Science.gov

Sample records for magnetic properties complexes

  1. Ab initio calculations on the magnetic properties of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Bodenstein, Tilmann; Fink, Karin

    2015-12-01

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  2. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    NASA Astrophysics Data System (ADS)

    Baba, Shintaro; Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in 13C-nuclear magnetic resonance (13C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  3. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    PubMed

    Van?o, Jn; Trvn?ek, Zden?k; Kozk, Ond?ej; Bo?a, Roman

    2015-01-01

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)?(H?O)?]?H?O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution. PMID:25927576

  4. Structural, Magnetic and Luminescent Properties of Lanthanide Complexes with N-Salicylideneglycine

    PubMed Central

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-01-01

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)2(H2O)2]∙H2O (1–6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution. PMID:25927576

  5. Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical

    SciTech Connect

    Wang, Ya-Li; Gao, Yuan-Yuan; Ma, Yue; Wang, Qing-Lun; Li, Li-Cun; Liao, Dai-Zheng

    2013-06-01

    Five novel Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized, characterized structurally and magnetically: [Ln(hfac)?(NITPh-3-Br-4-OMe)?] (Ln(III)=Eu(1), Gd(2), Tb(3), Dy(4), Ho(5); hfac=hexafluoroacetylacetonate; and NITPh-3-Br-4-OMe=2-3-Br-4-methoxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide). The single-crystal structures analyses show that these complexes have similar mononuclear tri-spin structures, in which central Ln(III) ions are all eight coordinated by three hfac molecules and two NITPh-3-Br-4-OMe radicals. The variable-temperature magnetic susceptibility studies reveal the antiferromagnetic interactions between the paramagnetic ions (Ln(III) and radicals) in complexes 1, 2, 3 and 5 and ferromagnetic interaction in complex 4. The luminescence characterizations of complexes Eu(1), Tb(3) and Dy(4) are also studied in this paper. - Graphical abstract: Using a novel halogen phenyl-substituted nitronyl-nitroxide radical, we obtained and characterized five isostructural lanthanide mononuclear tri-spin compounds. Highlights: A new halogen phenyl-substituted nitronyl-nitroxide radical was designed. Five new Ln(III) radical complexes have been synthesized and characterized. The reasonable evaluation the magnetic interactions between Ln(III) ions and radical is meaningful. These complexes show good luminescent properties.

  6. Magnetic properties and moessbauer spectra of several iron (3) dicarboxylic acid complexes

    NASA Astrophysics Data System (ADS)

    Dziobkowski, C. T.; Wrobleski, J. T.; Brown, D. B.

    1980-10-01

    Polymeric iron (3) complexes of malonic, succinic, furmaric, and phthalic acids have been prepared and studied by variable-temperature (15-300 K) magnetic susceptibility, 57Fe Mossbauer spectroscopy, and infrared spectroscopy. In addition, properties of iron(3) acetate have been reinvestigated using these same techniques. The magnetic susceptibilities of these complexes have been described by a theoretical model which includes, in addition to intramodular exchange terms, a parameter describing intermolecular spin-exchange effects. As a consequence of this model it was not necessary to assume an isosceles triangular arrangement of the iron(3) ions in these materials in order to explain the magnetic data. Thus, the inclusion of an intertrimer exchange parameter, which varies from 1/2.1 cm for the acetate complex to 1/11.7 cm for the o-phthalate complex allowed for a complete description of the temperature-dependence of the magnetic susceptibilty of these compounds. Mossbauer and infrared spectroscopic studies were utilized to ascertain the correctness of oxidation state and structural assignments.

  7. Theoretical research on optical, thermal and magnetic properties of dichlorotetrapyrazolenickel (type II) complex

    NASA Astrophysics Data System (ADS)

    Zhan-xian, Yan; Xiao-qing, Zhou; Wei, Dai

    1997-04-01

    In this paper, we have calculated and analyzed theoretically and consistently the absorption spectra, the ZFS and EPR parameters of the ground state, the Schottky low-temperature heat capacity, and the paramagnetic susceptibility of Ni(pz)4Cl2 (Dichlorotetrapyrazolenickel) complex by using d8[(1 - C2)D4h* + C2D2h*] complete configuration mixing unified crystal field theory. The theoretical results agree with the experimental observation very well. We can give a complete and reasonable theoretical interpretation of the optical, thermal and magnetic properties of Ni(pz)4Cl2.

  8. Two acentric mononuclear molecular complexes with unusual magnetic and ferroelectric properties.

    PubMed

    Zhao, Fang-Hua; Che, Yun-Xia; Zheng, Ji-Min; Grandjean, Fernande; Long, Gary J

    2012-04-16

    Two acentric, i.e., noncentrosymmetric, mononuclear complexes, Co(5-ATZ)(4)Cl(2), 1, and Cu(5-ATZ)(4)Cl(2), 2, where 5-ATZ is the monodentate 5-amino-1-H-tetrazole ligand, have been prepared and characterized. Both complexes crystallize in the tetragonal system with the P4nc space group, a member of the polar noncentrosymmetric 4mm class, and thus both 1 and 2 can exhibit ferroelectric and nonlinear optical properties. Magnetic studies indicate that 1 is a paramagnetic high-spin cobalt(II) complex with a rather extensive spin-orbit coupling, modeled as a zero-field splitting parameter, D, of 91(3) cm(-1) and with very weak long-range antiferromagnetic exchange interactions. Direct current (dc) and ac magnetic studies indicate that 2 is a paramagnetic copper(II) complex that exhibits weak ferromagnetic exchange interactions below 15 K. Both 1 and 2 exhibit ferroelectric hysteresis loops at room temperature with remanent polarizations of 0.015 ?C/cm(2) and coercive electric fields of 5.5 and 5.7 kV/cm, respectively. PMID:22480292

  9. Syntheses, structure, magnetic and thermodynamics property of novel lanthanide complexes with nitronyl nitroxide radical

    NASA Astrophysics Data System (ADS)

    Song, Mei-Ying; Hou, Yi-Fang; Wen, Long-Mei; Wang, Shu-Ping; Yang, Shu-Tao; Zhang, Jian-Jun; Geng, Li-Na; Shi, Shi-Kao

    2016-03-01

    Four new nitronyl nitroxide radical-Ln(III) complexes, Ln(hfac)3(NITPhSCF3)2 (Ln(III) = Sm(1), Gd(2), Tb(3), Dy(4); NITPhSCF3 = 2-(4-trifluoromethylthiophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl- 3-oxide; hfac = hexafluoroacetylacetonate), have been synthesized and characterized. They are isostructural, which show mononuclear tri-spin structures. The central Ln(III) ion is eight-coordinated by three hfac anions and two NITPhSCF3 molecules. Direct-current magnetic study shows that there exist ferromagnetic interactions between Gd(III) ion and radicals (NITPhSCF3) with JGd-Rad = 1.61 cm-1, and antiferromagnetic interactions between radicals with JRad-Rad = -2.83 cm-1 in complex 2. The magnetic analysis with the rough approximate model show that a ferromagnetic coupling exists between Tb(III) and radical in 3, while a antiferromagnetic coupling between Dy(III) and radical in 4. The thermodynamics properties of four complexes were studied with differential scanning calorimetry (DSC), such as heat capacity, thermodynamic functions (HT-H298.15K), (ST-S298.15K), and (GT-G298.15K).

  10. Selected spectroscopic and magnetic properties of lanthanide complexes in polyimide XU-218

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; Shillady, D. D.; Vallarino, L. M.; Gootee, W. A.; Smailes, D. L.

    1987-01-01

    Polyimide XU-218 films containing approximately 5 wt pct of Eu(III), Gd(III), Tb(III), and Er(III) were prepared, and the effects of complexing each of the metals with the following four ligands were investigated: N-phenylphthalamate (NPPA), 2,4-pentanedionate (AcAc), 1,3-diphenyl 1,3-propanedionate (DBM), and a new hexa-aza-macrocyclic (MAC) ligand. The tris-chelated complexes of the mononegative ligands NPPA, AcAc, and DBM produced transparent, flexible films, which had magnetic and spectral properties very similar to those of the parent lanthanide complexes, while complexes of MAC showed problems due to the presence of lattice water and yielded dark brittle films. AcAc caused little or no effect on the glass transition temperature (Tg), while NPPA and DBM complexes lowered Tg to 269-290 C, and MAC indicated moisture by inflexion at 95-100 C with a true Tg at 320 C. All lanthanide-containing films were paramagnetic.

  11. On properties of the Ising model for complex energy/temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Matveev, Victor; Shrock, Robert

    2008-04-01

    We study some properties of the Ising model in the plane of the complex (energy/temperature)-dependent variable u = e-4K, where K = J/(kBT), for nonzero external magnetic field, H. Exact results are given for the phase diagram in the u plane for the model in one dimension and on infinite-length quasi-one-dimensional strips. In the case of real h = H/(kBT), these results provide new insights into features of our earlier study of this case. We also consider complex h = H/(kBT) and ? = e-2h. Calculations of complex-u zeros of the partition function on sections of the square lattice are presented. For the case of imaginary h, i.e., ? = ei?, we use exact results for the quasi-1D strips together with these partition function zeros for the model in 2D to infer some properties of the resultant phase diagram in the u plane. We find that in this case, the phase boundary {\\cal B}_u contains a real line segment extending through part of the physical ferromagnetic interval 0 <= u <= 1, with a right-hand endpoint urhe at the temperature for which the Yang-Lee edge singularity occurs at ? = ei?. Conformal field theory arguments are used to relate the singularities at urhe and the Yang-Lee edge.

  12. Structural and magnetic properties of cobalt(II) complexes with pyridinecarboxamide ligands

    NASA Astrophysics Data System (ADS)

    Dojer, Brina; Pevec, Andrej; Belaj, Ferdinand; Jagličić, Zvonko; Kristl, Matjaž; Drofenik, Miha

    2014-11-01

    The synthesis and characterization of two new cobalt(II) coordination compounds with nicotinamide (nia) and isonicotinamide (isn) are reported. The products were characterized magnetically, structurally by single-crystal X-ray diffraction analysis and spectrally by FT-IR spectroscopy. Using the reaction of cobalt(II) acetate tetrahydrate and nicotinamide in methanol we obtained light-red crystals of the mononuclear complex [Co(nia)2(H2O)4](CH3COO)2·2H2O (1). The synthesis in a system cobalt(II) acetate dihydrathe, isonicotinamide and dimethylformamide-methanol mixture gave a new dinuclear coordination compound with the formula [Co2(CH3COO)4(isn)4]·2C3H7NO (2). In both compounds a trans arrangement of pyridinecarboxamide ligands was found. Intermolecular hydrogen bonds in the crystal structures of both complexes are discussed. The magnetic properties were studied between 2 K and 300 K giving the result μeff = 4.6 BM for 1 and μeff = 4.7 BM for 2 in the paramagnetic region.

  13. Synthesis, crystal structure and magnetic properties of a novel copper(II) complex with sulfoisophthalic acid

    NASA Astrophysics Data System (ADS)

    Kurc, Teresa; Videnova-Adrabinska, Veneta; Turowska-Tyrk, Ilona; Duczmal, Marek; Jerzykiewicz, Maria

    2013-12-01

    A new Cu(II) complex, [Cu2(?2-OH2)2(HSIP)2(H2O)6] (H3SIP = 5-sulfoisophthalic acid), has been synthesized and characterized by single crystal X-ray diffraction, EPR spectroscopy (X- (9.5 GHz) and Q-band (35 GHz)) and magnetic measurements. The solid state structure of the complex consists of coordination dimers [Cu2(?2-OH2)2(HSIP)2(H2O)6] which are hydrogen bonded into 3D network. The neighbouring metal ions form a rare example of centrosymetric dinuclear core [Cu2(?2-OH2)2] with equatorial - axial positions of the bridging ligands. The coordination dimers are organized into inorganic monolayers via water-sulfonate hydrogen bond intractions, and further linked in 3D structure via carboxylic-carboxylic hydrogen bond intractions. The magnetic properties and EPR spectra are discussed in terms of crystal structure features. The X- and Q-band EPR spectra exhibit fine structure signals due to S = 1 and the simulated parameters indicate small zero field splitting parameter Dexp (-0.035 cm-1) dominated by Ddip (-0.031 cm-1). A usually forbidden ?Ms = 2 line of lower intensity is observed in the half field region at about 150 mT. The susceptibility data have been analyzed using a spin-ladder model with both ferromagnetic (rungs) and antiferromagnetic (legs) coupling.

  14. Magnetic properties of trinuclear Ni-M-Ni complexes, M = Mn, Co and Ni

    NASA Astrophysics Data System (ADS)

    Atakol, Orhan; Bo?a, Roman; Ercan, Ismail; Ercan, Filiz; Fuess, Hartmut; Haase, Wolfgang; Herchel, Radovan

    2006-05-01

    A tetradentate ligand, abbr. L 2- = dmSALPD 2- = N, N'-bis(salicylidene)-1,3-propanediaminato dianion, has been complexed with metal ions in the presence of dimethylformamide (dmf) and nitrite anion. As a result, trinuclear molecular complexes of the type [M II{Ni(NO 2)(L 2-)(dmf)} 2], where M II = Mn(II), Co(II) and Ni(II) were obtained. The magnetic susceptibility and magnetization data were treated simultaneously during the fitting procedure. In addition to the isotropic exchange, the zero-field splitting parameters DA were added to the spin Hamiltonian. An anti-ferromagnetic interaction was found in all complexes and the single ion magnetic anisotropy parameter for the Ni(II) peripheral centers adopt considerable values.

  15. Syntheses, structures, and magnetic properties of homodinuclear lanthanide complexes based on dinucleating Schiff base ligands.

    PubMed

    Gao, Feng; Yang, Feng-Lei; Zhu, Guang-Zhou; Zhao, Yue

    2015-11-18

    The first two families of homodinuclear lanthanide(iii) complexes, formulated as [(LOEt)2Ln2(L1)] and [(LOEt)2Ln2(L2)] (Ln(3+) = Dy(3+), Tb(3+), Ho(3+), Gd(3+), and Y(3+); L1(4-) = 2,2',2'',2'''-[1,2,4,5-benzenetetrayltetrakis(nitrilomethylidyne)]tetrakisphenolate; L2(4-) = 2,2',2'',2'''-[[1,1'-biphenyl]-3,3',4,4'-tetrayltetrakis(nitrilomethylidyne)]tetrakis(4-chlorophenolate); LOEt(-) = (?(5)-cyclopentadienyl)tris(diethylphosphito-p)cobaltate(iii)), were successfully synthesized based on Klui's tripodal building block NaLOEt and two dinucleating Schiff base ligands, and , respectively. Single-crystal X-ray analyses show that these lanthanide complexes have two seven-coordinated metal binding sites, linked to each other with a phenyl or biphenyl bridge. Variable temperature dc magnetic measurements reveal the weakly antiferromagnetic coupling between paramagnetic lanthanide ions, while ac magnetic data exhibit the field-induced relaxation of magnetization for the corresponding Dy2 complexes and . A further magnetic dilution study for suggests that the slow magnetic relaxation originates from the single-ion magnetic behaviour of Dy(3+) ions. PMID:26537229

  16. Magnetic properties of the tetranitrosyl-iron complex Fe2(SC3H5N2)2(NO)4

    NASA Astrophysics Data System (ADS)

    Morgunov, R. B.; Kurganova, E. V.; Aldoshin, S. M.; Sanina, N. A.; Rudneva, T. N.

    2007-09-01

    The magnetic properties of the binuclear nitrosyl-iron complexes Fe2(SC3H5N2)2(NO)4 are investigated. It is demonstrated that several types of particles, such as dimers with a pair of spins 1/2, dimers with a pair of spins 5/2, and paramagnetic particles with spin 3/2, make a contribution to the magnetic properties of the complexes. A decrease in the temperature below 25 K leads to a change in the shape of the EPR spectra corresponding to these dimers, so that Lorentzian lines (homogeneous broadening) transform into Gaussian lines (inhomogeneous broadening). This is accompanied by a stepwise change in the EPR line width and g factors. The change in the line shape indicates that complexes become asymmetric at low temperatures, possibly, due to the decrease in the spin exchange frequency below the frequency of the microwave field of the spectrometer.

  17. Magnetic and structural properties of dinuclear singly bridged-phenoxido metal(II) complexes.

    PubMed

    Massoud, Salah S; Spell, Mark; Ledet, Catherine C; Junk, Thomas; Herchel, Radovan; Fischer, Roland C; Trvn?ek, Zden?k; Mautner, Franz A

    2015-02-01

    The reaction of a methanolic solution containing the bi-compartmental phenolic ligand 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-chlorophenol (L(Cl)-OH) with MCl2nH2O in the presence of NH4PF6 or NaClO4 afforded the dinuclear bridged-phenoxido dichlorido-metal(ii) complexes [Co2(?-L(Cl)O)(H2O)2Cl2][Co2(?-L(Cl)O)(MeOH)2Cl2](PF6)2 (), [Ni2(?-L(Cl)O)(MeOH)2Cl2]PF6 (), [Ni2(?-L(Cl)O)(MeOH)(H2O)Cl2]ClO41.25H2O (), [Cu2(?-L(Cl)O)Cl2]PF61/2MeOH () and [Zn2(?-L(Cl)O)Cl2]PF6MeOH (). The complexes were characterized by elemental microanalyses, conductivity measurements, IR and UV-Vis spectroscopy, mass spectrometry and single crystal X-ray crystallography. Each M(ii) center within the dinuclear complex cations is octahedrally coordinated in complexes , and five-coordinated distorted square pyramidal in and . Magnetic susceptibility measurements at variable temperature of the complexes revealed weak to moderate antiferromagnetic coupling with |J| values = 8.38, 39.0, 30.2 and 0.79 cm(-1), respectively. The results of DFT calculations correlate well with the experimentally determined antiferromagnetic coupling and show that the magnetic exchange coupling occurs mainly through the phenoxido bridge M-O-M. Implications of geometry around the central metal ion, MM distance, M-O-M bond angle and overlapping of magnetic orbitals on the magnetic exchange coupling are discussed. PMID:25502556

  18. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hnninen, Mikko M; Vlivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanp, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals. PMID:23363337

  19. Multiple magnetic relaxation processes, magnetocaloric effect and fluorescence properties of rhombus-shaped tetranuclear rare earth complexes.

    PubMed

    Gao, Hong-Ling; Jiang, Li; Liu, Shuang; Shen, Hai-Yun; Wang, Wen-Min; Cui, Jian-Zhong

    2015-12-14

    Seven new tetranuclear rare earth (RE) complexes [RE4(acac)4L6(?3-OH)2] (HL = 5-(4-fluorobenzylidene)-8-hydroxylquinoline; acac = acetylacetonate; RE = Y (), Eu (), Gd (), Tb (), Dy (), Tm () and Lu ()) have been synthesized and completely characterized. Complex exhibits multiple zero-field slow magnetic relaxation processes typical of Single Molecule Magnets (SMMs). Two distinct slow magnetic relaxation processes, with effective energy barriers of Ueff = 48 K for the slow relaxation (SR) process and Ueff = 121 K for the fast relaxation (FR) process, are mainly attributed to the presence of two crystallographically independent Dy(iii) sites. The magnetocaloric effect (MCE) was detected as -?Sm(T) = 20.8 J kg(-1) K(-1) for complex . The fluorescence properties of complexes , , , and were also investigated. Complexes , and show the characteristic peaks for their corresponding RE(iii) center, while complexes and show similar emission peaks to the Schiff base ligand when they are excited at the appropriate wavelength. PMID:26600114

  20. Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex.

    PubMed

    Mathonire, Corine; Lin, Hsiu-Jung; Siretanu, Diana; Clrac, Rodolphe; Smith, Jeremy M

    2013-12-26

    The four-coordinate Fe(II) complex, PhB(MesIm)3Fe-N?PPh3 (1) has been previously reported to undergo a thermal spin-crossover (SCO) between high-spin (HS, S = 2) and low-spin (LS, S = 0) states. This complex is photoactive below 20 K, undergoing a photoinduced LS to HS spin state change, as determined by optical reflectivity and photomagnetic measurements. With continuous white light irradiation, 1 displays slow relaxation of the magnetization, i.e. single-molecule magnet (SMM) properties, at temperatures below 5 K. This complex provides a structural template for the design of new photoinduced mononuclear SMMs based on the SCO phenomenon. PMID:24313622

  1. Lanthanide salen-type complexes exhibiting single ion magnet and photoluminescent properties.

    PubMed

    Ren, Min; Xu, Zhong-Li; Bao, Song-Song; Wang, Ting-Ting; Zheng, Ze-Hua; Ferreira, Rute A S; Zheng, Li-Min; Carlos, Luis D

    2016-02-21

    Salen-type mononuclear lanthanide complexes with formula (Et3NH)[Ln(3-NO2-salen)2]solvent (Ln = Eu (1Eu), Tb (2Tb), Dy (3Dy), Ho (4Ho), Er (5Er), Yb (6Yb); 3-NO2-salen(2-) = N,N'-bis(3-nitro-salicylaldehyde)ethylenediamine dianion) are reported. These compounds are isostructural in which two crystallographically distinct 3-NO2-salen(2-) act as tetradentate ligands encapsulating the lanthanide ions in a meridional mode forming the [LnN4O4] cores. Slow magnetization relaxation processes associated with single ion magnet (SIM) behaviors are observed in complexes 3Dy, 5Er and 6Yb with the Kramer ions but not in 2Tb and 4Ho with non-Kramer ions. Photoluminescence studies reveal that complexes 1Eu, 5Er and 6Yb exhibit characteristic lanthanide luminescence with sharp and well-separated emission bands. Complex 1Eu is of particular interest in which the organic ligand functioning as a powerful absorbing sensitizer apparently broadens the excitation range into 300-500 nm with the maximum of 460 nm. PMID:26754592

  2. Physical properties of magnetic macromolecule-metal and macromolecule-metal oxide nanoparticle complexes

    NASA Astrophysics Data System (ADS)

    Zalich, Michael Andrew

    Magnetic nanoparticles are of considerable interest owing to their potential applications in biotechnology and the magnetic recording industry. Iron oxides have received much attention owing to their oxidative stability and biocompatibility; however, other transition metals and their alloys are also under investigation. Cobalt has one of the largest magnetic susceptibilities of these materials, but it readily oxidizes upon exposure to air resulting in antiferromagnetic oxide. Hence, coating cobalt nanoparticles with an oxygen-impermeable sheath would confer numerous benefits. Cobalt nanoparticles were prepared by the thermolysis of dicobalt octacarbonyl in two block copolymer micellar systems, wherein the copolymers were precursors to graphite or silica. Subsequent heat treatment of the samples at 600--700C was conducted to condense the polymer coating around the cobalt nanoparticles and form oxygen impervious graphite or silica sheaths. Magnetic and structural characterization of these novel materials afforded pertinent information about their physical properties. Magnetic susceptometry indicated that the graphite coated cobalt nanoparticles resisted oxidation far over one year. The silica coated cobalt nanoparticles had high saturated specific magnetic moments, but the coatings were brittle and grinding the particles resulted in oxidation over time. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and energy-filtered TEM (EFTEM) were employed to study particle size and structural differences of the cobalt nanoparticles before and after heat treatment. The mean particle size and size distribution increased for the graphite coated cobalt particles, due to particle sintering at 700C. In the silica coated cobalt nanoparticle system, the mean particle size increased when the sample was heat-treated at 600C leading to a bimodal distribution. This bimodal distribution was explained by a fraction of the particles sintering, while others remained discrete. When the silica system was heat treated at 700C, the particle size and size distribution remained similar to those of the pre-heat-treated sample, indicating that no sintering had taken place. The rapid pyrolysis of the polymer at 700C may serve to lock the cobalt nanoparticles into a silica matrix, thus preventing them from coming into contact with one another and sintering. Several diffraction techniques (selected area electron diffraction (SAD), nano-beam electron diffraction (NBD) and x-ray diffraction (XRD)) were used to probe the crystal structure of graphite and silica coated cobalt nanoparticies, which was determined to be predominantly face-centered cubic. Anisotropic magnetic nanoparticles (nanorods) have an increased magnetophoretic mobility over spherical magnetic nanoparticles with the same equatorial radius. This property makes them attractive candidates for in vivo biological applications. Anisotropic mixed ferrite nanoparticles were coated with a biocompatible hydrophilic block copolymer to render them dispersible in aqueous media. Polymer coated mixed ferrite particles exhibited magnetic properties similar to that of pure magnetite, as the total level of other transition metals in the nanoparticulate system was less than 5%. Electron energy loss spectroscopy (EELS) and (EFTEM) confirmed that the dominant elements in the mixed ferrite nanoparticles were iron and oxygen. Furthermore, HRTEM, SAD and XRD analyses indicated that the crystal structure for the mixed ferrite nanoparticles was inverse spinel. X-ray diffraction peaks at low angles for the coated mixed ferrite rods corresponded to poly(ethylene oxide) peaks, suggesting that the block copolymer employed as a dispersant was associated with the particles.

  3. Extended triple-bridged Ni(II)- and Co(II)-hydroxamate trinuclear complexes: synthesis, crystal structures, and magnetic properties.

    PubMed

    Tomkowicz, Z; Ostrovsky, S; Mller-Bunz, H; Eltmimi, A J Hussein; Rams, M; Brown, D A; Haase, W

    2008-08-01

    Crystal structures of new trinuclear complexes [Ni 3(mu-OAc F) 4(mu-AA) 2(tmen) 2], [Ni 3(mu-OAc F) 4(mu-BA) 2(tmen) 2], and [Co 3(mu-OAc F) 4(mu-BA) 2(tmen) 2] have been determined (OAc F = CF 3COO (-), AA = acetohydroxamate anion, BA = benzohydroxamate anion, tmen = N, N, N', N'-tetramethylethylenediamine). In each structure, the metal ions have distorted octahedral coordination and are triply bridged by one hydroxamate and two trifluoroacetate bridges. Magnetic properties of these compounds and of relative [Co 3(mu-OAc F) 4(mu-AA) 2(tmen) 2] were studied by susceptibility and magnetization measurements. It was shown that for nickel trimers the intramolecular magnetic coupling is weak ferromagnetic in the case of the complex with the AA group, and there is nearly no coupling in the case with BA group. Rather large zero field splitting was obtained for the distorted octahedral environments of the terminal nickel ions. The cobalt trimers were additionally studied by magnetic circular dichroism (MCD) measurements. The exchange interaction of the cobalt complexes is antiferromagnetic. PMID:18597418

  4. Magnetocaloric and magnetic properties of SmFe0.5Mn0.5O3 complex perovskite

    NASA Astrophysics Data System (ADS)

    Silva-Santana, M. C.; daSilva, C. A.; Barrozo, P.; Plaza, E. J. R.; de los Santos Valladares, L.; Moreno, N. O.

    2016-03-01

    In this paper, we have investigated the physical properties of SmFe0.5Mn0.5O3 complex perovskite samples, synthesized by means of combustion reaction method. X-ray powder diffraction indicates the formation of single phase perovskite with orthorhombic structure. Low magnetic field measurements show remarkable transition at 234 K related to spin reorientation. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at 18 K and at 234 K. The transition about 234 K presents inverse magnetocaloric effect. The entropy variation from magnetocaloric effect shows power law as function of applied magnetic field with maximum entropy change 5.6 J/kg K with field variation of 70 kOe. Critical exponents extracted from ΔS vs. H presents a remarkable sharp peak near antiferromagnetic to weak ferromagnetic transition temperature.

  5. Synthesis, structures, and magnetic properties of tetranuclear CuII-LnIII complexes.

    PubMed

    Costes, Jean-Pierre; Auchel, Magali; Dahan, Franoise; Peyrou, Viviane; Shova, Sergiu; Wernsdorfer, Wolfgang

    2006-03-01

    The copper(II)-gadolinium(III) and copper(II)-terbium(III) complexes studied in this report derive from disymmetric trianionic ligands abbreviated H3Li (i = 4-6). These ligands are obtained through reaction of different aldehydes with "half-units" having an amide function, the latter resulting from the monocondensation of different diamines with phenyl 2-hydroxy-3-methoxybenzoate. Upon deprotonation, the Li ligands (i = 4-10) possess an inner N2O2 coordination site with one amido, one imine, and two phenoxo functions, an outer O2O2 or O2O coordination site, and an amido oxygen atom positioned out of these two sites. The trianionic character of such ligands yields original anionic complexes in the presence of copper(II) or nickel(II) ions, with a 1/1 L/M stoichiometry. The crystal and molecular structures of four complexes, two 3d (1, 5) and two 3d-4f (12, 13) complexes, have been determined. Complex 1 crystallizes in the monoclinic space group C2/c: a = 27.528(2) A, b = 7.0944(7) A, c = 22.914(2) A, beta = 92.130(6) degrees , V = 4471.9(7) A(3), Z = 8 for C(21.5)H(27)CuKN(2)O(6.5). Complex 5 crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 11.0760(9) A, b = 21.454(2) A, c = 15.336(1) A, beta = 101.474(1) degrees , V = 3571.5(5) A(3), Z = 4. Complex 12 crystallizes in the triclinic space group P (No. 2): a = 8.682(2) A, b = 11.848(2) A, c = 11.928(2) A, alpha = 81.77(3) degrees , beta = 89.17(3) degrees , gamma = 85.49(3) degrees , V = 1210.6(4) A(3), Z = 2 for C20H22CuN5O11Tb. Complex 13 belongs to the monoclinic space group C2/c: a = 25.475(5)A, b = 12.934(3)A, c = 15.023(3) A, beta = 91.06(3) degrees , V = 4949.02A3, Z = 8 for C21H25CuN4O12Tb. The structural determinations confirm that the dinuclear entities involved in 12 and 13 are disposed in a head-to-tail arrangement to give tetranuclear complexes in which the copper and lanthanide ions are positioned at the vertexes of a rectangle. In the [Cu-Gd]2 species, there are two different ferromagnetic Cu-Gd interactions. The stronger one is supported by the double phenoxo bridge (CuO2Gd) while the weaker one corresponds to the single amido bridge (Cu-N-C-O-Gd). Replacement of gadolinium ions with anisotropic terbium ions yields tetranuclear entities showing slow relaxation of magnetization and magnetization hysteresis. Detailed relaxation and hysteresis loop studies establish single-molecule magnet (SMM) behavior which is influenced by weak intermolecular interactions. PMID:16499353

  6. Structure and magnetic properties of a neutral dimeric copper (II) complex of N-(2-hydroxybenzyl)glycinamide ligand

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobai; Ding, Jun; Ranford, John D.; Vittal, Jagadese J.

    2003-05-01

    A copper (II) complex ([Cu2(sglym)2(NO3)2]) of tridentate reduced Schiff base ligands, namely, (N-(2-hydroxybenzyl)-glycinamide (Hsglym) was synthesized and characterized in the solid state by single crystal x-ray diffraction techniques. The two Cu(II) atoms are bridged by two phenolate oxygen atoms in the neutral dimers and the geometry of Cu(II) can be described as a distorted square pyramid. The Cu-Cu distances are 3.020(2) . The magnetic properties of the complex were studied at variable temperatures. Transition of spin state (from spin zero to spin one) was observed due to thermal excitation. This transition of spin state observed in the temperature range 100-400 K was accompanied by magnetic viscosity.

  7. Targeted crystal growth of rare Earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity.

    PubMed

    Schmitt, Devin C; Drake, Brenton L; McCandless, Gregory T; Chan, Julia Y

    2015-03-17

    The single-crystal growth of extended solids is an active area of solid-state chemistry driven by the discovery of new physical phenomena. Although many solid-state compounds have been discovered over the last several decades, single-crystal growth of these materials in particular enables the determination of physical properties with respect to crystallographic orientation and the determination of properties without possible secondary inclusions. The synthesis and discovery of new classes of materials is necessary to drive the science forward, in particular materials properties such as superconductivity, magnetism, thermoelectrics, and magnetocalorics. Our research is focused on structural characterization and determination of physical properties of intermetallics, culminating in an understanding of the structure-property relationships of single-crystalline phases. We have prepared and studied compounds with layered motifs, three-dimensional magnetic compounds exhibiting anisotropic magnetic and transport behavior, and complex crystal structures leading to intrinsically low lattice thermal conductivity. In this Account, we present the structural characteristics and properties that are important for understanding the magnetic properties of rare earth transition metal intermetallics grown with group 13 and 14 metals. We present phases adopting the HoCoGa5 structure type and the homologous series. We also discuss the insertion of transition metals into the cuboctahedra of the AuCu3 structure type, leading to the synthetic strategy of selecting binaries to relate to ternary intermetallics adopting the Y4PdGa12 structure type. We provide examples of compounds adopting the ThMn12, NaZn13, SmZn11, CeCr2Al20, Ho6Mo4Al43, CeRu2Al10, and CeRu4Al16-x structure types grown with main-group-rich self-flux methods. We also discuss the phase stability of three related crystal structures containing atoms in similar chemical environments: ThMn12, CaCr2Al10, and YbFe2Al10. In addition to dimensionality and chemical environment, complexity is also important in materials design. From relatively common and well-studied intermetallic structure types, we present our motivation to work with complex stannides adopting the Dy117Co57Sn112 structure type for thermoelectric applications and describe a strategy for the design of new magnetic intermetallics with low lattice thermal conductivity. Our quest to grow single crystals of rare-earth-rich complex stannides possessing low lattice thermal conductivity led us to discover the new structure type Ln30Ru4+xSn31-y (Ln = Gd, Dy), thus allowing the correlation of primitive volumes with lattice thermal conductivities. We highlight the observation that Ln30Ru4+xSn31-y gives rise to highly anisotropic magnetic and transport behavior, which is unexpected, illustrating the need to measure properties on single crystals. PMID:25730512

  8. Slight synthetic changes eliciting different topologies: synthesis, structure and magnetic properties of novel dinuclear and nonanuclear dysprosium complexes.

    PubMed

    Kuo, Che-Jung; Holmberg, Rebecca J; Lin, Po-Heng

    2015-11-18

    Using the Schiff-base ligand 1,5-bis(2-hydroxy-3-methoxybenzylidene)carbonohydrazide (H2hmc), dinuclear and nonanuclear compounds, [Dy2(Hhmc)2(NO3)4]THFMeCN () and [Dy9(?3-O)4(?-OH)6(hmc)4(NO3)4(DMF)4](OH)H2OTHFDMF () are generated through the addition of different bases, respectively. Single-crystal X-ray diffraction analysis revealed a unique Dy9 core structure of complex , and the magnetic properties of both compounds are fully studied. PMID:26510972

  9. Spectroscopic and magnetic properties of an iodo Co(I) tripodal phosphine complex.

    PubMed

    Rose, Michael J; Bellone, Donatela E; Di Bilio, Angel J; Gray, Harry B

    2012-10-14

    Reaction of the tripodal phosphine ligand 1,1,1-tris((diphenylphosphino)phenyl)ethane (PhP3) with CoI(2) spontaneously generates a one-electron reduced complex, [(PhP3)Co(I)(I)] (1). The crystal structure of 1 reveals a distorted tetrahedral environment, with an apical Co-I bond distance of ~2.52 . Co(II/I) redox occurs at an unusually high potential (+0.38 V vs. SCE). The electronic absorption spectrum of 1 exhibits an MLCT peak at 320 nm (? = 8790 M(-1) cm(-1)) and a d-d feature at 850 nm (? = 840 M(-1) cm(-1)). Two more d-d bands are observed in the NIR region, 8650 (? = 450) and 7950 cm(-1) (? = 430 M(-1) cm(-1)). Temperature dependent magnetic measurements (SQUID) on 1 (solid state, 20-300 K) give ?(eff) = 2.99(6) ?(B), consistent with an S = 1 ground state. Magnetic susceptibilities below 20 K are consistent with a zero field splitting (zfs) |D| = 8 cm(-1). DFT calculations also support a spin-triplet ground state for 1, as optimized (6-31G*/PW91) geometries (S = 1) closely match the X-ray structure. EPR measurements performed in parallel mode (X-band; 0-15,000 G, 15 K) on polycrystalline 1 or frozen solutions of 1 (THF/toluene) exhibit a feature at g? 4 that arises from a (?m = 2) transition within the M(S) = <+1,-1> manifold. Below 10 K, the EPR signal decreases significantly, consistent with a solution zfs parameter (|D|? 8 cm(-1)) similar to that obtained from SQUID measurements. Our work provides an EPR signature for high-spin Co(I) in trigonal ligation. PMID:22903546

  10. Structural and magnetic properties of In1-xMnxSb: Effect of Mn complexes and MnSb nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Kochura, A. V.; Aronzon, B. A.; Lisunov, K. G.; Lashkul, A. V.; Sidorenko, A. A.; De Renzi, R.; Marenkin, S. F.; Alam, M.; Kuzmenko, A. P.; Lähderanta, E.

    2013-02-01

    Structural and magnetic properties of the group III-V diluted magnetic semiconductor In1-xMnxSb with x = 0.005-0.06, including the nuclear magnetic resonance (NMR) investigations, are reported. Polycrystalline In1-xMnxSb samples were prepared by direct alloying of indium antimonide, manganese and antimony, followed by a fast cooling of the melt with a rate of 10-12 K/s. According to the X-ray diffraction data, part of Mn is substituted for In, forming the In1-xMnxSb matrix. Atomic force microscopy and scanning tunneling microscopy investigations provide evidence for the presence of microcrystalline MnSb inclusions (precipitates), having a size of ˜100-600 nm, and the fine structure of nanosize grains with a Gaussian distribution around the diameter of ˜24 nm. According to the NMR spectra, the majority of Mn enters the MnSb inclusions. In addition to the single Mn ions, which contribute to the magnetization M (T) only in the low-temperature limit of T < 10-20 K, and MnSb nanoprecipitates responsible for the ferromagnetic (FM) properties of In1-xMnxSb, a superparamagnetic (SP) contribution of atomic-size magnetic Mn complexes (presumably dimers) has been established. The fraction of the MnSb phase, η ˜ 1-4%, as well as the concentration, nsp ˜ (0.8-3.2) × 1019 cm-3, and the magnetic moment of the Mn dimers, μ ˜ 8-9 μB, are determined. The solubility limit of Mn in the InSb matrix, NSL ˜ 1020 cm-3, is estimated. Hysteresis in low (H < 500 Oe) magnetic fields and saturation of the magnetization in high (H > 20 kOe) magnetic fields are observed, indicating a presence of the SP and FM contributions to the dependence of M (H) up to T ˜ 500 K. The hysteresis is characterized by the coercivity field, Hc, decreasing between ˜100 and 75 Oe when T is increased from 5 to 510 K. The values of Hc are in reasonable agreement with the effect of the largest MnSb inclusions. The maximum of M (T), measured in the zero-field-cooled and the field-cooled conditions in a weak field of 500 Oe, is observed at T ˜ 510 K and is attributable to the Hopkinson effect.

  11. Ligand field influence on the electronic and magnetic properties of quasi-linear two-coordinate iron(II) complexes.

    PubMed

    Chilton, Nicholas F; Lei, Hao; Bryan, Aimee M; Grandjean, Fernande; Long, Gary J; Power, Philip P

    2015-06-28

    The 2 to 300 K magnetic susceptibilities of Fe{N(SiMe2Ph)2}2, 1, Fe{N(SiMePh2)2}2, 2, and the diaryl complex Fe(Ar(Pr(i)4))2, 3, where Ar(Pr(i)4) is C6H3-2,6(C6H3-2,6-Pr(i)2)2 have been measured. Initial fits of these properties in the absence of an independent knowledge of their ligand field splitting have proven problematic. Ab initio calculations of the CASSCF/RASSI/SINGLE-ANISO type have indicated that the orbital energies of the complexes, as well as those of Fe(Ar(Me6))2, 4, where Ar(Me6) is C6H3-2,6(C6H2-2,4,6-Me3)2), are in the order d(xy)≈ d(x(2)-y(2)) < d(xz) ≈ d(yz) < d(z(2)), and the iron(II) complexes in this ligand field have the (d(xy), d(x(2)-y(2)))(3)(d(xz), d(yz))(2)(d(z(2)))(1) ground electronic configuration with a substantial orbital contribution to their effective magnetic moments. An ab initio-derived ligand field and spin-orbit model is found to yield an excellent simulation of the observed magnetic properties of 1-3. The calculated ligand field strengths of these ligands are placed in the broader context of common coordination ligands in hypothetical two-coordinate linear iron(ii) complexes. This yields the ordering I(-) < H(-) < Br(-)≈ PMe3 < CH3(-) < Cl(-)≈ C(SiMe3)3(-) < CN(-)≈ SAr(Pr(i)6-) < Ar(Pr(i)4-) < Ar(Me6-)≈ N3(-) < NCS(-)≈ NCSe(-)≈ NCBH3(-)≈ MeCN ≈ H2O ≈ NH3 < NO3(-)≈ THF ≈ CO ≈ N(SiMe2Ph)2(-)≈ N(SiMePh2)2(-) < F(-)≈ N(H)Ar(Pr(i)6-)≈ N(SiMe3)Dipp(-) < OAr(Pr(i)4-). The magnetic susceptibility of the bridged dimer, [Fe{N(SiMe3)2}2]2, 5, has also been measured between 2 and 300 K and a fit of χMT with the isotropic Heisenberg Hamiltonian, Ĥ = -2JŜ1·Ŝ2 yields an antiferromagnetic exchange coupling constant, J, of -131(2) cm(-1). PMID:26006177

  12. Magnetic properties and complex magnetic phase diagram in non-centrosymmetric EuRhGe3 and EuIrGe3 single crystals

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Bonville, P.; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.

    2016-03-01

    We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe3 and EuRhGe3, inferred from magnetisation, electrical transport, heat capacity and 151Eu Mössbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, I4 mm, BaNiSn3-type structure. Single crystals of EuIrGe3 and EuRhGe3 were grown using a high temperature solution growth method using In as flux. EuIrGe3 exhibits two magnetic transition temperatures TN1 = 12.4 K, and TN 2 = 7.3 K, whereas EuRhGe3 presents a single one at TN = 12 K. 151Eu Mössbauer spectra show evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment phase at lower temperature in EuIrGe3. This latter phase alone occurs in EuRhGe3. In both compounds, the magnetisation measured up to 14 T suggests that the equal moment magnetic phase has a spiral spin arrangement. The field induced reorientations are also well documented in the magnetotransport data. A superzone gap is observed for the current density J ∥ [001], which is enhanced by a transverse magnetic field. The magnetic phase diagram constructed from all the data is complex, revealing the presence of many phases in the H - T space.

  13. Dinuclear palladium complexes with two ligand-centered radicals and a single bridging ligand: subtle tuning of magnetic properties.

    PubMed

    Broere, Danil L J; Demeshko, Serhiy; de Bruin, Bas; Pidko, Evgeny A; Reek, Joost N H; Siegler, Maxime A; Lutz, Martin; van der Vlugt, Jarl Ivar

    2015-04-01

    The facile and tunable preparation of unique dinuclear [(L(?))Pd-X-Pd(L(?))] complexes (X = Cl or N3), bearing a ligand radical on each Pd, is disclosed, as well as their magnetochemistry in solution and solid state is reported. Chloride abstraction from [PdCl(NNO(ISQ))] (NNO(ISQ) = iminosemiquinonato) with TlPF6 results in an unusual monochlorido-bridged dinuclear open-shell diradical species, [{Pd(NNO(ISQ))}2(?-Cl)](+), with an unusually small Pd-Cl-Pd angle (ca.?93, determined by X-ray). This suggests an intramolecular d(8)-d(8) interaction, which is supported by DFT calculations. SQUID measurements indicate moderate antiferromagnetic spin exchange between the two ligand radicals and an overall singlet ground state in the solid state. VT EPR spectroscopy shows a transient signal corresponding to a triplet state between 20 and 60?K. Complex 2 reacts with PPh3 to generate [Pd(NNO(ISQ))(PPh3)](+) and one equivalent of [PdCl(NNO(ISQ))]. Reacting an 1:1 mixture of [PdCl(NNO(ISQ))] and [Pd(N3)(NNO(ISQ))] furnishes the 1,1-azido-bridged dinuclear diradical [{Pd(NNO(ISQ))}2(?(1)-N;?-N3](+), with a Pd-N-Pd angle close to 127 (X-ray). Magnetic and EPR measurements indicate two independent S = 1/2 spin carriers and no magnetic interaction in the solid state. The two diradical species both show no spin exchange in solution, likely because of unhindered rotation around the Pd-X-Pd core. This work demonstrates that a single bridging atom can induce subtle and tunable changes in structural and magnetic properties of novel dinuclear Pd complexes featuring two ligand-based radicals. PMID:25735905

  14. Rhenium(IV)-copper(II) heterobimetallic complexes with a bridge malonato ligand. Synthesis, crystal structure, and magnetic properties.

    PubMed

    Cuevas, Alicia; Chiozzone, Ral; Kremer, Carlos; Suescun, Leopoldo; Mombr, Alvaro; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Cano, Juan; Faus, Juan

    2004-11-29

    The Re(IV) complex [ReCl4(mal)]2-, in the form of two slightly different salts, (AsPh4)1.5(HNEt3)0.5[ReCl4(mal)] (1a) and (AsPh4)(HNEt3)[ReCl4(mal)] (1b), and the Re(IV)-Cu(II) bimetallic complexes [ReCl4(mu-mal)Cu(phen)2].CH3CN (2), [ReCl4(mu-mal)Cu(bpy)2] (3), and [ReCl4(mu-mal)Cu(terpy)] (4) (mal=malonate dianion, AsPh4=tetraphenylarsonium cation, HNEt3=triethylammonium cation, phen=1,10-phenanthroline, bpy=2,2'-bipyridine and terpy=2,2':6',2' '-terpyridine) have been synthesized and the structures of 1a, 1b, 2, and 3 determined by single-crystal X-ray diffraction. The structures of 1a and 1b are made up of discrete [ReCl4(mal)]2- anions and AsPh4+ and HNEt3+ cations, held together by electrostatic forces and hydrogen bonds. The Re(IV) atom is surrounded by four chloride anions and a bidentate malonate group, in a distorted octahedral environment. The structure of 2 consist of neutral dinuclear units [ReCl4(mu-mal)Cu(phen)2], with the metal ions united through a bridge carboxilato. The environment of Re(IV) is nearly identical to that in the mononuclear complex, and Cu(II) is five coordinate, being surrounded by four nitrogen atoms of two bidentate phen ligands and one oxygen atom of the malonato ligand. In 3, there are also dinuclear units, [ReCl4(mu-mal)Cu(bpy)2], but the Cu(II) ions complete a distorted octahedral coordination by binding with the free malonato oxygen atom of a neighbor unit, resulting in an infinite chain. The magnetic properties of 1-4 were also investigated in the temperature range 2.0-300 K. The magnetic behavior of 1a and 1b is as expected for a Re(IV) complex with a large value of the zero-field splitting (2D ca. 110 cm(-1)). For the bimetallic complexes, the magnetic coupling between Re(IV) and Cu(II) is antiferromagnetic in 2 (J=-0.39 cm(-1)), ferromagnetic in 4 (J=+1.51 cm(-1)), and nearly negligible in 3 (J=-0.09 cm(-1)). PMID:15554648

  15. Relationships between electron density and magnetic properties in water-bridged dimetal complexes.

    PubMed

    Overgaard, Jacob; Walsh, James P S; Hathwar, Venkatesha R; Jrgensen, Mads R V; Hoffman, Christina; Platts, Jamie A; Piltz, Ross; Winpenny, Richard E P

    2014-11-01

    The electron densities in two analogous dimetallic transition metal compounds, namely, [M2(?-OH2)((t)BuCOO)4((t)BuCOOH)2(C5H5N)2] (M = Co(1), Ni(2)), were determined from combined X-ray and neutron single-crystal diffraction at 100 K. Excellent correspondence between the thermal parameters from X- and N-derived atomic displacement parameters is found, indicating high-quality X-ray data and a successful separation of thermal and electronic effects. Topological analysis of electron densities derived from high-resolution X-ray diffraction, as well as density functional theory calculations, shows no direct metal-metal bonding in either compound, while the total energy density at the bond critical points suggests stronger metal-oxygen interactions for the Ni system, in correspondence with its shorter bond distances. The analysis also allows for estimation of the relative strength of binding of terminal and bridging ligands to the metals, showing that the bridging water molecule is more strongly bound than terminal carboxylic acid, but less so than bridging carboxylates. Recently, modeling of magnetic and spectroscopic data in both of these systems has shown weak ferromagnetic interactions between the metal atoms. Factors related to large zero-field splitting effects complicate the magnetic analysis in both compounds, albeit to a much greater degree in 1. The current results support the conclusion drawn from previous magnetic and spectroscopic measurements that there is no appreciable direct communication between metal centers. PMID:25330274

  16. Effects of f-f interactions on the single-molecule magnet properties of terbium(III)-phthalocyaninato quintuple-decker complexes.

    PubMed

    Horii, Yoji; Katoh, Keiichi; Yasuda, Nobuhiro; Breedlove, Brian K; Yamashita, Masahiro

    2015-04-01

    Single-molecule magnet (SMM) properties of terbium(III)-phthalocyaninato quintuple-decker complex TbCdCdTb were studied and were compared with those of other multiple-decker complexes (triple-decker: TbTb, quadruple-decker: TbCdTb) to elucidate the relationship between magnetic dipole interactions and SMM properties. From X-ray crystallography performed with synchrotron radiation, the Tb(III)-Tb(III) distance in TbCdCdTb was determined to be 9.883 . From alternating current magnetic studies on TbCdCdTb, the activation energy for spin reversal (?) increased with an increase in the direct current magnetic field (Hdc). This behavior is similar to that of TbCdTb, although the increase in ? for TbCdTb is smaller. On the other hand, for TbTb, which has shortest Tb(III)-Tb(III) distance, ? did not depend on Hdc, indicating that there is a correlation between SMM properties and the strength of the Tb(III)-Tb(III) interactions. By comparing the Zeeman diagrams for multiple-decker complexes, we found that the Tb(III)-Tb(III) interactions affected the magnetic field regions where quantum tunnelling of the magnetization was active. The results obtained from Zeeman diagrams are consistent with the results obtained from the magnetic studies. PMID:25799034

  17. Vapochromic ionic liquids from metal-chelate complexes exhibiting reversible changes in color, thermal, and magnetic properties.

    PubMed

    Funasako, Yusuke; Mochida, Tomoyuki; Takahashi, Kazuyuki; Sakurai, Toshihiro; Ohta, Hitoshi

    2012-09-17

    Vapor- and gas-responsive ionic liquids (ILs) comprised of cationic metal-chelate complexes and bis(trifluoromethanesulfonyl)imide (Tf(2)N) have been prepared, namely, [Cu(acac)(BuMe(3)en)][Tf(2)N] (1?a), [Cu(Bu-acac)(BuMe(3)en)][Tf(2)N] (1?b), [Cu(C(12)-acac)(Me(4)en)][Tf(2)N] (1?c), [Cu(acac)(Me(4)en)][Tf(2)N] (1?d), and [Ni(acac)(BuMe(3)en)][Tf(2)N] (2?a) (acac = acetylacetonate, Bu-acac = 3-butyl-2,4-pentanedionate, C(12)-acac = 3-dodecyl-2,4-pentanedionate, BuMe(3)en = N-butyl-N,N',N'-tetramethylethylenediamine, and Me(4)en = N,N,N',N'-trimethylethylenediamine). These ILs exhibited reversible changes in color, thermal properties, and magnetic properties in response to organic vapors and gases. The Cu(II)-containing ILs are purple and turn blue-purple to green when exposed to organic vapors, such as acetonitrile, methanol, and DMSO, or ammonia gas. The color change is based on the coordination of the vapor molecules to the cation, and the resultant colors depend on the coordination strength (donor number, DN) of the vapor molecules. The vapor absorption caused changes in the melting points and viscosities, leading to alteration in the phase behaviors. The IL with a long alkyl chain (1?d) transitioned from a purple solid to a brown liquid at its melting point. The Ni(II)-containing IL (2?a) is a dark red diamagnetic liquid, which turned into a green paramagnetic liquid by absorbing vapors with high DN. Based on the equilibrium shift from four- to six-coordinated species, the liquid exhibited thermochromism and temperature-dependent magnetic susceptibility after absorbing methanol. PMID:22915372

  18. Structure, photochemistry and magnetic properties of tetrahydrogenated Schiff base chromium(III) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Chai, Jie; Feng, SiSi; Yang, BinSheng

    2015-04-01

    Four mononuclear chromium(III) complexes [Cr(L(1))(en)]Br0.3Cl0.7 (1), [Cr(L(1))(pr)]Cl (2), [Cr(L(2))(en)]ClO4 (3), [Cr(L(2))(pr)]Cl (4) along with one dinuclear ?-methoxo [Cr(?-OMe)(L1)]2 (5) were synthesized (en = 1,2-ethanediamine, pr = 1,3-diaminopropane H2L(1) = Tetrahydrosalen = H2[H4]salen = N,N?-bis(2-hydroxybenzyl)-1,2-ethanediamine, H2L(2) = Tetrahydrosalpr = H2[H4]salpr = N,N?-bis(2-hydroxybenzyl)-1,3-diaminopropane). The competitive reactions in the presence of EDTA were carried out and the first-order rate constants k(1) = (5.2 0.2) 10-3 h-1 < k(2) = (6.7 0.3) 10-3 h-1 < k(3) = (8.0 0.1) 10-3 h-1 < k(4) = (9.5 0.2) 10-3 h-1 were obtained by spectroscopic measurements. In addition, photo-induced decomposition was monitored under irradiation of xenon lamp. The sequence of first-order rate constants is k?(1) = (4 0.1) 10-4 s-1 < k?(2) = (6 0.3) 10-4 s-1 < k?(3) = (1.1 0.2) 10-3 s-1 < k?(4) = (1.4 0.2) 10-3 s-1, which is in accordance with that of kinetics studies with EDTA. Dinuclear complex 5 exhibits a strong antiferromagnetic coupling with the J = -10.8 cm-1.

  19. A one-dimensional azido-bridged manganese(III) complex with bidentate Schiff base: Crystal structure and magnetic properties

    SciTech Connect

    Li Wei; Li Zongwei; Li Licun Liao Daizheng; Jiang Zonghui

    2007-10-15

    The synthesis, structural characterization, and magnetic behavior of a novel one-dimensional azido-bridged manganese(III) complex of formula [Mn(L){sub 2}N{sub 3}] (1) is reported, where HL is the bidentate Schiff base obtained from the condensation of salicylaldehyde with 4-methoxy aniline. Complex 1 crystallizes in the monoclinic system, space group P2{sub 1}/n, with a=11.743(4) A, b=24.986(9) A, c=13.081(5) A, {beta}=95.387(7){sup o} and Z=2. The complex is of one-dimensional chain structure with single end-to-end azido bridges and the manganese(III) ion has an elongated octahedral geometry. Magnetic studies show that the weak antiferromagnetic interaction is mediated by the single end-to-end azido bridge with the exchange parameter J=-5.84 cm{sup -1}. - Graphical abstract: A novel azido-bridged manganese(III) complex with bidentate Schiff base ligands has been prepared and characterized structurally and magnetically. The complex is of one-dimensional chain structure with single end-to-end azido bridges in axial positions. Two bidentate Schiff base ligands coordinate in the equatorial mode. The magnetic measurements show that the complex exhibits weak antiferromagnetic interaction.

  20. Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and ?-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties.

    PubMed

    Wang, Shi-Yu; Wang, Wen-Min; Zhang, Hong-Xia; Shen, Hai-Yun; Jiang, Li; Cui, Jian-Zhong; Gao, Hong-Ling

    2016-02-16

    Seven dinuclear complexes based on 8-hydroxyquinoline Schiff base derivatives and ?-diketone ligands, [RE2(hfac)4L2] (RE = Y (), Gd (), Tb (), Dy (), Ho (), Er () and Lu (); hfac(-) = hexafluoroacetylacetonate; HL = 2-[(4-chloro-phenylimino)-methyl]-8-hydroxyquinoline), have been synthesized, and structurally and magnetically characterized. Complexes have similar dinuclear structures, in which each RE(III) ion is eight coordinated by two L(-) and two hfac(-) ligands in a distorted dodecahedron geometry. The luminescence spectra indicate that complex exhibits characteristic Tb(III) ion luminescence, while and show HL ligand luminescence. The magnetic studies reveal that features a magnetocaloric effect with the magnetic entropy change of -?Sm = 16.83 J kg(-1) K(-1) at 2 K for ?H = 8 T, and displays slow magnetic relaxation behavior with the anisotropic barrier of 6.7 K and pre-exponential factor ?0 = 5.3 10(-6) s. PMID:26792239

  1. Mononuclear and polynuclear complexes ligated by an iminodiacetic acid derivative: synthesis, structure, solution studies and magnetic properties.

    PubMed

    Puentes, Roberto; Torres, Julia; Kremer, Carlos; Cano, Joan; Lloret, Francesc; Capucci, Davide; Bacchi, Alessia

    2016-03-15

    Two novel families of coordination polymers, [Ln(bzlida)(Hbzlida)]·H2O (Ln = La, Nd) and [Ln2(bzlida)3]·3H2O (Ln = Nd, Sm, Eu, Gd) were prepared by hydrothermal reaction of Ln2O3 with benzyliminodiacetic acid (H2bzlida). The conditions of synthesis, in particular the pH value, were selected on the basis of previous speciation studies reported in this work. The first type of complex consists of 1D chains built by a fully deprotonated ligand bridging two lanthanide ions and protonated Hbzlida(-) ligands connecting three cations. The second type is formed by [Ln2(bzlida)3] bimetallic units in which the ligand has a tridentate NOO coordination mode. This is expanded to a 2D network through carboxylate linkers. Under similar synthetic conditions but including copper acetate in the reaction mixture, a new compound was also obtained and characterized: [Cu(bzlida)2{Er(AcO)(H2O)5}2][Cu(bzlida)2]·6H2O (AcO = acetate). This salt is made up of the [Cu(bzlida)2{Er(AcO)(H2O)5}2](2+) heterotrimetallic complex cation containing an acetato bridge, and the [Cu(bzlida)2](2-) anion. The same reaction produces the monomeric [Cu(Hbzlida)2]·4H2O whose structure was also elucidated. Magnetic properties of the Gd(iii) derivative were studied and analyzed experimentally and theoretically. The results are compared and discussed with respect to those reported in the literature and a magnetostructural correlation is suggested. PMID:26906084

  2. Magnetic Properties of Nanostructures

    NASA Astrophysics Data System (ADS)

    Ciraldo, John

    2007-10-01

    The recent development of the superlattice nanowire pattern transfer (SNAP) technique has enabled the fabrication of complex molecular-electronic circuits at unprecedented densities. In this project, we explore the possibility of extending this technique to generate comparably dense arrays of nanoscale giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) devices. My primary contribution to this project has focused on using a vibrating sample magnetometer (VSM), as well as a superconducting interference device (SQUID) magnetometer to monitor the magnetic properties of the devices as they are processed from thin 2D films into nanostructure arrays. This investigation allows us to investigate both fundamental and technological aspects of the nanopatterning process. For example, the effects of changing surface to volume ratios on the ferromagnetic exchange interaction and the role of various patterning techniques in determining surface chemistry and oxidation of the final nanostructures, respectively. Additionally I have worked on simulations of the materials using NIST's OOMF program, allowing me to compare actual results with theoretical expectations. I am also designing a magneto-optical Kerr effect (MOKE) detector, which will allow faster approximations of magnetic behavior.

