Science.gov

Sample records for magnetic properties existence

  1. Does fast magnetic reconnection exist?

    NASA Technical Reports Server (NTRS)

    Priest, E. R.; Forbes, T. G.

    1992-01-01

    The main features of the Priest-Forbes (1986) and Priest-Lee (1990) models of magnetic reconnection in astrophysical plasmas are discussed, and the Priest-Lee model is generalized to include inflow pressure gradients and thus different regimes of reconnection. It is shown that different scaling results can be obtained depending on the boundary conditions. These results are compared to the ones observed in the numerical experiments of Biskamp (1986) and Lee and Fu (1986). It is concluded that numerical experiments with suitably designed boundary conditions are likely to exhibit fast reconnection, and that such reconnection is a common process in astrophysical and space plasmas.

  2. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  3. A doublet C0 IR solution using existing magnets

    SciTech Connect

    John A Johnstone

    2002-08-19

    This note explores, in a very limited way, some of the possibilities and difficulties encountered in creating collisions at C0 solely using magnets looted from the existing IR's at B0 and D0. In the strawman model considered her a standard Collins straight section is installed at D0, while all the useful D0 IR magnets are moved to C0. There is no obvious reason from either an optics or beam-separation viewpoint to prefer the demise of D0 over CDF, or vice-versa, so the model choice is fairly arbitrary. Apart from modifications to the final-focus optics, the magnets appear at C0 locations just as they are currently installed at D0.

  4. Magnetic properties of nanomagnets

    NASA Astrophysics Data System (ADS)

    Mamiya, Hiroaki

    With recent progress of nanotechnology for spin-electronic devices, a rich potential for nanomagnets has attracted considerable attention. Some fundamental issues, however, are still open to question. This study throws a new light on the issues by using the techniques: preparation techniques for uniform nanomagnets and techniques for estimation of equilibrium states. The results show that conventional models for classical phenomena of individual nanomagnets should be renewed in some respects. In addition, it is shown that existence of macroscopic quantum phenomena is doubtful in the Kelvin regime, even if magnetization of the individual nanomagnet is considerably small. On the other hand, we can find that assembled nanomagnets show cooperative phenomena: spin glasslike order in randomly assembled nanomagnets and some phase transitions in dipolar-coupled nanomagnets with sufficient mobility. Some references are appended for English-speaking readers.

  5. Superconductivity and Magnetism in iron-pnictides: co-existence or not?

    NASA Astrophysics Data System (ADS)

    Vorontsov, Anton

    2011-03-01

    In this talk I will review the weak-coupling approach to describe the interplay of two electronic orders: superconductivity (SC) in the form of Cooper pairs, and magnetism in the form of the spin-density waves (SDW). The two orders, traditionally thought as incompatible, are close neighbors in magnetically-active Fe-based superconductors with surprisingly high Tc . Complex multi-band structure, multiple interactions and many families of these materials create a range of possible states of mingling between superconductivity and magnetism. I will present a list of different parameters, including (a) the Fermi surface shape, (b) the order parameter structure, (c) the relative strength of SC and SDW interactions, (d) the external magnetic field, and describe which properties, or their combinations, lead to co-existence or avoidance of SC and SDW orders, and how transition between the two orders occurs upon doping.

  6. Tropical cloud properties from CERES: does the Iris exist?

    NASA Astrophysics Data System (ADS)

    Chambers, L.; Lin, B.; Young, D.

    New data products from the Clouds and the Earth's Radiant Energy System (CERES) instrument on the Tropical Rainfall Measuring Mission have been examined in the context of the recently-proposed adaptive Tropical infrared Iris. CERES Single Scanner Footprint data products combine radiative fluxes with cloud properties obtained from a co-orbiting imaging instrument. This combination of sensors enables the use of cloud property-based definitions of the various regions in the simple Iris climate model. Regardless of definition, the radiative properties are found to be different from those assigned in the original Iris hypothesis. As a result, the strength of the feedback effect is reduced by a factor of 10 or more. Contrary to the initial Iris hypothesis, most of the definitions tested in this paper result in a small positive feedback. Thus, the existence of an effective infrared Iris to counter greenhouse warming is not supported by the CERES data.

