasmall magnetic nanoparticles by biocompatible coatings

    NASA Astrophysics Data System (ADS)

    Costo, R.; Morales, M. P.; Veintemillas-Verdaguer, S.

    2015-02-01

    This paper deals with the effect of a biocompatible surface coating layer on the magnetic properties of ultrasmall iron oxide nanoparticles. Particles were synthesized by laser pyrolysis and fully oxidized to maghemite by acid treatment. The surface of the magnetic nanoparticles was systematically coated with either phosphonate (phosphonoacetic acid or pamidronic acid) or carboxylate-based (carboxymethyl dextran) molecules and the binding to the nanoparticle surface was analyzed. Magnetic properties at low temperature show a decrease in coercivity and an increase in magnetization after the coating process. Hysteresis loop displacement after field cooling is significantly reduced by the coating, in particular, for particles coated with pamidronic acid, which show a 10% reduction of the displacement of the loop. We conclude that the chemical coordination of carboxylates and phosphonates reduces the surface disorder and enhances the magnetic properties of ultrasmall maghemite nanoparticles.

  8. Magnetic properties in textured fine-particles magnets

    NASA Astrophysics Data System (ADS)

    Szpunar, B.; Szpunar, J.

    1984-08-01

    The effect of texture on the magnetic properties of single domain particle magnets is discussed. Analytical formulae are derived which enable us to correlate the initial susceptibility, coercive force, anisotropy field and remanence with series expansion coefficients of Legendre Polynomials describing the texture. The analysisof texture influence on the magnetic properties of alnico 5 is presented. This analysis indicates that the initial susceptibility is most strongly affected by the texture changes. The remanence does not change significantly with the texture. The influence of various texture harmonics on magnetic properties is discussed. Also it is demonstrated that the popular use of simple parameters characterizing texture like mean deviation angle or maximum deviation angle may give incorrect results. The problem of calculating the texture from the magnetic data is discussed.

  9. Oil, gas property appraisal complex

    SciTech Connect

    Not Available

    1980-04-01

    Rule 468, California's state rule on oil and gas property tax assessment has been a source of controversy for some time. The controversy has involved the fairness of the rule and its constitutionality in relation to other state laws. The rule states that the right to remove petroleum and natural gas from the earth is a taxable real property interest, and increases in recoverable amounts of such minerals caused by changed physical or economic conditions constitute additions. Guidelines, sample problems, and general information on the rule are provided in order to explain how tax assessments are calculated. The examples concern 1979 oil property appraisal with a 1979 base year and no new reserves, and 1979 oil property appraisal with new reserves. Typical appraisal questions and answers are included.

  10. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    SciTech Connect

    Wang, Jing; Jian, Fangfang; Huang, Baoxin; Bai, Zhengshuai

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metal atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.

  11. Bisthienylethene Th2im and its complex (Th2imH)2[ReCl6]: crystalline-phase photochromism, and photochemical regulation of luminescence and magnetic properties.

    PubMed

    Gong, Dan-Ping; Chen, Jun-Feng; Zhao, Yue; Cao, Deng-Ke

    2016-02-16

    Molecular assembly of bisthienylethene Th2im () and [ReCl6](2-) anions leads to the complex (Th2imH)2[ReCl6] (), in which a [ReCl6](2-) anion connects two equivalent Th2imH(+) cations through ClN/C hydrogen bonds. Crystal structures of and indicate that two thiophene groups of each Th2im/Th2imH(+) molecule adopt a photoactive antiparallel conformation. Thus, two compounds show crystalline-phase photochromism (CPP), i.e. reversible structural transformation between the open form and the closed form upon alternately irradiating the sample with UV light (365 nm) and visible light (574 nm for , 624 nm for ). It was found that the CPP behaviors of and could regulate their luminescence and/or magnetic properties. Their solid-state emissions (433, 448, 482, 531 and 570 nm for , and 460, 489, 535 and 593 nm for ) exhibited weaker intensities after UV irradiation with 365 nm light. Besides CPP and luminescence, compound shows field-induced slow magnetic relaxation. Before and after UV irradiation, this compound revealed different magnetic behaviors, including the differences in the shape of the χMT vs. T plot, D parameter, and the values of the relaxation barrier Ueff and the preexponential factor τ0. PMID:26790478

  12. The synthesis and transport properties of the complex salt /TMPD/ /TCNQ/2

    NASA Technical Reports Server (NTRS)

    Somoano, R.; Hadek, V.; Yen, S. P. S.; Rembaum, A.; Deck, R.

    1975-01-01

    The syntheses and transport properties of the complex salt /TMPD/ /TCNQ/2 are described. At high temperatures, the complex is a magnetic semiconductor with transport properties intermediate between those found in the highly conducting and poorly conducting TCNQ salts. The complex undergoes a transition below 50-60 K to a state exhibiting singlet-triplet behavior with weakly alternating exchange coupling.

  13. Magnetic and electronic properties of ruthenocuprates

    NASA Astrophysics Data System (ADS)

    Hirai, Y.; Schneider, M. L.; Frazer, B. H.; Rast, S.; Onellion, M.; Asaf, U.; Felner, I.; Nowik, I.; Ali, N.; Roy, S.; Prester, M.; Drobac, D.; Zivkovic, I.; Perfetti, L.; Reginelli, A.; Ariosa, D.; Margaritondo, G.

    2001-03-01

    We present data on as-prepared, oxygen annealed, and hydrogen loaded ruthenocuprate samples. We include: * magnetic measurements: magnetization,^1 ac susceptibility; * electronic properties: x-ray photoemission,^1,2 x-ray absorption^3; * the effects of hydrogen loading and of oxygen annealing. We concentrate on the changes of magnetic properties with carrier concentration, and discuss the superconducting properties only briefly. ^1B.H. Frazer et.al., Phys. Rev. B. ^2B.H. Frazer et.al., Euro. J. Phys., in press (2000). ^3Y. Hirai et.al., submitted.

  14. Direct magnetic loss analysis by FEM considering vector magnetic properties

    SciTech Connect

    Enokizono, M.; Soda, N.

    1998-09-01

    Improving material characteristics and optimizing designs have been studied from the standpoint of efficiency improvement of electrical machinery and apparatus. Unfortunately, the local magnetic properties in the actual core were still not understood fully. The study of soft magnetic materials commonly used in rotating machines and three-phase transformers is very important for saving energy. This paper deals with analysis by FEM for iron losses considering vector magnetic properties. The authors define the tensor magnetic reluctivity and calculate it from the data measured with two-dimensional measurement method. This numerical method is applied to the direct magnetic loss analysis. As a result, it is shown that the calculated results using the method are in a good agreement with measured ones.

  15. Magnetic properties of anisotropic Sr-La-system ferrite magnets

    SciTech Connect

    Yamamoto, H.; Nagakura, M. ); Terada, H. )

    1990-05-01

    This paper presents an experiment carried out to investigate the effect of La{sub 2}O{sub 3} addition to the magnetic and physical properties of strontium ferrite magnets. It was found that the La{sub 2}O{sub 3} addition to SrO {center dot} 6Fe{sub 2}O{sub 3} (stoichiometric composition) was very useful in stabilizing the magnetoplumbite structure and that these Sr-La-system ferrites had excellent properties as a permanenent magnet. Compositions were chosen according to the formula ((SrO){sub 1/n+1}(Fe{sub 2}O{sub 3}){sub n/n+1}){sub 100{minus}x}(La{sub 2}O{sub 3}){sub x}, where n was varied between 5.0 and 6.5, and x between 0 and 5.0. The optimum conditions for making magnets and some properties of typical specimens are discussed.

  16. Magnetic properties of ground-state mesons

    NASA Astrophysics Data System (ADS)

    Šimonis, V.

    2016-04-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties ( i.e., usual magnetic moments) to be of sufficiently high quality, too.

  17. Electrical transport and magnetic properties of CeGe

    NASA Astrophysics Data System (ADS)

    Marcano, N.; Espeso, J. I.; Noakes, D. R.; Kalvius, G. M.; Gómez Sal, J. C.

    2005-04-01

    Although CeGe is a simple binary alloy, little information on its magnetic properties is available. Earlier studies suggested antiferromagnetic order below T=10.5 K. We present the results of a detailed resistivity and magnetoresistance study down to 2 K together with μSR spectroscopic data. The measurements verify the transition into long-range magnetic order at the temperature reported. Anomalous behaviour of the resistivity around TN is interpreted in terms of the formation of superzone magnetic gaps in the ordered phase. The μSR spectra for T< TN indicate a complex antiferromagnetic spin structure.

  18. Neighborhood properties of complex networks

    NASA Astrophysics Data System (ADS)

    Andrade, Roberto F. S.; Miranda, José G. V.; Lobão, Thierry Petit

    2006-04-01

    A concept of neighborhood in complex networks is addressed based on the criterion of the minimal number of steps to reach other vertices. This amounts to, starting from a given network R1 , generating a family of networks Rl,l=2,3,… such that, the vertices that are l steps apart in the original R1 , are only 1 step apart in Rl . The higher order networks are generated using Boolean operations among the adjacency matrices Ml that represent Rl . The families originated by the well known linear and the Erdös-Renyi networks are found to be invariant, in the sense that the spectra of Ml are the same, up to finite size effects. A further family originated from small world network is identified.

  19. Electronic properties of complex nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen

    Nanostructured materials have brought an unprecedented opportunity for advancement in many fields of human endeavor and in applications. Nanostructures are a new research field which may revolutionize people's everyday life. In the Thesis, I have used theoretical methods including density functional theory (DFT), molecular dynamic simulations (MD) and tight-binding methods to explore the structural, mechanical and electronic properties of various nanomaterials. In all this, I also paid attention to potential applications of these findings. First, I will briefly introduce the scientific background of this Thesis, including the motivation for the study of a boron enriched aluminum surface, novel carbon foam structures and my research interest in 2D electronics. Then I will review the computational techniques I used in the study, mostly DFT methods. In Chapter 3, I introduce an effective way to enhance surface hardness of aluminum by boron nanoparticle implantation. Using boron dimers to represent the nanoparticles, the process of boron implantation is modeled in a molecular dynamics simulation of bombarding the aluminum surface by energetic B 2 molecules. Possible metastable structures of boron-coated aluminum surface are identified. Within these structures, I find that boron atoms prefer to stay in the subsurface region of aluminum. By modeling the Rockwell indentation process, boron enriched aluminum surface is found to be harder than the pristine aluminum surface by at least 15%. In Chapter 4, I discuss novel carbon structures, including 3D carbon foam and related 2D slab structures. Carbon foam contains both sp 2 and sp3 hybridized carbon atoms. It forms a 3D honeycomb lattice with a comparable stability to fullerenes, suggesting possible existence of such carbon foam structures. Although the bulk 3D foam structure is semiconducting, an sp2 terminated carbon surface could maintain a conducting channel even when passivated by hydrogen. To promote the experimental realization of this novel foam structure, I also propose a growth model. I postulate that preferred growth should occur near the grain boundary of a carbon saturated polycrystal of transition metal. These findings are supported by a calculation of carbon diffusion in the solid. 2D semiconductors of group V elements are discussed in Chapters 5, 6, 7, and 8, including different phosphorus and arsenic structural phases. Structural and electronic properties of bulk and few-layer black phosphorus, so-called phosphorene, are studied in Chapter 5. In Chapter 6, I propose a new 2D structural phase of phosphorus, with the name blue phosphorus related to its wide predicted fundamental band gap. Then I move down in the periodic table and investigate the properties of grey arsenic in Chapter 7. Finally, I propose a tiling model to identify and categorize these structural phases in Chapter 8.

  20. Static magnetic properties of Maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zulfiqar; Rahman, Muneeb Ur; Usman, M.; Hasanain, Syed Khurshid; Zia-ur-Rahman; Ullah, Amir; Kim, Ill Won

    2014-12-01

    We report the static magnetic properties of Maghemite (γ-Fe2O3) nanoparticles with an average crystallite size of 14 ± 1.8 nm synthesized via a co-precipitation method. The zero-field-cooled (ZFC) and the field-cooled (FC) magnetization measurements were performed using a physical properties measurements system (PPMS) at temperatures from 5 K to 300 K. The ZFC/FC measurements showed a typical superparamagnetic behavior with a narrow size distribution.

  1. Magnetic Properties of the Proton and Neutron

    NASA Astrophysics Data System (ADS)

    Primer, Thomas; Kamleh, Waseem; Leinweber, Derek B.

    2011-05-01

    The magnetic moment and magnetic polarisability are important fundamental properties of particles such as the proton. They describe the interaction with and response to an applied magnetic field. The ability to calculate values for these observables from the first principles of QCD at the quark level is at the leading edge of lattice QCD research. An overview of how these calculations are performed on the lattice is presented. A quantised magnetic field is applied to the periodic space-time lattice using the background-field method. Values of the magnetic moment and magnetic polarisability for the proton and neutron are reported using this method. These values are calculated on a large lattice, allowing for a reasonably small magnetic field strength, making these the world's first quantitative results.

  2. High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession

    NASA Astrophysics Data System (ADS)

    Jiang, Chang-Jun; Fan, Xiao-Long; Xue, De-Sheng

    2015-05-01

    We focus on the ferromagnetic thin films and review progress in understanding the magnetization dynamic of coherent precession, its application in seeking better high frequency magnetic properties for magnetic materials at GHz frequency, as well as new approaches to these materials’ characterization. High frequency magnetic properties of magnetic materials determined by the magnetization dynamics of coherent precession are described by the Landau-Lifshitz-Gilbert equation. However, the complexity of the equation results in a lack of analytically universal information between the high frequency magnetic properties and the magnetization dynamics of coherent precession. Consequently, searching for magnetic materials with higher permeability at higher working frequency is still done case by case. Project supported by the National Basic Research Program of China (Grant No. 2012CB933101), the National Natural Science Foundation of China (Grant Nos. 11034004 and 51371093), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1251), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130211130003).

  3. Pentanuclear 3d-4f Heterometal Complexes of M(II)3Ln(III)2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) Combinations: Syntheses, Structures, Magnetism, and Photoluminescence Properties.

    PubMed

    Maity, Manoranjan; Majee, Mithun Chandra; Kundu, Sanchita; Samanta, Swarna Kamal; Saudo, E Carolina; Ghosh, Sanjib; Chaudhury, Muktimoy

    2015-10-19

    A new family of pentanuclear 3d-4f heterometal complexes of general composition [Ln(III)2(M(II)L)3(?3-O)3H](ClO4)xH2O (1-5) [Ln = Nd, M = Zn, 1; Nd, Ni, 2; Nd, Cu, 3; Gd, Cu, 4; Tb, Cu, 5] have been synthesized in moderate yields (50-60%) following a self-assembly reaction involving the hexadentate phenol-based ligand, viz., N,N-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-N('),N(')-diethylethylenediamine (H2L). Single-crystal X-ray diffraction analyses have been used to characterize these complexes. The compounds are all isostructural, having a 3-fold axis of symmetry that passes through the 4f metal centers. The [M(II)L] units in these complexes are acting as bis-bidentate metalloligands and, together with ?3-oxido bridging ligands, complete the slightly distorted monocapped square antiprismatic nine-coordination environment around the 4f metal centers. The cationic complexes also contain a H(+) ion that occupies the central position at the 3-fold axis. Magnetic properties of the copper(II) complexes (3-5) show a changeover from antiferromagnetic in 3 to ferromagnetic 3d-4f interactions in 4 and 5. For the isotropic Cu(II)-Gd(III) compound 4, the simulation of magnetic data provides very weak Cu-Gd (J1 = 0.57 cm(-1)) and Gd-Gd exchange constants (J2 = 0.14 cm(-1)). Compound 4 is the only member of this triad, showing a tail of an out-of-phase signal in the ac susceptibility measurement. A large-spin ground state (S = 17/2) and a negative value of D (-0.12 cm(-1)) result in a very small barrier (8 cm(-1)) for this compound. Among the three Nd(III)2M(II)3 (M = Zn(II), Ni(II), and Cu(II)) complexes, only the Zn(II) analogue (1) displays an NIR luminescence due to the (4)F(3/2) ? (4)I(11/2) transition in Nd(III) when excited at 290 nm. The rest of the compounds do not show such Nd(III)/Tb(III)-based emission. The paramagnetic Cu(II) and Ni(II) ions quench the fluorescence in 2-5 and thereby lower the population of the triplet state. PMID:26407121

  4. Synthesis, crystal structures, and magnetic properties of a new family of heterometallic cyanide-bridged Fe(III)2M(II)2 (M=Mn, Ni, and Co) square complexes.

    PubMed

    Pardo, Emilio; Verdaguer, Michel; Herson, Patrick; Rousselière, Helene; Cano, Joan; Julve, Miguel; Lloret, Francesc; Lescouëzec, Rodrigue

    2011-07-01

    New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type Ĥ = -J(Ŝ(i)·Ŝ(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton. PMID:21630643

  5. First-principle predictions of magnetic properties for a complex and strongly related to quasicrystalline phase: μ-Al 4Mn

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, D.; Trambly de Laissardière, G.

    2003-06-01

    First-principle spin-polarized electronic structure calculations have been performed in the structure of μ-Al 4Mn, a crystalline phase of 568 atoms per cell, considered to be closely related to the icosahedral quasicrystalline i-AlMn. It is found that the ferromagnetic state in this structure is more stable than corresponding paramagnetic one, being only about 156 meV/cell lower in energy. The average magnetic moment is predicted of 0.432 μ B per Mn atom and we show that its formation is governed by a local Stoner criterion. A creation of Hume-Rothery pseudogap nearby the Fermi level due to strong Al-sp-Mn-d hybridization in crystalline intermetallic compound is the origin of partially suppressed magnetic moment on all inequivalent Mn sites.

  6. Magnetic properties of some opal-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Tien, C.; Samoilovich, M. I.; Chang, L. J.; Mikushev, V. M.

    2013-03-01

    Nanoparticles of complex titanium, cobalt, and manganese oxides with ilmenite and spinel structure have been synthesized in pores of an opal. The particle composition has been determined by X-ray diffraction analysis. The magnetic properties of the obtained nanocomposites with different particles embedded in pores have been studied. The temperature dependences of the dc and ac magnetizations in the range from 2 to 300 K have been measured. It has been shown that the magnetic ordering in all the nanocomposites studied emerges at temperatures above 150 K, which not in all cases can be related directly to the properties of the materials identified by X-ray diffraction. The appearance of peaks in the ZFC susceptibility and ac magnetization curves below 50 K is assigned to disordering and frustration in nanoparticles of titanates of the type of CoTiO3, NiTiO3, and Co2TiO4.

  7. Structural properties, electric response and magnetic behaviour of La2SrFe2CoO9 triple complex perovskite

    NASA Astrophysics Data System (ADS)

    Casallas, F.; Vera, E.; Landínez, D.; Parra, C.; Roa, J.

    2016-02-01

    The triple perovskite La2SrFe2CoO9 was prepared by the solid state reaction method from the high purity precursor powders La2O3, SrCO3, Fe2O3, Co2O3 (99.9%). The crystalline structure was studied by X-ray diffraction experiments and Rietveld refinement analysis. Results reveal that this material crystallizes in an orthorhombic triple perovskite belonging to the space group Pnma (#62) with lattice constants a=5.491978(2)Ǻ, b=7.719842(2)Ǻ and c=5.436260(3)Ǻ. The granular surface morphology was studied from images of Scanning Electron Microscopy. The electric response was studied by the Impedance Spectroscopy technique from 10.0mHz up to 0.1MHz, at different temperatures (77-300K). Measurements of magnetization as a function of temperature permitted to determine the occurrence of a paramagnetic - ferromagnetic transition for a Curie temperature of 280K, which suggests it application in nanoelectronic devices. From the fit of the magnetic response with the Curie- Weiss equation it was concluded that the effective magnetic moment is particularly large due to the contribution of La, Fe and Co cations.

  8. Variability of magnetic soil properties in Hawaii

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Harrison, J. Bruce J.; Hendrickx, Jan M. H.; Borchers, Brian; North, Ryan E.; Simms, Janet E.; Jasper, Chris; Smith, Christopher W.; Li, Yaoguo

    2005-06-01

    Magnetic soils can seriously hamper the performance of electromagnetic sensors for the detection of buried land mines and unexploded ordnance (UXO). Soils formed on basaltic substrates commonly have large concentrations of ferrimagnetic iron oxide minerals, which are the main cause of soil magnetic behavior. Previous work has shown that viscous remanent magnetism (VRM) in particular, which is caused by the presence of ferrimagnetic minerals of different sizes and shapes, poses a large problem for electromagnetic surveys. The causes of the variability in magnetic soil properties in general and VRM in particular are not well understood. In this paper we present the results of laboratory studies of soil magnetic properties on three Hawaiian Islands: O"ahu, Kaho"olawe, and Hawaii. The data show a strong negative correlation between mean annual precipitation and induced magnetization, and a positive correlation between mean annual precipitation and the frequency dependent magnetic behavior. Soil erosion, which reduces the thickness of the soil cover, also influences the magnetic properties.

  9. Self-assembly of cuII and niII [2 x 2] grid complexes and a binuclear CuII complex with a new semiflexible substituted pyrazine ligand: multiple anion encapsulation and magnetic properties.

    PubMed

    Cati, Dilovan S; Ribas, Joan; Ribas-Ario, Jordi; Stoeckli-Evans, Helen

    2004-02-01

    With the new substituted pyrazine ligand pyrazine-2,3-dicarboxylic acid bis[(pyridin-2-ylmethyl)amide], H(2)L, a binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) and two [2 x 2]G grid complexes, [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) and [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3), have been synthesized and characterized spectroscopically and crystallographically. The ligand H(2)L crystallized in the triclinic space group P1, with a = 4.9882(7) A, b = 12.079(2) A, c = 14.454(2) A, alpha = 107.08(2) degrees, beta = 98.61(2) degrees, gamma = 97.54(2) degrees, V = 808.8(2) A(3), Z = 2, R1 = 0.0747, and R(w) = 0.1829 for 1319 observed reflections [I > 2 sigma(I)]. The molecule is L-shaped with a strong intramolecular bifurcated hydrogen bond in half of the molecule. In the crystal the molecules are linked by an intermolecular hydrogen bond to form a 1D polymer. The binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) crystallized in the monoclinic space group P2(1)/a, with a = 8.6859(7) A, b = 28.060(2) A, c = 9.5334(9) A, beta = 107.89(1) degrees, V = 2211.2(3) A(3), Z = 4, R1 = 0.039, and R(w) = 0.097 for 1408 observed reflections [I > 2 sigma(I)]. There are two independent copper atoms both having square pyramidal geometry. Both coordinate to a pyrazine, a pyridine, and an amide N atom. Two chlorines complete the coordination sphere of one of the copper atoms, while one chlorine atom and a water molecule complete the coordination sphere of the other. The copper(II) [2 x 2] grid complex [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) crystallized in the triclinic space group P1, with a = 17.1515(14) A, b = 17.7507(13) A, c = 19.3333(15) A, alpha = 67.34(1) degrees, beta = 69.79(1) degrees, gamma = 71.50(1) degrees, V = 4980.3(7) A(3), Z = 2, R1 = 0.083, and R(w) = 0.207 for 5532 observed reflections [I > 2 sigma(I)]. The four Cu(II) atoms are octahedrally coordinated by two pyrazine, two pyridine, and two amide N atoms and occupy the corners of a [2 x 2] grid with edge lengths, Cu...Cu, varying from 7.01 to 7.39 A. The nickel(II) [2 x 2] grid complex [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3) crystallized in the monoclinic space group C2/c, with a = 16.3388(10) A, b = 29.754(2) A, c = 20.857(1) A, beta = 101.845(1) degrees, V = 9923.6(12) A(3), Z = 4, R1 = 0.050, and wR2 = 0.101 for 3391 observed reflections [I > 2 sigma(I)]. Here the complex possesses C(2) symmetry and again each metal atom is octahedrally coordinated to two pyrazine, two pyridine, and two amide N atoms. They occupy the corners of a [2 x 2] grid with an average edge length, Ni.Ni, of 6.97 A. Of the four anions (ClO(4)(-)'s in 2 and Cl(-)'s in 3) required to equilibrate the charges in the grid complexes, two are encapsulated, one above and one below the plane of the four metal atoms. The remaining two anions are located between the "wings" of the ligands. Magnetic susceptibility measurements indicate that the binuclear complex 1 is antiferromagnetic, with a J value of -15.07 cm(-1). This is larger than the J values found for the Cu(II) (2) and Ni(II) (3) grid complexes, which were -5.87 and -2.64 cm(-1), respectively. DFT calculations have been carried out to explain the difference in the J values found for complexes 1 and 2. PMID:14753824

  10. Studies of cell toxicity of complexes of magnetic fluids and biological macromolecules

    NASA Astrophysics Data System (ADS)

    Macaroff, Patrícia P.; Oliveira, Daniela M.; Ribeiro, Karina F.; Lacava, Zulmira G. M.; Lima, Emília C. D.; Morais, Paulo C.; Tedesco, Antonio C.

    2005-05-01

    In this study, we performed a comparative investigation of the binding properties of two surface-coated (carboxymethyldextran/glucuronic acid), magnetite-based biocompatible magnetic fluids with different biological macromolecules (BSA, HSA, and LDL). We also investigated the in vitro toxicity of the complex formed between the magnetic fluid and the biological macromolecule in the neoplastic cell line J774-A.

  11. Do micromagnetic simulations correctly predict hard magnetic hysteresis properties?

    NASA Astrophysics Data System (ADS)

    Toson, P.; Zickler, G. A.; Fidler, J.

    2016-04-01

    Micromagnetic calculations using the finite element technique describe semi-quantitatively the coercivity of novel rare earth permanent magnets in dependence on grain size, grain shape, grain alignment and composition of grain boundaries and grain boundary junctions and allow the quantitative prediction of magnetic hysteretic properties of rare earth free magnets based on densely packed elongated Fe and Co nanoparticles, which depend on crystal anisotropy, aspect ratio and packing density. The nucleation of reversed domains preferentially takes place at grain boundary junctions in granular sintered and melt-spun magnets independently on the grain size. The microstructure and the nanocompostion of the intergranular regions are inhomogeneous and too complex in order to make an exact model for micromagnetic simulations and to allow a quantitative prediction. The incoherent magnetization reversal processes near the end surfaces reduce and determine the coercive field values of Co- and Fe-based nanoparticles.

  12. Magnetic properties of iron yoke laminations for SSC dipole magnets

    SciTech Connect

    Kahn, S.A.; Morgan, G.H.

    1991-01-01

    We examine the magnetic properties for the iron used in the SSC yoke laminations so that the accelerator tolerances can be met. The accelerator requirements for field quality specify a tolerance on the variation in the central field. At machine injection the variation in field is attributed to coercivity, H{sub c}. Requirements on the magnitude and the variation of H{sub c} are presented. At the 6.65 tesla operating field the variation in the saturation magnetization dominates the magnetic tolerance for the iron. 4 refs., 3 figs., 2 tabs.

  13. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  14. Magnetic property and thermal analysis of a Mn(II) complex with [Mn(CO2)]n chains based on 4,4‧-bis(1H-imidazol-1-yl-methyl)biphenyl

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Dao; Zheng, Bao-Hui; Wang, Zhe; Jiao, Yan; Chen, Min-Dong

    2014-11-01

    Magnetic coordination polymers have attracted considerable interest due to their novel structures and potential applications. In this paper, one new 2D magnetic manganese coordination polymer {[Mn(bimb)(OBA)]}n (1) was synthesized under solvothermal conditions based on 4,4‧-bis(1H-imidazol-1-yl-methyl)biphenyl (bimb) and 4,4‧-oxybis(benzoate) (H2OBA). Complex 1 contains [Mn(CO2)]n 1D chains and magnetic susceptibility measurements indicate that compound 1 exhibits an antiferromagnetic coupling interaction. In addition, complex 1 exhibits solid-state photoluminescence and high thermal stability.

  15. Magnetic properties of sulfur-doped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Park, H.; Podila, R.; Wadehra, A.; Ayala, P.; Oliveira, L.; He, J.; Zakhidov, A. A.; Howard, A.; Wilkins, J.; Rao, A. M.

    2016-03-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples.

  16. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.

  17. Structural and magnetic properties of Mn(III) and Cu(II) tetranuclear azido polyoxometalate complexes: multifrequency high-field EPR spectroscopy of Cu4 clusters with S = 1 and S = 2 ground states.

    PubMed

    Mialane, Pierre; Duboc, Carole; Marrot, Jérôme; Rivière, Eric; Dolbecq, Anne; Sécheresse, Francis

    2006-02-20

    Two new azido-bridged polyoxometalate compounds were synthesized in acetonitrile/methanol media and their molecular structures have been determined by X-ray crystallography. The [[(gamma-SiW10O36)Mn2(OH)2(N3)(0.5)(H2O)(0.5)]2(mu-1,3-N3)](10-) (1 a) tetranuclear Mn(III) complex, in which an end-to-end N3- ligand acts as a linker between two [(gamma-SiW10O36)Mn2(OH)2]4- units, represents the first manganese-azido polyoxometalate. The magnetic properties have been studied considering the spin Hamiltonian H = -J1(S1S2+S1*S2*)-J2(S1S1*), showing that antiferromagnetic interactions between the paramagnetic centers (g = 1.98) occur both through the di-(mu-OH) bridge (J1 = -25.5 cm(-1)) and the mu-1,3-azido bridge (J2 = -19.6 cm(-1)). The [(gamma-SiW10O36)2Cu4(mu-1,1,1-N3)2(mu-1,1-N3)2]12- (2 a) tetranuclear Cu(II) complex consists of two [gamma-SiW10O36Cu2(N3)2]6- subunits connected through the two mu-1,1,1-azido ligands, the four paramagnetic centers forming a lozenge. The magnetic susceptibility data have been fitted. This reveals ferromagnetic interactions between the four Cu(II) centers, leading to an S=2 ground state (H = -J1(S1S2+S1*S2*)-J2(S2S2*), J1 = +294.5 cm(-1), J2 = +1.6 cm(-1), g = 2.085). The ferromagnetic coupling between the Cu(II) centers in each subunit is the strongest ever observed either in a polyoxometalate compound or in a diazido-bridged Cu(II) complex. Considering complex 2 a and the previously reported basal-basal di-(mu-1,1-N3)-bridged Cu(II) complexes in which the metallic centers are not connected by other magnetically coupling ligands, the linear correlation J1 = 2639.5-24.95*theta(av) between the theta(av) bridging angle and the J1 coupling parameter has been proposed. The electronic structure of complex 2 a has also been investigated by using multifrequency high-field electron paramagnetic resonance (HF-EPR) spectroscopy between 95 and 285 GHz. The spin Hamiltonian parameters of the S = 2 ground state (D = -0.135(2) cm(-1), E = -0.003(2) cm(-1), g(x) = 2.290(5), g(y) = 2.135(10), g(z) = 2.158(5)) as well as of the first excited spin state S = 1 (D = -0.960(4) cm(-1), E = -0.080(5) cm(-1), g(x) = 2.042(5), g(y) = 2.335(5), g(z) = 2.095(5)) have been determined, since the energy gap between these two spin states is very small (1.6 cm(-1)). PMID:16475214

  18. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    NASA Astrophysics Data System (ADS)

    Yan, Minhao; Qu, Li; Fan, Jiangxia; Ren, Yong

    2014-05-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A `destabilization state' with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, `long-lived stable clusters state' (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field ( B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can `paste' these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

  19. Magnetic Interactions in a Series of Homodinuclear Lanthanide Complexes.

    PubMed

    Comba, Peter; Großhauser, Michael; Klingeler, Rüdiger; Koo, Changhyun; Lan, Yanhua; Müller, Dennis; Park, Jaena; Powell, Annie; Riley, Mark J; Wadepohl, Hubert

    2015-12-01

    A series of seven isostructural homodinuclear lanthanide complexes are reported. The magnetic properties (ac and dc SQUID measurements) are discussed on the basis of the X-ray structural properties which show that the two lanthanide sites are structurally different. MCD spectroscopy of the dysprosium(III) and neodymium(III) complexes ([Dy(III)2(L)(OAc)4](+) and [Nd(III)2(L)(OAc)4](+)) allowed us to thoroughly analyze the ligand field, and high-frequency EPR spectroscopy of the gadolinium(III) species ([Gd(III)2(L)(OAc)4](+)) showed the importance of dipolar coupling in these systems. An extensive quantum-chemical analysis of the dysprosium(III) complex ([Dy(III)2(L)(OAc)4](+)), involving an ab initio (CASSCF) wave function, explicit spin-orbit coupling (RASSI-SO), and a ligand field analysis (Lines model and Stevens operators), is in full agreement with all experimental data (SQUID, HF-EPR, MCD) and specifically allowed us to accurately simulate the experimental χT versus T data, which therefore allowed us to establish a qualitative model for all relaxation pathways. PMID:26588004

  20. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  1. Effect of Chloride Depletion on the Magnetic Properties and the Redox Leveling of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Amin, Muhamed; Pokhrel, Ravi; Brudvig, Gary W; Badawi, Ashraf; Obayya, S S A

    2016-05-12

    Chloride is an essential cofactor in the oxygen-evolution reaction that takes place in photosystem II (PSII). The oxygen-evolving complex (OEC) is oxidized in a linear four-step photocatalytic cycle in which chloride is required for the OEC to advance beyond the S2 state. Here, using density functional theory, we compare the energetics and spin configuration of two different states of the Mn4CaO5 cluster in the S2 state: state A with Mn1(3+) and B with Mn4(3+) with and without chloride. The calculations suggest that model B with an S = 5/2 ground state occurs in the chloride-depleted PSII, which may explain the presence of the EPR signal at g = 4.1. Moreover, we use multiconformer continuum electrostatics to study the effect of chloride depletion on the redox potential associated with the S1/S2 and S2/S3 transitions. PMID:27077688

  2. Linear and nonlinear magnetic properties of ferrofluids.

    PubMed

    Szalai, I; Nagy, S; Dietrich, S

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983)] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data. PMID:26565247

  3. Linear and nonlinear magnetic properties of ferrofluids

    NASA Astrophysics Data System (ADS)

    Szalai, I.; Nagy, S.; Dietrich, S.

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001), 10.1103/PhysRevE.64.041405] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983), 10.1080/00268978300100621] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data.

  4. The first example of a hetero-tetranuclear [(VO)Gd](2) complex: synthesis, crystal structure and magnetic properties of [VOLGd(hfa)(2)CH(3)OH](2).2CH(3)OH.2(CH(3))(2)CO.

    PubMed

    Costes, Jean-Pierre; Shova, Sergiu; Juan, Juan Modesto Clemente; Suet, Nicolas

    2005-09-01

    A cyclic tetranuclear [V(IV)O-Gd(III)](2) complex with VO and Gd ions alternately arrayed, behaves, from the magnetic point of view, as two independent dinuclear entities each having a S= 4 ground state, as a consequence of an active and ferromagnetic VO-Gd interaction through the double phenoxo bridge and a magnetically inactive VO-Gd interaction through the amide bridge. PMID:16094470

  5. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation. PMID:23128376

  6. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  7. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  8. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  9. Magnetic properties of superparamagnetic lithium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Seema; Joy, P. A.

    2005-12-01

    Magnetic properties of lithium ferrite nanoparticles of size in the range of 4-50nm, synthesized by a low-temperature method, have been evaluated. A broad maximum at ˜220K in the temperature variation of the zero-field-cooled magnetization as well as the ac susceptibility and divergence of the zero-field-cooled and field-cooled magnetizations below this temperature indicate the superparamagnetic behavior of the lithium ferrite particles of size ˜4nm. On the other hand, at high temperatures, these particles show a cusp immediately below the Curie temperature of bulk lithium ferrite (895K). This anomalous magnetic behavior of the lithium ferrite nanoparticles, similar to that arising from the Hopkinson effect for bulk materials, is probed in detail and is explained in terms of the cumulative effect of the temperature variation of the anisotropy and particle size growth during the measurements at high temperatures.

  10. Magnetic properties of the iron laminations for CBA magnets

    SciTech Connect

    Tannenbaum, M.J.; Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1983-01-01

    The required magnetic properties of the iron for CBA dipoles are for the most part the same as those for conventional accelerators, namely: low coercive force, high permeability at both low and high inductions, and high saturation induction. There are two main differences in the CBA application, (1) the iron is at 3.8/sup 0/K, and (2) the magnetic field in the iron can go as high as 6 Tesla, which is well above saturation. Measurements of the magnetization curves for CBA iron laminations at 300/sup 0/K and 4.2/sup 0/K are presented. The data are analyzed in terms of a simple model in which the variation in saturation induction can be separated from the low field permeability variation. Tolerances on coercive force, permeability, and saturation induction are discussed.