  3. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties.

    PubMed

    Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack

    2015-03-16

    The reaction of 1,3-adamantanedicarboxylic acid (LH2) with uranyl nitrate under solvo-hydrothermal conditions, either alone or in the presence of additional metal cations (Co(2+), Ni(2+), or Cu(2+)) gives a series of nine complexes displaying a wide range of architectures. While [UO2(L)(H2O)]·1.25CH3CN (1) and [UO2(L)(DMF)] (2) are one-dimensional (1D) species analogous to that previously known, [H2NMe2]2[(UO2)2(L)3]·1.5H2O (3), which includes dimethylammonium counterions generated in situ, is a three-dimensional (3D) framework, and [UO2(L)(NMP)] (4) (NMP = N-methyl-2-pyrrolidone) is a braid-shaped 1D polymer. When 3d block metal ions are present and bound to 2,2'-bipyridine (bipy) coligands, their role is reduced to that of decorating species attached to uranyl-containing 1D polymers, as in [UO2M(L)2(bipy)2]·0.5H2O with M = Co (5) or Ni (6), and [(UO2)2Cu2(L)3(NO3)2(bipy)2]·0.5H2O (9), or of counterions, as in [Ni(bipy)3][(UO2)4(O)2(L)3]·3H2O (7), in which a two-dimensional (2D) assembly is built from tetranuclear uranyl-containing building units. In contrast, the heterometallic 3D framework [UO2Cu(L)2] (8) can be isolated in the absence of bipy. The emission spectra measured in the solid state display the usual uranyl vibronic fine structure, with various degrees of resolution and quenching, except for that of complex 7, which shows emission from the nickel(II) centers. The magnetic properties of complexes 5, 6, 8, and 9 were investigated, showing, in particular, the presence of zero-field splitting effects in 6 and weak antiferromagnetic interactions in 9. PMID:25710676

  4. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu(2+)-Polyethyleneimine Interpolyelectrolyte-Metal Complexes.

    PubMed

    Demchenko, V; Shtompel', V; Riabov, S; Lysenkov, E

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of ?u(2+) cations in the interpolyelectrolyte-metal complex (pectin-Cu(2+)-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu(2+) cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability. PMID:26659610

  5. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    SciTech Connect

    Suzuki, Atsushi; Iguchi, Motoi; Oku, Takeo; Fujiwara, Motoyasu

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.

  6. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu2+-Polyethyleneimine Interpolyelectrolyte-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Demchenko, V.; Shtompel', V.; Riabov, S.; Lysenkov, E.

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex (pectin-Cu2+-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability.

  7. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  8. New families of hetero-tri-spin 2p-3d-4f complexes: synthesis, crystal structures, and magnetic properties.

    PubMed

    Escobar, Lvia B L; Guedes, Guilherme P; Soriano, Stphane; Speziali, Nivaldo L; Jordo, Alessandro K; Cunha, Anna Claudia; Ferreira, Vitor F; Maxim, Catalin; Novak, Miguel A; Andruh, Marius; Vaz, Maria G F

    2014-07-21

    In this work we report the synthesis, crystal structures, and magnetic behavior of 2p-3d-4f heterospin systems containing the nitroxide radical 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl radical (N3tempo). These compounds were synthesized through a one-pot reaction by using [Cu(hfac)2], [Ln(hfac)3] (hfac = hexafluoroacetylacetonate, Ln = Dy(III), Tb(III) or Gd(III)), and the N3tempo radical. Depending on the stoichiometric ratio used, the synthesis leads to penta- or trimetallic compounds, with molecular formulas [Cu3Ln2(hfac)8(OH)4(N3tempo)] (Ln = Gd, Tb, Dy) and [CuLn2(hfac)8(N3tempo)2(H2O)2] (Ln = Gd, Dy). The magnetic properties of all compounds were investigated by direct current (dc) and alternating current (ac) measurements. The ac magnetic susceptibility measurements of Tb(III)- and Dy(III)-containing compounds of both families revealed slow relaxation of the magnetization, with magnetic quantum tunneling in zero field. PMID:24964044

  9. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation.

    PubMed

    Chibotaru, L F; Ungur, L

    2012-08-14

    A methodology for the rigorous nonperturbative derivation of magnetic pseudospin Hamiltonians of mononuclear complexes and fragments based on ab initio calculations of their electronic structure is described. It is supposed that the spin-orbit coupling and other relativistic effects are already taken fully into account at the stage of quantum chemistry calculations of complexes. The methodology is based on the establishment of the correspondence between the ab initio wave functions of the chosen manifold of multielectronic states and the pseudospin eigenfunctions, which allows to define the pseudospin Hamiltonians in the unique way. Working expressions are derived for the pseudospin Zeeman and zero-field splitting Hamiltonian corresponding to arbitrary pseudospins. The proposed calculation methodology, already implemented in the SINGLE_ANISO module of the MOLCAS-7.6 quantum chemistry package, is applied for a first-principles evaluation of pseudospin Hamiltonians of several complexes exhibiting weak, moderate, and very strong spin-orbit coupling effects. PMID:22897260

  10. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation

    NASA Astrophysics Data System (ADS)

    Chibotaru, L. F.; Ungur, L.

    2012-08-01

    A methodology for the rigorous nonperturbative derivation of magnetic pseudospin Hamiltonians of mononuclear complexes and fragments based on ab initio calculations of their electronic structure is described. It is supposed that the spin-orbit coupling and other relativistic effects are already taken fully into account at the stage of quantum chemistry calculations of complexes. The methodology is based on the establishment of the correspondence between the ab initio wave functions of the chosen manifold of multielectronic states and the pseudospin eigenfunctions, which allows to define the pseudospin Hamiltonians in the unique way. Working expressions are derived for the pseudospin Zeeman and zero-field splitting Hamiltonian corresponding to arbitrary pseudospins. The proposed calculation methodology, already implemented in the SINGLE_ANISO module of the MOLCAS-7.6 quantum chemistry package, is applied for a first-principles evaluation of pseudospin Hamiltonians of several complexes exhibiting weak, moderate, and very strong spin-orbit coupling effects.

  11. Electronic Structure and Magnetic Properties of Dioxo-Bridged Diuranium Complexes with Diamond-Core Structural Motifs: A Relativistic DFT Study.

    PubMed

    Teyar, Billel; Belkhiri, Lotfi; Costuas, Karine; Boucekkine, Abdou; Meyer, Karsten

    2016-03-21

    Electronic structures and magnetic properties of the binuclear bis(μ-oxo) U(IV)/U(IV) K2[{(((nP,Me)ArO)3tacn)U(IV)}2(μ-O)2] and U(V)/U(V) [{(((nP,Me)ArO)3tacn)U(V)}2(μ-O)2] (tacn = triazacyclononane, nP = neopentyl) complexes, exhibiting [U(μ-O)2U] diamond-core structural motifs, have been investigated computationally using scalar relativistic Density Functional Theory (DFT) combined with the Broken Symmetry (BS) approach for their magnetic properties. Using the B3LYP hybrid functional, the BS ground state of the pentavalent [U(V)(μ-O)2U(V)] 5f(1)-5f(1) complex has been found of lower energy than the high spin (HS) triplet state, thus confirming the antiferromagnetic character in agreement with experimental magnetic susceptibility measurements. The nonmagnetic character observed for the tetravalent K2[U(IV)(μ-O)2U(IV)] 5f(2)-5f(2) species is also predicted by our DFT calculations, which led practically to the same energy for the HS and BS states. As reported for related dioxo diuranium(V) systems, superexchange is likely to be responsible for the antiferromagnetic coupling through the π-network orbital pathway within the (μ-O)2 bridge, the dissymmetrical structure of the U2O2 core playing a determining role. In the case of the U(IV) species, our computations indicate that the K(+) counterions are likely to play a role for the observed magnetic property. Finally, the MO analysis, in conjunction with NPA and QTAIM analyses, clarify the electronic structures of the studied complexes. In particular, the fact that the experimentally attempted chemical oxidation of the U(V) species does not lead straightforwardly to binuclear complexes U(VI) is clarified by the MO analysis. PMID:26930424

  12. Syntheses, structures, and magnetic properties of three new cyano-bridged complexes based on the [Mn(CN)?](?) building block.

    PubMed

    Zhang, Shao-Liang; Zhao, Xin-Hua; Wang, Xin-Yi

    2015-09-14

    With three pentadentate macrocyclic ligands, three new [Mn(CN)6](3-) based complexes, [Mn(L(N3O2))(H2O)]2[Mn(CN)6](ClO4)3H2O (1), {[Mn(L(N5))]3[Mn(CN)6]2}n (2) and {[Mn(L(N5Me))]3[Mn(CN)6]2}n10nH2O (3) (L(N3O2) = 2,13-dimethyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene, L(N5) = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene, L(N5Me) = 2,6-bis[1-(2-(N-methylamino)ethylimino)ethyl]-pyridine), have been synthesized and characterized structurally and magnetically. The structure of 1 was found to be a linear Mn2(II)Mn(III) trinuclear cluster with two Mn(II) capping groups and one Mn(III) ion connected via two trans-cyano groups. In contrast, compounds 2 and a3 re cyano-bridged 2D networks. Magnetic investigation revealed antiferromagnetic coupling between the Mn(III) and Mn(II) ions via the bridging cyanide groups. Complex 1 showed paramagnetic behavior down to 2.0 K with no sign of SMM behavior. The magnetic coupling constant of J = -1.63 cm(-1) with the Hamiltonian H = -2J(S(Mn(III))SMn(II)1 + SMn(III)S(Mn(II)2)) was obtained from the fitting of the magnetic susceptibility. For 2 and 3, ferrimagnetic ordering was observed with magnetic phase transition temperatures (Tc) being 7.5 K and 7.0 K, respectively. These compounds are rare examples of a small number of [Mn(CN)6](3-) based magnetic materials. PMID:25846128

  13. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-01

    A copper complex {[Cu(py)2(L)2]2CH3OH}n (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by ?-? stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied.

  14. Dinuclear (Fe(II), Gd(III)) complexes deriving from hexadentate Schiff bases: synthesis, structure, and Mssbauer and magnetic properties.

    PubMed

    Costes, Jean-Pierre; Clemente-Juan, Juan Modesto; Dahan, Franoise; Dumestre, Frdric; Tuchagues, Jean-Pierre

    2002-06-01

    The dinuclear (Fe(II), Gd(III)) complexes studied in this report derive from hexadentate Schiff base ligands abbreviated H(2)L(i)() (i = 1, 2, 3). H(2)L(1) = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2'-dimethyl-propane, H(2)L(2) = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane, and H(2)L(3) = N,N'-bis(3-methoxysalicylidene)-1,2-diaminoethane. The crystal and molecular structures of three complexes have been determined at 160 K. Depending on the solvent used in the preparation, L(1)Fe(CH(3)OH)Gd(NO(3))(3)(CH(3)OH)(2), 1, or L(1)Fe((CH(3))(2)CO)Gd(NO(3))(3), 1', is obtained from H(2)L(1). A similar complex, L(2)Fe((CH(3))(2)CO)Gd(NO(3))(3), 2, is obtained from H(2)L(2). Complex 1 crystallizes in the orthorhombic space group Pca2(1) (No. 29): a = 22.141(3) A, b = 9.4159(16) A, c = 15.2075(17) A, V = 3170.4(7) A(3), Z = 4. Complexes 1' and 2 crystallize in the monoclinic space group P2(1)/c (No. 14): 1', a = 9.6264(17) A, b = 19.662(3) A, c = 16.039(3) A, beta = 95.15(2) degrees, V = 3023.6(9) A(3), Z = 4; 2, a = 9.7821(13) A, b = 18.7725(17) A, c = 16.100(2) A, beta = 96.497(16) degrees, V = 2937.5(6) A(3), Z = 4. Complexes 1, 1', and 2 possess an Fe(O(phenoxo))(2-)Gd core. The mononuclear L(3)Fe complex could be prepared from H(2)L(3) but not the related dinuclear (Fe, Gd) species. Mssbauer spectroscopy evidences that the iron center is in the +2 oxidation state for the six complexes. The experimental magnetic susceptibility and magnetization data of complexes 1, 1', and 2 indicate the occurrence of weak Fe(II)-Gd(III) ferromagnetic interactions. Single ion zero-field splitting of the iron(II) must be taken into account for satisfactorily fitting the data by exact calculation of the energy levels associated to the spin Hamiltonian through diagonalization of the full matrix for axial symmetry (1, J = 0.50 cm(-1), D = 2.06 cm(-1); 1', J = 0.41 cm(-1), D = 3.22 cm(-1); 2, J = 0.08 cm(-1), D = 4.43 cm(-1)). PMID:12033896

  15. Mixed bridged dinuclear Ni(II) complex incorporating 2-pyridinealdoxime ligand: Synthesis, crystal structure and magnetic property

    NASA Astrophysics Data System (ADS)

    Zheng, Lina; Zhang, Suyun; Li, Kai; Chen, Wenqian; Chen, Yanmei; Xu, Bin; Hu, Bin; Li, Yahong; Li, Wu

    2010-12-01

    A complex of the composition [Ni 2(Hpyco) 2(epa)(EtOH)Cl 3] ( 1) (Hpyco = pyridine-2-carbaldehyde oxime; Hepa = 3-(ethoxycarbonyl)picolinic acid) has been synthesized via solvothermal synthetic reaction, and fully characterized by X-ray single crystal diffraction, IR and elemental analysis. Crystal structure revealed that 1 contains carboxylic oxygen atom bridged and chloro bridged dinuclear core with each Ni(II) exhibiting pseudo-octahedral geometry. An ester was formed in situ by the reaction of solvent ethanol with one carboxylic group of pyridine-2,3-dicarboxylic acid. Low-temperature magnetic susceptibility measurement for the solid sample of 1 revealed the ferromagnetic Ni II⋯Ni II interactions.

  16. Pyrazolylborates and their importance in tuning single-molecule magnet properties of {Fe(III)2Ni(II)} complexes.

    PubMed

    Zhang, Yuan-Zhu; Mallik, Uma P; Rath, Nigam P; Clrac, Rodolphe; Holmes, Stephen M

    2011-11-01

    A new tricyanoferrate(III) building block and a trinuclear single-molecule magnet derivative are described. The treatment of a 2:1 ratio of [NEt(4)][(Tp*(Bn))Fe(III)(CN)(3)]H(2)OMeOH [1; Tp*(Bn) = tris(3,5-dimethyl-4-benzyl)pyrazolylborate] with nickel(II) trifluoromethanesulfonate gives {[(Tp*(Bn))Fe(III)(CN)(3)](2)[Ni(II)(DMF)(4)]}2DMF (2; DMF = N,N-dimethylformamide). The symmetry-equivalent Fe(III)(LS) ions lead to a favorable alignment of anisotropy tensors (i.e., FeB axes) in 2, and an energy barrier of ?(eff)/k(B) = 16.7 K is found for the S(T) = 2 complex. PMID:21950315

  17. Conductivity and Magnetic Properties of the Charge-Transfer Complex from N,N'-Dicyanonaphthoquinonedimimine (DCNNI)and Tetrathiafulvalene (TTF)

    NASA Astrophysics Data System (ADS)

    Werner, H.-P.; Grauf, W.; Schtz, J. U. von; Wolf, H. C.; Helberg, H. W.; Kremer, W.; Aumller, A.; Hnig, S.

    1989-09-01

    Conductivity (dc and ac), ESR-properties and proton relaxation rates of the charge transfer complex Tetrathiafulvalene N,N'-dicyanonaphthoquinonediimine in the temperature range be tween 300 K and 3.8 K are reported. This salt belongs to the unusual group of organic conductors, in which segregated donor and acceptor stacks are associated in a pairwise manner. The physical properties, which are compared with TTF-TCNQ, give evidence of non-stoichiometric charge transfer (? ? 1). A metal like state can be identified for T> 70 K, as is seen from the weak temper ature dependence of the conductivity (?rt ? 30 Scm-1) and the susceptibility (Xrt ? 7.5 ? 10-4 emu/ mole) and from the Korringa like temperature dependence of the proton relaxation rates. The drop of the susceptibility at Tc ? 70 K and the activated temperature dependence of the conductivity for T < 70 K are explained by a metal-to-semiconductor transition.

  18. Stereochemistry for engineering spin crossover: structures and magnetic properties of a homochiral vs. racemic [Fe(N3O2)(CN)2] complex.

    PubMed

    Wang, Qiang; Venneri, Shari; Zarrabi, Niloofar; Wang, Hongfeng; Desplanches, Cédric; Létard, Jean-François; Seda, Takele; Pilkington, Melanie

    2015-04-21

    The Schiff-base condensation of the R,R-(+)-diamine () with 2,6-diacetyl pyridine in the presence of Fe(II) affords the macrocyclic complex [Fe(dpN3O2)(CN)2] () (dp = diphenyl) with ligand centred chirality comprising of a 1 : 1 mixture of LS 6- and HS 7-coordinate Fe(II) centres. Variable temperature magnetic susceptibility and Mössbauer studies reveal that () undergoes an incomplete thermal SCO transition with a T1/2 = 250 K as well as a LIESST effect. In contrast its racemic counterpart () comprises of mostly LS Fe(II) and exhibits no LIESST properties. PMID:25789944

  19. Syntheses, crystal structures and magnetic properties of three novel cobalt(II) complexes containing imidazole derivative groups.

    PubMed

    Yang, Hong; Chen, Jia-Min; Sun, Jing-Jia; Yang, Shi-Ping; Yu, Jie; Tan, Hong; Li, Wei

    2009-04-14

    Three Co(II) complexes with the formulas: {[Co2(Bib)3Cl2]Cl(CH3COO)}.CH3OH.H2O (1), [Co2(Bib)3Cl2]Cl2.(CH3OH)2.H2O, (2) and [Co3K1(Tib)2(CH3COO)6]PF6 (3), were obtained by self-assembly of a cobalt(II) salt with Bib and Tib (Bib = 1,3-bis(4,5-dihydro-1H-imidazol-2-yl)benzene; Tib = 1,3,5-tris(4,5-dihydro-1H-imidazol-2-yl)benzene) and were structurally and magnetically characterized. X-Ray single-crystal diffraction showed that each Co(II) ion was in a highly distorted tetrahedral coordination geometry with a cis-trans ratio of 1 : 2 from the Bib ligand, which functioned in a bidentate fashion in the binuclear triple-helical [Co2(Bib)3Cl2]2+ cations in 1 and 2. In the [Co3K1(Tib)2(CH3COO)6]- anions in 3, each Co(II) ion was also in a highly distorted tetrahedral coordination geometry and the Tib ligands acted in an offset fashion in C, C, C and A, A, A coordination to the Co(II) ions with pi-pi stacking interactions between two benzene rings from the Tib ligand in the cluster cation. Each Tib ligand in a cluster unit acted as a tridentate entity to coordinate three Co(II) ions resulting in a cylinder-like cluster structure. The intermolecular hydrogen bonds in the solid-state resulted in the well-shaped 2D layer network which formed a honeycomb in 1, the 3D supramolecular architecture which was connected to the 2D sheet into 3D in 2 and the 3D supramolecular architecture, which was extended into a well-shaped 2D honeycomb layer network in 3. The results from magnetic data, in the high-temperature region, showed that 1 and 2 obeyed the Curie-Weiss law with a Weiss constants theta = -12.3, and -9.8 K and a Curie constants C = 5.31 and 5.32 cm3 K mo1(-1), respectively, indicating antiferromagnetic interactions between adjacent cobalt(II) ions. Both complex 1 and 2 showed magnetic ordering at low temperature due to the canting effect. The zero-field AC magnetic susceptibility measurements for 1 and 2 displayed a maximum which was frequency dependent owing to a slow relaxation process, which could be caused by either domain wall movements or spin-glass behaviours. PMID:19319399

  20. Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.

    PubMed

    Peng, Dungeng; Ogura, Hiroshi; Ma, Li-Hua; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2013-04-01

    Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, ?, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved ?-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of ?, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix. PMID:23391487

  1. Hydrogen bonds as structural directive towards unusual polynuclear complexes: synthesis, structure, and magnetic properties of copper(II) and nickel(II) complexes with a 2-aminoglucose ligand.

    PubMed

    Burkhardt, Anja; Spielberg, Eike T; Simon, Sascha; Grls, Helmar; Buchholz, Axel; Plass, Winfried

    2009-01-01

    The reaction of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside (HL) with the metal salts Cu(ClO(4))(2)6 H(2)O and Ni(NO(3))(2)6 H(2)O affords via self-assembly a tetranuclear mu(4)-hydroxido bridged copper(II) complex [(mu(4)-OH)Cu(4)(L)(4)(MeOH)(3)(H(2)O)](ClO(4))(3) (1) and a trinuclear alcoholate bridged nickel(II) complex [Ni(3)(L)(5)(HL)]NO(3) (2), respectively. Both complexes crystallize in the acentric space group P2(1). The X-ray crystal structure reveals the rare (mu(4)-OH)Cu(4)O(4) core for complex 1 which is mu(2)-alcoholate bridged. The copper(II) ions possess a distorted square-pyramidal geometry with an [NO(4)] donor set. The core is stabilized by hydrogen bonding between the coordinating amino group of the glucose backbone and the benzylidene protected oxygen atom O4 of a neighboring {Cu(L)} fragment as hydrogen-bond acceptor. For complex 2 an [N(4)O(2)] donor set is observed at the nickel(II) ions with a distorted octahedral geometry. The trinuclear isosceles Ni(3) core is bridged by mu(3)-alcoholate O3 oxygen atoms of two glucose ligands. The two short edges are capped by mu(2)-alcoholate O3 oxygen atoms of the two ligands coordinated at the nickel(II) ion at the vertex of these two edges. Along the elongated edge of the triangle a strong hydrogen bond (244 pm) between the O3 oxygen atoms of ligands coordinating at the two relevant nickel(II) ions is observed. The coordinating amino groups of the these two glucose ligands are involved in additional hydrogen bonds with O4 oxygen atoms of adjacent ligands further stabilizing the trinuclear core. The carbohydrate backbones in all cases adopt the stable (4)C(1) chair conformation and exhibit the rare chitosan-like trans-2,3-chelation. Temperature dependent magnetic measurements indicate an overall antiferromagnetic behavior for complex 1 with J(1)=-260 and J(2)=-205 cm(-1) (g=2.122). Compound 2 is the first ferromagnetically coupled trinuclear nickel(II) complex with J(A)=16.4 and J(B)=11.0 cm(-1) (g(1,2)=2.183, g(3)=2.247). For the high-spin nickel(II) centers a zero-field splitting of D(1,2)=3.7 cm(-1) and D(3)=1.8 cm(-1) is observed. The S=3 ground state of complex 2 is consistent with magnetization measurements at low temperatures. PMID:19101969

  2. Closely-related Zn(II)2Ln(III)2 complexes (Ln(III) = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties.

    PubMed

    Ruiz, José; Lorusso, Giulia; Evangelisti, Marco; Brechin, Euan K; Pope, Simon J A; Colacio, Enrique

    2014-04-01

    The reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L) with Zn(NO3)2·6H2O and subsequently with Ln(NO3)3·5H2O (Ln(III) = Gd and Yb) and triethylamine in MeOH using a 1:1:1:1 molar ratio leads to the formation of the tetranuclear complexes {(μ3-CO3)2[Zn(μ-L)Gd(NO3)]2}·4CH3OH (1) and{(μ3-CO3)2[Zn(μ-L)Yb(H2O)]2}(NO3)2·4CH3OH (2). When the reaction was performed in the absence of triethylamine, the dinuclear compound [Zn(μ-L)(μ-NO3)Yb(NO3)2] (3) is obtained. The structures of 1 and 2 consist of two diphenoxo-bridged Zn(II)-Ln(III) units connected by two carbonate bridging ligands. Within the dinuclear units, Zn(II) and Ln(III) ions occupy the N3O2 inner and the O4 outer sites of the compartmental ligand, respectively. The remaining positions on the Ln(III) ions are occupied by oxygen atoms belonging to the carbonate bridging groups, by a bidentate nitrate ion in 1, and by a coordinated water molecule in 2, leading to rather asymmetric GdO9 and trigonal dodecahedron YbO8 coordination spheres, respectively. Complex 3 is made of acetate-diphenoxo triply bridged Zn(II)Yb(III) dinuclear units, where the Yb(III) exhibits a YbO9 coordination environment. Variable-temperature magnetization measurements and heat capacity data demonstrate that 1 has a significant magneto-caloric effect, with a maximum value of -ΔSm = 18.5 J kg(-1) K(-1) at T = 1.9 K and B = 7 T. Complexes 2 and 3 show slow relaxation of the magnetization and single-molecule magnet (SMM) behavior under an applied direct-current field of 1000 Oe. The fit of the high-temperature data to the Arrhenius equation affords an effective energy barrier for the reversal of the magnetization of 19.4(7) K with τo = 3.1 × 10(-6) s and 27.0(9) K with τo = 8.8 × 10(-7) s for 2 and 3, respectively. However, the fit of the full range of temperature data indicates that the relaxation process could take place through a Raman-like process rather than through an activated Orbach process. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Yb(III)-based luminescence in complexes 2 and 3 through an intramolecular energy transfer to the excited states of the accepting Yb(III) ion. These complexes show several bands in the 945-1050 nm region, corresponding to (2)F5/2→(2)F7/2 transitions arising from the ligand field splitting of both multiplets. The observed luminescence lifetimes τobs are 0.515 and 10 μs for 2 and 3, respectively. The shorter lifetime for 2 is due to the presence of one coordinated water molecule on the Yb(III) center (and to a lesser extent noncoordinated water molecules), facilitating vibrational quenching via O-H oscillators. Therefore, complexes 2 and 3, combining field-induced SMM behavior and NIR luminescence, can be considered to be dual magneto-luminescent materials. PMID:24593019

  3. Synthesis, structural and magnetic properties of oxo-, chloroacetato-bridged tetra-nuclear iron(III) complex

    NASA Astrophysics Data System (ADS)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Dutta, Supriya; Robert Lucas, C.; Adhikary, Bibhutosh

    2012-12-01

    Oxo- and chloroacetato-bridged tetra-nuclear iron(III) complex [Fe4O2(ClCH2COO)8(bpy)2]H2O, where bpy = 2,2'-bipyridine, has been synthesized and characterized on the basis of X-ray crystallography, elemental analysis, cyclic voltammetric, UV-vis and IR spectroscopic techniques. X-ray diffraction analysis reveals that the complex crystallizes in the monoclinic space group P2/n with a = 9.629(5) , b = 13.742(5), c = 20.437(5) , ? = ? = 90.000(5), ? = 99.792(5), V = 2664.9(18) 3 and Z = 2. The tetra-nuclear entity consists of a [Fe4(?3-O)2]8+ unit comprising four FeIII atoms with a "butterfly" arrangement. Each pair of iron(III) atoms occupy the "hinge" or "body" sites, and "wing-tip" sites, respectively. It undergoes two stepwise one electron reductions, one is quasi-reversible at E1/2 = +0.061 V vs Ag/AgCl (?Ep = 0.082 V) and the other is irreversible at EP.C = -0.38 V at a scan rates 0.1 V s-1. Variable-temperature magnetic susceptibility data reveals strong antiferromagnetic exchange interactions among the four high-spin FeIII ions. The exchange coupling constant Jbb (body-body interaction) is indeterminate due to prevailing spin frustration, but the 'wing-body' antiferromagnetic interaction (Jwb) was evaluated as -115 cm-1, using the spin Hamiltonion model H = -Jwb (S1?S2 + S2?S1 + S1'?S2' + S2'?S1) -Jbb(S2?S2').

  4. Influence of Jahn-Teller coupling on the magnetic properties of transition metal complexes with orbital triplet ground terms: magnetization and electronic Raman studies of the titanium(III) hexa-aqua cation.

    PubMed

    Tregenna-Piggott, P L; Gdel, H U

    2001-10-22

    Magnetization and electronic Raman data are presented for salts of the type Cs[Ga:Ti](SO(4))(2) x 12H(2)O, which enable a very precise definition of the electronic structure of the [Ti(OH(2))(6)](3+) cation. The magnetization data exhibit a spectacular deviation from Brillouin behavior, with the magnetic moment highly dependent on the strength of the applied field at a given ratio of B/T. This arises from unprecedented higher-order contributions to the magnetization, and these measurements afford the determination of the ground-state Zeeman coefficients to third-order. The anomalous magnetic behavior is a manifestation of Jahn-Teller coupling, giving rise to low-lying vibronic states, which mix into the ground state through the magnetic field. Electronic Raman measurements of the 1%-titanium(III)-doped sample identify the first vibronic excitation at approximately 18 cm(-1), which betokens a substantial quenching of spin-orbit coupling by the vibronic interaction. The ground-state Zeeman coefficients are strongly dependent on the concentration of titanium(III) in the crystals, and this can be modeled as a function of one parameter, representing the degree of strain induced by the cooperative Jahn-Teller effect. This study clearly demonstrates the importance that the Jahn-Teller effect can have in governing the magnetic properties of transition metal complexes with orbital triplet ground terms. PMID:11599947

  5. Synthesis and magnetic properties of a new family of macrocyclic M(II)3Ln(III) complexes: insights into the effect of subtle chemical modification on single-molecule magnet behavior.

    PubMed

    Feltham, Humphrey L C; Clrac, Rodolphe; Ungur, Liviu; Vieru, Veacheslav; Chibotaru, Liviu F; Powell, Annie K; Brooker, Sally

    2012-10-15

    Thirteen tetranuclear mixed-metal complexes of the hexaimine macrocycle (L(Pr))(6-) have been prepared in a one-pot 3:1:3:3 reaction of copper(II) acetate hydrate, the appropriate lanthanide(III) nitrate hydrate, 1,4-diformyl-2,3-dihydroxybenzene (1), and 1,3-diaminopropane. The resulting family of copper(II)-lanthanide(III) macrocyclic complexes has the general formula Cu(II)(3)Ln(III)(L(Pr))(NO(3))(3)solvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, or Yb). X-ray crystal structure determinations carried out on [Cu(3)Ce(L(Pr))(NO(3))(3)(MeOH)(3)] and [Cu(3)Dy(L(Pr))(NO(3))(3)(MeOH)(3)] confirmed that the large Ln(III) ion is bound in the central O(6) site and the three square pyramidal Cu(II) ions in the outer N(2)O(2) sites (apical donor either nitrate anion or methanol molecule) of the Schiff base macrocycle. Only the structurally characterized Cu(3)Tb complex, reported earlier, is a single-molecule magnet (SMM): the other 12 complexes do not exhibit an out-of-phase ac susceptibility signal or hysteresis of magnetization in a dc field. Ab initio calculations allowed us to rationalize the observed magnetic properties, including the significant impact of subtle chemical modification on SMM behavior. Broken-symmetry density functional theory (BS-DFT) calculations show there is a subtle structural balance as to whether the CuCu exchange coupling is ferro- or antiferromagnetic. Of the family of 13 magnetically characterized tetranuclear Cu(II)(3)Ln(III) macrocyclic complexes prepared, only the Tb(III) complex is an SMM: the theoretical reasons for this are discussed. PMID:23004914

  6. Magnetic Properties of Antiferromagnetic Iron Oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R. L.; Sainctavit, P.; Carvallo, C.; ona-Nguema, G.; Morin, G.

    2013-12-01

    Weakly magnetic iron oxyhydroxides such as ferrihydrite, lepidocrocite or goethite are commonly found in diverse geological and environmental setting, including ground waters and streams, sediments, soils, or acid mine drainage. These minerals take part in multiple biological and abiological processes, and can evolve to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. At this meeting, we will present low temperature magnetic properties acquired on fully characterized synthetic samples. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or by studying the early-stages of solid-state alteration (under oxidizing or reducing atmosphere). In particular, we will present recent results about the presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

  7. Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties

    SciTech Connect

    Wang, Xiu-Li; Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin

    2013-02-15

    Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(DNBA){sub 6}] (1), [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(1,3-BDC){sub 3}]{center_dot}2H{sub 2}O (2) and [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(SIP){sub 2}]{center_dot}4H{sub 2}O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid and NaH{sub 2}SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular Cu{sup II}{sub 4} cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear Cu{sup II}{sub 4} clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the Cu{sup II}{sub 4} clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (4{sup 10}{center_dot}6{sup 14}{center_dot}8{sup 4})(4{sup 5}{center_dot}6){sub 2} topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated. - Graphical abstract: Three tetranuclear copper(II) cluster-based complexes based on different carboxylates have been synthesized under hydrothermal conditions. The carboxylate anions play a key role in the formation of three different structures. Highlights: Black-Right-Pointing-Pointer Three new tetranuclear copper(II) cluster-based complexes have been obtained. Black-Right-Pointing-Pointer The atrz conduces to the construction of tetranuclear copper(II) clusters. Black-Right-Pointing-Pointer Carboxylates show important effect on the structures of title complexes. Black-Right-Pointing-Pointer Magnetic properties and electrochemical behaviors have been reported.

  8. Synthesis, structures and magnetic properties in 3d-electron-rich isostructural complexes based on chains with sole syn-anti carboxylate bridges.

    PubMed

    Su, Feng; Lu, Liping; Feng, Sisi; Zhu, Miaoli; Gao, Zengqiang; Dong, Yuhui

    2015-04-28

    To evaluate magnetic properties of isostructural compounds, a series of 3D carboxylate coordination polymers [M(H2bpta)]n, (H4bpta = 2,2',4,4'-biphenyltetracarboxylic acid, M = Fe(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4)), was synthesized in H2O-CH3CN or H2O solvents, respectively. Structurally, complexes 1-4 have isostructural features with (5,5)-connected 3D framework, wherein the M(II) centre takes an octahedral coordination environment consisting of six oxygen atoms from carboxylates of ligands. The M(II) sites are linked by syn-anti carboxylates to form chains with an MM separation of 4.880(2) (M = Fe), 4.784(2) (M = Ni), 4.541(2) (M = Cu), and 4.607(2) (M = Zn), respectively. The shortest MM distances between interchains locate 9.122(4), 9.077(3), 9.361(3), and 8.767(2) , respectively. Magnetically, the isostructural polymers show different magnetic behaviors due to different spins of central ions. Theoretical analysis indicates that couplings between magnetic ions obey uniform chain models. The magnetic susceptibility of 1 and 2 are perfectly fitted by the modified Fisher model to yield an effective intra-chain exchange coupling constant of -0.81(1) and 3.67(2) cm(-1), respectively. For 3, a Heisenberg ferromagnetic S = 1/2 chain included the intra-chain magnetic exchange interaction (J = 9.28(1) cm(-1), and zj' = -0.068(3) cm(-1)), weak ferromagnetic interactions in intra-chains, and weak antiferromagnetic interactions between interchains. The phenomena of 1-3 accord with the common view that the exchange interaction between two magnetic M(II) ions bridged by the syn-anti carboxylate bridge is dominantly weak ferro- or anti-ferromagnetic interactions. In addition, the M-O-C-O-M spin exchange interactions |J| of M2(CO2)2 (M = Mn(3d(5))(20), Fe(3d(6)), Co(3d(7))(20), Ni(3d(8)), Cu(3d(9))) decrease in strength with Cu2(CO2)2 > Ni2(CO2)2 > Co2(CO2)2 > Fe2(CO2)2 > Mn2(CO2)2, consistent with orbit order. PMID:25790149

  9. A 3D complex containing novel 2D Cu{sup II}-azido layers: Structure, magnetic properties and effects of 'Non-innocent' reagent

    SciTech Connect

    Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng; Liu, Fu-Chen; Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060

    2012-12-15

    A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D framework with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.

  10. Face-sharing heterotrinuclear M(II)-Ln(III)-M(II) (M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) complexes: synthesis, structures, and magnetic properties.

    PubMed

    Yamaguchi, Tomoka; Costes, Jean-Pierre; Kishima, Yukana; Kojima, Masaaki; Sunatsuki, Yukinari; Brfuel, Nicolas; Tuchagues, Jean-Pierre; Vendier, Laure; Wernsdorfer, Wolfgang

    2010-10-18

    Trinuclear linear 3d-4f-3d complexes (3d = Mn(II), Fe(II), Co(II), Zn(II) and 4f = La(III), Gd(III), Tb(III), Dy(III)) were prepared by using a tripodal nonadentate Schiff base ligand, N,N',N''-tris(2-hydroxy-3-methoxybenzilidene)-2-(aminomethyl)-2-methyl-1,3-propanediamine. The structural determinations showed that in these complexes two distorted trigonal prismatic transition metal complexes of identical chirality are assembled through 4f cations. The Mn and Fe entities crystallize in the chiral space group P2(1)2(1)2(1) as pure enantiomers; the cobalt complexes exhibit a less straightforward behavior. All Mn, Fe, and Co complexes experience M(II)-Ln(III) ferromagnetic interactions. The Mn-Gd interaction is weak (0.08 cm(-1)) in comparison to the Fe-Gd (0.69 cm(-1)) and Co-Gd (0.52 cm(-1)) ones while the single ion zero field splitting (ZFS) term D is larger for the Fe complexes (5.7 cm(-1)) than for the cobalt ones. The cobalt complexes behave as single-molecules magnets (SMMs) with large magnetization hysteresis loops, as a consequence of the particularly slow magnetic relaxation characterizing these trinuclear molecules. Such large hysteresis loops, which are observed for the first time in Co-Ln complexes, confirm that quantum tunnelling of the magnetization does not operate in the Co-Gd-Co complex. PMID:20446714

  11. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    SciTech Connect

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-10-15

    A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.

  12. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    NASA Astrophysics Data System (ADS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-10-01

    A non-coplanar dicarboxylate ndca (H2ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H2O)]n (1), {[Co(ndca)(bpe)(H2O)]H2O}n (2), [Co(ndca)(bpa)0.5(H2O)]n (3), [Cd(ndca)(bpe)(H2O)]n (4), {[Cd(ndca)(bpa)(H2O)]0.5H2O}n (5), and {[Cd(ndca)(bpp) (H2O)]H2O}n (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)-carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D?3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given.

  13. Family of dumbbell Ni4Ln2 (Ln = Pr, Sm, Eu, Gd, Tb, Ho, Er) complexes: syntheses, structures, luminescent and magnetic properties.

    PubMed

    Liu, Baolin; Liu, Qingxia; Xiao, Hongping; Zhang, Wu; Tao, Ruojie

    2013-04-14

    The synthesis and characterization of a family of heterometallic Ni4Ln2 complexes (Ln = Pr(1), Sm(2), Eu(3), Gd(4), Tb(5), Ho(6) and Er(7)) of the formula [Ni2LnL1L2(OH)(H2O)]2 are reported, where H4L1 is 3,3?-(1E,1?E)-(2,2?-(2-aminoethylazanediyl)bis(ethane-2,1-diyl)bis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxybenzoic acid) and H2L2 is 3-formyl-2-hydroxybenzoic acid. The molecular structures of 17 were determined by single-crystal X-ray diffraction and reveal that they are isostructural. In all of these compounds, the six metal ions are held together to form a novel Ni4Ln2O10 core and exhibit a relatively rare dumbbell-type structure. In these compounds, the Ni ions are in slightly distorted square-pyramidal or octahedral environments. An all-oxygen coordination environment (8O) is present around the central lanthanide ion, which is present in a distorted square antiprismatic geometry. The LnLn and LnOavg bond distances in 17 show a gradual reduction proceeding from 1 to 7, in accordance with the lanthanide contraction. The luminescent properties of all the compounds have been studied. The magnetic susceptibility analysis demonstrate antiferromagnetic interactions within complex 4. PMID:23396382

  14. Electrical properties of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Zubko, V. I.; Komjak, A. I.; Korobov, V. A.; Khrapovitsky, V. P.

    1990-04-01

    The electrophysical properties of magnetic fluids based on water and turbine oil have been studied depending on electric field frequency, concentration of dispersive phase and temperature. Different structural states of magnetic fluids have been revealed under low and high concentrations of dispersive phase.

  15. A Family of {Cr(III)2Ln(III)2} Butterfly Complexes: Effect of the Lanthanide Ion on the Single-Molecule Magnet Properties.

    PubMed

    Langley, Stuart K; Wielechowski, Daniel P; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2015-11-01

    We report the synthesis of several heterometallic 3d-4f complexes which result from the replacement of the Dy(III) ions in the [Cr(III)2Dy(III)2(OMe)2(mdea)2(O2CPh)4(NO3)2] single-molecule magnet (SMM) by the trivalent Pr, Nd, Gd, Tb, Ho, and Er lanthanide ions. The parent {Cr2Dy(III)2} compound displayed an anisotropy barrier to magnetization reversal of 53 cm(-1), with magnetic hysteresis observed up to 3.5 K and with large coercive fields at low temperatures (2.7 T at 1.8 K). Magnetic studies for the new complexes revealed significantly different static and dynamic magnetic behavior in comparison to the parent {Cr(III)2Dy(III)2} complex. When Ln(III) = Pr, a complete loss of SMM behavior is found, but when Ln(III) = Nd or Er, frequency-dependent tails in the out-of-phase susceptibility at low temperatures are observed, indicative of slow magnetic relaxation, but with very small anisotropy barriers and fast relaxation times. When Ln(III) = Tb and Ho, SMM behavior is clearly revealed with anisotropy barriers of 44 and 36 cm(-1), respectively. Magnetic hysteresis is also observed up to 2.5 and 1.8 K (0.003 T/s) for the Tb and Ho complexes, respectively. A large loss of the magnetization is, however, observed at zero-field, and as a result, the large coercivity which is present in the {Cr2Dy2} example is lost. The {Cr2Tb2} and {Cr2Ho2} complexes are rare examples of Tb- and Ho-based SMMs which reveal both slow relaxation in the absence of a static dc field (ac susceptibility) and open hysteresis loops above 1.8 K. PMID:26488451

  16. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(II)-EDTA complex and sodium linker: Synthesis, crystal structures, and magnetic properties

    SciTech Connect

    Liu Hong; Xu Lin Gao Guanggang; Li Fengyan; Yang Yanyan; Li Zhikui; Sun Yu

    2007-05-15

    Reaction of Keggin polyoxotungstate with copper(II)-EDTA (EDTA=ethylenediamine tetraacetate) complex under mild conditions led to the formation of hybrid inorganic-organic compounds Na{sub 4}(OH)[(Cu{sub 2}EDTA)PW{sub 12}O{sub 40}].17H{sub 2}O (1) and Na{sub 4}[(Cu{sub 2}EDTA)SiW{sub 12}O{sub 40}].19H{sub 2}O (2). The single-crystal X-ray diffraction analyses reveal their two structural features: (1) one-dimensional chain structure consisting of Keggin polyoxotungstate and copper(II)-EDTA complex; (2) Two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker. The results of magnetic measurements in the temperature range 300-2 K indicated the existence of ferromagnetic exchange interactions between the Cu{sup II} ions for both compounds. In addition, TGA analysis, IR spectra, and electrochemical properties were also investigated to well characterize these two compounds. - Graphical abstract: Two new polyoxometalate-based hybrids, Na{sub 4}(OH)[Cu{sub 2}(EDTA)PW{sub 12}O{sub 40}].17H{sub 2}O (1) and Na{sub 4}[Cu{sub 2}(EDTA)SiW{sub 12}O{sub 40}].19H{sub 2}O (2), have been synthesized and structurally characterized, which consist of one-dimensional chain structure assembled by Keggin polyoxotungstate and copper(II)-EDTA complex. The chains are further connected to form two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker.

  17. Hydroxide-bridged cubane complexes of nickel(II) and cadmium(II): magnetic, EPR, and unusual dynamic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Pellechia, Perry J; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-05-01

    The reactions of M(ClO4)2xH2O (M = Ni(II) or Cd(II)) and m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) in the presence of triethylamine lead to the formation of hydroxide-bridged cubane compounds of the formula [M4(?3-OH)4(?-Lm)2(solvent)4](ClO4)4, where solvent = dimethylformamide, water, acetone. In the solid state the metal centers are in an octahedral coordination environment, two sites are occupied by pyrazolyl nitrogens from Lm, three sites are occupied by bridging hydroxides, and one site contains a weakly coordinated solvent molecule. A series of multinuclear, two-dimensional and variable-temperature NMR experiments showed that the cadmium(II) compound in acetonitrile-d3 has C2 symmetry and undergoes an unusual dynamic process at higher temperatures (?GLm = 15.8 0.8 kcal/mol at 25 C) that equilibrates the pyrazolyl rings, the hydroxide hydrogens, and cadmium(II) centers. The proposed mechanism for this process combines two motions in the semirigid Lm ligand termed the Columbia Twist and Flip: twisting of the pyrazolyl rings along the CpzCmethine bond and 180 ring flip of the phenylene spacer along the CPhCmethine bond. This dynamic process was also followed using the spin saturation method, as was the exchange of the hydroxide hydrogens with the trace water present in acetonitrile-d3. The nickel(II) analogue, as shown by magnetic susceptibility and electron paramagnetic resonance measurements, has an S = 4 ground state, and the nickel(II) centers are ferromagnetically coupled with strongly nonaxial zero-field splitting parameters. Depending on the NiONi angles two types of interactions are observed: J1 = 9.1 cm(1) (97.9 to 99.5) and J2 = 2.1 cm(1) (from 100.3 to 101.5). Broken symmetry density functional theory calculations performed on a model of the nickel(II) compound support these observations. PMID:24750135

  18. Tuning the Magnetic Properties of Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Jamison, Andrew C.; Litvinov, Dmitri; Willson, Richard C.; Lee, T. Randall

    2013-01-01

    The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time. PMID:23912237

  19. Magnetic properties of oxyhemoglobin.

    PubMed Central

    Cerdonio, M; Congiu-Castellano, A; Mogno, F; Pispisa, B; Romani, G L; Vitale, S

    1977-01-01

    When the magnetic susceptibility of frozen aqueous solutions of human oxyhemoglobin was measured in the range between 25 and 250 K, it showed a temperature-dependent behavior typical of a thermal equilibrium between a ground singlet state and an excited triplet state for two electrons per heme, the energy separation being [2J] = 146 cm-1. By contrast, within the same temperature range, carboxyhemoglobin was found to be diamagnetic, as already reported. PMID:265510

  20. Emergent properties of magnetic materials

    NASA Astrophysics Data System (ADS)

    Ratcliff, William Davis, II

    In Tolstoy's War and Peace, history is presented as a tapestry spun from the daily interactions of large numbers of individuals. Even if one understands individuals, it is very difficult to predict history. Similarly, the interactions of large numbers of electrons give rise to properties that one would not initially guess from their microscopic interactions. During the course of my dissertation, I have explored emergent phenomena in a number of contexts. In ZnCr2O4, geometric frustration gives rise to a plethora of equivalent ground states. From these, a lower dimensional set of collinear spins on hexagons are selected to form the building blocks of the lattice. In MgTi2O4, quantum spins dimerize and form a unique chiral ordering pattern on the spinel lattice. Descending into two dimensions, differences in size and charge give rise to an ordering between triangular layers of magnetic and nonmagnetic ions. This triangular lattice allows for the possibility of observing the RVB spin liquid state, or perhaps a valence bond crystal and initial measurements are promising. Also, on the spinel lattice, ionic ordering gives rise to one dimensional chains with their own interesting physics. Finally, in the SrCoxTi1-x O3, system we find that upon reduction, tiny clusters of Co metal precipitate out and chemical inhomogeneity on the microscale may determine much of the physics. This has relevance to a number of recent claims of room temperature ferromagnism in dilute magnetic systems. In all of these systems, complex behavior emerges from well understood microscopic behavior. For me, this is the fascination of strongly correlated electronic systems.

  1. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    PubMed

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-01

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(?-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior. PMID:25695369

  2. Magnetic properties of large Apollo lunar samples

    NASA Astrophysics Data System (ADS)

    Gattacceca, Jerome; Eduardo, Lima; Yoann, Quesnel; Benjamin, Weiss; Pierre, Rochette; Minoru, Uehara; Laurent, Baratchart; Juliette, Leblond; Sylvain, Chevillard

    2015-04-01

    Paleomagnetic studies of lunar samples shed light on the existence and timing of the ancient lunar dynamo, with insights to the inner structure and thermal evolution of the Moon, as well as constraints for dynamo modeling [e.g., Weiss and Tikoo 2014 Science]. The intrinsic magnetic properties of lunar rocks also offer clues to their petrogenesis [e.g., Rochette et al. 2010 EPSL]. However, because of curation constraints, these studies are usually performed on small cm-scale samples, typically below 100 mg for paleomagnetism. Such a small size, combined with anisotropy and other spurious effects, have been shown to be the source of additional complexity for paleomagnetic analyses [Tikoo et al. 2012 EPSL] and raises question about how representative their magnetic properties are for the bulk rock. We measure here the natural remanent magnetization and magnetic susceptibility of 105 large Apollo samples (ranging from 40 g to 3 kg) using a portable new instrument. The aim is to gain information about the evolution of the lunar field with time, and identify samples with anomalous magnetic record or magnetic properties. We will discuss how these measurements compare with the existing laboratory measurements, what they tell us about lunar rocks, and how they can be used to select samples for in-depth paleomagnetic study.

  3. Systematic studies of the structures and magnetic properties for a family of cubane complexes with the formula: [M2Ln2] (Ln = Dy, Gd; M = Ni, Zn) and [Ni2Y2].

    PubMed

    Yu, Wan-Rong; Lee, Gene-Hsian; Yang, En-Che

    2013-03-21

    Studies of magnetic properties of a family of tetranuclear M(II)(2)Ln(III)(2) (M = Ni, Zn; Ln = Dy, Gd and Y) complexes with hmp (anion of 2-hydroxymethylpyridine) and benzoate as ligands are reported. In these complexes, metal ions (M or Ln) occupy the four alternative corners of a distorted cubane with oxygen atoms from alkoxyl groups on the others. Complexes 1, 2 and 3 crystallized in P2(1)/c and complexes 4 and 5 in C2/c space groups. Although in different space groups, complexes 1-5 have very similar structures which permit the magnetic interactions to be systematically compared with respect to metal ion pairs. In complex 3 (Ni(2)Y(2)), clear ferromagnetic coupling between Ni(II) ions can be seen, with: g = 2.16, S = 2, D = -0.95 cm(-1), J = +3.77 cm(-1) (or g = 2.20, S = 2, D = +1.51 cm(-1)). In complex 5 (Zn(2)Gd(2)), a very weak antiferromagnetic coupling between the Gd(III) ions was observed: g = 2.08, J = -0.05 cm(-1). Based on these data, we concluded that the decrease in ?(M)T-T upon cooling for complex 2 (Zn(2)Dy(2)) might be partly due to antiferromagnetic coupling between Dy(III) ions. The data from complex 4 (Ni(2)Gd(2)) were analyzed based on the preceding results and gave moderate ferromagnetic coupling between Ni(II) and Gd(III) with J = 0.26 cm(-1). A detailed study of magnetic properties of complex 1 (Ni(2)Dy(2)) was not possible, because of its strong orbital contributions from Dy(III) ions. In addition, frequency-dependent out-of-phase signals were clearly observed for both complexes 1 and 2 which can be attributed to magnetoanisotropy contributions from Dy(III) ions. PMID:23334432

  4. Complex structures adapted to magnetic flows

    NASA Astrophysics Data System (ADS)

    Hall, Brian C.; Kirwin, William D.

    2015-04-01

    Let M be a compact real-analytic manifold, equipped with a real-analytic Riemannian metric g, and let ? be a closed real-analytic 2-form on M, interpreted as a magnetic field. Consider the Hamiltonian flow on T? M that describes a charged particle moving in the magnetic field ?. Following an idea of T. Thiemann, we construct a complex structure on a tube inside T? M by pushing forward the vertical polarization by the Hamiltonian flow "evaluated at time i". This complex structure fits together with ? -?? ? to give a Khler structure on a tube inside T? M. When ? = 0, our magnetic complex structure is the adapted complex structure of Lempert-Sz?ke and Guillemin-Stenzel. We describe the magnetic complex structure in terms of its (1, 0) -tangent bundle, at the level of holomorphic functions, and via a construction using the embeddings of Whitney-Bruhat and Grauert. We describe an antiholomorphic intertwiner between this complex structure and the complex structure induced by - ?, and we give two formulas for local Khler potentials, which depend on a local choice of vector potential 1-form for ?. Finally, we compute the magnetic complex structure explicitly for constant magnetic fields on R2 and S2.

  5. Low Dimensionality Effects in Complex Magnetic Oxides

    NASA Astrophysics Data System (ADS)

    Kelley, Paula J. Lampen

    Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.

  6. Ground-state electronic and magnetic properties of a mu3-oxo-bridged trinuclear Cu(II) complex: correlation to the native intermediate of the multicopper oxidases.

    PubMed

    Yoon, Jungjoo; Solomon, Edward I

    2005-10-31

    The ground-state electronic and magnetic properties of one of the possible structures of the trinuclear Cu(II) site in the native intermediate (NI) of the multicopper oxidases, the mu(3)-oxo-bridged structure, are evaluated using the C(3)-symmetric Cu(3)(II) complex, mu(3)O. mu(3)O is unique in that no ligand, other than the oxo, contributes to the exchange coupling. However, mu(3)O has a ferromagnetic ground state, inconsistent with that of NI. Therefore, two perturbations have been considered: protonation of the mu(3)-oxo ligand and relaxation of the mu(3)-oxo ligand into the Cu(3) plane. Notably, when the oxo ligand is sufficiently close to the Cu(3) plane (<0.3 Angstroms), the ground state of mu(3)O becomes antiferromagnetic and can be correlated to that of NI. In addition, the ferromagnetic (4)A ground state of mu(3)O is found from variable-temperature EPR to undergo a zero-field splitting (ZFS) of 2D = -5.0 cm(-1), which derives from the second-order anisotropic exchange. This allows evaluation of the sigma-to-pi excited-state exchange pathways and provides experimental evidence that the orbitally degenerate (2)E ground state of the antiferromagnetic mu(3)O would also undergo a ZFS by the first-order antisymmetric exchange that has the same physical origin as the anisotropic exchange. The important contribution of the mu(3)-oxo bridge to the ground-to-ground and ground-to-excited-state superexchange pathways that are responsible for the isotropic, antisymmetric, and anisotropic exchanges are discussed. PMID:16241158

  7. Ground State Electronic and Magnetic Properties of a ?3-Oxo Bridged Trinuclear Cu(II) Complex: Correlation to the Native Intermediate of the Multicopper Oxidases

    PubMed Central

    Yoon, Jungjoo; Solomon, Edward I.

    2008-01-01

    The ground state electronic and magnetic properties of one of the possible structures of the trinuclear CuII site in the native intermediate (NI) of the multicopper oxidases, the ?3-oxo bridged structure, are evaluated using the C3-symmetric Cu3II complex, ?3O. ?3O is unique in that no ligand, other than the oxo, contributes to the exchange coupling. However, ?3O has a ferromagnetic ground state, inconsistent with that of NI. Therefore, two perturbations have been considered: protonation of the ?3-oxo ligand and relaxation of the ?3-oxo ligand into the Cu3 plane. Notably, when the oxo-ligand is sufficiently close to the Cu3 plane (< 0.3 ), the ground state of ?3O becomes antiferromagnetic and can be correlated to that of NI. In addition, the ferromagnetic 4A ground state of ?3O is found from variable-temperature EPR to undergo a zero-field splitting (ZFS) of 2D = -5.0 cm-1, which derives from the second-order anisotropic exchange. This allows evaluation of the ?-to-? excited state exchange pathways and provides experimental evidence that the orbitally-degenerate 2E ground state of the antiferromagnetic ?3O would also undergo a ZFS by the first-order antisymmetric exchange that has the same physical origin as the anisotropic exchange. The important contribution of the ?3-oxo bridge to the ground-to-ground and ground-to-excited state superexchange pathways that are responsible for the isotropic, antisymmetric and anisotropic exchange are discussed. PMID:16241158

  8. SIMPRE: a software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions.

    PubMed

    Baldov, Jos J; Cardona-Serra, Salvador; Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ario, Alejandro; Palii, Andrew

    2013-08-15

    This work presents a fortran77 code based on an effective electrostatic model of point charges around a rare earth ion. The program calculates the full set of crystal field parameters, energy levels spectrum, and wave functions, as well as the magnetic properties such as the magnetization, the temperature dependence of the magnetic susceptibility, and the Schottky contribution to the specific heat. It is designed for real systems that need not bear ideal symmetry and it is able to determine the easy axis of magnetization. Its systematic application to different coordination environments allows magneto-structural studies. The package has already been successfully applied to several mononuclear systems with single-molecule magnetic behavior. The determination of effective point charge parameters in these studies facilitates its application to new systems. In this article, we illustrate its usage with two example studies: (a) an ideal cubic structure coordinating a lanthanoid ion and (b) a system with slow relaxation of the magnetization, LiHo(x)Y((1-x))F(4). PMID:24000391

  9. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to determine the size of Ni clusters, which plays important role on catalyzing the electrochemical reaction and powering Ni-MH batteries.