  7. Magnetic properties and anisotropy in magnetic thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Guo, Wenli

    A systematic study of the magnetic properties and anisotropy in magnetic thin films as well as superlattices is presented in this thesis. The main objective is to investigate by means of the Green function technique the order-disorder phase transition and reorientation transition in a non-perturbative microscopic theory valid in the whole temperature range of interest. We consider the magnetic systems that may consist of an arbitrary number of layers with any spin. We start with a discussion of general properties and origins of anisotropies of the magnetic systems, and a list of questions that we are trying to answer. A comparison between different theoretical approaches follows. The Green function method is used to derive analytical expressions for various anisotropies. The energy spectrum and the spontaneous magnetization are obtained as well. Based on these results, the transition temperature and the Curie temperature are calculated as functions of the Fe film thickness. It is shown that the condition for the reorientation transition is equivalent to that for the zero energy gap at the bottom of the spin-wave spectrum. Special features under the influence of normal external field, anisotropic exchange couplings and next-nearest-neighbor couplings on the magnetization reorientation of magnetic thin films are then investigated in detail. It is demonstrated that the nature of perpendicular remanent (PR) depends primarily on the surface anisotropy and film thickness. The magnetic properties of Tb/Fe superlattices are also studied. It shows ferrimagnetic properties and normal uniaxial anisotropy. An approximation is proposed to treat magnetic Ni films of arbitrary thickness and arbitrary lattice structure for general spin. It is a much simpler way of calculation, in which one does not have to solve the determinant equation, especially the one with off-diagonal elements. The temperature and thickness dependence of various anisotropies are then investigated. There

  8. Magnetic properties of electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Heydon, G. P.; Hoon, S. R.; Farley, A. N.; Tomlinson, S. L.; Valera, M. S.; Attenborough, K.; Schwarzacher, W.

    1997-04-01

    Electrodeposited multilayered nanowires grown within a polycarbonate membrane constitute a new medium in which giant magnetoresistance (GMR) perpendicular to the plane of the multilayers can be measured. These structures can exhibit a perpendicular GMR of at least 22% at ambient temperature. We performed detailed studies both of reversible magnetization and of irreversible remanent magnetization curves for CoNiCu/Cu/CoNiCu multilayered and CoNiCu pulse-deposited nanowire systems with Co:Ni ratios of 6:4 and 7:3 respectively in the range 10 - 290 K, allowing the magnetic phases of these structures to be identified. Shape anisotropy in the pulse-deposited nanowire and inter-layer coupling in the multilayered nanowire are shown to make important contributions to the magnetic properties. Dipolar-like interactions are found to predominate in both nanowire systems. Magnetic force microscope (MFM) images of individual multilayered nanowires exhibit a contrast consistent with there being a soft magnetization parallel to the layers. Switching of the magnetic layers in the multilayered structure into the direction of the MFM tip's stray field is observed.

  9. On Possible Existence of Elongated Magnetical Structure in Circumsolar Space

    NASA Astrophysics Data System (ADS)

    Volodichev, N. N.; Grigorjeva, V. P.; Prokudina, V. D.

    1988-02-01

    The proton events, observed from "Prognoz-8" and connected with the flares of April 28 and 30, 1981 were analyzed. The temporal profiles of proton flux were characterized by discrete structure, and from bursts' duration the total sizes of the magnetic structure (L = 3.5×106km) and characteristic sizes of the fine structure (L = 25 - 30×103km) were evaluated.

  10. Magnetic Properties of Friction Stir Processed Composite

    NASA Astrophysics Data System (ADS)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-07-01

    Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

  11. Magnetic Properties of Friction Stir Processed Composite

    NASA Astrophysics Data System (ADS)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-03-01

    Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

  12. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  13. The Magnetic Properties Experiments on Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Knudsen, J. M.; Gunnlaugsson, H. P.; Hviid, S. F.; Madsen, M. B.