  11. Magnetic dipole discharges. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-01

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10-3 mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  12. Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes.

    PubMed

    Li, Xiao-Lei; Min, Fan-Yong; Wang, Chao; Lin, Shuang-Yan; Liu, Zhiliang; Tang, Jinkui

    2015-05-01

    The synthesis, structural characterization, and magnetic properties of four related heterometallic complexes with formulas [Dy(III)2Co(II)(C7H5O2)8]·6H2O (1), [Dy(III)2Ni(II)(C7H5O2)8]·(C7H6O2)2 (2), Tb(III)2Co(II)(C7H5O2)8 (3), and Dy(III)2Cd(II)(C7H5O2)8 (4) were reported. Each of complexes has a perfectly linear arrangement of the metal ions with two terminal Ln(III) (Ln(III) = Dy(III), Tb(III)) ions and one central M(II) (M(II) = Co(II), Ni(II), Cd(II)) ion. It was found that 1-3 displayed obvious magnetic interactions between the spin carriers according to the direct current (dc) susceptibility measurements. Alternating current (ac) magnetic susceptibility measurements indicate that complexes 1-4 all exhibit single-molecule magnet (SMM) behavior, while the replacement of the diamagnetic Cd(II) by paramagnetic ions leads to a significant slowing of the relaxation thanks to the magnetic interactions between 3d and 4f ions, resulting in higher relaxation barrier for complexes 1 and 2. Moreover, both Dy2Co and Dy2Ni compounds exhibit dual relaxation pathways that may originate from the single ion behavior of individual Dy(III) ions and the coupling between Dy(III) and Co(II)/Ni(II) ions, respectively, which can be taken as the feature of 3d-4f SMMs. The Ueff for 1 of 127 K is a relatively high value among the reported 3d-4f SMMs. The results demonstrate that the magnetic coupling between 3d and 4f ions is crucial to optimize SMM parameters. The synthetic approach illustrated in this work represents an efficient route to design nd-4f based SMMs via incorporating suitable paramagnetic 3d and even 4d and 5d ions into the d-f system. PMID:25906391

  13. Magnetic properties of heterotrophic bacteria (abstract)

    NASA Astrophysics Data System (ADS)

    Verkhovceva, Nadezda V.; Glebova, Irina N.; Romanuk, Anatoly V.

    1994-05-01

    The magnetic properties (magnetic susceptibility and saturation magnetization) of six species of heterotrophic bacteria were studied: alcaligenes faecalis 81, arthrobacter globiformis BKM 685, bacillus cereus 8, leptothrix pseudo-ochracea D-405, proteus vulgaris 14, and seliberia stellata. It has been shown that the magnetic properties of bacteria depend on (1) the peculiarity of the micro-organism (species-specific and connected with cultivation conditions); (2) the source of the iron in the media. Most of the bacteria are diamagnetic in media with a minimum of iron (χ∞=-7.2-0.3×10-6 sm3/g). The spore forming species (bacillus cereus) has increased diamagnetism. Usually the bacteria are paramagnetic in iron-containing media because they concentrate into Fe compounds. The paramagnetism of the iron-concentrating species (anthrobacter globiformis -χpar=2.4×10-6, leptothrix pseudo-ochtracea χpar=11.0×10-6 and seliberia stellata χpar=3.2×10-6 sm3/g) depends, in general, on magnetically ordered compounds. Iron compounds not accumulated by proteus vulgaris and these species are always diamagnetic .

  14. Magnetic Properties of Ubiquitous yet Underrated Antiferromagnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R.; Sainctavit, P.; Ona-Nguema, G.; Morin, G.

    2013-05-01

    Ferrihydrite, lepidocrocite and goethite are antiferromagnetic, weakly "ferromagnetic" iron oxyhydroxides that are commonly found in diverse environments, including ground waters and streams, sediments, soils, or acid mine drainage. One of them, ferrihydrite, constitutes the mineral core of ferritin, a vital iron storage protein. Iron oxyhydroxides take part in multiple biological and abiological processes, and can evolve, under changing environmental or geological conditions, to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. We will present low temperature magnetic properties acquired on fully characterized synthetic iron oxyhydroxides. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or when the early-stages of solid-state alteration (under oxidizing or reducing atmosphere) are studied. In particular, we will present resent results about the structure of 6-line ferrihydrite, about the possible presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

  15. Complexity and diffusion of magnetic flux surfaces in anisotropic turbulence

    SciTech Connect

    Servidio, S.; Matthaeus, W. H.; Wan, M.; Rappazzo, A. F.; Ruffolo, D.; Oughton, S.

    2014-04-10

    The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces become complex at small scales, experiencing an exponential thinning that is quantified here. The computation of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection, can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical plasmas.

  16. Irreversible magnetic properties of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Lähderanta, E.; Lashkul, A. V.; Lisunov, K. G.; Zherebtsov, D. A.; Galimov, D. M.; Titkov, A. N.

    2013-01-01

    Magnetic properties of powder and glassy samples with carbon nanoparticles. not intentionally doped and doped with Ag, Au and Co, are investigated at temperatures T ~ 3 — 300 K in magnetic fields B up to 5 T. Magnetization M (T) exhibits in low fields of B = 1 — 50 mT a strong irreversibility, which is suppressed above B ~ 1 T. The high-temperature (T ~ 200 — 300 K) dependence of M on B demonstrates a saturation above B ~ 2 T. Magnetic hysteresis is observed already at 300 K. exhibiting a power-law temperature decay of the coercive field. Analysis of the experimental data suggests a concentration of the magnetization close to the surface of the carbon nanoparticles. This is consistent with the origin of magnetism in nanocarbon due to intrinsic surface defects. Deviations of macroscopic and microscopic parameters in the Co-doped sample from those in the other samples imply an influence of the Co ions and/or clusters.

  17. Magnetic properties of artificially synthesized ferritins

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Lee, H. I.; Cho, S.-B.; Yoon, S.; Suh, B. J.; Jang, Z. H.; St. Pierre, T. G.; Kim, S.-W.; Kim, K.-S.

    2005-05-01

    Human ferritin homopolymers with H or L subunits (rHF and rLF) were genetically engineered in E coli. Apoferritins were then reconstituted with 2000 Fe atoms. A big difference was observed in the rates of iron uptake, whereas the mean core size was similar in rHF and rLF. Magnetization of the recombinant human ferritins were measured as functions of temperature and field. The blocking temperature TB(H) at low fields is considerably higher in rLF than in rHF. From the fit of M(H ) data to a modified Langevin function: M(H )=M0L(μpH/kBT)+χaH, the effective magnetic moment μp is found to be much larger in rLF than in rHF. Experimental data demonstrate that the magnetic properties, in particular, the uncompensated spins of ferritin core are related to the biomineralization process in ferritins.

  18. Remanent magnetic properties of unbrecciated eucrites

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1991-01-01

    This study examines the remanent magnetic properties of five unbrecciated eucrites, ranging from the coarse-grained cumulate Moore County to the quenched melt rock ALH 81001 in order to assess the strength of the magnetic field associated with their parent body during their formation. Two of the meteorites are judged as unlikely to have preserved their primary thermal remanence because of large variations in subsample remanence intensity and direction (Ibitira), and lack of NRM resistance to AF and thermal demagnetization (PCA 82502). The lack of a strong (greater than 0.01 mT) magnetizing field during their cooling on the eucrite parent body is inferred from the low normalized NRM intensities for subsamples of ALH 81001 and Yamato 791195.

  19. Properties of Magnetic Reconnection as a function of magnetic shear

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Daughton, W. S.; Karimabadi, H.; Li, H.; Gary, S. P.; Guo, F.

    2013-12-01

    Observations of reconnection events at the Earth's magnetopause and in the solar wind show that reconnection occurs for a large range in magnetic shear angles extending to the very low shear limit 1. Here we report a fully kinetic study of the influence of the magnetic shear on details of reconnection such as its structure and rate. In previous work, we found that the electron diffusion region bifurcates into two or more distinct layers in regimes with weak magnetic shear2, a new feature that may be observable by NASA's up-coming Magnetospheric Multiscale mission. In this work, we have systematically extended the study to lower shear cases and found a new regime, where the reconnection electric field becomes much smaller and the properties of the reconnection changes significantly. We will discuss the role of various physics mechanisms in determining the observed scaling of the reconnection rate, including the dispersive properties of the waves in the system, the dissipation mechanisms and the tearing instability. 1 J. T. Goslings and T. D. Phan. APJL 763, L39, 2013 2 Yi-Hsin Liu et al. Phys. Rev. Lett. 110 , 265004, 2013

  20. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  1. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex

  2. Magnetic Compton scattering: A reliable probe to investigate magnetic properties

    NASA Astrophysics Data System (ADS)

    Ahuja, B. L.

    2013-02-01

    Magnetic Compton scattering (MCS) is an ideal technique for the study of magnetic properties of ferro/ferrimagnetic materials because this method reveals the spin-polarized electron momentum density and yields the absolute and site dependent spin moments. The quantity measured in the MCS, so called magnetic Compton profile, is defined as the difference in the one-dimensional projection of the spin-polarized electron momentum density for majority and minority spin bands. In MCS, the Doppler broadening of the scattered radiation provides information on the correlation between the spin moment and the spin-polarized electron states of the valence electrons. It can also distinguish the spin polarization of itinerant electrons, because their momentum is narrow around the center of the profile. In this paper, temperature and field dependent spin momentum densities in Zn doped Ni ferrite namely, Ni1-xZnxFe2O4(x = 0.0,0.1,0.2), hole doped manganites like La0.7Ca0.3Mn1-xAlxO3(x = 0,0.02and0.06) and half Heusler alloys Cu1-xNixMnSb(x = 0.17,0.22) are reviewed. The decomposition of profiles in terms of site specific magnetic moments and their role in the formation of total spin moment is also discussed.

  3. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties.

    PubMed

    Burn, D M; Hase, T P A; Atkinson, D

    2014-06-11

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe. PMID:24833038

  4. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    PubMed Central

    2014-01-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A ‘destabilization state’ with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, ‘long-lived stable clusters state’ (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field (B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can ‘paste’ these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials. PMID:24910569

  5. Effects of magnetic atoms on the properties of ternary superconductors

    SciTech Connect

    Dunlap, B.D.; Shenoy, G.K.

    1980-01-01

    Until recently it has been commonly accepted that small impurities of magnetic atoms were severely detrimental to superconductivity, and that superconductivity and long-range magnetic ordering could not occur in the same materials. In known binary and pseudo-binary compounds, this is still the case. However, many recent experiments on ternary superconductors have shown that the effects of magnetism are considerably more complex. In some cases, the addition of magnetic atoms has been found to enhance superconducting properties by increasing the superconducting critical field, without significantly lowering the transition temperature. In many cases, compounds will show both superconducting and long range magnetic ordering transitions. The destruction of superconductivity by ferromagnetic ordering and the coexistence of superconductivity with antiferromagnetic ordering is now well established. Hyperfine interaction measurements have played a significant role in the investigations of these materials, including measurement of the magnitude of the exchange interaction between rare-earth spin and conduction electron spin, elucidation of the mechanism for critical field enhancement, specification of crystalline field ground states, and studies of the nature of magnetic ordering.

  6. First Principles Studies of the Magnetic Properties of Alnico Permanent Magnet Materials

    NASA Astrophysics Data System (ADS)

    Ujfalussy, Balazs; Samolyuk, German; Odbadrakh, Khorgolkhuu; Stocks, G. Malcolm

    2013-03-01

    Until the advent of rare earth based magnets Alnico was one of the highest energy product hard magnets available. Recently, interest in this system has been rekindled as system whose properties and utility may be further enhanced but does not contain rare earth elements. Recent experiments on Alnico alloy suggest that there is no sharp interface between the disordered bcc FeCo magnetic phase and the ordered B2 NiAl non-magnetic phase; thereby undermining our understanding of the large coercivity of this material. By utilizing several electronic structure methods we first study the issue of the effect of substitutions of additional elements into B2 NiAl phase. We also calculate the magnetic moment distribution across the interface and examine the magnetic ground state. These calculations suggest that the magnetic structure of the B2-phase as well as the interface in much more complex than previously thought. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory.

  7. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  8. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  9. FLARES AND THEIR UNDERLYING MAGNETIC COMPLEXITY

    SciTech Connect

    Engell, Alexander J.; Golub, Leon; Korreck, Kelly; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 x 10{sup 33} T{sup 1.9{+-}0.1}.

  10. Magnetic properties of weights, their measurements and magnetic interactions between weights and balances

    NASA Astrophysics Data System (ADS)

    Davis, R.; Gläser, M.

    2003-12-01

    Unwanted magnetic effects must be minimized and quantified in precision weighing and mass metrology. To this end, methods of measuring magnetic fields and of characterizing the magnetic properties of bodies such as weights are reviewed. The results of comparisons between weights made of ferromagnetic and weakly magnetic materials as well as modelling the magnetic forces between weight and balance are reported. Finally, the impact of the magnetic properties of the weights on regulations in legal metrology is discussed.

  11. Radiative properties of strongly magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Weisheit, J. C.

    1993-11-01

    The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems: the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom 'paradigm' remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B is greater than than 10(exp 8) Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal.

  12. A series of dinuclear Dy(iii) complexes bridged by 2-methyl-8-hydroxylquinoline: replacement on the periphery coordinated β-diketonate terminal leads to different single-molecule magnetic properties.

    PubMed

    Zhang, Wan-Ying; Tian, Yong-Mei; Li, Hong-Feng; Chen, Peng; Sun, Wen-Bin; Zhang, Yi-Quan; Yan, Peng-Fei

    2016-03-01

    A series of HMq-bridged dinuclear dysprosium complexes, namely, [Dy(acac)2(CH3OH)]2(μ-HMq)2 (1), [Dy(DBM)2]2(μ-HMq)2(n-C6H14) (2), [Dy(hmac)2]2(μ-HMq)2 (3) and [Dy(hfac)3]2(μ-HMq)2 (4) (HMq = 2-methyl-8-hydroxyquinoline, acac = acetylacetone, DBM = dibenzoylmethane, hmac = hexamethylacetylacetonate and hfac = hexafluoroacetylacetonate), were structurally and magnetically characterized. X-ray crystallographic analyses of the structures reveal that HMq serves as the effective bridge to link two Dy(iii) centers by means of the phenoxyl oxygen and nitrogen atoms and the periphery β-diketonate ligands complete the coordination sphere by bidentate oxygen atoms. The different substituents on the β-diketonate terminal lead to different coordination models mostly due to the steric hindrance of these substituents, and the electron-withdrawing or donating effects likely influence the strength of the ligand fields and the Dy(iii) ion anisotropy. Measurements of alternating-current (ac) susceptibility on complexes 1-4 reveal that complexes 3 and 4 display significant zero-field single-molecule magnetic (SMM) behavior with barrier energy Ueff/kB = 14.8 K, τ0 = 1.8 × 10(-5) s and Ueff/kB = 9.2 K, τ0 = 1.7 × 10(-5) s, respectively, whereas 1 and 2 exhibit field-induced SMM behavior, and these differences are attributed to the alteration on the periphery β-diketonate ligands. Their distinct slow magnetic relaxation behaviors were related to their different individual Dy(iii) ion magnetic anisotropy and intramolecular coupling, which were confirmed by ab initio calculations. PMID:26905041

  13. Properties of GRB Lightcurves from Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Granot, Jonathan

    2016-04-01

    The energy dissipation mechanism within Gamma-Ray Burst (GRB) outflows, driving their extremely luminous prompt γ-ray emission is still uncertain. The leading candidates are internal shocks and magnetic reconnection. While the emission from internal shocks has been extensively studied, that from reconnection still has few quantitative predictions. We study the expected prompt-GRB emission from magnetic reconnection and compare its temporal and spectral properties to observations. The main difference from internal shocks is that for reconnection one expects relativistic bulk motions with Lorentz factors Γ' ≳ a few in the jet's bulk frame. We consider such motions of the emitting material in two anti-parallel directions (e.g. of the reconnecting magnetic-field lines) within an ultra-relativistic (with Γ ≫ 1) thin spherical reconnection layer. The emission's relativistic beaming in the jet's frame greatly affects the light-curves. For emission at radii R0 < R < R0 + ΔR (with Γ = const) the observed pulse width is ΔT ˜ (R0/2cΓ2) max (1/Γ', ΔR/R0), i.e. up to ˜Γ' times shorter than for isotropic emission in the jet's frame. We consider two possible magnetic reconnection modes: a quasi steady-state with continuous plasma flow into and out of the reconnection layer, and sporadic reconnection in relativistic turbulence that produces relativistic plasmoids. Both of these modes can account for many observed prompt-GRB properties: variability, pulse asymmetry, the very rapid declines at their end and pulse evolutions that are either hard to soft (for Γ' ≲ 2) or intensity tracking (for Γ' > 2). However, only the relativistic turbulence mode can naturally account also for the following correlations: luminosity-variability, peak luminosity - peak frequency and pulse width energy dependence / spectral lags.

  14. Insertion of a hydroxido bridge into a diphenoxido dinuclear copper(II) complex: drastic change of the magnetic property from strong antiferromagnetic to ferromagnetic and enhancement in the catecholase activity.

    PubMed

    Biswas, Apurba; Das, Lakshmi Kanta; Drew, Michael G B; Diaz, Carmen; Ghosh, Ashutosh

    2012-10-01

    A diphenoxido-bridged dinuclear copper(II) complex, [Cu(2)L(2)(ClO(4))(2)] (1), has been synthesized using a tridentate reduced Schiff base ligand, 2-[[2-(diethylamino)ethylamino]methyl]phenol (HL). The addition of triethylamine to the methanolic solution of this complex produced a novel triple bridged (double phenoxido and single hydroxido) dinuclear copper(II) complex, [Cu(2)L(2)(OH)]ClO(4) (2). Both complexes 1 and 2 were characterized by X-ray structural analyses, variable-temperature magnetic susceptibility measurements, and spectroscopic methods. In 1, the two phenoxido bridges are equatorial-equatorial and the species shows strong antiferromagnetic coupling with J = -615.6(6.1) cm(-1). The inclusion of the equatorial-equatorial hydroxido bridge in 2 changes the Cu···Cu distance from 3.018 Å (avg.) to 2.798 Å (avg.), the positions of the phenoxido bridges to axial-equatorial, and the magnetic coupling to ferromagnetic with J = 50.1(1.4) cm(-1). Using 3,5-di-tert-butylcatechol as the substrate, the catecholase activity of the complexes has been studied in a methanol solution; compound 2 shows higher catecholase activity (k(cat) = 233.4 h(-1)) than compound 1 (k(cat) = 93.6 h(-1)). Both complexes generate identical species in solution, and they are interconvertible simply by changing the pH of their solutions. The higher catecholase activity of 2 seems to be due to the presence of the OH group, which increases the pH of its solution. PMID:22963285

  15. Microstructure characterization and magnetic properties of nanomaterials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang-Cheng

    The microstructure and superparamagnetic properties of two systems of magnetic nanoparticles are reviewed. A new type of magnetic core-shell Ni-Ce nanocomposite particle (15-50nm) has been prepared. Typical HREM images and FFT patterns of HREM images showed that many planar defects (nanotwins and stacking faults) exist in the large Ni core zone (10-45nm). The shell layers (3-5nm) consist of an innermost Ni-Ce alloy and an outermost NiO oxide. FFT patterns from different regions of typical HREM images show well defined spots characteristic of core-shell nanocomposite materials. Magnetization measurements as a function of magnetic field and temperature showed that superparamagnetic behaviour is exhibited above the average block temperature (TB = 170K). This superparamagnetic relaxation was found to be modified by interparticle interactions that depend on the applied field and size distribution. In addition, antiferromagnetic order occurred with a Nel temperature TN of about 11K. A spin-flip transition was observed below TN at a certain applied field. Novel carbon encapsulated Ni nanoparticles assemblies have been synthesized by modified arc-discharge under a methane atmosphere. The presence of carbon encapsulation is confirmed by HR-TEM lattice imaging, and nanodiffraction. The intimate and contiguous carbon fringe around these Ni nanoparticles is good evidence for complete encapsulation by carbon shell layers. Superparamagnetic property studies show that the blocking temperature TB is around 115K at 0.1T applied field. Above TB, the magnetization M(H,T) can be described by the classical Langevin function L using the relation M|Ms(T= 0)=coth ( wH/kT ) - kT / ?H. The particle size can be inferred from the Langevin fit (particle moment ?), which is a little larger than the HR-TEM observation. It is suggested that these assemblies of carbon encapsulated Ni nanoparticles have typical single-domain, field-dependent superparamagnetic relaxation properties, and this typical superparamagnetic behaviour is consistent with the Stoner-Wohlfarth theory of single-domain particles.

  16. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    PubMed Central

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-01-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule. PMID:27026506

  17. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  18. Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties.

    PubMed

    Ghadban, Ali; Ahmed, Anansa S; Ping, Yuan; Ramos, Ricardo; Arfin, Najmul; Cantaert, Bram; Ramanujan, Raju V; Miserez, Ali

    2016-01-14

    We have developed pH- and magnetic-responsive hydrogels that are stabilized by both covalent bonding and catechol/Fe(3+) ligands. The viscoelastic properties of the gels are regulated by the complexation valence and can be used to tune drug release profiles. The stable incorporation of magnetic nanoparticles further expands control over the mechanical response and drug release, in addition to providing magnetic stimuli-responsivity to the gels. PMID:26558317

  19. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  20. Complex magnetic phases in LuFe2O4

    SciTech Connect

    Phan, M.; Frey, N. A.; Angst, M; De Groot, J; Sales, Brian C; Mandrus, David; Srikanth, H.

    2010-01-01

    DC magnetization and AC susceptibility measurements on LuFe{sub 2}O{sub 4} single crystals reveal a ferrimagnetic transition at 240 K followed by additional magnetic transitions at 225 K and 170 K, separating cluster glass phases, and a kinetically arrested state below 55 K. The origin of giant magnetic coercivity is attributed to the collective freezing of ferrimagnetic clusters and enhanced domain wall pinning associated with a structural transition at 170 K. Magnetocaloric effect measurements provide additional vital information about the multiple magnetic transitions and the glassy states. Our results lead to the emergence of a complex magnetic phase diagram in LuFe{sub 2}O{sub 4}.

  1. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  2. The flow properties of complex fluids

    NASA Astrophysics Data System (ADS)

    Twardos, Michael John

    2005-12-01

    "Complex fluids" are a class of systems exhibiting "unusual" mechanical responses to applied stress or strain that are not well understood. Theoretically, these systems have been considered in several different contexts such as glasses and plastics as well as other thermal and "athermal" systems. Significant agreement has been found in considering these from a variety of theoretical perspectives. However inconsistent and controversial conclusions concerning their material properties still persists. The careful study of these systems has the exciting potential to lead to "new physics" and new states of matter. For example, it has been suggested that these systems can jam and a "jamming phase diagram" can be used to consider how these systems can jam and unjam. Is such a theoretical framework useful? Is there really a new state of matter that is jammed? This large body of theoretical work has thus far been poorly supported with experiments. In this thesis, we will examine the rheological properties of two experimental systems: a bubble raft and a sphere raft. These systems were studied because they represent "generic" complex fluids that can be explored over a wide range of parameters. In this way, these systems can be considered a good sample study to understand this broad class of systems. This thesis considers first the characterization of these materials. We then go on to address questions related to jamming including the jamming transition and description of fluctuations through various theoretical frameworks. This experimental work was considered with two main experimental setups: a Couette viscometer capable of measuring stress with a torsion pendulum and a parallel plate shearing apparatus. In the bubble raft we consider different ways energy is injected into the system. By measuring how energy is dissipated in the system in the form of "stress drops", we are able to probe different time scales and length scales. In the bead raft, we consider experimental methods to measure an "effective temperature". A measurement of such a quantity in a nonequilibrium system can be a very important step in applying the "machinery" of current physical theories to these poorly understood systems. These two geometries and the investigation of two similar yet distinct complex fluids provides a preliminary experimental overview in considering the characteristics and dynamics of this interesting system class.

  3. Magnetic properties and microstructure of bulk Nd-Fe-B magnets solidified in magnetic field

    SciTech Connect

    Wang, C.; Lai, Y. S.; Hsieh, C. C.; Chang, W. C.; Chang, H. W.; Sun, A. C.

    2011-04-01

    The Nd-Fe-B bulk magnets with a slab shape of 0.9 x 4 x 15 mm{sup 3} were prepared by injection casting into a copper mold. The effects of applying a magnetic field during the casting process on the magnetic properties and microstructure of Nd{sub 9.5}Fe{sub 71.5}Ti{sub 2.5}Zr{sub 0.5}Cr{sub 1}B{sub 14.5}C{sub 0.5} alloy have been studied. The results show that the sample cast with magnetic field has a stronger (00L) texture of Nd{sub 2}Fe{sub 14}B phase with the c-axis perpendicular to the slab plane than the sample cast without magnetic field. The intensity of the texture weakens from surface to inner region of the bulk magnets. Applying a magnetic field during the casting process is helpful to refine the grain size effectively. As a result, the magnetic properties are improved from B{sub r} = 5.8 kG, {sub i}H{sub c} = 6.5 kOe, and (BH){sub max} = 5.9 MGOe for thesample cast without magnetic field to B{sub r} = 6.1 kG, {sub i}H{sub c} = 10.3 kOe, and (BH){sub max} = 7.3 MGOe for the sample cast with a 3.7 kOe magnetic field.

  4. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment. PMID:26206215

  5. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  6. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  7. Magnetic Properties of the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Badyukov, D. D.; Nazarov, M. A.; Rochette, P.; Feinberg, J. M.

    2013-12-01

    The Chelyabinsk meteorite (the fall of February 15, 2013; Russia) is a LL5 ordinary chondrite. Numerous (thousands) stones fell as a shower to the south and the south-west of the city of Chelyabinsk. The stones consist of two intermixed lithologies, with the majority (2/3) being a light lithology with a typical chondritic texture and shock stage S4 (~30 GPa). The second lithology (1/3) is an impact melt breccia (IMB) consisting of blackened chondrite fragments embedded in a fine-grained matrix. We investigated the magnetic properties of the meteorite stones collected immediately after the fall by the expedition of the Vernadsky Institute, Moscow. The low-field magnetic susceptibility (χ0) of 174 fragments (135 chondritic and 39 IMB) weighing >3 g was measured. Each sample was measured three times in mutually perpendicular directions to average anisotropy. Also hysteresis loops (saturation magnetization Ms, coercivity Bc) and back-field remanence demagnetization curves (coercivity of remanence Bcr) in the temperature range from 10K to 700°C and other characteristics of some pieces (NRM, SIRM with their thermal and alternating field demagnetization spectra) were acquired. The mean logχ0 is 4.57×0.09 (s.d.) for the light lithology and 4.65×0.09 (s.d.) (×10-9 m3/kg) for the IMB, indicating that IMB is slightly richer in metal than the light chondritic lithology. According to [1], Chelyabinsk is three times more magnetic than the average LL5 fall, but similar to other metal-rich LL5 (e.g., Paragould, Aldsworth, Bawku, Richmond), as well as L/LL chondrites (e.g., Glanerbrug, Knyahinya, Qidong). The estimation of metal content from the Ms value gives 3.7 wt.% for the light fragments and 4.1 wt.% for IMB whereas the estimation from χ0 yields overestimated contents, e.g., 6.9 wt.% for the light lithology. Thermomagnetic curves Ms(T) up to 800°C identify the main magnetic carriers at room temperature (T0) and above as taenite and kamacite (no tetrataenite found), in accordance with mineralogical data. Additional magnetic analyses [2] confirm the absence of tetrataenite and show that metal grains are primarily multidomain and magnetically soft (Bc<2 mT and Bcr<23 mT) at T0. However, at temperatures <75 K, the magnetic remanence of the Chelyabinsk chondrite is dominated by high coercivity chromite with much higher Bcr (606 mT for the light lithology and 157 mT for IMB). These results are consistent with previously published data on ordinary chondrites [3]. Acknowledgments: This research was funded by a U.S. National Science Foundation IRM Visiting Fellowship. References: [1] Rochette P. et al. 2003. MAPS 38: 251-268. [2] Bezaeva N.S. et al. 2013. Geochem. Int. 51(7): 568-574. [3] Gattacceca J. et al. 2011. Geoph. Res. Lett. 38: L10203.

  8. Handling Magnetic Coupling in Trinuclear Cu(II) Complexes.

    PubMed

    Reta Mañeru, Daniel; Costa, Ramon; Guix Márquez, Meritxell; Moreira, Ibério de P R; Illas, Francesc

    2015-08-11

    The problem of deriving three different two-body magnetic couplings in three electrons/three centers in a general geometric arrangement is investigated using the trinuclear Cu(II) HAKKEJ complex as a real case example. In these systems, one quartet and two doublet low lying electronic states exist, which define the magnetic spectra. However, the two possible linearly independent energy differences do not provide enough information to extract the three magnetic coupling constants. Here, we show how to obtain these parameters without making any assumption on the symmetry of the system from a combination of density functional- and wave function-based calculations. The density functional calculations explore various broken symmetry solutions and relate the corresponding energy to the expectation value of the Heisenberg Hamiltonian. This allows one to obtain all magnetic couplings, although their magnitude strongly depends on the exchange-correlation functional. Interestingly, a constant ratio between the magnetic coupling constants along a series of investigated functionals is found. This provides an additional equation to be used when relying on energy differences between spin states, which in turn allow solving the Heisenberg spectrum. The magnetic couplings thus obtained are compared to the experiment. Implications for the appropriate interpretation of the experiment and for the study of more complex systems are discussed. PMID:26574448

  9. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  10. Magnetic properties of sintered Alnico 5 magnet via rapid solidification technology

    NASA Astrophysics Data System (ADS)

    Yang, C. J.; Lee, W. Y.; Choi, S. D.

    1994-05-01

    A process for making Alnico magnets (grade 5-8) via rapid solidification technology has been developed. The process includes extractive melt spinning of alloy powders, press forming, heat treatment under a magnetic field, and aging. The Alnico 5 magnets made by this process showed superior magnetic properties to those of cast magnet of the corresponding composition. The superior magnetic properties of the sintered magnets with Br=13.2 kG, Hc=680 Oe, and (BH)max=6.02 MGOe are due to the spinodal decomposition which is completely free of γ phase.

  11. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer potassic zone that contains less abundant, but still significant, magnetite. The inner potassic zone represents relatively intense development of qtz-mt-Kfsp veins, whereas the outer potassic zone corresponds to bio-Kfsp-qtz-mt alteration. A shell of magnetite-destructive phyllic alteration with very low susceptibility envelops the potassic zones. The phyllic zone is surrounded by a zone of intense propylitic alteration, which is partially magnetite-destructive, which passes out into weak propylitic alteration and then into unaltered, moderately magnetic volcanics. For such a system, emplaced into magnetic intermediate-mafic igneous host rocks and exposed after removal by erosion of ~ 1 km of overburden, a strong central RTP high is surrounded by a relatively weak annular low over the phyllic zone, gradually returning to background levels over the propylitic zone (an "archery target" signature). For a completely buried system, however, the signature is basically an alteration low due to the large volume of magnetite-destructive alteration surrounding the deeply buried magnetic core.

  12. Modeling graphene: Magnetic, transport and optical properties

    NASA Astrophysics Data System (ADS)

    Chang, Yi Chen

    Graphene, with its unique linear dispersion near the Fermi energy, has attracted great attention since its successful isolation from highly oriented pyrolytic graphite in 2004. Many important properties have been identified in graphene, including a remarkably high mobility at room temperature, an unusual quantum hall effect, and an ambipolar electric field effect. It has been proposed as a candidate for many applications, such as optical modulators, spintronic devices, and solar cells. Understanding the fundamental properties of graphene is therefore important. In this dissertation, I present a study of transport, magnetism and optical properties of graphene. In the first chapter, I introduce the electronic properties of mono layer and few layer graphene. In the second chapter, I present low temperature transport measurements in few layer graphene. An electric-field induced semimetal-to-metal transition is observed based on the temperature dependence of the resistance for different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs, as it is characteristic of a semimetal. At large gate, voltages excitations of electron-hole pairs are suppressed, and the resistance increases with increasing temperature because of the decrease in mean free path due to electron-phonon scattering, as is characteristic of a metal. The electron and hole mobilities are almost equal, so there is approximate electron-hole symmetry. The data are analyzed according to two different theoretical models for few-layer graphene. A simple two band (STB) model, two overlapping bands with quadratic energy-versus-momentum dispersion relations, is used to explain the experimental observations. The best fitting parameter for the overlap energy is found to be 16 meV. However, at low temperatures, the STB suggests that the conductivity is gate independent in the small gate voltage regime, which is not observed in the data. By considering frustration of the electronic potential due to impurities from the substrate, a Gaussian-distribution puddle model can successfully describe the observed transport behavior in the low temperature, small gate voltage regime. In the third chapter, I investigate the effects of point and line defects in monolayer graphene within the framework of the Hubbard model, using a self-consistent mean field theory. These defects are found to induce characteristic patterns into the electronic density of states and cause non-uniform distributions of magnetic moments in the vicinity of the impurity sites. Specifically, defect induced resonances in the local density of states are observed at energies close to the Dirac points. The magnitudes of the frequencies of these resonance states are shown to decrease with the strength of the scattering potential, whereas their amplitudes decay algebraically with increasing distance from the defect. For the case of defect clusters, we observe that with increasing defect cluster size the local magnetic moments in the vicinity of the cluster center are strongly enhanced. Furthermore, non-trivial impurity induced magnetic patterns are observed in the presence of line defects: zigzag line defects are found to introduce stronger-amplitude magnetic patterns than armchair line defects. When the scattering strength of these topological defects is increased, the induced patterns of magnetic moments become more strongly localized. In the fourth chapter, I theoretically study the electronic properties properties in graphene dots under mechanical deformation, using both tight binding lattice model and effective Dirac model. We observed an edge state, which is tunned by an effective quantum well originating from a strain-induced gauge field. Applying a uniaxial strain along the zigzag or armchair directions enhances or dampens the edge state due to the development of edge quantum wells. When an arc bending deformation is applied, the inner and outer edges of graphene dot display edge states caused by the induced nonuniform gauge field. These states suggest that an effective single well potential is introduced by a strong nonuniform pseudo-magnetic field, leading to a pseudo quantum Hall effect. Furthermore, we find that introducing a Hubbard term on the mean-field level induces a strong polarization between the A and B sublattices, which provides an experimental test of the theory presented here. Finally, I study charge impurity induced plasmon resonance in graphene by using the self-consistent method within random phase approximation (RPA). I attribute the observed increase in excitation energy to the increasing carrier density due to stronger impurity potentials. On the other hand, the carrier density within low energy region is decreased when impurity size is increased, as result of lower excitation frequency. The plasmon patterns show that the dipole resonances are supported for the lower excitation frequency due to a simple transition process. For higher excitation frequencies, quadrapole resonance is observed because the transitions between higher energy levels become possible. With increasing impurity size, a larger spatial range of plasmons is observed.

  13. Synthesis of the first heterometalic star-shaped oxido-bridged MnCu3 complex and its conversion into trinuclear species modulated by pseudohalides (N3(-), NCS- and NCO-): structural analyses and magnetic properties.