  10. Two binuclear cyanide-bridged Cr(III)-Mn(III) complexes based-on [Cr(2,2'-bipy)(CN)4]- building block: synthesis, crystal structures and magnetic properties.

    PubMed

    Zhanga, Daopeng; Kong, Lingqian; Zhang, Hongyan

    2015-01-01

    Tetracyanide building block [Cr(2,2'-bipy)(CN)(4)]- and two bicompartimental Schiff-base based manganese(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in two cyanide-bridged CrIII-MnIII complexes: [Mn(L(1))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·2.5H(2)O (1) and [Mn(L(2))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·(3)H(2)O (2) (L1 = N,N'-(1,3-propylene)-bis(3-methoxysalicylideneiminate), L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)). Single X-ray diffraction analysis shows their similar cyanide-bridged binuclear structures, in which the cyanide precursor acting as monodentate ligand connects the manganese(III) ion. The binuclear complexes are self-complementary through coordinated aqua ligand and the free O4 compartment from the neighboring complex, giving H-bond linking dimer structure. Investigation over magnetic properties reveals the antiferromagnetic magnetic coupling between the cyanide-bridged Cr(III) and Mn(III) ions. A best-fit to the magnetic susceptibilities of these two complexes leads to the magnetic coupling constants J = -5.95 cm(-1), j = -0.61 cm(-1) (1) and J = -4.15 cm(-1), j = -0.57 cm(-1) (2), respectively. PMID:25830979

  11. Burnt clay magnetic properties and palaeointensity determination

    NASA Astrophysics Data System (ADS)

    Avramova, Mariya; Lesigyarski, Deyan

    2014-05-01

    Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The palaeointensity experiments for the samples formed from the ancient baked clays completely failed to give relibable results.

  12. Magnetism of the oceanic crust: Evidence from ophiolite complexes

    SciTech Connect

    Banerjee, S.K.

    1980-07-10

    The magnetic properties of six ophiolite complexes from around the world, ranging in age from Jurassic to Miocene, are presented. An emphasis is placed in our study on the petrologic and isotopic data from these ophiolite complexes in order to determine first whether the rock samples presently available represent the pristine ocean crust or whether they have been altered subaerially since their formation. Five of the ophiolites are found to be acceptable, and the conclusion is overwhelmingly in favor of a marine magnetic source layer that includes not only the pillow lavas but also the underlying dikes and gabbro. At the moment, however, our observations do not suggest that the magnetic contributions of the basaltic dikes should be overlooked in favor of gabbro. A second important conclusion is that nearly pure magnetite could indeed be a magnetic carrier which contributes to marine magnetic anomanies. It only awaits discovery by deeper ocean crustal penetration by future Deep Sea Drilling Project legs.

  13. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1? and L2? are N,N-diethyl-N?,N?-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N?,N?-diethylethane-1,2-diamine (L2), N,N-diethyl-N?-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1?) and N-((1H-pyrazol-1-yl)methyl)-N?,N?-diethylethane-1,2-diamine (L2?) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (?-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  14. Magnetic properties of Acidithiobacillus ferrooxidans.

    PubMed

    Yan, Lei; Zhang, Shuang; Chen, Peng; Wang, Weidong; Wang, Yanjie; Li, Hongyu

    2013-10-01

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto-thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 C and a coercivity of 16.36 mT. Additionally, the low delta ratio (?FC/?ZFC=1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. PMID:23910310

  15. Electronic structure and magnetic properties of high-spin octahedral Co(II) complexes: Co(II)(acac)2(H2O)2

    NASA Astrophysics Data System (ADS)

    Lohr, Lawrence L.; Miller, Jeremy C.; Sharp, Robert R.

    1999-12-01

    An analysis of the electronic structure of the high-spin 3d7 Co(II) ion in the approximately octahedral Co(II)(acac)2(H2O)2 complex is presented in terms of crystal fields of descending symmetry from octahedral to orthorhombic. The energies and wave functions resulting from the interplay of these fields with the spin-orbit coupling are used to obtain zero-field splittings, magnetic moments, magnetic susceptibilities, and g values for the complex. The calculated temperature dependence of the susceptibility is compared to the reported dependence for Co(II)(acac)2(H2O)2, yielding bounds on the strength of the tetragonal component of the crystal field. The calculated anisotropy in the susceptibility is used in an analysis of our observed pseudocontact NMR shifts for methyl and methine protons in the complex. A procedure is outlined for using a crystal field analysis to compute pseudocontact contributions to proton chemical shifts starting from g values extracted from ESR spectra. The relationship between molecular structure and crystal-field splittings is also explored via a series of ab initio electronic structure calculations for the M(II)(acac)2(H2O)2 complexes with M=Mn, Co, Ni, and Zn.

  16. Magnetic modeling of the Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Cole, J.; Letts, S. A.; Finn, C.; Torsvik, T. H.; Lee, M. D.

    2009-12-01

    Magnetic modeling of the 2.06 Ga Bushveld Complex presents special challenges due a variety of magnetic effects. These include strong remanence in the Main Zone and extremely high magnetic susceptibilities in the Upper Zone, which exhibit self-demagnetization. Recent palaeomagnetic results have resolved a long standing discrepancy between age data, which constrain the emplacement to within 1 million years, and older palaeomagnetic data which suggested ~50 million years for emplacement. The new palaeomagnetic results agree with the age data and present a single consistent pole, as opposed to a long polar wander path, for the Bushveld for all of the Zones and all of the limbs. These results also pass a fold test indicating the Bushveld Complex was emplaced horizontally lending support to arguments for connectivity. The magnetic signature of the Bushveld Complex provides an ideal mapping tool as the UZ has high susceptibility values and is well layered showing up as distinct anomalies on new high resolution magnetic data. However, this signature is similar to the highly magnetic BIFs found in the Transvaal and in the Witwatersrand Supergroups. Through careful mapping using new high resolution aeromagnetic data, we have been able to map the Bushveld UZ in complicated geological regions and identify a characteristic signature with well defined layers. The Main Zone, which has a more subdued magnetic signature, does have a strong remanent component and exhibits several magnetic reversals. The magnetic layers of the UZ contain layers of magnetitite with as much as 80-90% pure magnetite with large crystals (1-2 cm). While these layers are not strongly remanent, they have extremely high magnetic susceptibilities, and the self demagnetization effect must be taken into account when modeling these layers. Because the Bushveld Complex is so large, the geometry of the Earths magnetic field relative to the layers of the UZ Bushveld Complex changes orientation, creating complications in the modeling. Anisotropic magnetic susceptibility may be related to demagnetization in the Bushveld Complex due to well defined, relatively thin layers. Aeromagnetic data are useful for imaging layered intrusions because they often contain highly magnetic layers. However, care must be taken to incorporate the effects of strong susceptibilites (AMS,demagnetisation) and remanence.

  17. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, {sup 57}Fe Moessbauer spectroscopy and thermal studies

    SciTech Connect

    Travnicek, Zdenek; Herchel, Radovan; Mikulik, Jiri; Zboril, Radek

    2010-05-15

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, where L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.

  18. A novel single pot synthesis of binuclear copper(II) complexes of macrocyclic and macroacyclic compartmental ligands: Structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmay; Banu, Kazi Sabnam; Banerjee, Arpita; Ribas, Joan; Majee, Adinath; Nethaji, Munirathinam; Das, Debasis

    2007-05-01

    Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H 2L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2-diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex 1 reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H 2L1 having Cu-Cu separations of 2.9133(10) and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (? -1,1 type) with Cu-Cu distance of 3.032(10) . Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 5 cm -1 and J = -188.6 1 cm -1 for complex 1 and 2, respectively.

  19. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, Joo; Kumar, Amit; Sarkar, Asit R

    2013-02-21

    Three new complexes of Cu(II) and Ni(II), [Cu(II)(H(2)pydmedpt)](2+)2Cl(-) (1), [Ni(II)(H(2)pydmedpt)](2+)2Cl(-) (2) and [Ni(II)(pydmedpt)(OH)](-)K(+) (3) of the Schiff base ligand [H(2)pydmedpt](2+)2Cl(-) were synthesized by the in situ reaction of pyridoxal (pyd), a vitamer of vitamin B(6), N,N-bis[3-aminopropyl]methylamine (medpt) and copper(II) acetate or nickel(II) acetate, respectively. The molecular structures of 1 and 2 were determined by single crystal X-ray diffraction studies. The structure of 3 in the solid state was inferred by elemental analysis, diffuse reflectance spectrum, variable temperature magnetic moment studies and DFT calculations. The binding of the Schiff base ligand to the metal centers involves two phenolato oxygens, two imine nitrogens and one amine nitrogen. The coordination geometry around Cu in 1 is distorted square pyramidal and that around the Ni atom in 2 is intermediate between square-pyramidal and trigonal-bipyramidal. In the crystals the compounds form supramolecular one dimensional chain structures stabilized by hydrogen bonding and ?-? stacking interactions. Variable temperature magnetic moment data of 2 indicate the presence of a momomeric high spin Ni(II) centre in the complex. The solid state diffuse reflectance spectrum, conductance and elemental analysis suggest that 3 is a Ni(II) complex with a tetragonally distorted octahedral field, the sixth position being occupied by the oxygen atom of a hydroxyl group. The variable temperature magnetic moment of 3 indicates the presence of a ferromagnetic dinuclear species (29.2%) along with the major monomeric species, the intra-dimer exchange term J value being 14.3 cm(-1). The competitive binding of 1 and 2 with DNA was studied in the concentration range 40 to 400 ?M, the apparent binding constants being K = 2.9 10(3) and 6.7 10(3) M(-1), respectively. Human Serum Albumin (HSA) binding studies were carried out at concentrations of 800-1000 ?M and 400-500 ?M for the complexes and HSA, respectively, in PBS buffer at pH 7.4. Complex 1 binds to HSA, while no binding is observed in case of 2, instead, the complex hydrolyses under the experimental conditions used and the resulting Ni(2+) ions bind with HSA. PMID:23223610

  20. Complexes of selected transition metal ions with 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid: Synthesis, structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Ferenc, Wiesława; Sadowski, Paweł; Tarasiuk, Bogdan; Cristóvão, Beata; Drzewiecka-Antonik, Aleksandra; Osypiuk, Dariusz; Sarzyński, Jan

    2015-07-01

    The new complexes of 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid, HL anion with Mn(II), Co(II), Ni(II), Cu(II) and Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Ho(III), Er(III), Y(III) were synthesized and some of their physico-chemical properties investigated. The complexes form hydrates with two or three molecules of water. The carboxylate groups act as a bidentate bridging or chelating ligand. The compounds of Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Ho(III), Er(III) and Y(III) are amorphous solids while those of Cu(II), Co(II), Ni(II) and Mn(II) crystalline ones that crystallize in monoclinic system. Complex of Cu(II) is the centrosymmetric dinuclear compound. Around both Cu(II) cations the tetragonal pyramide is formed. Being heated in air at 293-1173 K the complexes are decomposed in three steps. The oxides of appropriate metals are the final products of complex decomposition. All analysed compounds obey Curie-Weiss law. They show the paramagnetic properties with the ferromagnetic interactions between molecular centres.

  1. Some Structural Properties of Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ioshpa, B.; Mogilevskii, E.; Obridko, V.

    2007-05-01

    We discuss some results of the study of spatial characteristics of solar magnetic fields. The analysis is based on the magnetic field data obtained with a new spectromagnetograph installed on the IZMIRAN Tower Telescope (Fe I 6302.5 Å) (Kozhevatov et al., 2002), the data of the MSFC solar vector magnetograph (Fe I 5250.2 Å) and the data of longitudinal magnetic 96 m daily maps of SOHO/MDI magnetograph (Ni I 6768 Å) downloaded through Internet. Our study was directed in some different ways: the fractal properties of sunspots; fractal properties of space distribution of the magnetic fields along great distances comparable with the size of active regions or active complexes; fractal properties of active and quiet regions as global entities. To do it we used some different methods, particularly, the well known method using the relation between the area and the perimeter of magnetic field lines (see (Feder, 1988; Meunier, 1999; Nesme-Ribes at al., 1996; Balke et al., 1993)) and technique developed by Higuchi (1988), who applied it to the investigation of long time series. Note also that magnetic structure in terms of the fractal models was developed earlier in (Zelenyi & Milovanov, 1991; Milovanov & Zelenyi, 1993; Mogilevskii, 1994; Mogilevskii, 2001; Abramenko et al., 2002; Abramenko, 2005; Salakhudinova & Golovko, 2005). The main results are: 1. Fractal analysis of sunspot magnetic field indicated the existence of three families of self-similar contour lines roughly belonging to the umbra, penumbra and the ambient photosphere correspondingly. The greatest fractal dimension corresponds to the regions of weakest fields (ambient photosphere), the least one corresponds to the intermediate region (penumbra). 2. More detailed analysis shows that the fractal coefficient has a maximum (about 1.50) near the umbra--penumbra interface. 3. The global fractal numbers of space distribution of magnetic field on solar surface is closely connected with the mean absolute values of the longitudinal magnetic field for this surface. The fractal numbers diminish with the rising of mean magnetic field (from values about 2.0 for the relatively quiet region to 1- 1.2 for very active regions). 4. The dependences of fractal numbers of the space distribution of longitudinal and transversal fields versus mean longitudinal field are similar by their character but the fractal values for transversal field are higher than the corresponding factor values for longitudinal field by factor about 1.5. This means that the distribution of transversal field along the space is more chaotic than the distribution of longitudinal field.

  2. The topology and instability of complex magnetic fields

    NASA Astrophysics Data System (ADS)

    Longbottom, Aaron William

    The magnetic structures of active-region and quiescent filaments and their overlying magnetic arcades which erupt to give a CME are extremely complex. New models are presented for such structures and for the complex field produced by many solar magnetic sources. Their properties are described, including the nature of their skeletons, which consist of the 3D null points and a web of spine curves and separatrix surfaces. In particular, the nature of the magnetic field near a switch-back in the global polarity inversion line is described where CME eruptions have been found with Yohkoh to be common. The nature of the instabilities that may lead to prominence eruption is examined, indicating the conditions for the onset of such a process. Finally, the evolution of such fields through a series of equilibria is analysed.

  3. Copper(II) coordination chain complexes with the 3,5-diacetyl-4-methylpyrazole dioxime ligand: Synthesis, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Outirite, Moha; Mernari, Bouchaib; Bentiss, Fouad; Capet, Frederic; Lagrenée, Michel

    2011-03-01

    3,5-Diacetyl-4-methylpyrazole dioxime (dampdoH 3) has been found to form with copper(II), in the presence of different anions (perchlorate, nitrate, triflate and tetrafluoroborate), four new dimeric complexes, [Cu 2(dampdoH 2) 2(ClO 4) 2] ( 1); [Cu 2(dampdoH 2) 2(H 2O) 2]2NO 3 ( 2); [Cu 2(dampdoH 2) 2(CF 3SO 3) 2] ( 3) and [Cu 2(dampdoH 2) 2(BF 4) 2] ( 4). The molecular structure of [Cu 2(dampdoH 3) 2] 2+ which is the common unit for the four complexes is composed of binuclear species where one of the oxime functions has the classical structure while the second function has a zwitterionic structure. For the four complexes these binuclear units are parallel and are bound together by a strong intermolecular bond to create an infinite 1D chain expanding along the crystallographic " a" axis. Variable-temperature magnetic susceptibility measurements for complex 1 indicate a very strong antiferromagnetic exchange coupling intra or/and interdimeric ring, the J1 value of the intradimer coupling being strongest than the interbinuclear coupling J2 ( J1 = -346 cm -1, J2 = -119.15 cm -1).

  4. Peculiarities of crystal structures and magnetic properties of Cu(II) and Ni(II) mixed-ligand complexes on the 1,3-dithiole-2-thione-4,5-dithiolate basis

    NASA Astrophysics Data System (ADS)

    Starodub, V. A.; Vitushkina, S. V.; Kamenskyi, D.; Anders, A. G.; Cheranovskii, V. O.; Schmidt, H.; Steinborn, D.; Poto??k, I.; Kaj?akov, M.; Radvkov, A.; Feher, A.

    2012-02-01

    Mixed-ligand Cu(II) and Ni(II) complexes, [Cu(dmit)(bpy)]2 (I), [Ni(dmit)(phen)2] (II) and [Ni(dmit)(phen)2]CH2Cl2 (III) (dmit=1.3-dithiole-2-thione-4.5-dithiolate, phen=1.10-phenantroline, bpy=2.2?-bipyridine) have been prepared by ligand exchange between phen or bpy and (Bu4N)2[M(dmit)2] (M=Ni, Cu) and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray analysis and by investigation of magnetic and resonance properties. In complex I, the monomeric units form dimers in a head-to-tail arrangement by weak coordination bonds between copper and dithiolate sulfur atoms and ?-? interactions between dmit and bpy from neighboring monomers. Dimers in I are further extended into chains by weak Cu-S(thione) contacts. In crystal packing of complex II and III, there exists a weak ?-? interaction between two parallel phen molecules of the adjacent complexes. As a consequence, the magnetic and resonance characteristics of copper complex may be described in approximation of exchange-coupled pairs of Cu2+ ions with ion spin S=1/2. The nickel complexes are described by isotropic exchange model for single-site spin S=1.

  5. Coherent transport through spin-crossover magnet Fe2 complexes.

    PubMed

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2015-12-17

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices. PMID:26647165

  6. Paramagnetic NMR investigations of high-spin nickel(II) complexes. Controlled synthesis, structural, electronic, and magnetic properties of dinuclear vs. mononuclear species.

    PubMed

    Belle, C; Bougault, C; Averbuch, M T; Durif, A; Pierre, J L; Latour, J M; Le Pape, L

    2001-08-22

    New dissymmetric tertiary amines (N(3)SR) with varying N/S donor sets have been synthesized to provide mono- and dinuclear complexes. Acetate ions are used to complete the octahedral coordination sphere around nickel(II) atom(s). The facile conversion of mononuclear to dinuclear systems can be controlled to produce either mono- or dinuclear complexes from the same ligand. The dinuclear complex a(BPh(4))(2) ([Ni(2)(N(3)SSN(3))(OAc)(2)](BPh(4))(2)) has been characterized in the solid state by X-ray diffraction techniques as solvate: a(BPh(4))(2).(1/2)[5(CH(3)OH).(CH(3)CN).(CH(3)CH(2)OH)]. The two Ni atoms are six-coordinated and bridged by a disulfide group and two bidentate acetates. Magnetic susceptibility reveals a weak ferromagnetic exchange interaction between the two Ni atoms with J = 2.5(7) cm(-1). UV-vis studies suggest that the six-coordinated structure persists in solution. The (1)H NMR spectrum of a(BPh(4))(2) exhibits sharp significantly hyperfine shifted ligand signals. A complete assignment of resonances is accomplished by a combination of methods: 2D-COSY experiments, selective chemical substitution, and analysis of proton relaxation data. Proton isotropic hyperfine shifts are shown to originate mainly from contact interactions and to intrinsically contain a small J-magnetic coupling and/or zero-field splitting contribution. A temperature dependence study of longitudinal relaxation times indicates that a very unusual paramagnetic Curie dipolar mechanism is the dominant relaxation pathway in these weakly ferromagnetically spin-coupled dinickel(II) centers. The mononuclear nickel(II) analogue exhibits extremely broader (1)H NMR signals and only partial analysis could be performed. These data are consistent with a shortening of electronic relaxation times in homodinuclear compounds with respect to the corresponding mononuclear species. PMID:11506562

  7. Magnetic Properties of selected Prussian Blue Analogs

    NASA Astrophysics Data System (ADS)

    Shrestha, Manjita

    Prussian Blue Analogs (PBAs) of composition M[M(C,N)6 ] 2.xH2O are bimetallic cyanide complexes, where M and M are bivalent or trivalent transition metals and x is number of water molecule per unit cell. The PBAs form cubic framework structures, which consist mostly of alternating MIIIN6 and MIIC 6 octahedrals. However, occupancies of the octrahedrals are not perfect: they may be empty and the charges are balanced by the guest water molecules at the lattice site (C or N site) or the interstitial site (between the octahedrals) of the unit cell. Most (but not all) PBAs exhibit negative thermal expansion behavior, i.e. volume decrease with increasing temperature. Another area of interest in PBA research is the occurrence of unusual magnetic properties. Similar to other molecular magnets, large crystal-field splitting due to the octrahedral environment may result in a combination of low- or high-spin configurations of the localized magnetic moments, i.e. spin crossover effects may be found. My dissertation focuses on the magnetic properties of the selected 3d transition-metal PBAs, namely metal hexacyanochromates M3[Cr(C,N)6 ]2.xH2O, metal hexcyanoferrates M3[Fe(C,N)6]2.xH2O and metal hexcyanocobaltates M3[Co(C,N)6]2 .xH2O where M = Mn, Co, Ni and Cu. In particular, I analyzed the temperature and field dependencies of the bulk magnetic response of those PBAs. My results show that the magnetic susceptibility of all studied PBAs follows the Curie-Weiss behavior in the paramagnetic region up to room temperature; however, some of the compounds exhibit long-range magnetic order at lower temperatures (ferromagnetic or antiferromagnetic). In particular, the data provide evidence for magnetic ground states for most of the metal hexacyanochromates and all of the metal hexacyanoferrates but none of the hexacyanocobaltates that were studied. For each of the compounds, my analysis provides a measure of the effective magnetic moment, which is then compared with the predicted moments assuming high- and/or low-spin configurations. Finally, I provide a discussion as to whether magnetism may play any role into the occurrence of negative thermal expansion for most PBAs.

  8. Coherent transport through spin-crossover magnet Fe2 complexes

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2015-12-01

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices.As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices. Electronic supplementary information (ESI) available: The spin density of SCO magnet Fe2 complexes, the partial DOS of HS Fe cations, zero-bias transmission curves of SCO magnet Fe2 junctions with different anchoring configurations, and bias-dependent transmission curves of SCO magnet Fe2 complexes with the [LS-LS] and [LS-HS] configurations. See DOI: 10.1039/C5NR05601B

  9. S-shaped decanuclear heterometallic [Ni8Ln2] complexes [Ln(III) = Gd, Tb, Dy and Ho]: theoretical modeling of the magnetic properties of the gadolinium analogue.

    PubMed

    Hossain, Sakiat; Das, Sourav; Chakraborty, Amit; Lloret, Francesc; Cano, Joan; Pardo, Emilio; Chandrasekhar, Vadapalli

    2014-07-14

    The reaction of 8-quinolinol-2-carboaldoxime (LH2) with Ni(II) and Ln(III) salts afforded the heterometallic decanuclear compounds [Ni8Dy2(?3-OH)2(L)8(LH)2(H2O)6](ClO4)216H2O (1), [Ni8Gd2(?3-OH)2(L)8(LH)2(H2O)4(MeOH)2](NO3)212H2O (2), [Ni8Ho2(?3-OH)2(L)8(LH)2(H2O)4(MeOH)2](ClO4)22MeOH12H2O (3) and [Ni8Tb2 (?3-OH)2(L)8(LH)2(MeOH)4(OMe)2]2CH2Cl28H2O (4). While compounds 1-3 are dicationic, compound 4 is neutral. These compounds possess an S-shaped architecture and comprise a long chain of metal ions bound to each other. In all the complexes, the eight Ni(II) and two Ln(III) ions of the multimetallic ensemble are hold together by two ?3-OH, eight dianionic (L(2-)) and two monoanionic oxime ligands (LH(-)) whereas compound 4 has two ?3-OH, eight dianionic (L(2-)), two monoanionic oxime ligands (LH(-)) and two terminal methoxy (MeO(-)) ligands. The central portion of the S-shaped molecular wire is made up of an octanuclear Ni(II) ensemble which has at its two ends the Ln(III) caps. Magnetic studies on 1-4 reveal that the magnetic interactions between neighboring metal ions are negligible at room temperature. On the other hand, at lower temperatures in all the compounds anti-ferromagnetic interactions seem to be dominated. Analysis of the magnetic data for the Gd(III) derivative indicates Ni(II)-Ni(II) anti-ferromagnetic interactions and Gd(III)-Ni(II) ferromagnetic interactions at low temperatures. A theoretical density functional study on the magnetic behavior of the Gd(III) derivative suggests that while the weak ferromagnetic interaction between Gd(III) and Ni(II) is in line with the expectation of the magnetic interactions between orthogonal d and f orbitals, antiferromagnetic Ni(II)-Ni(II) interactions are related to the wide Ni-O-Ni angles (?102) and quasi-planar conformation of the Ni2O2 core. PMID:24876072

  10. Magnetic Properties of Nanocrystalline Microwires

    NASA Astrophysics Data System (ADS)

    Talaat, Ahmed; Zhukova, Valentina; Ipatov, Mihail; Blanco, Juan Maria; Varga, Rastislav; Klein, Peter; Gonzalez-Legarreta, Lorena; Hernando, Blanca; Zhukov, Arcady

    2016-01-01

    We studied the magnetic properties of two different kinds of Fe-rich glass-coated microwires with nanocrystalline structure: Finemet-type and Hitperm-type microwires. We have determined that the nanostructure obtained after appropriate annealing conditions of as-prepared samples results in a better magnetic softness. Accordingly, two different nanostructures of either α-FeSi in the case of Finemet, or α-FeCo in the case of Hitperm, with zero and positive magnetostriction sign, respectively, have been observed. As a consequence, we have implemented these findings in order to investigate the giant magneto-impedance (GMI) effect and domain wall dynamics of glass-coated microwires. In the case of Finemet-type microwires, we observed a considerable improvement of both the poor GMI effect and magnetic softness observed in as-prepared microwires after an appropriate annealing at temperature, T ann ≥ 550°C when FeCuNbSiB microwires exhibited nanocrystalline structure. In the case of Hitperm-type microwires, we observed an enhancement of the domain wall velocity as well as of domain wall mobility, owing to the nanocrystallization and structural relaxation processes obtained after a suitable current annealing.

  11. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  12. Preparation of molecule-based magnets from metal thiocyanate complexes

    NASA Astrophysics Data System (ADS)

    Shurdha, Endrit

    2011-07-01

    The study of magnetism has enabled many technological applications that are ubiquitous in our daily life. Presently, most of the magnetic applications use metal/metal oxide magnets, which are readily available. In the last few decades, research has focused on a new class of magnetic materials, molecule-based magnets. This class of materials has diverse physical and chemical properties, which can be controlled by synthetic methods. Utilizing a variety of metals and ligands, researchers can control and fine tune various aspects of these magnetic materials, such as structural connections and possibly magnetic properties. Tetracyanoethylene (TCNE) is widely used in the preparation of molecule-based magnets due to its unique electronic and connectivity properties. TCNE has multiple binding sites, which gives it a diverse range of structural connectivity. Also, TCNE can be reduced easily to form a radical anion, which facilitates spin communication between metal centers allowing isolation of magnetically ordered systems such as V(TCNE)2 (a room temperature molecule-based magnet). M-TCNE magnets are prepared from solvated MII complexes or a metal carbonyl and TCNE in dichloromethane. The reaction involves the oxidation of the MII to MIII and the reduction of TCNE. More coordinating solvents used to prepare TCNE molecule-based magnets facilitate the dimerization of the radical TCNE, which does not allow for long-range ordering. The work presented herein will show the synthesis of MII thiocyanate complexes and their reaction with TCNE radical anion to yield M(TCNE)[C4(CN)8]1/2, which is obtained through ligand substitution between TCNE and thiocyanate. The development of new MII thiocyanate complexes through MII(NCMe)x(BF4)2 (x = 4, 6) in acetone, acetonitrile, and tetrahydrofuran will be the focus of Chapter 2. Also, in Chapter 2, structural and magnetic characterization will be discussed. Few of the metal thiocyanate complexes exhibit antiferromagnetic ordering at temperatures ranging from 8 to 50 K. Next the use of iron, manganese, and cobalt thiocyanate complexes for the preparation of M(TCNE)[C4(CN) 8]1/2 will be presented in Chapter 3. In Chapter 4, the effects of acetone and acetonitrile in the preparation of M-TCNE systems will be presented and structural and magnetic properties will be discussed. Mixed metal molecule-based magnets of the composition of M'xM''1-x (TCNE)[C4(CN)8]1/2 (M', M'' = Fe, Mn, Co) will be explored in Chapter 5. The metal composition ratios, coercive field, and critical temperature (T c) will be considered. Chapter 6 will cover some concluding remarks and some future directions towards the design and synthesis of new molecule-based magnets.

  13. Magnetic properties of layered superconductors

    SciTech Connect

    Mansky, P.A.

    1993-01-01

    The organic superconductors (BEDT-TTF)[sub 2] Cu(SNC)[sub 2] and (TMTSF)[sub 2]ClO[sub 4], with T[sub c] = 10K and 1.2K, have layered and highly anisotropic crystal structures. This thesis describes AC magnetic susceptibility measurements on these materials which illustrate the consequences of the discrete layered structure for the magnetic properties of the superconducting state. A DC magnetic field applied parallel to the layers of either material causes the rapid suppression of the AC screening response, and this indicates that the pinning restoring force for vortex motion parallel to the layers is anomalously weak in this orientation. This is believed to be due to the small size of the interlayer coherence length relative to the layer spacing. A simple estimate based on the energy and length scales relevant to Josephson coupled layers gives the correct order of magnitude for the pinning force. Pinning for vortices oriented perpendicular to the layers is larger by a factor of 500 for BEDT and 25 for TMTSF. When the DC field is applied at an angle to the layers, the initial suppression of the susceptibility is identical to that for a field parallel to the layers; when the field component normal to the layers exceeds a threshold, a sharp recovery of screening occurs. These observations indicate that the field initially enters the sample only in the direction parallel to the layers. The recovery of screening signals field penetration in the perpendicular direction at higher field strength, and is due to the onset of pinning by in-plane vortex cores. This magnetic [open quotes]lock-in[close quotes] effect is a qualitatively new behavior and is a direct consequence of weak interlayer coupling. The London penetration depth associated with interlayer currents is found to be on the order of hundreds of microns, comparable to that of a Josephson junction, and two to three orders of magnitude larger than for conventional superconductors.

  14. Magnetic properties of ultra-small goethite nanoparticles

    NASA Astrophysics Data System (ADS)

    Brok, E.; Frandsen, C.; Madsen, D. E.; Jacobsen, H.; Birk, J. O.; Lefmann, K.; Bendix, J.; Pedersen, K. S.; Boothroyd, C. B.; Berhe, A. A.; Simeoni, G. G.; Mrup, S.

    2014-09-01

    Goethite (?-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mssbauer spectroscopy. The ultra-small size of these particles (i.e. that the particles consist of one or only a few grains) allows for more direct elucidation of the particles' intrinsic magnetic properties. We find from ac and dc magnetization measurements a significant upturn of the magnetization at very low temperatures most likely due to freezing of spins in canted spin structures. From hysteresis curves we estimate the saturation magnetization from uncompensated magnetic moments to be ?s = 0.044 A m2 kg-1 at room temperature. Inelastic neutron scattering measurements show a strong signal from excitations of the uniform mode (q = 0 spin waves) at temperatures of 100-250 K and Mssbauer spectroscopy studies show that the magnetic fluctuations are dominated by classical superparamagnetic relaxation at temperatures above 170 K. From the temperature dependence of the hyperfine fields and the excitation energy of the uniform mode we estimate a magnetic anisotropy constant of around 1.0 105 J m-3.

  15. Synthesis, structures, and magnetic properties of novel mononuclear, tetranuclear, and 1D chain Mn(III) complexes involving three related asymmetrical trianionic ligands.

    PubMed

    Costes, Jean-Pierre; Dahan, Franoise; Donnadieu, Bruno; Rodriguez Douton, Maria-Jesus; Fernandez Garcia, Maria-Isabel; Bousseksou, Azzedine; Tuchagues, Jean-Pierre

    2004-04-19

    The manganese(III) complexes studied in this report derive from asymmetrical trianionic ligands abbreviated H(3)L(i) (i = 4-6). These ligands are obtained through reaction of salicylaldehyde with "half-units", the latter resulting from monocondensation of different diamines with phenylsalicylate,. Upon deprotonation, L(i) (i = 4-6) possess an inner N(2)O(2) coordination site with one amido, one imine, and two phenoxo functions, and an outer amido oxygen donor. The trianionic character of such ligands yields original neutral complexes with the L/Mn stoichiometry. The crystal and molecular structures of three complexes have been determined at 190 K (1) or 180 K (2 and 3). Complex 1 crystallizes in the triclinic space group P (No. 2): a = 7.8582(14) A, b = 10.9225(16) A, c = 12.4882(18) A, alpha = 67.231(14) degrees, beta = 72.134(14) degrees, gamma = 82.589(13) degrees, V = 940.6(3) A(3), Z = 2. Complex 2 crystallizes in the orthorhombic space group Pbcn (Nuomicron. 60): a = 23.8283(15) A, b = 11.1605(7) A, c = 26.152(2) A, V = 6954.8(8) A(3), Z = 8, while complex 3 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 11.7443(14) A, b = 7.5996(10) A, c = 18.029(2) A, beta = 100.604(10) degrees, V = 1581.6(3) A(3), Z = 4. Owing to hydrogen bonds and pi-pi stackings, the mononuclear neutral molecules of 1 are arranged in a 2D network while complexes 2 and 3 are tetranuclear and polymeric (1D chain) species, respectively, owing to the bridging ability of the oxygen atom of the amido function. The experimental magnetic susceptibilities of complexes 2 and 3 indicate the occurrence of similarly weak Mn(III)-Mn(III) antiferromagnetic interactions (J = -1.1 cm(-1)). Single ion zero-field splitting of manganese(III) must be taken into account for satisfactorily fitting the data by exact calculation of the energy levels associated to the spin Hamiltonian through diagonalization of the full matrix for axial symmetry in 2 (J = - 1.1 cm(-1), D(1) = 2.2 cm(-1), D(2) = -2.8 cm(-1)), D(1) and D(2) being associated to the six- and five-coordinate Mn ions, respectively. A weaker antiferromagnetic interaction (J = - 0.2 cm(-1)) operates through pi-pi stacking in complex 1. Complex 3 is a weak ferromagnet (ordering temperature approximately 7 K) as a result of the spin canting originating from the crystal packing. PMID:15074994

  16. Pulsed magnetic field magnetic force microscope and evaluation of magnetic properties of soft magnetic tips

    NASA Astrophysics Data System (ADS)

    Zheng, Yangdong; Yoshimura, Satoru; Egawa, Genta; Zheng, Fu; Kinoshita, Yukinori; Saito, Hitoshi

    2015-08-01

    A pulsed magnetic field magnetic force microscope (PMF-MFM) is developed for evaluation of the magnetic properties of nano-scale materials and devices, as well as the characteristics of MFM tips. We present the setup of the PMF-MFM system, and focus on the evaluation of a FeCo soft magnetic tip by PMF-MFM. We find a new theoretical method to calculate tip magnetization curves (M-H curves) using MFM phase signals. We measure the MFM phase and amplitude signals for the FeCo tip during the presence of the pulsed magnetic fields oriented parallel and antiparallel to the initial tip magnetization direction, and acquire the tip coercivity H c ~ 1.1?kOe. The tip M-H curves are also calculated using the MFM phase signals data. We obtain the basic features of the tip magnetic properties from the tip M-H curves.

  17. Magnetic study in high-Tc superconducting oxides by AC-complex magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Okuda, K.; Noguchi, S.; Yoshikawa, M.; Imanaka, N.; Imai, H.; Adachi, G.

    1990-08-01

    Magnetic properties of high-Tc superconducting oxides were investigated by ac-complex magnetic susceptibility ? = ?? - j?. The magnetic penetration depth ?(T) obtained f om ?? was analyzed by the term of BCS gap parameter. A strong correlation between Tc and ?(O) -2 was found. The loss peak of ??(T) in the bulk sample of Bi(Pb)SrCaCuO-Au composites system was measured as a function of field amplitude and frequency. The activation energy of flux was obtained as a function of field amplitude by applying the flux-creep model.

  18. Three ion-pair complexes containing bis(maleonitriledithiolate)copper(II) anion and substituted 2-aminopyridinium cations: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Ou, Shu-Hua; Li, Jin-Ni; Liao, Xiao-Lan; Zheng, Xiao-Xu; Luo, Cui-Ping; Yang, Le-Min; Zhou, Jia-Rong; Ni, Chun-Lin

    2016-04-01

    Three new ion-pair complexes, [2-ClBz-2‧-NH2Py]2[Cu(mnt)2](1), [2-Cl-4-ClBz-2-NH2Py]2[Cu(mnt)2](2) and [2-Cl-4-BrBz-2‧-NH2Py]2[Cu(mnt)2]·C2H5OH(3) ([2-Cl-4-RBz-2‧-NH2Py]+ = 1-(2‧-chloro-4‧-Rbenzyl)-2-aminopyridinium, R = H, Cl, Br; mnt2- = maleonitriledithiolate), were synthesized and characterized by elemental analyses, IR, UV-visible, single crystal X-ray diffraction and magnetic measurements. Both 1 and 2 crystallize in the monoclinic space group P2(1)/c, and the [Cu(mnt)2]2- anions and the cations form a 1D network structure through the N-HṡṡṡN hydrogen bonds. While the anions in 3 form a ladder-like chain through the C-HṡṡṡN interactions between the [Cu(mnt)2]2- anions and CH3CH2OH molecules. Some weak interactions such as πṡṡṡπ, CuṡṡṡN, ClṡṡṡC, and C-HṡṡṡCl, O-HṡṡṡCl, C-HṡṡṡS, N-HṡṡṡO, N-HṡṡṡN and C-HṡṡṡN hydrogen bonds in three molecular solids generate further a 3D network structure. The magnetic measurement reveals that 1 shows a very weak ferromagnetic interaction, and 2 exhibits a transition from ferromagnetic to antiferromagnetic coupling about 15 K, while 3 shows an antiferromagnetic coupling feature with θ = -12.51 K when the temperature is lowered.

  19. Thermoelectric Properties of Complex Zintl Phases

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey

    2008-03-01

    Complex Zintl phases make ideal thermoelectric materials because they can exhibit the necessary ``electron-crystal, phonon-glass'' properties required for high thermoelectric efficiency. Complex crystal structures can lead to high thermoelectric figure of merit (zT) by having extraordinarily low lattice thermal conductivity. A recent example is the discovery that Yb14MnSb11, a complex Zintl compound, has twice the zT as the SiGe based material currently in use at NASA. The high temperature (300K - 1300K) electronic properties of Yb14MnSb11 can be understood using models for heavily doped semiconductors. The free hole concentration, confirmed by Hall effect measurements, is set by the electron counting rules of Zintl and the valence of the transition metal (Mn^+2). Substitution of nonmagnetic Zn^+2 for the magnetic Mn^+2 reduces the spin-disorder scattering and leads to increased zT (10%). The reduction of spin-disorder scattering is consistent with the picture of Yb14MnSb11 as an underscreened Kondo lattice as derived from low temperature measurements. The hole concentration can be reduced by the substitution of Al^+3 for Mn^+2, which leads to an increase in the Seebeck coefficient and electrical resistivity consistent with models for degenerate semiconductors. This leads to further improvements (about 25%) in zT and a reduction in the temperature where the zT peaks. The peak in zT is due to the onset of minority carrier conduction and can be correlated with reduction in Seebeck coefficient, increase in electrical conductivity and increase in thermal conductivity due to bipolar thermal conduction.

  20. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol-gel driven NiFe2O4

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.

    2016-01-01

    Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.

  1. Relation between Magnetic, Spectroscopic and Structural Properties of Binuclear Copper(II) Complexes of Pentadentate Schiff-base Ligand, Semi-empirical and ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Elerman, Y.; Kara, H.; Elmali, A.

    2003-06-01

    The synthesis and characterization of [Cu2(L1)(3,5 prz)] (L1=1,3-Bis(2-hydroxy-3,5-chlorosalicylideneamino) propan-2-ol) 1 and of [Cu2(L2)(3,5 prz)] (L2=1,3-Bis(2-hydroxy-bromosalicylideneamino) propan-2-ol) 2 are reported. The compounds were studied by elemental analysis, infrared and electronic spectra. The structure of the Cu2(L1)(3,5 prz)] complex was determined by x-ray diffraction. The magnetochemical characteristics of these compounds were determined by temperaturedependent magnetic susceptibility measurements, revealing their antiferromagnetic coupling. The superexchange coupling constants are 210 cm-1 for 1 and 440 cm-1 for 2. The difference in the magnitude of the coupling constants was explained by the metal-ligand orbital overlaps and confirmed by ab-initio restricted Hartree-Fock (RHF) calculations. In order to determine the nature of the frontier orbitals, Extended Hckel Molecular Orbital (EHMO) calculations are also reported.

  2. Complex magnetically insulated transmission line oscillator

    SciTech Connect

    Fan Yuwei; Zhong Huihuang; Shu Ting; Li Zhiqiang

    2008-08-15

    A magnetically insulated transmission line oscillator (MILO) is a crossed-field device designed specifically to generate microwave power at the gigawatt level, which is a major hotspot in the field of high-power microwaves (HPM) research at present. It is one of the major thrust for MILO development to improve the power conversion efficiency. In order to improve the power conversion efficiency of MILO, a complex MILO is presented and investigated theoretically and numerically, which comprises the MILO-1 and MILO-2. The MILO-2 is used as the load of the MILO-1. The theoretical analyses show that the maximum power conversion efficiency of the complex MILO has an increase of about 50% over the conventional load-limited MILO. The complex MILO is optimized with KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992), and the simulation results agree with the theoretical results.

  3. Complex magnetically insulated transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Shu, Ting; Li, Zhi-Qiang

    2008-08-01

    A magnetically insulated transmission line oscillator (MILO) is a crossed-field device designed specifically to generate microwave power at the gigawatt level, which is a major hotspot in the field of high-power microwaves (HPM) research at present. It is one of the major thrust for MILO development to improve the power conversion efficiency. In order to improve the power conversion efficiency of MILO, a complex MILO is presented and investigated theoretically and numerically, which comprises the MILO-1 and MILO-2. The MILO-2 is used as the load of the MILO-1. The theoretical analyses show that the maximum power conversion efficiency of the complex MILO has an increase of about 50% over the conventional load-limited MILO. The complex MILO is optimized with KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992), and the simulation results agree with the theoretical results.

  4. Sodium-centered dodecanuclear Co(II) and Ni(II) complexes with 2-(phosphonomethylamino)succinic acid: studies of spectroscopic, structural, and magnetic properties.

    PubMed

    Gudima, Andriy O; Shovkova, Ganna V; Trunova, Olena K; Grandjean, Fernande; Long, Gary J; Gerasimchuk, Nikolay

    2013-07-01

    Two new isostructural cobalt(II) and nickel(II) polynuclear complexes with 2-(phosphonomethyl)aminosuccinic acid, H4PMAS, namely, Na[Co12(PMAS)6(H2O)17(OH)]x2H2O, 1x2H2O, and Na[Ni12(PMAS)6(H2O)17(OH)]xH2O, 2xH2O, have been synthesized for the first time from aqueous solutions and studied by single crystal X-ray diffraction, infrared, and UV-visible diffuse reflectance spectroscopy; TG/DTA analysis; and magnetochemistry. Both 1 and 2 crystallize in the rhombohedral crystal system with the R3[overline] space group with 1/6 of the Co12(PMAS)6 or Ni12(PMAS)6 moieties in the asymmetric unit. The X-ray refinements reveal the presence of 18 water sites, but unit cell charge balance requires that one water molecule must be an OH(-) anion, an anion which is disordered over the 18 sites. The PMAS(4-) ligand forms two five-membered and one six-membered chelation ring. Both 1 and 2 contain 24-membered metallacycles as a result of the bridging nature of the PMAS(4-) ligands. The resulting three-dimensional structures have one-dimensional channels with a sodium cation at the center of symmetry. The temperature dependence of the magnetic susceptibility reveals the presence of weak antiferromagnetic exchange coupling interactions in both 1 and 2. Two exchange coupling constants, J1 = -15.3(7) cm(-1) and J2 = -1.06(2) cm(-1) with S1 = S2 = 3/2 for the Co(1)Co(1) and Co(1)Co(2) exchange pathways, respectively, are required for 1, and J1 = -1.17(6) cm(-1) and J2 = -4.00(8) cm(-1) with S1 = S2 = 1 for the Ni(1)Ni(1) and Ni(1)Ni(2) exchange pathways, respectively, are required for 2, in order to fit the temperature dependence of the observed magnetic susceptibilities. PMID:23750882

  5. Hexa- and heptacoordinated manganese(II) dicyanamide complexes containing a tetradentate N-donor Schiff base: Syntheses, composition tailored architectures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bhar, Kishalay; Sutradhar, Dipu; Choubey, Somnath; Ghosh, Rajarshi; Lin, Chia-Her; Ribas, Joan; Ghosh, Barindra Kumar

    2013-11-01

    Two 1D coordination polymers [Mn(L)(?1,5-dca)(MeOH)]n(ClO4)n (1) and [Mn(L)(?1,5-dca)]n(PF6)n (2) and a dinuclear compound [Mn2(L)2(?1,5-dca)2(dca)2]?H2O (3) [L = N,N'-(bis-(pyridin-2-yl)benzylidene)-ethane-1,2-diamine; dca = dicyanamide] have been isolated using one-pot synthesis of the building components in appropriate molar ratios and characterized. X-ray structural studies reveal that 1 forms a zigzag 1D chain through single Mn-(NCNCN)-Mn units in which each heptacoordinated manganese(II) center adopts a distorted pentagonal bipyramidal geometry with an MnN6O chromophore occupied with four N atoms of L, two nitrile N atoms of monobridged ?1,5-dca and one O atom of MeOH. In 2, each hexacoordinated metal(II) center has a distorted octahedral coordination environment with an MnN6 chromophore bound by four N atoms of L and two nitrile N atoms of two different single bridged ?1,5-dca units; the latter connects other neighboring metal centers in a non-ending fashion affording a linear 1D chain. Complex 3 is dinuclear where two [Mn(L)]2+ units are connected by double ?1,5-dca bridges with a distorted pentagonal bipyramidal environment. Variable-temperature magnetic susceptibility measurements of 1-3 show weak antiferromagnetic interactions among the metal centers through ?1,5-dca bridges.

  6. Preparation, crystal structure and magnetic properties of di-2-pyridylamine (dpa) copper(II) complexes [Cu(dpa)(N 3) 2] n and [Cu 2(dpa) 2(NCO) 4

    NASA Astrophysics Data System (ADS)

    Carranza, Jos; Sletten, Jorunn; Lloret, Francesc; Julve, Miguel

    2008-11-01

    The preparation, crystal structures and magnetic properties of two copper(II) complexes with di-2-pyridylamine (dpa) as end-cap ligand and azide ( 1) and cyanate ( 2) as bridging groups, [Cu(dpa)(N 3) 2] n ( 1) and [Cu 2(dpa) 2(NCO) 4] ( 2), are reported. Compound 1 consists of uniform chains of copper(II) ions bridged by single ?-1,1-azido groups whereas that of compound 2 is made up of centrosymmetric dicopper(II) units with double ?-1,1- N-cyanate bridges, the other two cyanate groups acting as terminal ligands. The copper atoms in 1 and 2 are five-coordinated with two nitrogen atoms of a bidentate dpa ligand ( 1 and 2), one nitrogen atom from a terminally bound azide ( 1)/cyanate ( 2) and two other nitrogens from two azide ( 1)/cyanate ( 2) bridges building intermediate square pyramidal/trigonal bipyramidal ( 1) and distorted square pyramidal ( 2) surroundings. The values of the copper-copper separation through the double end-on azido ( 1) and cyanato ( 2) bridges are 3.8556(4) and 3.5154(5) , respectively. Variable-temperature magnetic susceptibility measurements show the occurrence of weak magnetic interactions in both complexes being antiferromagnetic in 1 [ J = -4.60 cm -1, the Hamiltonian is defined as H=-J?iSS] and ferromagnetic in 2 [ J = +3.14 cm -1 with H=-JSS]. The magnitude and nature of these magnetic interactions are discussed in the light of the respectives structures and they are compared with those reported for related systems.

  7. Improving magnetic properties of ultrasmall magnetic nanoparticles by biocompatible coatings

    NASA Astrophysics Data System (ADS)

    Costo, R.; Morales, M. P.; Veintemillas-Verdaguer, S.

    2015-02-01

    This paper deals with the effect of a biocompatible surface coating layer on the magnetic properties of ultrasmall iron oxide nanoparticles. Particles were synthesized by laser pyrolysis and fully oxidized to maghemite by acid treatment. The surface of the magnetic nanoparticles was systematically coated with either phosphonate (phosphonoacetic acid or pamidronic acid) or carboxylate-based (carboxymethyl dextran) molecules and the binding to the nanoparticle surface was analyzed. Magnetic properties at low temperature show a decrease in coercivity and an increase in magnetization after the coating process. Hysteresis loop displacement after field cooling is significantly reduced by the coating, in particular, for particles coated with pamidronic acid, which show a 10% reduction of the displacement of the loop. We conclude that the chemical coordination of carboxylates and phosphonates reduces the surface disorder and enhances the magnetic properties of ultrasmall maghemite nanoparticles.

  8. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Arom, Guillem; Aguil, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed. PMID:21818467

  9. Magnetism in single metalloorganic complexes formed by atom manipulation.

    PubMed

    Choi, T; Badal, M; Loth, S; Yoo, J-W; Lutz, C P; Heinrich, A J; Epstein, A J; Stroud, D G; Gupta, J A

    2014-03-12

    The magnetic properties of molecular structures can be tailored by chemical synthesis or bottom-up assembly at the atomic scale. We used scanning tunneling microscopy to study charge and spin transfer in individual complexes of transition metals with the charge acceptor, tetracyanoethylene (TCNE). The complexes were formed on a thin insulator, Cu2N on Cu(100), by manipulation of individual atoms and molecules. The Cu2N layer decouples the complexes from Cu electron density, enabling direct imaging of the TCNE molecular orbitals as well as spin-flip inelastic electron tunneling spectroscopy. Results were obtained at low temperature down to 1 K and in magnetic fields up to 7 T in order to resolve splitting of spin states in the complexes. We also performed spin-polarized density functional theory calculations to compare with the experimental data. Our results indicate that charge transfer to TCNE leads to a change in spin magnitude, Kondo resonance, and magnetic anisotropy for the metal atoms. PMID:24490665

  10. Magnetic properties of single domain ferromagnetic particles

    NASA Astrophysics Data System (ADS)

    Wohlfarth, E. P.

    1983-11-01

    Fine ferromagnetic particles occur in very many practical materials of scientific and technological importance. These include spin glasses, rocks, ferrofluids, magnetic recording tapes, permanent magnets, magnetotactic bacteria and other living organisms. It is hence beneficial to consider the magnetic properties of such particles which are small enough to be single domain and to contrast these properties for this wide variety of substances. The discussion is here for the most part concerned with magnetization changes within particles. The following topics are discussed: saturation and remanent magnetization, coercive forces, magnetization mechanisms, remanence curves, interaction field factor, anhysteretic and thermoremanence curves, thermal relaxation processes and superparamagnetism, Vogel-Fulcher law, brief review of typical materials. As an example of magnetization changes by a bulk rotation of the particles a brief account is given of the DORF effect of Pearce.

  11. Oil, gas property appraisal complex

    SciTech Connect

    Not Available

    1980-04-01

    Rule 468, California's state rule on oil and gas property tax assessment has been a source of controversy for some time. The controversy has involved the fairness of the rule and its constitutionality in relation to other state laws. The rule states that the right to remove petroleum and natural gas from the earth is a taxable real property interest, and increases in recoverable amounts of such minerals caused by changed physical or economic conditions constitute additions. Guidelines, sample problems, and general information on the rule are provided in order to explain how tax assessments are calculated. The examples concern 1979 oil property appraisal with a 1979 base year and no new reserves, and 1979 oil property appraisal with new reserves. Typical appraisal questions and answers are included.

  12. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    SciTech Connect

    Wang, Jing; Jian, Fangfang; Huang, Baoxin; Bai, Zhengshuai

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metal atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.

  13. Magnetic properties of the Estherville mesosiderite

    NASA Astrophysics Data System (ADS)

    Collinson, D. W.

    1991-03-01

    Taking advantage of the natural remanent magnetization (NRM) left in meteorites by the conjunction of their evolutionary processes and the effects of early solar system magnetic fields, the Estherville mesosiderite has been studied with a view to the extent to which uncertainties associated with mesosiderite history and evolution can be resolved by magnetic properties. The noncoherent directions of NRM within the matrix imply the acquisition of an initial NRM by kamacite in the fragments prior to their final accumulation into the mesosiderite material, and the presence of an ambient magnetic field when the fragment material cooled after its formation. Susceptibility anisotropy observations imply anisotropic property acquisition before final meteorite accumulation.

  14. Bisthienylethene Th2im and its complex (Th2imH)2[ReCl6]: crystalline-phase photochromism, and photochemical regulation of luminescence and magnetic properties.

    PubMed

    Gong, Dan-Ping; Chen, Jun-Feng; Zhao, Yue; Cao, Deng-Ke

    2016-02-16

    Molecular assembly of bisthienylethene Th2im () and [ReCl6](2-) anions leads to the complex (Th2imH)2[ReCl6] (), in which a [ReCl6](2-) anion connects two equivalent Th2imH(+) cations through ClN/C hydrogen bonds. Crystal structures of and indicate that two thiophene groups of each Th2im/Th2imH(+) molecule adopt a photoactive antiparallel conformation. Thus, two compounds show crystalline-phase photochromism (CPP), i.e. reversible structural transformation between the open form and the closed form upon alternately irradiating the sample with UV light (365 nm) and visible light (574 nm for , 624 nm for ). It was found that the CPP behaviors of and could regulate their luminescence and/or magnetic properties. Their solid-state emissions (433, 448, 482, 531 and 570 nm for , and 460, 489, 535 and 593 nm for ) exhibited weaker intensities after UV irradiation with 365 nm light. Besides CPP and luminescence, compound shows field-induced slow magnetic relaxation. Before and after UV irradiation, this compound revealed different magnetic behaviors, including the differences in the shape of the ?MT vs. T plot, D parameter, and the values of the relaxation barrier Ueff and the preexponential factor ?0. PMID:26790478

  15. The synthesis and transport properties of the complex salt /TMPD/ /TCNQ/2

    NASA Technical Reports Server (NTRS)

    Somoano, R.; Hadek, V.; Yen, S. P. S.; Rembaum, A.; Deck, R.

    1975-01-01

    The syntheses and transport properties of the complex salt /TMPD/ /TCNQ/2 are described. At high temperatures, the complex is a magnetic semiconductor with transport properties intermediate between those found in the highly conducting and poorly conducting TCNQ salts. The complex undergoes a transition below 50-60 K to a state exhibiting singlet-triplet behavior with weakly alternating exchange coupling.

  16. Magnetic properties of anisotropic Sr-La-system ferrite magnets

    SciTech Connect

    Yamamoto, H.; Nagakura, M. ); Terada, H. )

    1990-05-01

    This paper presents an experiment carried out to investigate the effect of La{sub 2}O{sub 3} addition to the magnetic and physical properties of strontium ferrite magnets. It was found that the La{sub 2}O{sub 3} addition to SrO {center dot} 6Fe{sub 2}O{sub 3} (stoichiometric composition) was very useful in stabilizing the magnetoplumbite structure and that these Sr-La-system ferrites had excellent properties as a permanenent magnet. Compositions were chosen according to the formula ((SrO){sub 1/n+1}(Fe{sub 2}O{sub 3}){sub n/n+1}){sub 100{minus}x}(La{sub 2}O{sub 3}){sub x}, where n was varied between 5.0 and 6.5, and x between 0 and 5.0. The optimum conditions for making magnets and some properties of typical specimens are discussed.

  17. Microwave magnetic properties of soft magnetic thin films

    NASA Astrophysics Data System (ADS)

    Chai, GuoZhi; Guo, DangWei; Fan, XiaoLong; Xue, DeSheng

    2011-07-01

    We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Co100- x Zr x and Co90Nb10 metallic thin films because of their high saturation magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resistivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.

  18. Tetranuclear hetero-metal [Co(II)2Ln(III)2] (Ln = Gd, Tb, Dy, Ho, La) complexes involving carboxylato bridges in a rare ?4-?(2):?(2) mode: synthesis, crystal structures, and magnetic properties.

    PubMed

    Abtab, Sk Md Towsif; Majee, Mithun Chandra; Maity, Manoranjan; Titi, Jn; Bo?a, Roman; Chaudhury, Muktimoy

    2014-02-01

    A new family of 3d-4f heterometal 2 2 complexes [Co(II)2(L)2(PhCOO)2Ln(III)2(hfac)4] (1-5) (Ln = Gd (compound 1), Tb (compound 2), Dy (compound 3), Ho (compound 4), and La (compound 5)) have been synthesized in moderate yields (48-63%) following a single-pot protocol using stoichiometric amounts (1:1 mol ratio) of [Co(II)(H2L)(PhCOO)2] (H2L = N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine) as a metalloligand and [Ln(III)(hfac)3(H2O)2] (Hhfac = hexafluoroacetylacetone) as a lanthanide precursor compound. Also reported with this series is the Zn-Dy analog [Zn(II)2(L)2(PhCOO)2Dy(III)2(hfac)4] 6 to help us in understanding the magnetic properties of these compounds. The compounds 1-6 are isostructural. Both hexafluoroacetylacetonate and benzoate play crucial roles in these structures as coligands in generating a tetranuclear core of high thermodynamic stability through a self-assembly process. The metal centers are arranged alternately at the four corners of this rhombic core, and the carboxylato oxygen atoms of each benzoate moiety bind all of the four metal centers of this core in a rare ?4-?(2):?(2) bridging mode as confirmed by X-ray crystallography. The magnetic susceptibility and magnetization data confirm a paramagnetic behavior, and no remnant magnetization exists in any of these compounds at vanishing magnetic field. The metal centers are coupled in an antiferromagnetic manner in these compounds. The [Co(II)2Dy(III)2] compound exhibits a slow magnetic relaxation below 6 K, as proven by the AC susceptibility measurements; the activation energy reads U/kB = 8.8 K (?0 = 2.0 10(-7) s) at BDC = 0, and U/kB = 7.8 K (?0 = 3.9 10(-7) s) at BDC = 0.1 T. The [Zn(II)2Dy(III)2] compound also behaves as a single-molecule magnet with U/kB = 47.9 K and ?0 = 2.75 10(-7) s. PMID:24437653

  19. Electrical transport and magnetic properties of CeGe

    NASA Astrophysics Data System (ADS)

    Marcano, N.; Espeso, J. I.; Noakes, D. R.; Kalvius, G. M.; Gómez Sal, J. C.