    1996-09-01

    A remarkable result from the Viking missions was the discovery that the Martian soil is highly magnetic, in the sense that the soil is attracted by permanent magnets. Both the strong and weak magnets on the Viking landers were saturated with dust throughout the mission. Appropriate limits for the spontaneous magnetization sigma_S were advanced: 1 Am(2) (kg soil)(-1) < sigma_S < 7 Am(2) (kg soil)(-1) . The essential difference between the Magnet Arrays for Mars Pathfinder and the Viking Magnetic Properties Experiment is that Magnet Arrays on Pathfinder will include magnets of lower strengths that the weakest Viking magnet. The five magnets consist of small ring magnets concentric with oppositely polarized cylindrical magnets. The outer diameter of the ring magnets is 18 mm. Discrete (single phase) particles of strongly magnetic minerals (gamma -Fe2O3 or Fe3O4) will stick to all five magnets, while composite (multiphase) particles will stick preferentially to the strongest magnets. Two Magnet Arrays are placed on the Pathfinder lander, with a distance of 1180 and 1450 mm, respectively, from the Imager for Mars Pathfinder (IMP). The magnets will attract airborne dust, and the dust on the magnets will be periodically viewed by the IMP. The images transmitted to Earth are the data on which conclusions on the magnetic properties of the dust will be based. Besides the Magnet Arrays the Pathfinder lander carries two other types of magnets. The Tip Plate Magnet is placed at a distance of 10 cm from the IMP, and thus allows a rather high resolution imaging of the dust clinging to the magnet. The Ramp Magnets are placed near the end of the ramps by which the micro-rover will descend to the surface. The dust on the Ramp Magnets will be studied by the APX-spectrometer of the micro-rover.

  14. Dielectric and Magnetic Properties in Relaxor Magnet LuFeCoO4

    NASA Astrophysics Data System (ADS)

    Soda, Minoru; Masuda, Takatsugu

    2016-03-01

    Dielectric and magnetic properties in the relaxor magnet LuFeCoO4 having a triangular lattice are studied by permittivity, magnetization, and neutron diffraction measurements. We found that LuFeCoO4 has the nuclear diffuse scattering induced by Polar Nanoregions (PNRs) where local polarizations in nanoregions are randomly oriented. Synchronized changes in PNRs and magnetic short-range order with decreasing temperature are observed, which reveal the existence of the strong coupling between dielectricity and magnetism. The coincidence of the correlation lengths of the nuclear atoms and spins in the crystallographic a-b plane at the onset temperature of two-dimensional magnetic order is confirmed, suggesting that the magnetic order develops inside the PNRs. With further decreasing temperature, the magnetic correlation extends beyond the domain wall of the crystal cluster in contrast with another relaxor magnet BiFeO3-1/3BaTiO3.

  15. Hysteresis of the magnetic properties of soft magnetic gels.

    PubMed

    Zubarev, A Yu; Chirikov, D N; Borin, D Yu; Stepanov, G V

    2016-08-14

    We present results of an experimental and theoretical study of the magnetic properties of soft magnetic gels consisting of micron-sized magnetizable particles embedded in a polymer matrix. Experiments demonstrate hysteretic dependences of composite magnetization on an applied magnetic field and non-monotonic, with maximum, dependence of the sample susceptibilities on the field. We propose a theoretical approach which describes the main physical features of these experimental results. PMID:27406554

  16. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    PubMed

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs. PMID:27139335

  17. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  18. ON THE PROBABLE EXISTENCE OF AN ABRUPT MAGNETIZATION IN THE UPPER CHROMOSPHERE OF THE QUIET SUN

    SciTech Connect

    Stepan, JirI; Trujillo Bueno, Javier E-mail: jtb@iac.es

    2010-03-10

    We report on a detailed radiative transfer modeling of the observed scattering polarization in the H{alpha} line, which allows us to infer quantitative information on the magnetization of the quiet solar chromosphere. Our analysis suggests the presence of a magnetic complexity zone with a mean field strength (B) > 30 G lying just below the sudden transition region to the coronal temperatures. The chromospheric plasma directly underneath is very weakly magnetized, with (B) {approx} 1 G. The possible existence of this abrupt change in the degree of magnetization of the upper chromosphere of the quiet Sun might have large significance for our understanding of chromospheric (and, therefore, coronal) heating.