    PubMed

    Biswas, Saptarshi; Naiya, Subrata; Gómez-García, Carlos J; Ghosh, Ashutosh

    2012-01-14

    A tetra-nuclear, star-shaped hetero-metallic copper(II)-manganese(II) complex, [{CuL(H(2)O)}(2)(CuL)Mn](ClO(4))(2) (1) has been synthesized by reacting the "complex as ligand" [CuL] with Mn(ClO(4))(2) where H(2)L is the tetradentate di-Schiff base derived from 1,3-propanediamine and 2-hydroxyacetophenone. Upon treatment with the polyatomic anions azide, cyanate, or thiocyanate in methanol medium, complex 1 transforms into the corresponding trinuclear species [(CuL)(2)Mn(N(3))(2)] (2), [(CuL)(2)Mn(NCO)(2)] (3) and [(CuL)(2)Mn(NCS)(2)] (4). All four complexes have been structurally and magnetically characterized. In complex 1 the central Mn(II) ion is encapsulated by three terminal [CuL] units through the formation of double phenoxido bridges between Mn(II) and each Cu(II). In complexes 2-4 one of the CuL units is replaced by a couple of terminal azide, N-bonded cyanate or N-bonded thiocyanate ions respectively and the central Mn(II) ion is connected to two terminal Cu(II) ions through a double asymmetric phenoxido bridge. Variable temperature magnetic susceptibility measurements show the presence of moderate ferrimagnetic exchange interactions in all the cases mediated through the double phenoxido bridges with J values (H = -JS(i)S(i + 1)) of -41.2, -39.8 and -12.6 cm(-1) (or -40.5 and -12.7 cm(-1) if we use a model with two different exchange coupling constants) for the tetranuclear MnCu(3) cluster in compound 1 and -20.0, -17.3 and -32.5 cm(-1) for the symmetric trinuclear MnCu(2) compounds 2-4. These ferrimagnetic interactions lead to spin ground states of 1 (5/2 - 3*1/2) for compound 1 and 3/2 (5/2 - 2*1/2) for compounds 2-4. PMID:22042489

  14. Encoding complexity within supramolecular analogues of frustrated magnets.

    PubMed

    Cairns, Andrew B; Cliffe, Matthew J; Paddison, Joseph A M; Daisenberger, Dominik; Tucker, Matthew G; Coudert, François-Xavier; Goodwin, Andrew L

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom-namely, the relative vertical shifts of neighbouring chains-are mathematically equivalent to the phase angles of rotating planar ('XY') spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets-including collective spin-vortices of relevance to data storage applications-are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible 'toy' spin models and also how the theoretical understanding of those models allows control over collective ('emergent') phenomena in supramolecular systems. PMID:27102677

  15. Radiative properties of strongly magnetized plasmas

    SciTech Connect

    Weisheit, J.C.

    1992-12-01

    The subject of atomic properties in the presence of very strong magnetic fields is experiencing a new wave of interest, especially insofar as non-hydrogenic systems are concerned, and we believe the research summarized here is on the crest of that wave. Only recently there have appeared a major review of Thomas-Fermi theory [Spruch, L. 1991, Rev. Mod. Phys. 63 151]; a new set of fundamental theorems pertaining to the Hamiltonian of a (Thomas-Fermi) atom in a strong field [Lieb E.H., Solovej J.P., Yngvason J., Phys. Rev. Lett. 69, 749 (1992)]; and the first numerical, Hartree-Fock (HF) results for multi-electron atoms in strong B fields, but obtained under the restrictive assumption that the [rho]- and z-dependence of individual orbitals is completely separable [Miller M.C., Neuhauser D. Mon. Not. R. astr. Soc., 253, 107 (1991)].

  16. Hexaferrite M (Co, Ti) magnetic properties optimization

    SciTech Connect

    Autissier, D.; Rousselle, D.; Podembski, A.

    1995-09-01

    Barium hexaferrites are anisotropic iron oxides which can present high values of permeability. We have studied Ba (Co, Ti){sub x}Fe{sub 12-2x}O{sub 19} compositions. Powders are synthesized using the ceramic method: stoichiometric amounts of basic components are ground and fired at high temperature (1170{degrees}C) to obtain the desired phase. The powders are then ground for 6 hours in order to reduce the particle size. The slurry is cast in a plaster matrix. This matrix is rotated between the poles of a stationary electromagnet. Fields of approximately 500 Oe are used for the orientation procedure. Samples are then sintered for different temperatures between 1200 and 1300{degrees}C. We present results (magnetization, permeability, permittivity, orientation rate) obtained for diverse compositions (1.1magnetic properties, orientation rate, microstructure.

  17. Pseudostreamers: Formation, Magnetic Topology and Plasma Properties

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Velli, M. M. C.

    2014-12-01

    A traditional view of the origins of the solar wind states that slow wind streams arise from coronal hole boundaries due to the larger expansion factor. It is hard in this explanation to understand why the slow wind occupies so much space in the heliosphere. Pseudostreamers are multipolar features which develop into fields that are unipolar at greater heights. There is debate as to the speed and nature of the wind from pseudostreamers: it could be fast, slow, or in between. And, in general, they might form a network of slow wind which may or may not connect in the heliosphere to slow wind coming from around the heliospheric current sheet. Here we discuss the relationship between the expansion factor along PFSS extrapolated magnetic field lines of pseudostreamers and wind speed and plasma properties calculated with numeral modeling. We demonstrate how the resulting wind type depends on the stage of pseudostreamer development in the context of the global coronal environment: factors in determining wind speed include the height of the pseudostreamer null point, the presence or absence of filament channels, and the expansion of coronal magnetic field lines in the neighborhood of the pseudostreamer spine. This study helps to better understand the sources of slow and fast solar wind for the Solar Probe Plus mission.

  18. Magnetic and screening properties of amorphous ferromagnetic ribbons

    NASA Astrophysics Data System (ADS)

    Gudoshnikov, S. A.; Grebenshchikov, Yu. B.; Volkov, V. T.; Prokhorova, Yu. V.

    2014-10-01

    We have studied the magnetic and screening properties of cylindrical shields made of amorphous ferromagnetic ribbons. It is established that the relative magnetic permeability of this material can exceed 106. The action of an alternating decaying magnetic field (demagnetization) converts amorphous ferromagnetic ribbons into the state of anhysteretic magnetization, which is characterized by extremely high (above 2 × 107) values of the relative magnetic permeability in magnetic fields at a level of 10 nT. The results of measurements were used to estimate the coefficient of attenuation of the Earth's magnetic field inside cylindrical shields with open ends, depending on the diameter and the number of layers of an amorphous ferromagnetic ribbon.

  19. Synthesis, crystal structures, magnetic properties and catecholase activity of double phenoxido-bridged penta-coordinated dinuclear nickel(II) complexes derived from reduced Schiff-base ligands: mechanistic inference of catecholase activity.

    PubMed

    Biswas, Apurba; Das, Lakshmi Kanta; Drew, Michael G B; Aromí, Guillem; Gamez, Patrick; Ghosh, Ashutosh

    2012-08-01

    Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni(2)(L(1))(2)(NCS)(2)] (1), [Ni(2)(L(2))(2)(NCS)(2)] (2), and [Ni(2)(L(3))(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL(1)), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL(2)), and 2-[1-(3-dimethylamino-propylamino)-ethyl]-phenol (HL(3)), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter τ = 0.47) and 3 (τ = 0.29), while it is almost perfect for 2 (τ = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes. PMID:22759340

  20. Optimization of the magnetic properties of nanostructured Y-Co-Fe alloys for permanent magnets

    NASA Astrophysics Data System (ADS)

    Tozman, P.; Venkatesan, M.; Coey, J. M. D.

    2016-05-01

    The structural and magnetic properties of ball-milled Fe-doped Y Co5-xFex(0 ≤ x ≤ 0.5) were investigated. The magnetization increases with Fe-doping up to the solid solubility limit, x = 0.3 without destroying the crystal structure or degrading the coercivity. A special magnet array is designed using ring magnets for pressing the powders under magnetic field in order to achieve magnetic alignment. A dramatic increase in magnetization is observed for magnetically aligned Y Co4.8Fe0.2 pressed ingots.

  1. Thermodynamic Properties of Organometallic Dihydrogen Complexes for Hydrogen Storage Applications

    NASA Astrophysics Data System (ADS)

    Abrecht, David Gregory

    The mechanism and thermodynamic properties of hydrogen binding to the solid-state complexes [M(CO)dppe2][BArF24] (M = Mn, Re, Tc) and [M'Hdppe2][NTf2] (M' = Fe, Ru, Os) were investigated experimentally and computationally over the temperature range 298K-373K and pressure range 0-2800 torr, based on the Sieverts method. The bulk absorption behavior was found to be accurately described by Langmuir isotherms. Enthalpy and entropy values of ΔH° = -52.2 kJ/mol and ΔS° = -99.6 J/mol-K were obtained experimentally for hydrogen absorption onto [Mn(CO)dppe2][BArF24] from the Langmuir equilibrium constant, and values obtained from electronic structure calculations using the LANL2DZ-ECP basis set were found to successfully reproduce both the pressure-temperature-composition behavior and the thermodynamic values to within 5% of those obtained through experiment. Results from simulations for all complexes yielded large enthalpy values similar to metal hydride formation enthalpies for all complexes studied, and the substitution of the metal center reproduced qualitative binding strength trends of 5d>3d>4d consistent with those previously reported for the group 6 metals. X-ray diffraction patterns and Mössbauer spectra were taken to determine the thermal decomposition pathway for [FeH(η2-H 2)dppe2][NTf2]. Simulations at the B3LYP/TZVP level of theory and experimental Mössbauer spectra confirmed the direct thermal decomposition from singlet-state [FeH(η2-H 2)dppe2][NTf2] to triplet-state [FeHdppe 2][NTf2] under vacuum conditions at 398K. Evaluation of the partial quadrupole splitting values of Q(H2) = -0.245 mm/s from Mössbauer spectroscopy significantly differ from typical values obtained for hydrides, indicating an underutilized mechanism for identification of dihydrogen ligands. Singlet-state thermodynamic values from simulation were consistent with experimental observations for Ru and Os, and ruthenium complexes were found to have thermodynamic properties within appropriate ranges for hydrogen storage applications. Simulated thermodynamic values for Fe complexes were found to significantly underestimate experimental behavior, demonstrating the importance of the magnetic spin state of the molecule to hydrogen binding properties.

  2. Single-molecule magnet behavior in 2,2'-bipyrimidine-bridged dilanthanide complexes.

    PubMed

    Yu, Wen; Schramm, Frank; Pineda, Eufemio Moreno; Lan, Yanhua; Fuhr, Olaf; Chen, Jinjie; Isshiki, Hironari; Wernsdorfer, Wolfgang; Wulfhekel, Wulf; Ruben, Mario

    2016-01-01

    A series of 2,2'-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2'-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops. PMID:26925361

  3. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent magnetisation (ARM), as expected for a thermal origin, the remanence of volcanic pseudotachylyte has been found to be comparable to an isothermal remanent magnetisation (IRM). Thus, the pseudotachylyte has experienced a strong magnetic field that overwrote the previous thermoremanent magnetisation of the magma, such as the strong local electric current that occurs in faults (e.g. Ferré et al., 2005). Additionally, the pseudotachylyte seems more often to comprise of uniaxial non-interacting single-domain particles compared to pseudo-single in the host, and to have a single Curie temperature whereas the host more commonly exhibits multiple phases. Differences in rock-magnetic parameters between the pseudotachylyte and host are significant, but not as high as those observed in granites by Nakamura et al. (2002) or Ferré et al. (2005), probably because granitic host rocks do not already carry a strong and stable remanence as do these extrusive volcanic rocks. The application of rock-magnetic tests in volcanology will undoubtedly continue to be a "go-to" tool for identification of pseudotachylytes, which are increasingly being recognised to play an important role in dome-building eruptions. Refs: Ferré, E.C., Zechmeister, M.S., Geissman, J.W., MathanaSekaran, N. and Kocak, K., 2005. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 402(1-4): 125-139. Nakamura, N., Hirose, T. and Borradaile, G.J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. . Earth and Planetary Science Letters, 201(1): 13-18.

  4. Understanding and controlling complex states arising from magnetic frustration

    SciTech Connect

    Zapf, Vivien

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  5. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    NASA Astrophysics Data System (ADS)

    Först, M.; Caviglia, A. D.; Scherwitzl, R.; Mankowsky, R.; Zubko, P.; Khanna, V.; Bromberger, H.; Wilkins, S. B.; Chuang, Y.-D.; Lee, W. S.; Schlotter, W. F.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Clark, S. R.; Jaksch, D.; Triscone, J.-M.; Hill, J. P.; Dhesi, S. S.; Cavalleri, A.

    2015-09-01

    Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

  6. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface.

    PubMed

    Först, M; Caviglia, A D; Scherwitzl, R; Mankowsky, R; Zubko, P; Khanna, V; Bromberger, H; Wilkins, S B; Chuang, Y-D; Lee, W S; Schlotter, W F; Turner, J J; Dakovski, G L; Minitti, M P; Robinson, J; Clark, S R; Jaksch, D; Triscone, J-M; Hill, J P; Dhesi, S S; Cavalleri, A

    2015-09-01

    Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices. PMID:26147844

  7. Physical properties of novel magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Dzero, Maxim O.

    There is an ongoing interest in studying the novel magnetic systems, such as giant magnetoresistance structures (GMR), magnetic dilute semiconductors and various magnetic nanostructures. In the first part of my dissertation I present the results of our work concerning the possibility of using ferromagnetic metallic manganites as basic elements for various GMR heterostructures. I start by studying the phase diagram of manganites using the general band approach. As it turns out, the basic properties of manganites to a large extent are determined by cooperative Jahn-Teller effects and the Hund's rule coupling. The transition from insulating antiferromagnetic to metallic ferromagnetic state at critical doping concentration xcr is treated by means of the percolation theory. Using two-band approach in the frame of variational mean field theory we provide an estimate for the value of the Curie temperature in doped manganites. Then using the double exchange (DE) model via degenerate orbitals and the tight-binding approximation we study the magnetoconductivity of a canted A-phase of pseudo-cubic manganites. It is argued that the model is applicable in a broad concentration range for manganites A1-xB xMnO3 with the tolerance factor, t, close to one. As for the substitutional disorder, scattering on random Jahn-Teller distortions of MnO6 octahedra is chosen. We emphasize an intimate correlation between the carrier concentration and resistivity value of metallic manganites. Magnetoresistance as a function of magnetization is calculated for a canted A-phase for both in-plane and out-of-plane current directions. A contact between two manganite phases is considered and structure of the transition region near the contact is discussed. Numerical calculations show charge re-distribution near the contact and a large screening length of the order of five inter-atomic distances. We employed our results to interpret data obtained in recent experiments on La0.4Sr0.6MnO 3/La0.55Sr0.45MnO3 superlattices. We also briefly discuss the relative importance of the cooperative Jahn-Teller distortions, double exchange mechanism and super-exchange interactions for the formation of the A-phase at increasing Sr concentrations x > 0.45 in La1-xSr xMnO3 to suggest that the Jahn-Teller contraction of octahedra, c/a < 1, plays a prevailing role. The second part of my thesis deals with the analysis of magnetotransport properties of ferromagnetic nanowires. The problems associated with spin-accumulation effects near the domain walls boundaries are studied in detail. In order to explain the large values of magnetoresistance due to domain wall scattering in ferromagnetic nanowires we suggest the realization of "linear domain walls".

  8. Low-dimensional compounds containing cyano groups. XIV. Crystal structure, spectroscopic, thermal and magnetic properties of [CuL {sub 2}][Pt(China){sub 4}] complexes (L=ethylenediamine or N,N-dimethylethylenediamine)

    SciTech Connect

    Potocnak, Ivan . E-mail: ivan.potocnak@upjs.sk; Vavra, Martin; Cizmar, Erik; Tibenska, Katarina; Orendacova, Alzbeta; Steinborn, Dirk; Wagner, Christoph; Dusek, Michal; Fejfarova, Karla; Schmidt, Harry; Muller, Thomas; Orendac, Martin; Feher, Alexander

    2006-07-15

    Violet crystals of [Cu(en){sub 2}][Pt(China){sub 4}] and blue crystals of [Cu(dmen){sub 2}][Pt(China){sub 4}] were crystallized from the water-methanol solution containing CuCl{sub 2}.2H{sub 2}O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K{sub 2}[Pt(China){sub 4}].3H{sub 2}O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(China){sub 4}]{sup 2-} anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) A, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(China){sub 4}]{sup 2-} anions at longer Cu-N distance of 2.537(2) and 2.600(5) A, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en){sub 2}][Pt(China){sub 4}] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen){sub 2}][Pt(China){sub 4}]. - Graphical abstract: Chain-like structure in [Cu(en){sub 2}][Pt(China){sub 4}] (R=H) and [Cu(dmen){sub 2}][Pt(China){sub 4}] (R=CH{sub 3}) compounds.

  9. Magnetic properties of Dashing Rocks loess at Timaru, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Ma, Mingming; Liu, Xiuming; Pillans, Brad J.; Hu, Shouyun; Lü, Bin; Liu, Huifeng

    2013-10-01

    The relationships between magnetic susceptibility and pedogenic development are different in various regions of the world. For example, loess magnetic susceptibility shows a positive correlation with pedogenic development in Chinese Loess Plateau (CLP), while it displays a negative correlation with pedogenesis in Alaska and Siberia. To better understand the relationship between magnetic properties and pedogenic development, detailed sampling of Dashing Rocks loess section at Timaru, South Island, New Zealand, was carried out. Multiproxy magnetic parameters such as magnetic susceptibility, anhysteretic remanent magnetization, magnetic hysteresis loops, Ms-T curves and κ-T curves were measured. The results show that the types of magnetic minerals are similar to CLP: magnetite, maghemite, goethite and hematite. However, great differences are found in their concentration: most minerals in the Dashing Rocks section are hard magnetic, such as goethite, the content of paramagnetic minerals is rather high, while the soft-magnetic mineral content is very low. Hard-magnetic and paramagnetic minerals increase with depth, but soft-magnetic minerals decrease with depth, and are absent in the lower part of the profile. Gammate soil structures and Fe/Mn nodules (or pans) are commonly observed in the section, indicating that high susceptibility magnetite and maghemite have been converted to goethite and migrated downward to enrich certain horizons during chemical weathering. This process leads to lower magnetic susceptibility values, possibly related to the source and the transformation of soft-magnetic minerals in a high soil moisture environment. The relationship between magnetic susceptibility and pedogenic development in Dashing Rocks loess section is therefore different from the simple positive and negative relationships in CLP and Siberia, respectively. The more complex relationships between magnetic properties and pedogenic development in New Zealand loess may be related to differing degrees of magnetic mineral transformation at different depths and at different times.

  10. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca

    NASA Astrophysics Data System (ADS)

    Raĭkher, Yu. L.; Stepanov, V. I.; Stolyar, S. V.; Ladygina, V. P.; Balaev, D. A.; Ishchenko, L. A.; Balasoiu, M.

    2010-02-01

    Ferrihydrite nanoparticles (2-5 nm in size) produced by bacteria Klebsiella oxytoca in the course of biomineralization of iron salt solutions from a natural medium exhibit unique magnetic properties: they are characterized by both the antiferromagnetic order inherent in a bulk ferrihydrite and the spontaneous magnetic moment due to the decompensation of spins in sublattices of a nanoparticle. The magnetic susceptibility enhanced by the superantiferromagnetism effect and the magnetic moment independent of the magnetic field provide the possibility of magnetically controlling these natural objects. This has opened up the possibilities for their use in nanomedicine and bioengineering. The results obtained from measurements of the magnetic properties of the ferrihydrite produced by Klebsiella oxytoca in its two main crystalline modifications are reported, and the data obtained are analyzed theoretically. This has made it possible to determine numerical values of the magnetic parameters of real biomineral nanoparticles.

  11. Phenoxido and alkoxido-bridged dinuclear dysprosium complexes showing single-molecule magnet behaviour.

    PubMed

    Zou, Lifei; Zhao, Lang; Chen, Peng; Guo, Yun-Nan; Guo, Yang; Li, Yun-Hui; Tang, Jinkui

    2012-03-14

    Two new dysprosium(iii) complexes, [Dy(2)(HL(1))(4)(CO(3))]4H(2)O (1) and [Dy(2)(L(2))(2)(NO(3))(2)(CH(3)OH)(2)]4CH(3)CN (2), have been synthesized from the Schiff-base ligands N'-((2-hydroxy-1-naphthyl)methylene)benzohydrazide (H(2)L(1)) and N'-((2-hydroxy-1-naphthyl)methylene) picolinohydrazide (H(2)L(2)). Single-crystal X-ray diffraction studies reveal that four mono-deprotonated H(2)L(1) ligands and two di-deprotonated H(2)L(2) ligands which have undergone keto-enol tautomerism coordinate to the two dysprosium centres of complexes 1 and 2, respectively. The dc magnetic properties of complexes 1 and 2 are different. The phenoxido bridges in complex 1 mediate antiferromagnetic interaction between Dy(III) ions, while ferromagnetic interaction was clearly observed in alkoxido-bridged dinuclear complex 2. Furthermore, both complexes show frequency-dependent ac magnetic susceptibilities, indicating a slow relaxation of the magnetization, typical of SMM behaviour. PMID:22278353

  12. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium.

    PubMed

    Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M

    2014-05-19

    Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product. PMID:24779588

  13. Magnetic Properties of the Wenchuan Earthquake Slip Zone

    NASA Astrophysics Data System (ADS)

    pei, junling; li, haibing; sun, zhiming; si, jialiang; wang, huan

    2013-04-01

    Motivated by an interest in investigating large earthquake mechanisms, the Wenchuan earthquake Fault Scientific Drilling project (WFSD) has been launched on November 4, 2008, only 178 days after the Wenchuan earthquake struck. Large earthquakes have a signi?cant influence on the rock magnetic records in fault slip zones. The first borehole (WFSD-1) was drilled through 1201.15 m including Pengguan complex rocks of about 800 Ma and alternating sandstones and siltstones of Triassic age at the southern segment of the Yingxiu-Beichuan fault (N31° 8'59.36", E103° 41'28.71"). WFSD-1 shed light to the existence of at least 12 fault zones. The Principal Slip Zone (PSZ) of the Wenchuan earthquake has been identified at a depth of 589.17 m to 589.28 m (FZ590). To understand the high magnetic susceptibility in FZ590, we sampled 6 specimens every 10 cm down from 589.05 m-depth to 589.55 m-depth. The amount of sample is typically about 3-5 g of powder due to the limited and valuable material available. A series of rock magnetic investigations were made, such as mass magnetic susceptibility, high-temperature magnetic susceptibility, magnetic hysteresis loops. The mass and ferromagnetic materials magnetic susceptibility from the 589.25 m-depth sample shows a higher peak than from other samples, while the paramagnetic materials magnetic susceptibility shows a decrease from 589.05 to 589.55 m-depth. The k-T curves of the selected samples all display a rapid slope increase after 380°and a marked peak occurs at about 510°in the heating curves. The magnetic susceptibility reaches zero at about 585°. Every cooling curve shows a clear hump between 580° and 380°, which is clearly higher than the heating curves. The hysteresis loops show the character of closed at about 0.3 T and the low-coercivity phases. The hysteresis parameters are plotted in a Mr/Ms versus Hcr/Hc diagram, except the 589. 55 m-depth sample, which could not be determined due to a very weak expression. All the samples display typical Pseudo-Single Domain (PSD) field. Rock magnetic data from a small amount of samples provide valuable information on the core PSZ. The primary ferromagnetic minerals in this segment are magnetite with the PSD grain size, which suggests that the grain size cannot be the main reason for the high magnetic susceptibility at the PSZ. The dominant mechanism responsible for the 589.25 m-depth high magnetic susceptibility might be the production of new magnetite from iron-containing silicates or clays (e.g. chlorite) caused by frictional heating during earthquakes. Keywords Wenchuan Earthquake, Yingxiu-Beichuan Fault, Slip Zone, Magnetic Properties

  14. Mimicking the magnetic properties of rare earth elements using superatoms

    PubMed Central

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A. W.

    2015-01-01

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel “magic boron” counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  15. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  16. A new Cucysteamine complex: structure and optical properties

    SciTech Connect

    Ma, Lun; Chen, Wei; Schatte, Gabriele; Wang, Wei; Joly, Alan G.; Huang, Yining; Sammynaiken, Ramaswami; Hossu, Marius

    2014-06-07

    Here we report the structure and optical properties of a new Cucysteamine complex (CuCy) with a formula of Cu3Cl(SR)2 (R CH2CH2NH2). This CuCy has a different structure from a previous CuCy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicates that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.

  17. Tuberous Sclerosis Complex: Diagnostic Role of Magnetic Resonance Imaging

    PubMed Central

    Sehgal, Virendra N; Singh, Navjeeven; Sharma, Sonal; Rohatgi, Jolly; Oberai, Rakesh; Chatterjee, Kingshuk

    2015-01-01

    Tuberous sclerosis complex (TSC) is a well-known clinical entity, characterized by facial angio-fibroma, shagreen patch, and hypo-melanotic, and confetti-like skin lesions. An exquisite fresh case is being narrated, emphasizing its microscopic pathology. The role of magnetic resonance imaging of the brain, in particular, is highlighted to define the large variety of neurological abrasions for determining its future progression. PMID:26288435

  18. Magnetic Exchange Couplings in Transition Metal Complexes from DFT

    NASA Astrophysics Data System (ADS)

    Peralta, Juan

    In this talk I will review our current efforts for the evaluation of magnetic exchange couplings in transition metal complexes from density functional theory. I will focus on the performance of different DFT approximations, including a variety of hybrid density functionals, and show that hybrid density functionals containing approximately 30% Hartree-Fock type exchange are in general among the best choice in terms of accuracy. I will also describe a novel computational method to evaluate exchange coupling parameters using analytic self-consistent linear response theory. This method avoids the explicit evaluation of energy differences, which can become impractical for large systems. Our approach is based on the evaluation of the transversal magnetic torque between two magnetic centers for a given spin configuration using explicit constraints of the local magnetization direction via Lagrange multipliers. This method is applicable in combination with any modern density functional with a noncollinear spin generalization and can be utilized as a ``black-box''. I will show proof-of-concept calculations in frustrated Fe7IIIdisk-shaped clusters, and dinuclear CuII, FeIII, and heteronuclear complexes. NSF DMR-1206920.

  19. Alloy phase analysis from measurements of bulk magnetic properties

    NASA Astrophysics Data System (ADS)

    Lindahl, K. A.; Olson, D. L.; Trefny, J. U.

    1996-10-01

    Measurements of bulk magnetic properties were investigated to evaluate whether they can be used to reveal the microstructure and phase stability of alloys. Specifically, phase transformations in aluminum-copper alloys were followed with magnetic susceptibility measurements. The results suggest that bulk magnetic measurements can be used to predict microstructure and, thus, properties of alloys. The ability to characterize alloy properties and phase stability through correlation with electromagnetic measurements may allow significant improvements in the nondestructive evaluation of advanced alloy properties and the prediction of service life.

  20. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  1. Electronic and magnetic properties of nanoribbons

    NASA Astrophysics Data System (ADS)

    Fernando, Gayanath; Zhang, Zhiwei; Kocharian, Armen

    We have performed tight-binding calculations with open boundary conditions on a set of twisted nanoribbons (4x100), monitoring the band structure as a function of the twist angle θ. When this angle is zero, the ribbon is rectangular and when it is 60 degrees, the ribbon is cut from a honeycomb lattice. Depending on the parameters of the tight-binding model and the filling factor, semi-metallic or insulating behavior is observed. We have also studied the electronic structure of such ribbons due to the adsorption of small atoms such as nitrogen, a magnetic field and the Rashba spin-orbit interaction. The role of the adsorbed atoms and the Rashba term with regard to the conducting properties and the symmetry breaking of the ribbons will be discussed in some detail. In addition, the effects of electronic correlations on selected small ribbons will be examined. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  2. Magnetic properties of selected substituted spinel ferrites

    NASA Astrophysics Data System (ADS)

    Sláma, Jozef; Šoka, Martin; Grusková, Anna; Dosoudil, Rastislav; Jančárik, Vladimír; Degmová, Jarmila

    2013-01-01

    Polycrystalline NiZn ferrites with the chemical formula (Ni0.3Zn0.7)1-xMexFe2O4 where Me is Cu2+ or Be2+ ion with x=0.05, 0.1 and 0.25 have been prepared by a ceramic method. Selected magnetic properties such as saturation magnetisation MS, Curie temperature TC, coercivity HC and permeability of the ferrites have been measured and discussed to compare of the substituted Li0.5-0.5y+0.5tZnyTitFe2.5-0.5y-1.5tO4 ferrites, when y=0.1, 0.2, 0.3, 0.4 and t=0.35, 0.45, 0.55. The samples have been prepared by a ceramic method and the samples Li0.5-0.5yZnyFe2.5-0.5yO4 by a chemical way. Mössbauer spectra and crystallographic parameters of selected samples have been analysed as well.

  3. Deep structure of the Mount Amram igneous complex, interpretation of magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Shirman, Boris; Rybakov, Michael; Beyth, Michael; Mushkin, Amit; Ginat, Hanan

    2015-03-01

    The Mt Amram igneous complex (AIC) represents northern tip of the Neoproterozoic Arabian Nubian Shield (ANS). For the first time the AIC deep structure was studied using the gravity, aero and ground magnetic, magnetic susceptibility and density measurements and geological data. Analysing all available data at the Amram area we concluded what only monzonite body can be reason for gravity high and coinciding reduced to pole (RTP) maximum. Geological knowledge allowed suggesting its intrusive character and compact body form. Cluster of inverse solutions (Werner deconvolution) localized this body as initial model for forward modelling. Further iterations (23/4-D forward modelling) clarified the monzonite geometry and properties; the modelling allowed also to investigate the non-uniqueness and estimate also the confident intervals for final solution. The research consists three interconnected stages. At the detailed scale, ground magnetic data suggested three magmatic blocks of few hundred meters shifted dextral about 100 m along the Zefunut fault. Estimated accuracy for geometry of the magnetic bodies is a few tens metres. At the middle scale, quantitative gravity and magnetic interpretations provide model of the monzonite body, which is an order of magnitude more than the volume of the felsic rhyolites and granite rocks. Boundary of the whole monzonite body was estimated with accuracy as a hundred meters. As a result we suggest that the parent magma for the AIC is the monzonite, similar to the model suggested for the Timna Igneous Complex 12 km north of the AIC. The model developed can be applied to evaluate the subsurface volumes of the mafic magmatic rocks in adjacent locations. At the regional scale for exposed the Sinai and Arab Saudi Precambrian crystalline shield our approach allows to understand the apparent contradiction between geological predominantly granite composition (low magnetic rocks) and magnetic data. The aeromagnetic data show number strong magnetic anomalies suggesting the presence large volume of high magnetic (mainly basic) rocks at the depth. This problem is proposed for future research.

  4. Control over magnetic properties in bulk hybrid materials

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  5. Photothermal investigation of local and depth dependent magnetic properties

    NASA Astrophysics Data System (ADS)

    Pelzl, J.; Meckenstock, R.

    2010-03-01

    To achieve a spatially resolved measurement of magnetic properties two different pho-tothermal approaches are used which rely on heat dissipated by magnetic resonance absorption or thermal modulation of the magnetic properties, respectively. The heat produced by modulated microwave absorption is detected by the classical photothermal methods such as photoacoustic effect and mirage effect. Examples comprise depth resolution of the magnetization of layered tapes and visualisation of magnetic excitations in ferrites. The second photothermal technique relies on the local modulation of magnetic properties by a thermal wave generated with an intensity modulated laser beam incident on the sample. This technique has a higher spatial resolution and sensitivity and has been used to characterize lateral magnetic properties of multilayers and spintronic media. To extend the lateral resolution of the ferromagnetic resonance detection into the nm-range techniques have been developed which are based on the detection of the modulated thermal microwave response by the thermal probe of an atomic force microscope (AFM) or by detection the thermal expansion of the magnetic sample in the course of the resonant microwave absorption with an AFM or tunnelling microscope. These thermal near field based techniques in ferromagnetic resonance have been successfully applied to image magnetic inhomogeneities around nano-structures and to measure the ferromagnetic resonance from magnetic nano-dots.

  6. Spectral properties of superconductors with ferromagnetically ordered magnetic impurities

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Shevtsov, Oleksii; Löfwander, Tomas; Fogelström, Mikael

    2015-12-01

    We present a comprehensive theoretical study of thermodynamic properties of superconductors with a dilute concentration of magnetic impurities, with focus on how the properties of the superconducting host change if the magnetic moments of the impurities order ferromagnetically. Scattering off the magnetic impurities leads to the formation of a band of Yu-Shiba-Rusinov states within the superconducting energy gap that drastically influences superconductivity. In the magnetically ordered system, the magnetization displays a sudden drop as a function of the impurity density or magnetic moment amplitude. The drop occurs as the spin-polarized impurity band crosses the Fermi level and is associated with a quantum phase transition first put forward by Sakurai for the single impurity case. Taking into account that the background magnetic field created by the ordered impurity moments enters as a Zeeman shift, we find that the superconducting phase transition changes from second order to first order for high enough impurity concentrations.

  7. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy.

    PubMed

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  8. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    PubMed Central

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10−16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  9. Influence of the electrical conductivity on magnetic properties of CdZnMnTe epitaxial layers

    NASA Astrophysics Data System (ADS)

    Wojciechowski, T.; Jakubas, P.; Kolkovsky, V.; Świątek, K.; Knoff, W.; Story, T.; Bogusławski, P.; Karczewski, G.

    2010-01-01

    Magnetic susceptibility and electron paramagnetic resonance (EPR) have been measured in epitaxial layers of Cd1-x-yZnxMnyTe. This magnetic quaternary alloy, similarly to the non-magnetic ternary alloy Cd1-x ZnxTe, exhibits bistable resistance and ferroelectric properties at the room temperature. We show that the magnetic properties of Cd1-x-yZnxMnyTe depend of the resistance state of the material. The effect is explained by a changing of magnetic coupling between the neighboring Mn atoms from antiferromagnetic to ferromagnetic. By first principle calculations we show that the ferromagnetic coupling is mediated by a presence of a Zn-interstitial-vacancy complex in the vicinity of Mn-Mn pair.

  10. Magnetic properties of the Bay of Islands ophiolite suite and implications for the magnetization of oceanic crust

    USGS Publications Warehouse

    Swift, B. Ann; Johnson, H. Paul

    1984-01-01

    Rock magnetic properties, opaque mineralogy, and degree of metamorphism were determined for 101 unoriented samples from the North Arm and Blow-Me-Down massifs of the Bay of Islands ophiolite complex, Newfoundland. The weathered and metamorphosed extrusive basalt samples have a weak, secondary magnetization arising from oxidation and exsolution of ilmenite of unknown origin. The initial magnetization of the underlying sheeted dike complex appears to have been destroyed by hydrothermal alteration soon after formation. The magnetic intensity of the gabbroic samples increases as the degree of alteration increases, with the highly altered upper metagabbros having an average intensity of 3×10−3 emu/c3. Because magnetization of the metagabbro samples is related to nonpervasive, variable alteration, these crustal units are unlikely to make a significant contribution to lineated magnetic anomalies. A compilation of our results and other studies suggests a model in which oceanic crust magnetization results from an upper extrusive basalt source layer, roughly 600 m thick, with no contribution from a deeper source layer recognizable from these Bay of Islands data.

  11. Correlation of magnetic properties with deformation in electrical steels

    NASA Astrophysics Data System (ADS)

    Papadopoulou, S.

    2016-03-01

    This paper investigates the utilization of magnetic Barkhausen Noise (MBN) and hysteresis loops methods for the non-destructive characterization of deformed electrical steel samples. For this reason electrical steel samples were subjected to uniaxial tensile tests on elastic and plastic region of deformations. Both the MBN and hysteresis loops were measured. The results shown a strong degradation of the magnetic properties on plastically strains. This was attributed to the irreversible movement of the magnetic domain walls, due to the presence of high dislocation density. The resulting magnetic properties were further evaluated by examining the microstructure of the deformed samples by using scanning electron microscopy.

  12. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  13. Infrared properties of extragalactic H II complexes

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.

    1983-01-01

    Infrared observations of relatively isolated giant H II complexes in the LMC and the spiral arms of M33 and M101 are discussed, and complexes which extend over several kiloparsecs near the galactic centers are examined. The 30 Doradus nebula is emphasized, showing the variation of the 50-100 micron color temperature with position in that object. Ten-micron scans through the nucleus of NGC 1097 are compared to a visual photograph, showing the enhanced infrared emission which occurs at the nucleus and at the ring of H II regions about 1 kpc from the nucleus.

  14. Palaeomagnetism and magnetic fabric in the Freetown Complex, Sierra Leone

    NASA Astrophysics Data System (ADS)

    Hargraves, R. B.; Briden, J. C.; Daniels, B. A.

    1999-03-01

    About six separately orientated cores were collected at each of 14 sites distributed throughout the arcuate, west-dipping, 6 km thick, Freetown layered igneous complex. Alternating field and thermal demagnetization both isolate a stable component of remanent magnetism which corresponds to a palaeomagnetic south pole from 13 sites (nine reverse, four normal polarity) at 82.9°S, +32.7°E (α95 = 5.6°). This is indistinguishable from that reported in 1971 based on alternating field demagnetization of cores from 10 orientated hand samples. The difference between the Freetown pole (age: 193 +/- 3 Ma) and other mid-Jurassic poles from West Africa could be due to its greater age. The difference between the whole West African Jurassic pole group and the Karoo pole from southern Africa, however, suggests moderate (~10°) differential rotation of West Africa relative to the Kaapvaal craton. A prevalent magnetic foliation fabric coincides generally with the petrological layering, as might be expected, but a ubiquitous magnetic lineation is predominantly down-dip. This is compatible with a down-dip pyroxene lineation reported to be present in some field outcrops, and interpreted in terms of late-stage deformation during the slow crystallization and cooling of the large igneous body. However, a fold test shows that the igneous layering had already achieved its present attitude before the Complex cooled to ~570°C (the maximum blocking temperature of the characteristic remanence).