    2005-04-01

    Although CeGe is a simple binary alloy, little information on its magnetic properties is available. Earlier studies suggested antiferromagnetic order below T=10.5 K. We present the results of a detailed resistivity and magnetoresistance study down to 2 K together with μSR spectroscopic data. The measurements verify the transition into long-range magnetic order at the temperature reported. Anomalous behaviour of the resistivity around TN is interpreted in terms of the formation of superzone magnetic gaps in the ordered phase. The μSR spectra for T< TN indicate a complex antiferromagnetic spin structure.

  20. Magnetic Properties of the Proton and Neutron

    NASA Astrophysics Data System (ADS)

    Primer, Thomas; Kamleh, Waseem; Leinweber, Derek B.

    2011-05-01

    The magnetic moment and magnetic polarisability are important fundamental properties of particles such as the proton. They describe the interaction with and response to an applied magnetic field. The ability to calculate values for these observables from the first principles of QCD at the quark level is at the leading edge of lattice QCD research. An overview of how these calculations are performed on the lattice is presented. A quantised magnetic field is applied to the periodic space-time lattice using the background-field method. Values of the magnetic moment and magnetic polarisability for the proton and neutron are reported using this method. These values are calculated on a large lattice, allowing for a reasonably small magnetic field strength, making these the world's first quantitative results.

  1. Magnetic Properties of the Proton and Neutron

    SciTech Connect

    Primer, Thomas; Kamleh, Waseem; Leinweber, Derek B.

    2011-05-24

    The magnetic moment and magnetic polarisability are important fundamental properties of particles such as the proton. They describe the interaction with and response to an applied magnetic field. The ability to calculate values for these observables from the first principles of QCD at the quark level is at the leading edge of lattice QCD research. An overview of how these calculations are performed on the lattice is presented. A quantised magnetic field is applied to the periodic space-time lattice using the background-field method. Values of the magnetic moment and magnetic polarisability for the proton and neutron are reported using this method. These values are calculated on a large lattice, allowing for a reasonably small magnetic field strength, making these the world's first quantitative results.

  2. High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession

    NASA Astrophysics Data System (ADS)

    Jiang, Chang-Jun; Fan, Xiao-Long; Xue, De-Sheng

    2015-05-01

    We focus on the ferromagnetic thin films and review progress in understanding the magnetization dynamic of coherent precession, its application in seeking better high frequency magnetic properties for magnetic materials at GHz frequency, as well as new approaches to these materials’ characterization. High frequency magnetic properties of magnetic materials determined by the magnetization dynamics of coherent precession are described by the Landau–Lifshitz–Gilbert equation. However, the complexity of the equation results in a lack of analytically universal information between the high frequency magnetic properties and the magnetization dynamics of coherent precession. Consequently, searching for magnetic materials with higher permeability at higher working frequency is still done case by case. Project supported by the National Basic Research Program of China (Grant No. 2012CB933101), the National Natural Science Foundation of China (Grant Nos. 11034004 and 51371093), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1251), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130211130003).

  3. Crystal structures and magnetic properties of complexes of M(II)Cl2 (M = Cu, Ni, and Co) coordinated with 4-(N-tert-butyloxyamino)-2-(methoxymethylenyl)pyridine: 2D magnetic anisotropy of the aminoxyl-Co(II) complex in the crystalline state.

    PubMed

    Zhu, Zhicheng; Karasawa, Satoru; Koga, Noboru

    2005-08-22

    Three metal complexes, [M(II)Cl2(4NOPy-OMe)2] (M = Cu (1), Ni (2), and Co (3)), were prepared by mixing the corresponding metal chloride and 4-(N-tert-butyloxyamino)-2-(methoxymethylenyl)pyridine, 4NOPy-OMe, in 1:2 ratio. Complex 1 has two structures (complexes A and B) with similar coordination geometries, compressed octahedrons. In the crystal structure, complexes A and B locate alternately in short distances (C(radical)...C(beta) = 3.17 and 3.23 A) to form a 1-D chain structure. Complexes 2 and 3 are isomorphous and have a slightly distorted octahedral structure. In the crystal structure, both complexes have intermolecular short contacts (C(radical)...C(alpha) = 3.46 and 3.52 A for 2 and 3, respectively) to form the 2-D structures. The temperature dependence of the chi(mol)T values for the three complexes indicated that the magnetic interactions between the radicals and the metal ions within the complexes were ferromagnetic. By fitting a modified Fisher 1-D model to the data of the chi(mol)T vs T plot for 1, we estimated the intra- and intermolecular (intrachain) exchange coupling constants to be J1/kB = 60.2 and J2/kB = -7.02 K, respectively. On the other hand, complexes 2 and 3 showed steep increases of the chi(mol)T value below ca. 3 K, indicating that the long-range magnetic ordering is operating. The 1/chi(mol) vs T plot for 2 was analyzed by a Curie-Weiss model to give theta = 6.25 K and C = 2.02 cm3 K mol(-1) with g(Ni) = 2.25. Complex 3 was investigated in more detail using an orientated sample. Magnetic behavior strongly depends on the direction of the applied field, in which the c axis perpendicular to the ab plane is an easy axis for magnetization. Direct current (dc) and alternating current (ac) magnetic susceptibility measurements revealed that complex 3 had a magnetic phase transition of T(c) = 2.14 K and exhibited a glasslike magnetic behavior below T(c). PMID:16097820

  4. Neighborhood properties of complex networks

    NASA Astrophysics Data System (ADS)

    Andrade, Roberto F. S.; Miranda, José G. V.; Lobão, Thierry Petit

    2006-04-01

    A concept of neighborhood in complex networks is addressed based on the criterion of the minimal number of steps to reach other vertices. This amounts to, starting from a given network R1 , generating a family of networks Rl,l=2,3,… such that, the vertices that are l steps apart in the original R1 , are only 1 step apart in Rl . The higher order networks are generated using Boolean operations among the adjacency matrices Ml that represent Rl . The families originated by the well known linear and the Erdös-Renyi networks are found to be invariant, in the sense that the spectra of Ml are the same, up to finite size effects. A further family originated from small world network is identified.

  5. Pentanuclear 3d-4f Heterometal Complexes of M(II)3Ln(III)2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) Combinations: Syntheses, Structures, Magnetism, and Photoluminescence Properties.

    PubMed

    Maity, Manoranjan; Majee, Mithun Chandra; Kundu, Sanchita; Samanta, Swarna Kamal; Saudo, E Carolina; Ghosh, Sanjib; Chaudhury, Muktimoy

    2015-10-19

    A new family of pentanuclear 3d-4f heterometal complexes of general composition [Ln(III)2(M(II)L)3(?3-O)3H](ClO4)xH2O (1-5) [Ln = Nd, M = Zn, 1; Nd, Ni, 2; Nd, Cu, 3; Gd, Cu, 4; Tb, Cu, 5] have been synthesized in moderate yields (50-60%) following a self-assembly reaction involving the hexadentate phenol-based ligand, viz., N,N-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-N('),N(')-diethylethylenediamine (H2L). Single-crystal X-ray diffraction analyses have been used to characterize these complexes. The compounds are all isostructural, having a 3-fold axis of symmetry that passes through the 4f metal centers. The [M(II)L] units in these complexes are acting as bis-bidentate metalloligands and, together with ?3-oxido bridging ligands, complete the slightly distorted monocapped square antiprismatic nine-coordination environment around the 4f metal centers. The cationic complexes also contain a H(+) ion that occupies the central position at the 3-fold axis. Magnetic properties of the copper(II) complexes (3-5) show a changeover from antiferromagnetic in 3 to ferromagnetic 3d-4f interactions in 4 and 5. For the isotropic Cu(II)-Gd(III) compound 4, the simulation of magnetic data provides very weak Cu-Gd (J1 = 0.57 cm(-1)) and Gd-Gd exchange constants (J2 = 0.14 cm(-1)). Compound 4 is the only member of this triad, showing a tail of an out-of-phase signal in the ac susceptibility measurement. A large-spin ground state (S = 17/2) and a negative value of D (-0.12 cm(-1)) result in a very small barrier (8 cm(-1)) for this compound. Among the three Nd(III)2M(II)3 (M = Zn(II), Ni(II), and Cu(II)) complexes, only the Zn(II) analogue (1) displays an NIR luminescence due to the (4)F(3/2) ? (4)I(11/2) transition in Nd(III) when excited at 290 nm. The rest of the compounds do not show such Nd(III)/Tb(III)-based emission. The paramagnetic Cu(II) and Ni(II) ions quench the fluorescence in 2-5 and thereby lower the population of the triplet state. PMID:26407121

  6. Pentachloro(pyrazine)rhenate(IV) complex as precursor of heterobimetallic pyrazine-containing Re(IV)2M(II) (M = Ni, Cu) species: synthesis, crystal structures and magnetic properties.

    PubMed

    Martnez-Lillo, Jos; Armentano, Donatella; Marino, Nadia; Arizaga, Livia; Chiozzone, Ral; Gonzlez, Ricardo; Kremer, Carlos; Cano, Joan; Faus, Juan

    2008-09-14

    Three novel Re(IV) mononuclear complexes of formulae NBu4[ReC15(pyz)] (1), NH2Me2[ReCl5(pyz)] (2) and NH4[ReCl5(pyz)].0.75H2O (3), (pyz being pyrazine; NBu4+ = tetra-n-butylammonium cation, NH2Me2+ = dimethylammonium cation and NH4+ = ammonium cation), were synthesized by ligand substitution reaction from [ReCl6]2- anion and pyrazine in N,N-dimethylformamide (DMF). In addition, two new heterobimetallic compounds, the salt namely [ReCl5(pyz)]2[Ni(cyclam)](4) (cyclam = 1,4,8,11-tetraazacyclotetradecane) and the heterotrinuclear [{ReCl5(mu-pyz)}2Cu(DMF)4] (5) complex, were prepared by using as precursor 1 and 3, respectively. Compounds 1-5 were characterized by single-crystal X-ray diffraction. 1-3 are made up of discrete [ReCl5(pyz)]- anions and NBu4 (1), NH2Me2+ (2) and NH4+ (3) cations. [ReCl5(pyz)]- unit interacts toward Ni(II) (4) and Cu(II) (5) metal ions through different modes. In 4 two [ReCl5(pyz)]- anions weakly interact with a [Ni(cyclam)]2+ cation through chloro atoms, while compound 5 is a heterotrinuclear pyrazine-bridged Re(IV)2Cu(II) complex made up of [ReCl5(pyz)]- anions and [Cu(DMF)4]2+ cations. The magnetic properties of 1-5 were investigated in the temperature range 1.9-300 K. The magnetic behaviour of 1 is that of a magnetically diluted Re(IV) complex with a large value of zero-field splitting of the ground state (/2D/ is ca. 18.8(1) cm(-1)), whereas those of 2 and 3 are typical of antiferromagnetically coupled systems exhibiting susceptibility maxima at 10 (2) and 12 K (3). Compound 4 shows antiferromagnetic interactions between Re(IV) metal ions, Ni(II) being diamagnetic (because of its square-planar geometry), while 5 exhibits a ferromagnetic coupling between Re(IV) and Cu(II) metal ions across the pyrazine bridges with a J(ReCu), value of +11.8(1) cm(-1). PMID:19024357

  7. Electronic properties of complex nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen

    Nanostructured materials have brought an unprecedented opportunity for advancement in many fields of human endeavor and in applications. Nanostructures are a new research field which may revolutionize people's everyday life. In the Thesis, I have used theoretical methods including density functional theory (DFT), molecular dynamic simulations (MD) and tight-binding methods to explore the structural, mechanical and electronic properties of various nanomaterials. In all this, I also paid attention to potential applications of these findings. First, I will briefly introduce the scientific background of this Thesis, including the motivation for the study of a boron enriched aluminum surface, novel carbon foam structures and my research interest in 2D electronics. Then I will review the computational techniques I used in the study, mostly DFT methods. In Chapter 3, I introduce an effective way to enhance surface hardness of aluminum by boron nanoparticle implantation. Using boron dimers to represent the nanoparticles, the process of boron implantation is modeled in a molecular dynamics simulation of bombarding the aluminum surface by energetic B 2 molecules. Possible metastable structures of boron-coated aluminum surface are identified. Within these structures, I find that boron atoms prefer to stay in the subsurface region of aluminum. By modeling the Rockwell indentation process, boron enriched aluminum surface is found to be harder than the pristine aluminum surface by at least 15%. In Chapter 4, I discuss novel carbon structures, including 3D carbon foam and related 2D slab structures. Carbon foam contains both sp 2 and sp3 hybridized carbon atoms. It forms a 3D honeycomb lattice with a comparable stability to fullerenes, suggesting possible existence of such carbon foam structures. Although the bulk 3D foam structure is semiconducting, an sp2 terminated carbon surface could maintain a conducting channel even when passivated by hydrogen. To promote the experimental realization of this novel foam structure, I also propose a growth model. I postulate that preferred growth should occur near the grain boundary of a carbon saturated polycrystal of transition metal. These findings are supported by a calculation of carbon diffusion in the solid. 2D semiconductors of group V elements are discussed in Chapters 5, 6, 7, and 8, including different phosphorus and arsenic structural phases. Structural and electronic properties of bulk and few-layer black phosphorus, so-called phosphorene, are studied in Chapter 5. In Chapter 6, I propose a new 2D structural phase of phosphorus, with the name blue phosphorus related to its wide predicted fundamental band gap. Then I move down in the periodic table and investigate the properties of grey arsenic in Chapter 7. Finally, I propose a tiling model to identify and categorize these structural phases in Chapter 8.

  8. Magnetic properties of nanosize iron clusters

    SciTech Connect

    Venturini, E.L.; Wilcoxon, J.P.; Newcomer, P.P.

    1993-12-31

    Isolated, monodisperse {alpha}-Fe clusters between 1.4 and 15 nm in diameter were prepared inside inverse micelles using an oil-continuous, nonaqueous system. The magnetic properties of these clusters were studied in a SQUID magnetometer as a function of cluster size, temperature and applied magnetic field. The blocking temperature, coercive field and remanent moment of 12.5 nm Fe clusters in inverse micelles are significantly lower than those reported for clusters of similar {alpha}-Fe core size but with a surface oxide. The novel synthesis technique may yield metallic clusters with essentially intrinsic magnetic properties.

  9. Magnetic properties of ISABELLE superconducting quadrupoles

    SciTech Connect

    Willen, E; Engelmann, R; Greene, A F; Herrera, J; Jaeger, K; Kirk, H; Robins, K

    1981-01-01

    A number of superconducting quadrupole magnets have been constructed in the ISABELLE project during the past year. With these quadrupoles, it was intended to test construction techniques, magnet performance and measuring capability in an effort to arrive at a quadrupole design satisfactory for use in the storage ring accelerator. While these magnets are designed to have dimensions and field properties close to those needed for regular cell ISABELLE quadrupoles, no effort was made to make them identical to one another. This report details the performance characteristics of one of these magnets, MQ3005.

  10. Magnetic properties of ZnO nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, X. G.; Tang, Z.

    2012-04-01

    First-principles calculations were employed to study the magnetic properties of ZnO nanoclusters (NCs). It is demonstrated that the magnetism of the ZnO nanoclusters is dominated by the dangling-bond states of the surface oxygen ions surrounded by two Zn cations. Such surface-state driven magnetism can be completely destroyed by hydrogen passivation and thus is very sensitive to the chemical environments of the NCs. The theory indicates that magnetism may be steadily observed in appropriately encapsulated ZnO nanoparticles or around their grain boundaries, which is consistent with the previously reported experiments.

  11. First-principle predictions of magnetic properties for a complex and strongly related to quasicrystalline phase: μ-Al 4Mn

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, D.; Trambly de Laissardière, G.

    2003-06-01

    First-principle spin-polarized electronic structure calculations have been performed in the structure of μ-Al 4Mn, a crystalline phase of 568 atoms per cell, considered to be closely related to the icosahedral quasicrystalline i-AlMn. It is found that the ferromagnetic state in this structure is more stable than corresponding paramagnetic one, being only about 156 meV/cell lower in energy. The average magnetic moment is predicted of 0.432 μ B per Mn atom and we show that its formation is governed by a local Stoner criterion. A creation of Hume-Rothery pseudogap nearby the Fermi level due to strong Al-sp-Mn-d hybridization in crystalline intermetallic compound is the origin of partially suppressed magnetic moment on all inequivalent Mn sites.

  12. Variations in magnetic properties of nanostructured nickel.

    PubMed

    Choudhury, Paramita Kar; Banerjee, S; Ramaprabhu, S; Ramesh, K P; Menon, Reghu

    2013-12-01

    The magnetic properties of carbon nanotube encapsulated nickel nanowires (C.E. nanowires of diameter to approximately 10 nm), and its comparison to other forms of Ni are carried out in this work. The saturation magnetization (Ms) and coercivity (Hc) for C.E. nanowires are 1.0 emu/g and 230 Oe. The temperature dependence of coercivity follows T0.77 dependence indicating a superparamagnetic behavior. The field-cooled and zero-field-cooled plots indicate that the blocking temperature (T(B)) to approximately 300 K. These altered magnetic properties of C.E. nanowires are mainly due to the nanoscale confinement effect from carbon nanotube encapsulation. The shape and magnetic environment enhance the total magnetic anisotropy of C.E. nanowires by a factor of four. PMID:24266209

  13. Crystal structure and magnetic properties of complex oxides Mg{sub 4-x}Ni{sub x}Nb{sub 2}O{sub 9}, 0{<=}x{<=}4

    SciTech Connect

    Tarakina, N.V. Nikulina, E.A.; Hadermann, J.; Kellerman, D.G.; Tyutyunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G.

    2007-11-15

    In the Mg{sub 4-x}Ni{sub x}Nb{sub 2}O{sub 9} (0{<=}x{<=}4) system two ranges of solid solution have been found. One of the solid solutions has a corundum-related structure type (space group P3-barc1); the second one adopts the II-Ni{sub 4}Nb{sub 2}O{sub 9} structure type (space group Pbcn). The unit cell constants and atomic positions have been determined and refined using neutron powder diffraction data. Electron diffraction and high-resolution transmission electron microscopy (HRTEM) from MgNi{sub 3}Nb{sub 2}O{sub 9} crystals identify the presence of planar defects and the intergrowth of several (structurally related) phases. The magnetic susceptibility of Mg{sub 3}NiNb{sub 2}O{sub 9}, measured in the temperature range T=2-300 K, shows no indications of magnetic ordering at low temperatures, while for MgNi{sub 3}Nb{sub 2}O{sub 9} there is a magnetic ordering at temperatures below 45.5 K. - Graphical abstract: HREM image showing planar defects in MgNi{sub 3}Nb{sub 2}O{sub 9} and their schematic representation.

  14. Zero-field slow magnetic relaxation in a uranium(III) complex with a radical ligand.

    PubMed

    Coutinho, Joana T; Antunes, Maria A; Pereira, Laura C J; Maralo, Joaquim; Almeida, Manuel

    2014-09-14

    [U(Tp(Me2))2(bipy?)], a uranium(III) complex with a radical bipyridine ligand which has magnetic properties with contributions from both the ligand and the metal, presents slow relaxation of the magnetisation at low temperatures, already under zero static magnetic field, and energy barriers slightly above the non-radical analogues. PMID:25056758

  15. Do micromagnetic simulations correctly predict hard magnetic hysteresis properties?

    NASA Astrophysics Data System (ADS)

    Toson, P.; Zickler, G. A.; Fidler, J.

    2016-04-01

    Micromagnetic calculations using the finite element technique describe semi-quantitatively the coercivity of novel rare earth permanent magnets in dependence on grain size, grain shape, grain alignment and composition of grain boundaries and grain boundary junctions and allow the quantitative prediction of magnetic hysteretic properties of rare earth free magnets based on densely packed elongated Fe and Co nanoparticles, which depend on crystal anisotropy, aspect ratio and packing density. The nucleation of reversed domains preferentially takes place at grain boundary junctions in granular sintered and melt-spun magnets independently on the grain size. The microstructure and the nanocompostion of the intergranular regions are inhomogeneous and too complex in order to make an exact model for micromagnetic simulations and to allow a quantitative prediction. The incoherent magnetization reversal processes near the end surfaces reduce and determine the coercive field values of Co- and Fe-based nanoparticles.

  16. Self-assembly of cuII and niII [2 x 2] grid complexes and a binuclear CuII complex with a new semiflexible substituted pyrazine ligand: multiple anion encapsulation and magnetic properties.

    PubMed

    Cati, Dilovan S; Ribas, Joan; Ribas-Ario, Jordi; Stoeckli-Evans, Helen

    2004-02-01

    With the new substituted pyrazine ligand pyrazine-2,3-dicarboxylic acid bis[(pyridin-2-ylmethyl)amide], H(2)L, a binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) and two [2 x 2]G grid complexes, [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) and [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3), have been synthesized and characterized spectroscopically and crystallographically. The ligand H(2)L crystallized in the triclinic space group P1, with a = 4.9882(7) A, b = 12.079(2) A, c = 14.454(2) A, alpha = 107.08(2) degrees, beta = 98.61(2) degrees, gamma = 97.54(2) degrees, V = 808.8(2) A(3), Z = 2, R1 = 0.0747, and R(w) = 0.1829 for 1319 observed reflections [I > 2 sigma(I)]. The molecule is L-shaped with a strong intramolecular bifurcated hydrogen bond in half of the molecule. In the crystal the molecules are linked by an intermolecular hydrogen bond to form a 1D polymer. The binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) crystallized in the monoclinic space group P2(1)/a, with a = 8.6859(7) A, b = 28.060(2) A, c = 9.5334(9) A, beta = 107.89(1) degrees, V = 2211.2(3) A(3), Z = 4, R1 = 0.039, and R(w) = 0.097 for 1408 observed reflections [I > 2 sigma(I)]. There are two independent copper atoms both having square pyramidal geometry. Both coordinate to a pyrazine, a pyridine, and an amide N atom. Two chlorines complete the coordination sphere of one of the copper atoms, while one chlorine atom and a water molecule complete the coordination sphere of the other. The copper(II) [2 x 2] grid complex [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) crystallized in the triclinic space group P1, with a = 17.1515(14) A, b = 17.7507(13) A, c = 19.3333(15) A, alpha = 67.34(1) degrees, beta = 69.79(1) degrees, gamma = 71.50(1) degrees, V = 4980.3(7) A(3), Z = 2, R1 = 0.083, and R(w) = 0.207 for 5532 observed reflections [I > 2 sigma(I)]. The four Cu(II) atoms are octahedrally coordinated by two pyrazine, two pyridine, and two amide N atoms and occupy the corners of a [2 x 2] grid with edge lengths, Cu...Cu, varying from 7.01 to 7.39 A. The nickel(II) [2 x 2] grid complex [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3) crystallized in the monoclinic space group C2/c, with a = 16.3388(10) A, b = 29.754(2) A, c = 20.857(1) A, beta = 101.845(1) degrees, V = 9923.6(12) A(3), Z = 4, R1 = 0.050, and wR2 = 0.101 for 3391 observed reflections [I > 2 sigma(I)]. Here the complex possesses C(2) symmetry and again each metal atom is octahedrally coordinated to two pyrazine, two pyridine, and two amide N atoms. They occupy the corners of a [2 x 2] grid with an average edge length, Ni.Ni, of 6.97 A. Of the four anions (ClO(4)(-)'s in 2 and Cl(-)'s in 3) required to equilibrate the charges in the grid complexes, two are encapsulated, one above and one below the plane of the four metal atoms. The remaining two anions are located between the "wings" of the ligands. Magnetic susceptibility measurements indicate that the binuclear complex 1 is antiferromagnetic, with a J value of -15.07 cm(-1). This is larger than the J values found for the Cu(II) (2) and Ni(II) (3) grid complexes, which were -5.87 and -2.64 cm(-1), respectively. DFT calculations have been carried out to explain the difference in the J values found for complexes 1 and 2. PMID:14753824

  17. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  18. Magnetic properties of sulfur-doped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Park, H.; Podila, R.; Wadehra, A.; Ayala, P.; Oliveira, L.; He, J.; Zakhidov, A. A.; Howard, A.; Wilkins, J.; Rao, A. M.

    2016-03-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples.

  19. Spin ground state and magnetic properties of cobalt(II): relativistic DFT calculations guided by EPR measurements of bis(2,4-acetylacetonate)cobalt(II)-based complexes.

    PubMed

    Pietrzyk, Piotr; Srebro, Monika; Rado?, Mariusz; Sojka, Zbigniew; Michalak, Artur

    2011-03-24

    The spin ground state of the core ion and structure of the bis(2,4-acetylacetonate)cobalt(II) model complex and its synthetic aqua and ethanol derivatives, Co(acac)(2)L(n), (L = EtOH, H(2)O), were examined by means of density functional theory (DFT) calculations supported by electron paramagnetic resonance (EPR) measurements. Geometry optimizations were carried out for low-spin (doublet) and high-spin (quartet) states. For the Co(acac)(2) complex two possible conformations, a square-planar and a tetrahedral one, were taken into account. For all structures relative energies were calculated with both "pure" and hybrid functionals. The calculated data were complemented with the results of the EPR investigations carried out at liquid helium temperature, allowing for definite assignment of the high-spin state for the Co(acac)(2)(EtOH)(2) complex. However, because of the unresolved spectral features, only effective g-values could be assessed, whereas the zero-field splitting parameters (ZFS) were calculated by means of the spin-orbit mean field (SOMF) relativistic DFT method for which direct spin-spin (SS) and spin-orbit coupling (SOC) contributions were quantified. PMID:21351791

  20. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2011-12-01

    Ab initio investigation of multiplet spectrum of lanthanides in archetypal coordination geometries shows an unexpected regular structure consisting of (i) mirror symmetry of anisotropic magnetic properties of doublet states, (ii) high magnetic axiality of low-lying and high-lying doublets, comparable to complexes with ideal axial symmetry, and (iii) the strong rotation of the anisotropy axes of individual doublets. The obtained high axiality of the ground doublet states explains the SMM behaviour of low-symmetry lanthanide complexes. PMID:22027865

  1. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.

  2. Structural and magnetic properties of Mn(III) and Cu(II) tetranuclear azido polyoxometalate complexes: multifrequency high-field EPR spectroscopy of Cu4 clusters with S = 1 and S = 2 ground states.

    PubMed

    Mialane, Pierre; Duboc, Carole; Marrot, Jrme; Rivire, Eric; Dolbecq, Anne; Scheresse, Francis

    2006-02-20

    Two new azido-bridged polyoxometalate compounds were synthesized in acetonitrile/methanol media and their molecular structures have been determined by X-ray crystallography. The [[(gamma-SiW10O36)Mn2(OH)2(N3)(0.5)(H2O)(0.5)]2(mu-1,3-N3)](10-) (1 a) tetranuclear Mn(III) complex, in which an end-to-end N3- ligand acts as a linker between two [(gamma-SiW10O36)Mn2(OH)2]4- units, represents the first manganese-azido polyoxometalate. The magnetic properties have been studied considering the spin Hamiltonian H = -J1(S1S2+S1*S2*)-J2(S1S1*), showing that antiferromagnetic interactions between the paramagnetic centers (g = 1.98) occur both through the di-(mu-OH) bridge (J1 = -25.5 cm(-1)) and the mu-1,3-azido bridge (J2 = -19.6 cm(-1)). The [(gamma-SiW10O36)2Cu4(mu-1,1,1-N3)2(mu-1,1-N3)2]12- (2 a) tetranuclear Cu(II) complex consists of two [gamma-SiW10O36Cu2(N3)2]6- subunits connected through the two mu-1,1,1-azido ligands, the four paramagnetic centers forming a lozenge. The magnetic susceptibility data have been fitted. This reveals ferromagnetic interactions between the four Cu(II) centers, leading to an S=2 ground state (H = -J1(S1S2+S1*S2*)-J2(S2S2*), J1 = +294.5 cm(-1), J2 = +1.6 cm(-1), g = 2.085). The ferromagnetic coupling between the Cu(II) centers in each subunit is the strongest ever observed either in a polyoxometalate compound or in a diazido-bridged Cu(II) complex. Considering complex 2 a and the previously reported basal-basal di-(mu-1,1-N3)-bridged Cu(II) complexes in which the metallic centers are not connected by other magnetically coupling ligands, the linear correlation J1 = 2639.5-24.95*theta(av) between the theta(av) bridging angle and the J1 coupling parameter has been proposed. The electronic structure of complex 2 a has also been investigated by using multifrequency high-field electron paramagnetic resonance (HF-EPR) spectroscopy between 95 and 285 GHz. The spin Hamiltonian parameters of the S = 2 ground state (D = -0.135(2) cm(-1), E = -0.003(2) cm(-1), g(x) = 2.290(5), g(y) = 2.135(10), g(z) = 2.158(5)) as well as of the first excited spin state S = 1 (D = -0.960(4) cm(-1), E = -0.080(5) cm(-1), g(x) = 2.042(5), g(y) = 2.335(5), g(z) = 2.095(5)) have been determined, since the energy gap between these two spin states is very small (1.6 cm(-1)). PMID:16475214

  3. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    PubMed Central

    2014-01-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are ?-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A destabilization state with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, long-lived stable clusters state (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field (B?=?0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can paste these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 ?m) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 ?m and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials. PMID:24910569

  4. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    NASA Astrophysics Data System (ADS)

    Yan, Minhao; Qu, Li; Fan, Jiangxia; Ren, Yong

    2014-05-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A `destabilization state' with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, `long-lived stable clusters state' (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field ( B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can `paste' these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

  5. Synthesis, structure, and magnetic properties of the low-symmetry tetranuclear cubane-like nickel complex [Ni4(pypentO)(pym)(mu 3-OH)2(mu- Oac)2(NCS)2(OH2)].

    PubMed

    Clemente-Juan, J M; Chansou, B; Donnadieu, B; Tuchagues, J P

    2000-11-27

    The tetranuclear [Ni4(pypentO)(pym)(mu 3-OH)2(mu-Oac)2(NCS)2(OH2)] cubane-like complex has been prepared, and its structure and magnetic properties have been studied (pypentO and pym are the deprotonated forms of 1,5-bis[(2-pyridylmethyl)amino]pentane-3-ol and 2-pyridylmethanol, respectively). The X-ray diffraction analysis of this novel nickel complex (C61H74N14O25.5S4Ni8, monoclinic, P2(1), a = 13.9375(14) A, b = 20.6604(18) A, c = 16.6684(19) A, beta = 110.619(12) degrees, Z = 2) showed a Ni4O4 cubane arrangement of four nickel atoms, four mu 3-O bridging ligands (one pypentO, one pym, and two OH-), two syn-syn bridging acetates, and three terminal monodentate ligands (two NCS- and one OH2). In this low-symmetry elongated cubane, the four Ni-Ni long distances (3.18 A) correspond to the faces of the cube including two mu 3-OR bridges, and the two Ni-Ni short distances (2.94 A) correspond to the faces including two mu 3-OR and one acetate bridges. The temperature dependence of the magnetic susceptibility was fitted with J1 = -3.09 cm-1, J2 = 15.0 cm-1, J3 = 6.72 cm-1, and g = 2.27. The differences in sign among the J1, J2, and J3 superexchange interactions is in good agreement with the different types of faces present in this Ni4O4 cubane core. The two faces of the cube, including two mu 3-OR bridges associated with one acetate bridge, exhibit ferromagnetic interactions, while the four faces which include only mu 3-OR bridges exhibit antiferromagnetic interactions. The very small zero field splitting may be attributed to the fact that the ground state is diamagnetic. The nature of the ground state is confirmed by the good simulation of the magnetization curves at 2 and 5 K (diagonalization of the full matrix taking into account all energy levels obtained with the parameter set resulting from the fit of the susceptibility curve). The large differences in J values resulting from small differences in Ni-O-Ni angles in this Ni4O4 core of very low symmetry reflect a quite strong magnetostructural correlation. PMID:11154568

  6. Domain structures in complex 3D magnetic fields

    NASA Astrophysics Data System (ADS)

    Close, R. M.; Parnell, C. E.; Priest, E. R.

    The numerous magnetic fragments that populate the mixed-polarity, quiet-Sun photosphere give rise to many interesting topological features in the corona. In light of this, much recent work has gone into classifying the configurations that arise from simple, point-source potential-field models in efforts to determine the nature of the quiet-Sun magnetic field. These studies have ranged from systematic and detailed examinations of magnetic fields arising from only a handful of sources, involving classifying the configurations that arise (and how some states may bifurcate into other states), to statistical studies of the overall properties of fields arising from hundreds of magnetic sources. Such studies have greatly increased our understanding of what we might expect the magnetic field over the quiet Sun to behave like; the purpose of the study presented here is to extend this understanding further by examining the structure of the individual domains (the regions in space through which pairs of opposite-polarity sources are connected). In particular, the features of lesser-known domain structures that are absent from fields arising from only a few sources and overlooked by sweeping statistical studies are documented. In spite of the incredible complexity of the coronal field, previous studies have shown that there are only two types of building block in a potential field arising from coplanar point sources: namely, an isolated dome, bounded by a single unbroken separatrix surface, and a separator-ring domain, engirdled by a ring of separators. However, it is demonstrated here how both isolated domains and separator-ring domains may be categorised further depending upon their particular geometrical and topological traits. As many models predict coronal heating at topologically distinct features in magnetic fields such as null points, separators and separatrices, for any such models to be applied to general fields would require a scheme for identifying which topological features are related to a given domain. The study here explores some of the issues that would need to be taken into account by such a scheme, and in particular the problems associated with trying to deduce the properties of a general magnetic field from knowledge of domain footprints alone. Animated 3D-rotational views of some of the figures in this manuscript may be viewed in AVI, MPEG and animated-GIF formats by visiting http://www-solar.mcs.st-and.ac.uk/robertc/animations/blocks.html and following the desired link.

  7. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  8. Magnetic Interactions in a Series of Homodinuclear Lanthanide Complexes.

    PubMed

    Comba, Peter; Großhauser, Michael; Klingeler, Rüdiger; Koo, Changhyun; Lan, Yanhua; Müller, Dennis; Park, Jaena; Powell, Annie; Riley, Mark J; Wadepohl, Hubert

    2015-12-01

    A series of seven isostructural homodinuclear lanthanide complexes are reported. The magnetic properties (ac and dc SQUID measurements) are discussed on the basis of the X-ray structural properties which show that the two lanthanide sites are structurally different. MCD spectroscopy of the dysprosium(III) and neodymium(III) complexes ([Dy(III)2(L)(OAc)4](+) and [Nd(III)2(L)(OAc)4](+)) allowed us to thoroughly analyze the ligand field, and high-frequency EPR spectroscopy of the gadolinium(III) species ([Gd(III)2(L)(OAc)4](+)) showed the importance of dipolar coupling in these systems. An extensive quantum-chemical analysis of the dysprosium(III) complex ([Dy(III)2(L)(OAc)4](+)), involving an ab initio (CASSCF) wave function, explicit spin-orbit coupling (RASSI-SO), and a ligand field analysis (Lines model and Stevens operators), is in full agreement with all experimental data (SQUID, HF-EPR, MCD) and specifically allowed us to accurately simulate the experimental χT versus T data, which therefore allowed us to establish a qualitative model for all relaxation pathways. PMID:26588004

  9. Linear and nonlinear magnetic properties of ferrofluids.

    PubMed

    Szalai, I; Nagy, S; Dietrich, S

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983)] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data. PMID:26565247

  10. Linear and nonlinear magnetic properties of ferrofluids

    NASA Astrophysics Data System (ADS)

    Szalai, I.; Nagy, S.; Dietrich, S.

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001), 10.1103/PhysRevE.64.041405] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983), 10.1080/00268978300100621] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data.

  11. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation. PMID:23128376

  12. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  13. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  14. Soft magnetic moldable composites: Properties and applications

    NASA Astrophysics Data System (ADS)

    Svensson, Leif; Frogner, Kenneth; Jeppsson, Peter; Cedell, Tord; Andersson, Mats

    2012-09-01

    A new type of electromagnetic soft magnetic material (SMM) is introduced, based on spherical iron powder particles and a suitable polymer binder. A key feature of this material is that it can be cast or molded into almost any 3D shape, hence the denotation soft magnetic moldable composite (SM2C). The SM2C is compared with a set of reference materials, such as ferrites, laminated steels, and soft magnetic composites, in terms of primary properties such as permeability and loss, and other properties, such as thermal conductivity and manufacturability. The SM2C has the obvious disadvantage of relatively low permeability, but offers benefits such as relatively low losses and high potential for close integration into electromagnetic circuits. Some recent SM2C applications are illustrated, and design and manufacturing aspects are discussed.

  15. Measurement of dielectric and magnetic properties of soil

    SciTech Connect

    Patitz, W.E.; Brock, B.C.; Powell, E.G.

    1995-11-01

    The possibility of subsurface imaging using SAR technology has generated a considerable amount of interest in recent years. One requirement for the successful development of a subsurface imagin system is an understanding of how the soil affects the signal. In response to a need for an electromagnetic characterization of the soil properties, the Radar/Antenna department has developed a measurement system which determines the soils complex electric permittivity and magnetic permeability at UHF frequencies. The one way loss in dB is also calculated using the measured values. There are many reports of measurements of the electric properties of soil in the literature. However, most of these are primarily concerned with measuring only a real dielectric constant. Because some soils have ferromagnetic constituents it is desirable to measure both the electric and magnetic properties of the soil.

  16. Magnetic properties of superparamagnetic lithium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Seema; Joy, P. A.

    2005-12-01

    Magnetic properties of lithium ferrite nanoparticles of size in the range of 4-50nm, synthesized by a low-temperature method, have been evaluated. A broad maximum at ˜220K in the temperature variation of the zero-field-cooled magnetization as well as the ac susceptibility and divergence of the zero-field-cooled and field-cooled magnetizations below this temperature indicate the superparamagnetic behavior of the lithium ferrite particles of size ˜4nm. On the other hand, at high temperatures, these particles show a cusp immediately below the Curie temperature of bulk lithium ferrite (895K). This anomalous magnetic behavior of the lithium ferrite nanoparticles, similar to that arising from the Hopkinson effect for bulk materials, is probed in detail and is explained in terms of the cumulative effect of the temperature variation of the anisotropy and particle size growth during the measurements at high temperatures.

  17. Magnetic dipole discharges. I. Basic properties

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10{sup ?3} mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  18. Magnetic dipole discharges. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-01

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10-3 mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  19. Effect on magnetic properties of germanium encapsulated C60 fullerene

    NASA Astrophysics Data System (ADS)

    Umran, Nibras Mossa; Kumar, Ranjan

    2013-02-01

    Structural and electronic properties of Gen(n = 1-4) doped C60 fullerene are investigated with ab initio density functional theory calculations by using an efficient computer code, known as SIESTA. The pseudopotentials are constructed using a Trouiller-Martins scheme, to describe the interaction of valence electrons with the atomic cores. In endohedral doped embedding of more germanium atoms complexes we have seen that complexes are stable and thereafter cage break down. We have also investigated that binding energy, electronic affinity increases and magnetic moment oscillating behavior as the number of semiconductor atoms in C60 fullerene goes on increasing.

  20. Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes.

    PubMed

    Li, Xiao-Lei; Min, Fan-Yong; Wang, Chao; Lin, Shuang-Yan; Liu, Zhiliang; Tang, Jinkui

    2015-05-01

    The synthesis, structural characterization, and magnetic properties of four related heterometallic complexes with formulas [Dy(III)2Co(II)(C7H5O2)8]6H2O (1), [Dy(III)2Ni(II)(C7H5O2)8](C7H6O2)2 (2), Tb(III)2Co(II)(C7H5O2)8 (3), and Dy(III)2Cd(II)(C7H5O2)8 (4) were reported. Each of complexes has a perfectly linear arrangement of the metal ions with two terminal Ln(III) (Ln(III) = Dy(III), Tb(III)) ions and one central M(II) (M(II) = Co(II), Ni(II), Cd(II)) ion. It was found that 1-3 displayed obvious magnetic interactions between the spin carriers according to the direct current (dc) susceptibility measurements. Alternating current (ac) magnetic susceptibility measurements indicate that complexes 1-4 all exhibit single-molecule magnet (SMM) behavior, while the replacement of the diamagnetic Cd(II) by paramagnetic ions leads to a significant slowing of the relaxation thanks to the magnetic interactions between 3d and 4f ions, resulting in higher relaxation barrier for complexes 1 and 2. Moreover, both Dy2Co and Dy2Ni compounds exhibit dual relaxation pathways that may originate from the single ion behavior of individual Dy(III) ions and the coupling between Dy(III) and Co(II)/Ni(II) ions, respectively, which can be taken as the feature of 3d-4f SMMs. The Ueff for 1 of 127 K is a relatively high value among the reported 3d-4f SMMs. The results demonstrate that the magnetic coupling between 3d and 4f ions is crucial to optimize SMM parameters. The synthetic approach illustrated in this work represents an efficient route to design nd-4f based SMMs via incorporating suitable paramagnetic 3d and even 4d and 5d ions into the d-f system. PMID:25906391

  1. Magnetic Properties of Three Impact Structures in Canada

    NASA Astrophysics Data System (ADS)

    Scott, R. G.; Pilkington, M.; Tanczyk, E. I.; Grieve, R. A. F.

    1995-09-01

    Magnetic anomaly lows associated with the West Hawk Lake (Manitoba), Deep Bay (Saskatchewan) and Clearwater Lakes (Quebec) impact structures, are variable in lateral extent and intensity, a characteristic shared with most impact structures [1]. Drill core from the centres of these structures provides a unique opportunity to ground truth the causes of the reduction in magnetic field intensity in impact structures. Magnetic susceptibility and remanent magnetization levels have been found to be well below regional levels in melt rocks, impact breccias, fractured/shocked basement rocks in the central uplifts, and post-impact sediments. Deep Bay, formed in Pre-Cambrian paragneisses, is a complex crater with a submerged central uplift. It has been extensively infilled with non-magnetic black shales of Cretaceous age [2]. An airborne magnetic low of about 100 nT is associated with the Deep Bay structure. Below the shales and along the rim of the structure are highly brecciated country rocks with variable amounts of very fine rock flour. Susceptibility and remanent magnetization are both weak due to extensive alteration in the brecciated rocks. Alteration of the brecciated rocks, and the effect of several hundred meters of non-magnetic sedimentary infill, both contribute to the magnetic low. West Hawk Lake, a simple crater, was excavated in metavolcanic and metasedimentary rocks of the Superior Province [3], and has a ground magnetic low of about 250 nT. As with Deep Bay, West Hawk Lake has been infilled with dominantly non-magnetic sediments. Brecciation and alteration are extensive, with breccia derived from greenschist-facies meta-andesite displaying slightly higher susceptibilities and remanent magnetizations than breccia derived from the more felsic metasediments. Brecciation has effectively randomized magnetization vectors, and subsequent alteration resulted in the destruction of magnetic phases. These two factors contribute to the magnetic low over this structure. The Clearwater Lakes impact structures are two complex craters formed in Archean retrograde granulite facies rocks [4]. Clearwater West, at 36 km diameter, has an annular ring of islands and a shallowly submerged central uplift. Clearwater East, at 26 km diameter, has a more deeply submerged central uplift. The structures are characterised by highly oxidized melt rock and melt- breccia lenses exposed at the surface. Shocked crystalline basement rocks and minor amounts of breccia and melt rock occur in the central uplifts [5]. Despite relatively little alteration at depth, these rocks exhibit both susceptibilities and remanent magnetizations well below the regionally high values. The Clearwater rocks also contain a thermoremanent reversed magnetization, acquired at the time of impact, and characteristic of the Permo-Carboniferous Reversed Polarity Superchron. The magnetization is carried by titanomagnetite in Clearwater West, and both magnetite and pyrrhotite in Clearwater East. This reversed magnetization contributes to the magnetic low, but cannot account for all of it. The intense airborne magnetic low (> 500 nT) requires a significant contribution from the shocked basement at depth, produced by either alteration of magnetic phases along fractures, or reduction in magnetic properties by lower shock levels away from the point of impact [6]. References: [1] Pilkington M. and Grieve R. A. F. (1992) Rev. Geophys., 30, 161-181. [2] Innes M. J. S. et al. (1964) Publ. Dom. Obs. Ottawa, 31, 19-52. [3] Halliday I. and Griffin A. A. (1967) J. Roy. Astron. Soc. Can., 61, 1-8. [4] Simonds C. H. et al. (1978) LPS IX, 2633-2658. [5] Hische R. (1994) Unpublished Ph.D. thesis, Munster. [6] Pohl J. (1994) 3rd Intl. Wkshp., ESF Network Impact Cratering and Evol. of Planet Earth, Shockwave Behavior in Nature and Expt., Progr. Abstr., 51.

  2. Magnetic properties of Lake Qinghai Sediment

    NASA Astrophysics Data System (ADS)

    Ai, L.; Song, Y.; Sun, Y.; Qiang, X.; Deng, C.

    2008-12-01

    Lake Qinghai, the largest lake in China, locates at an elevation of 3196 m, covers an area of 4400 km2, with an average depth of 21 m and a drainage area of about 29,660 km2. It sits near the northeastern margin of the Tibetan Plateau and is positioned on the conjunction region where East Asian winter and summer monsoon, Indian Monsoon, and Westerlies interact. Lake Qinghai Drilling Project (LQDP) initiated by Institute of Earth Environment, Chinese Academy of Sciences had extracted a series of shallow cores from Lake Qinghai basin in the summer of 2005. Upper 6m of Core 1F (3648'40.7"N, 11008'13.5"E) contains a relatively uniformed greenish gray silty clay sediment with several darker layers and with a grayish brown section at 4.2-5m, preliminary chronology work (Zhou et al.,2008) indicate the upper 6m sediment spans to about 14ka. Some typical samples are selected for magnetic properties tests (K-T, J-T and Hysteresis loops), environmental magnetism parameters (magnetic susceptibility, ARM, SIRM, S-rations) are measured at 1cm intervals of core 1F. Rock magnetism tests identified that hematite and magnetite are dominant magnetic minerals below 5m, which may imply a detrital origin of magnetic properties related to terrestrial, especially eolian sources. In contrast paramagnetic iron sulfides e.g pyrites, normally formed in reduced condition are common in upper 5m. Magnetic susceptibility value varies between 4-8 10-8m3/kg below 5m, while that of the upper 5m are even lower (about 1-4 10-8m3/kg). Such magnetic susceptibility value change is attributed to changes of magnetic minerals and sedimentary conditions, such as oxidation-reduction alternation and carbonate dilution in the lake. Comparison with grain size and other climate proxies show that Lake Qinghai was generally in a drier environment before Holocene and became a deeper lake since Holocene. Key words: Lake Qinghai, magnetic minerals and magnetic susceptibility

  3. Magnetic Properties of Ubiquitous yet Underrated Antiferromagnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R.; Sainctavit, P.; Ona-Nguema, G.; Morin, G.

    2013-05-01

    Ferrihydrite, lepidocrocite and goethite are antiferromagnetic, weakly "ferromagnetic" iron oxyhydroxides that are commonly found in diverse environments, including ground waters and streams, sediments, soils, or acid mine drainage. One of them, ferrihydrite, constitutes the mineral core of ferritin, a vital iron storage protein. Iron oxyhydroxides take part in multiple biological and abiological processes, and can evolve, under changing environmental or geological conditions, to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. We will present low temperature magnetic properties acquired on fully characterized synthetic iron oxyhydroxides. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or when the early-stages of solid-state alteration (under oxidizing or reducing atmosphere) are studied. In particular, we will present resent results about the structure of 6-line ferrihydrite, about the possible presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

  4. Magnetic properties of heterotrophic bacteria (abstract)

    NASA Astrophysics Data System (ADS)

    Verkhovceva, Nadezda V.; Glebova, Irina N.; Romanuk, Anatoly V.

    1994-05-01

    The magnetic properties (magnetic susceptibility and saturation magnetization) of six species of heterotrophic bacteria were studied: alcaligenes faecalis 81, arthrobacter globiformis BKM 685, bacillus cereus 8, leptothrix pseudo-ochracea D-405, proteus vulgaris 14, and seliberia stellata. It has been shown that the magnetic properties of bacteria depend on (1) the peculiarity of the micro-organism (species-specific and connected with cultivation conditions); (2) the source of the iron in the media. Most of the bacteria are diamagnetic in media with a minimum of iron (??=-7.2-0.310-6 sm3/g). The spore forming species (bacillus cereus) has increased diamagnetism. Usually the bacteria are paramagnetic in iron-containing media because they concentrate into Fe compounds. The paramagnetism of the iron-concentrating species (anthrobacter globiformis -?par=2.410-6, leptothrix pseudo-ochtracea ?par=11.010-6 and seliberia stellata ?par=3.210-6 sm3/g) depends, in general, on magnetically ordered compounds. Iron compounds not accumulated by proteus vulgaris and these species are always diamagnetic .

  5. Magnetic properties of pelagic marine carbonates

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew P.; Florindo, Fabio; Chang, Liao; Heslop, David; Jovane, Luigi; Larrasoaa, Juan C.

    2013-12-01

    Pelagic carbonates are deposited far from continents, usually at water depths of 3000-6000 m, at rates below 10 cm/kyr, and are a globally important sediment type. Recent advances, with recognition of widespread preservation of biogenic magnetite (the inorganic remains of magnetotactic bacteria), have fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence for the magnetic minerals typically preserved in pelagic carbonates, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records of pelagic carbonates, and what magnetic properties can tell us about the open-ocean environments in which pelagic carbonates are deposited. We also discuss briefly late diagenetic remagnetisations recorded by some carbonates. Despite recent advances in our knowledge of these phenomena, much remains undiscovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals in sediments and whether it carries a poorly understood biogeochemical remanent magnetisation. Recently developed techniques have potential for testing how different magnetotactic bacterial species, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions. Future work needs to test whether it is possible to develop proxies for ancient nutrient conditions from well-calibrated modern magnetotactic bacterial occurrences. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested; much remains to be learned about the relationship between climate and the organisms that biomineralised these large and novel magnetite morphologies. Rather than being a well-worn subject that has been studied for over 60 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.

  6. Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes.

    PubMed

    Habib, Fatemah; Luca, Oana R; Vieru, Veacheslav; Shiddiq, Muhandis; Korobkov, Ilia; Gorelsky, Serge I; Takase, Michael K; Chibotaru, Liviu F; Hill, Stephen; Crabtree, Robert H; Murugesu, Muralee

    2013-10-18

    The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin. PMID:24009214

  7. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernndez Pinel, E; Quesada, A; de la Venta, J; Ruz Gonzlez, M L; Castro, G R; Crespo, P; Llopis, J; Gonzlez-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior. PMID:17521211

  8. Complexity and diffusion of magnetic flux surfaces in anisotropic turbulence

    SciTech Connect

    Servidio, S.; Matthaeus, W. H.; Wan, M.; Rappazzo, A. F.; Ruffolo, D.; Oughton, S.

    2014-04-10

    The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces become complex at small scales, experiencing an exponential thinning that is quantified here. The computation of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection, can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical plasmas.

  9. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Malejov, Anna; Bo?a, Roman; Dlh?, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  10. Tuning electronic and magnetic properties of silicene with magnetic superhalogens.

    PubMed

    Zhao, Tianshan; Zhang, Shunhong; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2014-11-14

    Due to its compatibility with the well-developed Si-based semiconductor industry, silicene has attracted considerable attention. Using density functional theory we show for the first time that the recently synthesized superhalogen MnCl3 can be used to tune the electronic and magnetic properties of silicene, from semi-metallic to semiconducting with a wide range of band gaps, as well as from nonmagnetic to ferromagnetic (or antiferromagnetic) by changing the coverage of the superhalogen molecules. The electronic properties can be further modulated when a superhalogen and a halogen are used synergistically. The present study indicates that because of the large electron affinity and rich structural diversity superhalogen molecules have advantages over the conventional halogen atoms in modulating the material properties of silicene. PMID:25144623

  11. Magnetic properties of artificially synthesized ferritins

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Lee, H. I.; Cho, S.-B.; Yoon, S.; Suh, B. J.; Jang, Z. H.; St. Pierre, T. G.; Kim, S.-W.; Kim, K.-S.

    2005-05-01

    Human ferritin homopolymers with H or L subunits (rHF and rLF) were genetically engineered in E coli. Apoferritins were then reconstituted with 2000 Fe atoms. A big difference was observed in the rates of iron uptake, whereas the mean core size was similar in rHF and rLF. Magnetization of the recombinant human ferritins were measured as functions of temperature and field. The blocking temperature TB(H) at low fields is considerably higher in rLF than in rHF. From the fit of M(H ) data to a modified Langevin function: M(H )=M0L(?pH/kBT)+?aH, the effective magnetic moment ?p is found to be much larger in rLF than in rHF. Experimental data demonstrate that the magnetic properties, in particular, the uncompensated spins of ferritin core are related to the biomineralization process in ferritins.

  12. Magnetic properties of cyclically deformed austenite

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic ?(fcc) austenite phase to ferromagnetic ?/(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ?(hcp), ?/(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band-grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: ?(fcc)??(hcp), ?(fcc)??(hcp)??/(bcc), ?(fcc)? deformation twin ??/(bcc) and ?(fcc)??/(bcc).

  13. Synthesis and magnetic properties of cobalt nanocubes

    NASA Astrophysics Data System (ADS)

    Grf, Christian P.; Birringer, Rainer; Michels, Andreas

    2006-06-01

    We report on the synthesis, structure, and magnetic properties of cobalt nanoparticles with cubic shape. The nanoparticles with an average cube-edge length of about 50nm were prepared by wet-chemical processing and characterized by electron microscopy, x-ray diffraction, and magnetometry. The x-ray data indicate a mixture of hcp Co and ?-Co . From the magnetization measurements we deduce on the presence of a ferromagnet/antiferromagnet Co/CoO interface, which gives rise to a pronounced exchange-bias effect. Between 350K and 5K the coercivity HC increases by almost a factor of 6, whereas the exchange-bias field HE takes on a value of about 380Oe at 5K and vanishes above 75K . The variation of HC with temperature cannot be understood in terms of the various conventional types of magnetic anisotropy.

  14. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  15. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex

  16. Switching nuclearity and Co(II) content through stoichiometry adjustment: {Co(II)6Co(III)3} and {Co(II)Co4(III)} mixed valent complexes and a study of their magnetic properties.

    PubMed

    Funes, Alejandro V; Carrella, Luca; Sorace, Lorenzo; Rentschler, Eva; Albors, Pablo

    2015-02-01

    We are reporting two new mixed valent Co(ii)/Co(iii) polynuclear complexes, {Co(II)6Co(III)3} and {Co(II)Co(III)4}, bearing different amount of Co(ii) ions in their cores, through the employment of the multidentate triethanolamine (teaH3) ligand in different stoichiometric ratios. We present a complete picture of the magnetic behaviour of both complexes through a combined usage of the susceptibility, magnetization and X-band EPR data as well as broken-symmetry DFT calculations. Compound shows an atypical spin-only behaviour, probably due to the presence of four and five coordinated Co(ii) sites as well as highly distorted six coordinated Co(ii) ions, promoting a high degree of orbital contribution quenching. Through the usage of a simplified exchange coupling scheme and relying on DFT based magneto-structural correlation we have been able to explain the observed diamagnetic ground state. Concerning compound , DC magnetic data supported by X-band EPR measurements suggest the existence of anisotropy with a zero-field splitting parameter D, at least in the range of 2-10 cm(-1). In agreement with this description, a slow relaxation of magnetization is observed after applying a small external magnetic field, under AC measurements. Field and temperature dependence of the characteristic relaxation time establishes a thermal barrier for magnetization reversal of about 25 cm(-1), which is in good agreement with the energy splitting of the |1/2? and |3/2? doublets established from static magnetic measurements. PMID:25537966

  17. Molecular magnets based on homometallic hexanuclear lanthanide(III) complexes.

    PubMed

    Das, Sourav; Hossain, Sakiat; Dey, Atanu; Biswas, Sourav; Sutter, Jean-Pascal; Chandrasekhar, Vadapalli

    2014-05-19

    The reaction of lanthanide(III) chloride salts (Gd(III), Dy(III), Tb(III), and Ho(III)) with the hetero donor chelating ligand N'-(2-hydroxy-3-methoxybenzylidene)-6-(hydroxymethyl)picolinohydrazide (LH3) in the presence of triethylamine afforded the hexanuclear Ln(III) complexes [{Ln6(L)2(LH)2}(?3-OH)4][MeOH]p[H2O]q[Cl]4xH2OyCH3OH (1, Ln = Gd(III), p = 4, q = 4, x = 8, y = 2; 2, Ln = Dy(III), p = 2, q = 6, x = 8, y = 4; 3, Ln = Tb(III), p = 2, q = 6, x = 10, y = 4; 4, Ln = Ho(III), p = 2, q = 6, x = 10, y = 2). X-ray diffraction studies revealed that these compounds possess a hexanuclear [Ln6(OH)4](14+) core consisting of four fused [Ln3(OH)](8+) subunits. Both static (dc) and dynamic (ac) magnetic properties of 1-4 have been studied. Single-molecule magnetic behavior has been observed in compound 2 with an effective energy barrier and relaxation time pre-exponential parameters of ?/kB = 46.2 K and ?0 = 2.85 10(-7) s, respectively. PMID:24766539

  18. Studies on the origin of ferromagnetic properties of the complex of Schiff-base polymer with sulfate iron

    NASA Astrophysics Data System (ADS)

    Li, Wenguang; wan, Meixiang

    1994-11-01

    The effect of preparation conditions on the structure and the magnetic properties of PPH-FeSO 4 complexes was investigated by elemental analysis, FTIR, XPS, X-ray diffraction, Mssbauer and magnetic measurements. Excessive amount of FeSO 4 used during the preparation of complexes not only destroys the crystallinity of the polymer, but also introduces more magnetic impurities (Fe 3O 4) into complexes. Increasing acidity of reaction medium during the preparation of complexes was an effective method to prevent the formation of magnetic impurities in complexes. Our results provided a direct experimental evidence to demonstrate that the ferromagnetic properties of PPH-FeSO 4 complexes observed at room temperature are due to the presence of magnetic impurities arising from preparation processes of complexes.