  19. Improving magnetic properties of ultrasmall magnetic nanoparticles by biocompatible coatings

    NASA Astrophysics Data System (ADS)

    Costo, R.; Morales, M. P.; Veintemillas-Verdaguer, S.

    2015-02-01

    This paper deals with the effect of a biocompatible surface coating layer on the magnetic properties of ultrasmall iron oxide nanoparticles. Particles were synthesized by laser pyrolysis and fully oxidized to maghemite by acid treatment. The surface of the magnetic nanoparticles was systematically coated with either phosphonate (phosphonoacetic acid or pamidronic acid) or carboxylate-based (carboxymethyl dextran) molecules and the binding to the nanoparticle surface was analyzed. Magnetic properties at low temperature show a decrease in coercivity and an increase in magnetization after the coating process. Hysteresis loop displacement after field cooling is significantly reduced by the coating, in particular, for particles coated with pamidronic acid, which show a 10% reduction of the displacement of the loop. We conclude that the chemical coordination of carboxylates and phosphonates reduces the surface disorder and enhances the magnetic properties of ultrasmall maghemite nanoparticles.

  20. Magnetically Responsive Nanostructures with Tunable Optical Properties.

    PubMed

    Wang, Mingsheng; Yin, Yadong

    2016-05-25

    Stimuli-responsive materials can sense specific environmental changes and adjust their physical properties in a predictable manner, making them highly desired components for designing novel sensors, intelligent systems, and adaptive structures. Magnetically responsive structures have unique advantages in applications, as external magnetic stimuli can be applied in a contactless manner and cause rapid and reversible responses. In this Perspective, we discuss our recent progress in the design and fabrication of nanostructured materials with various optical responses to externally applied magnetic fields. We demonstrate tuning of the optical properties by taking advantage of the magnetic fields' abilities to induce magnetic dipole-dipole interactions or control the orientation of the colloidal magnetic nanostructures. The design strategies are expected to be extendable to the fabrication of novel responsive materials with new optical effects and many other physical properties. PMID:27115174

  1. The magnetic properties of seamless steel pipe

    NASA Astrophysics Data System (ADS)

    Willcock, S. N. M.; Tanner, B. K.; Mundell, P. A.

    1987-03-01

    The magnetic and metallurgical properties of seamless pipe steel have been investigated as a function of position around the pipe circumference. No changes in magnetic properties were found to be associated with the four cycle spiral variations in pipe wall thickness introduced during forging. A weaker single cycle thickness variation was accompanied by a change both in magnetic properties and pearlite fraction. The coercive field predicted from an empirical relationship between grain size and ferrite and pearlite fractions was found to be in excellent agreement with that measured experimentally.

  2. Magnetic and electronic properties of ruthenocuprates

    NASA Astrophysics Data System (ADS)

    Hirai, Y.; Schneider, M. L.; Frazer, B. H.; Rast, S.; Onellion, M.; Asaf, U.; Felner, I.; Nowik, I.; Ali, N.; Roy, S.; Prester, M.; Drobac, D.; Zivkovic, I.; Perfetti, L.; Reginelli, A.; Ariosa, D.; Margaritondo, G.

    2001-03-01

    We present data on as-prepared, oxygen annealed, and hydrogen loaded ruthenocuprate samples. We include: * magnetic measurements: magnetization,^1 ac susceptibility; * electronic properties: x-ray photoemission,^1,2 x-ray absorption^3; * the effects of hydrogen loading and of oxygen annealing. We concentrate on the changes of magnetic properties with carrier concentration, and discuss the superconducting properties only briefly. ^1B.H. Frazer et.al., Phys. Rev. B. ^2B.H. Frazer et.al., Euro. J. Phys., in press (2000). ^3Y. Hirai et.al., submitted.

  3. The Existence Condition for Magnetic Flux-Current Surfaces in Magnetohydrostatic Equilibria

    NASA Astrophysics Data System (ADS)

    Choe, G. S.; No, J.; Kim, S.; Jang, M.