  15. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  16. Complex windmill transformation producing new purely magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lozanovski, C.; Wylleman, L.

    2011-04-01

    Minimal complex windmill transformations of G2IB(ii) spacetimes (admitting a two-dimensional Abelian group of motions of the so-called Wainwright B(ii) class) are defined and the compatibility with a purely magnetic Weyl tensor is investigated. It is shown that the transformed spacetimes cannot be perfect fluids or purely magnetic Einstein spaces. We then determine which purely magnetic perfect fluids (PMpfs) can be windmill-transformed into purely magnetic anisotropic fluids (PMafs). Assuming separation of variables, complete integration produces two, algebraically general, G2I-B(ii) PMpfs: a solution with zero 4-acceleration vector and spatial energy-density gradient, previously found by the authors, and a new solution in terms of Kummer's functions, where these vectors are aligned and non-zero. The associated windmill PMafs are rotating but non-expanding. Finally, an attempt to relate the spacetimes to each other by a simple procedure leads to a G2I-B(ii) one-parameter PMaf generalization of the previously found metric.

  17. High temperature permeameter for measuring magnetic properties

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1972-01-01

    Instrument for measuring magnetic permeability of materials undergoing heat treatment as method for monitoring stress relief and tempering is described. Procedure is based on magnetic potentiometer principle with yoke compensating coils to cancel effects of reluctance of yoke and joint gaps. Instrument is heated with specimen being heat treated.

  18. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction

    SciTech Connect

    Zverev, V. I.; Tishin, A. M.; Chernyshov, A. S.; Mudryk, Ya; Gschneidner Jr., Karl A.; Pecharsky, Vitalij K.

    2014-01-21

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.

  19. Viking magnetic properties experiment - Extended mission results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Arvidson, R. E.; Cates, P. M.

    1979-01-01

    The backhoe magnets on Viking Lander (VL) 2 were successfully cleaned, followed by a test involving successive insertions of the cleaned backhoe into the surface. Rapid saturation of the magnets confirmed evidence from primary mission results that the magnetic mineral in the Martian surface is widely distributed, most probably in the form of composite particles of magnetic and nonmagnetic minerals. An image of the VL 2 backhoe taken via the X4 magnifying mirror demonstrates the fine-grained nature of the attracted magnetic material. The presence of maghemite and its occurrence as a pigment in, or a thin coating on, all mineral particles or as discrete, finely divided and widely distributed crystallites, are consistent with data from the inorganic analysis experiments and with laboratory simulations of results of the biology experiments on Mars.

  20. Magnetic properties of self propelled particles

    NASA Astrophysics Data System (ADS)

    Ferrari, Melissa; Driscoll, Michelle; Palacci, Jeremie; Sacanna, Stefano; Pine, David; Chaikin, Paul

    We study a class of synthetic light-activated colloidal swimmers which self propel osmotically/phoretically close to a surface and self organize into dynamic clusters. Swimming is activated by a photocatalytic hematite cube exposed from the colloidal surface. Hematite is a canted antiferromagnet, with a permanent magnetic moment; the magnetic moment is oriented in a discrete number of directions relative to the exposed hematite face. The permanent moment allows us to orient and direct the swimmers' motion with an applied magnetic field, and different field configurations allow for a large range of directed motion. Furthermore, the various orientations of the magnetic moment give rise to distinct species of swimmers, which can simultaneously undergo clockwise and counterclockwise orbits in a rotating magnetic field.

  1. Magnetoresistive properties of nanostructured magnetic metals, manganites, and magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Romashev, L. N.; Naumov, S. V.; Saranin, A. A.; Zotov, A. V.; Olyanich, D. A.; Kotlyar, V. G.; Utas, O. A.

    2016-02-01

    We consider methods for controlling magnetoresistive parameters of magnetic metal superlattices, manganites, and magnetic semiconductors. By reducing the thickness of ferromagnetic layers in superlattices (e.g., Fe layers in Fe/Cr superlattices), it is possible to form superparamagnetic clustered-layered nanostructures with a magnetoresistance weakly depending on the direction of the external magnetic field, which is very important for applications of such type of materials. Producing Mn vacancies and additionally annealing lanthanum manganites in the oxygen atmosphere, it is possible to increase their magnetoresistance by more than four orders of magnitude. By changing the thickness of p- n junction in the structure of ferromagnetic semiconductors, their magnetoresistance can be increased by 2-3 orders of magnitude.

  2. Dependence of Sunspot Properties on Flare Productivity in Different Magnetic Types of Active Regions

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Hui; Hsieh, Min-Shiu; Yu, Hsiu-Shan; Tsai, Tsung-Che

    2016-05-01

    There is a general trend that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. Based on two categories of daily sunspot and flare information, GOES soft X-ray measurements, and HMI vector magnetograms, we attempt to address the dependence of flare activity on AR properties and to clarify the significance of magnetic parameters on flare productivity statistically. Our results show that the long-duration and short-duration βγδ-type ARs have different behaviors of flare activity, indicating that the evolution profiles of ARs should be considered. In addition, a significant difference in source field strength, which can be regarded as the proxy of photospheric magnetic free energy, between flaring and flare-quiet βγδ-type ARs is found in this study. We also notice that the large flares from flaring βγδ-type ARs tend to occur at the regions of strong source field together with small field-weighted shear angle. It implies that the magnetic free energy provided by a complex AR is high enough to trigger a flare event even with weak magnetic shear on the photosphere. We thus propose that the magnetic free energy represented by the source field strength rather than the photospheric magnetic complexity would be a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.

  3. Magnetic exchange interaction in gadolinium(III) complex having aliphatic nitroxide radical TEMPO

    NASA Astrophysics Data System (ADS)

    Nakamura, Takeshi; Ishida, Takayuki

    2016-02-01

    We synthesized a new compound, [Gd(hfac)3(MeOH)(TEMPO)] (TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) with the metal/radical ratio of 1/1. This compound has an advantage in the magnetic analysis, because the exchange coupling system is described with a unique coupling parameter J, when compared to the structure and magnetic properties of the previous TEMPO and related complexes. The X-ray crystal structure analysis of [Gd(hfac)3(MeOH)(TEMPO)] revealed the N-O and Gd-O(N) bond lengths are 1.299(9) and 2.307(5) Å, respectively, and the Gd-O-N angle is 149.4(5)°. The magnetic study clarified the Gd3+-radical antiferromagnetic interaction of 2J/kB = -3.5(1) K.

  4. Magnetic, structural and computational studies on transition metal complexes of a neurotransmitter, histamine

    NASA Astrophysics Data System (ADS)

    Kaştaş, Gökhan; Paşaoğlu, Hümeyra; Karabulut, Bünyamin

    2011-08-01

    In this study, the transition metal complexes of histamine (His) prepared with oxalate (Ox), that is, [Cu(His)(Ox)(H 2O)], [Zn(His)(Ox)(H 2O)] (or [Zn(His)(Ox)]·(H 2O)), [Cd(His)(Ox)(H 2O) 2] and [Co(His)(Ox)(H 2O)], are investigated experimentally and computationally as part of ongoing studies on the mode of complexation, the tautomeric form and non-covalent interactions of histamine in supramolecular structures. The structural properties of prepared complexes are experimentally studied by X-ray diffraction (XRD) technique and Fourier transform infrared (FT-IR) spectroscopy and computationally by density functional theory (DFT). The magnetic properties of the complexes are investigated by electron paramagnetic resonance (EPR) technique. The [Cu(His)(Ox)(H 2O)] complex has a supramolecular structure constructed by two different non-covalent interactions as hydrogen bond and C-H⋯π interactions. EPR studies on [Cu(His)(Ox)(H 2O)], Cu 2+-doped [Zn(His)(Ox)(H 2O)] and [Cd(His)(Ox)(H 2O) 2] complexes show that the paramagnetic centers have axially symmetric g values. It is also found that the ground state of the unpaired electrons in the complexes is dominantly d and unpaired electrons' life time is spent over this orbital.

  5. Dielectric and Magnetic Properties in Relaxor Magnet LuFeCoO4

    NASA Astrophysics Data System (ADS)

    Soda, Minoru; Masuda, Takatsugu

    2016-03-01

    Dielectric and magnetic properties in the relaxor magnet LuFeCoO4 having a triangular lattice are studied by permittivity, magnetization, and neutron diffraction measurements. We found that LuFeCoO4 has the nuclear diffuse scattering induced by Polar Nanoregions (PNRs) where local polarizations in nanoregions are randomly oriented. Synchronized changes in PNRs and magnetic short-range order with decreasing temperature are observed, which reveal the existence of the strong coupling between dielectricity and magnetism. The coincidence of the correlation lengths of the nuclear atoms and spins in the crystallographic a–b plane at the onset temperature of two-dimensional magnetic order is confirmed, suggesting that the magnetic order develops inside the PNRs. With further decreasing temperature, the magnetic correlation extends beyond the domain wall of the crystal cluster in contrast with another relaxor magnet BiFeO3–1/3BaTiO3.

  6. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  7. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    SciTech Connect

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH){sub max} of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  8. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    NASA Astrophysics Data System (ADS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH)max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  9. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our dissertation with a game theory model on social networks that tracks the dynamical evolution of a group of interacting agents such as diplomats or political lobbyists seeking to rise to a position of influence, by balancing competing interests.

  10. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Jeffrey Scott Leib

    2003-05-31

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H{sub c} in cases 1, 3, and 5, and the uniaxial character of the Gd{sub 5}(Si{sub 2}Ge{sub 2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M{sub s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from theory and calculation, and provided such information in a matter of minutes. In fact, typical characterization in each of these studies was far more complete and reliable with domain imagery to back it up--especially the single crystal and applied field pictures. In these simple cases, it appears that domain imagery may be close to standing alone in magnetic characterization. The surprises in the 10 nm CoFeHfO film, the complexity seen in the polycrystalline Gd-Si-Ge sample and the broad range predictions of the K{sub 1} of the same reinforce the unreliability of making concrete statements based purely on domain imagery of any type, but it may be possible to create standards similar to the types used in optical microscopy for metallography in these complex cases.

  11. Magnetic porous composite material: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Peretyat'ko, P. I.; Kulikov, L. A.; Melikhov, I. V.; Perfil'ev, Yu. D.; Pal', A. F.; Timofeev, M. A.; Gudoshnikov, S. A.; Usov, N. A.

    2015-10-01

    A new method of obtaining magnetic porous composite materials is described, which is based on the self-propagating high-temperature synthesis (SHS) in the form of solid-phase combustion. The SHS process involves transformation of the nonmagnetic α-Fe2O3 particles (contained in the initial mixture) into magnetic Fe3O4 particles. The synthesized material comprises a porous carbonaceous matrix with immobilized Fe3O4 particles. The obtained composite has been characterized by electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The sorption capacity of the porous material has been studied.

  12. Complex studies of properties of nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.; Svezhentsova, K. V.; Shmyryeva, O. M.

    2006-08-01

    Nanocrystalline silicon layers ( 3``35nm ) have been formed upon single-crystal silicon substrates of very large area (100 cm2), multicrystalline silicon substrates and metallurgical silicon substrates by stain etching. We studied optical and structural properties of nanocrystalline silicon by photoluminescence, reflection, scanning tunnel microscopy, scanning electron microscopy, Auger electronic spectroscopy and SIMS methods. Researches of properties of nc-Si, received by a method of chemical processing, have confirmed an opportunity of creation of this multifunctional material with stable characteristics. The authors have observed the sensors systems with use of nanocrystalline silicon as a sensitive layer, which properties depend on thickness of a received layer and are controlled by parameters of technological process. On an example of the photoluminescent sensor with nc-Si layer it is shown, that such sensor can be successfully used for definition of small concentrations of toxins (pesticides phosalone 10 -8-10 -9 mol/l ), and also for specific biological pollutant, such as protein components, polysaccharides, cells used during biotechnological synthesis.

  13. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4′-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  14. Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway

    PubMed Central

    Nishida, Keiji; Silver, Pamela A.

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply. PMID:22389629

  15. Magnetic properties of Ni substituted Y-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-01

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba2Co2-xNixFe12O22 (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (Ms) decreases with Ni contents. Ni2+, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co2+ having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba2Co1.5Ni0.5Fe12O22 shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature TC is increased with Ni contents, while TS is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3bVI, 6cIV*, 6cVI, 18hVI, 6cIV, and 3aIV sites at below TC. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe3+ and obtained the isomer shift (δ), magnetic hyperfine field (Hhf), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  16. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  17. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    SciTech Connect

    Antropov, Vladimir P; Antonov, Victor N

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  18. Complex conductivity of UTX compounds in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, Ross D; Zapf, Vivien; Altarawneh, M M; Lacerda, A; Alsmadi, A M; Alyones, S; Chang, S; Adak, S; Kothapalli, K; Nakotte, H

    2009-01-01

    We have performed rf-skin depth (complex-conductivity) and magnetoresistance measurements of anti ferromagnetic UTX compounds (T=Ni and X=Al, Ga, Ge) in applied magnetic fields up to 60 T applied parallel to the easy directions. The rf penetration depth was measured by coupling the sample to the inductive element of a resonant tank circuit and then, measuring the shifts in the resonant frequency {Delta}f of the circuit. Shifts in the resonant frequency {Delta}f are known to be proportional to the skin depth of the sample and we find a direct correspondence between the features in {Delta}f and magnetoresistance. Several first-order metamagnetic transitions, which are accompanied by a drastic change in {Delta}f, were observed in these compounds. In general, the complex-conductivity results are consistent with magnetoresistance data.

  19. Complex conductivity of UTX compounds in high magnetic fields

    SciTech Connect

    Lacerda, Alex Hugo; Mielke, Charles H; Mc Donald, Ross D

    2008-01-01

    We have performed Resonance Frequency (RF) skin depth (complex-conductivity) and magnetoresistance measurements of antiferromagnetic UTX compounds (T Ni, and X := AI, Ga, Ge) in applied magnetic fields up to 60 T applied parallel to the easy directions. The RF penetration depth was measured by coupling the sample to the inductive element of a resonant tank circuit and then, measuring the shifts in the resonant frequency {Delta}f of the circuit. Shifts in the resonant frequency {Delta}f are known to be proportional to the skin depth of the sample and we find a direct correspondence between the features in {Delta}f and magnetoresistance. Several first-order metamagnetic transitions, which are accompanied by a drastic change in {Delta}f, were observed in these compounds. In general, the complex-conductivity results are consistent with magnetoresistance data.

  20. Synthesis, structures, and magnetic properties of a family of 3d-4f [Na2Fe6Ln2] complexes (Ln = Y, Gd and Dy): effect of ligands on the connection of inorganic subunits.

    PubMed

    Zhou, Qi; Yang, Fen; Liu, Dan; Peng, Yu; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2013-01-28

    A family of 3d-4f heterometallic compounds [Na(2)Fe(III)(6)Dy(III)(2)(N(3))(4)(HL)(4)(CH(3)O)(4)(PhCO(2))(6)] (1, H(4)L = 2-{[(2-hydroxy-3-methoxyphenyl)methylene]amino}-2-(hydroxymethyl)-1,3-propanediol), [Na(2)Fe(III)(6)Dy(III)(2)(N(3))(4)(L')(4)(CH(3)O)(4)(PhCO(2))(6)(H(2)O)] (2, H(3)L' = (E)-2-ethyl-2-(2-hydroxy-3-methoxybenzylideneamino)propane-1,3-diol), [Na(2)Fe(III)(6)Dy(III)(2)(N(3))(4)(L')(4)(CH(3)O)(4)(Bu(t)CO(2))(6)] (3) [Na(2)Fe(III)(6)Y(III)(2)(N(3))(4)(L')(4)(CH(3)O)(4)(PhCO(2))(6)(H(2)O)] (4), and [Na(2)Fe(III)(6)Gd(III)(2)(N(3))(4)(L')(4)(CH(3)O)(4)(PhCO(2))(6)(CH(3)OH)(2)] (5) have been prepared using Schiff-base ligands, trinuclear iron precursor complexes, azides and lanthanide nitrates as reactants. In compounds 1 and 2, the structure of the [Na(2)Fe(III)(6)Dy(III)(2)] cluster forms a couple of cis,trans-isomers with substitution of methyl for a free hydroxyl group which belongs to the Schiff-base ligand. When the pivalates are employed instead of bulkier benzoates, the trans-[Na(2)Fe(III)(6)Dy(III)(2)] clusters act as network nodes in the formation of rhombic grid-like layered structures in compound 2. Compounds 2, 4 and 5 have similar metallic cores, only with different crystal solvent molecules. The magnetic measurements on all the compounds indicate dominant antiferromagnetic interactions between the metal centers. PMID:23114511

  1. Structural inhomogeneity and magnetic properties of strontium hexaferrites

    SciTech Connect

    Pashchenko, V.P.; Samoilenko, Z.A.; Vintonyak, V.M.

    1995-07-01

    The clustered inhomogeneity observed in ferromagnetic materials deepens our concepts of the actual structure of solids and opens new possibilities for controlling their properties. These investigations were made for the purpose of establishment of the relationship between clusterization and magnetic properties of SrO-nFe{sub 2}O{sub 3}, where 5.4 < n < 6.2, metal oxide magnetically hard strontium ferrites.

  2. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  3. Climate control of rock magnetic properties of cave sediments

    NASA Astrophysics Data System (ADS)

    Panaiotu, Cristian George; Roban, Relu

    2013-04-01

    Rock magnetic parameters of sediments reflect palaeoenvironmental and paleoclimatic conditions during deposition in the marine and in the continental realm. Cyclical changes in the magnetic mineral assemblages occurring at the orbital periodicities involved in the standard Milankovitch theory have been observed in numerous sedimentary records confirming the relationship between rock magnetism and past global change. In this respect cave sediments were longtime neglected, but in the last decade several studies about magnetic properties of cave sediments have been published. These studies have shown that the magnetic susceptibility data of cave sediments reflect both long- and short-term climatic oscillations. Magnetic susceptibility variations are attributed to changes in climate-controlled pedogenesis and the production of low coercivity magnetic mineral phases, magnetite and maghemite, outside the cave. The soils are then washed, blown or tracked into the cave where they accumulate, creating the changes observed in rock magnetic data. We present several studies of rockmagnetism in cave sediments from the Apuseni and South Carpathians Mountains (Romania). In each cave we used various rockmagnetic methods (variation of magnetic susceptibility with fields, frequency and temperature, anisotropy of magnetic susceptibility, hysteresis properties) and sedimentologic (granulometry, calcimetry, LOI, geochemistry) methods to characterized the studied deposits. In general the sections are relative short both in length (2 to 9 m) and time and the source area of sediments is highly variable, which make difficult the interpretation of magnetic signal in terms of climate. The best results can be obtained from fine sediments. When several magnetic parameters from several caves are plotted together a clear trend can be observed, which can be interpreted in terms of paleoclimate. Low magnetic susceptibility and low frequency dependence magnitudes indicate times of cooler/drier climate resulting from reduced pedogenesis, while warmer/wetter times yield higher pedogenetic rates and thus higher values for the magnetic susceptibility and frequency dependence.

  4. Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties

    PubMed Central

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202

  5. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  6. Encoding complexity within supramolecular analogues of frustrated magnets

    NASA Astrophysics Data System (ADS)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  7. Reactivity of 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, structures and magnetic properties of polynuclear and polymeric Mn(II), Cu(II) and Cd(II) complexes.

    PubMed

    Meng, Zhao-Sha; Yun, Lei; Zhang, Wei-Xiong; Hong, Chao-Gang; Herchel, Radovan; Ou, Yong-Cong; Leng, Ji-Dong; Peng, Meng-Xia; Lin, Zhuo-Jia; Tong, Ming-Liang

    2009-12-14

    Five new complexes were obtained from solution or hydrothermal reactions of M(OAc)(2) (M = Mn, Cu and Cd) or CuCl(2) with 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (abpt) and NaN(3) or 1,3,5-benzenetricarboxylic acid (btcH(3)) in different molar ratios. Structural analysis reveals that Cd(abpt) units in [Cd(abpt)(mu(1,1)-N(3))(2)](n) (1) are bridged by double mu(1,1) end-on (EO) azides into 1D zigzag coordination chains. Similar structural motifs, i.e. the chelation of abpt to the metal center and the double bridges of EO azides, are found in [Mn(4)(abpt)(4)(mu(1,1)-N(3))(8)(H(2)O)(2)] (2). The terminal aqua molecules and the monodentate N(3)(-) groups lead to the formation of a tetranuclear complex rather than a polymeric compound. The abpt underwent deamination in the presence of copper ions during the process of coordination and became 3,5-bis(pyridin-2-yl)-1,2,4-triazolate (bpt-H) in 3-5. [Cu(4)(bpt-H)(4)(N(3))(4)].4.5H(2)O (3) is a neutral tetranuclear grid-like complex, in which the azides act as monodentate ligands. A similar [Cu(4)(bpt-H)(4)](4+) grid-like unit was found in [Cu(4)(bpt-H)(4)(mu-btcH)Cl(2)].2H(2)O (4) and a pair of symmetry-related copper atoms are bridged by the mu-btcH(2)(-) coligand in a butterfly-shaped structure. In [Cu(2)(bpt-H)(mu(6)-btc)(H(2)O)](n) (5), the tetranuclear {Cu(4)(mu-bpt-H)(2)(mu(3)-carboxylate)(2)}(4+) units are bridged by mu(6)-btc(3-) ligands in a 2D step-like layer structure. Temperature-dependent magnetic susceptibility measurements reveal that the double mu(1,1)-N(3)(-) bridges in 2 transmit the ferromagnetic interactions between Mn(2+) centers (J(1) = J(2) = +3.09(4) cm(-1), g(Mn(II)) = 2.02(1)), and the mu-(bpt-H)(-) bridges transmit moderate antiferromagnetic interactions in both 3 (J = -12.78(13) cm(-1)) and 4 (J(1) = -14.96(11) cm(-1)). In 4 the antiferromagnetic coupling via the mu-btcH(2-) bridge was found as the second coupling pathway (J(2) = -9.48(7) cm(-1)). The coexistence of ferromagnetic and antiferromagnetic coupling between four Cu(2+) centers occurs in 5 (J(1) = -0.88(3) cm(-1) and J(2) = +5.01(2) cm(-1)). The magneto-structural relationship for tetranuclear copper pyrazolate/triazolate compounds has been discussed. PMID:19921064

  8. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.

  9. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Hardoň, Štefan; Kopčanský, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  10. Magnetic Properties of Fe/Metal/Fe Trilayer Films

    NASA Astrophysics Data System (ADS)

    Zolanvari, A.; Sadeghi, H.; Nezamdost, J.; Jafari, M. R.

    2011-12-01

    In this paper, magnetic properties of Fe/Cu/Fe, Fe/Cr/Fe Fe/Al/Fe (Ferromagnetic/Metal/Ferromagnetic) sandwitch thin films have been studied. The magnetic properties were investigated by magnetic force microscopy (MFM) alternative gradient force magnetometery (AGFM) analysis. The structure of the mentioned sandwiches was investigated using X-ray diffraction (XRD) analysis. An X-ray diffractometer with Cu-Kα radiation (λ = 1.5405 Å) was used, in a Bragg-Brentano arrangement and atomic force microscopy. Morphological and structural studies show that the nanoparticles grow in a well-defined nanostructured pattern.

  11. Magnetic properties of ErN films

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Ruck, B. J.; Preston, A. R. H.; Granville, S.; Williams, G. V. M.; Trodahl, H. J.

    2010-07-01

    We report a magnetization study of stoichiometric ErN nanocrystalline films grown on Si and protected by a GaN passivating layer. According to the temperature dependence of the resistivity the films are heavily doped semiconductors. Above 100 K the magnetization data fit well to a Curie-Weiss behavior with a moment expected within the free-ion ErJ={15}/{2} multiplet. Below 50 K the Curie-Weiss plot steepens to an effective moment corresponding to that in the crystal-field determined quartet ground state, and develops a clear paramagnetic Curie-Weiss temperature of about 4.5 K. Zero-field- and field-cooled magnetization curves and the AC susceptibility firmly establish a ferromagnetic ground state within that multiplet below a Curie temperature of 6.30.7 K. Due to the (1 1 1) texture of the film the comparison between the magnetization behavior, when the field is applied parallel and perpendicular to the film plane, gives new information about the magnetic structure. An arrangement of the moments according to the model derived from neutron diffraction for bulk HoN is strongly suggested.

  12. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  13. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties.

    PubMed

    Wu, Wenbo; Tang, Runli; Li, Qianqian; Li, Zhen

    2015-06-21

    As one kind of important functional material, those with advanced optical, electrical and magnetic characteristics have attracted increasing attention due to their essential and irreplaceable role in the daily life of humans. In particular, optical, electrical and magnetic hyperbranched polymers (HBPs) exhibit some unique properties, partially derived from their highly branched topological structures. This review summarizes the recent progress in the field of functional HBPs and their application in optics, electronics and magnetics, including light-emitting polymers, nonlinear optical materials, chemosensors, solar cells, magnetic materials, etc., and also gives some outlooks for further exploration in this field at the end of this paper. PMID:25170592

  14. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  15. Defective graphene and nanoribbons: electronic, magnetic and structural properties

    NASA Astrophysics Data System (ADS)

    Guerra, Thiago; Azevedo, Sérgio; Machado, Marcelo

    2016-03-01

    We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0 μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

  16. Characterizing the Properties of Coronal Magnetic Null Points

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  17. Magnetic properties of epitaxial CrN films

    SciTech Connect

    Ney, A.; Rajaram, R.; Parkin, S. S. P.; Kammermeier, T.; Dhar, S.

    2006-09-11

    The authors have investigated the structural and magnetic properties of CrN films grown on MgO(001) and sapphire(0001) by rf-plasma-assisted molecular beam epitaxy. CrN/MgO(001) exhibits a better epitaxial quality than CrN/sapphire(0001). The CrN/MgO film shows clear paramagnetic behavior at low temperatures, whereas CrN/sapphire exhibits a ferromagneticlike response with an order temperature above room temperature which resembles the magnetic behavior found in Cr-doped dilute magnetic semiconductors. Keeping in mind that bulk CrN exhibits antiferromagnetic behavior, the dramatically different magnetic behaviors found in epitaxial CrN films grown on MgO and sapphire demonstrate the importance of epitaxial constraints in determining their magnetic properties.

  18. Trajectories of Unsaturated Magnetic Properties on Day Plots

    NASA Astrophysics Data System (ADS)

    Roth, A. L.; Acton, G.; Kenneth, V. L.

    2004-12-01

    The Day plot was initially developed to delineate the domain states of magnetite grains based on saturated magnetic properties and has since become a standard method in rock magnetic studies. Because most natural magnetic systems are "dirty", meaning they may contain a combination of non-stoiciometric magnetite, partially oxidized magnetite, other magnetic minerals, and/or complicated grain-size distributions, Day plots can be difficult to interpret and may not even be applicable to these systems. Furthermore there is a tendency for many natural systems to have similar magnetic parameters, and thus fall in the same field of a Day plot, even though they have distinctly different magnetic compositions and grain sizes. We aim to overcome some of these limitations by using the trajectories of unsaturated magnetic properties in a Day plot. Below saturation, rock magnetic parameters are highly variable with respect to the maximum applied field, Bmax, though surprisingly little work has been done to utilize this variability as a rock magnetic tool. The magnetic moment, the magnetic remanance, the coercivity, and the coercvity of remanance were measured as a function of Bmax, from 10 mT (unsaturated) to 1400 mT (saturated for magnetite). These four parameters were then plotted on a Day plot, which gave a trajectory of points as a function of Bmax, instead of a single point. These trajectories are useful for discriminating grain-size distributions and compositions as illustrated for several pure and mixed synthetic samples of magnetite and hematite, all diluted in vacuum grease to minimize interactions. The technique was also applied to NIST standards 1633 (Fly Ash), 1649 (Urban Dust), and 1650 (Diesel PM) and revealed that all three samples contained at least two magnetic components, each of which has different coercivities and grain-size distributions. This information would not have been discernable with most conventional magnetic measurements.

  19. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-06-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid-solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator.

  20. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet

    NASA Astrophysics Data System (ADS)

    Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi

    Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.

  1. The substitution of vanadium by chromium in thallium pentavanadium octasulfide. Part 3: Magnetic properties

    SciTech Connect

    Bensch, W.; Woerner, E.; Tuczek, F.

    1995-09-01

    The investigation of the magnetic properties of the substitution series TlV{sub 5{minus}y}Cr{sub y}S{sub 8}(1{le}y{le}4) revealed a complex magnetic behavior due to the successive formation of Cr{sub 2}-dimers. The Cr atoms within the dimers are antiferromagnetically coupled and with raising Cr content the coupling constant becomes more negative indicating stronger antiferromagnetic exchange interactions. The magnetic behavior is further characterized by a Curie-Weiss like contribution from nearly isolated Cr atoms and a temperature independent paramagnetism (TIP) from delocalized conduction electrons. With increasing substitution of V by Cr the TIP decreases and the magnetic moment per Cr atom increases. In addition, the evaluation of the magnetic susceptibilities gives hints for a preferential occupation of the three different crystallographic sites by the Cr atoms.

  2. /sup 13/C nuclear magnetic resonance study of the complexation of calcium by taurine

    SciTech Connect

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    /sup 13/C Nuclear magnetic resonance chemical shifts, /sup 1/J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-(1, 2 /sup 13/C) and a taurine-(1 /sup 13/C) and taurine-(2 /sup 13/C) mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their /sup 13/C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex.

  3. PREDICTION OF THERMODYNAMIC PROPERTIES OF COMPLEX FLUIDS

    SciTech Connect

    Marc Donohue

    2006-01-05

    ABSTRACT The goal of this research has been to generalize Density Functional Theory (DFT) for complex molecules, i.e. molecules whose size, shape, and interaction energies cause them to show significant deviations from mean-field behavior. We considered free energy functionals and minimized them for systems with different geometries and dimensionalities including confined fluids (such as molecular layers on surfaces and molecules in nano-scale pores), systems with directional interactions and order-disorder transitions, amphiphilic dimers, block copolymers, and self-assembled nano-structures. The results of this procedure include equations of equilibrium for these systems and the development of computational tools for predicting phase transitions and self-assembly in complex fluids. DFT was developed for confined fluids. A new phenomenon, surface compression of confined fluids, was predicted theoretically and confirmed by existing experimental data and by simulations. The strong attraction to a surface causes adsorbate molecules to attain much higher densities than that of a normal liquid. Under these conditions, adsorbate molecules are so compressed that they repel each other. This phenomenon is discussed in terms of experimental data, results of Monte Carlo simulations, and theoretical models. Lattice version of DFT was developed for modeling phase transitions in adsorbed phase including wetting, capillary condensation, and ordering. Phase behavior of amphiphilic dimers on surfaces and in solutions was modeled using lattice DFT and Monte Carlo simulations. This study resulted in predictive models for adsorption isotherms and for local density distributions in solutions. We have observed a wide variety of phase behavior for amphiphilic dimers, including formation of lamellae and micelles. Block copolymers were modeled in terms of configurational probabilities and in the approximation of random mixing entropy. Probabilities of different orientations for the segments were considered as order parameters and the free energy was written as a functional of these parameters. Imposing boundary conditions allowed us to apply this approach to confined fluids. Equilibrium self-assembly in fluids was studied in the framework of the lattice density functional theory (DFT). In particular, DFT was used to model the phase behavior of anisotropic monomers. Though anisotropic monomers are a highly idealized model system, the analysis presented here demonstrates a formalism that can be used to describe a wide variety of phase transitions, including processes referred to as self-assembly. In DFT, the free energy is represented as a functional of order parameters. Minimization of this functional allows modeling spontaneous nano-scale phase transitions and self-assembly of supramolecular structures. In particular, this theory predicts micellization, lamellization, fluid – glass phase transitions, crystallization, and more. A classification of phase transitions based on general differences in self-assembled structures is proposed. The roles of dimensionality and intermolecular interactions in different types of phase transitions are analyzed. The concept of “genetic” codes is discussed in terms of structural variety of self-assembled systems.

  4. Spatial variability of magnetic soil properties

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Hendrickx, Jan M.; Harrison, Bruce; Borchers, Brian; Norman, David I.; Ndur, Samuel; Jasper, Chris; Niemeyer, Patrick; Nartey, Robert; Vega, David N.; Calvo, Lucas; Simms, Janet E.

    2004-09-01

    The presence of magnetic iron oxides in the soil can seriously hamper the performance of electromagnetic sensors for the detection of buried land mines and unexploded ordnance (UXO). Previous work has shown that spatial variability in soil water content and texture affects the performance of ground penetrating radar and thermal sensors for land mine detection. In this paper we aim to study the spatial variability of iron oxides in tropical soils and the possible effect on electromagnetic induction sensors for buried low-metal land mine and UXO detection. We selected field sites in Panama, Hawaii, and Ghana. Along several horizontal transects in Panama and Hawaii we took closely spaced magnetic susceptibility readings using Bartington MS2D and MS2F sensors. In addition to the field measurements, we took soil samples from the selected sites for laboratory measurements of dual frequency magnetic susceptibility and textural characteristics of the material. The magnetic susceptibility values show a significant spatial variation in susceptibility and are comparable to values reported to hamper the operation of metal detectors in parts of Africa and Asia. The absolute values of susceptibility do not correlate with both frequency dependence and total iron content, which is an indication of the presence of different types of iron oxides in the studied material.

  5. Magnetic compensation, field-dependent magnetization reversal, and complex magnetic ordering in Co2TiO4

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Thota, S.; Joshi, D. C.; Krautz, M.; Waske, A.; Behler, A.; Eckert, J.; Sarkar, T.; Andersson, M. S.; Mathieu, R.; Narang, V.; Seehra, M. S.

    2015-12-01

    The complex nature of magnetic ordering in the spinel C o2Ti O4 is investigated by analyzing the temperature and magnetic field dependence of its magnetization (M ), specific heat (Cp), and ac magnetic susceptibilities χ' and χ″. X-ray diffraction of the sample synthesized by the solid-state reaction route confirmed the spinel structure whereas x-ray photoelectron spectroscopy shows its electronic structure to be C o2Ti O4=[C o2 +] [C o3 +T i3 +] O4 . From analysis of the temperature dependence of the dc paramagnetic susceptibility, the magnetic moments μ (A ) =3.87 μB and μ (B ) =5.19 μB on the A and B sites are determined with μ (B ) in turn yielding μ (T i3 +) =1.73 μB and μ (C o3 +) =4.89 μB . Analysis of the dc and ac susceptibilities combined with the weak anomalies observed in the Cp vs T data shows the existence of a quasi-long-range ferrimagnetic state below TN˜47.8 K and a compensation temperature Tcomp˜32 K , the latter characterized by sign reversal of magnetization with its magnitude depending on the applied magnetic field and the cooling protocol. Analysis of the temperature dependence of M (field cooled) and M (zero field cooled) data and the hysteresis loop parameters is interpreted in terms of large spin clusters. These results in C o2Ti O4 , significantly different from those reported recently in isostructural C o2Sn O4=[C o2 +] [C o2 +S n4 +] O4 , warrant further investigations of its magnetic structure using neutron diffraction.

  6. Synthesis and Properties of Ortho-Nitro-Fe Complex

    SciTech Connect

    Mishra, A.; Mishra, Niyati; Sharma, R.; Jain, G.; Ninama, S.; Awate, R.

    2011-07-15

    Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.

  7. Coordination properties of hydralazine Schiff base. Synthesis and equilibrium studies of some metal ion complexes

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Shoukry, Mohamed M.

    2008-08-01

    In the present study, a new ligand is prepared by condensation of hydralazine (1-Hydralazinophthalazine) with 2-butanon-3-oxime. The acid-base equilibria of the schiff-base and the complex formation equilibria with the metal ions as Cu(II), Ni(II), Co(II), Cd(II), Mn(II) and Zn(II) are investigated potentiometrically. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated. The effect of metal ion properties as atomic number, ionic radius, electronegativity and ionization potential are investigated. The isolated solid complexes are characterized by conventional chemical and physical methods. The potential coordination sites are assigned using the i.r. and 1H NMR spectra. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies.