  19. Novel Magnetic and Mechanical Properties of Nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Jianping

    1997-03-01

    The unusual structure and morphology of carbon nanotubes lead to novel properties. Single-wall nanotubes are either small gap semiconductors or metallic. Strong external magnetic field is shown to induce metal-insulator transitions. In a weak field nanotubes exhibit strong diamagnetic or paramagnetic responses. The magnetic properties depends sensitively on the field direction and the tube morphology.(J.P. Lu, Phys. Rev. Lett. 74, 1123, 1995.) In the contrary, the elastic properties are found to be insensitive to the helicity, the size, and the numbers of layers. Single multi-wall nanotube is predicted to be comparable with that of the diamond in elastic strengh. But nanowire made of single-wall nanotubes is softer than the graphic in the basal plane. (J.P. Lu, in Proceeding of Fullerenes '96, edited by M. Greens et al.; J.P. Lu, to be published.) These novel properties of carbon nanotubes may lead to a new generation of micro-mechanical and magneto-electronic devices.

  20. Flares and Their Underlying Magnetic Complexity

    NASA Astrophysics Data System (ADS)

    Engell, Alexander J.; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Golub, Leon; Korreck, Kelly; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 1033 T 1.90.1.

  1. Magnetic properties of weights, their measurements and magnetic interactions between weights and balances

    NASA Astrophysics Data System (ADS)

    Davis, R.; Gläser, M.

    2003-12-01

    Unwanted magnetic effects must be minimized and quantified in precision weighing and mass metrology. To this end, methods of measuring magnetic fields and of characterizing the magnetic properties of bodies such as weights are reviewed. The results of comparisons between weights made of ferromagnetic and weakly magnetic materials as well as modelling the magnetic forces between weight and balance are reported. Finally, the impact of the magnetic properties of the weights on regulations in legal metrology is discussed.

  2. The effect of thermal treatment on the magnetic properties of spinel ferrite nanoparticles in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kronkalns, G.; Dreimane, A.; Maiorov, M. M.

    2008-03-01

    Magnetic properties of ferrites are dependent on the crystalline structure and location of metal ions in the material. The most commonly used materials of nanoparticles in magnetic fluids are chemical stable spinel (2-3) ferrites. The preparation of ferrite nanoparticles for magnetic fluids synthesis needs a special technology. More commonly used is the wet chemical coprecipitation production technology of magnetic nanoparticles for MF. The ferrites synthesized by the wet chemical method have different magnetic characteristics if compared to the ferrites prepared by standard ceramic methods. In this paper, the physical properties of ultrafine complex spinel-type Fe _{2}Co _{0.3}Zn _{0.6}Ca _{0.1}O_{4}, Fe _{1.9}Cd _{0.1}Mn _{0.54}Zn _{0.46}O_{4}, Fe _{2}CoO_{4} and Fe _{2}Zn _{0.6}Mn _{0.3}Ca _{0.1}O_{4} ferrite particles and MF on its base, after their special thermal treatment, are studied. Tables 1, Figs 6, Refs 8.

  3. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    NASA Astrophysics Data System (ADS)

    Guihry, Nathalie; Ruamps, Renaud; Maurice, Rmi; de Graaf, Coen

    2015-12-01

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  4. Synthesis and magnetic properties of nanostructured maghemite

    SciTech Connect

    Vollath, D.; Szabo, D.V.; Taylor, R.D.; Willis, J.O.

    1997-08-01

    Nanocrystalline maghemite, {gamma}{endash}Fe{sub 2}O{sub 3}, can be synthesized in a microwave plasma using FeCl{sub 3} or Fe{sub 3}(CO){sub 12} as the precursor. Electron microscopy revealed particle sizes in the range of 5 to 10 nm. In general, this material is superparamagnetic. The magnetic properties are strongly dependent on the precursor. In both cases the production process leads to a highly disordered material with the consequence of a low magnetization. The assumption of a disordered structured is also supported by electron energy loss (EEL) and Moessbauer spectroscopy. The structure of this material shows a nearly identical number of cations on tetrahedral and octahedral lattice sites. {copyright} {ital 1997 Materials Research Society.}

  5. Hygroscopic properties of magnetic recording tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  6. A series of dinuclear Dy(iii) complexes bridged by 2-methyl-8-hydroxylquinoline: replacement on the periphery coordinated ?-diketonate terminal leads to different single-molecule magnetic properties.

    PubMed

    Zhang, Wan-Ying; Tian, Yong-Mei; Li, Hong-Feng; Chen, Peng; Sun, Wen-Bin; Zhang, Yi-Quan; Yan, Peng-Fei

    2016-03-01

    A series of HMq-bridged dinuclear dysprosium complexes, namely, [Dy(acac)2(CH3OH)]2(?-HMq)2 (1), [Dy(DBM)2]2(?-HMq)2(n-C6H14) (2), [Dy(hmac)2]2(?-HMq)2 (3) and [Dy(hfac)3]2(?-HMq)2 (4) (HMq = 2-methyl-8-hydroxyquinoline, acac = acetylacetone, DBM = dibenzoylmethane, hmac = hexamethylacetylacetonate and hfac = hexafluoroacetylacetonate), were structurally and magnetically characterized. X-ray crystallographic analyses of the structures reveal that HMq serves as the effective bridge to link two Dy(iii) centers by means of the phenoxyl oxygen and nitrogen atoms and the periphery ?-diketonate ligands complete the coordination sphere by bidentate oxygen atoms. The different substituents on the ?-diketonate terminal lead to different coordination models mostly due to the steric hindrance of these substituents, and the electron-withdrawing or donating effects likely influence the strength of the ligand fields and the Dy(iii) ion anisotropy. Measurements of alternating-current (ac) susceptibility on complexes 1-4 reveal that complexes 3 and 4 display significant zero-field single-molecule magnetic (SMM) behavior with barrier energy Ueff/kB = 14.8 K, ?0 = 1.8 10(-5) s and Ueff/kB = 9.2 K, ?0 = 1.7 10(-5) s, respectively, whereas 1 and 2 exhibit field-induced SMM behavior, and these differences are attributed to the alteration on the periphery ?-diketonate ligands. Their distinct slow magnetic relaxation behaviors were related to their different individual Dy(iii) ion magnetic anisotropy and intramolecular coupling, which were confirmed by ab initio calculations. PMID:26905041

  7. Interaction of Phase Transformation and Magnetic Properties of Heusler Alloys: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Entel, Peter; Gruner, Markus E.; Comtesse, Denis; Wuttig, Manfred

    2013-11-01

    The structural, electronic, and magnetic properties of functional Ni-Mn- Z ( Z = Ga, In, Sn, and Sb) Heusler alloys are studied by first-principles and Monte Carlo tools. The ab initio calculations give a basic understanding of the underlying physics that are associated with the complex magnetic behavior arising from the competition of ferromagnetic and antiferromagnetic interactions with increasing chemical disorder in the super cell. This complex magnetic ordering is the driving mechanism of structural transformations. It also essentially determines the multifunctional properties of the Heusler alloys such as magnetic shape-memory and magnetocaloric effects. The thermodynamic properties can be calculated by using the ab initio magnetic exchange parameters in finite-temperature Monte Carlo simulations. The experimental entropy and specific heat changes across the magnetostructural transition are accurately reproduced by the Monte Carlo simulations. The predictive power of the first-principles calculations allows one to optimize the functional features by choosing optimal compositions.

  8. Microstructure characterization and magnetic properties of nanomaterials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang-Cheng

    The microstructure and superparamagnetic properties of two systems of magnetic nanoparticles are reviewed. A new type of magnetic core-shell Ni-Ce nanocomposite particle (15-50nm) has been prepared. Typical HREM images and FFT patterns of HREM images showed that many planar defects (nanotwins and stacking faults) exist in the large Ni core zone (10-45nm). The shell layers (3-5nm) consist of an innermost Ni-Ce alloy and an outermost NiO oxide. FFT patterns from different regions of typical HREM images show well defined spots characteristic of core-shell nanocomposite materials. Magnetization measurements as a function of magnetic field and temperature showed that superparamagnetic behaviour is exhibited above the average block temperature (TB = 170K). This superparamagnetic relaxation was found to be modified by interparticle interactions that depend on the applied field and size distribution. In addition, antiferromagnetic order occurred with a Nel temperature TN of about 11K. A spin-flip transition was observed below TN at a certain applied field. Novel carbon encapsulated Ni nanoparticles assemblies have been synthesized by modified arc-discharge under a methane atmosphere. The presence of carbon encapsulation is confirmed by HR-TEM lattice imaging, and nanodiffraction. The intimate and contiguous carbon fringe around these Ni nanoparticles is good evidence for complete encapsulation by carbon shell layers. Superparamagnetic property studies show that the blocking temperature TB is around 115K at 0.1T applied field. Above TB, the magnetization M(H,T) can be described by the classical Langevin function L using the relation M|Ms(T= 0)=coth ( wH/kT ) - kT / ?H. The particle size can be inferred from the Langevin fit (particle moment ?), which is a little larger than the HR-TEM observation. It is suggested that these assemblies of carbon encapsulated Ni nanoparticles have typical single-domain, field-dependent superparamagnetic relaxation properties, and this typical superparamagnetic behaviour is consistent with the Stoner-Wohlfarth theory of single-domain particles.

  9. Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties.

    PubMed

    Ghadban, Ali; Ahmed, Anansa S; Ping, Yuan; Ramos, Ricardo; Arfin, Najmul; Cantaert, Bram; Ramanujan, Raju V; Miserez, Ali

    2015-12-24

    We have developed pH- and magnetic-responsive hydrogels that are stabilized by both covalent bonding and catechol/Fe(3+) ligands. The viscoelastic properties of the gels are regulated by the complexation valence and can be used to tune drug release profiles. The stable incorporation of magnetic nanoparticles further expands control over the mechanical response and drug release, in addition to providing magnetic stimuli-responsivity to the gels. PMID:26558317

  10. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  11. Complex magnetic phases in LuFe2O4

    SciTech Connect

    Phan, M.; Frey, N. A.; Angst, M; De Groot, J; Sales, Brian C; Mandrus, David; Srikanth, H.

    2010-01-01

    DC magnetization and AC susceptibility measurements on LuFe{sub 2}O{sub 4} single crystals reveal a ferrimagnetic transition at 240 K followed by additional magnetic transitions at 225 K and 170 K, separating cluster glass phases, and a kinetically arrested state below 55 K. The origin of giant magnetic coercivity is attributed to the collective freezing of ferrimagnetic clusters and enhanced domain wall pinning associated with a structural transition at 170 K. Magnetocaloric effect measurements provide additional vital information about the multiple magnetic transitions and the glassy states. Our results lead to the emergence of a complex magnetic phase diagram in LuFe{sub 2}O{sub 4}.

  12. Slow magnetic relaxation in a mononuclear eight-coordinate cobalt(II) complex.

    PubMed

    Chen, Lei; Wang, Jing; Wei, Jin-Mei; Wernsdorfer, Wolfgang; Chen, Xue-Tai; Zhang, Yi-Quan; Song, You; Xue, Zi-Ling

    2014-09-01

    The quest for the single-molecular magnets (SMMs) based on mononuclear transition-metal complexes is focused on the low-coordinate species. No transition-metal complex with a coordination number of eight has been shown to exhibit SMM properties. Here the magnetic studies have been carried out for a mononuclear, eight-coordinate cobalt(II)-12-crown-4 (12C4) complex [Co(II)(12C4)2](I3)2(12C4) (1) with a large axial zero-field splitting. Magnetic measurements show field-induced, slow magnetic relaxation under an applied field of 500 Oe at low temperature. The magnetic relaxation time ? was fitted by the Arrhenius model to afford an energy barrier of Ueff = 17.0 cm(-1) and a preexponential factor of ?0 = 1.5 10(-6) s. The work here presents the first example of the eight-coordinate, mononuclear, 3d metal complex exhibiting the slow magnetic relaxation. PMID:25119268

  13. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  14. Electric and magnetic functionality in complex oxides

    NASA Astrophysics Data System (ADS)

    Locquet, Jean-Pierre

    2002-03-01

    In recent years, there has been considerable progress in the field of perovskite related oxide films. The availability of single crystal films has allowed an improved understanding of their physical properties as well as the use of their functionality in novel applications. Since the pioneering work of McKee et al., PRL 81, 3014 (1998) -- who demonstrated the epitaxial integration of these oxides with Si -- one can now envision to couple the functionality of these materials with that of standard semiconductors. For three specific examples, we will illustrate how the specific material property of the oxide appears and can be tuned by various parameters such as thickness, strain, and interface control. The examples are the strained superconducting La_1.9Sr_0.1CuO4 compound (J.-P. Locquet et al., Nature, 394), 453 (1998), the uniaxial ferroelectric LaTiO_3.5 compound (J. W. Seo et al., PRB 63), 205401, 2001 and the antiferromagnet LaFeO3 (A. Scholl e t al., Science, 287), 1014 (2000).

  15. Magnetic properties and microstructure of bulk Nd-Fe-B magnets solidified in magnetic field

    SciTech Connect

    Wang, C.; Lai, Y. S.; Hsieh, C. C.; Chang, W. C.; Chang, H. W.; Sun, A. C.

    2011-04-01

    The Nd-Fe-B bulk magnets with a slab shape of 0.9 x 4 x 15 mm{sup 3} were prepared by injection casting into a copper mold. The effects of applying a magnetic field during the casting process on the magnetic properties and microstructure of Nd{sub 9.5}Fe{sub 71.5}Ti{sub 2.5}Zr{sub 0.5}Cr{sub 1}B{sub 14.5}C{sub 0.5} alloy have been studied. The results show that the sample cast with magnetic field has a stronger (00L) texture of Nd{sub 2}Fe{sub 14}B phase with the c-axis perpendicular to the slab plane than the sample cast without magnetic field. The intensity of the texture weakens from surface to inner region of the bulk magnets. Applying a magnetic field during the casting process is helpful to refine the grain size effectively. As a result, the magnetic properties are improved from B{sub r} = 5.8 kG, {sub i}H{sub c} = 6.5 kOe, and (BH){sub max} = 5.9 MGOe for thesample cast without magnetic field to B{sub r} = 6.1 kG, {sub i}H{sub c} = 10.3 kOe, and (BH){sub max} = 7.3 MGOe for the sample cast with a 3.7 kOe magnetic field.

  16. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment. PMID:26206215

  17. Large magnetic anisotropy in pentacoordinate Ni(II) complexes.

    PubMed

    Rebilly, Jean-Nol; Charron, Galle; Rivire, Eric; Guillot, Rgis; Barra, Anne-Laure; Serrano, Marc Durn; van Slageren, Joris; Mallah, Talal

    2008-01-01

    Pentacoordinate complexes in which Ni(II) is chelated by the tridentate macrocyclic ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (iPrtacn) of formula [Ni(iPrtacn)X(2)] (X=Cl, Br, NCS) have relatively large magnetic anisotropies, revealed by the large zero-field splitting (zfs) axial parameters |D| of around 15 cm(-1) measured by frequency-domain magnetic resonance spectroscopy (FDMRS) and high-field high-frequency electron paramagnetic resonance (HF-HFEPR). The spin Hamiltonian parameters for the three complexes were determined by analyzing the FDMRS spectra at different temperatures in zero applied magnetic field in an energy window between 0 and 40 cm(-1). The same parameters were determined from analysis of HF-HFEPR data measured at different frequencies (285, 380, and 475 GHz) and at 7 and 17 K. The spin Hamiltonian parameters D (axial) and E (rhombic) were calculated for the three complexes in the framework of the angular overlap model (AOM). The nature and magnitude of the magnetic anisotropy of the three complexes and the origin of the influence of the X atoms were analyzed by performing systematic calculations on model complexes. PMID:18000920

  18. Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure

    NASA Astrophysics Data System (ADS)

    De Biasi, Emilio; Lima, Enio, Jr.; Vargas, Jose M.; Zysler, Roberto D.; Arbiol, Jordi; Ibarra, Alfonso; Goya, Gerardo F.; Ibarra, M. Ricardo

    2015-10-01

    Iron-oxide hollow nanospheres (HNS) may present unusual magnetic behavior as a consequence of their unique morphology. Here, we report the unusual magnetic behavior of HNS that are 9 nm in diameter. The magnetic properties of HNS originate in their complex magnetic structure, as evidenced by Mssbauer spectroscopy and magnetization measurements. We observe a bias in the hysteresis when measured at very low temperature in the field cooling protocol (10 kOe). In addition, dc (static) and ac (dynamic) magnetization measurements against temperature and applied field reveal a frustrated order of the system below 10 K. High-resolution transmission electron microscopy (HRTEM) studies reveal that the HNS are composed of small crystalline clusters of about 2 nm in diameter, which behave as individual magnetic entities. Micromagnetic simulations (using conjugate gradient in order to minimize the total energy of the system) reproduce the experimentally observed magnetic behavior. The model considers the hollow particles as constituted by small ordered clusters embedded in an antiferromagnetic environment (spins localized outside the clusters). In addition, the surface spins (in both inner and outer surfaces of the HNS) are affected by a local surface anisotropy. The strong effective magnetic anisotropy field of the clusters induces the bias observed when the system is cooled in the presence of a magnetic external field. This effect propagates through the exchange interaction into the entire particle.

  19. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  20. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    NASA Astrophysics Data System (ADS)

    Dobrun, L. A.; Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-01

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di(heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  1. Synthesis, crystal structures and magnetic properties of a new radical NIT-1?-MeBzIm and the corresponding complexes of Ni(II), Co(II) and Zn(II) containing NIT-1?-MeBzIm

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ya; Sun, Xiao-Yuan; Yang, Rui-Hua; Jiang, Kai; Wang, Yu-Fang

    2010-02-01

    A new chelating radical ligand NIT-1'-MeBzIm ( 1) (NIT-1'-MeBzIm = 2-{2'-[(l'-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and three corresponding complexes [M(NIT-1'-MeBzIm) 2(NO 3)(CH 3OH)](NO 3)(CH 3OH) (M = Ni ( 2), Co ( 3)), [Zn(NIT-1'-MeBzIm) 2(CH 3OH) 2](ClO 4) 2(H 2O) 2(CH 3OH) ( 4) have been prepared and structurally characterized by X-ray diffraction method and variable-temperature magnetic susceptibility measurements. In the crystal structures, radical 1, complexes 3 and 4 crystallize isomorphously in monoclinic, with the space groups are P2(1) /n, P2(1) /c, and P2(1), respectively. Complex 2 crystallizes in orthorhombic space group Pna2(1). The metal ions of the three complexes embed in distorted octahedron geometry centers and coordinated by two NIT-1'-MeBzIm radicals from the equatorial positions to form trans configuration, the axial positions are occupied by one methanol molecule and one nitrate anion for 2 and 3, but by two methanol molecules for 4. Magnetic measurement demonstrates that the intramolecular exchange couplings in 2 and 3 are antiferromagnetic with J = -41.25 and -38.1 cm -1, where the spin Hamiltonian is defined as ? = -2 J( ?rad1?M + ?M?rad2) based on the molecular structure of radical-metal-radical, while that in 4 is weak ferromagnetic with J = 1.65 cm -1 where the spin Hamiltonian is defined as ? = -2 J?1?2 within the complexes. Intermolecular exchange couplings in 1 is also weak ferromagnetic with J = 1.32 cm -1 where the spin Hamiltonian is defined as ? = -2 J?1?2 between radical and radical. Compounds 2- 4 exhibit intermolecular antiferromagnetic interaction with the zJ' = -0.52 cm -1, ? = -0.75 K and zJ' = -0.49 cm -1 for compounds 2, 3 and 4, respectively, which should ascribe to the weak interactions. The crystal structures for 1- 4 have intermolecular hydrogen bonding interactions (and ?-? piling interactions for 1 and 3) which form the single crystals into 1-D, 2-D, 3-D structures and seems to play an important role in molecular packing and in magnetic coupling.

  2. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Haracz, S.; Hilgendorff, M.; Rybka, J. D.; Giersig, M.

    2015-12-01

    For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  3. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer potassic zone that contains less abundant, but still significant, magnetite. The inner potassic zone represents relatively intense development of qtz-mt-Kfsp veins, whereas the outer potassic zone corresponds to bio-Kfsp-qtz-mt alteration. A shell of magnetite-destructive phyllic alteration with very low susceptibility envelops the potassic zones. The phyllic zone is surrounded by a zone of intense propylitic alteration, which is partially magnetite-destructive, which passes out into weak propylitic alteration and then into unaltered, moderately magnetic volcanics. For such a system, emplaced into magnetic intermediate-mafic igneous host rocks and exposed after removal by erosion of ~ 1 km of overburden, a strong central RTP high is surrounded by a relatively weak annular low over the phyllic zone, gradually returning to background levels over the propylitic zone (an "archery target" signature). For a completely buried system, however, the signature is basically an alteration low due to the large volume of magnetite-destructive alteration surrounding the deeply buried magnetic core.

  4. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daff, Nili; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jrme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm ?-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  5. Handling Magnetic Coupling in Trinuclear Cu(II) Complexes.

    PubMed

    Reta Mañeru, Daniel; Costa, Ramon; Guix Márquez, Meritxell; Moreira, Ibério de P R; Illas, Francesc

    2015-08-11

    The problem of deriving three different two-body magnetic couplings in three electrons/three centers in a general geometric arrangement is investigated using the trinuclear Cu(II) HAKKEJ complex as a real case example. In these systems, one quartet and two doublet low lying electronic states exist, which define the magnetic spectra. However, the two possible linearly independent energy differences do not provide enough information to extract the three magnetic coupling constants. Here, we show how to obtain these parameters without making any assumption on the symmetry of the system from a combination of density functional- and wave function-based calculations. The density functional calculations explore various broken symmetry solutions and relate the corresponding energy to the expectation value of the Heisenberg Hamiltonian. This allows one to obtain all magnetic couplings, although their magnitude strongly depends on the exchange-correlation functional. Interestingly, a constant ratio between the magnetic coupling constants along a series of investigated functionals is found. This provides an additional equation to be used when relying on energy differences between spin states, which in turn allow solving the Heisenberg spectrum. The magnetic couplings thus obtained are compared to the experiment. Implications for the appropriate interpretation of the experiment and for the study of more complex systems are discussed. PMID:26574448

  6. Modeling graphene: Magnetic, transport and optical properties

    NASA Astrophysics Data System (ADS)

    Chang, Yi Chen

    Graphene, with its unique linear dispersion near the Fermi energy, has attracted great attention since its successful isolation from highly oriented pyrolytic graphite in 2004. Many important properties have been identified in graphene, including a remarkably high mobility at room temperature, an unusual quantum hall effect, and an ambipolar electric field effect. It has been proposed as a candidate for many applications, such as optical modulators, spintronic devices, and solar cells. Understanding the fundamental properties of graphene is therefore important. In this dissertation, I present a study of transport, magnetism and optical properties of graphene. In the first chapter, I introduce the electronic properties of mono layer and few layer graphene. In the second chapter, I present low temperature transport measurements in few layer graphene. An electric-field induced semimetal-to-metal transition is observed based on the temperature dependence of the resistance for different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs, as it is characteristic of a semimetal. At large gate, voltages excitations of electron-hole pairs are suppressed, and the resistance increases with increasing temperature because of the decrease in mean free path due to electron-phonon scattering, as is characteristic of a metal. The electron and hole mobilities are almost equal, so there is approximate electron-hole symmetry. The data are analyzed according to two different theoretical models for few-layer graphene. A simple two band (STB) model, two overlapping bands with quadratic energy-versus-momentum dispersion relations, is used to explain the experimental observations. The best fitting parameter for the overlap energy is found to be 16 meV. However, at low temperatures, the STB suggests that the conductivity is gate independent in the small gate voltage regime, which is not observed in the data. By considering frustration of the electronic potential due to impurities from the substrate, a Gaussian-distribution puddle model can successfully describe the observed transport behavior in the low temperature, small gate voltage regime. In the third chapter, I investigate the effects of point and line defects in monolayer graphene within the framework of the Hubbard model, using a self-consistent mean field theory. These defects are found to induce characteristic patterns into the electronic density of states and cause non-uniform distributions of magnetic moments in the vicinity of the impurity sites. Specifically, defect induced resonances in the local density of states are observed at energies close to the Dirac points. The magnitudes of the frequencies of these resonance states are shown to decrease with the strength of the scattering potential, whereas their amplitudes decay algebraically with increasing distance from the defect. For the case of defect clusters, we observe that with increasing defect cluster size the local magnetic moments in the vicinity of the cluster center are strongly enhanced. Furthermore, non-trivial impurity induced magnetic patterns are observed in the presence of line defects: zigzag line defects are found to introduce stronger-amplitude magnetic patterns than armchair line defects. When the scattering strength of these topological defects is increased, the induced patterns of magnetic moments become more strongly localized. In the fourth chapter, I theoretically study the electronic properties properties in graphene dots under mechanical deformation, using both tight binding lattice model and effective Dirac model. We observed an edge state, which is tunned by an effective quantum well originating from a strain-induced gauge field. Applying a uniaxial strain along the zigzag or armchair directions enhances or dampens the edge state due to the development of edge quantum wells. When an arc bending deformation is applied, the inner and outer edges of graphene dot display edge states caused by the induced nonuniform gauge field. These states suggest that an effective single well potential is introduced by a strong nonuniform pseudo-magnetic field, leading to a pseudo quantum Hall effect. Furthermore, we find that introducing a Hubbard term on the mean-field level induces a strong polarization between the A and B sublattices, which provides an experimental test of the theory presented here. Finally, I study charge impurity induced plasmon resonance in graphene by using the self-consistent method within random phase approximation (RPA). I attribute the observed increase in excitation energy to the increasing carrier density due to stronger impurity potentials. On the other hand, the carrier density within low energy region is decreased when impurity size is increased, as result of lower excitation frequency. The plasmon patterns show that the dipole resonances are supported for the lower excitation frequency due to a simple transition process. For higher excitation frequencies, quadrapole resonance is observed because the transitions between higher energy levels become possible. With increasing impurity size, a larger spatial range of plasmons is observed.

  7. Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Golhen, Stphane; Le Guennic, Boris; Guizouarn, Thierry; Ouahab, Lahcne; Cador, Olivier

    2015-01-26

    The influence of nuclear spin on the magnetic hysteresis of a single-molecule is evidenced. Isotopically enriched Dy(III) complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single-molecule magnets (SMMs), and provides an important step for their integration into molecule-based devices. PMID:25486900

  8. Hexaferrite M (Co, Ti) magnetic properties optimization

    SciTech Connect

    Autissier, D.; Rousselle, D.; Podembski, A.

    1995-09-01

    Barium hexaferrites are anisotropic iron oxides which can present high values of permeability. We have studied Ba (Co, Ti){sub x}Fe{sub 12-2x}O{sub 19} compositions. Powders are synthesized using the ceramic method: stoichiometric amounts of basic components are ground and fired at high temperature (1170{degrees}C) to obtain the desired phase. The powders are then ground for 6 hours in order to reduce the particle size. The slurry is cast in a plaster matrix. This matrix is rotated between the poles of a stationary electromagnet. Fields of approximately 500 Oe are used for the orientation procedure. Samples are then sintered for different temperatures between 1200 and 1300{degrees}C. We present results (magnetization, permeability, permittivity, orientation rate) obtained for diverse compositions (1.1magnetic properties, orientation rate, microstructure.

  9. Pseudostreamers: Formation, Magnetic Topology and Plasma Properties

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Velli, M. M. C.

    2014-12-01

    A traditional view of the origins of the solar wind states that slow wind streams arise from coronal hole boundaries due to the larger expansion factor. It is hard in this explanation to understand why the slow wind occupies so much space in the heliosphere. Pseudostreamers are multipolar features which develop into fields that are unipolar at greater heights. There is debate as to the speed and nature of the wind from pseudostreamers: it could be fast, slow, or in between. And, in general, they might form a network of slow wind which may or may not connect in the heliosphere to slow wind coming from around the heliospheric current sheet. Here we discuss the relationship between the expansion factor along PFSS extrapolated magnetic field lines of pseudostreamers and wind speed and plasma properties calculated with numeral modeling. We demonstrate how the resulting wind type depends on the stage of pseudostreamer development in the context of the global coronal environment: factors in determining wind speed include the height of the pseudostreamer null point, the presence or absence of filament channels, and the expansion of coronal magnetic field lines in the neighborhood of the pseudostreamer spine. This study helps to better understand the sources of slow and fast solar wind for the Solar Probe Plus mission.

  10. Magnetic anisotropy in "scorpionate" first-row transition-metal complexes: a theoretical investigation.

    PubMed

    Peri?, Marko; Garca-Fuente, Amador; Zlatar, Matija; Daul, Claude; Stepanovi?, Stepan; Garca-Fernndez, Pablo; Gruden-Pavlovi?, Maja

    2015-02-23

    In this work we have analyzed in detail the magnetic anisotropy in a series of hydrotris(pyrazolyl)borate (Tp(-)) metal complexes, namely [VTpCl](+), [CrTpCl](+), [MnTpCl](+), [FeTpCl], [CoTpCl], and [NiTpCl], and their substituted methyl and tert-butyl analogues with the goal of observing the effect of the ligand field on the magnetic properties. In the [VTpCl](+), [CrTpCl](+), [CoTpCl], and [NiTpCl] complexes, the magnetic anisotropy arises as a consequence of out-of-state spin-orbit coupling, and covalent changes induced by the substitution of hydrogen atoms on the pyrazolyl rings does not lead to drastic changes in the magnetic anisotropy. On the other hand, much larger magnetic anisotropies were predicted in complexes displaying a degenerate ground state, namely [MnTpCl](+) and [FeTpCl], due to in-state spin-orbit coupling. The anisotropy in these systems was shown to be very sensitive to perturbations, for example, chemical substitution and distortions due to the Jahn-Teller effect. We found that by substituting the hydrogen atoms in [MnTpCl](+) and [FeTpCl] by methyl and tert-butyl groups, certain covalent contributions to the magnetic anisotropy energy (MAE) could be controlled, thereby achieving higher values. Moreover, we showed that the selection of ion has important consequences for the symmetry of the ground spin-orbit term, opening the possibility of achieving zero magnetic tunneling even in non-Kramers ions. We have also shown that substitution may also contribute to a quenching of the Jahn-Teller effect, which could significantly reduce the magnetic anisotropy of the complexes studied. PMID:25591004

  11. Magnetic properties of anorthosites: A forgotten source for planetary magnetic anomalies?

    NASA Astrophysics Data System (ADS)

    Brown, Laurie L.; McEnroe, Suzanne A.

    2008-01-01

    Anorthosites, igneous rocks very rich in plagioclase, rarely considered to be strongly magnetic, are common on Earth, and the Moon, and inferred to be on other planets. Magnetic properties of anorthosites could be important in investigating associated mineral deposits and in studying magnetic anomalies, especially on Mars. Here we investigate three late Proterozoic anorthosites in Rogaland, Norway, for magnetic and petrographic properties. Two of the anorthosites have large natural remanent magnetization (NRM), with intensities comparable to Tertiary basalts. Susceptibility, NRM and hysteresis properties provide information about the magnetic minerals present and their response to inducing fields. Microscopic observations show ubiquitous hemo-ilmenite in the anorthosites, whereas magnetite is common in the Hland-Helleren, but rare in the na-Sira and Egersund-Ogna bodies. This study illustrates that anorthosites can be important sources of magnetic anomalies, and can retain a remanent field over geologic time. It also supports the recently described property of `lamellar magnetization'.

  12. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles

    SciTech Connect

    Mao, Yuanbing; Parsons, Jason; McCloy, John S.

    2013-03-31

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, scalable molten-salt reaction at 700 C in air. Their structural and morphological properties were characterized by x-ray diffraction and transmission electron microscopy. Magnetic properties were evaluated using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field. The magnetization curve shows a paramagnetic-ferromagnetic transition at TC ~275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO showed more complex magnetic behavior suggesting a re-entrant spin glass.

  13. Structural tailoring effects on the magnetic behavior of symmetric and asymmetric cubane-type Ni complexes.

    PubMed

    Ponomaryov, Alexey N; Kim, Namseok; Hwang, Jaewon; Nojiri, Hiroyuki; van Tol, Johan; Ozarowski, Andrew; Park, Jena; Jang, Zeehoon; Suh, Byoungjin; Yoon, Sungho; Choi, Kwang-Yong

    2013-06-01

    Using two kinds of carboxylate ligands with small but significant differences in steric size, symmetric and asymmetric Fe(II) and Ni(II) cubanes have been synthesized in a controlled fashion. Fast sweeping pulsed field measurements showed magnetization hysteresis loops for two cubane-type molecular complexes, [Ni4(?-OMe)4(O2CAr(4F-Ph))4(HOMe)8] and [Ni4(?-OMe)4(O2CAr(Tol))4(HOMe)6], thus suggesting single-molecule magnet behavior. To differentiate the magnetic properties between the symmetric and asymmetric cubanes, detailed electron paramagnetic resonance (EPR) measurements were performed. From the EPR data, taken at various frequencies and temperatures, zero-field splitting parameters D, E, and other higher-order parameters for both cubane samples were extracted. Compared to the symmetric Ni-cubane, the asymmetric one shows an increase in the D and E values by about 20%, thereby suggesting structural engineering effects on the magnetic properties. By using the magnetic parameters determined by EPR, a static magnetization curve at 2?K and a temperature dependence of the magnetic susceptibility were simulated. A good agreement between theoretical and experimental data confirms the validity of the values obtained from EPR measurements. PMID:23509044

  14. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent magnetisation (ARM), as expected for a thermal origin, the remanence of volcanic pseudotachylyte has been found to be comparable to an isothermal remanent magnetisation (IRM). Thus, the pseudotachylyte has experienced a strong magnetic field that overwrote the previous thermoremanent magnetisation of the magma, such as the strong local electric current that occurs in faults (e.g. Ferré et al., 2005). Additionally, the pseudotachylyte seems more often to comprise of uniaxial non-interacting single-domain particles compared to pseudo-single in the host, and to have a single Curie temperature whereas the host more commonly exhibits multiple phases. Differences in rock-magnetic parameters between the pseudotachylyte and host are significant, but not as high as those observed in granites by Nakamura et al. (2002) or Ferré et al. (2005), probably because granitic host rocks do not already carry a strong and stable remanence as do these extrusive volcanic rocks. The application of rock-magnetic tests in volcanology will undoubtedly continue to be a "go-to" tool for identification of pseudotachylytes, which are increasingly being recognised to play an important role in dome-building eruptions. Refs: Ferré, E.C., Zechmeister, M.S., Geissman, J.W., MathanaSekaran, N. and Kocak, K., 2005. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 402(1-4): 125-139. Nakamura, N., Hirose, T. and Borradaile, G.J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. . Earth and Planetary Science Letters, 201(1): 13-18.

  15. Single-molecule magnet behavior in 2,2'-bipyrimidine-bridged dilanthanide complexes.

    PubMed

    Yu, Wen; Schramm, Frank; Pineda, Eufemio Moreno; Lan, Yanhua; Fuhr, Olaf; Chen, Jinjie; Isshiki, Hironari; Wernsdorfer, Wolfgang; Wulfhekel, Wulf; Ruben, Mario

    2016-01-01

    A series of 2,2'-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2'-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops. PMID:26925361

  16. Magnetic Properties of Lunar Geologic Terranes: New Statistical Results

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Hood, L. L.; Acuna, M. H.; Binder, A.

    2002-01-01

    We use global magnetic field data and digitized geologic maps to determine the magnetic properties of lunar terranes. Average fields vary by a factor of 100 from demagnetized impact basins and craters to strongly magnetized antipodal regions. Additional information is contained in the original extended abstract.

  17. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzires, Mathieu; Clrac, Rodolphe

    2013-03-01

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives. PMID:23428002

  18. Ligands effects on the magnetic anisotropy of tetrahedral cobalt complexes.

    PubMed

    Saber, Mohamed R; Dunbar, Kim R

    2014-10-21

    The effect of ligands with heavy donor atoms on the magnetic anisotropy of the pseudo-tetrahedral cobalt complexes, Co(quinoline)2I2 (1) and Co(EPh3)2I2 (2-3) (E = P, As) has been investigated. The axial zero-field splitting parameter D was found to vary from +9.2 cm(-1) in 1 to -36.9 cm(-1) in 2 and -74.7 cm(-1) in 3. Compounds 2 and 3 exhibit slow relaxation of the magnetization up to 4 K under an applied dc field, indicating SMM behavior. PMID:25183324

  19. Understanding and controlling complex states arising from magnetic frustration

    SciTech Connect

    Zapf, Vivien

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  20. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    NASA Astrophysics Data System (ADS)

    Frst, M.; Caviglia, A. D.; Scherwitzl, R.; Mankowsky, R.; Zubko, P.; Khanna, V.; Bromberger, H.; Wilkins, S. B.; Chuang, Y.-D.; Lee, W. S.; Schlotter, W. F.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Clark, S. R.; Jaksch, D.; Triscone, J.-M.; Hill, J. P.; Dhesi, S. S.; Cavalleri, A.

    2015-09-01

    Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

  1. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface.

    PubMed

    Frst, M; Caviglia, A D; Scherwitzl, R; Mankowsky, R; Zubko, P; Khanna, V; Bromberger, H; Wilkins, S B; Chuang, Y-D; Lee, W S; Schlotter, W F; Turner, J J; Dakovski, G L; Minitti, M P; Robinson, J; Clark, S R; Jaksch, D; Triscone, J-M; Hill, J P; Dhesi, S S; Cavalleri, A

    2015-09-01

    Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices. PMID:26147844

  2. Physical properties of novel magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Dzero, Maxim O.

    There is an ongoing interest in studying the novel magnetic systems, such as giant magnetoresistance structures (GMR), magnetic dilute semiconductors and various magnetic nanostructures. In the first part of my dissertation I present the results of our work concerning the possibility of using ferromagnetic metallic manganites as basic elements for various GMR heterostructures. I start by studying the phase diagram of manganites using the general band approach. As it turns out, the basic properties of manganites to a large extent are determined by cooperative Jahn-Teller effects and the Hund's rule coupling. The transition from insulating antiferromagnetic to metallic ferromagnetic state at critical doping concentration xcr is treated by means of the percolation theory. Using two-band approach in the frame of variational mean field theory we provide an estimate for the value of the Curie temperature in doped manganites. Then using the double exchange (DE) model via degenerate orbitals and the tight-binding approximation we study the magnetoconductivity of a canted A-phase of pseudo-cubic manganites. It is argued that the model is applicable in a broad concentration range for manganites A1-xB xMnO3 with the tolerance factor, t, close to one. As for the substitutional disorder, scattering on random Jahn-Teller distortions of MnO6 octahedra is chosen. We emphasize an intimate correlation between the carrier concentration and resistivity value of metallic manganites. Magnetoresistance as a function of magnetization is calculated for a canted A-phase for both in-plane and out-of-plane current directions. A contact between two manganite phases is considered and structure of the transition region near the contact is discussed. Numerical calculations show charge re-distribution near the contact and a large screening length of the order of five inter-atomic distances. We employed our results to interpret data obtained in recent experiments on La0.4Sr0.6MnO 3/La0.55Sr0.45MnO3 superlattices. We also briefly discuss the relative importance of the cooperative Jahn-Teller distortions, double exchange mechanism and super-exchange interactions for the formation of the A-phase at increasing Sr concentrations x > 0.45 in La1-xSr xMnO3 to suggest that the Jahn-Teller contraction of octahedra, c/a < 1, plays a prevailing role. The second part of my thesis deals with the analysis of magnetotransport properties of ferromagnetic nanowires. The problems associated with spin-accumulation effects near the domain walls boundaries are studied in detail. In order to explain the large values of magnetoresistance due to domain wall scattering in ferromagnetic nanowires we suggest the realization of "linear domain walls".

  3. Magnetic properties of Dashing Rocks loess at Timaru, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Ma, Mingming; Liu, Xiuming; Pillans, Brad J.; Hu, Shouyun; Lü, Bin; Liu, Huifeng

    2013-10-01

    The relationships between magnetic susceptibility and pedogenic development are different in various regions of the world. For example, loess magnetic susceptibility shows a positive correlation with pedogenic development in Chinese Loess Plateau (CLP), while it displays a negative correlation with pedogenesis in Alaska and Siberia. To better understand the relationship between magnetic properties and pedogenic development, detailed sampling of Dashing Rocks loess section at Timaru, South Island, New Zealand, was carried out. Multiproxy magnetic parameters such as magnetic susceptibility, anhysteretic remanent magnetization, magnetic hysteresis loops, Ms-T curves and κ-T curves were measured. The results show that the types of magnetic minerals are similar to CLP: magnetite, maghemite, goethite and hematite. However, great differences are found in their concentration: most minerals in the Dashing Rocks section are hard magnetic, such as goethite, the content of paramagnetic minerals is rather high, while the soft-magnetic mineral content is very low. Hard-magnetic and paramagnetic minerals increase with depth, but soft-magnetic minerals decrease with depth, and are absent in the lower part of the profile. Gammate soil structures and Fe/Mn nodules (or pans) are commonly observed in the section, indicating that high susceptibility magnetite and maghemite have been converted to goethite and migrated downward to enrich certain horizons during chemical weathering. This process leads to lower magnetic susceptibility values, possibly related to the source and the transformation of soft-magnetic minerals in a high soil moisture environment. The relationship between magnetic susceptibility and pedogenic development in Dashing Rocks loess section is therefore different from the simple positive and negative relationships in CLP and Siberia, respectively. The more complex relationships between magnetic properties and pedogenic development in New Zealand loess may be related to differing degrees of magnetic mineral transformation at different depths and at different times.

  4. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca

    NASA Astrophysics Data System (ADS)

    Raĭkher, Yu. L.; Stepanov, V. I.; Stolyar, S. V.; Ladygina, V. P.; Balaev, D. A.; Ishchenko, L. A.; Balasoiu, M.

    2010-02-01

    Ferrihydrite nanoparticles (2-5 nm in size) produced by bacteria Klebsiella oxytoca in the course of biomineralization of iron salt solutions from a natural medium exhibit unique magnetic properties: they are characterized by both the antiferromagnetic order inherent in a bulk ferrihydrite and the spontaneous magnetic moment due to the decompensation of spins in sublattices of a nanoparticle. The magnetic susceptibility enhanced by the superantiferromagnetism effect and the magnetic moment independent of the magnetic field provide the possibility of magnetically controlling these natural objects. This has opened up the possibilities for their use in nanomedicine and bioengineering. The results obtained from measurements of the magnetic properties of the ferrihydrite produced by Klebsiella oxytoca in its two main crystalline modifications are reported, and the data obtained are analyzed theoretically. This has made it possible to determine numerical values of the magnetic parameters of real biomineral nanoparticles.

  5. Magnetic properties of 1 : 4 complexes of CoCl2 and pyridines carrying carbenes (S(0) = 4/2, 6/2, and 8/2) in diluted frozen solution; influence of carbene multiplicity on heterospin single-molecule magnets.

    PubMed

    Karasawa, Satoru; Nakano, Kimihiro; Tanokashira, Jun-ichi; Yamamoto, Noriko; Yoshizaki, Takahito; Koga, Noboru

    2012-11-28

    The microcrystalline sample of a parent complex, [CoCl(2)(py)(4)], showed a single-molecule magnet (SMM) behavior with an effective activation barrier, U(eff)/k(B), of 16 K for reversal of the magnetism in the presence of a dc field of 3 kOe. Pyridine ligands having 2-4 diazo moieties, DYpy; Y = 2, 3l, 3b, and 4, were prepared and confirmed to be quintet, septet, septet, and nonet in the ground state, respectively, after irradiation. The 1 : 4 complexes, CoCl(2)(DYpy)(4); Y = 2, 3l, 3b, and 4 in frozen solutions after irradiation showed the magnetic behaviors of SMMs with total spin multiplicity, S(total) = 17/2, 25/2, 25/2, and 33/2, respectively. Hysteresis loops depending on the temperature were observed and the values of coercive force, H(c), at 1.9 K were 12, 8.4, 11, and 8.1 kOe for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively. In dynamic magnetic susceptibility experiments, ac magnetic susceptibility data obeyed the Arrhenius law to give U(eff)/k(B) values of 94, 92, 93, and 87 K for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively, while the relaxation times for CoCl(2)(CYpy)(4); Y = 2 and 3l, obtained by dc magnetization decay in the range of 3.5-1.9 K slightly deviated downward from Arrhenius plots on cooling. The dynamic magnetic behaviors for CoCl(2)(CYpy)(4) including [CoCl(2)(py)(4)] and CoCl(2)(C1py)(4) suggested that the generated carbenes interacted with the cobalt ion to increase the relaxation time, ?(q), due to the spin quantum tunneling magnetization, which became larger with increasing S(total) of the complex. PMID:22898723

  6. Low-dimensional compounds containing cyano groups. XIV. Crystal structure, spectroscopic, thermal and magnetic properties of [CuL {sub 2}][Pt(China){sub 4}] complexes (L=ethylenediamine or N,N-dimethylethylenediamine)

    SciTech Connect

    Potocnak, Ivan . E-mail: ivan.potocnak@upjs.sk; Vavra, Martin; Cizmar, Erik; Tibenska, Katarina; Orendacova, Alzbeta; Steinborn, Dirk; Wagner, Christoph; Dusek, Michal; Fejfarova, Karla; Schmidt, Harry; Muller, Thomas; Orendac, Martin; Feher, Alexander

    2006-07-15

    Violet crystals of [Cu(en){sub 2}][Pt(China){sub 4}] and blue crystals of [Cu(dmen){sub 2}][Pt(China){sub 4}] were crystallized from the water-methanol solution containing CuCl{sub 2}.2H{sub 2}O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K{sub 2}[Pt(China){sub 4}].3H{sub 2}O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(China){sub 4}]{sup 2-} anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) A, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(China){sub 4}]{sup 2-} anions at longer Cu-N distance of 2.537(2) and 2.600(5) A, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en){sub 2}][Pt(China){sub 4}] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen){sub 2}][Pt(China){sub 4}]. - Graphical abstract: Chain-like structure in [Cu(en){sub 2}][Pt(China){sub 4}] (R=H) and [Cu(dmen){sub 2}][Pt(China){sub 4}] (R=CH{sub 3}) compounds.

  7. The sometimes surprising behavior of magnetic spins on a complex surface

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2012-11-01

    We have studied the unusual charge and spin properties of magnetic atoms (Mn, Co, Fe, Ti, Gd) on a complex surface as constructed by STM. This surface, a lattice of N atoms on Cu(100), was designed to be insulating in order to inhibit the Kondo effect (in which the Cu electrons would completely screen the spin). However, the magnetic adatom may be drawn down into the surface, or stay high above and attract surface atoms to it, with very different resulting properties. We show illustrations from our electronic structure calculations of these systems. The various magnetic atoms exhibit behavior ranging from spin chains to large-anisotropy atomic-scale molecular magnets to a Kondo effect for Co and Ti. Finally, when two magnetic atoms are close to one another, their magnetic spins can interact, with complex and interesting results. We show the unexpected results of a close-spaced 2D lattice of magnetic atoms as well. I will conclude with some comments about the role of large-scale calculations for nanostructures. Some references:[4pt] [1] C-Y Lin, J-L Li, Y-H Hsieh, K-L Ou, and B. A. Jones, ``Magnetic Interaction between Surface-Engineered Rare-Earth Atomic Spins,'' Phys. Rev. X 2, 021012 (2012).[0pt] [2] R. Pushpa, J. Cruz, and B. Jones, ``Spin and exchange coupling for Ti embedded in a surface dipolar network,'' Phys. Rev. B 84, 075422 (2011).[0pt] [3] C-Y Lin and B. A. Jones, ``First-principles calculations of engineered surface spin structures,'' Phys. Rev. B 83, 014413 (2011).

  8. Phenoxido and alkoxido-bridged dinuclear dysprosium complexes showing single-molecule magnet behaviour.

    PubMed

    Zou, Lifei; Zhao, Lang; Chen, Peng; Guo, Yun-Nan; Guo, Yang; Li, Yun-Hui; Tang, Jinkui

    2012-03-14

    Two new dysprosium(iii) complexes, [Dy(2)(HL(1))(4)(CO(3))]4H(2)O (1) and [Dy(2)(L(2))(2)(NO(3))(2)(CH(3)OH)(2)]4CH(3)CN (2), have been synthesized from the Schiff-base ligands N'-((2-hydroxy-1-naphthyl)methylene)benzohydrazide (H(2)L(1)) and N'-((2-hydroxy-1-naphthyl)methylene) picolinohydrazide (H(2)L(2)). Single-crystal X-ray diffraction studies reveal that four mono-deprotonated H(2)L(1) ligands and two di-deprotonated H(2)L(2) ligands which have undergone keto-enol tautomerism coordinate to the two dysprosium centres of complexes 1 and 2, respectively. The dc magnetic properties of complexes 1 and 2 are different. The phenoxido bridges in complex 1 mediate antiferromagnetic interaction between Dy(III) ions, while ferromagnetic interaction was clearly observed in alkoxido-bridged dinuclear complex 2. Furthermore, both complexes show frequency-dependent ac magnetic susceptibilities, indicating a slow relaxation of the magnetization, typical of SMM behaviour. PMID:22278353

  9. Anomalous magnetic properties of Sr2YRuO6

    NASA Astrophysics Data System (ADS)

    Singh, Ravi P.; Tomy, C. V.

    2008-07-01

    Anomalous magnetic properties of the double perovskite ruthenate compound Sr2YRuO6 are reported here. Magnetization measurements as a function of temperature in low magnetic fields show clear evidence for two components of magnetic order ( TM132K and TM227K ) aligned opposite to each other with respect to the magnetic-field direction even though only Ru5+ moments can order magnetically in this compound. The second component of the magnetic order at TM227K results only in a magnetization reversal, and not in the negative magnetization when the magnetization is measured in the field-cooled (FC) mode. Isothermal magnetization (M-H) measurements show hysteresis with maximum coercivity (Hc) and remnant magnetization (Mr) at Ttilde 27K , corroborating the presence of the two oppositely aligned magnetic moments, each with a ferromagnetic component. The two components of magnetic ordering are further confirmed by the double peak structure in the heat-capacity measurements. These anomalous properties have significance to some of the earlier results obtained for the Cu-substituted superconducting Sr2YRu1-xCuxO6 compounds.

  10. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium.

    PubMed

    Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M

    2014-05-19

    Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of ?MT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product. PMID:24779588

  11. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  12. Mimicking the magnetic properties of rare earth elements using superatoms

    PubMed Central

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A. W.

    2015-01-01

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel magic boron counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  13. Glycoligands tuning the magnetic anisotropy of Ni(II) complexes.

    PubMed

    Charron, Galle; Bellot, Franois; Cisnetti, Federico; Pelosi, Giorgio; Rebilly, Jean-Nol; Rivire, Eric; Barra, Anne-Laure; Mallah, Talal; Policar, Clotilde

    2007-01-01

    Two organic ligands based on a sugar-scaffold derived from galactose and possessing three O-CH(2)-pyridine pendant arms at the 3-, 4-, and 5-positions of the galactopyranose that act as chelates afford mononuclear complexes when reacted with a Ni(II) salt. The magnetization behavior in the form of M=f(H/T) plots suggests the presence of appreciable magnetic anisotropy within the two complexes. The analysis of the EPR spectra performed at two different temperatures (7 and 17 K) and at three frequencies (190, 285, and 380 GHz) leads to the conclusion that the anisotropy has a high degree of axiality (E/D=0.17 for the two complexes), but with a different sign of the D parameter. The spin hamiltonian parameters D and E were reproduced for the two complexes by using calculations based on the angular overlap model (AOM). The structural difference between the two complexes responsible of the sign of the D parameters was also determined using AOM calculations. A thorough analysis of the structures showed that the structural differences in the coordination sphere of the two complexes responsible of the different D parameter sign result from the nature of the sugar scaffolds. In complex 1, the sugar scaffold imposes an intramolecular hydrogen bond with one of the atoms linked to Ni(II); this arrangement leads to a distorted coordination sphere and positive D value, while the absence of such a hydrogen bond in complex 2 leads to a less distorted environment around the Ni center and to a negative D value. PMID:17295363

  14. A new Cucysteamine complex: structure and optical properties

    SciTech Connect

    Ma, Lun; Chen, Wei; Schatte, Gabriele; Wang, Wei; Joly, Alan G.; Huang, Yining; Sammynaiken, Ramaswami; Hossu, Marius

    2014-06-07

    Here we report the structure and optical properties of a new Cucysteamine complex (CuCy) with a formula of Cu3Cl(SR)2 (R CH2CH2NH2). This CuCy has a different structure from a previous CuCy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicates that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.

  15. Tuberous Sclerosis Complex: Diagnostic Role of Magnetic Resonance Imaging

    PubMed Central

    Sehgal, Virendra N; Singh, Navjeeven; Sharma, Sonal; Rohatgi, Jolly; Oberai, Rakesh; Chatterjee, Kingshuk

    2015-01-01

    Tuberous sclerosis complex (TSC) is a well-known clinical entity, characterized by facial angio-fibroma, shagreen patch, and hypo-melanotic, and confetti-like skin lesions. An exquisite fresh case is being narrated, emphasizing its microscopic pathology. The role of magnetic resonance imaging of the brain, in particular, is highlighted to define the large variety of neurological abrasions for determining its future progression. PMID:26288435

  16. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  17. Magnetic Properties of Anorthosites: Possible Source Rocks for Planetary Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; McEnroe, S. A.

    2006-12-01

    Anorthosites, rocks composed of 90% plagioclase feldspar, are not uncommon on Earth, predominant on the Moon, and suspected units on both Mars and Mercury. Due to the minor amount of oxide minerals in most anorthosites, they have long been considered weakly-magnetic. We studied four related but distinct anorthosite units (Egersund-Ogna, Haland-Helleren, Ana-Sira and Garsaknatt) in the Rogaland Igneous Complex in Southern Norway, emplaced into Sveconorwegian basement around 930 Ma. Aeromagnetic maps of the region show moderate positive to large negative anomalies associated with the anorthosites. Measurements on 43 sites (279 samples) of susceptibility, natural remanent magnetization (NRM) and hysteresis properties provide a startling picture of the magnetic behavior of these rocks. Mean NRM values on each anorthosite range from a low of 0.6 A/m on the Egersund-Ogna body to 5.9 A/m on the Haland-Helleren, placing these rocks in similar NRM range to young basalts. Susceptibility varies widely from body to body, with a low of 4.88 x 10-4 SI on the Egersund-Ogna to 2.40 x 10-2 SI on the Haland-Helleren. All units have average Koenigsberger Ratio (Q) values greater than 1, ranging from 8 for the Garsaknatt to 61 for the Egersund-Ogna. With the exception of a few samples in the Garsaknatt, mean destructive fields for alternating field demagnetization for all bodies are greater than 40 mT. Most samples show considerable intensity remaining after thermal demagnetization to 560C and appreciable amounts above 580C. Hysteresis properties from the anorthosites show a wide range of Mr/Ms and Hcr/Hc values. Optical investigation of polished sections reveals the presence hemo-ilmenite in Ana Sira, Egersund-Ogna and Haland-Helleren anorthosites. Minor amounts of magnetite are restricted to the Garsaknatt and parts of the Haland-Helleren anorthosites. Although these four anorthosites have a wide range of magnetic properties, they all have appreciable remanent magnetization and all are capable of producing moderate to strong remanent-dominated anomalies. Because anorthosites are common on the Moon and suggested to exist on other planets, these rocks should be considered as possible sources for planetary paleomagnetism and/or magnetic anomalies.

  18. Synthesis, Characterization and properties studies of new magnetic materials

    NASA Astrophysics Data System (ADS)

    Messai, Amel; Luneau, Dominique

    2015-10-01

    We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nanosciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base.Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper has been investigated. Tetranuclear complex with a cubane like core have been synthesised with (Sciff base), with the same base and cobalt we obtains an other single magnetic complex completely different.

  19. Magnetic properties of selected substituted spinel ferrites

    NASA Astrophysics Data System (ADS)

    Sláma, Jozef; Šoka, Martin; Grusková, Anna; Dosoudil, Rastislav; Jančárik, Vladimír; Degmová, Jarmila

    2013-01-01

    Polycrystalline NiZn ferrites with the chemical formula (Ni0.3Zn0.7)1-xMexFe2O4 where Me is Cu2+ or Be2+ ion with x=0.05, 0.1 and 0.25 have been prepared by a ceramic method. Selected magnetic properties such as saturation magnetisation MS, Curie temperature TC, coercivity HC and permeability of the ferrites have been measured and discussed to compare of the substituted Li0.5-0.5y+0.5tZnyTitFe2.5-0.5y-1.5tO4 ferrites, when y=0.1, 0.2, 0.3, 0.4 and t=0.35, 0.45, 0.55. The samples have been prepared by a ceramic method and the samples Li0.5-0.5yZnyFe2.5-0.5yO4 by a chemical way. Mössbauer spectra and crystallographic parameters of selected samples have been analysed as well.