    2014-12-01

    Magnetohydrostatic equilibria, in which the Lorentz force, the plasma pressure force and the gravitational force balance out to zero, are widely adopted as the zeroth order states of many space plasma systems. A magnetic flux-current surface is a surface, whose tangent plane is locally spanned by the magnetic field vector and the current density vector at each point in it; in other words, it is a surface, in which both magnetic field lines and current lines lie. We have derived the necessary and sufficient condition for existence of magnetic flux-current surfaces in magnetohydrostatic equilibria. It is also shown that the existence of flux-current surfaces is a necessary (but not sufficient) condition for the ratio of gravity-aligned components of current density and magnetic field to be constant along each field line. However, its necessary and sufficient condition is found to be very restrictive. This finding gives a significant constraint in modeling solar coronal magnetic fields as force-free fields using photospheric magnetic field observations.

  4. Magnetic properties of ground-state mesons

    NASA Astrophysics Data System (ADS)

    Šimonis, V.

    2016-04-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties ( i.e., usual magnetic moments) to be of sufficiently high quality, too.

  5. Static magnetic properties of Maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zulfiqar; Rahman, Muneeb Ur; Usman, M.; Hasanain, Syed Khurshid; Zia-ur-Rahman; Ullah, Amir; Kim, Ill Won

    2014-12-01

    We report the static magnetic properties of Maghemite (γ-Fe2O3) nanoparticles with an average crystallite size of 14 ± 1.8 nm synthesized via a co-precipitation method. The zero-field-cooled (ZFC) and the field-cooled (FC) magnetization measurements were performed using a physical properties measurements system (PPMS) at temperatures from 5 K to 300 K. The ZFC/FC measurements showed a typical superparamagnetic behavior with a narrow size distribution.

  6. Magnetic properties of ISABELLE superconducting quadrupoles

    SciTech Connect

    Willen, E; Engelmann, R; Greene, A F; Herrera, J; Jaeger, K; Kirk, H; Robins, K

    1981-01-01

    A number of superconducting quadrupole magnets have been constructed in the ISABELLE project during the past year. With these quadrupoles, it was intended to test construction techniques, magnet performance and measuring capability in an effort to arrive at a quadrupole design satisfactory for use in the storage ring accelerator. While these magnets are designed to have dimensions and field properties close to those needed for regular cell ISABELLE quadrupoles, no effort was made to make them identical to one another. This report details the performance characteristics of one of these magnets, MQ3005.

  7. Variability of magnetic soil properties in Hawaii

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Harrison, J. Bruce J.; Hendrickx, Jan M. H.; Borchers, Brian; North, Ryan E.; Simms, Janet E.; Jasper, Chris; Smith, Christopher W.; Li, Yaoguo

    2005-06-01

    Magnetic soils can seriously hamper the performance of electromagnetic sensors for the detection of buried land mines and unexploded ordnance (UXO). Soils formed on basaltic substrates commonly have large concentrations of ferrimagnetic iron oxide minerals, which are the main cause of soil magnetic behavior. Previous work has shown that viscous remanent magnetism (VRM) in particular, which is caused by the presence of ferrimagnetic minerals of different sizes and shapes, poses a large problem for electromagnetic surveys. The causes of the variability in magnetic soil properties in general and VRM in particular are not well understood. In this paper we present the results of laboratory studies of soil magnetic properties on three Hawaiian Islands: O"ahu, Kaho"olawe, and Hawaii. The data show a strong negative correlation between mean annual precipitation and induced magnetization, and a positive correlation between mean annual precipitation and the frequency dependent magnetic behavior. Soil erosion, which reduces the thickness of the soil cover, also influences the magnetic properties.

  8. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  9. Indications of 8-kilogauss magnetic field existence in the sunspot umbra

    NASA Astrophysics Data System (ADS)

    Lozitsky, V. G.