  8. High temperature structural and magnetic properties of cobalt nanorods

    SciTech Connect

    Ait Atmane, Kahina; Zighem, Fatih; Soumare, Yaghoub; Ibrahim, Mona; Boubekri, Rym; Maurer, Thomas; Margueritat, Jeremie; Piquemal, Jean-Yves; Ott, Frederic; Chaboussant, Gregory; Schoenstein, Frederic; Jouini, Noureddine; Viau, Guillaume

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  9. Magnetic properties of Mauritanian BIFs: constraints on the source of the West Africa magnetic field anomaly

    NASA Astrophysics Data System (ADS)

    Launay, Nicolas; Quesnel, Yoann; Rochette, Pierre

    2015-04-01

    The ESA Swarm mission was launched in 2013 to produce a set of data with an unprecedented level of precision concerning the Earth's magnetic field, and in particular the crustal field. Our objective is to use these data in order to create a three-dimensional model of the crustal sources of some of earth's most important magnetic field anomalies: the West African and Bangui anomalies. To achieve this goal and properly constrain our model, we need to study the magnetic properties of the African Banded Iron Formation rocks, known as the most magnetic component of this continent's crust, and thus the most probable source of the anomalies. The remanent magnetization - both with and without thermal demagnetization - and magnetic susceptibility were measured on a wide set of BIF samples from the Kediet ej Jill in Mauritania. The data obtained will allow us to constrain a source model for the West African magnetic anomaly.

  10. Magnetic properties of solid oxygen under pressure (Review Article)

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.

    2015-11-01

    Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.

  11. QSPR prediction of the stability constants of gadolinium(III) complexes for magnetic resonance imaging.

    PubMed

    Dioury, Fabienne; Duprat, Arthur; Dreyfus, Gérard; Ferroud, Clotilde; Cossy, Janine

    2014-10-27

    Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources). PMID:25181704

  12. Magnetic properties of 1:2 mixed cobalt(II) salicylaldehyde Schiff-base complexes with pyridine ligands carrying high-spin carbenes (Scar = 2/2, 4/2, 6/2, and 8/2) in dilute frozen solutions: role of organic spin in heterospin single-molecule magnets.

    PubMed

    Karasawa, Satoru; Nakano, Kimihiro; Yoshihara, Daisuke; Yamamoto, Noriko; Tanokashira, Jun-ichi; Yoshizaki, Takahito; Inagaki, Yuji; Koga, Noboru

    2014-06-01

    The 1:2 mixtures of Co(p-tolsal)2, p-tolsal = N-p-tolylsalicylideniminato, and diazo-pyridine ligands, DXpy; X = 1, 2, 3l, 3b, and 4, in MTHF solutions were irradiated at cryogenic temperature to form the corresponding 1:2 cobalt-carbene complexes Co(p-tolsal)2(CXpy)2, with Stotal = 5/2, 9/2, 13/2, 13/2, and 17/2, respectively. The resulting Co(p-tolsal)2(CXpy)2, X = 1, 2, 3l, 3b, and 4, showed magnetic behaviors characteristic of heterospin single-molecule magnets with effective activation barriers, Ueff/kB, of 40, 65, 73, 72, and 74 K, for reorientation of the magnetic moment and temperature-dependent hysteresis loops with a coercive force, Hc, of ∼0, 6.2, 10, 6.5, and 9.0 kOe at 1.9 K, respectively. The relaxation times, τQ, due to a quantum tunneling of magnetization (QTM) were estimated to be 1.6 s for Co(p-tolsal)2(C1py)2, ∼2.0 × 10(3) s for Co(p-tolsal)2(C2py)2, and >10(5) s for Co(p-tolsal)2(CXpy)2; X = 3b, 3l, and 4. In heterospin complexes, organic spins, carbenes interacted with the cobalt ion to suppress the QTM pathway, and the τQ value increased with increasing the Stotal values. PMID:24816331

  13. Magnetic properties of nano-composite particles

    NASA Astrophysics Data System (ADS)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of MnBi/FeCo composites was investigated by annealing at 250 °C for 2 hours in N2 environment. The results showed that FeCo nanoparticles were sintered and agglom-erated during the annealing, and exchange coupling between MnBi and FeCo was destroyed. Future work was proposed in three aspects: chemical synthesis of MnBi particles; decreas-ing the particle size of MnBi particles and maintaining their stability; improving the thermal sta-bility of MnBi/FeCo composites.

  14. Magnetic properties of novel epitaxial films

    SciTech Connect

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc ..cap alpha..-Fe and fcc ..gamma..-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk ..cap alpha..-Fe. The controversial ..gamma..-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism.

  15. Basic magnetic properties of bituminous coal

    USGS Publications Warehouse

    Alexander, C.C.; Thorpe, A.N.; Senftle, F.E.

    1979-01-01

    Magnetic susceptibility and other static magnetic parameters have been measured on a number of bituminous coals from various locations in the United States. The paramagnetic Curie constant correlates negatively with carbon concentration on a moisture-free basis. The major contribution to the total paramagnetism comes from the mineral matter rather than from free radicals or broken bonds. Analysis of the data indicates that the specific paramagnetism is generally lower in the mineral matter found in high-ash compared to low-ash coal. A substantial number of the coal specimens tested also had a ferromagnetic susceptibility which appeared to be associated with magnetite. Magnetite and ??-iron spherules, possibly of meteoritic or volcanic origin, were found in several specimens. ?? 1979.

  16. Magnetic properties of monodisperse iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Rong; Chiang, Ray-Kuang; Wang, Jiun-Shen; Sung, Ti-Wen

    2006-04-01

    We have synthesized a set of monodisperse iron oxide nanoparticles ranging from 7.8 to 17.9 nm by thermal decomposition methods. Based on the evidence of high-resolution transmission electron microscopy, the iron oxide nanoparticles appear as spherical dots with size standard deviations of less than 5%. Blocking temperatures of the set of nanoparticles were measured by the zero-field-cooled magnetization measurements. The anisotropy energy constants are estimated from the measured blocking temperatures. The contribution from the surface anisotropy is the dominant factor of the higher anisotropy energy found. The saturation magnetization and coercive force HC (77 K) are functions of the particle size and increase with the particle size.

  17. Morphology and properties of magnetic fractals

    NASA Astrophysics Data System (ADS)

    Günther, Bernd

    The inert-gas condensation (IGC) process offers a large variety in the synthesis of nano-particulate metals. In the present work the agglomeration of nickel nanoparticles is studied after evaporation/condensation of ingot material in a laminar Argon gas flow in the pressure range of 50-300 mbar. It is observed that the nickel nanoparticles tend to form large and loosely bound aggregates due to diffusional effects and attractive interparticle forces. A transition from an irregular type to a chain-like morphology is observed, which depends on particle size and can be formally described by a reduction in the fractal dimension. Such necklace-like chains could be deposited in a well-aligned manner in the presence of external magnetic fields. Numerical modeling of magnetically induced aggregation suggests that the interaction energy between the magnetic dipoles leads to chain-formation, if it overcomes the thermal energy of the individ-ual particles. In order to achieve well-defined conditions during extended agglomeration time, buoyancy effects must be suppressed, which usually exist due to strong thermal gradients inside the flow tube chamber. Therefore experiments on parabolic flights were performed to sample agglomerates that were unaffected by convection for up to 10s.

  18. Characterization of magnetic viral complexes for targeted delivery in oncology.

    PubMed

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2(*) relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2(*) compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  19. Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology

    PubMed Central

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J.; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  20. Magnetic immunoassay for detection of staphylococcal toxins in complex media.

    PubMed

    Orlov, Alexey V; Khodakova, Julia A; Nikitin, Maxim P; Shepelyakovskaya, Anna O; Brovko, Fedor A; Laman, Alexander G; Grishin, Evgeny V; Nikitin, Petr I

    2013-01-15

    Method of highly sensitive registration of magnetic nanoparticles by their nonlinear magnetization is used in a novel sandwich-type immunoassay for detection of staphylococcal toxins in complex media of virtually any volume, with increasing sensitivity at higher sample volume. The signal is read out from the entire volume of a nontransparent 3D fiber structure employed as a solid phase, which provides large reaction surface, quick reagent mixing, as well as antigen immunofiltration directly in the course of the assay. The method has demonstrated near-linear dose-response curves within a wide range of ~3 decades, while detection of staphylococcal enterotoxin A (SEA) and toxic shock syndrome toxin (TSST) in neat milk without sample preparation. The limits of detection (LOD) as low as 4 and 10 pg/mL for TSST and SEA, respectively, were obtained in 2-h format using 30-mL samples. The second, 25-min format, showed the LOD of 0.1 and 0.3 ng/mL for the same toxins in a 150 μL sample. The developed immunoassay can be applied in food safety control, in vitro diagnostics, and veterinary for a variety of research from express tests in the field to highly sensitive laboratory tests. PMID:23244173

  1. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  2. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes.

    PubMed

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [Co(II)(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  3. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands

    PubMed Central

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J.L.; Chibotaru, Liviu F.; Layfield, Richard A.

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm−1 and magnetic hysteresis up to 4.4 K. PMID:26130418

  4. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands.

    PubMed

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J L; Chibotaru, Liviu F; Layfield, Richard A

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14?K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256?cm(-1) and magnetic hysteresis up to 4.4?K. PMID:26130418

  5. Recent advances in magnetic nanoparticles with bulk-like properties

    NASA Astrophysics Data System (ADS)

    Batlle, Xavier

    2013-03-01

    Magnetic nanoparticles (NP) are an excellent example of nanostructured materials and exhibit fascinating properties with applications in high-density recording and biomedicine. Controlling the effects of the nanostructure and surface chemistry and magnetism at the monolayer level have become relevant issues. As the size is reduced below 100 nm, deviations from bulk behavior have been attributed to finite-size effects and changes in the magnetic ordering at the surface, thus giving rise to a significant decrease in the magnetization and increase in the magnetic anisotropy. The existence of a surface spin glass-like state due to magnetic frustration has been widely suggested in ferrimagnetic NP. However, in this talk, we will show that high crystal quality magnetite Fe3-xO4 NP of about a few nanometers in diameter and coated with different organic surfactants display bulk-like structural, magnetic and electronic properties. Magnetic measurements, transmission electron microscopy, X-ray absorption and magnetic circular dichroism and Monte Carlo simulations, evidenced that none of the usual particle-like behavior is observed in high quality NP of a few nm. Consequently, the magnetic and electronic disorder phenomena typically observed in those single-phase ferrimagnetic NP should not be considered as an intrinsic effect. We also performed a real-space characterization at the sub-nanometer scale, combining scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic chiral dichroism. For the first time, we found that the surface magnetization is as high as about 70% of that of the core. The comparison to density functional theory suggested the relevance of the strong surface bond between the Fe ions and the organic surfactant. All the foregoing demonstrates the key role of both the crystal quality and surface bond on the physical properties of ferrimagnetic NP and paves the way to the fabrication of the next generation of NP with optimal magnetic properties. Some bio-applications will also be discussed. In collaboration with A Labarta, N Perez, O Iglesias, A Fraile, C Moya(U Barcelona); A Roca, MP Morales, CJ Serna (ICMM-CSIC); F Bartolome, LM Garcia, J. Bartolome (CSIC-U Zaragoza); R Mejias, DF Barber (CNB-CSIC); M Varela, J Gazquez, J Salafranca, SJ Pennycook (ORNL), ST Pantelides (Vanderbilt U).

  6. Proton magnetic relaxation of aspartate transcarbamylase - succinate complexes.

    PubMed

    Ireland, C B; Schmidt, P G

    1977-04-10

    Nuclear magnetic relaxation methods were used to investigate the interaction of the inhibitor succinate with aspartate transcarbamylase from Escherichia coli. Over the pH range 7 to 9, the dissociation constant for succinate remains less than the inhibitor concentration used for most of this work (0.05 M). As a result, the enzyme predominantly exists in a single "gross" conformational state. Succinate binding to this enzyme state (generally known as the R form) parallels the behavior seen previously with the isolated catalytic subunit (Beard, C. B., and Schmidt, P.G. (1973) Biochemistry 12, 2255-2264). The pH and temperature dependence of succinate proton relaxation rates, 1/T2 - 1/T1, in the presence of carbamyl phosphate, is interpreted in terms of a binding mechanism involving three forms of the enzyme, differing by their states of protonation. The least protonated form of the enzyme does not interact with succinate, the singly protonated species binds succinate to form a rapidly dissociating complex, and the doubly protonated species undergoes a conformational isomerization upon succinate binding, yielding a slow exchange complex. Relaxation data provide sufficient information to determine pKa values of 7.2 and 8.9 for two ionizing groups, as well as the dissociation constant for succinate in the fast exchange complex, Kd =1.6 X 10(-2) M. Rate constants for the forward and reverse steps of the isomerization, 1.3 X 10(3) s-1 and 33 s-1, respectively, indicate a significantly slower reverse rate from that obtained in the earlier NMR study of the isolated catalytic subunit. In experiments where the succinate concentration was varied, the relaxation rates showed sigmoidal binding of that ligand to the fast exchange complex above pH 9.1, (a) indicating cooperative binding of succinate, and (b) suggesting that above pH 9.1, the system cannot be characterized by a single dissociation constant, ionization constant, or relaxation effect. CTP and ATP were tested for their ability to affect succinate binding to the fast exchange complex. Heterotropic interactions were observed for CTP but not for ATP. Addition of low concentrations of the transition state analog N-(phosphonacetyl)-L-aspartate to the enzyme-carbamyl phosphate-succinate complex sharply decreased the relaxation rate, indicating that the measurements are sensitive only to succinate bound specifically to the active site. PMID:14960

  7. Complex networks as an emerging property of hierarchical preferential attachment

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  8. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers.

    PubMed

    Ferguson, Richard Mathew; Khandhar, Amit P; Arami, Hamed; Hua, Loc; Hovorka, Ondrej; Krishnan, Kannan M

    2013-12-01

    Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles' physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist. PMID:23787461

  9. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers

    PubMed Central

    Ferguson, Richard Mathew; Khandhar, Amit P; Arami, Hamed; Hua, Loc; Hovorka, Ondrej; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist. PMID:23787461

  10. Adsorption-induced magnetic properties and metallic behavior of graphene

    SciTech Connect

    Zhou, Yungang; Zu, Xiaotao T.; Gao, Fei; Lv, H. F.; Xiao, Haiyan J.

    2009-09-21

    Magnetic properties and electronic structures of graphene with Cl, S, and P adsorption have been investigated using ab initio calculations. The adsorption of Cl leads to Fermi level shifting to valence band, which results in metallic graphene. A band gap of 0.6 eV emerges in a S-absorbed graphene, leading to the semiconducting graphene. The unpaired electrons in the absorbed P atom is polarized and thus, exhibits a magnetic moment of 0.86 μB, while no magnetic moment has been observed after Cl and S adsorption. This demonstrates that the magnetic properties and conductive behavior of graphene can be modified via atom adsorption. Specially, P-absorbed graphene may be useful for spintronic applications, such as tunneling magnetoresistance.

  11. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible. PMID:26529730

  12. Preparation and Structural Properties of InIIIH Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Rene M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3?) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3?) has led to the synthesis of two structurally distinct In(III)OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)OH unit and [H3buea]3? ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5?NaI-(?-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  13. Probing magnetic properties of ferrofluids using temperature dependent magnetic hyperthermia studies

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Thakur, Jagdish; Naik, Vaman; Naik, Ratna

    2014-03-01

    Tuning the properties of magnetic nanoparticles is essential for biomedical and technological applications. An important phenomenon displayed by these nanoparticles is the generation of heat in the presence of an external oscillating magnetic field and is known as magnetic hyperthermia (MHT). The heat dissipation by the magnetic nanoparticles occurs via Neel relaxation (the flip of the internal magnetic moment of the nanoparticles) and Brownian relaxation (the physical rotation of the nanoparticles in the suspended media). Dextran coated iron oxide (Fe3O4) nanoparticles were synthesized using the co-precipitation method and characterized using XRD, TEM and DC magnetometry measurements. Roughly spherical in shape the particles have an average size of 13nm and a saturation magnetization of 65 emu/g. The MHT properties of these nanoparticles suspended in a weakly basic solution (ferrofluid) have been investigated as a function of the frequency and amplitude of magnetic field by incorporating a complete thermodynamical analysis of the experimental set-up. The heat generation is quantified using the specific power loss (SPL) and compared with the predictions of linear response theory. This analysis sheds light on important physical and magnetic properties of the nanoparticles.

  14. Measured iron-gallium alloy tensile properties under magnetic fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Flatau, Alison B.

    2004-07-01

    Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.

  15. Improvements of magnetic properties of Sr ferrite magnets by substitutions of La and Co

    SciTech Connect

    Ogata, Yasunobu; Kubota, Yutaka; Takami, Takashi; Tokunaga, Masaaki; Shinohara, Tadashi

    1999-09-01

    Recently, it is intensively required to improve the magnetic properties of Sr ferrite magnets in order to decrease the weight of motors used in automobiles and to improve the efficiency of motors used in electric appliances such as air conditioners. The effect of the simultaneous partial substitution of Co{sup 2+} for Fe{sup 3+} and of La{sup 3+} for Sr{sup 2+} ion in Sr ferrite on the magnetic properties of anisotropic Sr ferrite magnets was investigated. It was found that the coercive force of Sr ferrite magnets is increased without significant decrease in residual flux density by La-Co substitution. Temperature coefficients of coercive force were found to be also improved by La-Co substitution.

  16. Effect of Mo addition on magnetic properties of Fe-28Cr-15Co hard magnets

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; ul Haq, A.; Husain, S. W.; Abbas, T.

    2002-08-01

    The present work describes the developments of hard magnets by thermo-magnetic treatment. The magnetic properties of Fe-28Cr-15Co-(1-5)Mo (wt%) alloys after different heat treatment conditions are studied and compared with ternary Fe-28Cr-15Co alloys. Fe-28Cr-15Co-3.5Mo have produced a coercive force of 840 Oe (66.83 kA/m), remanence of 11 kG (1.1 T) and energy product of 5.4 MGOe (43 kJ/m 3) that are comparable to Alnico 6 magnets. It was found that addition of Mo up to 3.5 wt% to the ternary alloys causes to extend the α-phase microstructure at annealed state and stimulates the spinodal decomposition of Fe, Co-rich α 1-particles in a preferred direction <1 0 0> that leads to increase the magnetic properties of the alloys.

  17. Effect of pressure on the magnetic properties of lanthanum manganite

    SciTech Connect

    Gonchar', L. E. Leskova, Yu. V.; Nikiforov, A. E.; Kozlenko, D. P.

    2010-08-15

    The crystalline structure of pure lanthanum manganite under external hydrostatic pressure has been studied. The behavior of magnetic properties and nuclear magnetic resonance (NMR) spectra under these conditions is theoretically predicted. It is shown that an increase in the Neel temperature with pressure is not only caused by the general contraction of the crystal, but is also related to certain peculiarities in the baric behavior of the orbital structure.

  18. Magnetic properties of Fe/Zr multilayers

    SciTech Connect

    Dubowik, J.; Stobiecki, F.; Szymanski, B.

    1994-03-01

    Measurements of ferromagnetic resonance (FMR), magnetic moment, and torque curves have been made for three series of Fe/Zr multilayers (MLs) with thickness ratio of Fe to Zr sublayers equal to 2:1, 1:1, and 1:2, respectively. The authors show that Fe/Zr MLs readily yield to amorphization by a solid-state reaction (SSR) during the deposition process. Nevertheless, the resulting structure may be regarded as inhomogeneous one; there still exist some ferromagnetic phases that they relate to the Fe atoms in various surroundings.

  19. Mobile testing complex based on an explosive magnetic generator

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Kozlov, A. V.; Gusev, A. N.; Shurupova, N. P.; Zavalova, V. E.; Chulkov, A. N.; Bazelyan, E. M.

    2015-01-01

    A mobile testing complex prototype on the basis of an explosive magnetic generator (MTC EMG) is developed to simulate a lightning current pulse. The main element of this complex is a current pulse generator comprising a EMG with a pulse transformer for energy release into the load. The electric chain of the MTC EMG is theoretically analyzed taking into consideration energy losses in active resistances in the primary circuit of the transformer and the inductive-resistive nature of the load, which resulted in the minimization of energy losses in the primary circuit depending on the electric chain parameters. It was found that, if the energy losses are minimized, the efficiency of transferring the EMG energy into the load exceeds 50%. As a result of the field tests of the MTC EMG, its basic characteristics were determined and the waveforms of the current pulses and voltages in the load were obtained. It is shown that the results of the mathematical simulation of current pulses in the load are in good agreement with the experimental data.

  20. GMAG Dissertation Award: Exploring new magnetic properties in coupled magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Won, Changyeon

    2005-03-01

    One of the basic building blocks in constructing magnetic nanostructures is a magnetic sandwich in which two ferromagnetic layers are separated by a nanometer thick nonmagnetic spacer layer. Research on coupled magnetic sandwiches has generated fruitful results such as the oscillatory magnetic interlayer coupling and giant magneto resistance. The basic question on this subject is: how does the interlayer coupling generate new magnetic properties of the sandwich? In order to single out the effect of interlayer coupling, it is necessary to measure the two magnetic layers separately. Such experimental capability becomes available after the development of x-ray magnetic circular dichroism (XMCD) technique which enables element-specific measurement. In particular, Photoemission Electron Microscopy (PEEM) technique allows the element-specific magnetic domain imaging of magnetic nanostructures. In this talk, I will discuss our recent effort in using PEEM to study coupled magnetic sandwiches. First, I will discuss results of Co/Cu/Ni and Co/Fe/Ni in which we studied the effect of interlayer coupling on the magnetic phase transitions of the Co and Ni films. We found that a coupled magnetic sandwich undergoes three types of magnetic phase transitions, depending on the two ferromagnetic films' thickness. The differences and characteristics among these three phase transitions will be discussed with the simple simulation based on an Ising model. Second, spin reorientation of coupled sandwich will be discussed. We reveal a universal dependence of the stripe domain width on the magnetic anisotropy and on the interlayer coupling. In the last, I will discuss results of FeMn/Co in which the magnetic frustration between the antiferromagnetic FeMn and ferromagnetic Co modifies the Curie and Neel temperatures of the system.

  1. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  2. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids.

    PubMed

    Shokrollahi, H

    2013-07-01

    This paper is aimed at conducting a survey of the synthetic methods and magnetic properties of nanoparticles as ferrofluids used in biomedicine. As compared with other works in the field, the distinctive feature of the current work is the systematic study of recent advances in ferrofluids utilized in hyperthermia and magnetic resonance imaging (MRI). The most important feature for application of ferrofluids is super-paramagnetic behavior of magnetic cores with relatively high saturation magnetization. Although Fe3O4 nanoparticles have traditionally been used in medicine; the modified Mn-ferrite has recently received special attention due to its higher saturation magnetization and r2-relaxivity as a contrast agent in MRI. Co-ferrite nanoparticles are also good candidates for hyperthermia treatment because of their high coercivity and magnetocrystalline anisotropy. The thermal decomposition and hydrothermal methods are good candidates for obtaining appropriate super-paramagnetic particles. PMID:23623058

  3. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  4. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  5. Growth, structure, morphology, and magnetic properties of Ni ferrite films

    PubMed Central

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  6. Structural and magnetic properties of bulk MnBi permanent magnets

    NASA Astrophysics Data System (ADS)

    Zhang, D. T.; Cao, S.; Yue, M.; Liu, W. Q.; Zhang, J. X.; Qiang, Y.

    2011-04-01

    Structural and magnetic properties of bulk nanostructural Mn100-xBix (x = 40, 45, 52) permanent magnets prepared by spark plasma sintering technique were studied. The effect of the Mn/Bi ratio on the MnBi low temperature phase (LTP) formation and its magnetic properties were investigated. An increase of the bismuth amount in the magnets leads to better formation of LTP, resulting in the improvement of both magnetization (Ms) and remanence (Mr), but decreasing the coercivity (Hc) of the magnets. At room temperature, Ms increases from 27.87 emu/g for Mn60Bi40 to 45.31 emu/g for Mn48Bi52, whereas Hc decreases from 12 to 7.9 kOe. The microstructure of Mn48Bi52 magnet is composed of fine and uniform grains with an average size of 140 nm as shown in the TEM image. The Mn48Bi52 magnet shows a high Hc of 19 kOe at 423 K, indicating a strong positive temperature coefficient of coercivity for the MnBi magnet.

  7. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  8. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    PubMed

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  9. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-11-02

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  10. THE PROPERTIES OF HORIZONTAL MAGNETIC ELEMENTS IN QUIET SOLAR INTRANETWORK

    SciTech Connect

    Jin Chunlan; Wang Jingxiu; Zhou Guiping E-mail: wangjx@ourstar.bao.ac.cn

    2009-05-20

    Using the data observed by the Solar Optical Telescope/Spectropolarimeter aboard the Hinode satellite, the horizontal and vertical fields are derived from the wavelength-integrated measures of Zeeman-induced linear and circular polarizations. The quiet intranetwork regions are pervaded by horizontal magnetic elements. We categorize the horizontal intranetwork magnetic elements into two types: one is the nonisolated element which is accompanied by the vertical magnetic elements during its evolution; another is the isolated element which is not accompanied by the vertical magnetic elements. Their properties, such as lifetime, size, and magnetic flux density, are studied, and the relationships among various magnetic parameters are investigated. We identify 446 horizontal intranetwork magnetic elements among them 87 elements are isolated and 359 are nonisolated. Quantitative measurements reveal that the isolated elements have relatively weaker horizontal magnetic fields, almost equal size, and shorter lifetime compared with the nonisolated elements. Most nonisolated horizontal intranetwork magnetic elements are identified to associate with the emergence of {omega}-shaped flux loops. A few nonisolated elements seem to indicate scenarios of submergence of {omega} loops or emergence of U-like loops. There is a positive correlation between the lifetime and the size for both the isolated and nonisolated horizontal intranetwork field elements (HIFs). Positive correlation between the lifetime and the magnetic flux density for nonisolated HIFs is also found, but no correlation for isolated HIFs. Even though the horizontal elements show lower magnetic flux density, they could carry the total magnetic flux in the order of magnitude close to 10{sup 25} Mx to the solar surface each day.

  11. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl components in the ligand. These complexes possess interesting luminescent properties including ultra-narrow emission and metal assisted delayed fluorescence (MADF) emission.

  12. Matrix and interaction effects on the magnetic properties of Co nanoparticles embedded in gold and vanadium.

    PubMed

    Ruano, M; Díaz, M; Martínez, L; Navarro, E; Román, E; García-Hernandez, M; Espinosa, A; Ballesteros, C; Fermento, R; Huttel, Y

    2013-01-01

    The study of the magnetic properties of Co nanoparticles (with an average diameter of 10.3 nm) grown using a gas-phase aggregation source and embedded in Au and V matrices is presented. We investigate how the matrix, the number of embedded nanoparticles (counted by coverage percentage), the interparticle interactions and the complex nanoparticles/matrix interface structure define the magnetic properties of the studied systems. A threshold coverage of 3.5% of a monolayer was found in both studied systems: below this coverage, nanoparticles behave as an assembly of independent single-domain magnetic entities with uniaxial anisotropy. Above the threshold it is found that the magnetic behavior of the systems is more matrix dependent. While magnetic relaxation and Henkel plots measurements stress the importance of the dipolar interactions and the formation of coherent clusters in the case of the Au matrix, the magnetic behavior of cobalt clusters embedded in the vanadium matrix is explained through the formation of a spin glass-like state at the V-Co interface that screens the magnetic interactions between NPs. PMID:23165521

  13. Artificial metamaterials for reprogrammable magnetic and microwave properties

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Adeyeye, Adekunle Olusola

    2016-01-01

    We demonstrate a reliable method for realizing various antiferromagnetic states in lithographically defined, dipolar coupled rhomboid nanomagnets. We directly probe the remanent state using magnetic force microscopy and measured the microwave absorptions using broadband ferromagnetic resonance spectroscopy technique. Reprogrammable microwave absorption properties are shown by switching between ferromagnetic and antiferromagnetic remanent states using a simple field initialization. There is a direct correlation between the magnetic remanent states and the microwave responses. Experimental results were supported by micromagnetic simulations which show a good agreement. The results may find applications in low power magnonic devices based on reprogrammable magnetic metamaterials.

  14. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wesselinowa, J. M.

    2010-01-01

    Based on the Heisenberg model taking into account single-ion anisotropy and using a Green's function technique we have studied the influence of size and anisotropy effects on magnetization M, Neel temperature TN, coercive field Hc and spin excitation energy of antiferromagnetic nanoparticles. The properties are compared with those of ferromagnetic nanoparticles. We have shown that the enhanced magnetization M and coercive field Hc of antiferromagnetic nanoparticles is a surface effect, which is due to uncompensated surface spins. Moreover, the shape of the coercive field curve can be significantly influenced by surface magnetic anisotropy.

  15. Preparation and property of polyurethane/nanosilver complex fibers

    NASA Astrophysics Data System (ADS)

    Qu, Rongjun; Gao, Jingjing; Tang, Bo; Ma, Qianli; Qu, Baohan; Sun, Changmei

    2014-03-01

    Utilizing terminal reactive groups in polyurethane, nanometer silvers were reduced in situ. The formation mechanism of nanosilver in PU was under preliminary discussion. UV-vis spectroscopy and TEM analysis were used to monitor reduction process; and the PU/nanosilver complex fibers were produced by dry spinning, which were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, differential scanning calorimetry and so on. The influence of nanosilver on the thermal, mechanical and antimicrobial properties of PU was studied. It is inferred that 0.030% Ag should be a proper concentration for the PU/nanosilver complex fibers with favorable mechanical properties and highly effective antibacterial activities.

  16. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  17. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  18. Diameter Dependence of Magnetic Properties in Nanoparticle-Filled CNTs

    NASA Astrophysics Data System (ADS)

    Stojak, Kristen; Chandra, Sayan; Khurshid, Hafsa; Phan, Manh-Huong; Srikanth, Hariharan; Palmero, Ester; Vázquez, Manuel

    2014-03-01

    In past studies we showed magnetic polymer nanocomposites (MPNCs) with ferrite nanoparticle (NP) fillers to be magnetically tunable when passing microwave signals through films under the influence of an external magnetic field. We extend this study to include NP-filled multi-walled carbon nanotubes (CNTs) of various diameter (~300nm, ~100nm, ~40nm) synthesized by a catalyst-free CVD method, where the outer diameter of the CNTs is determined by a porous alumina template. These high-aspect ratio magnetic nanostructures, with tunable anisotropy and tunable saturation magnetization, are of particular interest in enhancing magnetic and microwave response in existing MPNCs. CNTs with ~ 300nm diameter have been uniformly filled with cobalt ferrite and nickel ferrite NPs (~7nm). NP-filled CNTs show an increase in blocking temperature of ~40K, as well as an increase in relaxation time, τ0. The enhancement of these properties indicates that enclosing NPs in CNTs increases interparticle interactions. The magnetic properties are also tunable by varying the diameter of CNTs. Characterization was completed with XRD, TEM and Quantum Design PPMS, with VSM and ACMS options.

  19. Magnetic and structural properties of Mn-Ga thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Siqian; Suzuki, Takao

    2016-05-01

    A systematic experimental work has been conducted to understand the magnetic properties of Mn-Ga thin films. Multilayer structured thin films of [MnGa 2 nm/Mn x nm]×25 (x = 0.2˜3.5, which corresponds to Mn at%56˜86) were sputter-deposited onto silica glass substrates, followed by annealing in vacuum. It is found that the magnetic properties strongly depend on x. For x = 0.5, the high magnetization values are found, where the nanocrystalline L10 structure is present. The samples with x = 2.0-3.0 exhibit the coercivity Hc higher than 10 kOe at room temperature where the nanocrystalline D022 structures are found to form. The correlation between the magnetic anisotropy constant K and saturation magnetization Ms is also discussed. The nth power dependence of magnetic anisotropy constant K on Ms is found, where the values of n are 7.8 and 1.9 for x = 0.5 and 2.5, respectively. The present result of the power dependence of n equals about 8 for the L10 MnGa suggests that the magnetic anisotropy in a nanocrystalline L10 MnGa phase is much different from the ordered FePt phase. On the other hand, the power dependence of the D022 nanocrystalline phase suggests the two-ion mechanism.

  20. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  1. Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

    PubMed Central

    Schramm, Frank; Pineda, Eufemio Moreno; Lan, Yanhua; Fuhr, Olaf; Chen, Jinjie; Isshiki, Hironari; Wernsdorfer, Wolfgang; Wulfhekel, Wulf

    2016-01-01

    Summary A series of 2,2’-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2’-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops. PMID:26925361

  2. Electrodeposition and magnetic properties of FeCo alloy films

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Zhou, Mingge; Zhu, Minggang; Yang, Xu; Yue, Ming

    2012-04-01

    FeCo alloys thin films have been successfully electrodeposited on Ag films. The morphology, structure, composition, and magnetic property of the FeCo films were characterized by scanning electron microscopy, x-ray diffraction, induction-coupled plasma spectrometry, vibrating sample magnetometer and network analyzer. The use of reverse pulse current in the process of electrodepostion can reduce the surface roughness obviously. The effects of anodic current density and thickness are studied. The results show that the film fabricated under appropriate conditions has low coercivity and excellent high-frequency magnetic property.

  3. Geometrical Effects on the Magnetic Properties of Nanoparticles.

    PubMed

    Di Paola, Cono; D'Agosta, Roberto; Baletto, Francesca

    2016-04-13

    Elucidating the connection between shape and properties is a challenging but essential task for a rational design of nanoparticles at the atomic level. As a paradigmatic example we investigate how geometry can influence the magnetic properties of nanoparticles, focusing in particular on platinum clusters of 1-2 nm in size. Through first-principle calculations, we have found that the total magnetization depends strongly on the local atomic arrangements. This is due to a contraction of the nearest neighbor distance together with an elongation of the second nearest neighbor distance, resulting in an interatomic partial charge transfer from the atoms lying on the subsurface layer (donors) toward the vertexes (acceptors). PMID:27007172

  4. Study of magnetic properties of coals

    SciTech Connect

    Slobodskoi, S.A.; Sklyar, M.G.; Kas`yanova, S.B.; Khats`ko, E.N.

    1992-12-31

    Technological processes based on the use of electric heating are used to increasing extents throughout industry. Electrothermics are used in the production of ferroalloys and alloy steels and in glassmaking and abrasives production. In the chemical industry, electrotechnological processes are used in the production of calcium carbide, phosphorus, carbon disulfide, acetylene, nitrogen compounds and plastics, and for heating chemical reactors. In the chemistry and technology of coal processing, electrothermics have only appeared in exploratory research in the gas-discharge field, and the only practical example is the calcining of carbonaceous materials in the old-fashioned electric kilns. The situation can hardly be called justifiable since the specific features of electric processing could contribute to both the speed and the efficiency of existing processes for the utilization of organic coal substances, and promote the development of fundamentally novel chemical-technological methods of processing solid fuels. This paper describes the magnetic susceptibility of coals. 4 figs., 2 tabs.

  5. Electrical properties of transition metal hydrogen complexes in silicon

    SciTech Connect

    Weber, J.

    1998-12-31

    A summary is given on the electrical properties of transition-metal hydrogen complexes in silicon. Contrary to the general understanding, hydrogen leads not only to passivation of deep defect levels but also creates several new levels in the band gap due to electrically active transition-metal complexes. The author presents detailed data for Pt-H complexes and summarize briefly the results on the transition metals Ti, Co, Ni, Pd, and Ag. The introduction of hydrogen at room temperature by wet chemical etching, followed by specific annealing steps allows us to study the formation of the different complexes. In particular, depth profiles of the defect concentrations give an estimate of the number of hydrogen atoms involved in the complexes. Transition-metals binding up to four hydrogen atoms are identified.

  6. Estimation of hydrothermal deposits location from magnetization distribution and magnetic properties in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Choi, S.; Kim, C.; Park, C.; Kim, H.