  20. Deep structure of the Mount Amram igneous complex, interpretation of magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Shirman, Boris; Rybakov, Michael; Beyth, Michael; Mushkin, Amit; Ginat, Hanan

    2015-03-01

    The Mt Amram igneous complex (AIC) represents northern tip of the Neoproterozoic Arabian Nubian Shield (ANS). For the first time the AIC deep structure was studied using the gravity, aero and ground magnetic, magnetic susceptibility and density measurements and geological data. Analysing all available data at the Amram area we concluded what only monzonite body can be reason for gravity high and coinciding reduced to pole (RTP) maximum. Geological knowledge allowed suggesting its intrusive character and compact body form. Cluster of inverse solutions (Werner deconvolution) localized this body as initial model for forward modelling. Further iterations (23/4-D forward modelling) clarified the monzonite geometry and properties; the modelling allowed also to investigate the non-uniqueness and estimate also the confident intervals for final solution. The research consists three interconnected stages. At the detailed scale, ground magnetic data suggested three magmatic blocks of few hundred meters shifted dextral about 100 m along the Zefunut fault. Estimated accuracy for geometry of the magnetic bodies is a few tens metres. At the middle scale, quantitative gravity and magnetic interpretations provide model of the monzonite body, which is an order of magnitude more than the volume of the felsic rhyolites and granite rocks. Boundary of the whole monzonite body was estimated with accuracy as a hundred meters. As a result we suggest that the parent magma for the AIC is the monzonite, similar to the model suggested for the Timna Igneous Complex 12 km north of the AIC. The model developed can be applied to evaluate the subsurface volumes of the mafic magmatic rocks in adjacent locations. At the regional scale for exposed the Sinai and Arab Saudi Precambrian crystalline shield our approach allows to understand the apparent contradiction between geological predominantly granite composition (low magnetic rocks) and magnetic data. The aeromagnetic data show number strong magnetic anomalies suggesting the presence large volume of high magnetic (mainly basic) rocks at the depth. This problem is proposed for future research.

  1. Photothermal investigation of local and depth dependent magnetic properties

    NASA Astrophysics Data System (ADS)

    Pelzl, J.; Meckenstock, R.

    2010-03-01

    To achieve a spatially resolved measurement of magnetic properties two different pho-tothermal approaches are used which rely on heat dissipated by magnetic resonance absorption or thermal modulation of the magnetic properties, respectively. The heat produced by modulated microwave absorption is detected by the classical photothermal methods such as photoacoustic effect and mirage effect. Examples comprise depth resolution of the magnetization of layered tapes and visualisation of magnetic excitations in ferrites. The second photothermal technique relies on the local modulation of magnetic properties by a thermal wave generated with an intensity modulated laser beam incident on the sample. This technique has a higher spatial resolution and sensitivity and has been used to characterize lateral magnetic properties of multilayers and spintronic media. To extend the lateral resolution of the ferromagnetic resonance detection into the nm-range techniques have been developed which are based on the detection of the modulated thermal microwave response by the thermal probe of an atomic force microscope (AFM) or by detection the thermal expansion of the magnetic sample in the course of the resonant microwave absorption with an AFM or tunnelling microscope. These thermal near field based techniques in ferromagnetic resonance have been successfully applied to image magnetic inhomogeneities around nano-structures and to measure the ferromagnetic resonance from magnetic nano-dots.

  2. Tuning Magnetic Relaxation in a Tb-Nitronyl Nitroxide Complex by Using Cocrystalline Paramagnetic Complex.

    PubMed

    Wang, Juan-Juan; Sun, Juan; Yang, Meng; Li, Li-Cun

    2015-12-01

    New 2p-4f and 2p-3d-4f compounds [Tb(hfac)3(NIT-PhNO2)2]0.5C7H16 (1) and [Ln(hfac)3(NIT-PhNO2)2]2[Cu(hfac)2(NIT-PhNO2)2] (Ln(III) = Gd 2, Tb 3; hfac = hexafluoroacetylacetonate; NIT-PhNO2 = 2-(p-nitrophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been obtained. Complex 1 consists of mononuclear trispin [Tb(hfac)3(NIT-PhNO2)2] units in which two radical ligands are ligated to the Tb(III) ion as monodentate ligands through the NO groups, while complexes 2 and 3 contain two kinds of trispin moieties, namely, [Ln(hfac)3(NIT-PhNO2)2] and [Cu(hfac)2(NIT-PhNO2)2]. In the [Cu(hfac)2(NIT-PhNO2)2] moiety, the radicals are bonded to the copper(II) ion in the axial positions via the nitroxides. For three compounds, 1D supramolecular chains are formed via the ?-? stacking interactions involving the radical ligands. Magnetic investigations show that both Tb complexes exhibit slow relaxation of magnetization at low temperature; strikingly, complex 3 displays a higher energy barrier than that of 1. It represents the first example to use the paramagnetic complex to tune magnetic relaxation of 4f-based compounds. PMID:26558481

  3. Spectral properties of superconductors with ferromagnetically ordered magnetic impurities

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Shevtsov, Oleksii; Lfwander, Tomas; Fogelstrm, Mikael

    2015-12-01

    We present a comprehensive theoretical study of thermodynamic properties of superconductors with a dilute concentration of magnetic impurities, with focus on how the properties of the superconducting host change if the magnetic moments of the impurities order ferromagnetically. Scattering off the magnetic impurities leads to the formation of a band of Yu-Shiba-Rusinov states within the superconducting energy gap that drastically influences superconductivity. In the magnetically ordered system, the magnetization displays a sudden drop as a function of the impurity density or magnetic moment amplitude. The drop occurs as the spin-polarized impurity band crosses the Fermi level and is associated with a quantum phase transition first put forward by Sakurai for the single impurity case. Taking into account that the background magnetic field created by the ordered impurity moments enters as a Zeeman shift, we find that the superconducting phase transition changes from second order to first order for high enough impurity concentrations.

  4. The Morin Anorthosite Complex, Canada: Example of a Remanence Dominated Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; Peck, W. H.

    2009-05-01

    The Morin Anorthosite Complex, in the Canadian Grenville Province, is delineated by a strongly negative aeromagnetic anomaly of 2000 nT. The 1.15 Ga anorthosite, jotunite and mangerite plutons were emplaced into metasedimentary and igneous rocks and later metamorphosed to 750C. To investigate the negative anomaly, and magnetic properties of the associated rocks, we studied samples of anorthosite, jotunite and mangerite from the Morin Complex. Measurements of density, magnetic susceptibility, NRM, and hysteresis were collected on a suite of samples. Magnetic susceptibility ranges over three orders of magnitude from 2 x 10-4 to 3 x 10-1. Jotunites and mangerites are stronger, but the anorthosites were widely distributed over the entire range. NRM values showed considerable variability, from 0.03 A/m to 13 A/m, with anorthosite providing both the lowest and highest values. Anorthosite properties are strongly controlled by location; the ~1500 km2 western lobe (which preserves igneous textures) having high NRM and susceptibility values, while the ~1000 km2 eastern lobe (which is dominated by annealed mylonites) has low NRM and susceptibility. Calculations of the Koenigsberger ratio, Q, reveal all the anorthosites have ratios greater than 0.6, indicating that remanence dominates the anomaly. Jotunite and mangerite have Q values less than 0.5, indicating induced magnetization prevails. Hysteresis properties indicate multidomain magnetite is present, albeit in very small amounts; this masks the hemo-ilmenite observable in thin sections. As young basalt has NRM values of about 4 A/m, the anorthosites possess surprisingly large magnetizations for rocks possessing ~1% opaque minerals. As shown by Irving et al. (1978) the paleomagnetic signature of Morin samples is steeply negative; with the high Q values of the anorthosite this indicates the anomaly is remanent-dominated and related to strong magnetization of hemo-ilmenite.

  5. Physicochemical properties and antioxidant activities of luteolin-phospholipid complex.

    PubMed

    Xu, Keyong; Liu, Benguo; Ma, Yuxiang; Du, Jiquan; Li, Guanglei; Gao, Han; Zhang, Yuan; Ning, Zhengxiang

    2009-01-01

    A luteolin and phospholipid complex was prepared to improve the lipophilic properties of luteolin. The physicochemical properties of the complex were analyzed by ultraviolet-visible spectrometry (UV), infrared spectrometry (IR), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The results showed that luteolin and phospholipid in the complex were joined by non-covalent-bonds and did not form a new compound. It was found that the complex was an effective scavenger of DPPH radicals, with an IC(50) value of 28.33 microg/mL. In the Rancimat antioxidant test using lard oil as substrate, the complex also showed the strong antioxidant activity. PMID:19783938

  6. Magnetic properties of the Bay of Islands ophiolite suite and implications for the magnetization of oceanic crust

    USGS Publications Warehouse

    Swift, B. Ann; Johnson, H. Paul

    1984-01-01

    Rock magnetic properties, opaque mineralogy, and degree of metamorphism were determined for 101 unoriented samples from the North Arm and Blow-Me-Down massifs of the Bay of Islands ophiolite complex, Newfoundland. The weathered and metamorphosed extrusive basalt samples have a weak, secondary magnetization arising from oxidation and exsolution of ilmenite of unknown origin. The initial magnetization of the underlying sheeted dike complex appears to have been destroyed by hydrothermal alteration soon after formation. The magnetic intensity of the gabbroic samples increases as the degree of alteration increases, with the highly altered upper metagabbros having an average intensity of 3×10−3 emu/c3. Because magnetization of the metagabbro samples is related to nonpervasive, variable alteration, these crustal units are unlikely to make a significant contribution to lineated magnetic anomalies. A compilation of our results and other studies suggests a model in which oceanic crust magnetization results from an upper extrusive basalt source layer, roughly 600 m thick, with no contribution from a deeper source layer recognizable from these Bay of Islands data.

  7. Six-coordinate lanthanide complexes: slow relaxation of magnetization in the dysprosium(III) complex.

    PubMed

    Na, Bo; Zhang, Xue-Jing; Shi, Wei; Zhang, Yi-Quan; Wang, Bing-Wu; Gao, Chen; Gao, Song; Cheng, Peng

    2014-11-24

    A series of six-coordinate lanthanide complexes {(H3O)[Ln(NA)2]?H2O}n (H2NA=5-hydroxynicotinic acid; Ln=Gd(III) (1?Gd); Tb(III) (2?Tb); Dy(III) (3?Dy); Ho(III) (4?Ho)) have been synthesized from aqueous solution and fully characterized. Slow relaxation of the magnetization was observed in 3?Dy. To suppress the quantum tunneling of the magnetization, 3?Dy diluted by diamagnetic Y(III) ions was also synthesized and magnetically studied. Interesting butterfly-like hysteresis loops and an enhanced energy barrier for the slow relaxation of magnetization were observed in diluted 3?Dy. The energy barrier (?(?)) and pre-exponential factor (?0) of the diluted 3?Dy are 75?K and 4.2110(-5) s, respectively. This work illustrates a successful way to obtain low-coordination-number lanthanide complexes by a framework approach to show single-ion-magnet-like behavior. PMID:25297951

  8. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  9. Tunable magnetic properties in ultrathin Co/garnet heterostructures

    NASA Astrophysics Data System (ADS)

    Pashkevich, M.; Stupakiewicz, A.; Kirilyuk, A.; Maziewski, A.; Stognij, A.; Novitskii, N.; Kimel, A.; Rasing, Th.

    2012-01-01

    We demonstrate how the magnetic properties of metal/dielectric Co/yttrium iron garnet heterostructures can be engineered by both changing the garnet thickness and adding an ultrathin Co cover layer. The observed magnetization reversal process in the heterostructures is explained by both cubic and perpendicular growth-induced magnetic anisotropy of the garnet films. In particular, the perpendicular magnetic anisotropy can be strongly increased for reduced thickness. A strong influence of a 2 nm Co layer on the domain structure geometry and magnetization processes has been found for 1.8 m garnet films.

  10. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction.

    PubMed

    Zverev, V I; Tishin, A M; Chernyshov, A S; Mudryk, Ya; Gschneidner, K A; Pecharsky, V K

    2014-02-12

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb. PMID:24451321

  11. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction

    SciTech Connect

    Zverev, V. I.; Tishin, A. M.; Chernyshov, A. S.; Mudryk, Ya; Gschneidner Jr., Karl A.; Pecharsky, Vitalij K.

    2014-01-21

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.

  12. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  13. Complex windmill transformation producing new purely magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lozanovski, C.; Wylleman, L.

    2011-04-01

    Minimal complex windmill transformations of G2IB(ii) spacetimes (admitting a two-dimensional Abelian group of motions of the so-called Wainwright B(ii) class) are defined and the compatibility with a purely magnetic Weyl tensor is investigated. It is shown that the transformed spacetimes cannot be perfect fluids or purely magnetic Einstein spaces. We then determine which purely magnetic perfect fluids (PMpfs) can be windmill-transformed into purely magnetic anisotropic fluids (PMafs). Assuming separation of variables, complete integration produces two, algebraically general, G2I-B(ii) PMpfs: a solution with zero 4-acceleration vector and spatial energy-density gradient, previously found by the authors, and a new solution in terms of Kummer's functions, where these vectors are aligned and non-zero. The associated windmill PMafs are rotating but non-expanding. Finally, an attempt to relate the spacetimes to each other by a simple procedure leads to a G2I-B(ii) one-parameter PMaf generalization of the previously found metric.

  14. High temperature permeameter for measuring magnetic properties

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1972-01-01

    Instrument for measuring magnetic permeability of materials undergoing heat treatment as method for monitoring stress relief and tempering is described. Procedure is based on magnetic potentiometer principle with yoke compensating coils to cancel effects of reluctance of yoke and joint gaps. Instrument is heated with specimen being heat treated.

  15. Magnetic exchange interaction in gadolinium(III) complex having aliphatic nitroxide radical TEMPO

    NASA Astrophysics Data System (ADS)

    Nakamura, Takeshi; Ishida, Takayuki

    2016-02-01

    We synthesized a new compound, [Gd(hfac)3(MeOH)(TEMPO)] (TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) with the metal/radical ratio of 1/1. This compound has an advantage in the magnetic analysis, because the exchange coupling system is described with a unique coupling parameter J, when compared to the structure and magnetic properties of the previous TEMPO and related complexes. The X-ray crystal structure analysis of [Gd(hfac)3(MeOH)(TEMPO)] revealed the N-O and Gd-O(N) bond lengths are 1.299(9) and 2.307(5) Å, respectively, and the Gd-O-N angle is 149.4(5)°. The magnetic study clarified the Gd3+-radical antiferromagnetic interaction of 2J/kB = -3.5(1) K.

  16. Dielectric and Magnetic Properties in Relaxor Magnet LuFeCoO4

    NASA Astrophysics Data System (ADS)

    Soda, Minoru; Masuda, Takatsugu

    2016-03-01

    Dielectric and magnetic properties in the relaxor magnet LuFeCoO4 having a triangular lattice are studied by permittivity, magnetization, and neutron diffraction measurements. We found that LuFeCoO4 has the nuclear diffuse scattering induced by Polar Nanoregions (PNRs) where local polarizations in nanoregions are randomly oriented. Synchronized changes in PNRs and magnetic short-range order with decreasing temperature are observed, which reveal the existence of the strong coupling between dielectricity and magnetism. The coincidence of the correlation lengths of the nuclear atoms and spins in the crystallographic a–b plane at the onset temperature of two-dimensional magnetic order is confirmed, suggesting that the magnetic order develops inside the PNRs. With further decreasing temperature, the magnetic correlation extends beyond the domain wall of the crystal cluster in contrast with another relaxor magnet BiFeO3–1/3BaTiO3.

  17. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  18. Magnetic, structural and computational studies on transition metal complexes of a neurotransmitter, histamine

    NASA Astrophysics Data System (ADS)

    Kaştaş, Gökhan; Paşaoğlu, Hümeyra; Karabulut, Bünyamin

    2011-08-01

    In this study, the transition metal complexes of histamine (His) prepared with oxalate (Ox), that is, [Cu(His)(Ox)(H 2O)], [Zn(His)(Ox)(H 2O)] (or [Zn(His)(Ox)]·(H 2O)), [Cd(His)(Ox)(H 2O) 2] and [Co(His)(Ox)(H 2O)], are investigated experimentally and computationally as part of ongoing studies on the mode of complexation, the tautomeric form and non-covalent interactions of histamine in supramolecular structures. The structural properties of prepared complexes are experimentally studied by X-ray diffraction (XRD) technique and Fourier transform infrared (FT-IR) spectroscopy and computationally by density functional theory (DFT). The magnetic properties of the complexes are investigated by electron paramagnetic resonance (EPR) technique. The [Cu(His)(Ox)(H 2O)] complex has a supramolecular structure constructed by two different non-covalent interactions as hydrogen bond and C-H⋯π interactions. EPR studies on [Cu(His)(Ox)(H 2O)], Cu 2+-doped [Zn(His)(Ox)(H 2O)] and [Cd(His)(Ox)(H 2O) 2] complexes show that the paramagnetic centers have axially symmetric g values. It is also found that the ground state of the unpaired electrons in the complexes is dominantly d and unpaired electrons' life time is spent over this orbital.

  19. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    SciTech Connect

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH){sub max} of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  20. Electronic and structural properties of complex oxides

    NASA Astrophysics Data System (ADS)

    Christie, Diane Marie

    This thesis focuses on oxides whose crystalline forms are isomorphic with silica (SiO2) in order to understand their electronic and structural properties. Silica is one of the most widely investigated oxides due to its important electronic, geophysical arid chemical properties. As many as 40 crystalline polymorphs along with amorphous and liquid forms have been described and studied in the literature. The alpha-quartz structure of silica exhibits interesting mechanical and pressure induced behavior. For example, when it is subjected to pressure, it will undergo a slow amorphization. There are many materials that are isostructural with SiO2. Isostructural materials should have similar properties and exhibit similar characteristics. Here we examine three materials: AlPO4, GaAsO4 and GeO 2. AlPO4 has attracted considerable attention owing to the potential technological importance of its high pressure behavior as a memory glass. GaAsO4 is another III-V analog compound, but shows no evidence of pressure induced amorphization as quartz does. GeO2, like silica, undergoes pressure induced amorphization in the alpha-quartz structure, but unlike silica, occurs only in two stable polymorphs. The objective of this thesis is to present a comprehensive picture of oxides that are isostructural with silica. We have computed a variety of properties of each material: (1) Equation of state in the form of volume versus pressure, (2) Structural properties as a function of pressure such as lattice constants and the internal coordinates describing the positions of constituent atoms within the cell, (3) Elastic properties such as the bulk modulus, (4) Electronic properties such as density of states, band structure, and charge density. Computations were performed using a quantum mechanical method based on "soft" ab initio pseudopotentials constructed within a local density approximation. The pseudopotentials required can be extracted from atomic structure calculations. A key element of the pseudopotential includes the elimination of chemically inert states, i.e., the core states. The resulting pseudopotential is weak and the wavefunctions can be described by simple basis sets such as plane waves. This approach is attractive for its reliability and its high predictive power.

  1. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Jeffrey Scott Leib

    2003-05-31

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H{sub c} in cases 1, 3, and 5, and the uniaxial character of the Gd{sub 5}(Si{sub 2}Ge{sub 2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M{sub s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from theory and calculation, and provided such information in a matter of minutes. In fact, typical characterization in each of these studies was far more complete and reliable with domain imagery to back it up--especially the single crystal and applied field pictures. In these simple cases, it appears that domain imagery may be close to standing alone in magnetic characterization. The surprises in the 10 nm CoFeHfO film, the complexity seen in the polycrystalline Gd-Si-Ge sample and the broad range predictions of the K{sub 1} of the same reinforce the unreliability of making concrete statements based purely on domain imagery of any type, but it may be possible to create standards similar to the types used in optical microscopy for metallography in these complex cases.

  2. Synthesis, crystal structure and magnetic properties of a novel heterobimetallic rhenium(IV)-dysprosium(III) chain.

    PubMed

    Pejo, Carolina; Guedes, Guilherme P; Novak, Miguel A; Speziali, Nivaldo L; Chiozzone, Ral; Julve, Miguel; Lloret, Francesc; Vaz, Maria G F; Gonzlez, Ricardo

    2015-06-01

    The use of the mononuclear rhenium(IV) precursor [ReBr5 (H2 pydc)](-) (H2 pydc=3,5-pyridinedicarboxylic acid) as a metalloligand towards dysprosium(III) afforded the first heterobimetallic Re(IV) -Dy(III) complex. Crystal structures and static and dynamic magnetic properties of both rhenium-containing species are reported herein. The 5d-4f compound shows an extended 1D structure and the AC magnetic measurements reveal frequency dependence at low temperature suggesting slow relaxation of the magnetization. PMID:25916407

  3. Can we predict the magnetic properties of PMS stars from their H-R diagram location?

    NASA Astrophysics Data System (ADS)

    Gregory, S. G.; Donati, J.-F.; Morin, J.; Hussain, G. A. J.; Mayne, N. J.; Hillenbrand, L. A.; Jardine, M.

    2014-08-01

    Spectropolarimetric observations combined with tomographic imaging techniques have revealed that all pre-main sequence (PMS) stars host multipolar magnetic fields, ranging from strong and globally axisymmetric with >~kilo-Gauss dipole components, to complex and non-axisymmetric with weak dipole components (<~0.1 kG). Many host dominantly octupolar large-scale fields. We argue that the large-scale magnetic properties of a PMS star are related to its location in the Hertzsprung-Russell diagram. This conference paper is a synopsis of Gregory et al. (2012), updated to include the latest results from magnetic mapping studies of PMS stars.

  4. Dysprosium complexes and their micelles as potential bimodal agents for magnetic resonance and optical imaging.

    PubMed

    Debroye, Elke; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N; Parac-Vogt, Tatjana N

    2013-11-18

    Six diethylene triamine pentaacetic acid (DTPA) bisamide derivatives functionalized with p-toluidine (DTPA-BTolA), 6-aminocoumarin (DTPA-BCoumA), 1-naphthalene methylamine (DTPA-BNaphA), 4-ethynylaniline (DTPA-BEthA), p-dodecylaniline (DTPA-BC12PheA) and p-tetradecyl-aniline (DTPA-BC14PheA) were coordinated to dysprosium(III) and the magnetic and optical properties of the complexes were examined in detail. The complexes consisting of amphiphilic ligands (DTPA-BC12PheA and DTPA-BC14PheA) were further assembled into mixed micelles. Upon excitation into the ligand levels, the complexes display characteristic Dy(III) emission with quantum yields of 0.3-0.5% despite the presence of one water molecule in the first coordination sphere. A deeper insight into the energy-transfer processes has been obtained by studying the photophysical properties of the corresponding Gd(III) complexes. Since the luminescence quenching effect is decreased by the intervention of non-ionic surfactant, quantum yields up to 1% are obtained for the micelles. The transverse relaxivity r2 per Dy(III) ion at 500 MHz and 310 K reaches a maximum value of 27.4 s(-1) mM(-1) for Dy-DTPA-BEthA and 36.0 s(-1) mM(-1) for the Dy-DTPA-BC12PheA assemblies compared with a value of 0.8 s(-1) mM(-1) for Dy-DTPA. The efficient T2 relaxation, especially at high magnetic field strengths, is sustained by the high magnetic moment of the dysprosium ion, the coordination of water molecules with slow water exchange kinetics and long rotational correlation times. These findings open the way to the further development of bimodal optical and magnetic resonance imaging probes starting from single lanthanide compounds. PMID:24123216

  5. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4?-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (?n) and figure of merit of optical properties (Q?=??n/?, where ? is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  6. High-Field ESR and Magnetization Study of a Novel Macrocyclic Chelate Trinuclear Ni(II) Complex

    NASA Astrophysics Data System (ADS)

    Krupskaya, Y.; Parameswaran, A.; Alfonsov, A.; Klingeler, R.; Kataev, V.; Beyer, N.; Lach, J.; Gressenbuch, M.; Kersting, B.; Bchner, B.

    2010-04-01

    We have investigated magnetic properties of a novel macrocyclic chelate Ni(II) complex [Ni3(L)(OAc)2], by means of the static magnetization M and high field frequency tunable electron spin resonance (HF-ESR). Magnetic field B dependencies of M reveal the magnetic ground state with a total spin S ^{mathit{tot}}0=1 and a strong antiferromagnetic coupling between three Ni(II) ions. HF-ESR measurements at frequencies ?=80-350 GHz and B up to 15 T yield a magnetic anisotropy gap of the order of 60 GHz (2.9 K) and a g-factor of 2.2. In addition, the modelling reveals a positive single ion anisotropy ( D>0) corresponding to an easy plane situation for the Ni3 complex.

  7. Electronic and magnetic properties of Am and Cm

    SciTech Connect

    Edelstein, N.

    1985-02-01

    A review of the present status of the analyses of the optical spectra of Am and Cm in various oxidation states is given. From these analyses, the magnetic properties of the ground states of these ions can be determined. These predicted values are compared with the various magnetic measurements available.

  8. Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway

    PubMed Central

    Nishida, Keiji; Silver, Pamela A.

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply. PMID:22389629

  9. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

    PubMed

    Nishida, Keiji; Silver, Pamela A

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply. PMID:22389629

  10. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  11. Magnetic properties of Ni substituted Y-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-01

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba2Co2-xNixFe12O22 (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mssbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (Ms) decreases with Ni contents. Ni2+, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co2+ having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba2Co1.5Ni0.5Fe12O22 shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature TC is increased with Ni contents, while TS is decreased with Ni. The Mssbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3bVI, 6cIV*, 6cVI, 18hVI, 6cIV, and 3aIV sites at below TC. From Mssbauer measurements, we confirmed the spin state of Fe ion to be Fe3+ and obtained the isomer shift (?), magnetic hyperfine field (Hhf), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  12. Investigation on microstructure and magnetic properties of Sm2Co17 magnets aged at high temperature

    NASA Astrophysics Data System (ADS)

    Feng, Haibo; Chen, Hongsheng; Guo, Zhaohui; Pan, Wei; Zhu, Minggang; Li, Wei

    2011-04-01

    The Sm2Co17 magnet is the most promising candidate for high temperature applications. The microstructure evolutions and losses in the magnetic properties of the magnet in high temperature aging status have been investigated. The Sm(CobalFe0.22Cu0.068Zr0.025)7.75 magnets were prepared using the conventional powder sintering method. The magnet samples were isothermally aged at 500C, 600 C, and 700 C for 72 h, respectively. The magnetic properties and the demagnetization curve were kept invariable for the magnet samples aged at 500 C. The coercivity Hcj of the magnet samples decreased with increasing aging temperature. The Hcj decreased from 29.2 kOe for the original status samples to 10.8 kOe for the samples aged at 700 C. The cell structure in the magnet is not destroyed after aging at 700 C for 72 h. The deterioration of the magnetic properties and the demagnetization-curve squareness was caused by an increasing lattice mismatch between the 2:17R cell phase and the cell-boundary 1:5H phase, and by an increasing cell diameter for the magnet sample aged at a high temperature.

  13. Magnetic properties of 1:2 mixed cobalt(II) salicylaldehyde Schiff-base complexes with pyridine ligands carrying high-spin carbenes (Scar = 2/2, 4/2, 6/2, and 8/2) in dilute frozen solutions: role of organic spin in heterospin single-molecule magnets.

    PubMed

    Karasawa, Satoru; Nakano, Kimihiro; Yoshihara, Daisuke; Yamamoto, Noriko; Tanokashira, Jun-ichi; Yoshizaki, Takahito; Inagaki, Yuji; Koga, Noboru

    2014-06-01

    The 1:2 mixtures of Co(p-tolsal)2, p-tolsal = N-p-tolylsalicylideniminato, and diazo-pyridine ligands, DXpy; X = 1, 2, 3l, 3b, and 4, in MTHF solutions were irradiated at cryogenic temperature to form the corresponding 1:2 cobalt-carbene complexes Co(p-tolsal)2(CXpy)2, with Stotal = 5/2, 9/2, 13/2, 13/2, and 17/2, respectively. The resulting Co(p-tolsal)2(CXpy)2, X = 1, 2, 3l, 3b, and 4, showed magnetic behaviors characteristic of heterospin single-molecule magnets with effective activation barriers, Ueff/kB, of 40, 65, 73, 72, and 74 K, for reorientation of the magnetic moment and temperature-dependent hysteresis loops with a coercive force, Hc, of ?0, 6.2, 10, 6.5, and 9.0 kOe at 1.9 K, respectively. The relaxation times, ?Q, due to a quantum tunneling of magnetization (QTM) were estimated to be 1.6 s for Co(p-tolsal)2(C1py)2, ?2.0 10(3) s for Co(p-tolsal)2(C2py)2, and >10(5) s for Co(p-tolsal)2(CXpy)2; X = 3b, 3l, and 4. In heterospin complexes, organic spins, carbenes interacted with the cobalt ion to suppress the QTM pathway, and the ?Q value increased with increasing the Stotal values. PMID:24816331

  14. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    NASA Astrophysics Data System (ADS)

    Antropov, V. P.; Antonov, V. N.

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  15. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    SciTech Connect

    Antropov, Vladimir P; Antonov, Victor N

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1−xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  16. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our dissertation with a game theory model on social networks that tracks the dynamical evolution of a group of interacting agents such as diplomats or political lobbyists seeking to rise to a position of influence, by balancing competing interests.

  17. Complex conductivity of UTX compounds in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, Ross D; Zapf, Vivien; Altarawneh, M M; Lacerda, A; Alsmadi, A M; Alyones, S; Chang, S; Adak, S; Kothapalli, K; Nakotte, H

    2009-01-01

    We have performed rf-skin depth (complex-conductivity) and magnetoresistance measurements of anti ferromagnetic UTX compounds (T=Ni and X=Al, Ga, Ge) in applied magnetic fields up to 60 T applied parallel to the easy directions. The rf penetration depth was measured by coupling the sample to the inductive element of a resonant tank circuit and then, measuring the shifts in the resonant frequency {Delta}f of the circuit. Shifts in the resonant frequency {Delta}f are known to be proportional to the skin depth of the sample and we find a direct correspondence between the features in {Delta}f and magnetoresistance. Several first-order metamagnetic transitions, which are accompanied by a drastic change in {Delta}f, were observed in these compounds. In general, the complex-conductivity results are consistent with magnetoresistance data.

  18. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  19. Complex studies of properties of nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.; Svezhentsova, K. V.; Shmyryeva, O. M.

    2006-08-01

    Nanocrystalline silicon layers ( 3``35nm ) have been formed upon single-crystal silicon substrates of very large area (100 cm2), multicrystalline silicon substrates and metallurgical silicon substrates by stain etching. We studied optical and structural properties of nanocrystalline silicon by photoluminescence, reflection, scanning tunnel microscopy, scanning electron microscopy, Auger electronic spectroscopy and SIMS methods. Researches of properties of nc-Si, received by a method of chemical processing, have confirmed an opportunity of creation of this multifunctional material with stable characteristics. The authors have observed the sensors systems with use of nanocrystalline silicon as a sensitive layer, which properties depend on thickness of a received layer and are controlled by parameters of technological process. On an example of the photoluminescent sensor with nc-Si layer it is shown, that such sensor can be successfully used for definition of small concentrations of toxins (pesticides phosalone 10 -8-10 -9 mol/l ), and also for specific biological pollutant, such as protein components, polysaccharides, cells used during biotechnological synthesis.

  20. Climate control of rock magnetic properties of cave sediments

    NASA Astrophysics Data System (ADS)

    Panaiotu, Cristian George; Roban, Relu

    2013-04-01

    Rock magnetic parameters of sediments reflect palaeoenvironmental and paleoclimatic conditions during deposition in the marine and in the continental realm. Cyclical changes in the magnetic mineral assemblages occurring at the orbital periodicities involved in the standard Milankovitch theory have been observed in numerous sedimentary records confirming the relationship between rock magnetism and past global change. In this respect cave sediments were longtime neglected, but in the last decade several studies about magnetic properties of cave sediments have been published. These studies have shown that the magnetic susceptibility data of cave sediments reflect both long- and short-term climatic oscillations. Magnetic susceptibility variations are attributed to changes in climate-controlled pedogenesis and the production of low coercivity magnetic mineral phases, magnetite and maghemite, outside the cave. The soils are then washed, blown or tracked into the cave where they accumulate, creating the changes observed in rock magnetic data. We present several studies of rockmagnetism in cave sediments from the Apuseni and South Carpathians Mountains (Romania). In each cave we used various rockmagnetic methods (variation of magnetic susceptibility with fields, frequency and temperature, anisotropy of magnetic susceptibility, hysteresis properties) and sedimentologic (granulometry, calcimetry, LOI, geochemistry) methods to characterized the studied deposits. In general the sections are relative short both in length (2 to 9 m) and time and the source area of sediments is highly variable, which make difficult the interpretation of magnetic signal in terms of climate. The best results can be obtained from fine sediments. When several magnetic parameters from several caves are plotted together a clear trend can be observed, which can be interpreted in terms of paleoclimate. Low magnetic susceptibility and low frequency dependence magnitudes indicate times of cooler/drier climate resulting from reduced pedogenesis, while warmer/wetter times yield higher pedogenetic rates and thus higher values for the magnetic susceptibility and frequency dependence.

  1. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Liangruksa, Monrudee; Ganguly, Ranjan; Puri, Ishwar K.

    2010-11-01

    Magnetic fluid hyperthermia (MFH) is a noninvasive treatment that destroys cancer cells by heating a ferrofluid-impregnated malignant tissue with an ac magnetic field while causing minimal damage to the surrounding healthy tissue. The strength of the magnetic field must be sufficient to induce hyperthermia but it is also limited by the human ability to safely withstand it. The ferrofluid material used for hyperthermia should be one that is readily produced and is nontoxic while providing sufficient heating. We examine six materials that have been considered as candidates for MFH use. Examining the heating produced by nanoparticles of these materials, barium-ferrite and cobalt-ferrite are unable to produce sufficient MFH heating, that from iron-cobalt occurs at a far too rapid rate to be safe, while fcc iron-platinum, magnetite, and maghemite are all capable of producing stable controlled heating. We simulate the heating of ferrofluid-loaded tumors containing nanoparticles of the latter three materials to determine their effects on tumor tissue. These materials are viable MFH candidates since they can produce significant heating at the tumor center yet maintain the surrounding healthy tissue interface at a relatively safe temperature.

  2. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kdel?k, Jozef; Bury, Peter; Hardo?, tefan; Kop?ansk, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  3. One-, Two-, and Three-Dimensional Heterospin Complexes Consisting of 4-(N-tert-Butyloxylamino)pyridine (4NOpy), Dicyanamide Ion (DCA), and 3d Metal Ions: Crystal Structures and Magnetic Properties of [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M = Mn, Co, Ni, Cu, Zn).

    PubMed

    Ogawa, Hiraku; Mori, Koya; Murashima, Kensuke; Karasawa, Satoru; Koga, Noboru

    2016-01-19

    Solutions of 3d metal ion salts, M(NO3)2, 4-(N-tert-butyloxylamino)pyridine (4NOpy), and dicyanamide (DCA) in CH3CN were mixed to afford single crystals of the polymeric complexes [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M(II) = Mn (1), Co (2), Ni (3), Cu (4a and 4b), Zn (5)). X-ray crystallography revealed that the crystal structures are a three-dimensional (3-D) network for 1, 2-D networks for 2, 3, 4a, and 5, and a 1-D chain for 4b. Crystals of 2, 3, 4a, and 5 contained CH3CN molecules as crystal solvents, which were readily desorbed in the ambient atmosphere. After desorption of the CH3CN molecules, the crystal structures of 2 and 3 were confirmed to be slightly shrunk without destruction of the crystal lattice. Crystals of 2, 3, 4a, and 5 after desorption of crystal solvents were used for investigations of the magnetic properties. Complex 1 showed antiferromagnetic interactions to form a ferrimagnetic chain and exhibited the magnetic behavior of a 2-D (or 3-D) spin-canted antiferromagnet with TN = 12 K. Complex 2 containing anisotropic Co(II) ions also showed the behavior of a 1-D (or 2-D) spin-canted antiferromagnet with TN = 6 K. In 3, 4a, and 4b, the aminoxyl of 4NOpy ferromagnetically interacted with the metal ion with coupling constants of JM-NO/kB = 45, 45, and 43 K, respectively. In 5, the magnetic couplings between the aminoxyls in 4NOpy through the diamagnetic Zn(II) ion were weakly antiferromagntic (JNO-NO = -1.2 K). DCA might be a weak antiferromagnetic connector for the metal chains. PMID:26705111

  4. Magnetic and microstructure properties of iron-rare earth-boron magnets

    SciTech Connect

    Tao, Y.F.

    1986-01-01

    The new generation of cobalt-free Fe-Nd-B permanent magnets have excellent hard magnetic properties attributed to a tetragonal Fe/sub 14/Nd/sub 2/B phase that has a high anisotropy and a high magnetic moment. The purpose of this work was to study the magnetic and microstructure properties of the iron-rare earth-boron based systems. The magnets were mostly made from heat-treated melt-spun samples. The addition of Co and Tb (Dy) in the Fe-Nd-B compounds enhances the relatively low Curie temperature and the coercivity, respectively. These outstanding hard magnetic properties find wide applications in industry. Partial substitution of boron by other metalloids (Si, C, P) leads to a substantial decrease in properties of hard magnetic materials and to a substantial decrease in Curie temperature. The spin-reorientation temperature in Fe-Nd-B alloys was found to drop drastically with partial substitution of Fe by Ni, Mn and B by C, Si. The origin of high coercivity was examined by correlating the hard magnetic properties with the microstructure. The high coercivities can be explained by domain wall pinning at grain boundaries.

  5. Magnetic properties of ErN films

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Ruck, B. J.; Preston, A. R. H.; Granville, S.; Williams, G. V. M.; Trodahl, H. J.

    2010-07-01

    We report a magnetization study of stoichiometric ErN nanocrystalline films grown on Si and protected by a GaN passivating layer. According to the temperature dependence of the resistivity the films are heavily doped semiconductors. Above 100 K the magnetization data fit well to a Curie-Weiss behavior with a moment expected within the free-ion ErJ={15}/{2} multiplet. Below 50 K the Curie-Weiss plot steepens to an effective moment corresponding to that in the crystal-field determined quartet ground state, and develops a clear paramagnetic Curie-Weiss temperature of about 4.5 K. Zero-field- and field-cooled magnetization curves and the AC susceptibility firmly establish a ferromagnetic ground state within that multiplet below a Curie temperature of 6.30.7 K. Due to the (1 1 1) texture of the film the comparison between the magnetization behavior, when the field is applied parallel and perpendicular to the film plane, gives new information about the magnetic structure. An arrangement of the moments according to the model derived from neutron diffraction for bulk HoN is strongly suggested.

  6. Magnetic properties of MoS2: Existence of ferromagnetism

    NASA Astrophysics Data System (ADS)

    Tongay, Sefaattin; Varnoosfaderani, Sima S.; Appleton, Bill R.; Wu, Junqiao; Hebard, Arthur F.

    2012-09-01

    We report on the magnetic properties of MoS2 measured from room temperature down to 10 K and magnetic fields up to 5 T. We find that single crystals of MoS2 display ferromagnetism superimposed onto large temperature-dependent diamagnetism and have observed that ferromagnetism persists from 10 K up to room temperature. We attribute the existence of ferromagnetism partly to the presence of zigzag edges in the magnetic ground state at the grain boundaries. Since the magnetic measurements are relatively insensitive to the interlayer coupling, these results are expected to be valid in the single layer limit.

  7. Magnetic response of baryon properties in a Skyrme model

    NASA Astrophysics Data System (ADS)

    He, Bing-Ran

    2015-12-01

    An axially symmetric ansatz is proposed to investigate the properties of a baryon in a uniform magnetic field. The baryon number is shown to be conserved, while the baryon shape is stretched along the magnetic field. It is found that with increasing magnetic field strength, the static mass of the baryon first decreases and then increases, while the size of the baryon first increases and then decreases. Finally, in the core part of the magnetar, the equation of state strongly depends on the magnetic field, which modifies the mass limit of the magnetar.

  8. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties.

    PubMed

    Wu, Wenbo; Tang, Runli; Li, Qianqian; Li, Zhen

    2015-06-21

    As one kind of important functional material, those with advanced optical, electrical and magnetic characteristics have attracted increasing attention due to their essential and irreplaceable role in the daily life of humans. In particular, optical, electrical and magnetic hyperbranched polymers (HBPs) exhibit some unique properties, partially derived from their highly branched topological structures. This review summarizes the recent progress in the field of functional HBPs and their application in optics, electronics and magnetics, including light-emitting polymers, nonlinear optical materials, chemosensors, solar cells, magnetic materials, etc., and also gives some outlooks for further exploration in this field at the end of this paper. PMID:25170592

  9. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  10. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  11. Characterizing the Properties of Coronal Magnetic Null Points

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  12. Magnetic properties of epitaxial CrN films

    SciTech Connect

    Ney, A.; Rajaram, R.; Parkin, S. S. P.; Kammermeier, T.; Dhar, S.

    2006-09-11

    The authors have investigated the structural and magnetic properties of CrN films grown on MgO(001) and sapphire(0001) by rf-plasma-assisted molecular beam epitaxy. CrN/MgO(001) exhibits a better epitaxial quality than CrN/sapphire(0001). The CrN/MgO film shows clear paramagnetic behavior at low temperatures, whereas CrN/sapphire exhibits a ferromagneticlike response with an order temperature above room temperature which resembles the magnetic behavior found in Cr-doped dilute magnetic semiconductors. Keeping in mind that bulk CrN exhibits antiferromagnetic behavior, the dramatically different magnetic behaviors found in epitaxial CrN films grown on MgO and sapphire demonstrate the importance of epitaxial constraints in determining their magnetic properties.

  13. Defective graphene and nanoribbons: electronic, magnetic and structural properties

    NASA Astrophysics Data System (ADS)

    Guerra, Thiago; Azevedo, Sérgio; Machado, Marcelo

    2016-03-01

    We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0 μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

  14. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Llera, Mara; Codnia, Jorge; Jorge, Guillermo A.

    2015-06-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid-solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator.

  15. New pyridine-2,3,5,6-tetracarboxylato (H?pdtc) complexes: Synthesis, crystal structures and magnetic properties of K?[Mn(H?O)(pdtc)]3H?O 1, Na?[M?(H?O)?(pdtc)?]6H?O (M=Mn 2, Co 3)

    SciTech Connect

    Zheng, Yue-Qing; Zhu, Hong-Lin; Lin, Jian-Li; Xu, Wei; Hu, Fang-Hong

    2013-05-01

    Three new pyridine-2,3,5,6-tetracarboxylato (H?pdtc) complexes K?[Mn(H?O)(pdtc)]3H?O 1, Na?[M?(H?O)?(pdtc)?]6H?O (M=Mn 2, Co 3) were obtained and characterized by single-crystal X-ray diffraction methods and magnetic measurements. The characteristic building blocks of 13 are the pdtc bridged stair-like chains ?([M(H?O)](pdtc){sub 3/3})?, which results from the six-coordinated transition metal atoms bridged by pdtc?? ligands. The infinite chains in 1 are assembled by hydrogen bonds into 2D supramolecular networks, which are held together by (48) topological K?H?O networks to complete 3D architecture. While the stair-like chains in 2 and 3 are interconnected by trans-[M(H?O)?]? moieties to 2D polymeric layers, which are bridged by dimeric [Na?(?-H?O)?(H?O)?]? moieties to build up 3D framework. The magnetic properties of 13 were analyzed on the basis of (i) linear trinuclear M? models and (ii) the free Mn? and Co? ions with the zero-field splitting effect and spinorbit coupling effect, respectively. - Graphic abstract: Synopsis. The characteristic building blocks and magnetic model of K?[Mn(H?O)(pdtc)]3H?O 1 and Na?[M?(H?O)?(pdtc)?]6H?O (M=Mn 2, Co 3). Highlights: The characteristic building blocks of 13 are the pdtc bridged stair-like chains. The compound 2 and 3 are interlinked by trans-[M(H?O)?]? moieties to 2D layers. The magnetic behavior of 1 was analyzed with zero-field splitting effects. The magnetic behaviors were modulated with linear trinuclear model for 2 and 3.

  16. Complex magnetic couplings in Co3TeO6

    NASA Astrophysics Data System (ADS)

    Wang, Chin-Wei; Lee, Chi-Hung; Li, Chi-Yen; Wu, Chun-Ming; Li, Wen-Hsien; Chou, Chih-Chieh; Yang, Hung-Duen; Lynn, Jeffrey W.; Huang, Qingzhen; Harris, A. Brooks; Berger, Helmuth

    2013-11-01

    We report powder and single-crystal neutron diffraction measurements, combined with x-ray powder diffraction data, to unravel the complex magnetic phase diagram and exchange coupling in Co3TeO6. The magnetic structures of the various phases differ markedly from those proposed by Ivanov [Mater. Res. Bull.MRBUAC0025-540810.1016/j.materresbull.2011.10.003 47, 63 (2012)] on the basis of only powder diffraction data. The dominant exchange interactions are identified by considering the geometrical arrangement of severely distorted CoO6 octahedra and CoO4 tetrahedra, which naturally divide into two different types of layers, one of which consists of zigzag chains. These zigzag chains are the first to develop magnetic order at TM1 = 26 K, which is incommensurate in nature. The other separate layer of Co spins develops antiferromagnetic order of ?4 symmetry at zero wave vector at TM2 = 19.5 K. Our results are consistent with the previous findings of a spontaneous polarization below TM3 = 18 K. Our neutron powder diffraction data indicate that the increase in the single-crystal (600) Bragg peak is due to a relief of extinction rather than to magnetic effects associated with the observed anomalous variation in the incommensurate wave vector at TM4 = 16 K. The commensurate order parameter is shown to have a small dependence on the applied electric field, whereas no such effect is found for the incommensurate ordering. Below TM3, the thermal expansion is negative, and it also exhibits anomalies at TM2 and TM4. A symmetry analysis and comprehensive phase diagram are given.

  17. Metastable epitaxial magnets: A study of growth and magnetic properties

    NASA Astrophysics Data System (ADS)

    Wu, Stella Zhong

    1997-11-01

    Recent advancement in the information storage industry is demanding more fundamental understanding of magnetic systems, especially the magnetic thin films, surfaces, and interfaces. In this work, we were focusing on ultrathin ferromagnetic thin films of Ni on Cu(100), Cu(110) and Cu(111) single crystal substrates, and FeNi and CoNi binary alloy films on Cu(100) with varying atomic concentration. The growth of these films by molecular beam epitaxy was monitored using a number of experimental techniques. A pseudomorphic layer-by-layer growth was achieved which resulted in an fcc metastable crystalline structure with a ferromagnetic phase. The magnetic anisotropy behavior of these thin films was monitored using surface magneto-optic Kerr effect magnetometer at both polar and longitudinal geometries, and various spin reorientation transitions were found. The measurements of Curie temperature as a variation of film thickness as well as atomic concentration resulted in the proposal of a finite-size scaling law. By using this scaling law, the bulk Curie temperature for these metastable fcc binary alloys can be extrapolated, showing that Fe atoms exist in a low-spin ferromagnetic phase. In the Ni films, a dimensionality crossover from bulk to a 2-dimensional system at a few monolayer thickness was established. By alloying, we have been able to tune the electron occupation number in the 3d band. Combined with the 3d electronic band structure information we have gained by using ultraviolet photoemission spectroscopy study of these systems at normal emission, a conclusion of continuous band filling in CoNi alloy system was drawn. However, FeNi films show a different behavior at a certain composition. The recent collaboration with synchrotron radiation facility has enabled us to quantitatively characterize the spin moment and orbital moment from each element. An x-ray magnetic circular dichroism (XMCD) study was performed on CoNi alloy system, and resulted in the conclusion of stable local elemental moments throughout the whole compositional range. The experiment also confirmed the nature of recently proposed magneto-optical 'sum rules' in XMCD spectral analysis.

  18. /sup 13/C nuclear magnetic resonance study of the complexation of calcium by taurine

    SciTech Connect

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    /sup 13/C Nuclear magnetic resonance chemical shifts, /sup 1/J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-(1, 2 /sup 13/C) and a taurine-(1 /sup 13/C) and taurine-(2 /sup 13/C) mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their /sup 13/C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex.

  19. Magnetic and Transport Properties of Mn-ion implanted Si

    NASA Astrophysics Data System (ADS)

    Preisler, V.; Ogawa, M.; Han, X.; Wang, K. L.

    2010-01-01

    We investigate the magnetic and transport properties of Mn-ion implanted Si. Both temperature dependent and field dependent measurements of the samples using a SQUID magnometer reveal ferromagnetic properties at room temperature. Magnetotransport measurements show a large positive magnetoresistance up to 4.5 T with no signs of saturation.

  20. Vacuum properties of sintered SmCo/sub 5/ magnets

    SciTech Connect

    Warren, R.W.; DePaula, R.F.; Hansborough, L.D.

    1981-12-01

    There are many desirable applications of powerful, rare-earth permanent magnets made of sintered SmCo/sub 5/ material within vacuum systems. One application is the use of large numbers of SmCo/sub 5/ magnets to provide the undulating magnetic field in a free-electron-laser wiggler structure. Tests were conducted at Los Alamos to determine the suitability of SmCo/sub 5/ magnets in a vacuum environment of approx. 10/sup -6/ torr. The vacuum performances of the wiggler system, with and without the SmCo/sub 5/ magnets (having approx. 11% of the total surface area) installed, were essentially identical. These tests indicate that SmCo/sub 5/ magnets have good vacuum properties and are suitable for use in many vacuum systems.

  1. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    NASA Astrophysics Data System (ADS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb 3Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb 3Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field ( B ?Bz/ ?z) of 4500 T 2/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb 3Sn layer and its large diameter formed on Nb-barrier component in Nb 3Sn wires.

  2. PREDICTION OF THERMODYNAMIC PROPERTIES OF COMPLEX FLUIDS

    SciTech Connect

    Marc Donohue

    2006-01-05

    ABSTRACT The goal of this research has been to generalize Density Functional Theory (DFT) for complex molecules, i.e. molecules whose size, shape, and interaction energies cause them to show significant deviations from mean-field behavior. We considered free energy functionals and minimized them for systems with different geometries and dimensionalities including confined fluids (such as molecular layers on surfaces and molecules in nano-scale pores), systems with directional interactions and order-disorder transitions, amphiphilic dimers, block copolymers, and self-assembled nano-structures. The results of this procedure include equations of equilibrium for these systems and the development of computational tools for predicting phase transitions and self-assembly in complex fluids. DFT was developed for confined fluids. A new phenomenon, surface compression of confined fluids, was predicted theoretically and confirmed by existing experimental data and by simulations. The strong attraction to a surface causes adsorbate molecules to attain much higher densities than that of a normal liquid. Under these conditions, adsorbate molecules are so compressed that they repel each other. This phenomenon is discussed in terms of experimental data, results of Monte Carlo simulations, and theoretical models. Lattice version of DFT was developed for modeling phase transitions in adsorbed phase including wetting, capillary condensation, and ordering. Phase behavior of amphiphilic dimers on surfaces and in solutions was modeled using lattice DFT and Monte Carlo simulations. This study resulted in predictive models for adsorption isotherms and for local density distributions in solutions. We have observed a wide variety of phase behavior for amphiphilic dimers, including formation of lamellae and micelles. Block copolymers were modeled in terms of configurational probabilities and in the approximation of random mixing entropy. Probabilities of different orientations for the segments were considered as order parameters and the free energy was written as a functional of these parameters. Imposing boundary conditions allowed us to apply this approach to confined fluids. Equilibrium self-assembly in fluids was studied in the framework of the lattice density functional theory (DFT). In particular, DFT was used to model the phase behavior of anisotropic monomers. Though anisotropic monomers are a highly idealized model system, the analysis presented here demonstrates a formalism that can be used to describe a wide variety of phase transitions, including processes referred to as self-assembly. In DFT, the free energy is represented as a functional of order parameters. Minimization of this functional allows modeling spontaneous nano-scale phase transitions and self-assembly of supramolecular structures. In particular, this theory predicts micellization, lamellization, fluid – glass phase transitions, crystallization, and more. A classification of phase transitions based on general differences in self-assembled structures is proposed. The roles of dimensionality and intermolecular interactions in different types of phase transitions are analyzed. The concept of “genetic” codes is discussed in terms of structural variety of self-assembled systems.

  3. Magnetic compensation, field-dependent magnetization reversal, and complex magnetic ordering in Co2TiO4

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Thota, S.; Joshi, D. C.; Krautz, M.; Waske, A.; Behler, A.; Eckert, J.; Sarkar, T.; Andersson, M. S.; Mathieu, R.; Narang, V.; Seehra, M. S.

    2015-12-01

    The complex nature of magnetic ordering in the spinel C o2Ti O4 is investigated by analyzing the temperature and magnetic field dependence of its magnetization (M ), specific heat (Cp), and ac magnetic susceptibilities χ' and χ″. X-ray diffraction of the sample synthesized by the solid-state reaction route confirmed the spinel structure whereas x-ray photoelectron spectroscopy shows its electronic structure to be C o2Ti O4=[C o2 +] [C o3 +T i3 +] O4 . From analysis of the temperature dependence of the dc paramagnetic susceptibility, the magnetic moments μ (A ) =3.87 μB and μ (B ) =5.19 μB on the A and B sites are determined with μ (B ) in turn yielding μ (T i3 +) =1.73 μB and μ (C o3 +) =4.89 μB . Analysis of the dc and ac susceptibilities combined with the weak anomalies observed in the Cp vs T data shows the existence of a quasi-long-range ferrimagnetic state below TN˜47.8 K and a compensation temperature Tcomp˜32 K , the latter characterized by sign reversal of magnetization with its magnitude depending on the applied magnetic field and the cooling protocol. Analysis of the temperature dependence of M (field cooled) and M (zero field cooled) data and the hysteresis loop parameters is interpreted in terms of large spin clusters. These results in C o2Ti O4 , significantly different from those reported recently in isostructural C o2Sn O4=[C o2 +] [C o2 +S n4 +] O4 , warrant further investigations of its magnetic structure using neutron diffraction.

  4. Properties of magnetic double perovskites, silicide intermetallics and molybdenum-doped vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Holman, Katherine Leigh

    Chemists and condensed matter physicists alike have long searched for compounds that can shed light on electronic behavior in solids. Electronic behavior is usually assessed by two straightforward ways: conductivity and magnetism. The interactions that determine magnetic states give clues as to the lattice contribution and the atomic orbital interactions. This thesis investigates three systems for their electronic, magnetic, and structural properties: firstly, three double perovskites with very similar structures but different magnetic properties; secondly, a family of compounds with a cubic structure that theoretically should superconduct but doesn't; and lastly, the effects of molybdenum on the structure, magnetic, and electronic properties of VO2. Two new compounds, La2NiVO6 and La2CoVO 6 were synthesized along with the previously studied La2CoTiO 6. While all three compounds have the double perovskite structure, they exhibit very different magnetic properties. Only La2CoTiO 6 was found to have an ordered magnetic structure, the result of the transition metals ordering. The other two compounds had antiferromagnetic interactions, but with Ni and V mixed on a site and Co and V mixed on a site, neither exhibited long-range magnetic ordering. From theory, M6Ni16Si7 (M=Mg, Sc, Ti, Nb, or Ta), should be superconducting. These five compounds were synthesized, and their magnetic and electronic properties were measured with surprisingly consistent magnetic behavior over the wide range of electron counts. Measurements revealed no superconductivity, contrary to expectations. VO2 has a rather unique metal-insulator transition that occurs just above room temperature, which has been studied for decades. The insulator phase of VO2 contains V-V dimers and little magnetic activity is expected. By adding Mo, local magnetic states are created by disrupting these V-V dimers. For every Mo4+ added, an equal number of V 4+ ions displayed a magnetic moment, indicating the breaking up of V-V pairs. Doping also results in an increase in the density of states coinciding with a decrease in the number of magnetic moments on the lattice. These results suggest that chemical manipulation of simple systems, like VO2, provide an excellent framework for the development and testing of modern ideas about complex electronic matter and state-of-the-art theoretical treatments of correlated electron systems.

  5. Magnetic properties of Mauritanian BIFs: constraints on the source of the West Africa magnetic field anomaly

    NASA Astrophysics Data System (ADS)

    Launay, Nicolas; Quesnel, Yoann; Rochette, Pierre

    2015-04-01

    The ESA Swarm mission was launched in 2013 to produce a set of data with an unprecedented level of precision concerning the Earth's magnetic field, and in particular the crustal field. Our objective is to use these data in order to create a three-dimensional model of the crustal sources of some of earth's most important magnetic field anomalies: the West African and Bangui anomalies. To achieve this goal and properly constrain our model, we need to study the magnetic properties of the African Banded Iron Formation rocks, known as the most magnetic component of this continent's crust, and thus the most probable source of the anomalies. The remanent magnetization - both with and without thermal demagnetization - and magnetic susceptibility were measured on a wide set of BIF samples from the Kediet ej Jill in Mauritania. The data obtained will allow us to constrain a source model for the West African magnetic anomaly.

  6. High temperature structural and magnetic properties of cobalt nanorods

    SciTech Connect

    Ait Atmane, Kahina; Zighem, Fatih; Soumare, Yaghoub; Ibrahim, Mona; Boubekri, Rym; Maurer, Thomas; Margueritat, Jeremie; Piquemal, Jean-Yves; Ott, Frederic; Chaboussant, Gregory; Schoenstein, Frederic; Jouini, Noureddine; Viau, Guillaume

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  7. Magnetic properties of solid oxygen under pressure (Review Article)

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.

    2015-11-01

    Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure ?-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of 6 GPa, ?-O2 is transformed into ?-O2, in which three different magnetic structures are realized upon increasing temperature. At 8 GPa ?-O2 is transformed into ?-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.

  8. QSPR prediction of the stability constants of gadolinium(III) complexes for magnetic resonance imaging.

    PubMed

    Dioury, Fabienne; Duprat, Arthur; Dreyfus, Gérard; Ferroud, Clotilde; Cossy, Janine

    2014-10-27

    Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources). PMID:25181704

  9. Coordination properties of hydralazine Schiff base. Synthesis and equilibrium studies of some metal ion complexes

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Shoukry, Mohamed M.

    2008-08-01

    In the present study, a new ligand is prepared by condensation of hydralazine (1-Hydralazinophthalazine) with 2-butanon-3-oxime. The acid-base equilibria of the schiff-base and the complex formation equilibria with the metal ions as Cu(II), Ni(II), Co(II), Cd(II), Mn(II) and Zn(II) are investigated potentiometrically. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated. The effect of metal ion properties as atomic number, ionic radius, electronegativity and ionization potential are investigated. The isolated solid complexes are characterized by conventional chemical and physical methods. The potential coordination sites are assigned using the i.r. and 1H NMR spectra. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies.