    2016-01-01

    We present magnetic field diagnostics in two big sunspot of different magnetic polarity observed on 18 May 2002 and 29 October 2003. In these sunspots, according to visual measurements, magnetic field strength in Fe I 5250.2 Å line was about 3500 gauss. The existence of stronger fields follows from the detailed study of fine spectral effects in I ± V and V profiles of Fe I 6301.5 and 6302.5 Å lines, such as: (a) non-parallelism of bisectors in Fe I 6301.5 line related to distance about ±250 mÅ from the line center, and (b) weak secondary Stokes V peaks on distance, on the average, ±375 mÅ from the Fe I 6302.5 Å center. Consequently, we argue that these peculiarities indicate to the fact that spatially unresolved magnetic fields exist in the sunspot umbra, their strength being about 8 kG. In small structures with such very strong fields magnetic polarity was the same as in the background field of the sunspot umbra, and Doppler velocity is about -1.9 km/s (lifting of plasma).

  10. Magnetic properties of sulfur-doped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Park, H.; Podila, R.; Wadehra, A.; Ayala, P.; Oliveira, L.; He, J.; Zakhidov, A. A.; Howard, A.; Wilkins, J.; Rao, A. M.

    2016-03-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples.

  11. Magnetic properties of the Esquel Pallasite

    NASA Astrophysics Data System (ADS)

    Erickson, A. M.; Tarduno, J. A.; Cottrell, R. D.

    2009-12-01

    Pallasites are stony-iron meteorites consisting mainly of olivine crystals suspended in an iron-nickel matrix. One hypothesis holds that pallasites are formed from the intrusion of a liquid iron-nickel core into the solid silicate mantle of a parent body. The magnetic properties of the olivine crystals could help provide insight into the veracity of this explanation. The olivine crystals may contain magnetic inclusions that record useful information regarding magnetic fields present in the parent body. The best recorders of magnetic information are single domain in nature; domain structure of magnetic inclusions can be examined by recording their hysteresis properties. Olivine crystals were separated from a sample of the Esquel pallasite. Crystal fragments were often stained or coated with non-olivine minerals, which required cleaning to remove. An Alternating Gradient Force Magnetometer (AGFM) was used to measure magnetic hysteresis properties, and a Superconducting Quantum Interface Device Cryogenic Rock Magnetometer was used to measure the natural remanent magnetization of the samples. Preliminary data indicate single domain carriers in select olivine crystals that carry records of strong ancient fields. This is a presentation of preliminary results collected during a summer REU at the University of Rochester.

  12. Tuning the Magnetic Properties of Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Jamison, Andrew C.; Litvinov, Dmitri; Willson, Richard C.; Lee, T. Randall

    2013-01-01

    The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time. PMID:23912237

  13. Influence of magnetic non-uniformity existing in a rigid rotor supported by a superconducting magnetic bearing on its whirling

    NASA Astrophysics Data System (ADS)

    Kamada, Soichiro; Amano, Ryosuke; Sugiura, Toshihiko

    2014-05-01

    Superconducting magnetic bearings (SMBs) have a significant feature over conventional bearings in terms of supporting a shaft without physical contact while attaining its stability without control. In their large-scale rotary applications, magnetization distribution of a rotor in the circumferential direction can be non-uniform and it would be better to know influence of such circumferential magnetic non-uniformity existing in a rotor on its dynamics, especially on its behaviors in the vicinity of the critical speed. In this study, further developing our previous research, we improved our analytical model so that we can adjust several different degrees of magnetic non-uniformity by arranging multiple magnetization vectors and investigated its influence. First, we simulated dynamical behavior of the system by numerical calculations and their results show that, with increasing the degree of magnetic non-uniformity, the whirling amplitude of the system, together with the difference of the amplitudes in the orthogonal directions in the whirling plane, get larger. Further, the rotational frequency at which the whirling amplitude takes its peak gets lower, which is caused by nonlinearity of the electromagnetic force. We carried out experiments and verified our numerical predicions.

  14. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement.