    2013-12-01

    The North Fiji Basin is belong to one of the youngest basins of back-arc basins in the southwest Pacific (from 12 Ma ago). We performed the marine magnetic and the bathymetry survey in the North Fiji Basin for finding the submarine hydrothermal deposits in April 2012. We acquired magnetic and bathymetry datasets by using Multi-Beam Echo Sounder EM120 (Kongsberg Co.) and Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduce to the pole(RTP), analytic signal and magnetization. The study areas composed of the two areas(KF-1(longitude : 173.5 ~ 173.7 and latitude : -16.2 ~ -16.5) and KF-3(longitude : 173.4 ~ 173.6 and latitude : -18.7 ~ -19.1)) in Central Spreading Ridge(CSR) and one area(KF-2(longitude : 173.7 ~ 174 and latitude : -16.8 ~ -17.2)) in Triple Junction(TJ). The seabed topography of KF-1 existed thin horst in two grabens that trends NW-SE direction. The magnetic properties of KF-1 showed high magnetic anomalies in center part and magnetic lineament structure of trending E-W direction. In the magnetization distribution of KF-1, the low magnetization zone matches well with a strong analytic signal in the northeastern part. KF-2 area has TJ. The seabed topography formed like Y-shape and showed a high feature in the center of TJ. The magnetic properties of KF-2 displayed high magnetic anomalies in N-S spreading ridge center and northwestern part. In the magnetization distribution of KF-2, the low magnetization zone matches well with a strong analytic signal in the northeastern part. The seabed topography of KF-3 presented a flat and high topography like dome structure at center axis and some seamounts scattered around the axis. The magnetic properties of KF-3 showed high magnetic anomalies in N-S spreading ridge center part. In the magnetization of KF-2, the low magnetization zone mismatches to strong analytic signal in this area. The difference of KF-3 between the low magnetization zones and the analytic signals is considered that the submarine magnetic strength of KF-3 is lower than that of KF-1 and KF-2. The spreading ridges of the study areas showed common Central Anomaly Magnetization Highs (CAMH). As a whole, the previous studies on the structure of this study area (Auzende et al, 1990) support our results of the magnetic properties (Magnetic Anomaly and RTP). We can expect to have the better results by comparing with the other study like geophysics (seismic), geology, and geochemistry in this area. Reference Auzende, J.M., and 29 others, Active Spreading and Hydrothermalism in North Fiji Basin(SW Pacific). Results of Japanese French Cruise Kaiyo 87, Marine Geophysical Researches., 12, 269-283, 1990.

  7. Electronic and magnetic properties of Co doped MoS2 monolayer

    PubMed Central

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-01-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor. PMID:27052641

  8. Electronic and magnetic properties of Co doped MoS2 monolayer.

    PubMed

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-01-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor. PMID:27052641

  9. Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.

    2011-04-01

    Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.

  10. Electronic and magnetic properties of Co doped MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-04-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor.

  11. Investigation of structural, thermal and magnetic properties of cadmium substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, Ch.; Byon, Chan; Narendra, B.; Baskar, D.; Srinivas, G.; Shim, Jaesool; Prabhakar Vattikuti, S. V.

    2015-06-01

    Cd substituted Cobalt ferrite nano particles are synthesis using co-precipitation method. The as prepared samples are calcinated at 300 and 600 °C respectively. The existence of single phase spinal cubic structure of the prepared ferrite material is confirmed by the powder XRD measurement. The surface morphology images, compositional features are studied by SEM with EDX, and TEM. From the FT-IR spectra the absorption bands observed at 595 and 402 cm-1 are attributed to vibrations of tetrahedral and octahedral complexes respectively. From the VSM data, parameters like magnetization, coercivity, remanent magnetization and remanent squareness are measured. The saturation magnetization value is increases with increasing calcination temperature. The DSC and TG-DTA curves reveal that the thermal stability of the prepared ferrite nanoparticles. The calcination temperature affects the crystallite size, morphology and magnetic properties of the samples.

  12. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles.

    PubMed

    Park, Tae-Jin; Papaefthymiou, Georgia C; Viescas, Arthur J; Moodenbaugh, Arnold R; Wong, Stanislaus S

    2007-03-01

    As-prepared, single-crystalline bismuth ferrite nanoparticles show strong size-dependent magnetic properties that correlate with: (a) increased suppression of the known spiral spin structure (period length of approximately 62 nm) with decreasing nanoparticle size and (b) uncompensated spins and strain anisotropies at the surface. Zero-field-cooled and field-cooled magnetization curves exhibit spin-glass freezing behavior due to a complex interplay between finite size effects, interparticle interactions, and a random distribution of anisotropy axes in our nanoparticle assemblies. PMID:17324002

  13. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  14. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders

    SciTech Connect

    Zamanpour, Mehdi Bennett, Steven; Taheri, Parisa; Chen, Yajie; Harris, Vincent G.

    2014-05-07

    Co{sub x}C magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 45 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of Co{sub x}C, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co{sub 2}C and Co{sub 3}C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  15. Geometric properties of the magnetic Laplacian on the Euclidean 4-space

    SciTech Connect

    Kazmierowski, Dominique; Zinoun, Azzouz; Intissar, Ahmed

    2010-12-15

    When the four-dimensional Euclidean space is endowed with a covariant derivative that is either self-dual or antiself-dual and of constant curvature, the corresponding magnetic Laplacian is closely related to the sub-Laplacian of the quaternionic Heisenberg group. Some geometric properties of this operator are studied. In particular, it is proved that there exists a canonical orthogonal complex structure which provides a factorization in the sense of Schroedinger.

  16. Magnetic properties of xenoliths from Yakut kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valeriy

    2014-05-01

    Lower continental crust is poorly known due to its limited availability. One source of information about the formation of the lower crust is the study of xenoliths found in kimberlites, mainly peridotites, eclogites and other rocks made by the kimberlite magma to the surface from great depths. Magnetic methods can solve problems related on the one hand, the definition of the phase composition of natural ferrimagnetics responsible for the magnetic properties of rocks, and on the other - with the establishment of the thermodynamic conditions in which they were formed - their genesis. For example, in [1, 2], there were differences in the magnetic properties of kimberlites taken from tubes with different diamond productivity. In this work, studies have been conducted of the magnetic properties and mineralogy of xenoliths from 10 Yakut kimberlit pipes, courtesy of Doctor of Geological and Mineralogical Sciences V. K. Garanin. Found that the natural remanent magnetization (NRM) and magnetic susceptibility (k0) of the investigated samples varies widely: NRM = (0.002-12.59) A/m, k0 = (0.23-59.9)*10-3 SI. Magnetic properties vary by species: average NRM peridotites (0.002-0.32) A/m order of magnitude smaller eclogitic rocks (0.58-12.59) A/m. Thermomagnetic analysis (TMA) of the test samples showed the presence of xenoliths of the ferromagnetic phase with a Curie point close to Tc magnetite. Because of the high correlation between the values of NRM, k0 and ferrimagnetic saturation magnetization (SM) can be inferred that the magnetic properties of the rocks studied at temperatures above ambient is basically determined by the concentration of magnetite in them. Besides magnetite TMA were also identified ferrimagnetic phase with Curie temperatures from -50°C to -125°C. Mineralogical analysis performed on three samples of peridotite tubes Udachnaya, Yubileynaya and Mir and two samples of eclogite tubes Udachnaya and Komsomolskaya, showed that at temperatures below room temperature magnetic properties of peridotites due ferrishpineles with high content of chromium, titanium and aluminum; eclogitic rocks - due hemoilmenites. Among the studied xenoliths, peridotites from the tubes with high diamond productivity (Udachnaya, Mir, Yubileynaya) are characterized by low values of NRM, k0, SM and high paramagnetic contribution. We conclude that the concentration of magnetite in them is very small, and the magnetic properties peridotite above room temperature are determined mainly paramagnetic minerals. This work was supported by RFBR grant No. 11-05-00740. Literature: 1. V.I. Truhin, V.A. Zhilyaeva, N.N. Zinchuk, N.N. Romanov. Kimberlites and traps magnetism. M.MGU. 1989. p. 165 (Russian) 2. V.I. Maksimochkin, V.I. Truhin, Y.A. Minina. Magnetic properties and mineralogy of Botswana kimberlites. Physics of the Earth, 2013, No. 2, p. 143-160 (Russian)

  17. Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties.

    PubMed

    Ma, Longfei; Sun, Jibin; Lu, Xiaofeng; Zhang, Shangxi; Qi, Hui; Liu, Lei; Shao, Yongliang; Shao, Xiangfeng

    2015-01-01

    The combination of CuBr2 and arylthio-substituted tetrathiafulvalene derivatives (1-7) results in a series of charge-transfer (CT) complexes. Crystallographic studies indicate that the anions in the complexes, which are derived from CuBr2, show diverse configurations including linear [Cu(I)Br2](-), tetrahedral [Cu(II)Br4](2-), planar [Cu(II)2Br6](2-), and coexistence of planar [Cu(II)Br4](2-) and tetrahedral [Cu(II)Br3](-) ions. On the other hand, the TTFs show either radical cation or dication states that depend on their redox potentials. The central TTF framework on most of TTFs is nearly planar despite the charge on them, whereas the two dithiole rings on molecule 4 in complex 4·CuBr4 are significantly twisted with a dihedral angle of 38.3°. The magnetic properties of the complexes were elucidated. The temperature-dependent magnetic susceptibility of complex 5·Cu2Br6 shows the singlet-triplet transition with coupling constant J = -248 K, and that of 3·(CuBr4)0.5·CuBr3·THF shows the abrupt change at 270 K caused by the modulation of intermolecular interactions. The thermo variation of magnetic susceptibility for the other complexes follows the Curie-Weiss law, indicating the weak antiferromagnetic interaction at low temperature. PMID:26124886

  18. Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties

    PubMed Central

    Ma, Longfei; Sun, Jibin; Lu, Xiaofeng; Zhang, Shangxi; Qi, Hui; Liu, Lei; Shao, Yongliang

    2015-01-01

    Summary The combination of CuBr2 and arylthio-substituted tetrathiafulvalene derivatives (1–7) results in a series of charge-transfer (CT) complexes. Crystallographic studies indicate that the anions in the complexes, which are derived from CuBr2, show diverse configurations including linear [Cu(I)Br2]–, tetrahedral [Cu(II)Br4]2–, planar [Cu(II)2Br6]2–, and coexistence of planar [Cu(II)Br4]2– and tetrahedral [Cu(II)Br3]– ions. On the other hand, the TTFs show either radical cation or dication states that depend on their redox potentials. The central TTF framework on most of TTFs is nearly planar despite the charge on them, whereas the two dithiole rings on molecule 4 in complex 4·CuBr4 are significantly twisted with a dihedral angle of 38.3°. The magnetic properties of the complexes were elucidated. The temperature-dependent magnetic susceptibility of complex 5·Cu2Br6 shows the singlet–triplet transition with coupling constant J = −248 K, and that of 3·(CuBr4)0.5·CuBr3·THF shows the abrupt change at 270 K caused by the modulation of intermolecular interactions. The thermo variation of magnetic susceptibility for the other complexes follows the Curie–Weiss law, indicating the weak antiferromagnetic interaction at low temperature. PMID:26124886

  19. Thermodynamic properties of Heisenberg magnetic systems

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Wang, Huai-Yu; Long, Gui-Lu

    2014-03-01

    In this paper, we present a comprehensive investigation of the effects of the transverse correlation function (TCF) on the thermodynamic properties of Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM) systems with cubic lattices. The TCF of an FM system is positive and increases with temperature, while that of an AFM system is negative and decreases with temperature. The TCF lowers internal energy, entropy and specific heat. It always raises the free energy of an FM system but raises that of an AFM system only above a specific temperature when the spin quantum number is S >= 1. Comparisons between the effects of the TCFs on the FM and AFM systems are made where possible.

  20. Magnetic properties of maraging steels in relation to nickel concentration

    SciTech Connect

    Ahmed, M.; Nasim, I.; Ayub, H.; Hasnain, K.

    1995-07-01

    Magnetic properties of maraging steels have been investigated as a function of nickel concentration. The alloys nickel content varied from 12 to 24 wt pct, while other alloying constituents were kept at a level maintained in the 18Ni-2,400 MPA-grade maraging steel. The magnetic properties were determined following aging for 1 hour in the temperature range of 450 to 750 C. In every alloy investigated, the coercive field increased with aging temperature, reaching a maximum around 670 C {+-} 30 C. The saturation magnetization values were lowest around temperatures where maximum coercive field was observed. The coercive field increased from {approximately}55 to {approximately}175 Oe ({approximately}4,380 to {approximately} 13,900 amp/meter) and the corresponding saturation magnetization decreased from {approximately}18,500 to {approximately}4,000 G ({approximately}1.85 to {approximately}0.4 T) in the alloys containing 12 and 24 wt pct Ni, respectively. The reverted austenite increased from 25 vol pct at 12 wt pct Ni to 10 vol pct at 24 wt pct Ni. The hardness and Charpy impact strength of the alloys have also been determined. An attempt has been made to correlate magnetic properties with different phase transformations occurring in maraging steels.

  1. Preparation and Properties of Various Magnetic Nanoparticles

    PubMed Central

    Drbohlavova, Jana; Hrdy, Radim; Adam, Vojtech; Kizek, Rene; Schneeweiss, Oldrich; Hubalek, Jaromir

    2009-01-01

    The fabrications of iron oxides nanoparticles using co-precipitation and gadolinium nanoparticles using water in oil microemulsion method are reported in this paper. Results of detailed phase analysis by XRD and Mössbauer spectroscopy are discussed. XRD analysis revealed that the crystallite size (mean coherence length) of iron oxides (mainly γ-Fe2O3) in the Fe2O3 sample was 30 nm, while in Fe2O3/SiO2 where the ε-Fe2O3 phase dominated it was only 14 nm. Gd/SiO2 nanoparticles were found to be completely amorphous, according to XRD. The samples showed various shapes of hysteresis loops and different coercivities. Differences in the saturation magnetization (MS) correspond to the chemical and phase composition of the sample materials. However, we observed that MS was not reached in the case of Fe2O3/SiO2, while for Gd/SiO2 sample the MS value was extremely low. Therefore we conclude that only unmodified Fe2O3 nanoparticles are suitable for intended biosensing application in vitro (e.g. detection of viral nucleic acids) and the phase purification of this sample for this purpose is not necessary. PMID:22574017

  2. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  3. GEMAS: Mineral magnetic properties of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Fabian, Karl; Nourgaliev, Danis; Reimann, Clemens

    2015-04-01

    The GEMAS survey of European agricultural soil provides a unique opportunity to create the first comprehensive overview of mineral magnetic properties in agricultural soil on a continental scale. Samples from the upper 20 cm were taken in large agricultural fields (Ap-sample) at a density of 1 site/2500 km2. After air drying and sieving to < 2 mm, low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k was measured on 2500 samples using a Bartington MS2B sensor to obtain frequency dependence of magnetic susceptibility kfd. Hysteresis properties are determined using a J coercivity spectrometer, built in the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T, taking approximately 15 minutes. This allows to measure a wide range of magnetic parameters for large sample collections. Because the GEMAS geochemical atlas provides a comprehensive set of geochemical measurements characterizing the individual soil samples, the new data allow to study magnetic parameters in relation to chemical and geological parameters. The results show a clear large scale spatial distribution with e.g. broad distinct lows of k over sandy sediments of the last glaciation in central northern Europe and other sedimentary basins. More localized positive k anomalies occur near young volcanism, or old basalts exposed on the surface. On the other hand, frequency dependence of k displays a much more scattered behavior, indicating either high noise level, or large local variability. Clearly distinguishable, small-scale patterns in the randomized data set indicate that the latter is more likely. This indicates that local influences on soil magnetic properties, including anthropogenic effects, may be easier detected by frequency dependence than by k itself, which is largely controlled by geological and climatic background variability. Mapping the isothermal mineral magnetic properties shows again a clear relation to large scale European geology. Thereby, the GEMAS data set of magnetic parameters provides a continent wide reference of the natural background in Ap soil. For the first time the geological background variability of magnetic minerals for national and local soil studies is defined at the European scale.

  4. High-frequency electromagnetic properties of soft magnetic Y2Fe17Nx particles with easy-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Tan, Guoguo; Zhang, Yongbo; Qiao, Liang; Wang, Tao; Wang, Jianbo; Li, Fashen

    2015-11-01

    The microwave magnetic properties of the soft magnetic Y2Fe17Nx (x≈3) particles with easy-plane anisotropy were reported. The high MS and out-of-plane anisotropy result in the high permeability in GHz frequency band. The complex permeability of the Y2Fe17Nx particles/paraffin composite was further enhanced by inducing the easy magnetization planes of the particles to be parallel to each other through a rotational orientation. The calculated reflection loss (RL) properties of the orientated Y2Fe17Nx composite revealed that this composite can be used as high-performance absorber in S band.

  5. Magnetic properties of pulsed laser deposition-fabricated isotropic Fe-Pt film magnets

    SciTech Connect

    Nakano, M.; Oniki, W.; Yanai, T.; Fukunaga, H.

    2011-04-01

    A high-speed pulsed laser deposition method with the deposition rate of several tens of microns per 1 h enabled us to obtain isotropic Fe-Pt thick film magnets. Increase in the laser power enabled us to obtain as-deposited films with L1{sub 0} ordered phase due to the heat radiation from a target, which means that a substrate heating system and a post-annealing process are not required to achieve hard magnetic properties in the process. Use of an Fe-rich target enhanced the magnetic properties, and as a result (BH){sub max} value exceeded 100 kJ/m{sup 3} in an isotropic Fe-Pt film fabricated at the power of 3 W, which was comparable to those of isotropic Fe-Pt thick film magnets prepared by a sputtering method.

  6. Magnetic properties prediction of NdFeB magnets by using support vector regression

    NASA Astrophysics Data System (ADS)

    Cheng, Wende

    2014-09-01

    A novel model using support vector regression (SVR) combined with particle swarm optimization (PSO) was employed to construct mathematical model for prediction of the magnetic properties of the NdFeB magnets. The leave-one-out cross-validation (LOOCV) test results strongly supports that the generalization ability of SVR is high enough. Predicted results show that the mean absolute percentage error for magnetic remanence Br, coercivity Hcj and maximum magnetic energy product (BH)max are 0.53%, 3.90%, 1.73%, and the correlation coefficient (R2) is as high as 0.839, 0.967 and 0.940, respectively. This investigation suggests that the PSO-SVR is not only an effective and practical method to simulate the properties of NdFeB, but also a powerful tool to optimatize designing or controlling the experimental process.

  7. Mechanical and hyperthermic properties of magnetic nanocomposites for biomedical applications.

    PubMed

    Kan-Dapaah, Kwabena; Rahbar, Nima; Tahlil, Abdullahi; Crosson, David; Yao, Nan; Soboyejo, Wole

    2015-09-01

    An understanding of the properties of multifunctional materials is important for the design of devices for biomedical applications. In this paper, a combination of experiments and models was used to study the mechanical and hyperthermic properties of magnetic nanoparticles (MNP)-filled PDMS composites for biomedical applications. These are studied as a function of the weight of MNP, γ-Fe2O3. The results showed the effects on mechanical behavior, and specific losses in a magnetic field. The measured Young's moduli are in good agreement with the moduli predicted from the Bergström-Boybce model. Specific losses calculated from magnetic measurements are used to predict the thermal dose under in-vivo conditions. The implications of the results were discussed for potential applications in biomedical devices. PMID:26005843

  8. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    PubMed

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications. PMID:26726671

  9. On the magnetic properties of some industrial metal aerosols

    NASA Astrophysics Data System (ADS)

    Moilanen, M.; Kalliomäki, K.; Kivelä, R.; Kalliomäki, P.-L.

    1983-09-01

    The magnetic properties of some dusts and fumes collected from different work environments are studied. The specific magnetic remanent and saturation moments, pulse coercive forces and iron contents of the dusts are given and regression equations for the relation between the results are calculated. Some examples of the remanent magnetization curves of the dust are illustrated. A change in the magnetizing time from 0.4 ms to 1 s was not found to affect the remanent moment of stearin embedded dust. When loaded filters were used as a sample, the specific remanent moment was not found to depend on the amount of dust. The variations of the remanent moments among magnetite samples mixed with viscose media is shown to be much higher than that of samples with stearin.

  10. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample. PMID:26520980

  11. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  12. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  13. Power frequency magnetic properties and aging of 4130 steel

    NASA Astrophysics Data System (ADS)

    Wilder, Aleta T.

    2006-05-01

    Cr-Mo steels are utilized in large, high-speed rotating machines where the mechanical stress requirements limit available soft magnetic laminate choices. Because this is currently a niche application, the magnetic properties of these steels are relatively undocumented. This paper presents the magnetic hysteresis behavior of a quenched and tempered 4130 steel at alternating frequencies up to 1200 Hz and temperatures up to 100 °C. The high coercivities and core losses are contrasted with a 3.2%Si-Fe alloy. "Aging" of this behavior over time of cyclic field application was not observed in 300 h. However, surface embrittlement was observed. Designers should be aware that cyclic magnetic fields, even in the absence of temperature excursions and mechanical stress, can lead to a relaxation of the 4130 microstructure and possible deterioration of yield strength.

  14. Supported fe nanoclusters: evolution of magnetic properties with cluster size.

    PubMed

    Sljivancanin, Z; Pasquarello, Alfredo

    2003-06-20

    Using a density functional approach, we study structural and magnetic properties of small Fe(n) clusters (nmagnetic moments for the adsorbed clusters exceed the value for bulk Fe. Compared to the gas phase, significant reductions in the magnetic moments are found for Fe(n) clusters with nmagnetic moments are recovered. PMID:12857222

  15. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    SciTech Connect

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  16. Magnetic properties of the anisotropic MnBi/Sm2Fe17Nx hybrid magnet

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Wei, J. Z.; Peng, X. L.; Xia, Y. H.; Chen, X. G.; Wu, R.; Du, H. L.; Han, J. Z.; Wang, C. S.; Yang, Y. C.; Yang, J. B.

    2014-05-01

    In order to improve the magnetic properties of MnBi compound, anisotropic MnBi/Sm2Fe17Nx hybrid magnet was prepared by grinding of high purity MnBi ribbons and Sm2Fe17Nx particles together. The smooth hysteresis loops of the hybrid magnets indicated that the mixture of the hard/hard phase magnetic components was well exchange coupled. As compared to the single MnBi phase magnet, the remanent magnetization and maximum energy product (BH)max of the composited magnets were improved. As an optimized result, the exchange coupled magnet of MnBi/Sm2Fe17Nx = 3/7 yielded both high remanence and coercivity from 250 K to 380 K. A maximum energy product (BH)max of 18 MGOe was achieved at 300 K, and remained 10 MGOe at 380 K, implying the MnBi/Sm2Fe17Nx magnets can be specially utilized in the high temperature environment.

  17. Crystal growth and magnetic properties of equiatomic CeAl

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Thamizhavel, A.

    2015-03-01

    Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group Cmcm (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a Neel temperature TN = 10 K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20 kOe. From the inverse magnetic susceptibility an effective moment of 2.66 μB/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10 K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the (2J + 1) degenerate ground state as 25 K and 175 K respectively for the fist and second excited states.

  18. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  19. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Felicia, Leona J.; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt % of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications.

  20. Magnetic properties of textured CoPd nanocrystalline thin films.

    PubMed

    Vlachos, A; Pappas, S D; Kapaklis, V; Karoutsos, V; Kordatos, A; Wilhelm, F; Rogalev, A; Fumagalli, P; Poulopoulos, P; Velgakis, M J; Politis, C

    2012-08-01

    CoPd is an important nanomaterial for magnetic and magneto-optic storage of information. In this work, CoPd alloyed thin films are grown via radio frequency magnetron sputtering on silicon, glass and polyimide substrates in a vacuum chamber with base pressure of 5 x 10(-8) mbar. The films are nanocrystalline with grain size between 4 and 80 nm. The magnetic properties of thoroughly textured CoPd alloyed thin films are compared to random polycrystalline ones. Magnetization hysteresis loops recorded under fields up to 12 kOe via a home-made magneto-optic Kerr-effect magnetometer reveal strong tendency for perpendicular magnetic anisotropy for the textured film. This anisotropy leads to the formation of well-defined stripe or labyrinthine ferromagnetic domains with the local spins oriented perpendicular to the film plane. The domain patterns and the hysteresis loops are simulated with micromagnetic calculations. Finally, an induced magnetic moment of 0.44 microB/atom is measured for Pd via X-ray magnetic circular dichroism and it is separated into spin and orbital magnetic moment contributions. PMID:22962731

  1. New pyridine-2,3,5,6-tetracarboxylato (H₄pdtc) complexes: Synthesis, crystal structures and magnetic properties of K₂[Mn(H₂O)(pdtc)]·3H₂O 1, Na₂[M₃(H₂O)₆(pdtc)₂]·6H₂O (M=Mn 2, Co 3)

    SciTech Connect

    Zheng, Yue-Qing; Zhu, Hong-Lin; Lin, Jian-Li; Xu, Wei; Hu, Fang-Hong

    2013-05-01

    Three new pyridine-2,3,5,6-tetracarboxylato (H₄pdtc) complexes K₂[Mn(H₂O)(pdtc)]·3H₂O 1, Na₂[M₃(H₂O)₆(pdtc)₂]·6H₂O (M=Mn 2, Co 3) were obtained and characterized by single-crystal X-ray diffraction methods and magnetic measurements. The characteristic building blocks of 1–3 are the pdtc bridged stair-like chains ∞¹([M(H₂O)](pdtc){sub 3/3})²⁻, which results from the six-coordinated transition metal atoms bridged by pdtc⁴⁻ ligands. The infinite chains in 1 are assembled by hydrogen bonds into 2D supramolecular networks, which are held together by (4·8²) topological K⁺–H₂O networks to complete 3D architecture. While the stair-like chains in 2 and 3 are interconnected by trans-[M(H₂O)₄]²⁺ moieties to 2D polymeric layers, which are bridged by dimeric [Na₂(μ-H₂O)₂(H₂O)₂]²⁺ moieties to build up 3D framework. The magnetic properties of 1–3 were analyzed on the basis of (i) linear trinuclear M₃ models and (ii) the free Mn²⁺ and Co²⁺ ions with the zero-field splitting effect and spin–orbit coupling effect, respectively. - Graphic abstract: Synopsis. The characteristic building blocks and magnetic model of K₂[Mn(H₂O)(pdtc)]·3H₂O 1 and Na₂[M₃(H₂O)₆(pdtc)₂]·6H₂O (M=Mn 2, Co 3). Highlights: • The characteristic building blocks of 1–3 are the pdtc bridged stair-like chains. • The compound 2 and 3 are interlinked by trans-[M(H₂O)₄]²⁺ moieties to 2D layers. • The magnetic behavior of 1 was analyzed with zero-field splitting effects. • The magnetic behaviors were modulated with linear trinuclear model for 2 and 3.

  2. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement.

    PubMed

    Chiang, Yuan-Ching; Chieh, Jen-Jie; Ho, Chia-Che

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  3. Theoretical studies on the electronic structure and properties of complex ceramic crystals and glasses

    SciTech Connect

    Ching, Wai-Yim.

    1991-01-24

    This progress report summarizes the accomplishment of the DOE-support research program at the University of Missouri-Kansas City for the period July 1, 1991--June 30, 1992. This is the second year of a three-year renewal. The major accomplishments for the year are: (a) Initiation of fundamental studies on the electronic properties of C{sub 60} and related crystals; (b) study of electronic structures and optical properties of several important ceramic crystals, especially on AlN, SiO{sub 2} and Al{sub 2}O{sub 3}; (c) first-principles calculation of total energies and structural phase transitions in oxides, nitrides, and borides; (d) theory of magnetism in Nd{sub 2}Fe{sub 14}B permanent magnetic alloy. The major focus for the next year's effort will be on the following areas: (1) Continuation of the fundamental studies on the buckminsterfullerene system with particular emphasis on the alkali-doped superconducting fullerides. (2) Fundamental studies on the structure and properties of Boron and B-related compounds. (3) Basic studies on the structural and electronic properties of metallic glasses with particular emphasis on the magnetic glasses. (4) Further development of the first-principles OLCAO method for applications to super-complex systems.

  4. Spectral and luminescent properties of ammonia cyclopalladated complexes

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Puzyk, M. V.

    2013-12-01

    The synthesis of ammonia cyclometalated palladium(II) complexes [Pd(NH3)2C^N]ClO4 (C^N is the deprotonated form of 2-phenylpyridine, 2-(para-tolyl)pyridine, 7,8-benzo(h)quinoline, 2,6-diphenylpyridine, and 4-phenylpyrimidine) is developed. The IR and electronic absorption and emission spectra of these complexes are studied. It is found that the ammine and analogous ethylenediamine cyclometalated Pd(II) complexes have similar spectral and luminescent properties and the same nature of the electronically excited 3(π-π*)-type state responsible for the long-lived luminescence, the π and π* orbitals being localized on the corresponding cyclometalating ligand. The efficient temperature quenching of the luminescence of Pd(II) complexes at room temperature is assigned to the thermally activated population of metal-centered electronically excited states with subsequent nonradiative deactivation.

  5. Magnetic properties of grain oriented electrical steel in model transformer under direct current-biased magnetization

    NASA Astrophysics Data System (ADS)

    Inoue, Hirotaka; Okabe, Seiji

    2014-05-01

    Iron losses and acoustic noises of the model transformer under DC-biased magnetization were empirically investigated. To clarify the influence of magnetic properties of transformer core materials, two types of grain oriented electrical steels—high permeability grade (HGO) and conventional grade (CGO)—were used as core materials. Iron losses increased with superimposing DC-bias magnetic field (HDC) in both materials, and the iron loss increment in HGO was larger than that in CGO. Acoustic noises increased with increasing HDC in both materials; however, noises emitted from the core of HGO were smaller than those of CGO.

  6. Effects of electric field on magnetic properties of MnxGe_{1-x} diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Assefa, Gezahegn; Singh, P.

    2016-03-01

    We report the effect of external electric field (EEF) on the magnetic properties of MnxGe_{1-x}, diluted magnetic semiconductor. We present a Kondo Lattice Model type Hamiltonian with exchange coupling between localized spins, itinerant holes and the EEF. The magnetization, the dispersion and critical temperature (Tc) are calculated for different values of EEF parameters (α) using double time temperature-dependent Green function formalism. The enhancement of the (Tc) with the EEF is shown to be very distinct and is in agreement with recent experimental observation and much required for spintronics applications and devices.

  7. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  8. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  9. Thermal transport properties of complex oxides from first principles

    NASA Astrophysics Data System (ADS)

    Bhatti, Aqyan; Jain, Ankit; McGaughey, Alan; Benedek, Nicole

    2015-03-01

    Thermal transport properties of materials are key parameters in the design of many engineering devices. For this reason, it is highly desirable to be able to control or tailor the thermal properties of materials for specific applications. Complex oxides are attractive in this regard, due to their low and potentially highly tunable thermal conductivity. However, the theoretical description of the thermal transport properties of oxides presents a number of challenges compared to conventional semiconductors. For example, oxides tend to have complex crystal structures and the atoms interact through long-range electrostatic forces. In this talk, we use the example of PbTiO3 to discuss some of the challenges and opportunities associated with thermal transport predictions in complex oxides. For example, many oxides contain very low-lying optical branches, which may provide important acoustic-optical scattering channels. In addition, it is often possible to tune the frequencies of such optical modes with epitaxial strain. We also link the observed negative thermal expansion behavior of PbTiO3 to two zone-boundary modes with large, negative Grüneisen parameters and comment on the consequences of this finding for the thermal transport properties of this material.

  10. Synthesis, Structure, and Complex Magnetism of MIr2In8 (M = Eu, Sr).

    PubMed

    Calta, Nicholas P; L Bud'ko, Sergey; Rodriguez, Alexandra P; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G

    2016-03-21

    We report the synthesis, crystal structure, and physical properties of two new polar intermetallic compounds, EuIr2In8 and SrIr2In8. Both were synthesized in good yield using In metal as a reactive flux medium, enabling the growth of large crystals for physical property measurements. They crystallize in the orthorhombic space group Pbam with the CeFe2Al8 structure type, which is sometimes also referred to as the CaCo2Al8 structure type. The two analogues have unit cell parameters of a = 13.847(3) Å, b = 16.118(3) Å, and c = 4.3885(9) Å for M = Eu and a = 13.847(3) Å, b = 16.113(3) Å, and c = 4.3962(9) Å for M = Sr at room temperature. SrIr2In8 is a diamagnetic metal with no local magnetic moments on either the Sr or Ir sites, and the diamagnetic contribution from core electrons overwhelms the expected Pauli paramagnetism normally seen in intermetallic compounds. Magnetism in EuIr2In8 is dominated by the local Eu moments, which order antiferromagnetically at 5 K in low applied fields. Increasing the field strength depresses the magnetic ordering temperature and also induces a spin reorientation at lower temperature, indicating complex competing magnetic interactions. Low-temperature heat capacity measurements show a significant enhancement of the Sommerfeld coefficient in EuIr2In8 relative to that in SrIr2In8, with estimated values of γ = 118(3) and 18.0(2) mJ mol(-1) K(-2), respectively. PMID:26949815

  11. Magnetic and magnetoresistive properties of sodium-substituted lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Tovstolytkin, A. I.; Tsmots', V. M.; Pan'kiv, L. I.; Litovchenko, P. G.; Pan'kiv, I. S.

    2010-03-01

    The magnetic, electric, and magnetoresistive properties of bulk samples of La1-xNaxMnO3±δ (x=0.08-0.16) are studied. It is shown that at low temperatures all samples are ferromagnetic and the temperature of the transition from the paramagnetic into the ferromagnetic state increases with increasing sodium content. It is found that the saturation magnetization reaches its maximum value, close to that computed theoretically, in samples with x =0.12. A deviation of x from 0.12 decreases the saturation magnetization and broadens the magnetic transition. Analysis of the behavior of the magnetoresistance shows that there exists, together with the ferromagnetic conducting phase, a disordered weakly conducting phase, the volume fraction of the latter increasing as x deviates away from 0.12. The characteristic behavior of the magnetic and magnetoresistive properties of La1-xNaxMnO3±δ samples are tied to the particulars of the evolution of the chemical composition and defectiveness of the samples as a function of the sodium concentration.

  12. Magnetic antenna excitation of whistler modes. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-01

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  13. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    NASA Astrophysics Data System (ADS)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  14. Anisotropy of magnetic properties of Fe1+yTe

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Panfilov, A. S.; Fedorchenko, A. V.; Lyogenkaya, A. A.; Zhuravleva, I. P.; Chareev, D. A.; Nekrasov, A. N.; Mitrofanova, E. S.; Volkova, O. S.; Vasiliev, A. N.; Eriksson, O.

    2014-10-01

    The magnetic properties of Fe1+yTe single crystals (y ≃ 0.1 ÷ 0.18) were studied at temperatures 4.2 ÷ 300 K. At an ambient pressure, with decreasing temperature a drastic drop in χ(T) was confirmed at T ≃ 60 ÷ 65 K, which appears to be closely related to the antiferromagnetic (AFM) ordering. It is found that the magnitudes of the anisotropy of magnetic susceptibility Δχ in the AFM phase are close in the studied samples, whereas the sign of the anisotropy apparently depends on the small variations of the excess iron y in Fe1+yTe samples. The performed DFT calculations of the electronic structure and magnetic properties for the stoichiometric FeTe compound indicate the presence of frustrated AFM ground states. There are very close energies and magnetic moments for the double stripe configurations, with the AFM axes oriented either on the basal plane or along the [0 0 1] direction. Presumably, both these configurations can be realized in Fe1+yTe single crystals, depending on the variations of the excess iron. This can provide different signs of magnetic anisotropy in the AFM phase, presently observed in the Fe1+yTe samples. For these types of AFM configuration, the calculations for the FeTe values of Δχ are consistent with our experimental data.

  15. Thermodynamic properties of magnetic strings on a square lattice

    NASA Astrophysics Data System (ADS)

    Mol, Lucas; Oliveira, Denis Da Mata; Bachmann, Michael

    2015-03-01

    In the last years, spin ice systems have increasingly attracted attention by the scientific community, mainly due to the appearance of collective excitations that behave as magnetic monopole like particles. In these systems, geometrical frustration induces the appearance of degenerated ground states characterized by a local energy minimization rule, the ice rule. Violations of this rule were shown to behave like magnetic monopoles connected by a string of dipoles that carries the magnetic flux from one monopole to the other. In order to obtain a deeper knowledge about the behavior of these excitations we study the thermodynamics of a kind of magnetic polymer formed by a chain of magnetic dipoles in a square lattice. This system is expected to capture the main properties of monopole-string excitations in the artificial square spin ice. It has been found recently that in this geometry the monopoles are confined, but the effective string tension is reduced by entropic effects. To obtain the thermodynamic properties of the strings we have exactly enumerated all possible string configurations of a given length and used standard statistical mechanics analysis to calculate thermodynamic quantities. We show that the low-temperature behavior is governed by strings that satisfy ice rules. Financial support from FAPEMIG and CNPq (Brazilian agencies) are gratefully acknowledged.