  10. The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster

    SciTech Connect

    Chen, Yen-Han; Tsai, Yun-Fan; Lee, Gene-Hsian; Yang, En-Che

    2012-01-15

    The synthesis and characterization of [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} (1), a new tetranuclear dysprosium (III) complex, is described. The compound was characterized by its X-ray structure, magnetic properties as well as the luminescent spectra. The compound crystallizes in a P1-bar space group with a zig-zag linear form of geometry. The ac magnetic susceptibilities of the molecule indicate that it is a magnetic molecule with a slow magnetization relaxation. The molecule also exhibits an emission spectrum that was confirmed to be ligand based. These results indicate that this molecule has both a slow magnetization relaxation (that could be potentially a SMM) and luminescent properties. - Graphical Abstract: A new tetranuclear dysprosium (III) complex [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} is synthesized and reported in this paper. This molecule has luminescence and can potentially act as a SMM. Highlights: Black-Right-Pointing-Pointer A new designed ligand (dhampH{sub 5}) was syntheisized. Black-Right-Pointing-Pointer A new tetra-dysprosium cluster [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} was made. Black-Right-Pointing-Pointer Slow magnetization relaxation phenomenon was observed. Black-Right-Pointing-Pointer Ligand-based luminescence was observed.

  11. Magnetic properties of coupled bilayers and trilayers thin films

    NASA Astrophysics Data System (ADS)

    Zoto, Ilir

    2006-04-01

    The magnetic recording technology badly needs higher magnetization materials in order to write high anisotropy media which is required for thermal stability at small bit sizes. It is conceivable that transition metal-rare earth bilayers and trilayers might allow magnetizations higher than that available from transition metal alloys if the strong exchange interactions of the transition metal layer could raise the Curie temperature of an adjacent, high moment rare earth layer. This dissertation reports the magnetic and structural properties of bilayers and trilayers thin films prepared by magnetron sputtering. The magnetic and structural properties are studied by low temperature Vibrating Sample Magnetometry, Polarized Neutron Reflectivity, X-Ray Diffraction, and X-Ray Reflectivity. A Stoner-Wohlfarth model is also applied to simulate the hysteresis loops. We find that Ni and Gd have a negative interfacial exchange interaction, so the magnetizations align antiferromagnetically at zero applied fields. Their magnetizations also couple antiferromagnetically through a Pd spacer layer between them. The coupling is found to depend on the thickness of the Pd spacer layer and it disappears for Pd thickness greater than approximately 2.5 nm. Simulation results are in good agreement with the experimental data and confirm the antiferromagnetic coupling. Polarized neutron reflectivity confirms the antiferromagnetic coupling in the remanent state and indicates that the magnetic moments of Gd and Ni align parallel to the field as the applied field is increased to 0.79 T.

  12. Magnetic properties of MnF3

    NASA Astrophysics Data System (ADS)

    Choi, Baeksoon; Kim, Changsoo; Park, Sejun; Lee, Soonchil

    2015-03-01

    MnF3 which is A-type antiferromagnetic material has been reported to show the negative thermal expansion (NTE) below Neel temperature. In this work, the temperature and magnetic field dependence of the magnetization of MnF3 was measured to find the spin order. The M(T) curve measured by NMR fits well with the theory for antiferromagnet with anisotropy, T2 e(-?G), and the measured energy gab(EG) is about 30 K. The M(H) curve shows that a ferromagnetic phase is mixed with the antiferromagnetic phase below the transition temperature. From the comparison of the M(H) curve at 30 K with theory, the relation between Ka and J1 was obtained which is given by Ka ~ 1.9 J1 + 10 . 3 in absolute temperature unit.

  13. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  14. Magnetic Properties of Dipolar Chains in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Avgin, I.; Huber, D. L.

    2014-06-01

    We have investigated the dipole interaction energies per particle and the local dipole field distributions in a frozen-magnetization model of a ferrofluid chain in a saturating magnetic field. A lognormal distribution of particle diameters was assumed. The interaction energies were calculated for one-dimensional arrays of dipoles with moments parallel to the chain. We have computed the energies by various approximations related to the hard sphere particle diameter distribution. A similar approach was followed for the local field distributions. It was found that the energy per particle and mean local field were largely determined by the mean particle diameter, but the distribution of local fields was sensitive to both the mean diameter and the assumptions about spatial correlations between particles of different size. Detailed results are presented for water-soluble Fe3O4/PAA (polyacrylic acid).

  15. Basic magnetic properties of bituminous coal

    USGS Publications Warehouse

    Alexander, C.C.; Thorpe, A.N.; Senftle, F.E.

    1979-01-01

    Magnetic susceptibility and other static magnetic parameters have been measured on a number of bituminous coals from various locations in the United States. The paramagnetic Curie constant correlates negatively with carbon concentration on a moisture-free basis. The major contribution to the total paramagnetism comes from the mineral matter rather than from free radicals or broken bonds. Analysis of the data indicates that the specific paramagnetism is generally lower in the mineral matter found in high-ash compared to low-ash coal. A substantial number of the coal specimens tested also had a ferromagnetic susceptibility which appeared to be associated with magnetite. Magnetite and ??-iron spherules, possibly of meteoritic or volcanic origin, were found in several specimens. ?? 1979.

  16. Synthesis and Properties of Ortho-Nitro-Fe Complex

    SciTech Connect

    Mishra, A.; Mishra, Niyati; Sharma, R.; Jain, G.; Ninama, S.; Awate, R.

    2011-07-15

    Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.

  17. Polymer nanocomposites exhibiting magnetically tunable microwave properties.

    PubMed

    Stojak, K; Pal, S; Srikanth, H; Morales, C; Dewdney, J; Weller, T; Wang, J

    2011-04-01

    Polymer nanocomposites (PNCs) have been synthesized using Rogers polymer and CoFe?O? nanoparticles (CFO NPs). X-ray diffraction (XRD) confirms the inverse spinel crystal structure of CFO NPs and transmission electron microscopy (TEM) images show the uniform dispersion of nanoparticles (10 nm 1) into the polymer matrix. Magnetic measurements indicate superparamagnetic response near room temperature for all PNCs. A blocking temperature T(B)~298 K was observed and does not vary for different loading fractions of CFO NPs for the PNCs. The saturation magnetization (M(s)) was found to be 11 emu g? for 30 wt% CFO, increasing to 32 emu g? for the 80 wt% CFO loaded PNC. A large value of coercivity (H(c) = 19 kOe) is also observed at 10 K and is not affected by varying CFO loading. Microwave measurements show significant absorption in the 80 wt% CFO loading PNC and the quality factor shows a strong enhancement with applied magnetic field. PMID:21343635

  18. Microstructure and magnetic properties of FINEMET nanowires

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Corodeanu, S.; vri, T.-A.; Lupu, N.

    2013-05-01

    FINEMET (Fe73.5Cu1Nb3Si13.5B9) glass-coated nanowires and submicron wires with metallic nucleus diameters (?m) between 100 and 500 nm and the glass coating thickness (tg) of 5 ?m are reported for the first time. The microstructure of annealed ultrathin glass-coated wires evolves into a nanocrystalline one (DO3 nanograins of 10-20 nm embedded into the residual amorphous matrix) after annealing at 550 C and 600 C for 60 min. Despite the similar size of the nanograins, the volume occupied by them relative to the total volume increases from 50%-53% after annealing at 550 C to 63%-65% after annealing at 600 C, due to the increase in their number. This is reflected in a more accurate manner in the domain wall velocity measurements than in variation of the magnetic characteristics such as M(H), relative magnetic permeability or switching field. The magnetically softest nanocrystalline phase is formed at larger values of annealing temperature (Ta) for thinner wires, since larger temperature is needed to grow a sufficient number of DO3 grains at distances below the exchange length among them.

  19. Morphology and properties of magnetic fractals

    NASA Astrophysics Data System (ADS)

    Günther, Bernd

    The inert-gas condensation (IGC) process offers a large variety in the synthesis of nano-particulate metals. In the present work the agglomeration of nickel nanoparticles is studied after evaporation/condensation of ingot material in a laminar Argon gas flow in the pressure range of 50-300 mbar. It is observed that the nickel nanoparticles tend to form large and loosely bound aggregates due to diffusional effects and attractive interparticle forces. A transition from an irregular type to a chain-like morphology is observed, which depends on particle size and can be formally described by a reduction in the fractal dimension. Such necklace-like chains could be deposited in a well-aligned manner in the presence of external magnetic fields. Numerical modeling of magnetically induced aggregation suggests that the interaction energy between the magnetic dipoles leads to chain-formation, if it overcomes the thermal energy of the individ-ual particles. In order to achieve well-defined conditions during extended agglomeration time, buoyancy effects must be suppressed, which usually exist due to strong thermal gradients inside the flow tube chamber. Therefore experiments on parabolic flights were performed to sample agglomerates that were unaffected by convection for up to 10s.

  20. A high-temperature molecular ferroelectric Zn/Dy complex exhibiting single-ion-magnet behavior and lanthanide luminescence.

    PubMed

    Long, Jrme; Rouquette, Jrme; Thibaud, Jean-Marc; Ferreira, Rute A S; Carlos, Lus D; Donnadieu, Bruno; Vieru, Veaceslav; Chibotaru, Liviu F; Konczewicz, Leszek; Haines, Julien; Guari, Yannick; Larionova, Joulia

    2015-02-01

    Multifunctional molecular ferroelectrics are exciting materials synthesized using molecular chemistry concepts, which may combine a spontaneous electrical polarization, switched upon applying an electric field, with another physical property. A high-temperature ferroelectric material is presented that is based on a chiral Zn(2+) /Dy(3+) complex exhibiting Dy(3+) luminescence, optical activity, and magnetism. We investigate the correlations between the electric polarization and the crystal structure as well as between the low-temperature magnetic slow relaxation and the optical properties. PMID:25556721

  1. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands

    PubMed Central

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J.L.; Chibotaru, Liviu F.; Layfield, Richard A.

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm−1 and magnetic hysteresis up to 4.4 K. PMID:26130418

  2. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands.

    PubMed

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J L; Chibotaru, Liviu F; Layfield, Richard A

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14?K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256?cm(-1) and magnetic hysteresis up to 4.4?K. PMID:26130418

  3. Characterization of magnetic viral complexes for targeted delivery in oncology.

    PubMed

    Almsttter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2(*) relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2(*) compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  4. Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology

    PubMed Central

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J.; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  5. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  6. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes.

    PubMed

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [Co(II)(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  7. Magnetic Properties of the Mn5Si3 Compound

    NASA Astrophysics Data System (ADS)

    Leciejewicz, J.; Penc, B.; Szytu?a, A.; Jezierski, A.; Zygmunt, A.

    2008-04-01

    The magnetic and powder neutron diffraction data indicate a complex magnetic structure of Mn5Si3. This compound has the hexagonal D88 crystal structure at room temperature. The Mn atoms occupy two nonequivalent sublattices. Two phase transitions, at 60 and 106 K, are observed. The first one is between a non-collinear AF1 and a collinear AF2 magnetic structure, the second one is between the collinear AF2 structure and a paramagnetic state. At 106 K the crystal structure changes from the hexagonal to the orthorhombic one. The values of the Mn magnetic moment in both structures were calculated by different ab initio methods. The results of the calculations are compared with the values of the Mn magnetic moment determined experimentally in this work and presented in the previous ones.

  8. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers

    PubMed Central

    Ferguson, Richard Mathew; Khandhar, Amit P; Arami, Hamed; Hua, Loc; Hovorka, Ondrej; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist. PMID:23787461

  9. Adsorption-induced magnetic properties and metallic behavior of graphene

    SciTech Connect

    Zhou, Yungang; Zu, Xiaotao T.; Gao, Fei; Lv, H. F.; Xiao, Haiyan J.

    2009-09-21

    Magnetic properties and electronic structures of graphene with Cl, S, and P adsorption have been investigated using ab initio calculations. The adsorption of Cl leads to Fermi level shifting to valence band, which results in metallic graphene. A band gap of 0.6 eV emerges in a S-absorbed graphene, leading to the semiconducting graphene. The unpaired electrons in the absorbed P atom is polarized and thus, exhibits a magnetic moment of 0.86 ?B, while no magnetic moment has been observed after Cl and S adsorption. This demonstrates that the magnetic properties and conductive behavior of graphene can be modified via atom adsorption. Specially, P-absorbed graphene may be useful for spintronic applications, such as tunneling magnetoresistance.

  10. Probing magnetic properties of ferrofluids using temperature dependent magnetic hyperthermia studies

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Thakur, Jagdish; Naik, Vaman; Naik, Ratna

    2014-03-01

    Tuning the properties of magnetic nanoparticles is essential for biomedical and technological applications. An important phenomenon displayed by these nanoparticles is the generation of heat in the presence of an external oscillating magnetic field and is known as magnetic hyperthermia (MHT). The heat dissipation by the magnetic nanoparticles occurs via Neel relaxation (the flip of the internal magnetic moment of the nanoparticles) and Brownian relaxation (the physical rotation of the nanoparticles in the suspended media). Dextran coated iron oxide (Fe3O4) nanoparticles were synthesized using the co-precipitation method and characterized using XRD, TEM and DC magnetometry measurements. Roughly spherical in shape the particles have an average size of 13nm and a saturation magnetization of 65 emu/g. The MHT properties of these nanoparticles suspended in a weakly basic solution (ferrofluid) have been investigated as a function of the frequency and amplitude of magnetic field by incorporating a complete thermodynamical analysis of the experimental set-up. The heat generation is quantified using the specific power loss (SPL) and compared with the predictions of linear response theory. This analysis sheds light on important physical and magnetic properties of the nanoparticles.

  11. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible. PMID:26529730

  12. Measured iron-gallium alloy tensile properties under magnetic fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Flatau, Alison B.

    2004-07-01

    Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.

  13. Effect of pressure on the magnetic properties of lanthanum manganite

    SciTech Connect

    Gonchar', L. E. Leskova, Yu. V.; Nikiforov, A. E.; Kozlenko, D. P.

    2010-08-15

    The crystalline structure of pure lanthanum manganite under external hydrostatic pressure has been studied. The behavior of magnetic properties and nuclear magnetic resonance (NMR) spectra under these conditions is theoretically predicted. It is shown that an increase in the Neel temperature with pressure is not only caused by the general contraction of the crystal, but is also related to certain peculiarities in the baric behavior of the orbital structure.

  14. Complex networks as an emerging property of hierarchical preferential attachment

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  15. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  16. Bio-inspired artificial cilia with magnetic dynamic properties

    NASA Astrophysics Data System (ADS)

    Sun, Leilei; Zheng, Yongmei

    2015-04-01

    Inspired by the structure and properties of natural cilia, we focused on a facile template-free approach to prepare magnetic artificial cilia grown on the substrate (glass, PDMS, or others). In an applied magnetic field, the cilia formed spontaneously and immediately from magnetic nanoparticles and elastomeric polymer in a liquid solvent by bottom-up self-assembly. The length of prepared cilia could be in the scale of millimeter and reach a high aspect ratio of even over 100. We studied the effect of the magnetic strength applied and the size of nanoparticles to get tunable scale of cilia. The cilia show reversibly bending in an external magnetic field and this bending actuation gave some important functions: to transport macroscopic nonmagnetic materials on the cilia and to mix liquids.

  17. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  18. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  19. Preparation and Structural Properties of InIIIH Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Rene M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3?) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3?) has led to the synthesis of two structurally distinct In(III)OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)OH unit and [H3buea]3? ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5?NaI-(?-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  20. Growth, structure, morphology, and magnetic properties of Ni ferrite films

    PubMed Central

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  1. Growth, structure, morphology, and magnetic properties of Ni ferrite films.

    PubMed

    Dong, Chunhui; Wang, Gaoxue; Guo, Dangwei; Jiang, Changjun; Xue, Desheng

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  2. Mobile testing complex based on an explosive magnetic generator

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Kozlov, A. V.; Gusev, A. N.; Shurupova, N. P.; Zavalova, V. E.; Chulkov, A. N.; Bazelyan, E. M.

    2015-01-01

    A mobile testing complex prototype on the basis of an explosive magnetic generator (MTC EMG) is developed to simulate a lightning current pulse. The main element of this complex is a current pulse generator comprising a EMG with a pulse transformer for energy release into the load. The electric chain of the MTC EMG is theoretically analyzed taking into consideration energy losses in active resistances in the primary circuit of the transformer and the inductive-resistive nature of the load, which resulted in the minimization of energy losses in the primary circuit depending on the electric chain parameters. It was found that, if the energy losses are minimized, the efficiency of transferring the EMG energy into the load exceeds 50%. As a result of the field tests of the MTC EMG, its basic characteristics were determined and the waveforms of the current pulses and voltages in the load were obtained. It is shown that the results of the mathematical simulation of current pulses in the load are in good agreement with the experimental data.

  3. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  4. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-11-02

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  5. THE PROPERTIES OF HORIZONTAL MAGNETIC ELEMENTS IN QUIET SOLAR INTRANETWORK

    SciTech Connect

    Jin Chunlan; Wang Jingxiu; Zhou Guiping E-mail: wangjx@ourstar.bao.ac.cn

    2009-05-20

    Using the data observed by the Solar Optical Telescope/Spectropolarimeter aboard the Hinode satellite, the horizontal and vertical fields are derived from the wavelength-integrated measures of Zeeman-induced linear and circular polarizations. The quiet intranetwork regions are pervaded by horizontal magnetic elements. We categorize the horizontal intranetwork magnetic elements into two types: one is the nonisolated element which is accompanied by the vertical magnetic elements during its evolution; another is the isolated element which is not accompanied by the vertical magnetic elements. Their properties, such as lifetime, size, and magnetic flux density, are studied, and the relationships among various magnetic parameters are investigated. We identify 446 horizontal intranetwork magnetic elements among them 87 elements are isolated and 359 are nonisolated. Quantitative measurements reveal that the isolated elements have relatively weaker horizontal magnetic fields, almost equal size, and shorter lifetime compared with the nonisolated elements. Most nonisolated horizontal intranetwork magnetic elements are identified to associate with the emergence of {omega}-shaped flux loops. A few nonisolated elements seem to indicate scenarios of submergence of {omega} loops or emergence of U-like loops. There is a positive correlation between the lifetime and the size for both the isolated and nonisolated horizontal intranetwork field elements (HIFs). Positive correlation between the lifetime and the magnetic flux density for nonisolated HIFs is also found, but no correlation for isolated HIFs. Even though the horizontal elements show lower magnetic flux density, they could carry the total magnetic flux in the order of magnitude close to 10{sup 25} Mx to the solar surface each day.

  6. Matrix and interaction effects on the magnetic properties of Co nanoparticles embedded in gold and vanadium.

    PubMed

    Ruano, M; Díaz, M; Martínez, L; Navarro, E; Román, E; García-Hernandez, M; Espinosa, A; Ballesteros, C; Fermento, R; Huttel, Y

    2013-01-01

    The study of the magnetic properties of Co nanoparticles (with an average diameter of 10.3 nm) grown using a gas-phase aggregation source and embedded in Au and V matrices is presented. We investigate how the matrix, the number of embedded nanoparticles (counted by coverage percentage), the interparticle interactions and the complex nanoparticles/matrix interface structure define the magnetic properties of the studied systems. A threshold coverage of 3.5% of a monolayer was found in both studied systems: below this coverage, nanoparticles behave as an assembly of independent single-domain magnetic entities with uniaxial anisotropy. Above the threshold it is found that the magnetic behavior of the systems is more matrix dependent. While magnetic relaxation and Henkel plots measurements stress the importance of the dipolar interactions and the formation of coherent clusters in the case of the Au matrix, the magnetic behavior of cobalt clusters embedded in the vanadium matrix is explained through the formation of a spin glass-like state at the V-Co interface that screens the magnetic interactions between NPs. PMID:23165521

  7. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Kenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  8. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  9. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wesselinowa, J. M.

    2010-01-01

    Based on the Heisenberg model taking into account single-ion anisotropy and using a Green's function technique we have studied the influence of size and anisotropy effects on magnetization M, Neel temperature TN, coercive field Hc and spin excitation energy of antiferromagnetic nanoparticles. The properties are compared with those of ferromagnetic nanoparticles. We have shown that the enhanced magnetization M and coercive field Hc of antiferromagnetic nanoparticles is a surface effect, which is due to uncompensated surface spins. Moreover, the shape of the coercive field curve can be significantly influenced by surface magnetic anisotropy.

  10. Artificial metamaterials for reprogrammable magnetic and microwave properties

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Adeyeye, Adekunle Olusola

    2016-01-01

    We demonstrate a reliable method for realizing various antiferromagnetic states in lithographically defined, dipolar coupled rhomboid nanomagnets. We directly probe the remanent state using magnetic force microscopy and measured the microwave absorptions using broadband ferromagnetic resonance spectroscopy technique. Reprogrammable microwave absorption properties are shown by switching between ferromagnetic and antiferromagnetic remanent states using a simple field initialization. There is a direct correlation between the magnetic remanent states and the microwave responses. Experimental results were supported by micromagnetic simulations which show a good agreement. The results may find applications in low power magnonic devices based on reprogrammable magnetic metamaterials.

  11. Magnetic Properties of Cd Substituted Ni-Cu Ferrites

    NASA Astrophysics Data System (ADS)

    Belavi, P. B.; Chavan, G. N.; Bammannavar, B. K.; Naik, L. R.; Kotnala, R. K.

    2011-07-01

    Cadmium substituted Ni-Cu Ferrites with the general formula Ni0.95-xCdxCu0.05Fe2O4 (x = 0.1, 0.2 and 0.3) were prepared by the standard double sintering ceramic method. The existences of single phase formation with crystalline size of 25-38 nm were confirmed from XRD measurements. The magnetic properties such as saturation magnetization (Ms) and Magnetic moment (?B) were studied by VSM analysis. The existence of multidomain (MD) particles in the samples was revealed from the small values of Mr/Ms.

  12. Studies of magnetic properties and HFEPR of octanuclear manganese single-molecule magnets.

    PubMed

    Wu, Che-Chih; Datta, Saiti; Wernsdorfer, Wolfgang; Lee, Gene-Hsian; Hill, Stephen; Yang, En-Che

    2010-11-14

    A new octanuclear manganese cluster [Mn(8)(Hpmide)(4)O(4)(EtCOO)(6)](ClO(4))(2) (1) is achieved by employing Hpmide as the ligand, and this paper examines the synthesis, X-ray structure, high-field electron paramagnetic resonance (HFEPR), magnetization hysteresis loops and magnetic susceptibilities. Complex 1 was prepared by two different methods, and hence, was crystallized in two space groups: P3(2)21 for 1a and P3(1)21 for 1b. Each molecule possesses four Mn(II) and four Mn(III) ions. The metal-oxo framework of complex 1 consists of three face-sharing cubes with manganese ions on alternate corners. The four Mn(III) cations have their Jahn-Teller elongation axes roughly parallel to the c axis of the crystal lattice. The dc magnetic susceptibility measurements reveal a spin-frustration effect in this compound. The ac magnetic susceptibilities, as well as the magnetization hysteresis measurements, clearly establish that complex 1a is a single-molecule-magnet (SMM) with a kinetic energy barrier (10.4 cm(-1)) for spin reversal. HFEPR further confirms that complex 1a is a new SMM with a magnetoanisotropy and quantized energy levels. However, interpretation of the complete set of measurements in terms of a well defined spin ground state is not possible due to the spin frustration. PMID:20886147

  13. Diameter Dependence of Magnetic Properties in Nanoparticle-Filled CNTs

    NASA Astrophysics Data System (ADS)

    Stojak, Kristen; Chandra, Sayan; Khurshid, Hafsa; Phan, Manh-Huong; Srikanth, Hariharan; Palmero, Ester; Vázquez, Manuel

    2014-03-01

    In past studies we showed magnetic polymer nanocomposites (MPNCs) with ferrite nanoparticle (NP) fillers to be magnetically tunable when passing microwave signals through films under the influence of an external magnetic field. We extend this study to include NP-filled multi-walled carbon nanotubes (CNTs) of various diameter (~300nm, ~100nm, ~40nm) synthesized by a catalyst-free CVD method, where the outer diameter of the CNTs is determined by a porous alumina template. These high-aspect ratio magnetic nanostructures, with tunable anisotropy and tunable saturation magnetization, are of particular interest in enhancing magnetic and microwave response in existing MPNCs. CNTs with ~ 300nm diameter have been uniformly filled with cobalt ferrite and nickel ferrite NPs (~7nm). NP-filled CNTs show an increase in blocking temperature of ~40K, as well as an increase in relaxation time, τ0. The enhancement of these properties indicates that enclosing NPs in CNTs increases interparticle interactions. The magnetic properties are also tunable by varying the diameter of CNTs. Characterization was completed with XRD, TEM and Quantum Design PPMS, with VSM and ACMS options.

  14. Structural and photophysical properties of rare-earth complexes encapsulated into surface modified mesoporous silica nanoparticles.

    PubMed

    Malba, Chandrashekhar; Sudhakaran, Umayal P; Borsacchi, Silvia; Geppi, Marco; Enrichi, Francesco; Natile, Marta Maria; Armelao, Lidia; Finotto, Tiziano; Marin, Riccardo; Riello, Pietro; Benedetti, Alvise

    2014-11-21

    The encapsulation of [Eu(dbm)3phen] into functionalized mesoporous silica nanoparticles (MSN) has been carried out to study the effect of chemical environments on the photoluminescence properties of the rare-earth complex. Surface functionalization was achieved by the reaction of the silanol groups on the surface of mesoporous silica with different organosilylating agents such as (3-aminopropyl)-triethoxysilane (APTES), (3-mercaptopropyl)-trimethoxysilane (MPTMS), and ethoxytrimethylsilane (ETMS). A change in the luminescence properties of the Eu(dbm)3phen complex has been observed on its encapsulation into surface modified mesoporous silica nanoparticles. The modification of photophysical properties is attributed to the interaction of Eu(dbm)3phen with the different chemical environments in the functionalized mesoporous silica nanoparticles (MSN). The luminescence properties of the rare-earth complex in surface-modified MSN increase in the order MSN < MSN-ETMS < MSN-MPTMS < MSN-APTES. The Eu(dbm)3phen complex encapsulated in the functionalized mesoporous silica nanoparticles shows an enhanced luminescence and an increased lifetime compared to the pure rare-earth complex in the solid state and that in unmodified MSN. This implies that some interactions of the lanthanide complexes take place during their incorporation process into the organically modified mesoporous silica nanoparticles. The organically modified mesoporous silica nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR) and N2 adsorption desorption measurements. The luminescence properties of the encapsulated Eu(dbm)3phen were studied in detail. Moreover, the effect of functionalized MSNs on the structural behaviour of the Eu(dbm)3phen was investigated by solid state nuclear magnetic resonance (SSNMR) techniques using an analogous diamagnetic model complex, Y(dbm)3phen, encapsulated into functionalized MSNs. These studies indicate that the encapsulated rare-earth complex shows some interactions with the functional groups anchored on the surface of MSNs. PMID:24874265

  15. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl components in the ligand. These complexes possess interesting luminescent properties including ultra-narrow emission and metal assisted delayed fluorescence (MADF) emission.

  16. Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

    PubMed Central

    Schramm, Frank; Pineda, Eufemio Moreno; Lan, Yanhua; Fuhr, Olaf; Chen, Jinjie; Isshiki, Hironari; Wernsdorfer, Wolfgang; Wulfhekel, Wulf

    2016-01-01

    Summary A series of 2,2’-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2’-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops. PMID:26925361

  17. Study of magnetic properties of coals

    SciTech Connect

    Slobodskoi, S.A.; Sklyar, M.G.; Kas`yanova, S.B.; Khats`ko, E.N.

    1992-12-31

    Technological processes based on the use of electric heating are used to increasing extents throughout industry. Electrothermics are used in the production of ferroalloys and alloy steels and in glassmaking and abrasives production. In the chemical industry, electrotechnological processes are used in the production of calcium carbide, phosphorus, carbon disulfide, acetylene, nitrogen compounds and plastics, and for heating chemical reactors. In the chemistry and technology of coal processing, electrothermics have only appeared in exploratory research in the gas-discharge field, and the only practical example is the calcining of carbonaceous materials in the old-fashioned electric kilns. The situation can hardly be called justifiable since the specific features of electric processing could contribute to both the speed and the efficiency of existing processes for the utilization of organic coal substances, and promote the development of fundamentally novel chemical-technological methods of processing solid fuels. This paper describes the magnetic susceptibility of coals. 4 figs., 2 tabs.

  18. Estimation of hydrothermal deposits location from magnetization distribution and magnetic properties in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Choi, S.; Kim, C.; Park, C.; Kim, H.

    2013-12-01

    The North Fiji Basin is belong to one of the youngest basins of back-arc basins in the southwest Pacific (from 12 Ma ago). We performed the marine magnetic and the bathymetry survey in the North Fiji Basin for finding the submarine hydrothermal deposits in April 2012. We acquired magnetic and bathymetry datasets by using Multi-Beam Echo Sounder EM120 (Kongsberg Co.) and Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduce to the pole(RTP), analytic signal and magnetization. The study areas composed of the two areas(KF-1(longitude : 173.5 ~ 173.7 and latitude : -16.2 ~ -16.5) and KF-3(longitude : 173.4 ~ 173.6 and latitude : -18.7 ~ -19.1)) in Central Spreading Ridge(CSR) and one area(KF-2(longitude : 173.7 ~ 174 and latitude : -16.8 ~ -17.2)) in Triple Junction(TJ). The seabed topography of KF-1 existed thin horst in two grabens that trends NW-SE direction. The magnetic properties of KF-1 showed high magnetic anomalies in center part and magnetic lineament structure of trending E-W direction. In the magnetization distribution of KF-1, the low magnetization zone matches well with a strong analytic signal in the northeastern part. KF-2 area has TJ. The seabed topography formed like Y-shape and showed a high feature in the center of TJ. The magnetic properties of KF-2 displayed high magnetic anomalies in N-S spreading ridge center and northwestern part. In the magnetization distribution of KF-2, the low magnetization zone matches well with a strong analytic signal in the northeastern part. The seabed topography of KF-3 presented a flat and high topography like dome structure at center axis and some seamounts scattered around the axis. The magnetic properties of KF-3 showed high magnetic anomalies in N-S spreading ridge center part. In the magnetization of KF-2, the low magnetization zone mismatches to strong analytic signal in this area. The difference of KF-3 between the low magnetization zones and the analytic signals is considered that the submarine magnetic strength of KF-3 is lower than that of KF-1 and KF-2. The spreading ridges of the study areas showed common Central Anomaly Magnetization Highs (CAMH). As a whole, the previous studies on the structure of this study area (Auzende et al, 1990) support our results of the magnetic properties (Magnetic Anomaly and RTP). We can expect to have the better results by comparing with the other study like geophysics (seismic), geology, and geochemistry in this area. Reference Auzende, J.M., and 29 others, Active Spreading and Hydrothermalism in North Fiji Basin(SW Pacific). Results of Japanese French Cruise Kaiyo 87, Marine Geophysical Researches., 12, 269-283, 1990.

  19. Investigation of structural, thermal and magnetic properties of cadmium substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, Ch.; Byon, Chan; Narendra, B.; Baskar, D.; Srinivas, G.; Shim, Jaesool; Prabhakar Vattikuti, S. V.

    2015-06-01

    Cd substituted Cobalt ferrite nano particles are synthesis using co-precipitation method. The as prepared samples are calcinated at 300 and 600 °C respectively. The existence of single phase spinal cubic structure of the prepared ferrite material is confirmed by the powder XRD measurement. The surface morphology images, compositional features are studied by SEM with EDX, and TEM. From the FT-IR spectra the absorption bands observed at 595 and 402 cm-1 are attributed to vibrations of tetrahedral and octahedral complexes respectively. From the VSM data, parameters like magnetization, coercivity, remanent magnetization and remanent squareness are measured. The saturation magnetization value is increases with increasing calcination temperature. The DSC and TG-DTA curves reveal that the thermal stability of the prepared ferrite nanoparticles. The calcination temperature affects the crystallite size, morphology and magnetic properties of the samples.

  20. Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.

    2011-04-01

    Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.

  1. Interplay of magnetic exchange interactions and Ni-S-Ni bond angles in polynuclear nickel(II) complexes.

    PubMed

    Krupskaya, Yulia; Alfonsov, Alexey; Parameswaran, Anupama; Kataev, Vladislav; Klingeler, Rdiger; Steinfeld, Gunther; Beyer, Norman; Gressenbuch, Mathias; Kersting, Berthold; Bchner, Bernd

    2010-06-21

    The ability of bridging thiophenolate groups (RS(-)) to transmit magnetic exchange interactions between paramagnetic Ni(II) ions is examined. Specific attention is paid to complexes with large Ni-SR-Ni angles. For this purpose, dinuclear [Ni(2)L(1)(mu-OAc)I(2)][I(5)] (2) and trinuclear [Ni(3)L(2)(OAc)(2)][BPh(4)](2) (3), where H(2)L(1) and H(2)L(2) represent 24-membered macrocyclic amino-thiophenol ligands, are prepared and fully characterized by IR- and UV/Vis spectroscopy, X-ray crystallography, static magnetization M measurements and high-field electron spin resonance (HF-ESR). The dinuclear complex 2 has a central N(3)Ni(2)(mu-S)(2)(mu-OAc)Ni(2)N(3) core with a mean Ni-S-Ni angle of 92 degrees . The macrocycle L(2) supports a trinuclear complex 3, with distorted octahedral N(2)O(2)S(2) and N(2)O(3)S coordination environments for one central and two terminal Ni(II) ions, respectively. The Ni-S-Ni angles are at 132.8 degrees and 133.5 degrees . We find that the variation of the bond angles has a very strong impact on the magnetic properties of the Ni complexes. In the case of the Ni(2)-complex, temperature T and magnetic field B dependencies of M reveal a ferromagnetic coupling J=-29 cm(-1) between two Ni(II) ions (H=JS(1)S(2)). HF-ESR measurements yield a negative axial magnetic anisotropy (D<0) which implies a bistable (easy axis) magnetic ground state. In contrast, for the Ni(3)-complex we find an appreciable antiferromagnetic coupling J'=97 cm(-1) between the Ni(II) ions and a positive axial magnetic anisotropy (D>0) which implies an easy plane situation. PMID:20408157

  2. Magnetic properties of agricultural soil in the Pearl River Delta, South China - Spatial distribution and influencing factor analysis

    NASA Astrophysics Data System (ADS)

    Bian, Yong; Ouyang, Tingping; Zhu, Zhaoyu; Huang, Ningsheng; Wan, Hongfu; Li, Mingkun

    2014-08-01

    Environmental magnetism has been widely applied to soil science due to its speediness, non-destructiveness and cost-effectiveness. However, the magnetic investigation of agricultural soil, so closely related to human activity, is limited, most probably because of its complexity. Here we present a magnetic investigation of 301 agricultural soil samples collected from the Pearl River Delta (PRD, 112E-115E and 22N-24N), China. The results showed that both low and high coercivity magnetic minerals coexist in agricultural soil. The values of concentration-dependent parameters, low-field susceptibility (?lf), anhysteretic remanence magnetization susceptibility (?ARM), and saturation isothermal remanence magnetization (SIRM) were much higher in the PRD plain than in the surrounding areas. The S-ratio (S- 300) showed a similar spatial pattern to the aforementioned parameters. By contrast, frequency-dependent susceptibility (?fd%) and ?ARM/SIRM were higher in the surrounding hilly and mountainous areas than in the PRD plain. Natural and anthropogenic factors such as parent material, soil type and cultivation methods play important roles in determining agricultural soil magnetic properties. Magnetic minerals were coarser grained and overall indicated higher concentrations in soils from river alluvium and deposited materials. Soils which had suffered long-term water submergence have the lowest magnetic mineral concentration, a result consistent with previous studies. The magnetic properties of agricultural soils are strongly influenced by cultivation methods. Other human activities, such as industrial development and concomitant emitted pollutants, might have had an additional impact on the magnetic properties of agricultural soil.

  3. Control of Magnetic Properties Across Metal to Insulator Transitions

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose

    2013-03-01

    Controlling the magnetic properties of ferromagnetic (FM) thin films without magnetic fields is an on-going challenge in condensed matter physics with multiple technological implications. External stimuli and proximity effects are the most used methods to control the magnetic properties. An interesting possibility arises when ferromagnets are in proximity to materials that undergo a metal-insulator (MIT) and structural phase transition (SPT). The stress associated with the structural changes produces a magnetoelastic anisotropy in proximity coupled ferromagnetic films that allows controlling the magnetic properties without magnetic fields. Canonical examples of materials that undergo MIT and SPT are the vanadium oxides (VO2 and V2O3) . VO2 undergoes a metal/rutile to an insulator/monoclinic phase transition at 340 K. In V2O3 the transition at 160 K is from a metallic/rhombohedral to an insulating/ monoclinic phase. We have investigated the magnetic properties of different combinations of ferromagnetic (Ni, Co and Fe) and vanadium oxide thin films. The (0.32%) volume expansion in VO2 or the (1.4%) volume decrease in V2O3 across the MIT produces an interfacial stress in the FM overlayer. We show that the coercivities and magnetizations of the ferromagnetic films grown on vanadium oxides are strongly affected by the phase transition. The changes in coercivity can be as large as 168% and occur in a very narrow temperature interval. These effects can be controlled by the thickness and deposition conditions of the different ferromagnetic films. For VO2/Ni bilayers the large change in the coercivity occurring above room temperature opens the possibilities for technological applications. Work done in collaboration with Siming Wang, J. G. Ramirez, and Ivan K. Schuller. Funded by the US DoE, Office of Basic Energy Sciences, under Award FG03-87ER-45332 and the Air Force Office of Scientific Research No. FA9550-12-1-0381.

  4. Magnetic neutron spectroscopy of a spin-transition Mn3+ molecular complex

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Petit, Sylvain; Gillon, Batrice; Chaboussant, Grgory; Safin, Damir A.; Garcia, Yann

    2014-09-01

    We have investigated by inelastic neutron scattering (INS), neutron diffraction, and magnetometry the magnetic properties of the mononuclear complex [Mn3+(pyrol)3(tren)] in both high-spin (5E, HS, S =2) and low-spin (3T1, LS, S =1) states. The system presents a spin transition (ST) around 47 K with a small hysteresis width (TST,?=47.5 K and TST,?=46 K) characteristic of an efficient collective transition process. In the HS state, the INS spectrum at 56 K and zero magnetic field is accounted for by a zero-field splitting with D =-5.73(3) cm-1 and |E|=+0.47(2) cm-1 which may be the result of a dynamic Jahn-Teller effect reported in the literature. In the LS state, a single magnetic peak at 4.87 meV is observed, still at zero field. Despite the existence of an unquenched orbital moment (L =1) in the ground 3T1 state, we argue that it may be described by a genuine S =1 spin Hamiltonian owing to the existence of a strong trigonal distortion of the Mn3+ coordination octahedron. The observed peak corresponds to a transition ?M =+1 within the S =1 ground state split by a large single-ion anisotropy term D =+39.3 cm-1. A full spin-Hamiltonian model is proposed based on these first INS results obtained in a thermal ST molecular magnetic system.

  5. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    PubMed

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-01

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs. PMID:19434654

  6. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders

    SciTech Connect

    Zamanpour, Mehdi Bennett, Steven; Taheri, Parisa; Chen, Yajie; Harris, Vincent G.

    2014-05-07

    Co{sub x}C magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 45 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of Co{sub x}C, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co{sub 2}C and Co{sub 3}C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  7. Electronic properties of intercalation complexes of the transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Friend, R. H.; Yoffe, A. D.

    1987-11-01

    Intercalation of the layer type transition metal dichalcogenides by a variety of organic molecules, alkali metals, or 3d transition metals, provides a powerful way to finely tune the electron occupation of the relatively narrow d bands met in these solids. These transition metal dichalcogenides are highly anisotropic solids, sometimes referred to as two-dimensional solids, and the intercalant molecules which are electron donors enter between the layers. This can result in profound changes in the electronic properties of the host lattice, and these changes can be understood in terms of charge transfer and increased interlayer separation. The phenomena discussed include optical properties, transport properties, super-conductivity, order-disorder phenomena and phase changes, staging, magnetic properties, metal-insulator transitions, Anderson localization, and fast-ion conduction. Some possible practical applications are also considered.

  8. Geometric properties of the magnetic Laplacian on the Euclidean 4-space

    SciTech Connect

    Kazmierowski, Dominique; Zinoun, Azzouz; Intissar, Ahmed

    2010-12-15

    When the four-dimensional Euclidean space is endowed with a covariant derivative that is either self-dual or antiself-dual and of constant curvature, the corresponding magnetic Laplacian is closely related to the sub-Laplacian of the quaternionic Heisenberg group. Some geometric properties of this operator are studied. In particular, it is proved that there exists a canonical orthogonal complex structure which provides a factorization in the sense of Schroedinger.

  9. Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties.

    PubMed

    Ma, Longfei; Sun, Jibin; Lu, Xiaofeng; Zhang, Shangxi; Qi, Hui; Liu, Lei; Shao, Yongliang; Shao, Xiangfeng

    2015-01-01

    The combination of CuBr2 and arylthio-substituted tetrathiafulvalene derivatives (1-7) results in a series of charge-transfer (CT) complexes. Crystallographic studies indicate that the anions in the complexes, which are derived from CuBr2, show diverse configurations including linear [Cu(I)Br2](-), tetrahedral [Cu(II)Br4](2-), planar [Cu(II)2Br6](2-), and coexistence of planar [Cu(II)Br4](2-) and tetrahedral [Cu(II)Br3](-) ions. On the other hand, the TTFs show either radical cation or dication states that depend on their redox potentials. The central TTF framework on most of TTFs is nearly planar despite the charge on them, whereas the two dithiole rings on molecule 4 in complex 4CuBr4 are significantly twisted with a dihedral angle of 38.3. The magnetic properties of the complexes were elucidated. The temperature-dependent magnetic susceptibility of complex 5Cu2Br6 shows the singlet-triplet transition with coupling constant J = -248 K, and that of 3(CuBr4)0.5CuBr3THF shows the abrupt change at 270 K caused by the modulation of intermolecular interactions. The thermo variation of magnetic susceptibility for the other complexes follows the Curie-Weiss law, indicating the weak antiferromagnetic interaction at low temperature. PMID:26124886

  10. Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties

    PubMed Central

    Ma, Longfei; Sun, Jibin; Lu, Xiaofeng; Zhang, Shangxi; Qi, Hui; Liu, Lei; Shao, Yongliang

    2015-01-01

    Summary The combination of CuBr2 and arylthio-substituted tetrathiafulvalene derivatives (1–7) results in a series of charge-transfer (CT) complexes. Crystallographic studies indicate that the anions in the complexes, which are derived from CuBr2, show diverse configurations including linear [Cu(I)Br2]–, tetrahedral [Cu(II)Br4]2–, planar [Cu(II)2Br6]2–, and coexistence of planar [Cu(II)Br4]2– and tetrahedral [Cu(II)Br3]– ions. On the other hand, the TTFs show either radical cation or dication states that depend on their redox potentials. The central TTF framework on most of TTFs is nearly planar despite the charge on them, whereas the two dithiole rings on molecule 4 in complex 4·CuBr4 are significantly twisted with a dihedral angle of 38.3°. The magnetic properties of the complexes were elucidated. The temperature-dependent magnetic susceptibility of complex 5·Cu2Br6 shows the singlet–triplet transition with coupling constant J = −248 K, and that of 3·(CuBr4)0.5·CuBr3·THF shows the abrupt change at 270 K caused by the modulation of intermolecular interactions. The thermo variation of magnetic susceptibility for the other complexes follows the Curie–Weiss law, indicating the weak antiferromagnetic interaction at low temperature. PMID:26124886

  11. Magnetic properties of xenoliths from Yakut kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valeriy

    2014-05-01

    Lower continental crust is poorly known due to its limited availability. One source of information about the formation of the lower crust is the study of xenoliths found in kimberlites, mainly peridotites, eclogites and other rocks made by the kimberlite magma to the surface from great depths. Magnetic methods can solve problems related on the one hand, the definition of the phase composition of natural ferrimagnetics responsible for the magnetic properties of rocks, and on the other - with the establishment of the thermodynamic conditions in which they were formed - their genesis. For example, in [1, 2], there were differences in the magnetic properties of kimberlites taken from tubes with different diamond productivity. In this work, studies have been conducted of the magnetic properties and mineralogy of xenoliths from 10 Yakut kimberlit pipes, courtesy of Doctor of Geological and Mineralogical Sciences V. K. Garanin. Found that the natural remanent magnetization (NRM) and magnetic susceptibility (k0) of the investigated samples varies widely: NRM = (0.002-12.59) A/m, k0 = (0.23-59.9)*10-3 SI. Magnetic properties vary by species: average NRM peridotites (0.002-0.32) A/m order of magnitude smaller eclogitic rocks (0.58-12.59) A/m. Thermomagnetic analysis (TMA) of the test samples showed the presence of xenoliths of the ferromagnetic phase with a Curie point close to Tc magnetite. Because of the high correlation between the values of NRM, k0 and ferrimagnetic saturation magnetization (SM) can be inferred that the magnetic properties of the rocks studied at temperatures above ambient is basically determined by the concentration of magnetite in them. Besides magnetite TMA were also identified ferrimagnetic phase with Curie temperatures from -50C to -125C. Mineralogical analysis performed on three samples of peridotite tubes Udachnaya, Yubileynaya and Mir and two samples of eclogite tubes Udachnaya and Komsomolskaya, showed that at temperatures below room temperature magnetic properties of peridotites due ferrishpineles with high content of chromium, titanium and aluminum; eclogitic rocks - due hemoilmenites. Among the studied xenoliths, peridotites from the tubes with high diamond productivity (Udachnaya, Mir, Yubileynaya) are characterized by low values of NRM, k0, SM and high paramagnetic contribution. We conclude that the concentration of magnetite in them is very small, and the magnetic properties peridotite above room temperature are determined mainly paramagnetic minerals. This work was supported by RFBR grant No. 11-05-00740. Literature: 1. V.I. Truhin, V.A. Zhilyaeva, N.N. Zinchuk, N.N. Romanov. Kimberlites and traps magnetism. M.MGU. 1989. p. 165 (Russian) 2. V.I. Maksimochkin, V.I. Truhin, Y.A. Minina. Magnetic properties and mineralogy of Botswana kimberlites. Physics of the Earth, 2013, No. 2, p. 143-160 (Russian)

  12. New pyridine-2,3,5,6-tetracarboxylato (H4pdtc) complexes: Synthesis, crystal structures and magnetic properties of K2[Mn(H2O)(pdtc)]3H2O 1, Na2[M3(H2O)6(pdtc)2]6H2O (M=Mn 2, Co 3)

    NASA Astrophysics Data System (ADS)

    Zheng, Yue-Qing; Zhu, Hong-Lin; Lin, Jian-Li; Xu, Wei; Hu, Fang-Hong

    2013-05-01

    Three new pyridine-2,3,5,6-tetracarboxylato (H4pdtc) complexes K2[Mn(H2O)(pdtc)]3H2O 1, Na2[M3(H2O)6(pdtc)2]6H2O (M=Mn 2, Co 3) were obtained and characterized by single-crystal X-ray diffraction methods and magnetic measurements. The characteristic building blocks of 1-3 are the pdtc bridged stair-like chains ?1{[M(H2O)](pdtc)3/3}2-, which results from the six-coordinated transition metal atoms bridged by pdtc4- ligands. The infinite chains in 1 are assembled by hydrogen bonds into 2D supramolecular networks, which are held together by (482) topological K+-H2O networks to complete 3D architecture. While the stair-like chains in 2 and 3 are interconnected by trans-[M(H2O)4]2+ moieties to 2D polymeric layers, which are bridged by dimeric [Na2(?-H2O)2(H2O)2]2+ moieties to build up 3D framework. The magnetic properties of 1-3 were analyzed on the basis of (i) linear trinuclear M3 models and (ii) the free Mn2+ and Co2+ ions with the zero-field splitting effect and spin-orbit coupling effect, respectively.

  13. Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yapi; Yi, Yide; Shao, Wei; Shao, Yanfang

    2013-03-01

    With the development of modern ferromagnetic technology, soft magnetic powder cores (MPCs) of amorphous and nanocrystalline alloys have been intensively studied for their excellent soft magnetic properties such as high flux density, low coercivity and reduced core loss due to amorphous state and nanocrystalline grains of 10-20 nm dispersed in a residual amorphous matrix. In this paper, the microstructures and soft magnetic properties, i.e., maximum magnetic induction Bm, effective permeability ?e, DC-bias properties and volume power losses PCV of MPCs made from amorphous powder of gas atomization and nanocrystalline powder of pulverized melt-spun ribbon were investigated and also compared on the basis of the same level of ?e. It is found that ?e of both kinds of MPC keeps unchanged up to 1 MHz. The amorphous MPC has lower PCV at lower frequency range, while the nanocrystalline MPC has lower PCV at high frequency range instead. Also, the nanocrystalline MPC has better DC-bias property. Moreover, the DC magnetic properties and the changes of PCV of both MPCs with frequency and flux density are also studied. Furthermore, the electromagnetic characteristics, the microstructures and the mechanisms accounting for these phenomena of both MPCs are also discussed.

  14. Magnetic properties of maraging steels in relation to nickel concentration

    SciTech Connect

    Ahmed, M.; Nasim, I.; Ayub, H.; Hasnain, K.

    1995-07-01

    Magnetic properties of maraging steels have been investigated as a function of nickel concentration. The alloys nickel content varied from 12 to 24 wt pct, while other alloying constituents were kept at a level maintained in the 18Ni-2,400 MPA-grade maraging steel. The magnetic properties were determined following aging for 1 hour in the temperature range of 450 to 750 C. In every alloy investigated, the coercive field increased with aging temperature, reaching a maximum around 670 C {+-} 30 C. The saturation magnetization values were lowest around temperatures where maximum coercive field was observed. The coercive field increased from {approximately}55 to {approximately}175 Oe ({approximately}4,380 to {approximately} 13,900 amp/meter) and the corresponding saturation magnetization decreased from {approximately}18,500 to {approximately}4,000 G ({approximately}1.85 to {approximately}0.4 T) in the alloys containing 12 and 24 wt pct Ni, respectively. The reverted austenite increased from 25 vol pct at 12 wt pct Ni to 10 vol pct at 24 wt pct Ni. The hardness and Charpy impact strength of the alloys have also been determined. An attempt has been made to correlate magnetic properties with different phase transformations occurring in maraging steels.

  15. High temperature magnetic properties of magnesium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Franco, A.; Silva, M. S.

    2011-04-01

    Magnetic properties such as Curie temperature (TC), saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) of nanoparticles of magnesium ferrites (MgFe2O4) were studied in a broad range of temperatures varying from room temperature to 800 K. The magnetization decreases with increasing temperature, approaching 0 at 750 K. The Curie temperature, determined by means of the inverse susceptibility versus temperature, was 738 K. The saturation magnetization, coercivity, and remanence decreased with increasing temperature, being close to 0 at temperatures near TC. However, for temperatures 100 K above room temperature, these magnetic properties were still the same as those at room temperature. The coercivity temperature dependence could be expressed in terms of T3/4, indicating that MgFe2O4 nanoparticles may form a system of random and noninteracting identical particles. The results are discussed in terms of interparticle interactions induced by the thermal fluctuations, cation distribution, and other imperfections that exert fields on Mg2+ ions that could increase with temperature.

  16. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  17. Preparation and Properties of Various Magnetic Nanoparticles

    PubMed Central

    Drbohlavova, Jana; Hrdy, Radim; Adam, Vojtech; Kizek, Rene; Schneeweiss, Oldrich; Hubalek, Jaromir

    2009-01-01

    The fabrications of iron oxides nanoparticles using co-precipitation and gadolinium nanoparticles using water in oil microemulsion method are reported in this paper. Results of detailed phase analysis by XRD and Mössbauer spectroscopy are discussed. XRD analysis revealed that the crystallite size (mean coherence length) of iron oxides (mainly γ-Fe2O3) in the Fe2O3 sample was 30 nm, while in Fe2O3/SiO2 where the ε-Fe2O3 phase dominated it was only 14 nm. Gd/SiO2 nanoparticles were found to be completely amorphous, according to XRD. The samples showed various shapes of hysteresis loops and different coercivities. Differences in the saturation magnetization (MS) correspond to the chemical and phase composition of the sample materials. However, we observed that MS was not reached in the case of Fe2O3/SiO2, while for Gd/SiO2 sample the MS value was extremely low. Therefore we conclude that only unmodified Fe2O3 nanoparticles are suitable for intended biosensing application in vitro (e.g. detection of viral nucleic acids) and the phase purification of this sample for this purpose is not necessary. PMID:22574017

  18. GEMAS: Mineral magnetic properties of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Fabian, Karl; Nourgaliev, Danis; Reimann, Clemens

    2015-04-01

    The GEMAS survey of European agricultural soil provides a unique opportunity to create the first comprehensive overview of mineral magnetic properties in agricultural soil on a continental scale. Samples from the upper 20 cm were taken in large agricultural fields (Ap-sample) at a density of 1 site/2500 km2. After air drying and sieving to < 2 mm, low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k was measured on 2500 samples using a Bartington MS2B sensor to obtain frequency dependence of magnetic susceptibility kfd. Hysteresis properties are determined using a J coercivity spectrometer, built in the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T, taking approximately 15 minutes. This allows to measure a wide range of magnetic parameters for large sample collections. Because the GEMAS geochemical atlas provides a comprehensive set of geochemical measurements characterizing the individual soil samples, the new data allow to study magnetic parameters in relation to chemical and geological parameters. The results show a clear large scale spatial distribution with e.g. broad distinct lows of k over sandy sediments of the last glaciation in central northern Europe and other sedimentary basins. More localized positive k anomalies occur near young volcanism, or old basalts exposed on the surface. On the other hand, frequency dependence of k displays a much more scattered behavior, indicating either high noise level, or large local variability. Clearly distinguishable, small-scale patterns in the randomized data set indicate that the latter is more likely. This indicates that local influences on soil magnetic properties, including anthropogenic effects, may be easier detected by frequency dependence than by k itself, which is largely controlled by geological and climatic background variability. Mapping the isothermal mineral magnetic properties shows again a clear relation to large scale European geology. Thereby, the GEMAS data set of magnetic parameters provides a continent wide reference of the natural background in Ap soil. For the first time the geological background variability of magnetic minerals for national and local soil studies is defined at the European scale.

  19. High-frequency electromagnetic properties of soft magnetic Y2Fe17Nx particles with easy-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Tan, Guoguo; Zhang, Yongbo; Qiao, Liang; Wang, Tao; Wang, Jianbo; Li, Fashen

    2015-11-01

    The microwave magnetic properties of the soft magnetic Y2Fe17Nx (x?3) particles with easy-plane anisotropy were reported. The high MS and out-of-plane anisotropy result in the high permeability in GHz frequency band. The complex permeability of the Y2Fe17Nx particles/paraffin composite was further enhanced by inducing the easy magnetization planes of the particles to be parallel to each other through a rotational orientation. The calculated reflection loss (RL) properties of the orientated Y2Fe17Nx composite revealed that this composite can be used as high-performance absorber in S band.

  20. Magnetically tunable multi-way splitters based on unidirectional properties of magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Liang, Wenyao; Zhang, Yuxia; Chen, Wuhe; Yu, Huangzhong

    2015-10-01

    We theoretically study the properties of unidirectional edge modes in a magnetic metamaterial waveguide and their applications in tunable multi-way splitters. These edge modes can only be excited at the surface to propagate along a single direction with nearly perfect transmittance of 100%. The physical origin is attributed to the combined action of magnetic resonance and time-reversal symmetry breaking under external magnetic fields. Moreover, the propagation direction can be controlled by reversing the direction of the external magnetic field. Further study reveals that a perfect electric conductor defect scarcely affects the transmittance but has sensitive influence on the phase delay and pattern distribution of the unidirectional edge modes. These properties hold promise for designing various unidirectional photonic devices. As an example, we design a tunable multi-way splitter with the advantages of high transmission contrast and convenient pathway control simultaneously.

  1. Magnetic properties of tephras from Lake Van (Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Makaroglu, Ozlem; Ca?atay, Nam?k; Pesonen, Lauri J.; Orbay, Naci

    2013-04-01

    Here we present magnetic properties of tephra layers in the cores taken from Lake Van, Eastern Anatolia, Turkey. Lake Van is the fourth largest terminal Lake in the world by volume (607 km3). It is 460 m deep and has a salinity of 21.4 per mil and a pH of 9.81. It is located on the East Anatolian Plateau with present day water level of 1648 m.a.s.l., and surrounded by large stratovolcanoes Nemrut, Suphan, Tendurek, and Ararat to the west and north. It has accumulated varved-sediments with tephra units, which all provide important paleoenvironmental records. After a seismic survey, four different locations were selected for coring in Lake Van, with water depths varying between 60 m and 90 m. Four cores having between 3 and 4.8 m length were analyzed for for element geochemistry using XRF Core Scanner analysis. The sub-samples were taken into plastic boxes with a volume of 6.4 cm3 for mineral magnetic analysis. The mineral magnetic measurements included magnetic susceptibility (?), anhysteretic remanent magnetisation (ARM), isothermal remanent magnetisation (IRM), hysteresis properties and thermomagnetic analyses. According to the mineral magnetic measurements and geochemical analysis, we identified the five tephra layers (T1-T5). These tephra units were correlated with the previously varve-dated units of Landmann et al. (2011). The varve ages of the tephra layers were used to obtain the age-depth model for the cores. According to the age models the cores extend back to 9500 ka BP (varve years). Down-core profiles of all the magnetic properties are highly correlatable between different cores, suggesting that the magnetic records are of regional character. ARM values are found to be more convenient than ? values for correlating the tephra layers. The hysteresis parameters of samples taken from these layers indicate that they are within Pseudo Single Domain range. IRM curves show that low coersivity magnetic minerals are dominated in all tephra layers. Measurements of the temperature dependence of magnetic susceptibility suggest that the magnetic mineralogy at all tephra layers is dominated by magnetite. All tephra layers have distinct magnetic signature which are characterized by strong ferromagnetic mineral and high Zr and K values, suggesting their alkaline composition. Landmann G, Steinhauser G, Sterba JH, Kempe S, Bichler M., 2011. Geochemical fingerprints by activation analysis of tephra layers in Lake Van sediments, Turkey. Applied Radiation and Isotopes 69, 929-935

  2. Magnetic property improvement of niobium doped with rare earth elements

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; He, Fei-Si; Jiao, Fei; He, Fa; Lu, Xiang-Yang; Zhao, Kui; Zhao, Hong-Yun; You, Yu-Song; Chen, Lin

    2014-05-01

    A new idea is proposed by the PKU group to improve the magnetic properties of the Type-II superconductor niobium. Rare earth elements like scandium and yttrium are doped into ingot niobium during the smelting processes. A series of experiments have been done since 2010. The preliminary testing results show that the magnetic properties of niobium materials have changed with different doping elements and proportions while the superconductive transition temperature does not change very much. This method may increase the superheating magnetic field of niobium so as to improve the performance of the niobium cavity, which is a key component of SRF accelerators. A Tesla-type single-cell cavity made of scandium-doped niobium is being fabricated.