    PubMed

    Chiang, Yuan-Ching; Chieh, Jen-Jie; Ho, Chia-Che

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  15. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    PubMed Central

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  16. On the Existence of Canonical Gyrokinetic Variables for Chaotic Magnetic Fields

    SciTech Connect

    Nicolini, Piero; Tessarotto, Massimo

    2008-12-31

    The gyrokinetic description of particle dynamics faces a basic difficulty when a special type of canonical variables is sought, i.e., the so-called gyrokinetic canonical variables. These are defined in such a way that two of them are respectively identified with the gyrophase-angle, describing the fast particle gyration motion around magnetic field lines, and its canonically conjugate momentum. In this paper we intend to discuss the conditions of existence for these variables.

  17. Recent advances in magnetic nanoparticles with bulk-like properties

    NASA Astrophysics Data System (ADS)

    Batlle, Xavier

    2013-03-01

    Magnetic nanoparticles (NP) are an excellent example of nanostructured materials and exhibit fascinating properties with applications in high-density recording and biomedicine. Controlling the effects of the nanostructure and surface chemistry and magnetism at the monolayer level have become relevant issues. As the size is reduced below 100 nm, deviations from bulk behavior have been attributed to finite-size effects and changes in the magnetic ordering at the surface, thus giving rise to a significant decrease in the magnetization and increase in the magnetic anisotropy. The existence of a surface spin glass-like state due to magnetic frustration has been widely suggested in ferrimagnetic NP. However, in this talk, we will show that high crystal quality magnetite Fe3-xO4 NP of about a few nanometers in diameter and coated with different organic surfactants display bulk-like structural, magnetic and electronic properties. Magnetic measurements, transmission electron microscopy, X-ray absorption and magnetic circular dichroism and Monte Carlo simulations, evidenced that none of the usual particle-like behavior is observed in high quality NP of a few nm. Consequently, the magnetic and electronic disorder phenomena typically observed in those single-phase ferrimagnetic NP should not be considered as an intrinsic effect. We also performed a real-space characterization at the sub-nanometer scale, combining scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic chiral dichroism. For the first time, we found that the surface magnetization is as high as about 70% of that of the core. The comparison to density functional theory suggested the relevance of the strong surface bond between the Fe ions and the organic surfactant. All the foregoing demonstrates the key role of both the crystal quality and surface bond on the physical properties of ferrimagnetic NP and paves the way to the fabrication of the next generation of NP with

  18. 36 CFR 72.41 - Demolition and replacement of existing recreation properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existing recreation properties. 72.41 Section 72.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Grants for Recovery... recreation properties. Demolition will only be supported when rehabilitation is not feasible or prudent....

  19. Linear and nonlinear magnetic properties of ferrofluids

    NASA Astrophysics Data System (ADS)

    Szalai, I.; Nagy, S.; Dietrich, S.

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001), 10.1103/PhysRevE.64.041405] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983), 10.1080/00268978300100621] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data.

  20. Linear and nonlinear magnetic properties of ferrofluids.

    PubMed

    Szalai, I; Nagy, S; Dietrich, S

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983)] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data. PMID:26565247

  1. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation. PMID:23128376

  2. Existence of two MHD reconnection modes in a solar 3D magnetic null point topology

    NASA Astrophysics Data System (ADS)

    Pariat, Etienne; Antiochos, Spiro; DeVore, C. Richard; Dalmasse, Kévin

    2012-07-01

    Magnetic topologies with a 3D magnetic null point are common in the solar atmosphere and occur at different spatial scales: such structures can be associated with some solar eruptions, with the so-called pseudo-streamers, and with numerous coronal jets. We have recently developed a series of numerical experiments that model magnetic reconnection in such configurations in order to study and explain the properties of jet-like features. Our model uses our state-of-the-art adaptive-mesh MHD solver ARMS. Energy is injected in the system by line-tied motion of the magnetic field lines in a corona-like configuration. We observe that, in the MHD framework, two reconnection modes eventually appear in the course of the evolution of the system. A very impulsive one, associated with a highly dynamic and fully 3D current sheet, is associated with the energetic generation of a jet. Before and after the generation of the jet, a quasi-steady reconnection mode, more similar to the standard 2D Sweet-Parker model, presents a lower global reconnection rate. We show that the geometry of the magnetic configuration influences the trigger of one or the other mode. We argue that this result carries important implications for the observed link between observational features such as solar jets, solar plumes, and the emission of coronal bright points.