  16. Magnetic antenna excitation of whistler modes. I. Basic properties

    SciTech Connect

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-15

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  17. Structural and magnetic properties of Mn2+?TiSn

    NASA Astrophysics Data System (ADS)

    Kharel, P.; Huh, Y.; Shah, V. R.; Li, X. Z.; Al-Aqtash, N.; Tarawneh, K.; Krage, E. S.; Sabirianov, R. F.; Skomski, R.; Sellmyer, D. J.

    2012-04-01

    The structural and magnetic properties of Mn2+?TiSn prepared by arc melting and annealing have been investigated. Structural studies show that the compound crystallizes in the hexagonal Ni3Sn-type structure with a = 5.70 and c = 4.55 . The phase stability of Mn2TiSn in the hexagonal structure is supported by the first-principle electronic structure calculations where the total energy per unit-cell volume in the hexagonal structure is smaller than that in the cubic structure. Field and temperature dependence of magnetization show that the sample is magnetically ordered with a Curie temperature around 400 K. The anisotropy energy calculated from the high-field data is 4.0 105 ergs/cm3 at 300 K but increases by a factor of two (8.6 105 ergs/cm3) as temperature decreases to 10 K. The observed magnetic properties are explained as the consequences of competing ferromagnetic and antiferromagnetic interactions between different magnetic sublattices.

  18. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  19. Theoretical study on mechanical properties of polyethylene-SWCNT complexes

    NASA Astrophysics Data System (ADS)

    Petrushenko, Igor K.

    2016-01-01

    This paper studies the mechanical properties of polyethylene (PE)-Single-walled carbon nanotube (SWCNT) complexes by using density functional theory (DFT). At the PBE/SVP level, the Youngs modulus of the complexes is obtained as a function of PE content. It is established that, with increasing number of PE chains attached to the SWCNTs, the Youngs modulus monotonically decreases. The density of states (DOS) results show that no orbital hybridization exists between the PE chains and nanotubes. The results of this work are of importance for the design of composite materials employing SWCNTs.

  20. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeary, Lucas W.; Moon, Ji-Won; Rawn, Claudia J.; Love, Lonnie J.; Rondinone, Adam J.; Thompson, James R.; Chakoumakos, Bryan C.; Phelps, Tommy J.

    2011-12-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, ZnyFe1-yFe2O4) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with ZnxFe1-xOOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (Ms) reported in the literature. The averaged Ms values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  1. Magnetic properties of tektites and other related impact glasses

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N. S.; Cournède, C.; Scaillet, B.

    2015-12-01

    We present a comprehensive overview of the magnetic properties of the four known tektite fields and related fully melted impact glasses (Aouelloul, Belize, Darwin, Libyan desert and Wabar glasses, irghizites, and atacamaites), namely magnetic susceptibility and hysteresis properties as well as properties dependent on magnetic grain-size. Tektites appear to be characterized by pure Fe2+ paramagnetism, with ferromagnetic traces below 1 ppm. The different tektite fields yield mostly non-overlapping narrow susceptibility ranges. Belize and Darwin glasses share similar characteristics. On the other hand the other studied glasses have wider susceptibility ranges, with median close to paramagnetism (Fe2+ and Fe3+) but with a high-susceptibility population bearing variable amounts of magnetite. This signs a fundamental difference between tektites (plus Belize and Darwin glasses) and other studied glasses in terms of oxygen fugacity and heterogeneity during formation, thus bringing new light to the formation processes of these materials. It also appears that selecting the most magnetic glass samples allows to find impactor-rich material, opening new perspectives to identify the type of impactor responsible for the glass generation.

  2. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    SciTech Connect

    Yeary, Lucas W; Moon, Ji Won; Rawn, Claudia J; Love, Lonnie J; Rondinone, Adam Justin; Thompson, James R; Chakoumakos, Bryan C; Phelps, Tommy Joe

    2011-01-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, Zn{sub y}Fe{sub 1-y}Fe{sub 2}O{sub 4}) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with Zn{sub x}Fe{sub 1-x}OOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (M{sub s}) reported in the literature. The averaged M{sub s} values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  3. Measurement of bidirectional optical properties of complex shading devices

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1995-01-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This paper describes the method of measuring the spatially averaged bidirectional optical properties using an automated, large-sample gonioradiometer/photometer, termed a ``Scanning Radiometer.`` Property measurements are presented for one of the most optically complex systems in common use, a venetian blind. These measurements will form the basis for optical system calculations used to test the method of determining performance.

  4. Magnetic Properties of MnFe2Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Elgendy, Ahmed A.; Salehi-Fashami, Mohammad; Sellmyer, David; Hadjipanayis, George

    2015-03-01

    Recently, MnFe2Ga Heusler alloys have attracted significant attention due to their interesting physical properties such as large magnetic-field-induced strain, giant magnetocaloric effects,large magnetoresistance, and exchange bias behavior. These properties make them promising candidates for various practical applications in the field of smart materials, magnetic refrigeration and spintronics. In this work, we prepared MnFe2Ga alloys by melt-spinning and sputtering and studied the structural and magnetic properties. The melt-spun ribbons were prepared with a wheel speed of 30 m/s. The ribbons were annealed at different temperatures for 1 hour and grinded to make fine powders. The grinded powders were also used to make the target that is used in the cluster gun for the fabrication of MnFe2Ga nanoparticles. The structure of the as made, annealed ribbons, and powders displayed a face-centered-cubic structure. The microstructure of the as-made ribbons showed equiaxed grains with an average size of 3-5 μm while the annealed ribbons showed bigger grains with small particles covering homogeneously their surface. The magnetic properties show an enhancement of magnetization while coercivity remains the same with values M(3T) and HC of 85 emu/g and 150 Oe, respectively Transmission electron microscopy with elemental mapping is currently underway to determine the structure and composition of the surface nanoparticles. The work was supported by DOE-BES-DMSE (Grant No. DE-FG02-04ER4612).

  5. Aging of magnetic properties in MgO films

    SciTech Connect

    Balcells, Ll.; Konstantinovic, Z.; Martinez, B.; Beltran, J. I.; Martinez-Boubeta, C.; Arbiol, J.

    2010-12-20

    In this work we report on the magnetic behavior of MgO thin films prepared by sputtering. A severe aging process of the ferromagnetic properties is detected in magnetic samples exposed to ambient atmosphere. However, ferromagnetism can be successively switched on again by annealing samples in vacuum. We suggest this behavior reflects the key role played by defects in stabilizing ferromagnetism in MgO films and is likely to be closely related to the hydrogen-driven instability of V-type centers in this material.

  6. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  7. Electronic and magnetic properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  8. Electronic and magnetic properties of DUT-8(Ni).

    PubMed

    Trepte, Kai; Schwalbe, Sebastian; Seifert, Gotthard

    2015-07-14

    First principles calculations using density functional theory (DFT) have been performed to investigate the electronic and magnetic properties of DUT-8(Ni) (DUT - Dresden University of Technology). This flexible metal-organic framework (MOF) exists in two crystalline forms: DUT-8(Ni)open and DUT-8(Ni)closed. To identify the energetically favoured magnetic ordering, the density of states (DOS) and the energy difference between a low-spin (LS) and a high-spin (HS) coupling ΔELS-HS for those crystalline structures have been computed. Calculations on supercells have been carried out to include a variety of different magnetic couplings beyond a single unit cell. Several molecular model systems have been employed to further investigate the magnetic behaviour by introducing a diversity of chemical environments to the magnetic centers. The magnetic ground state of both crystalline structures has been found to be the low-spin state (S = 0). This low-spin ordering can be seen in the DOS as well as from ΔELS-HS calculations. Additionally, the calculations on the supercells confirm that the local character of the ordering (i.e. within the Ni dimers) is the most favoured one. However, the model systems indicate a change from the low-spin (S = 0) to a high-spin (S ≠ 0) ordering by introducing certain alterations into the chemical environment. Such alterations could be incorporated into the crystalline systems which should lead to similar results. PMID:26067446

  9. Experimental econophysics: Complexity, self-organization, and emergent properties

    NASA Astrophysics Data System (ADS)

    Huang, J. P.

    2015-03-01

    Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).

  10. Pattern Formation in a Complex Plasma in High Magnetic Fields

    SciTech Connect

    Schwabe, M.; Konopka, U.; Bandyopadhyay, P.; Morfill, G. E.

    2011-05-27

    Low-pressure room-temperature neon, argon, krypton, and air plasmas were studied in magnetic fields up to flux densities of 2.3 T. Filaments appeared parallel to the magnetic field lines, and patterns such as spirals and concentric circles formed in the perpendicular direction. We link these effects to the magnetization of the ions. We also used a layer of embedded microparticles as probes in the plasma. Their motion changed dramatically from a collective rotation of the whole ensemble in moderate magnetic fields to a rotation in several small vortices centered at the filaments.

  11. Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3

    SciTech Connect

    Biegalski, Michael D; Takamura, Y; Mehta, A; Gai, Zheng; Kalinin, Sergei; Ambaye, Hailemariam; Lauter, Valeria; He, Jun; Kim, Young Min; Borisevich, Albina Y; Siemons, Wolter; Christen, Hans M

    2014-01-01

    Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.

  12. Structural and magnetic properties of cobalt doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Luk, Wing Yan

    Semiconductor spintronics is a promising new field of study in the ongoing quest to make electronic devices faster, cheaper, and more efficient. While current spintronics utilize the spin property of electrons to achieve greater functionally, the integration of spintronics into conventional semiconductor electronics will lead to advances optoelectronics, quantum computing, and other emerging fields of technology. This integration relies on effective generation; injection, transport, and detection of spin polarized electron current. To these end, mastering synthesis of room temperature ferromagnetic semiconductors is inevitable. In this work, we study the properties of cobalt-implanted titanium dioxide, a room temperature dilute ferromagnetic semiconductor discovered in 2001. The ferromagnetic interaction mechanism is however controversial. By using metal vapor vacuum arc (MEVVA) ion source, different doses of cobalt ions were implanted into anatase structures of titanium dioxide (TiO2) thin films. The TiO2 films which were sputtered on SiO2 (100nm)/Si (110) substrates and rutile structure of TiO2. The cobalt implanted TiO2 thin films were prepared with different atomic fraction and then thermally treated at different temperature after ion implantation. The structural properties of the anatase titanium dioxide were also studied as a comparison to rutile titanium dioxide. Rutherford backscattering spectrometry (RBS) was performed to determine the composition of cobalt. The crystal structure of the thin films and rutile single crystal was mainly anatase as detected in XRD spectra. X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) were also used in sample analysis. Vibrating sample magnetometer (VSM) was employed to study the magnetic properties of the cobalt implanted films. Ferromagnetic behaviors of these films were observed at room temperature. Cobalt doped anatase TiO2 films show room temperature ferromagnetism. Doping was provided by implantation using a MEVVA ion source. The enhancement of ferromagnetic properties was obtained by post-implantation annealing. The microstructure, magnetic properties and the dependence on the annealing conditions have being studied using various characterization techniques. Interestingly, the output referring to the saturation magnetization per Co atom with a value as high as 3.16 muB/Co atom, exceeds considerably that of the bulk cobalt which suggests that contribution to the overall magnetic behavior is not only a function of the concentration of inherently magnetic elements, but there must exist also sources of magnetisms. One of these sources are oxygen vacancies as discussed within this work. It is also interesting that instead of the more commonly observed hcp structure, the Co nanoclusters are found in fcc structure probably being stabilized by the TiO2 matrix.

  13. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes

    NASA Astrophysics Data System (ADS)

    Nikolin, A. A.; Negrebetsky, V. V.

    2014-09-01

    The state of the art of the chemistry of hypercoordinate silicon compounds is analyzed. Published data on the current top-priority approaches to the preparative synthesis of these compounds and on their properties, structures and reactivity are summarized and generalized. Relying on the results obtained by modern physicochemical methods, the possible mechanisms of stereodynamic processes occurring in the coordination units of hypercoordinate silicon complexes are discussed. The bibliography includes 157 references.

  14. Geometric properties of magnetized black hole event horizons and ergosurfaces

    NASA Astrophysics Data System (ADS)

    Esteban, E. P.

    2009-10-01

    In this paper we focus in the geometric properties of the magnetized Kerr-Newman metric. Three applications are considered. First, the event horizon surface area is calculated and from there we derive the first law of thermodynamics for magnetized black holes. We have obtained analytical expressions for the surface gravity, angular velocity, electric potential, and magnetic moment at the magnetized Kerr-Newman black hole event horizon. An approximate expression for the surface area of the magnetized black hole ergosurface was also obtained. Second, we study the magnetized Kerr-Newman black hole's circumferences. We found that for small values of the angular momentum (| | < 0.1) the event horizon has a prolate spheroid shape. Increasing the value of the angular momentum will change the event horizon shape from a prolate ellipsoid to an oblate spheroid. For small values of the angular momentum and charge the ergosurface shape is an oblate spheroid. Increasing these two parameters will change the ergosurface shape from a oblate spheroid to a prolate spheroid. Third, analytical expressions for the magnetized Kerr-Newman event horizon and ergosurface Gaussian curvatures were obtained although not explicitly shown. Instead a graphical analysis was carried out to visualize regions where Gaussian curvatures take negative or positive values. We found that the Gaussian curvature at the event horizon poles has negative values and do not satisfy Pelavas condition. Therefore, these regions can not be embedded in E3. However, the magnetized Kerr-Newman ergosurface can be embedded in E3 regardless the negative Gaussian curvature values in some regions of the ergosurface.

  15. Magnetically Modified TiO2 Powders - Microstructure and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Životský, Ondřej; Seidlerová, Jana; Šafařík, Ivo; Luňáček, Jiří; Šafaříková, Miroslava; Kutláková, Kateřina Mamulová; Jirásková, Yvonna

    The anatase (TiO2) particles magnetically modified by iron oxides and prepared by an innovating technological procedure are studied from the viewpoint of microstructure and a complex analysis of magnetic behaviour at room and elevated temperatures. Scanning electron microscopy observations have yielded variable shapes of particles in the composite powder whereas the iron oxide particles of diameter bellow 1 μm were detected on the surface of the TiO2. The dominant magnetite (Fe3O4) accompanied by a small amount of maghemite (γ-Fe2O3) and/or hematite (α- Fe2O3) were analysed by X-ray powder diffraction. A relatively high saturation magnetization (3.38 Am2/kg), negative dipolar interactions, and the low values of reversible and irreversible part of magnetic susceptibility were found out from magnetic measurements at room temperature. During a thermomagnetic treatment the composite sample has been going through a few magnetic phase transitions and transforms into a fully paramagnetic state around 850 K. After its cooling to the room temperature an undesirable magnetic hardening of the sample has occurred.

  16. Complex manganese oxides with the brownmillerite structure: synthesis, crystal chemistry and properties

    NASA Astrophysics Data System (ADS)

    Abakumov, Artem M.; Rozova, Marina G.; Antipov, Evgenii V.

    2004-09-01

    Structural features and methods for the synthesis of complex manganese oxides with the brownmillerite structure A2MnB'O5+δ (A = Ca, Sr; B' = Ga, Al) and of their derivatives are surveyed. Modern approaches to the description of crystal structures containing various types of chains of tetrahedra are considered and possible ordering patterns of these chains are discussed. The effects of the electronic structure and crystal chemical properties of the B' cations on the possibility of formation of a layered ordered structure is noted. The emphasis is placed on the anion non-stoichiometry of the brownmillerite phases and the influence of the excess oxygen (fluorine) on the structure of the compounds. A comparative analysis of properties of oxygen- and fluorine-doped brownmillerites is given. The data on the magnetic structures, transport and magnetoresistive properties of Mn-containing brownmillerites are generalised.

  17. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  18. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  19. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes

    PubMed Central

    2014-01-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. PACS 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g PMID:25170336

  20. Discontinuous properties of current-induced magnetic domain wall depinning

    PubMed Central

    Hu, X. F.; Wu, J.; Niu, D. X.; Chen, L.; Morton, S. A.; Scholl, A.; Huang, Z. C.; Zhai, Y.; Zhang, W.; Will, I.; Xu, Y. B.; Zhang, R.; van der Laan, G.

    2013-01-01

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 1011 A.m−2) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of “Barkhausen jumps”. A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime. PMID:24170087

  1. Discontinuous properties of current-induced magnetic domain wall depinning.

    PubMed

    Hu, X F; Wu, J; Niu, D X; Chen, L; Morton, S A; Scholl, A; Huang, Z C; Zhai, Y; Zhang, W; Will, I; Xu, Y B; Zhang, R; van der Laan, G

    2013-01-01

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 10(11) A.m(-2)) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of "Barkhausen jumps". A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime. PMID:24170087

  2. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  3. Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes.

    PubMed

    Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit

    2014-06-28

    The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4. PMID:24818564

  4. Magnetic Properties and Hyperfine Interactions in Iron Containing Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Unruh, Karl Marlin

    Amorphous samples of Fe(,x)B(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 90), Fe(,x)Ag(,100-x) (40 (LESSTHEQ) x (LESSTHEQ) 50), and Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93) have been prepared, and their magnetic properties and hyperfine interactions studied by ('57)Fe Mossbauer spectroscopy. Each system is representative of either Fe-metalloid (Fe-B), Fe-noble metal (Fe-Ag), or Fe-early transition metal (Fe -Zr) amorphous alloys. Therefore, by studying these three amorphous solids an overview is obtained, not only of the properties of the individual alloys, but also of the wider class of alloys of which they are representative. The amorphous Fe-B and Fe-Zr systems have been successfully fabricated over very wide ranges in composition, allowing the evolution of the magnetic properties and hyperfine interactions to be systematically studied. As a result it has been possible to determine the critical concentration for magnetic order (x(,c)). It has been shown that the loss of magnetic order below x(,c) is the result of the reduction and eventual disappearance of the Fe moment. The isomer shifts (IS) and quadrupole splittings (QS) have also been determined over wide composition ranges. This has led to the observation of a maximum in IS with decreasing Fe concentration in amorphous alloys of Fe and B. On the other hand, IS in the amorphous Fe-Zr alloys has been found to decrease monotonically over the same concentration range. In the paramagnetic region all the samples display quadrupole split doublets characteristic of site symmetries lower than cubic. It has been found that the observed asymmetry in the quadrupole spectra can be correlated with the relative changes in IS and QS as a function of composition. Amorphous alloys of Fe and Ag have been prepared for the first time and have been found to be stable at room temperature. The somewhat unusual magnetic properties of these alloys suggests that they may be simpler magnetically than previously studied magnetic amorphous solids. The very existence of this kind of amorphous alloy raises a number of interesting questions on the nature of the amorphous state. Two tests of the quasi-crystalline model have also been undertaken. In the first instance crystalline and amorphous FeB have been directly compared. The quasi -crystalline model cannot account for the significant differences that exist between the amorphous alloy and the crystalline compound. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI.

  5. Controlled synthesis of Co(3)O(4) nanocubes under external magnetic fields and their magnetic properties.

    PubMed

    Wang, Mingsheng; Zeng, Lingkun; Chen, Qianwang

    2011-01-21

    Regular tricobalt tetraoxide (Co(3)O(4)) nanocubes with tunable sizes have been synthesized by a simple magnetic field assisted hydrothermal reaction. In contrast to other traditional methods, no surfactant is added to the reaction system, the morphology of the product is controlled by the application of an external magnetic field and the size distribution of the product is tuned by simply modifying the ratio of distilled water to ethanol in the solvent. The growth process of Co(3)O(4) nanocubes is investigated and discussed in detail. It is found that the differences in polarity and dielectric constant between distilled water and ethanol and thus the difference of cobalt coordination ions concentration in the different solvents are the major factors that determine the final size distribution of Co(3)O(4) nanocubes. Magnetic properties of Co(3)O(4) nanocubes synthesized under (MF) and not under (ZF) an external magnetic field are then investigated. It is believed that during their growth, the alignment of spins in the Co(3)O(4) particles and thus the magnetic and crystal lattices of Co(3)O(4) are influenced by the external magnetic field. Spins in MF arrange in a less-ordered manner and cannot be totally compensated by each other, therefore makes them have a stronger tendency to align into an ordered figuration, which leads to a relatively larger magnetization and higher Néel temperature (T(N)) of MF comparing to sample ZF. PMID:21125128

  6. Magnetic properties of transition-metal multilayers studied with x-ray magnetic circular dichroism spectroscopy

    SciTech Connect

    Stoehr, J.; Nakajima, R.

    1998-01-01

    The detailed understanding of the magnetic properties of transition-metal multilayers requires the use of state-of-the-art experimental techniques. Over the last few years, the X-ray magnetic circular dichroism (XMCD) technique has evolved into an important magnetometry tool. This paper is an overview of the principles and unique strengths of the technique. Aspects covered include the quantitative determination of element-specific spin and orbital magnetic moments and their anisotropies through sumrule analyses of experimental spectra. A discussion is presented on how the spin and orbital magnetic moments in transition-metal thin films and sandwiches are modified relative to the bulk. The authors show that a thin film of a nonmagnetic metal such as Cu may become magnetically active when adjacent to a magnetic layer, and a thin film of a ferromagnetic metal such as Fe may become magnetically inactive. The orbital moment is found to become anisotropic in thin films; it can be regarded as the microscopic origin of the magnetocrystalline anisotropy.

  7. Magnetic Structure and Magnetic Properties of CaMn2Sb2

    NASA Astrophysics Data System (ADS)

    Lima Sharma, A. L.; Gomes, A. M. S.; Gonzales, J. L.; Ratcliff, W., II

    2008-03-01

    The AM2X2 ternary intermetallic (A = rare or alkaline earth, M = transition metal) compounds have revealed interesting magnetic properties due to the interplay between their magnetic sublattices. Pursuing the idea that the coupling between Mn-Mn ions can significantly affect electric transport properties, we investigated (Ca,Sr)Mn2Sb2 intermetallic compounds which presents two secondary magnetic transitions at 82K and 250K. Field dependent dc-magnetization curves for CaMn2Sb2 were obtained at two different temperatures, above and below 250K, show a relatively steep increase of the magnetization upon increasing the field to H &_slash; 5 kOe, followed by a less steep and almost linear increase with the field and no tendency for saturation. The net macroscopic moment on the Mn at 300 K and 50 kOe is only a fraction of a Bohr magneton (ca. 0.15 {'í}B/ Mn), and evidently, a simple interpretation of its value in terms of localized high/low spin Mn2+ ions is unrealistic. The low moment can be viewed as a signature of the counterbalanced coupling between Mn atoms that are sitting on two inequivalent magnetic sites as predicted by theory [1]. In order to understand CaMn2Sb2 magnetic structure, we also performed neutron scattering measurements to clarify the magnetic structure and the origin of the low temperature transition. [1] S. Boved, J. Merz, A. L. Lima, V. Fritsch, J. D. Thompson, J. L. Sarrao, M. Gillessen, and R. Dronskowski. {Inorg. Chem.}, 45:4047, 2006.

  8. Using Solution Phase Self-Assembly to Control the Properties of Magnetic and Magnetoelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Schelhas, Laura Theresa

    Nanostrutured magnetic materials have gained much recent interest because of their application in various electronic systems. These materials, however, often require complex lithography and epitaxy to control the magnetic properties. In this work, solution-phase self-assembly is used to create magnetic and magnetoelectric materials with a variety of nanoscale structures. By engineering the architecture of the system, control over a range of magnetic properties can be realized. The first part of this work focuses on nano-magnetic materials. Here, the organization of nanoscale magnets into different geometries is controlled, and the properties of the systems are studied. In the first chapter, Ni-Cu nanowire stacks are examined to explore the effect of shape anisotropy on the coupling between different elements. This work provides insight into how to design new elements for spin-torque devices. In the next chapter, directed self-assembly of block copolymers is used to create coupled 1D chains of ferromagnetic and superparamagnetic FePt nanoparticles. These nano-patterned are globally aligned on the wafer length-scale using micron-sized lithographic grooves. This system is ideal for studying dipolar coupling between magnetic nanocrystals. Additionally, the processing methods developed here provide a platform for organizing other types of nanomaterials. The second sections explore magnetoelectric materials. These are materials that combine ferromagnetism and ferroelectricity in a coupled manner. One material that does this intrinsically is bismuth ferrite. The first chapter of this section explores ordered nanoporous bismuth ferrite produced by block copolymer templating. It is shown that the ordered porosity of the system creates a unique strain state in the bismuth ferrite, which in turn produces a large change in magnetization upon application of an electric field. Finally, in the last chapter, a nanostructured composite magnetoelectric system is studied. Here, magnetostrictive Ni nanocrystals are coupled to a single-crystalline piezoelectric substrate. The nanocrystals are superparamagnetic and show no net magnetization. Upon application of an electric field, however, strain induced in the piezoelectric substrate strains the lattice of the nanocrystals, creating a preferred magnetic axis along the high strained direction. This locks the magnetization along the strain axis and switches the nanocrystals from a superparamagnetic to a ferromagnetic state.

  9. Structural and magnetic properties of chromium doped zinc ferrite

    NASA Astrophysics Data System (ADS)

    Sebastian, Rintu Mary; Thankachan, Smitha; Xavier, Sheena; Joseph, Shaji; Mohammed, E. M.

    2014-01-01

    Zinc chromium ferrites with chemical formula ZnCrxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X - Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125 nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM).

  10. The magnetic properties of the star Kepler-78★

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Donati, J.-F.; Lin, D.; Laine, R.; Hatzes, A.

    2016-04-01

    Kepler-78 is host to a transiting 8.5-hour orbit super-Earth. In this paper, the rotation and magnetic properties of the planet host star are studied. We first revisit the Kepler photometric data for a detailed description of the rotation properties of Kepler-78, showing that the star seems to undergo a cycle in the spot pattern of ˜1,300 day duration. We then use spectropolarimetric observations with CFHT/ESPaDOnS to measure the circular polarization in the line profile of the star during its rotation cycle, as well as spectroscopic proxies of the chromospheric activity. The average field has a strength of 16 G. The magnetic topology is characterized by a poloidal and a toroidal component, encompassing 60% and 40% of the magnetic energy, respectively. Differential rotation is detected with an estimated rate of 0.105±0.039 rad.d-1. Activity tracers vary with the rotation cycle of the star; there is no hint that a residual activity level is related to the planetary orbit at the precision of our data. The description of the star magnetic field's characteristics then may serve as input for models of interactions between the star and its close-by planet, e.g., Ohmic dissipation and unipolar induction.

  11. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  12. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Hong, Jisang

    2015-08-01

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of 0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was 1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  13. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  14. The magnetic properties of the star Kepler-78

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Donati, J.-F.; Lin, D.; Laine, R. O.; Hatzes, A.

    2016-06-01

    Kepler-78 is host to a transiting 8.5-h orbit super-Earth. In this paper, the rotation and magnetic properties of the planet host star are studied. We first revisit the Kepler photometric data for a detailed description of the rotation properties of Kepler-78, showing that the star seems to undergo a cycle in the spot pattern of ˜1300 d duration. We then use spectropolarimetric observations with Canada-France-Hawaii Telescope (CFHT)/ESPaDOnS to measure the circular polarization in the line profile of the star during its rotation cycle, as well as spectroscopic proxies of the chromospheric activity. The average field has a strength of 16 G. The magnetic topology is characterized by a poloidal and a toroidal component, encompassing 60 per cent and 40 per cent of the magnetic energy, respectively. Differential rotation is detected with an estimated rate of 0.105±0.039 rad d-1. Activity tracers vary with the rotation cycle of the star; there is no hint that a residual activity level is related to the planetary orbit at the precision of our data. The description of the star magnetic field's characteristics then may serve as input for models of interactions between the star and its close-by planet, e.g. Ohmic dissipation and unipolar induction.

  15. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex.

    PubMed

    Jambhekar, Sunil S; Breen, Philip

    2016-02-01

    Cyclodextrins are cyclic oligosaccharides that have been recognized as pharmaceutical adjuvants for the past 20 years. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. These noncovalent inclusion complexes offer a variety of advantages over the noncomplexed form of a drug. Cyclodextrins are primarily used to enhance the aqueous solubility, physical chemical stability, and bioavailability of drugs. Their other applications include preventing drug-drug interactions, converting liquid drugs into microcrystalline powders, minimizing gastrointestinal and ocular irritation, and reducing or eliminating unpleasant taste and smell. Here, we discuss the physical chemical properties of various cyclodextrins, including the effects of substitutions on these properties. Additionally, we report on the regulatory status of their use, commercial products containing cyclodextrins, toxicological considerations, and the forces involved in complex formation. We also highlight the types of complex formed and discuss the methods used to determine the types of complex present. PMID:26686054

  16. High-frequency magnetic properties of Zn ferrite films deposited by magnetron sputtering

    SciTech Connect

    Guo Dangwei; Zhu Jingyi; Yang Yuancai; Fan Xiaolong; Chai Guozhi; Sui Wenbo; Zhang Zhengmei; Xue Desheng

    2010-02-15

    The effect of thermal annealing on structural and magnetic properties has been investigated for Zn ferrite films deposited on Si (111) substrates using radio frequency magnetron sputtering. The saturation magnetization at room temperature was enhanced upto 303 emu/cm{sup 3} by annealing at relatively low temperature of 200 deg. C and decreased at higher temperatures. The complex permeability {mu}={mu}{sup '}-i{mu}{sup ''} values of the ferrite films as-deposited and annealed at 200 and 400 deg. C were measured at frequency upto 5 GHz. These films exhibited better high-frequency properties, especially, the film annealed at 200 deg. C had a large {mu}{sup '} of 19.5 and high resonance frequency f{sub r} of 1.61 GHz. And the reason was investigated preliminarily based on the bianisotropy model.

  17. Effect of fabrication method on the structural and the magnetic properties of copper ferrite

    NASA Astrophysics Data System (ADS)

    Pongpadung, Siriwipa; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-03-01

    Copper ferrites (CuFe2O4) were fabricated by using the self-combustion urea and glycine process (UNP, and GNP), the polymerized complex (PC), the solid-state reaction (SSR), and the molten-salt (MS) methods. The synthesized powders were calcined in static air at different temperature from 773 to 1173 K. The effects of the fabrication method on the microstructural and the magnetic properties were investigated. X-ray diffraction (XRD) analysis results revealed the cubic CuFe2O4 spinel structure for the original powders. The tetragonal CuFe2O4 spinel structure was obtained after calcination. Vibrating sample magnetometry (VSM) showed significant changes in the magnetic properties of the CuFe2O4 system with fabrication method, phase composition, and heat treatment.

  18. Fermi surface, magnetic, and superconducting properties in actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Settai, Rikio; Haga, Yoshinori; Machida, Yo; Izawa, Koichi; Honda, Fuminori; Aoki, Dai

    2014-08-01

    The de Haas-van Alphen effect, which is a powerful method to explore Fermi surface properties, has been observed in cerium, uranium, and nowadays even in neptunium and plutonium compounds. Here, we present the results of several studies concerning the Fermi surface properties of the heavy fermion superconductors UPt3 and NpPd5Al2, and of the ferromagnetic pressure-induced superconductor UGe2, together with those of some related compounds for which fascinating anisotropic superconductivity, magnetism, and heavy fermion behavior has been observed. xml:lang="fr"

  19. Segmental inertial properties in dogs determined by magnetic resonance imaging.

    PubMed

    Amit, T; Gomberg, B R; Milgram, J; Shahar, R

    2009-10-01

    Data regarding the segmental inertial properties of the dog are currently unavailable, although such parameters are needed for dynamic analyses of canine motion. The purpose of this study was to measure the segmental inertial properties in three medium sized dogs of average build using magnetic resonance imaging. The parameters included the mass, location of centre of mass and moments of inertia for each body segment. The normalised results will serve as a preliminary foundation for various biomechanical studies in dogs, although further study is required to characterise them for specific dog breeds and to determine how they may be affected by age and gender. PMID:18691919

  20. Magnetic Interactions Influence the Properties of Helium Defects in Iron.

    SciTech Connect

    Seletskaia, Tatiana; Osetskiy, Yury N; Stoller, Roger E; Stocks, George Malcolm

    2005-01-01

    Density functional theory calculations of He defect properties in iron have shown an unexpected influence of magnetism arising from the defect's electronic structure. In contrast with previous work that neglected such effects, the results indicate that the tetrahedral position is energetically more favorable for the He interstitial than the octahedral site. This may have significant implications for He clustering and bubble nucleation, which will impact material performance in future fusion reactors. These results provide the basis for development of improved atomistic models.

  1. Tuning the Ferroelectric Properties through a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Carvell, Jeffery; Cheng, Ruihua

    2012-02-01

    Preparation and characterization of multiferroic materials in which ferroelectricity and ferromagnetism coexist would be a milestone for functionalized materials and devices. We have demonstrated that the electric polarization of ferroelectric polymer, poly vinylidene fluoride (PVDF), can be controlled by applying an external magnetic field. Samples were created in a layered heterostructure, with the key part of a PVDF layer sandwiched by two layers of Fe thin films. We found that as the applied magnetic field is changed, the switching of electric polarization for the PVDF displayed a dependence on the external magnetic field. We also noticed that both coercivity and polarization for the PVDF polymer display hysteretic features according to the change of an applied magnetic field. Our study showed that the thickness of both the iron layer and the PVDF layer have an effect on the magnetoelectric coupling in our samples. The same magnetostriction strain applied to a thicker PVDF layer becomes tougher to flip the polarization compared to a thinner PVDF layer. As the iron film thickness increases, the magnetoelectric strain also increases, and the PVDF polymer can be easily saturated and the polarization is more easily flipped. We have shown that it is possible to control the ferroelectric properties of a PVDF film by tuning the magnetic field in heterostructures. Our study shows that this system could have show promising applications for new information technology and devices.

  2. Structural and magnetic properties of nickel antimony ferrospinels

    SciTech Connect

    Ivanov, S. A.; Tellgren, R.; Porcher, F.; Andre, G.; Ericsson, T.; Nordblad, P; Sadovskaya, N.; Kaleva, G.; Politova, E.; Baldini, M.; Sun, C.; Arvanitis, D.; Kumar, P. Anil; Mathieu, R.

    2015-05-05

    Spinel-type compounds of Fe–Ni–Sb–O system were synthesized as polycrystalline powders. The crystal and magnetic properties were investigated using X-ray and neutron powder diffraction, Mössbauer and X-ray absorption spectroscopy and magnetization measurements. The samples crystallize in the cubic system, space group Fd – 3 m. The distribution of cations between octahedral and tetrahedral sites was refined from the diffraction data sets using constraints imposed by the magnetic, Mössbauer and EDS results and the ionic radii. The cation distribution and the temperature dependence of the lattice parameter (a) and the oxygen positional parameter (u) were obtained. A chemical formula close to Fe0.8Ni1.8Sb0.4O4 was determined, with Sb5+ cations occupying octahedral sites, and Fe3+ and Ni2+ occupying both tetrahedral and octahedral sites. Fe3+ mainly (85/15 ratio) occupy tetrahedral sites, and conversely Ni2+ mainly reside on octahedral ones. The magnetic unit cell is the same as the crystallographic one, having identical symmetry relations. The results indicate that the compounds have a collinear ferrimagnetic structure with antiferromagnetic coupling between the tetrahedral (A) and octahedral (B) sites. Uniquely, the temperature dependence of the net magnetization of this rare earth free ferrimagnet exhibits a compensation point.

  3. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    SciTech Connect

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-27

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  4. Synthesis and magnetic properties of single phase titanomagnetites

    NASA Astrophysics Data System (ADS)

    Schoenthal, W.; Liu, X.; Cox, T.; Mesa, J. L.; Maicas, M.; Diaz-Michelena, M.; Laughlin, D. E.; McHenry, M. E.

    2014-05-01

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1-x)Fe3O4-xFe2TiO4 solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe2TiO4), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  5. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.

    PubMed

    Hao, Hongying; Sun, Dandan; Xu, Yanyan; Liu, Ping; Zhang, Guoying; Sun, Yaqiu; Gao, Dongzhao

    2016-01-15

    Uniform hematite (α-Fe2O3) nanoplates exposing {001} plane as basal planes have been prepared by a facile solvothermal method under the assistance of sodium acetate. The morphological evolution of the nanoplates was studied by adjusting the reaction parameters including the solvent and the amount of sodium acetate. The results indicated that both the adequate nucleation/growth rate and selective adsorption of alcohol molecules and acetate anions contribute to the formation of the plate-like morphology. In addition, the size of the nanoplates can be adjusted from ca. 180nm to 740nm by changing the reaction parameters. Three nanoplate samples with different size were selected to investigate the gas sensing performance, photocatalytic and magnetic properties. As gas sensing materials, all the α-Fe2O3 nanoplates exhibited high gas sensitivity and stability toward n-butanol. When applied as photocatalyst, the α-Fe2O3 nanoplates show high photodegradation efficiency towards RhB. Both the gas sensing performance and the photocatalytic property of the products exhibit obvious size-dependent effect. Magnetic measurements reveal that the plate-like α-Fe2O3 particles possess good room temperature magnetic properties. PMID:26476200

  6. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    NASA Astrophysics Data System (ADS)

    Lahoubi, M.; Younsi, W.; Soltani, M.-L.; Ouladdiaf, B.