  3. Magnetic properties of partially-inverted zinc ferrite aerogel powders

    NASA Astrophysics Data System (ADS)

    Hamdeh, H. H.; Ho, J. C.; Oliver, S. A.; Willey, R. J.; Oliveri, G.; Busca, G.

    1997-02-01

    Fine powders of ZnFe2O4 with an average particle size of 10 nm and inversion parameter of 0.21 were synthesized by the aerogel procedure. Portions of the powders were calcined in air at 500 and 800 C and other portions were ball-milled for 10 h. The materials were characterized by x-ray diffractometry, vibrating sample, and SQUID magnetometry, Mssbauer spectrometry, and low temperature calorimetry. Upon calcination the powders underwent significant changes in grain size, inversion parameter, and hence magnetic properties. The magnetic state of the as-produced and calcined samples is best described as disordered and highly dependent on temperature. Upon ball-milling the grain size varied widely and the inversion parameter attained a value of 0.55. The magnetic properties of the ball-milled sample are similar to those of ferrimagnetic MgFe2O4 powders having comparable grain size and inversion parameters.

  4. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    PubMed

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications. PMID:26726671

  5. Mechanical and hyperthermic properties of magnetic nanocomposites for biomedical applications.

    PubMed

    Kan-Dapaah, Kwabena; Rahbar, Nima; Tahlil, Abdullahi; Crosson, David; Yao, Nan; Soboyejo, Wole

    2015-09-01

    An understanding of the properties of multifunctional materials is important for the design of devices for biomedical applications. In this paper, a combination of experiments and models was used to study the mechanical and hyperthermic properties of magnetic nanoparticles (MNP)-filled PDMS composites for biomedical applications. These are studied as a function of the weight of MNP, ?-Fe2O3. The results showed the effects on mechanical behavior, and specific losses in a magnetic field. The measured Young's moduli are in good agreement with the moduli predicted from the Bergstrm-Boybce model. Specific losses calculated from magnetic measurements are used to predict the thermal dose under in-vivo conditions. The implications of the results were discussed for potential applications in biomedical devices. PMID:26005843

  6. Preparation and electrical properties of oil-based magnetic fluids

    NASA Astrophysics Data System (ADS)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de S, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.51010?m, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  7. Spectral, thermal and electrical properties of some new azo complexes.

    PubMed

    Zaki, Z M

    2000-09-01

    Cobalt(ll), nickel(II) and copper(II) acetates react with thymine compound (H2L) to form complexes having the general formula [MH2L(OAC)2(H2O)2]nH2O. However, the interaction of iron(III) chloride with thymine in acetic acid-water medium yields a new complex of the type [FeH2L(OAC)2H2O]OAC.H2O. All the thymine complexes have been characterized by elemental analyses, spectral and magnetic studies where thymine acts as a neutral ligand and the acetate ion behaves as a strong nucleophile during complexation. 6-aryl and thiazolylazo thymine compounds and their metal complexes were synthesized and characterized where the ligands act as a bidentate dibasic. The azo group is not involved in the structure. Thermal decomposition studies of the azo complexes were explained to give more information on the structure of the investigated materials. The effect of some transition metal cations such as Co11, Ni11 and CuII on the electrical behaviour of 6-(2-thiazolylazo)thymine compound is studied. The data obtained obeyed the relation sigma = sigma degrees exp ( - E/2kT) over the temperature range 30-150 degrees C. The observed conductivities of the different complexes follow the order Co < Ni < Cu. It is clear that this trend is depending on the decreasing of the ionic radii and the increasing stability of metal complexes. The calculated mobility of charge carriers is ranged from 10(-5) to 10(-9)cm2/V s suggesting that the conduction of the studied complexes takes place by hopping mechanism. PMID:10989883

  8. Spectral, thermal and electrical properties of some new azo complexes

    NASA Astrophysics Data System (ADS)

    Zaki, Zenat M.

    2000-09-01

    Cobalt(II), nickel(II) and copper(II) acetates react with thymine compound (H 2L) to form complexes having the general formula [MH 2L(OAC) 2(H 2O) 2] nH 2O. However, the interaction of iron(III) chloride with thymine in acetic acid-water medium yields a new complex of the type [FeH 2L(OAC) 2H 2O]OAC.H 2O. All the thymine complexes have been characterized by elemental analyses, spectral and magnetic studies where thymine acts as a neutral ligand and the acetate ion behaves as a strong nucleophile during complexation. 6-aryl and thiazolylazo thymine compounds and their metal complexes were synthesized and characterized where the ligands act as a bidentate dibasic. The azo group is not involved in the structure. Thermal decomposition studies of the azo complexes were explained to give more information on the structure of the investigated materials. The effect of some transition metal cations such as Co II, Ni II and Cu II on the electrical behaviour of 6-(2-thiazolylazo)thymine compound is studied. The data obtained obeyed the relation ?= ? exp (- E/2 kT) over the temperature range 30-150C. The observed conductivities of the different complexes follow the order Cocomplexes. The calculated mobility of charge carriers is ranged from 10 -5 to 10 -9cm 2/V s suggesting that the conduction of the studied complexes takes place by hopping mechanism.

  9. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  10. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  11. Influences of Magnetic Field on Macroscopic Properties of Water

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Deng, Bo; Tang, Bo

    The influences of magnetic field on thermodynamic, mechanical and electromagnetic properties of water including the specific heat, surface tension force, soaking effect or angle of contact, refraction index and electric conductivity are studied. From these investigations we know that the magnetic fields reduce the specific heat of water, increase the soaking degree and hydrophobicity of water to materials, depress its surface tension force and increase refractive index and electric conductivity of water relative to those of pure water. We can predict that these changes are caused by the changes of microscopic structures and distribution of water molecules under the action of a magnetic field. Therefore, our studies have important significations in science and has practical value of application of magnetized water.

  12. Temporal properties of dynamic processes on complex networks

    NASA Astrophysics Data System (ADS)

    Turalska, Malgorzata A.

    Many social, biological and technological systems can be viewed as complex networks with a large number of interacting components. However despite recent advancements in network theory, a satisfactory description of dynamic processes arising in such cooperative systems is a subject of ongoing research. In this dissertation the emergence of dynamical complexity in networks of interacting stochastic oscillators is investigated. In particular I demonstrate that networks of two and three state stochastic oscillators present a second-order phase transition with respect to the strength of coupling between individual units. I show that at the critical point fluctuations of the global order parameter are characterized by an inverse-power law distribution and I assess their renewal properties. Additionally, I study the effect that different types of perturbation have on dynamical properties of the model. I discuss the relevance of those observations for the transmission of information between complex systems.

  13. Uniaxial magnetic anisotropy of square-planar chromium(ii) complexes revealed by magnetic and HF-EPR studies.

    PubMed

    Deng, Yi-Fei; Han, Tian; Wang, Zhenxing; Ouyang, Zhongwen; Yin, Bing; Zheng, Zhiping; Krzystek, J; Zheng, Yan-Zhen

    2015-12-01

    Two mononuclear square-planar Cr(ii) complexes are reported, exhibiting field-induced slow magnetic relaxation. The axial zero-field splitting parameter was unambiguously determined by both a high-frequency/field electron paramagnetic resonance (HF-EPR) technique and magnetic measurements. This result represents the first observed single-molecule-magnet behavior in the square planar coordination geometry of any metal ions. PMID:26587566

  14. Magnetic properties of textured CoPd nanocrystalline thin films.

    PubMed

    Vlachos, A; Pappas, S D; Kapaklis, V; Karoutsos, V; Kordatos, A; Wilhelm, F; Rogalev, A; Fumagalli, P; Poulopoulos, P; Velgakis, M J; Politis, C

    2012-08-01

    CoPd is an important nanomaterial for magnetic and magneto-optic storage of information. In this work, CoPd alloyed thin films are grown via radio frequency magnetron sputtering on silicon, glass and polyimide substrates in a vacuum chamber with base pressure of 5 x 10(-8) mbar. The films are nanocrystalline with grain size between 4 and 80 nm. The magnetic properties of thoroughly textured CoPd alloyed thin films are compared to random polycrystalline ones. Magnetization hysteresis loops recorded under fields up to 12 kOe via a home-made magneto-optic Kerr-effect magnetometer reveal strong tendency for perpendicular magnetic anisotropy for the textured film. This anisotropy leads to the formation of well-defined stripe or labyrinthine ferromagnetic domains with the local spins oriented perpendicular to the film plane. The domain patterns and the hysteresis loops are simulated with micromagnetic calculations. Finally, an induced magnetic moment of 0.44 microB/atom is measured for Pd via X-ray magnetic circular dichroism and it is separated into spin and orbital magnetic moment contributions. PMID:22962731

  15. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes.

    PubMed

    Felicia, Leona J; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt% of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications. PMID:25353475

  16. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Felicia, Leona J.; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt % of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications.

  17. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  18. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    NASA Astrophysics Data System (ADS)

    Chiang, Yuan-Ching; Chieh, Jen-Jie; Ho, Chia-Che

    2012-06-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system.

  19. Intrinsic Magnetism and Collective Magnetic Properties of Size-Selected Nanoparticles

    NASA Astrophysics Data System (ADS)

    Antoniak, C.; Friedenberger, N.; Trunova, A.; Meckenstock, R.; Kronast, F.; Fauth, K.; Farle, M.; Wende, H.

    Using size-selected spherical FePt nanoparticles and cubic Fe/Fe-oxide nanoparticles as examples, we discuss the recent progress in the determination of static and dynamic properties of nanomagnets. Synchroton radiation-based characterisation techniques in combination with detailed structural, chemical and morphological investigations by transmission and scanning electron microscopy allow the quantitative correlation between element-specific magnetic response and spin structure on the one hand and shape, crystal and electronic structure of the particles on the other hand. Examples of measurements of element-specific hysteresis loops of single 18 nm sized nanocubes are discussed. Magnetic anisotropy of superparamagnetic ensembles and their dynamic magnetic response are investigated by ferromagnetic resonance as a function of temperature at different microwave frequencies. Such investigations allow the determination of the magnetic relaxation and the extraction of the average magnetic anisotropy energy density of the individual particles.

  20. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement.

    PubMed

    Chiang, Yuan-Ching; Chieh, Jen-Jie; Ho, Chia-Che

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200?Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60?W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  1. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    PubMed Central

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200?Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60?W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  2. Effects of electric field on magnetic properties of MnxGe_{1-x} diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Assefa, Gezahegn; Singh, P.

    2015-11-01

    We report the effect of external electric field (EEF) on the magnetic properties of MnxGe_{1-x} , diluted magnetic semiconductor. We present a Kondo Lattice Model type Hamiltonian with exchange coupling between localized spins, itinerant holes and the EEF. The magnetization, the dispersion and critical temperature (Tc ) are calculated for different values of EEF parameters (? ) using double time temperature-dependent Green function formalism. The enhancement of the (Tc ) with the EEF is shown to be very distinct and is in agreement with recent experimental observation and much required for spintronics applications and devices.

  3. Effects of electric field on magnetic properties of MnxGe_{1-x} diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Assefa, Gezahegn; Singh, P.

    2016-03-01

    We report the effect of external electric field (EEF) on the magnetic properties of MnxGe_{1-x}, diluted magnetic semiconductor. We present a Kondo Lattice Model type Hamiltonian with exchange coupling between localized spins, itinerant holes and the EEF. The magnetization, the dispersion and critical temperature (Tc) are calculated for different values of EEF parameters (α) using double time temperature-dependent Green function formalism. The enhancement of the (Tc) with the EEF is shown to be very distinct and is in agreement with recent experimental observation and much required for spintronics applications and devices.

  4. Synthesis, Structure, and Complex Magnetism of MIr2In8 (M = Eu, Sr).

    PubMed

    Calta, Nicholas P; L Bud'ko, Sergey; Rodriguez, Alexandra P; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G

    2016-03-21

    We report the synthesis, crystal structure, and physical properties of two new polar intermetallic compounds, EuIr2In8 and SrIr2In8. Both were synthesized in good yield using In metal as a reactive flux medium, enabling the growth of large crystals for physical property measurements. They crystallize in the orthorhombic space group Pbam with the CeFe2Al8 structure type, which is sometimes also referred to as the CaCo2Al8 structure type. The two analogues have unit cell parameters of a = 13.847(3) Å, b = 16.118(3) Å, and c = 4.3885(9) Å for M = Eu and a = 13.847(3) Å, b = 16.113(3) Å, and c = 4.3962(9) Å for M = Sr at room temperature. SrIr2In8 is a diamagnetic metal with no local magnetic moments on either the Sr or Ir sites, and the diamagnetic contribution from core electrons overwhelms the expected Pauli paramagnetism normally seen in intermetallic compounds. Magnetism in EuIr2In8 is dominated by the local Eu moments, which order antiferromagnetically at 5 K in low applied fields. Increasing the field strength depresses the magnetic ordering temperature and also induces a spin reorientation at lower temperature, indicating complex competing magnetic interactions. Low-temperature heat capacity measurements show a significant enhancement of the Sommerfeld coefficient in EuIr2In8 relative to that in SrIr2In8, with estimated values of γ = 118(3) and 18.0(2) mJ mol(-1) K(-2), respectively. PMID:26949815

  5. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole.

    PubMed

    Krko?lu, Gne? Sheyla; Kiraz, Fulya etinkaya; Say?n, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M=Mn(II), Fe(II) or Co(II); etim=1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes. PMID:25919408

  6. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  7. Magnetic antenna excitation of whistler modes. I. Basic properties

    SciTech Connect

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-15

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  8. Thermodynamic properties of magnetic strings on a square lattice

    NASA Astrophysics Data System (ADS)

    Mol, Lucas; Oliveira, Denis Da Mata; Bachmann, Michael

    2015-03-01

    In the last years, spin ice systems have increasingly attracted attention by the scientific community, mainly due to the appearance of collective excitations that behave as magnetic monopole like particles. In these systems, geometrical frustration induces the appearance of degenerated ground states characterized by a local energy minimization rule, the ice rule. Violations of this rule were shown to behave like magnetic monopoles connected by a string of dipoles that carries the magnetic flux from one monopole to the other. In order to obtain a deeper knowledge about the behavior of these excitations we study the thermodynamics of a kind of magnetic polymer formed by a chain of magnetic dipoles in a square lattice. This system is expected to capture the main properties of monopole-string excitations in the artificial square spin ice. It has been found recently that in this geometry the monopoles are confined, but the effective string tension is reduced by entropic effects. To obtain the thermodynamic properties of the strings we have exactly enumerated all possible string configurations of a given length and used standard statistical mechanics analysis to calculate thermodynamic quantities. We show that the low-temperature behavior is governed by strings that satisfy ice rules. Financial support from FAPEMIG and CNPq (Brazilian agencies) are gratefully acknowledged.

  9. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  10. Structural and magnetic properties of Mn2+?TiSn

    NASA Astrophysics Data System (ADS)

    Kharel, P.; Huh, Y.; Shah, V. R.; Li, X. Z.; Al-Aqtash, N.; Tarawneh, K.; Krage, E. S.; Sabirianov, R. F.; Skomski, R.; Sellmyer, D. J.

    2012-04-01

    The structural and magnetic properties of Mn2+?TiSn prepared by arc melting and annealing have been investigated. Structural studies show that the compound crystallizes in the hexagonal Ni3Sn-type structure with a = 5.70 and c = 4.55 . The phase stability of Mn2TiSn in the hexagonal structure is supported by the first-principle electronic structure calculations where the total energy per unit-cell volume in the hexagonal structure is smaller than that in the cubic structure. Field and temperature dependence of magnetization show that the sample is magnetically ordered with a Curie temperature around 400 K. The anisotropy energy calculated from the high-field data is 4.0 105 ergs/cm3 at 300 K but increases by a factor of two (8.6 105 ergs/cm3) as temperature decreases to 10 K. The observed magnetic properties are explained as the consequences of competing ferromagnetic and antiferromagnetic interactions between different magnetic sublattices.

  11. Magnetic antenna excitation of whistler modes. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-01

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  12. Magnetic properties of nanocrystalline KNbO{sub 3}

    SciTech Connect

    Golovina, I. S. Shanina, B. D.; Kolesnik, S. P.; Geifman, I. N.; Andriiko, A. A.

    2013-11-07

    Newly synthesized undoped and iron-doped nanoscale powders of KNbO{sub 3} are investigated using magnetic resonance and static magnetization methods in order to determine how the crystal size and doping affect the structure of magnetic defects and material properties. Although the bulk crystals of KNbO{sub 3} are nonmagnetic, the undoped KNbO{sub 3} powder with average particle size of 80?nm exhibits magnetic properties. The ferromagnetic resonance signal and the magnetization curve registered on the powder are thoroughly analyzed. It is concluded that the appearance of the defect driven ferromagnetism in the undoped powder is due to the nano-size of the particles. This effect disappears in the iron-doped KNbO{sub 3} powder with particle sizes above 300?nm. In case of low doping (<1?mol. % Fe), a new electron paramagnetic resonance signal with g{sub eff}?=?4.21 is found out in the KNbO{sub 3}:Fe powder. Such a signal has not been observed in the bulk crystals of KNbO{sub 3}:Fe. We suppose that this signal corresponds to individual paramagnetic Fe{sup 3+} ions having rhombic symmetry.

  13. Thermal transport properties of complex oxides from first principles

    NASA Astrophysics Data System (ADS)

    Bhatti, Aqyan; Jain, Ankit; McGaughey, Alan; Benedek, Nicole

    2015-03-01

    Thermal transport properties of materials are key parameters in the design of many engineering devices. For this reason, it is highly desirable to be able to control or tailor the thermal properties of materials for specific applications. Complex oxides are attractive in this regard, due to their low and potentially highly tunable thermal conductivity. However, the theoretical description of the thermal transport properties of oxides presents a number of challenges compared to conventional semiconductors. For example, oxides tend to have complex crystal structures and the atoms interact through long-range electrostatic forces. In this talk, we use the example of PbTiO3 to discuss some of the challenges and opportunities associated with thermal transport predictions in complex oxides. For example, many oxides contain very low-lying optical branches, which may provide important acoustic-optical scattering channels. In addition, it is often possible to tune the frequencies of such optical modes with epitaxial strain. We also link the observed negative thermal expansion behavior of PbTiO3 to two zone-boundary modes with large, negative Grneisen parameters and comment on the consequences of this finding for the thermal transport properties of this material.

  14. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    SciTech Connect

    Yeary, Lucas W; Moon, Ji Won; Rawn, Claudia J; Love, Lonnie J; Rondinone, Adam Justin; Thompson, James R; Chakoumakos, Bryan C; Phelps, Tommy Joe

    2011-01-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, Zn{sub y}Fe{sub 1-y}Fe{sub 2}O{sub 4}) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with Zn{sub x}Fe{sub 1-x}OOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (M{sub s}) reported in the literature. The averaged M{sub s} values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  15. Magnetic properties of tektites and other related impact glasses

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N. S.; Cournède, C.; Scaillet, B.

    2015-12-01

    We present a comprehensive overview of the magnetic properties of the four known tektite fields and related fully melted impact glasses (Aouelloul, Belize, Darwin, Libyan desert and Wabar glasses, irghizites, and atacamaites), namely magnetic susceptibility and hysteresis properties as well as properties dependent on magnetic grain-size. Tektites appear to be characterized by pure Fe2+ paramagnetism, with ferromagnetic traces below 1 ppm. The different tektite fields yield mostly non-overlapping narrow susceptibility ranges. Belize and Darwin glasses share similar characteristics. On the other hand the other studied glasses have wider susceptibility ranges, with median close to paramagnetism (Fe2+ and Fe3+) but with a high-susceptibility population bearing variable amounts of magnetite. This signs a fundamental difference between tektites (plus Belize and Darwin glasses) and other studied glasses in terms of oxygen fugacity and heterogeneity during formation, thus bringing new light to the formation processes of these materials. It also appears that selecting the most magnetic glass samples allows to find impactor-rich material, opening new perspectives to identify the type of impactor responsible for the glass generation.

  16. Magnetic Properties of MnFe2Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Elgendy, Ahmed A.; Salehi-Fashami, Mohammad; Sellmyer, David; Hadjipanayis, George

    2015-03-01

    Recently, MnFe2Ga Heusler alloys have attracted significant attention due to their interesting physical properties such as large magnetic-field-induced strain, giant magnetocaloric effects,large magnetoresistance, and exchange bias behavior. These properties make them promising candidates for various practical applications in the field of smart materials, magnetic refrigeration and spintronics. In this work, we prepared MnFe2Ga alloys by melt-spinning and sputtering and studied the structural and magnetic properties. The melt-spun ribbons were prepared with a wheel speed of 30 m/s. The ribbons were annealed at different temperatures for 1 hour and grinded to make fine powders. The grinded powders were also used to make the target that is used in the cluster gun for the fabrication of MnFe2Ga nanoparticles. The structure of the as made, annealed ribbons, and powders displayed a face-centered-cubic structure. The microstructure of the as-made ribbons showed equiaxed grains with an average size of 3-5 ?m while the annealed ribbons showed bigger grains with small particles covering homogeneously their surface. The magnetic properties show an enhancement of magnetization while coercivity remains the same with values M(3T) and HC of 85 emu/g and 150 Oe, respectively Transmission electron microscopy with elemental mapping is currently underway to determine the structure and composition of the surface nanoparticles. The work was supported by DOE-BES-DMSE (Grant No. DE-FG02-04ER4612).

  17. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  18. Structural and magnetic properties of CoPt clusters

    NASA Astrophysics Data System (ADS)

    Hu, W. F.; Yuan, H. K.; Chen, H.; Wang, G. Z.; Zhang, G. L.

    2014-01-01

    The geometrical structures, electronic and magnetic properties of Con - xPtx (n=2-13,38,55) alloy clusters have been systematically investigated by using the density functional theory within the generalized gradient approximation (DFT-GGA). It is found that CoPt alloy clusters adopt the structures of corresponding monatomic Co clusters, where Pt atoms localize at the surface sites and tend to bond together forming a Pt exterior shell. The ferromagnetic coupling between atoms is determined in CoPt clusters, and the Co local magnetic moments can be enhanced by the increase of Pt concentration.

  19. Aging of magnetic properties in MgO films

    SciTech Connect

    Balcells, Ll.; Konstantinovic, Z.; Martinez, B.; Beltran, J. I.; Martinez-Boubeta, C.; Arbiol, J.

    2010-12-20

    In this work we report on the magnetic behavior of MgO thin films prepared by sputtering. A severe aging process of the ferromagnetic properties is detected in magnetic samples exposed to ambient atmosphere. However, ferromagnetism can be successively switched on again by annealing samples in vacuum. We suggest this behavior reflects the key role played by defects in stabilizing ferromagnetism in MgO films and is likely to be closely related to the hydrogen-driven instability of V-type centers in this material.

  20. Theoretical study on mechanical properties of polyethylene-SWCNT complexes

    NASA Astrophysics Data System (ADS)

    Petrushenko, Igor K.

    2016-01-01

    This paper studies the mechanical properties of polyethylene (PE)-Single-walled carbon nanotube (SWCNT) complexes by using density functional theory (DFT). At the PBE/SVP level, the Youngs modulus of the complexes is obtained as a function of PE content. It is established that, with increasing number of PE chains attached to the SWCNTs, the Youngs modulus monotonically decreases. The density of states (DOS) results show that no orbital hybridization exists between the PE chains and nanotubes. The results of this work are of importance for the design of composite materials employing SWCNTs.

  1. Magnetic properties of CoCr 2S 4

    NASA Astrophysics Data System (ADS)

    Sagredo, V.; Morn, M. C.; Delgado, G. E.

    2006-10-01

    The magnetic properties of CoCr 2S 4 have been studied by DC and AC magnetization experiments in the temperature range 1.8-350 K. The temperature dependence of the DC magnetization, together with a calculated saturation magnetization per molecule of 2.73 ?B at 1.8 K, suggests that CoCr 2S 4 presents a ferrimagnetic behavior with a critical temperature of 223 K. Both the real and the imaginary parts of the AC magnetic susceptibility exhibit a sudden increase at 225 K. Between 250 and 200 K the real part of the susceptibility( ??) is typical of a material at the phase transition from a paramagnetic to a long-range-ordered state with Tc=2232 K. The imaginary part ( ??) presents a cusp at 120 K. An interesting behavior appears below ?8 K, where ?? is strongly reduced and simultaneously ?? is increasing showing a maximum at 4.3 K. This particular evolution of ?? with the temperature suggests a richer magnetic behavior for CoCr 2S 4 at low temperatures.

  2. Electronic and magnetic properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  3. Magnetic properties of single Ni atoms on Cu2 N

    NASA Astrophysics Data System (ADS)

    Prueser, Henning; Gill, Toby G.; Warner, Ben; Hirjibehedin, Cyrus F.

    2014-03-01

    When a magnetic atom is placed onto a conducting surface its properties may change considerably due to interactions with the substrate. This interaction may be reduced by introducing a thin decoupling layer between the atom and the underlying metal. One general consequence of placing a magnetic atom on a surface is magnetic anisotropy, where angular momentum along a certain direction is energetically preferred. Although recent studies of atomic scale nanostructures have been able to measure the magnetic anisotropy for atomically precise configurations, a clear understanding of the dramatic differences observed for different atomic spins has not yet emerged. Using scanning tunneling microscopy and spectroscopy, we study the case of single Ni atoms deposited on copper nitride (Cu2N) islands formed in a Cu(001) surface. As in prior studies, we find that the observed magnetic behavior strongly depends on the binding site of the adsorbate. For Ni, however, surprisingly large anisotropy is observed on a nitrogen binding site; this is in stark contrast to the behavior observed for Mn, Fe, and Co, which display evidence of magnetic anisotropy on Cu sites. We explore the possible origins for this behavior as well as the implications for other transition metal adsorbates.

  4. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  5. Observation of magnetic behavior with two broad maxima of magnetic susceptibility in [Ni(mnt) 2] - complexes

    NASA Astrophysics Data System (ADS)

    Xuan, Fang; Tian, Zheng-Fang; Ren, Xiao-Ming; Duan, Hai-Bao; Meng, Qing-Jin

    2010-04-01

    Three complexes of [Ni(mnt) 2] - (mnt 2- = maleonitriledithiolate) with benzylpyridinium derivatives, 1-(2',6'-dichlorobenzyl)-4-aminopyridinium (abbr. Cl 2BzNH 2Py +) and 1-(2',6'-dichlorobenzyl)quinolinium (abbr. Cl 2BzQl +), have been characterized structurally and magnetically. The [Cl 2BzNH 2Py][Ni(mnt) 2] solution in MeCN was slowly evaporated to give the crystals of 2, whilst its solution in i-PrOH/MeCN yields 20.5 i-PrOH. The [Ni(mnt) 2] - anions are arranged in the mixed stacks of anions and cations in 2, and the segregated stacks of anions and cations in 20.5 i-PrOH and 4. Even though three complexes exhibit different stacking pattern of magnetic anions, their temperature dependences of magnetic susceptibilities in 2-300 K range show a common feature, namely, two broad maxima of magnetic susceptibility. Powder X-ray examination for three complexes excluded that the impurity causes such complicated magnetic behaviors. Combined with the single crystal structure analyses, the double broad maxima of magnetic susceptibility is probably attributed to anisotropic magnetic exchange interactions between magnetic anions.

  6. Structural, magnetic, and transport properties of laser-annealed GaAs:Mn-H

    SciTech Connect

    Farshchi, R.; Dubon, O. D.; Hwang, D. J.; Misra, N.; Julaton, C. C. III; Yu, K. M.; Grigoropoulos, C. P.

    2009-07-01

    We have investigated the effect of laser annealing on the structural, magnetic, and transport properties of hydrogenated Ga{sub 0.96}Mn{sub 0.04}As films. Irradiation with nanosecond laser pulses leads to significant recovery of hole-mediated ferromagnetism in these films. By tuning processing parameters such as laser fluence and number of pulses, one can control the electrical and magnetic properties--namely, resistivity, magnetic coercivity, and remnant magnetization--in the laser-activated region. Ion-beam analysis indicates that the structural integrity of the film is maintained upon hydrogenation and laser annealing with evidence for displacement of substitutional Mn ions toward interstitial sites due to hydrogen-complex formation. Laser annealing results in the relaxation of up to 50% of Mn atoms back to substitutional sites while the Curie temperature recovers to approx60% of the T{sub C} prior to hydrogenation. Subsequent thermal annealing results in full relocation of Mn atoms to substitutional sites, yet the T{sub C} remains pinned at approx60% of its original value, suggesting the formation of a defect complex involving substitutional Mn. Our numerical simulations elucidate the strong interplay between laser processing parameters and Mn-H dissociation.

  7. Measurement of bidirectional optical properties of complex shading devices

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1995-01-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This paper describes the method of measuring the spatially averaged bidirectional optical properties using an automated, large-sample gonioradiometer/photometer, termed a ``Scanning Radiometer.`` Property measurements are presented for one of the most optically complex systems in common use, a venetian blind. These measurements will form the basis for optical system calculations used to test the method of determining performance.

  8. Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3

    SciTech Connect

    Biegalski, Michael D; Takamura, Y; Mehta, A; Gai, Zheng; Kalinin, Sergei; Ambaye, Hailemariam; Lauter, Valeria; He, Jun; Kim, Young Min; Borisevich, Albina Y; Siemons, Wolter; Christen, Hans M

    2014-01-01

    Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.

  9. Mssbauer study and magnetic properties of M-type barium hexaferrite doped with Co + Ti and Bi + Ti ions.

    PubMed

    Belous, A G; V'yunov, O I; Pashkova, E V; Ivanitskii, V P; Gavrilenko, O N

    2006-12-28

    Using X-ray powder diffractions, Mssbauer spectroscopy, and magnetic measurements, the effect of complex dopants (Co2+ + Ti4+) and (Bi3+ + Ti4+) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. The distribution of cations over five nonequivalent positions of barium hexaferrite with magnetoplumbite structure is discussed. It has been shown that doped barium hexaferrite can be used for high-coercitivity data storage media. PMID:17181308

  10. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    PubMed

    Car, Pierre-Emmanuel; Favre, Annack; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour. PMID:26282265

  11. Magnetic Separation and Magnetic Properties of Low-Grade Manganese Carbonate Ore

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Shi, B.; Ge, W.; Yan, C. J.; Yang, X.

    2015-02-01

    The relation between the magnetic separation behavior and magnetic properties of a low-grade manganese ore was analyzed before and after treatment by direct reduction with coal. It was found that raw ore with an initial average grade of 10.39% Mn and consisting of diamagnetic and paramagnetic minerals can be concentrated by high-intensity magnetic separation to produce a salable product with a grade of 22.75% Mn and a recovery of 89.88%. In contrast, direct reduction of the ore results in a new Mn-Fe oxide phase formed with a combination of ferromagnetic and paramagnetic properties, thereby increasing the magnetic susceptibilities of the ore by almost two orders of magnitude. The grade of Mn for the roasted ore could only be concentrated to 15.49% with a recovery of 66.67%. Therefore, it is concluded that the low-grade manganese ores with antiferromagnetic and paramagnetic (or diamagnetic, but not strongly ferromagnetic) properties could be efficiently beneficiated via high-intensity magnetic separation.

  12. Synthesis and magnetic properties of Fe-Pt-B nanocomposite permanent magnets with low Pt concentrations

    SciTech Connect

    Zhang Wei; Louzguine, Dmitri V.; Inoue, Akihisa

    2004-11-22

    Microstructure and magnetic properties of melt-spun Fe{sub 80-x}Pt{sub x}B{sub 20} (x=20,22,24) alloy ribbons have been investigated. A homogeneous nanoscale mixed structure with amorphous and fcc {gamma}-FePt phases was formed in the melt-spun ribbons. The average sizes of the amorphous and fcc {gamma}-FePt phases are about 5 nm, and the enrichment phenomenon of B is recognized in the coexistent amorphous phase. The melt-spun ribbons exhibit soft magnetic properties. The nanocomposite structure consisting of fct {gamma}{sub 1}-FePt, fcc {gamma}-FePt, and Fe{sub 2}B phases was obtained in the melt-spun ribbons annealed at 798 K for 900 s, and their average grain sizes are about 20 nm. The remanence (B{sub r}), reduced remanence (M{sub r}/M{sub s}), coercivity ({sub i}H{sub c}), and maximum energy product (BH){sub max} of the nanocomposite alloys are in the range of 0.93-1.05 T, 0.79-0.82, 375-487 kA/m, and 118-127 kJ/m{sup 3}, respectively. The good hard magnetic properties are interpreted as resulting from exchange magnetic coupling between nanoscale hard fct {gamma}{sub 1}-FePt and soft magnetic fcc {gamma}-FePt or Fe{sub 2}B phases.

  13. Structural and magnetic properties of cobalt doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Luk, Wing Yan

    Semiconductor spintronics is a promising new field of study in the ongoing quest to make electronic devices faster, cheaper, and more efficient. While current spintronics utilize the spin property of electrons to achieve greater functionally, the integration of spintronics into conventional semiconductor electronics will lead to advances optoelectronics, quantum computing, and other emerging fields of technology. This integration relies on effective generation; injection, transport, and detection of spin polarized electron current. To these end, mastering synthesis of room temperature ferromagnetic semiconductors is inevitable. In this work, we study the properties of cobalt-implanted titanium dioxide, a room temperature dilute ferromagnetic semiconductor discovered in 2001. The ferromagnetic interaction mechanism is however controversial. By using metal vapor vacuum arc (MEVVA) ion source, different doses of cobalt ions were implanted into anatase structures of titanium dioxide (TiO2) thin films. The TiO2 films which were sputtered on SiO2 (100nm)/Si (110) substrates and rutile structure of TiO2. The cobalt implanted TiO2 thin films were prepared with different atomic fraction and then thermally treated at different temperature after ion implantation. The structural properties of the anatase titanium dioxide were also studied as a comparison to rutile titanium dioxide. Rutherford backscattering spectrometry (RBS) was performed to determine the composition of cobalt. The crystal structure of the thin films and rutile single crystal was mainly anatase as detected in XRD spectra. X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) were also used in sample analysis. Vibrating sample magnetometer (VSM) was employed to study the magnetic properties of the cobalt implanted films. Ferromagnetic behaviors of these films were observed at room temperature. Cobalt doped anatase TiO2 films show room temperature ferromagnetism. Doping was provided by implantation using a MEVVA ion source. The enhancement of ferromagnetic properties was obtained by post-implantation annealing. The microstructure, magnetic properties and the dependence on the annealing conditions have being studied using various characterization techniques. Interestingly, the output referring to the saturation magnetization per Co atom with a value as high as 3.16 muB/Co atom, exceeds considerably that of the bulk cobalt which suggests that contribution to the overall magnetic behavior is not only a function of the concentration of inherently magnetic elements, but there must exist also sources of magnetisms. One of these sources are oxygen vacancies as discussed within this work. It is also interesting that instead of the more commonly observed hcp structure, the Co nanoclusters are found in fcc structure probably being stabilized by the TiO2 matrix.

  14. Pattern Formation in a Complex Plasma in High Magnetic Fields

    SciTech Connect

    Schwabe, M.; Konopka, U.; Bandyopadhyay, P.; Morfill, G. E.

    2011-05-27

    Low-pressure room-temperature neon, argon, krypton, and air plasmas were studied in magnetic fields up to flux densities of 2.3 T. Filaments appeared parallel to the magnetic field lines, and patterns such as spirals and concentric circles formed in the perpendicular direction. We link these effects to the magnetization of the ions. We also used a layer of embedded microparticles as probes in the plasma. Their motion changed dramatically from a collective rotation of the whole ensemble in moderate magnetic fields to a rotation in several small vortices centered at the filaments.

  15. Geometric properties of magnetized black hole event horizons and ergosurfaces

    NASA Astrophysics Data System (ADS)

    Esteban, E. P.

    2009-10-01

    In this paper we focus in the geometric properties of the magnetized Kerr-Newman metric. Three applications are considered. First, the event horizon surface area is calculated and from there we derive the first law of thermodynamics for magnetized black holes. We have obtained analytical expressions for the surface gravity, angular velocity, electric potential, and magnetic moment at the magnetized Kerr-Newman black hole event horizon. An approximate expression for the surface area of the magnetized black hole ergosurface was also obtained. Second, we study the magnetized Kerr-Newman black hole's circumferences. We found that for small values of the angular momentum (| | < 0.1) the event horizon has a prolate spheroid shape. Increasing the value of the angular momentum will change the event horizon shape from a prolate ellipsoid to an oblate spheroid. For small values of the angular momentum and charge the ergosurface shape is an oblate spheroid. Increasing these two parameters will change the ergosurface shape from a oblate spheroid to a prolate spheroid. Third, analytical expressions for the magnetized Kerr-Newman event horizon and ergosurface Gaussian curvatures were obtained although not explicitly shown. Instead a graphical analysis was carried out to visualize regions where Gaussian curvatures take negative or positive values. We found that the Gaussian curvature at the event horizon poles has negative values and do not satisfy Pelavas condition. Therefore, these regions can not be embedded in E3. However, the magnetized Kerr-Newman ergosurface can be embedded in E3 regardless the negative Gaussian curvature values in some regions of the ergosurface.

  16. Importance of out-of-state spin-orbit coupling for slow magnetic relaxation in mononuclear Fe(II) complexes.

    PubMed

    Lin, Po-Heng; Smythe, Nathan C; Gorelsky, Serge I; Maguire, Steven; Henson, Neil J; Korobkov, Ilia; Scott, Brian L; Gordon, John C; Baker, R Tom; Murugesu, Muralee

    2011-10-12

    Two mononuclear high-spin Fe(II) complexes with trigonal planar ([Fe(II)(N(TMS)(2))(2)(PCy(3))] (1) and distorted tetrahedral ([Fe(II)(N(TMS)(2))(2)(depe)] (2) geometries are reported (TMS = SiMe(3), Cy = cyclohexyl, depe = 1,2-bis(diethylphosphino)ethane). The magnetic properties of 1 and 2 reveal the profound effect of out-of-state spin-orbit coupling (SOC) on slow magnetic relaxation. Complex 1 exhibits slow relaxation of the magnetization under an applied optimal dc field of 600 Oe due to the presence of low-lying electronic excited states that mix with the ground electronic state. This mixing re-introduces orbital angular momentum into the electronic ground state via SOC, and 1 thus behaves as a field-induced single-molecule magnet. In complex 2, the lowest-energy excited states have higher energy due to the ligand field of the distorted tetrahedral geometry. This higher energy gap minimizes out-of-state SOC mixing and zero-field splitting, thus precluding slow relaxation of the magnetization for 2. PMID:21894963

  17. Functionalization of monodisperse iron oxide NPs and their properties as magnetically recoverable catalysts.

    PubMed

    Gage, Samuel H; Stein, Barry D; Nikoshvili, Linda Zh; Matveeva, Valentina G; Sulman, Mikhail G; Sulman, Esther M; Morgan, David Gene; Yuzik-Klimova, Ekaterina Yu; Mahmoud, Waleed E; Bronstein, Lyudmila M

    2013-01-01

    Here we report the functionalization of monodisperse iron oxide nanoparticles (NPs) with commercially available functional acids containing multiple double bonds such as linolenic (LLA) and linoleic (LEA) acids or pyridine moieties such as 6-methylpyridine-2-carboxylic acid, isonicotinic acid, 3-hydroxypicolinic acid, and 6-(1-piperidinyl)pyridine-3-carboxlic acid (PPCA). Both double bonds and pyridine groups can be reacted with noble metal compounds to form catalytically active species in the exterior of magnetic NPs, thus making them promising magnetically recoverable catalysts. We determined that both LLA and LEA stabilize magnetic iron oxide NPs, allowing the formation of ?-complexes with bis(acetonitrile)dichloropalladium(II) in the NP shells. In both cases, this leads to the formation of NP aggregates because of interparticle complexation. In the case of pyridine-containing ligands, only PPCA with two N-containing rings is able to provide NP stabilization and functionalization whereas other pyridine-containing acids did now allow sufficient steric stabilization. The interaction of PPCA-based particles with Pd acetate also leads to aggregation because of interparticle interactions, but the aggregates that are formed are much smaller. Nevertheless, the catalytic properties in the selective hydrogenation of dimethylethynylcarbinol (DMEC) to dimethylvinylcarbinol were the best for the catalyst based on LLA, demonstrating that the NP aggregates in all cases are penetrable for DMEC. Easy magnetic separation of this catalyst from the reaction solution makes it promising as a magnetically recoverable catalyst. PMID:23234434

  18. Experimental econophysics: Complexity, self-organization, and emergent properties

    NASA Astrophysics Data System (ADS)

    Huang, J. P.

    2015-03-01

    Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).

  19. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  20. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  1. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes

    NASA Astrophysics Data System (ADS)

    Nikolin, A. A.; Negrebetsky, V. V.

    2014-09-01

    The state of the art of the chemistry of hypercoordinate silicon compounds is analyzed. Published data on the current top-priority approaches to the preparative synthesis of these compounds and on their properties, structures and reactivity are summarized and generalized. Relying on the results obtained by modern physicochemical methods, the possible mechanisms of stereodynamic processes occurring in the coordination units of hypercoordinate silicon complexes are discussed. The bibliography includes 157 references.

  2. Tetrathiafulvalene-Supported Triple-Decker Phthalocyaninato Dysprosium(III) Complex: Synthesis, Properties and Surface Assembly

    PubMed Central

    Gao, Feng; Zhang, Xue-Mei; Cui, Long; Deng, Ke; Zeng, Qing-Dao; Zuo, Jing-Lin

    2014-01-01

    Self-assembly of functional compounds into a prerequisite nanostructure with desirable dimension and morphology by controlling and optimizing intermolecular interaction attracts an extensive research interest for chemists and material scientist. In this work, a new triple-decker sandwich-type lanthanide complex with phthalocyanine and redox-active Schiff base ligand including tetrathiafulvalene (TTF) units has been synthesized, and characterized by single crystal X-ray diffraction analysis, absorption spectra, electrochemical and magnetic measurements. Interestingly, the non-centrosymmetric target complex displays a bias dependent selective adsorption on a solid surface, as observed by scanning tunneling microscopy (STM) at the single molecule level. Density function theory (DFT) calculations are utilized to reveal the formation mechanism of the molecular assemblies, and show that such electrical field dependent selective adsorption is regulated by the interaction between the external electric field and intrinsic molecular properties. Our results suggest that this type of multi-decker complex involving TTF units shows intriguing multifunctional properties from the viewpoint of structure, electric and magnetic behaviors, and fabrication through self-assembly. PMID:25088605

  3. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes

    PubMed Central

    2014-01-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. PACS 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g PMID:25170336

  4. Magnetic properties of ion irradiated epitaxial Fe films

    NASA Astrophysics Data System (ADS)

    Kamada, Y.; Watanabe, H.; Mitani, S.; Echigoya, J.; Mohapatra, J. N.; Kikuchi, H.; Kobayashi, S.; Takanashi, K.

    2011-01-01

    Magnetic properties of a heavy-ion irradiated single crystalline iron film were investigated. A high quality Fe (001) film with a thickness of 250 nm was fabricated on MgO (001) using the molecular beam epitaxy technique. The film was irradiated by 3.2 MeV Ni ions at room temperature using a tandem accelerator. Formation of dislocation loops with nanometer size was observed by TEM observation, and that of sub-nanometer size vacancy clusters was confirmed indirectly from a resistivity increase. However, M-H hysteresis curves and magnetic domain structure did not change significantly. These results indicate the formation of irradiation defects of pure iron in nanometer scale range has little influence on the magnetization process of the iron.

  5. Synthesis and properties of magnetic iron oxide/platinum nanocomposites

    NASA Astrophysics Data System (ADS)

    Serga, V.; Maiorov, M.; Kulikova, L.; Krumina, A.; Karashanova, D.

    2015-03-01

    Iron oxide/platinum nanocomposites have been synthesized by the extractive-pyrolytic method (EPM) involving gradual decomposition of iron capronate and n-trioctylammonium hexachloroplatinate initially produced by solvent extraction. The content of platinum in the composites was 1.2 wt%, 2.4 wt% and 4.8 wt%. Phase composition, morphology and magnetic properties of the produced materials were investigated. XRD analysis and magnetic measurements show that the magnetic phase (magnetite Fe3O4) dominates in a carrier sample produced by the pyrolysis of iron carboxylate, but hematite ?-Fe2O3 exists there as an admixture. Referring to the TEM results, the produced composites contain ultra-disperse platinum particles on the carrier, and the mean size of these varies from 3 nm to 9 nm.

  6. Discontinuous properties of current-induced magnetic domain wall depinning

    PubMed Central

    Hu, X. F.; Wu, J.; Niu, D. X.; Chen, L.; Morton, S. A.; Scholl, A.; Huang, Z. C.; Zhai, Y.; Zhang, W.; Will, I.; Xu, Y. B.; Zhang, R.; van der Laan, G.

    2013-01-01

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 1011 A.m−2) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of “Barkhausen jumps”. A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime. PMID:24170087

  7. Magnetic properties of transition-metal multilayers studied with x-ray magnetic circular dichroism spectroscopy

    SciTech Connect

    Stoehr, J.; Nakajima, R.

    1998-01-01

    The detailed understanding of the magnetic properties of transition-metal multilayers requires the use of state-of-the-art experimental techniques. Over the last few years, the X-ray magnetic circular dichroism (XMCD) technique has evolved into an important magnetometry tool. This paper is an overview of the principles and unique strengths of the technique. Aspects covered include the quantitative determination of element-specific spin and orbital magnetic moments and their anisotropies through sumrule analyses of experimental spectra. A discussion is presented on how the spin and orbital magnetic moments in transition-metal thin films and sandwiches are modified relative to the bulk. The authors show that a thin film of a nonmagnetic metal such as Cu may become magnetically active when adjacent to a magnetic layer, and a thin film of a ferromagnetic metal such as Fe may become magnetically inactive. The orbital moment is found to become anisotropic in thin films; it can be regarded as the microscopic origin of the magnetocrystalline anisotropy.

  8. Stable and color tunable emission properties based on non-cyclometalated gold(III) complexes.

    PubMed

    Bachmann, Michael; Blacque, Olivier; Venkatesan, Koushik

    2015-06-01

    Stable and emission tunable non-cyclometalated gold(III) triaryl complexes of the type [(L)Au(C6F5)3] [L = 2-(2,4-difluorophenylpyridine) (1), 4-phenylpyridine (2), 2-phenylpyridine (3), 2-phenylisoquinoline (4), 2-thienylpyridine (5)] were synthesized starting from a common precursor complex [(THT)Au(C6F5)3] [THT = tetrahydrothiophene] in good to modest yields. Extensive characterization of the complexes by various nuclear magnetic resonance spectroscopy techniques and elemental analysis further corroborated the single-crystal X-ray diffraction studies. The complexes displayed room temperature phosphorescence in the neat solid and in 2-MeTHF at 77 K. Detailed photophysical investigations of the complexes in the neat solid and at 77 K revealed the successful tuning of the emission maxima with modest quantum yields across the visible part of the electromagnetic spectrum depending on the electronic properties of the heterocyclic ligands. DFT (Density Functional Theory) and TDDFT (Time Dependent Density Functional Theory) calculations were performed to discern the composition of the excited state as well as confirm the obtained relative emission energies upon substitution with electronically different ligands. The obtained diverse emissive behavior of the complexes combined with the ease of synthesis illustrate the generality and applicability of the design approach to obtain emissive gold(iii) complexes devoid of cyclometalation. PMID:25947068

  9. Using Solution Phase Self-Assembly to Control the Properties of Magnetic and Magnetoelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Schelhas, Laura Theresa

    Nanostrutured magnetic materials have gained much recent interest because of their application in various electronic systems. These materials, however, often require complex lithography and epitaxy to control the magnetic properties. In this work, solution-phase self-assembly is used to create magnetic and magnetoelectric materials with a variety of nanoscale structures. By engineering the architecture of the system, control over a range of magnetic properties can be realized. The first part of this work focuses on nano-magnetic materials. Here, the organization of nanoscale magnets into different geometries is controlled, and the properties of the systems are studied. In the first chapter, Ni-Cu nanowire stacks are examined to explore the effect of shape anisotropy on the coupling between different elements. This work provides insight into how to design new elements for spin-torque devices. In the next chapter, directed self-assembly of block copolymers is used to create coupled 1D chains of ferromagnetic and superparamagnetic FePt nanoparticles. These nano-patterned are globally aligned on the wafer length-scale using micron-sized lithographic grooves. This system is ideal for studying dipolar coupling between magnetic nanocrystals. Additionally, the processing methods developed here provide a platform for organizing other types of nanomaterials. The second sections explore magnetoelectric materials. These are materials that combine ferromagnetism and ferroelectricity in a coupled manner. One material that does this intrinsically is bismuth ferrite. The first chapter of this section explores ordered nanoporous bismuth ferrite produced by block copolymer templating. It is shown that the ordered porosity of the system creates a unique strain state in the bismuth ferrite, which in turn produces a large change in magnetization upon application of an electric field. Finally, in the last chapter, a nanostructured composite magnetoelectric system is studied. Here, magnetostrictive Ni nanocrystals are coupled to a single-crystalline piezoelectric substrate. The nanocrystals are superparamagnetic and show no net magnetization. Upon application of an electric field, however, strain induced in the piezoelectric substrate strains the lattice of the nanocrystals, creating a preferred magnetic axis along the high strained direction. This locks the magnetization along the strain axis and switches the nanocrystals from a superparamagnetic to a ferromagnetic state.

  10. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  11. Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged Ni(II)2Ln(III)2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II)-dysprosium(III) analogue.

    PubMed

    Abtab, Sk Md Towsif; Maity, Manoranjan; Bhattacharya, Kisholoy; Saudo, E Carolina; Chaudhury, Muktimoy

    2012-10-01

    A new family of [2 2] tetranuclear 3d-4f heterometallic complexes have been synthesized. These are [Zn(2)Dy(2)L(2)(?(3)-OH)(2)(?(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))2H(2)OMeOH (3), [Ni(2)Dy(2)L(2)(?(3)-OH)(2)(?(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))MeOH (4), [Ni(2)La(2)L(2)(?(3)-OH)(2)(?(4)-OH)(dbm)(2)(MeOH)(2)](ClO(4))H(2)O2MeOH (5), [Ni(2)Tb(2)L(2)(?(3)-OH)(2)(?(4)-OH)(dbm)(2) (MeOH)(2)](NO(3))MeOH (6), and [Ni(2)Gd(2)L(2)(?(3)-OH)(2)(?(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))MeOH (7), [H(2)L = N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine and Hdbm = dibenzoylmethane] obtained through a single-pot synthesis using [Zn(HL)(dbm)] (for 3)/[Ni(HL)(dbm)]2CH(3)OH (for 4, 5, 6, and 7) as 3d-metal ion precursors. Single-crystal X-ray diffraction analysis and electrospray ionization (ESI) mass spectroscopy have been used to establish their identities. Compounds are isostructural, in which the metal ions are all connected together by a bridging hydroxido ligand in a rare ?(4)-mode. In complexes 3-7, the metal ions are antiferromagnetically coupled. Taking a cue from the results of 3 and 5, precise estimations have been made for the antiferromagnetic NiNi (J(Ni) = -50 cm(-1)), NiGd (J(NiGd) = -4.65 cm(-1)), and GdGd (J(Gd) = -0.02 cm(-1)) exchange interactions in 7, involving the gadolinium(III) ions. The Zn(II)(2)Dy(III)(2) compound 3 has shown the tail of an out-of-phase signal in alternating current (AC) susceptibility measurement, indicative of slow relaxation of magnetization. Interestingly, the Ni(II)(2)Dy(III)(2) compound 4 in which both the participating metal ions possess large single ion anisotropy, has failed to show up any slow magnetic relaxation. PMID:22994160

  12. Structural, dielectric and magnetic properties of Ni substituted zinc ferrite

    NASA Astrophysics Data System (ADS)

    Kumbhar, S. S.; Mahadik, M. A.; Mohite, V. S.; Rajpure, K. Y.; Kim, J. H.; Moholkar, A. V.; Bhosale, C. H.

    2014-08-01

    NixZn1-xFe2O4 ferrite has been synthesized by the ceramic method using Ni CO3, ZnO, Fe2O3 precursors. The influence of Ni content on the structural, morphological, electrical and magnetic properties of NixZn1-xFe2O4 ferrites is studied. The X-ray diffraction (XRD) analysis reveals that the samples are polycrystalline with spinel cubic structure. The SEM images of NixZn1-xFe2O4 ferrite show that the grain size decreases with an increase in the Ni content. The tetrahedral and octahedral vibrations in the samples are studied by IR spectra. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. Conduction mechanism due to polarons has been analyzed by measuring the AC conductivity. Impedance spectroscopy is used to study the electrical behavior. Magnetic properties of NixZn1-xFe2O4 are studied by using hysteresis loop measurement. The maximum value of saturation magnetization of 132.8 emu/g obtained for the composition, x=0.8, is attributed to magnetic moment of Fe3+ ions.

  13. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Hong, Jisang

    2015-08-01

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of 0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was 1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  14. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV–Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge– discharge measurements and UV–Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  15. Growth and magnetic properties of ultrathin Fe on Pd(110).

    SciTech Connect

    Cuenya, B. R.; Pearson, J.; Yu, C.; Li, D.; Bader, S. D.

    2000-11-01

    We have investigated the growth and magnetic properties of 0-3 ML (monolayer) Fe on stepped Pd(110) with reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) and the surface magneto-optic Kerr effect (SMOKE) in order to relate the morphology, structure and magnetic properties in a low-dimensional system. The Fe films, grown at 340 K, are smooth and pseudomorphic up to 1.5 ML, where three-dimensional growth and lateral lattice relaxation ensues. The in-plane row spacing along the [110] decreases by {approximately}5-6 % at 3 ML. RHEED oscillations with l-ML period are observed in the (1,0), (2,0) and the center of the (0,0) streak intensity. The tail of the (0,0) streak at low exit angle, however, has a 0.5-ML period oscillation, which suggests step decoration growth. Submonolayer Fe films remain ferromagnetic above {approximately}0.3 ML. The magnetic easy axis is initially perpendicular to the surface and is in-plane for Fe thickness >1.5 ML. Between 0.9-1.2 ML, there appear to be mixed magnetic phases as indicated by an increase in coercivity.

  16. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  17. High-frequency magnetic properties of Zn ferrite films deposited by magnetron sputtering

    SciTech Connect

    Guo Dangwei; Zhu Jingyi; Yang Yuancai; Fan Xiaolong; Chai Guozhi; Sui Wenbo; Zhang Zhengmei; Xue Desheng

    2010-02-15

    The effect of thermal annealing on structural and magnetic properties has been investigated for Zn ferrite films deposited on Si (111) substrates using radio frequency magnetron sputtering. The saturation magnetization at room temperature was enhanced upto 303 emu/cm{sup 3} by annealing at relatively low temperature of 200 deg. C and decreased at higher temperatures. The complex permeability {mu}={mu}{sup '}-i{mu}{sup ''} values of the ferrite films as-deposited and annealed at 200 and 400 deg. C were measured at frequency upto 5 GHz. These films exhibited better high-frequency properties, especially, the film annealed at 200 deg. C had a large {mu}{sup '} of 19.5 and high resonance frequency f{sub r} of 1.61 GHz. And the reason was investigated preliminarily based on the bianisotropy model.

  18. Structural, morphological, electrical and magnetic properties of Dy doped Ni-Co substitutional spinel ferrite

    NASA Astrophysics Data System (ADS)

    Kadam, A. A.; Shinde, S. S.; Yadav, S. P.; Patil, P. S.; Rajpure, K. Y.

    2013-03-01

    Dysprosium doped Ni0.8Co0.2Fe2-xDyxO4 ferrite is prepared by simple ceramic method with x varied from 0 to 0.1 in step of 0.025. The influence of Dy doping on structural, morphological, electrical and magnetic properties were studied. The formation of ferrite phase was confirmed by X-ray diffraction, which is a characteristic of the spinel ferrite. Increase in average crystallite and grain size has been observed with increase in Dy doping. Prepared samples show the usual dielectric dispersion having Maxwell-Wagner-type interfacial polarization. Reduction in dielectric constant, loss tangent and ac conductivity has been observed with frequency. Room temperature complex impedance analysis shows semicircles attributed to the high resistance values at lower frequencies. Magnetic properties have been studied by measuring M-H plots.

  19. Effect of fabrication method on the structural and the magnetic properties of copper ferrite

    NASA Astrophysics Data System (ADS)

    Pongpadung, Siriwipa; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-03-01

    Copper ferrites (CuFe2O4) were fabricated by using the self-combustion urea and glycine process (UNP, and GNP), the polymerized complex (PC), the solid-state reaction (SSR), and the molten-salt (MS) methods. The synthesized powders were calcined in static air at different temperature from 773 to 1173 K. The effects of the fabrication method on the microstructural and the magnetic properties were investigated. X-ray diffraction (XRD) analysis results revealed the cubic CuFe2O4 spinel structure for the original powders. The tetragonal CuFe2O4 spinel structure was obtained after calcination. Vibrating sample magnetometry (VSM) showed significant changes in the magnetic properties of the CuFe2O4 system with fabrication method, phase composition, and heat treatment.