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia bar 3 d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T1g of the CSG and identified to the room temperature ferrimagnetic Nel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R bar 3 c within the IR A2g. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at TRS=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta1=125 K and Ta2=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R bar 3 c, C2/c within the IR Ag. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  7. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Huang, Y. L.; Wang, Y.; Hou, Y. H.; Wang, Y. L.; Wu, Y.; Ma, S. C.; Liu, Z. W.; Zeng, D. C.; Tian, Y.; Xia, W. X.; Zhong, Z. C.

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m3 are obtained for an isotropic magnet.

  8. The Magnetic Properties of Single Crystal SrCo2Ti2Fe8O19 Compound

    NASA Astrophysics Data System (ADS)

    Mihalik, Matúš; Sirenko, Valentyna; Balbashov, Anatolij Mikhailovich; Eremenko, Victor; Mihalik, Marián; Zentková, Mária

    We present magnetization measurements performed on a SrCo2Ti2Fe8O19 single crystal. The compound orders magnetically at 768 K and undergoes order-to-order magnetic phase transition at 380 K. Magnetic properties are almost isotropic around room temperatures with very low hysteresis with coercive field lower than 2.0(1) × 10-3 T and with remnant magnetization lower than 0.22 μB/f.u. (1.08 Am2kg-1) for magnetic fields applied along main crystallographic directions. Frequency-dependent anomalies related to complex spin dynamics of the system were observed in the temperature range from 20 to 100 K.

  9. Heat capacity, magnetic and lattice dynamic properties of TbMn1-xFexO3

    NASA Astrophysics Data System (ADS)

    Mihalik, M., Jr.; Mihalik, M.; Fitta, M.; Vavra, M.; Zentková, M.; Vilarinho, R.; Mota, D. A.; Tavares, P.; Agostinho Moreira, J.; Almeida, A.

    2015-03-01

    The effect of substitution of Fe3+ ions by Mn3+ ions on crystal structure, lattice dynamic, heat capacity and magnetic properties in TbMn1-xFexO3 ceramics has been studied. X-ray powder diffraction and Raman spectroscopy revealed that lattice distortion can be mainly attributed to Jahn-Teller distortion and tilting of octahedrons for samples with x < 0.4; for higher Fe concentration, the distortions are dominated by the octahedra tilting with less contribution of the Jahn-Teller effect. The anomalies in heat capacity of parent compounds (TbMnO3 and TbFeO3), which are associated with magnetic transitions, are smeared out by ion substitution. Magnetization measurements indicate that magnetic ordering persists in whole concentration range. The butterfly-type magnetic hysteresis loops suggest that the magnetic ground state of the whole system is complex and thence interesting for next experimental and theoretical studies.

  10. Jovian magnetic fields is complex, Pioneer 11 shows

    NASA Technical Reports Server (NTRS)

    Panagakos, N.; Waller, P.

    1975-01-01

    An analysis of the magnetic field of the planet Jupiter is presented. The data are based on the information returned by Pioneer 11 space probe. It was determined that the magnetic field stretches across 9 million miles of space at some times and shrinks in volume by three-fourths or more at other times. It was also determined that electrons trapped in the magnetic field of Jupiter are 10,000 times more intense than those in the Van Allen radiation belts which circle the earth. Additional data were obtained on the polar regions, atmospheric circulation, and the nature of the moons.

  11. Magnetic properties derived from a loess section at the northern piedmont of Tianshan Mountains, Xinjiang, China, and their paleoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Li, Guanhua; Xia, Dunsheng; Jia, Jia; Zhao, Shuang; Gao, Fuyuan; Wang, Youjun; Lu, Hao; Chen, Fahu

    2015-11-01

    Loess deposits in the arid Central Asia contain valuable information on the evolution of local aridification and dust sources in the Northern Hemisphere. Xinjiang is located in the eastern part of Central Asia and previous researches have revealed the complex enhancement of magnetic susceptibility in loess-paleosol sequences. However, systematic magnetic archives of loess deposit in this arid Asian interior are still far from adequate. In this study, magnetic parameters combined with nonmagnetic properties (granulometry and chromaticity) were analysed on a loess section in Shawan (SW), northwestern China. The section shares a similar magnetic composition with those in the Chinese Loess Plateau (CLP) as well as other sites in Xinjiang. Ferrimagnetic components (magnetite and maghemite) dominate the magnetic signal while the contribution of antiferromagnetic phases (like hematite and goethite) and paramagnetic portions are relatively low. There is no specific correlation between magnetic concentration and pedogenic intensity in the SW section. In general, magnetic enhancement was largely influenced by the paleowind intensity. However, a positive correlation between magnetic susceptibility and pedogenesis is observed in the upper part (0-3.5 m depths), which is characterized by a moderate wind intensity. Moreover, pedogenesis might be responsible for the enhancement of fine magnetic particles in paleosols. Magnetic properties are controlled by coarse magnetic particles in the pseudo-single domain state, but a coarse stable single domain phase was found in certain paleosol samples. The input of detrital fractions from a nearby dust source probably controlled the magnetic properties while a superparamagnetic fraction, which has been deemed as a product of pedogenesis in the CLP, is limited in the SW section. Caution is needed to employ magnetic susceptibility directly for paleoclimatic assessment because of its uncertainty in the Xinjiang loess. However, the χARM/SIRM ratio enhanced in paleosols and has more potential as an alternative index for the weakly pedogenic degree in this area.

  12. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems. PMID:23889602

  13. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Chongqing University of Science and Technology, Chongqing 401331 ; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S = 1/2.

  14. Shape-tuned dynamic properties of magnetic nanoelements during magnetization reversal

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-fu; Li, Zhi-xiong; Wang, Xi-guang; Nie, Yao-zhuang; Guo, Guang-hua

    2015-07-01

    We study the dynamic properties of magnetic nanoelements with tapered ends by using micromagnetic simulations. It is found that the spin-wave modes can be effectively manipulated by the element shape. With the increase of the end sharpness (described by tapering parameter h), the frequency of the spin-wave edge mode increases rapidly and its oscillation areas in the both ends of element gradually increase and move toward to the central area. Finally, the edge mode completely merges into the fundamental mode. During the magnetization reversal processes, the edge mode experiences one or two softening depending on h≤60 nm or 60 nm100 nm, it is the fundamental mode that goes to zero at the switching field. The evolution of the spin-wave modes reflects the change of the micromagnetic structures of the elements during the reversal. It is the softening of the edge mode that triggers the magnetization reversal in elements with h<100 nm. The quasi-uniform reversal in the elements with h>100 nm is induced by the softening of the fundamental mode, where the edge mode is completely suppressed. The results presented in this work demonstrate that the dynamic properties and the magnetization reversal can be effectively tuned by changing the shape of the nanoelements and may be useful for designing the nanoscale magnetic devices.

  15. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  16. Tailoring the photoluminescence properties of ionic iridium complexes.

    PubMed

    Terki, Rachida; Simoneau, Louis-Philippe; Rochefort, Alain

    2009-01-22

    Density functional theory/time-dependent density functional theory (DFT/TD-DFT) calculations were performed to investigate the structural, electronic, and optical properties of ionic Ir complexes with several different substituents on the cyclometalated ligand. Geometric parameters, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap, and Mulliken charge on different parts of the molecule were obtained and correlated to the calculated emission and absorption energies. We also discuss the influence of the position of fluoro-substituent on the spectroscopic properties of Ir complexes. As a major trend, the investigated complexes exhibit band shifts that correlate with the electron-withdrawing nature of the ligand substituent. Our results also show that the lowest emission wavelength is observed at ortho position with respect to the coordinating carbon. The different variations observed are discussed in terms of emissive states and, more especially, in terms of the mixture of ligand-ligand charge-transfer (LLCT) and metal-ligand charge-transfer (MLCT) states. PMID:19117414

  17. Magnetic properties of manganese based one-dimensional spin chains.

    PubMed

    Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu

    2015-12-14

    We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively. PMID:26455515

  18. Magnetic properties of Fe-Cu-Nb-Si-B nanocrystalline magnetic alloys

    SciTech Connect

    Garcia del Muro, M.; Batlle, X.; Zquiak, R.; Tejada, J.; Polak, C.; Groessinger, R.

    1994-03-01

    Several ribbons of composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 16.5}B{sub 6} and Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} were prepared by annealing the as-quenched samples between 525 C and 700 C, which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE S.Q.U.I.D. Magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature T{sub M}, thus signaling a certain distribution of nanocrystalline sizes, and T{sub M} strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.

  19. Magnetic and Thermoelectric Properties of Boron-Rich Solids

    NASA Astrophysics Data System (ADS)

    Mori, Takao

    Boron forms various compounds with metal atoms occupying voids in the boron framework. As a synthesis method it has been found that the addition of small amounts of third elements like carbon, nitrogen, and silicon can result in the formation of novel and varied rare earth boron cluster structures. A wide variation of 1D, 2D, and 3D magnetic behavior with unexpectedly strong magnetic interactions has been discovered in rare earth boron icosahedra compounds which are magnetically dilute, f-electron insulators. As an intriguing phenomenon, the B12 icosahedra cluster, which is a building block of the structure, has been indicated to function as a novel mediator of magnetic interaction. These phenomena are borides. Attractive high temperature thermoelectric properties are also emerging in borides. Attractive high temperature thermoelectric properties are also emerging in this group of compounds, which is striking due to the great potential of utilizing waste heat. Recent developments on the long awaited n-type counterpart to boron carbide, the homologous series of RE-B-C(N) compounds, REB17CN, REB22C2N, and REB28.5C4, will be presented together with those of p-type REB44Si2. General new ways to improve the thermoelectric properties are also discussed. For example, seeding with highly electrically conductive metallic borides like REB4 and REB6 is found to be a way to significantly increase the thermoelectric figure of merit. Electric resistivity significantly decreases while Seebeck coefficients and thermal conductivity are not sizably affected.

  20. Dielectric and magnetic properties of some gadolinium silica nanoceramics

    SciTech Connect

    Coroiu, I. Pascuta, P. Bosca, M. Culea, E.

    2013-11-13

    Some nanostructure gadolinium silica glass-ceramics were obtained undergoing a sol gel method and a heat-treatment at 1000°C about two hours. The magnetic and dielectric properties of these samples were studied. The magnetic properties were evidenced performing susceptibility measurements in the 80-300K temperature range. A Curie-Weiss behavior has acquired. The values estimated for paramagnetic Curie temperature being small and positive suggest the presence of weak ferromagnetic interactions between Gd{sup 3+} ions. The dielectric properties were evaluated from dielectric permittivity (ε{sub r}) and dielectric loss (tanδ) measurements at the frequency 1 kHz, 10 kHz and 100 kHz, in the 25-225°C temperature range and dielectric dispersion at room temperature for 79.5 kHz - 1GHz frequency area. The dielectric properties suggest that the main polarization mechanism corresponds to interfacial polarization, characteristic for polycrystalline-structured dielectrics. The polycrystalline structure of the samples is due to the polymorphous transformations of the nanostructure silica crystallites in the presence of gadolinium oxide. They were highlighted by SEM micrographs.

  1. Transport and optical properties of low-dimensional complex systems

    NASA Astrophysics Data System (ADS)

    Iurov, Andrii

    Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is further accompanied by shift of peaks as a function of the incident angle away from the head-on collision. We calculate the energy bands for graphene monolayers when electrons move through a periodic electrostatic potential in the presence of a uniform perpendicular magnetic field. We clearly demonstrate the quantum fractal nature of the energy bands at reasonably low magnetic fields. We present results for the energy bands as functions of both wave number and magnetic flux through the unit cells of the resulting moiŕe superlattice. This feature is also observed at extremely high magnetic fields. We have discovered a novel feature in the plasmon excitations for a pair of Coulomb-coupled non-concentric spherical two-dimensional electron gases (S2DEGs). Our results show that the plasmon excitations for such pairs depend on the orientation with respect to the external electromagnetic probe field. The origin of this anisotropy of the inter-sphere Coulomb interaction is due to the directional asymmetry of the electrostatic coupling of electrons in excited states which depend on both the angular momentum quantum number L and its projection M on the axis of quantization taken as the probe E-field direction. Such an effect from the plasmon spatial correlation is expected to be experimentally observable by employing circularly-polarized light or a helical light beam for incidence. The S2DEG serves as a simple model for fullerenes as well as metallic dimers, when the energy bands are far apart. Magnetoplasmons in gapped graphene have been investigated and the exchange energy dependence on magnetic field is presented.

  2. Dynamic properties of epidemic spreading on finite size complex networks

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  3. Magnetic and magnetocaloric properties of quasi-one-dimensional Ising spin chain CoV2O6

    NASA Astrophysics Data System (ADS)

    Nandi, M.; Mandal, P.

    2016-04-01

    We have investigated the magnetic and magnetocaloric properties of antiferromagnetic Ising spin chain CoV2O6 by magnetization and heat capacity measurements. Both monoclinic α-CoV2O6 and triclinic γ-CoV2O6 exhibit field-induced metamagnetic transitions from antiferromagnetic to ferromagnetic state via an intermediate ferrimagnetic state with 1/3 magnetization plateau. Due to the field-induced metamagnetic transitions, these systems show large conventional as well as inverse magnetocaloric effects. In α-CoV2O6, we observe field-induced complex magnetic phases and multiple magnetization plateaus below 6 K when the field is applied along c axis. Several critical temperatures and fields have been identified from the temperature and field dependence of magnetization, magnetic entropy change, and heat capacity to construct the H-T phase diagram. As compared to α-CoV2O6, γ-CoV2O6 displays a relatively simple magnetic phase diagram. Due to the large magnetic entropy change and adiabatic temperature change at low or moderate applied magnetic field, γ-CoV2O6 may be considered as a magnetic refrigerant in the low-temperature region below 20 K.

  4. Physicochemical [corrected] properties of the inclusion complex of puerarin and glucosyl-β-cyclodextrin.

    PubMed

    Liu, Benguo; Zhao, Jian; Liu, Yanhong; Zhu, Xiaoai; Zeng, Jie

    2012-12-26

    Puerarin is a natural isoflavone, found in the Chinese medicinal plant Ge-gen, with many reported health-promoting properties. However, its low water solubility impedes its application in pharmaceutical and functional food products. This study explores the formation of inclusion complex between puerarin and glucosyl-β-cyclodextrin (G-β-CD) to improve the aqueous solubility of puerarin. The complex was prepared by mixing an equal molar mixture of puerarin and G-β-CD for 24 h, followed by freeze-drying. The obtained complex was analyzed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, X-ray diffractometry, and proton nuclear magnetic resonance spectroscopy. Results showed clearly that the process led to the formation of a supramolecular complex in which the guest molecule, puerarin, was entrapped inside the cavity of the host, G-β-CD. The close association between puerarin and G-β-CD resulted in changes in some of the characteristic spectral, phase-transitional, and morphological properties of puerarin. PMID:23215052

  5. Magnetic Investigations in the J-M Reef Section of the Stillwater Complex, Montana

    NASA Astrophysics Data System (ADS)

    Wnukowski, J. D.; Ferre, E. C.; Butak, K. C.

    2014-12-01

    The Stillwater J-M reef, the only economic platinum deposit in the USA, consists of a 0.5 to 4 m-thick stratiform zone of platinum group element (PGE)-rich sulfides in a layered mafic intrusion. The origin of this reef, purely magmatic or related to late-stage magmatic fluids, remains ambiguous. I propose to test these two genetic hypotheses using rock magnetism. Fractional crystallization trends deduced from petrological models would produce a sharp increase in magnetite and pyrrhotite content near the solidus. In contrast, percolation of sulfur-rich fluids through a crystal mush would produce a gradual increase in magnetite and pyrrhotite up to a fluid permeability barrier. Continuous logging of the magnetic properties of drillcores, combined with petrographic observations, will allow to test these two models. Petrologic similarities between PGE reefs suggest that they share common physico-chemical origins, therefore, understanding the J-M reef genesis would have implications for other deposits such as the Bushveld Complex and the Great Dyke of Zimbabwe. The J-M reef formation has been explained by two alternative models: 1) magmatic model - magma replenishment causes thermal convection at the interface between two magmas, inducing PGE leaching by a sulfur-saturated magma, followed by precipitation of sulfide droplets; 2) fluid fluxing model - a sulfur-rich residual, late magmatic fluid migrates upward through the crystal mush leading to PGE concentration along a magmatic permeability barrier against the hanging wall. Both models account for the majority of geochemical and petrological observations and may not be fundamentally mutually exclusive. However, understanding the origin of PGE reefs would certainly benefit from new approaches. Preliminary data shows systematic inch-scale cycling variations of magnetic susceptibility (Km) in the hanging-wall that supports the magmatic model. The discovery of this magnetic cyclicity matters because this core does not display any macroscopically visible layering. Magnetic measurements (thermomagnetic experiments, magnetic hysteresis and first order reversal curves), in conjunction with detailed petrographic observations on selected specimens, will be performed to evaluate the significance of this cyclic feature.

  6. The rapid rotation and complex magnetic field geometry of Vega

    NASA Astrophysics Data System (ADS)

    Petit, P.; Lignières, F.; Wade, G. A.; Aurière, M.; Böhm, T.; Bagnulo, S.; Dintrans, B.; Fumel, A.; Grunhut, J.; Lanoux, J.; Morgenthaler, A.; Van Grootel, V.

    2010-11-01

    Context. The recent discovery of a weak surface magnetic field on the normal intermediate-mass star Vega raises the question of the origin of this magnetism in a class of stars that was not previously known to host detectable magnetic fields. Aims: We aim to confirm the field detection reported by Lignières et al. (2009, A&A, 500, L41) and provide additional observational constraints about the field characteristics, by modelling the large-scale magnetic geometry of the star and by investigating a possible seasonal variability of the reconstructed field topology. Methods: We analyse a total of 799 high-resolution circularly-polarized spectra collected with the NARVAL and ESPaDOnS spectropolarimeters during 2008 and 2009. Using about 1100 spectral lines, we employ a cross-correlation procedure to compute, from each spectrum, a mean polarized line profile with a signal-to-noise ratio of about 20 000. The technique of Zeeman-Doppler Imaging is then used to determine the rotation period of the star and reconstruct the large-scale magnetic geometry of Vega at two different epochs. Results: We confirm the detection of circularly polarized signatures in the mean line profiles. The signal shows up in four independent data sets acquired with both NARVAL and ESPaDOnS. The amplitude of the polarized signatures is larger when spectral lines of higher magnetic sensitivity are selected for the analysis, as expected for a signal of magnetic origin. The short-term evolution of polarized signatures is consistent with a rotational period of 0.732 ± 0.008 d. The reconstruction of the magnetic topology unveils a magnetic region of radial field orientation, closely concentrated around the rotation pole. This polar feature is accompanied by a small number of magnetic patches at lower latitudes. No significant variability in the field structure is observed over a time span of one year. Conclusions: The repeated observational evidence that Vega possesses a weak photospheric magnetic field strongly suggests that a previously unknown type of magnetic stars exists in the intermediate-mass domain. Vega may well be the first confirmed member of a much larger, as yet unexplored, class of weakly-magnetic stars now investigatable with the current generation of stellar spectropolarimeters. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  7. Physical and magnetic properties of highly anisotropic cobalt ferrite particles

    NASA Astrophysics Data System (ADS)

    Virden, A.; Wells, S.; O'Grady, K.

    2007-09-01

    Highly crystalline cobalt ferrite nanoparticles have been prepared in order to investigate the cubic anisotropy of these materials. The particles were prepared by co-precipitation and the decomposition of an organo-metallic complex. Physical characterization was carried out by TEM from which it was determined that the samples had median particle sizes between 5.1 and 12.5 nm. The crystallinity of the particles was investigated by high-resolution TEM. Magnetic measurements of remanence and coercivity as a function of temperature were carried out using vibrating sample magnetometers. Squarenesses of above 0.5 were measured at low temperatures confirming the cubic anisotropy of the materials. An anisotropy field of 1.6 T was extracted from the measurement of coercivity as a function of temperature for highly crystalline samples. The large magnetocrystalline anisotropy leads to these particles potential applications as magnetic inks and hysteresis heating for biomedical uses.

  8. The physical properties and unusual pyrolysis behaviour of a supramolecular complex of β-cyclodextrin and potassium ferrioxalate.

    PubMed

    Dang, Zheng; Song, Le Xin; Yang, Jun; Chen, Jie; Teng, Yue

    2012-03-14

    The thermal pyrolysis behaviour of a complex of β-cyclodextrin (CD) and potassium ferrioxalate (PF) was analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Two rare inorganic ions: CO(2)(2+) and O(4)(+), neither of which was found in the cases of free β-CD and PF, were synchronously observed during the decomposition of the complex. Our observations led to proposed formation mechanisms of the ions, in which the structural transformation of a metastable intermediate ion (C(2)H(4)O(3)(+)) was employed to qualitatively explain our data. Besides this, the formation, structure and magnetic properties of the complex were evaluated carefully. First, XPS analysis indicates a decrease of electron densities of Fe(III) ions in the presence of β-CD. We think that this is due to an effect of the noncovalent complexation between PF and β-CD. This gives an indication on the effect of second sphere coordination of β-CD on the electronic structure of the Fe(III) in the first coordination sphere. Second, structural changes in stacking modes and morphologies provide further support for the noncovalent complexation. For example, the surface feature of the complex gives us an impression that both β-CD and PF are evenly dispersed with each other. Also, the complex presents a uniform sponge-like porous nanostructure with diameters of less than 50 nm. This seems to be an important reason for those changes that occurred in the thermal analysis. Finally, the result of magnetic experiments implies that the coordination compound PF upon complexation with β-CD will experience a gradual decrease in magnetization with the increase of magnetic fields. These observations have significant implications for a better understanding of the importance of the construction and deconstruction of a second sphere coordination in modifying the physical properties of an σ-coordination compound. PMID:22278673

  9. Growth process and magnetic properties of ?-FeSe nanostructures

    SciTech Connect

    Li, S. J.; Li, D. Jiang, J. J.; Liu, G. B.; Ma, S.; Liu, W.; Zhang, Z. D.

    2014-05-07

    Growth process and magnetic properties of PbO-type ?-Fe{sub x}Se nanostructures with shape changing from nanocacti to nanopetals and then to nanosheets are investigated. With iron acetylacetonate [Fe(acac){sub 3}] and Se powder as raw materials, the diffusion process of Fe atoms dominates the synthesis of ?-Fe{sub x}Se nanocacti following phase transitions from FeSe{sub 2} to Fe{sub 3}Se{sub 4} and finally to ?-Fe{sub x}Se. When a mixed solution containing Se precursor and Fe(acac){sub 3} was used as the raw material, the formation of FeSe{sub 2} and Fe{sub 3}Se{sub 4} can be avoided and, bended ?-Fe{sub x}Se nanopetals can be prepared at 345?C, which became flat nanosheets with a [001] preferred orientation as extending the reaction time from 1 to 4 h. No superconducting transition occurs in the ?-Fe{sub x}Se (0.84???x???1.05) nanostructures due to composition heterogeneity or size effect. Magnetic measurements indicate that an antiferromagnetic component with a Nel point at about 45 K dominates the magnetic properties of the ?-Fe{sub 0.87}Se nanosheets.

  10. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    NASA Astrophysics Data System (ADS)

    Pariona, N.; Camacho-Aguilar, K. I.; Ramos-González, R.; Martinez, Arturo I.; Herrera-Trejo, M.; Baggio-Saitovitch, E.

    2016-05-01

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a "plum pudding", where hematite NPs "raisins" are surrounded by ferrihydrite "pudding". Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere.

  11. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  12. Distribution of Helical Properties of Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kuzanyan, Kirill M.; Lamburt, Victor G.; Zhang, Hong-Qi; Bao, Shu-Dong

    2003-06-01

    We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic magnetographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss other regularities which can be revealed by further analysis such as possible dependence on longitude, time, and magnetic field strength, etc.

  13. Surface-induced rearrangement of polyelectrolyte complexes: influence of complex composition on adsorbed layer properties.

    PubMed

    Ondaral, Sedat; Ankerfors, Caroline; Odberg, Lars; Wgberg, Lars

    2010-09-21

    The adsorption characteristics of two different types of polyelectrolyte complexes (PECs), prepared by mixing poly(allylamine hydrochloride) and poly(acrylic acid) in a confined impinging jet (CIJ) mixer, have been investigated with the aid of stagnation point adsorption reflectometry (SPAR), a quartz crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM) using SiO(2) surfaces. The two sets of PEC were prepared by combining high molecular mass PAH/PAA (PEC-A) and low molecular mass PAH/PAA (PEC-B). The PEC-A showed a higher adsorption to the SiO(2) surfaces than the PEC-B. The adsorption of the PEC-A also showed a larger change in the dissipation (?D), according to the QCM-D measurements, suggesting that the adsorbed layer of these complexes had a relatively lower viscosity and a lower shear modulus. Complementary investigations of the adsorbed layer using AFM imaging showed that the adsorbed layer of PEC-A was significantly different from that of PEC-B and that the changes in properties with adsorption time were very different for the two types of PECs. The PEC-A complexes showed a coalescence into larger block of complexes on the SiO(2) surface, but this was not detected with the PEC-B. The size determinations of the complexes in solution showed that they were very stable over time, and it was therefore concluded that the coalescence of the complexes was induced by the interaction between the complexes and the surface. The results also indicated that polyelectrolytes can migrate between the different complexes adsorbed to the surface. The results also give indications that the preparation of PEC-B leads to the formation of two different types of polyelectrolyte complexes differing in the amount of polymer in the complexes; i.e., two populations of complexes were formed with similar sizes but with totally different adsorption structures at the solid-liquid interface. PMID:20799704

  14. Magnetic and structural properties of MnRh thin films

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anurag; Suzuki, Takao

    2016-05-01

    A systematic study of magnetic and structural properties of MnRh thin films fabricated onto MgO substrates and amorphous SiO2 has been conducted. All the MnRh thin films thus fabricated are found to be of the CsCl type structure, and exhibit the ferromagnetism at room temperature. The coercivity of about 1.1 kOe was observed at 5 K for films grown onto SiO2 substrates, while coercivity measured at 300 K in all the films were less than 200 Oe. The temperature dependence of magnetization shows thermal hysteresis for all the samples ranging from 150 K to 250 K that varies with the substrates used. The maximum of exchange bias field of 270 Oe and unidirectional magnetic anisotropy constant of 0.35 erg/cm2 at 5K was observed for films grown onto SiO2 substrates better than that observed for the films grown onto MgO substrates. This enhanced exchange bias and unidirectional magnetic anisotropy constant in film grown onto SiO2 is attributed to the strong lattice distortion in such a case.

  15. Structure and magnetic properties of magnesium ferrite fine powders

    SciTech Connect

    Oliver, S.A.; Willey, R.J.; Hamdeh, H.H.; Oliveri, G.; Busca, G.

    1995-12-01

    Fine powders of magnesium ferrite, MgFe{sub 2}O{sub 4}, were produced through the sol-gel supercritical drying method, with two portions then being calcined at 773 K and 1,073 K. The powder structural and magnetic properties were determined from transmission electron microscope micrographs, x-ray diffraction, Moessbauer effect spectroscopy and magnetometry measurements. The powder structure matched the MgFe{sub 2}O{sub 4} spinel phase, with small amounts of {alpha}-Fe{sub 2}O{sub 3} being observed in heated samples. As-produced powders were superparamagnetic at room temperature, with single magnetic domain particle behavior being observed at low temperatures, and for the 1,073 K heated sample. The particle size distribution for the as-produced powder was evaluated separately from the micrographs, but fitting the magnetization data to a weighted Langevin function, and by fitting Moessbauer spectra taken at temperatures from 25 K to 298 K. Very similar particle size distributions were found from all three methods. The average particle diameter was 11 nm for the as-produced powder, and increased for heated samples. The saturation magnetization and magnetocrystalline anisotropy energy density values were both consistent with bulk values, in contrast to the large differences between particle and bulk values described for other fine particle systems.

  16. Magnetic properties of multilayered CoO-ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon-Jun; Hellman, Frances

    2010-03-01

    The magnetic character of CoO/ZnO multilayers is investigated at low temperature (2 - 100K). Multilayers of CoO/ZnO, with varying nominal thickness of antiferromagnetic insulating (111) cubic CoO (0.7 -- 1.6 nm) and semiconducting (002) wurtzite ZnO:Al semiconductor (0.4 -- 2.0 nm), were prepared on c-cut sapphire substrate at 550 C by rf-magnetron reactive sputtering. Magnetic, transport, and magnetotransport measurements were carried out over a temperature range of 2 to 100 K. CoO( 1.4 nm)/ZnO( 0.7 nm) shows ferromagnetism with small moment up to 100 K. Up to 10 K there is clear ferromagnetic hysteresis in the out of plane direction and no magnetic hysteresis in-plane. For thicker ZnO, no magnetic properties are observed. We suggest that at low temperature the uncompensated spins in the CoO antiferromagnetic layers are coupled by exchange interaction through the ZnO:Al layer. This research was supported by both DOE and WIN.

  17. Magnetic properties of graphite irradiated with MeV ions

    SciTech Connect

    Ramos, M. A.; Munoz-Martin, A.; Climent-Font, A.; Barzola-Quiquia, J.; Esquinazi, P.; Garcia-Hernandez, M.

    2010-06-01

    We have studied the change in the magnetic properties produced on highly oriented pyrolytic graphite samples by irradiation of H, C, and N ions in the mega-electron-volt energy range. The use of specially made sample holders for the magnetic measurements provided high reproducibility allowing us to obtain directly the irradiation effects without any corrections or subtractions. Our results show that three magnetic phenomena are triggered by the defects produced by the irradiation, namely, Curie-type paramagnetism, ferromagnetism and an anomalous paramagnetic state that appears as precursor of the magnetic ordered state. Using SRIM simulations to estimate the amount of vacancies produced by the irradiation, the Curie-type paramagnetic response indicates an effective Bohr magneton number per nominally produced vacancy p=0.27+-0.02mu{sub B}. Direct measurements of the surface sample temperature during irradiation and the decrease in the (as-received) paramagnetic as well as ferromagnetic contributions after irradiation indicate that self-heating is one of the causes for small yield of ferromagnetism. Taking into account the hydrogen distribution in the virgin samples, the obtained results indicate that the induced ferromagnetism appears when the average vacancy distance is {approx}2 nm in the near surface region.

  18. Magnetic and structural properties of MnRh thin Films

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anurag; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Suzuki, Takao

    2016-03-01

    A systematic study of magnetic and structural properties of MnRh thin films fabricated by sputter-deposition onto silica glass has been conducted. The MnRh thin films are found to be of the CsCl-type structure, and ferromagnetic at room temperature. The MnRh thin film undergoes the magnetic phase transition between antiferromagnetic and ferromagnetic states at a temperature around 175 K and 310 K during the cooling and heating process, respectively. The temperature dependence of the magnetization shows a thermal hysteresis of about 120 K. An exchange bias field of about 450 Oe at 5 K was observed with the coercivity of 900 Oe and unidirectional anisotropy constant of about 0.45 erg/cm2. The magnetic field dependence of M-T shows that the transition temperature of about 230 K remains unchanged with increasing field during the temperature variation process. A detailed STEM-EDS analysis indicates a non-uniform compositional distribution of Mn and Rh with an average composition of Mn58Rh42 at%. A high resolution STEM-HAADF analysis reveals the compositional variations within the CsCl-type MnRh grains. It is proposed that the origin of exchange bias effect is resulted from the exchange coupling between the ferromagnetic region with Mn-rich and the antiferromagnetic region with nearly the equiatomic composition.

  19. Magnetic and magnetocaloric properties of bulk dysprosium chromite

    SciTech Connect

    McDannald, A.; Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269 ; Kuna, L.; Jain, M.; Department of Physics, University of Connecticut, Storrs, Connecticut 06269

    2013-09-21

    In this work, a polycrystalline bulk DyCrO{sub 3} sample was prepared by a solution route and the structural and magnetic properties were investigated. The phase purity and ionic valence state of the DyCrO{sub 3} sample were determined by x-ray diffraction/Raman spectroscopy and x-ray photoelectron spectroscopy, respectively. The AC and DC magnetization measurements revealed the onset of antiferromagnetic order at 146 K with an effective moment of 8.88 μ{sub B}. Isothermal magnetization measurements of this material are presented for the first time, showing a peak in the coercive field at 80 K that is explained by the competition between the paramagnetic Dy{sup 3+} and Cr{sup 3+} sublattices. DyCrO{sub 3} was found to display a large magnetocaloric effect (8.4 J/kg K) and relative cooling power (217 J/kg) at 4 T applied field, which renders DyCrO{sub 3} useful for magnetic refrigeration between 5 K and 30 K.

  20. Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Siebert, R.; Schaefer, R.; Kaestner, A.; Van Swygenhoven, H.; Lehmann, E.; Grünzweig, C.

    The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.

  1. Configurations and magnetic properties of Mn-B binary clusters

    NASA Astrophysics Data System (ADS)

    Cui-Ju, FENG; Bin-Zhou, MI

    2016-05-01

    We investigate the structures and magnetic properties of boron-doped manganese clusters using first-principle density functional theory. We arrive at the lowest energy structures for clusters by simultaneously optimizing the cluster geometries, total spins, and relative orientations of individual atomic moments. For MnnB (n=2-12) clusters, the theoretical results indicate that the B atom prefers the surface site for all the lowest-energy structures except Mn10B cluster. The doped B atom enhances the stability of pure Mnn cluster. We also have studied the magnetic behavior of Mn-B clusters in the size range. Based on the analysis of the different magnetic behavior of boron-doped manganese clusters, we have further studied Mn9B2 and Mn8B3 clusters and it indicates that the doping of non-magnetism B element can induce all the Mn atoms align ferromagnetic coupling. Furthermore, a stable pearl necklace nanowire ([Mn8B3]n→∞) which retains the ferromagnetic ordering of all the manganese atoms has been predicted.

  2. Anisotropic physical properties of SC-15 epoxy reinforced with magnetic nanofillers under uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Malkina, Olga

    SC-15 epoxy is used in many industrial applications and it is well known that the mechanical and viscoelastic properties of epoxy can be significantly enhanced when reinforced with nanofillers. In this work, SC-15 epoxy is reinforced by loading with magnetically-active nanofillers and cured in a modest magnetic field. Because of the significant magnetic response of the nanofillers, this is a low cost and relatively easy technique for imposing a strong magnetic anisotropy to the system without the need of a superconducting magnet. It is also found that this method is an effective way of enhancing the mechanical properties of epoxy. Three systems were prepared and studied. The first is a dilute system of various concentrations of Fe2O3 nanoparticles in SC-15 epoxy. The second systems is a combination of Fe2O3 nanoparticles and chemically-functionalized single-walled carbon nanotubes (SWCNT(COOH)s) in SC-15 epoxy. The third is a dilute system of SWCNT(COOH)s decorated with Fe3O4 particles through a sonochemical oxidation process in SC-15 epoxy. Samples have an initial cure of 6 hrs in a magnetic filed of 10 kOe followed by an additional 24 hrs of post curing at room temperature. These are compared to the control samples that do not have initial field curing. Tensile and compressive stress-strain analysis of the prepared systems shows that mechanical properties such as tensile strength, tensile modulus and compressive strength are enhanced with the inclusion of these nanofillers. It is also found that there is an anisotropic enhancement of these properties with respect to the imposed curing field. An interesting phenomenon is observed with the increase in modulus of toughness and fracture strain with nanotube inclusion. These parameters are drastically enhanced after curing the systems in a magnetic field. While there is a modest shift in glass transition temperature during viscoelastic analysis, the thermal stability of the created systems is not compromised. Results of these mechanical enhancements will be compared with other nanoloading techniques from literature.

  3. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    SciTech Connect

    Jin, Ke; Sales, Brian C; Stocks, George Malcolm; Samolyuk, German D.; Daene, Markus; Weber, William J.; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  4. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity.

    PubMed

    Jin, K; Sales, B C; Stocks, G M; Samolyuk, G D; Daene, M; Weber, W J; Zhang, Y; Bei, H

    2016-01-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4-300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport propertie