  3. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  4. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  5. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  6. Magnetic properties of pelagic marine carbonates

    NASA Astrophysics Data System (ADS)

    Roberts, A. P.; Florindo, F.; Chang, L.; Jovane, L.; Heslop, D.; Larrasoaña, J.

    2013-05-01

    Pelagic carbonates are deposited far from the continents, usually at water depths of 3,000-6,000 m, at rates slower than 10 cm/kyr. Pelagic carbonates are globally important and have yielded many outstanding paleomagnetic records both from ocean drilling and analysis of outcrops from tectonically uplifted sedimentary sequences. Recent recognition of the widespread preservation of biogenic magnetite has fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence concerning the range of magnetic minerals typically preserved in these sediments, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records carried by pelagic carbonates and what they tell us about the environments concerned. Despite recent advances, much remains to be discovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals and whether it is responsible for a poorly understood biogeochemical remanent magnetization. Recently developed techniques hold much potential for testing how different species of magnetotactic bacteria, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions and whether it will be possible to develop proxies for ancient nutrient conditions from well calibrated modern records of such processes. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested and much more needs to be learned about the relationship between climate and the organisms that biomineralized these giant magnetite particles. Despite being studied for over 70 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.

  7. Magnetic properties of Martian surface material

    NASA Astrophysics Data System (ADS)

    Hargraves, R. B.

    1984-06-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  8. Magnetic dipole discharges. I. Basic properties

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10{sup −3} mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  9. Magnetic properties of metal-substituted haematite

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Fitzpatrick, R. W.; Gilkes, R. J.; Dobson, J.

    1999-08-01

    Mineral and isothermal magnetic properties of Al-, Mn- and Ni-substituted haematites were characterized and their relationships evaluated in order to interpret better the results of magnetic analyses of soils and recent sediments. Aluminium, manganese and nickel haematites generally behaved as single-domain (SD) particles. The influence of incorporated Al on the magnetic behaviour of haematite was consistent with Al acting as a paramagnetic dilutent. Mass magnetic susceptibility (chi) and SIRM_800 decreased as the level of Al substitution increased. Incorporation of Mn and Ni increased chi, which could be associated with enhancement of the spin canting effect of haematite. The stability of SIRM_800 to demagnetization for Al-haematite appears to be related to a defect mechanism associated with the development of smaller crystallites arising from Al substitution. Magnetic domain rotation or flipping was probably inhibited, being blocked by structural defects during magnetization and demagnetization, and resulted in a low but stable partial SIRM (SIRM_800). %IRM/SIRM_800 demagnetization curves and estimated (B_o)_CR values of <=100 mT for Mn-haematite indicate pseudo-single-domain/multidomain-like behaviour despite Mn-haematite having particle and crystallite dimensions similar to Ni-haematite, which did not show this behaviour. Data indicate that parameters involving unsaturated, partial SIRM should be used with caution in magnetic studies of soils and sediments.

  10. Magnetic properties of the Imilac Pallasite

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Tarduno, J. A.; Cottrell, R. D.

    2009-12-01

    Pallasites are a type of stony-iron meteorite containing olivine crystals within an iron-nickel alloy. Magnetic inclusions, which can be found in the olivine crystals, may contain a memory of exposure to ancient magnetic fields. By studying the properties of the magnetic inclusions, we can learn more about the fields present during formation and how this relates to the evolution of the parent bodies. An important step in this research is to find appropriate samples to measure. The best magnetic recorders are single domain (SD) magnetic grains; to search for potential carriers of SD grains we separated gem-like olivine crystals from a sample of the Imilac pallasite. Crystal fragments were cleaned to remove iron staining; the fragments were further scanned with a visible light microscope to exclude samples with large (potentially multidomain) magnetic inclusions. Measurements of these select samples with an Alternating Gradient Force Magnetometer (AGFM) suggest the presence of single domain magnetic inclusions suitable for the preservation of paleofields. We will present preliminary paleointensity analyses of these samples. This is a presentation of results collected during a REU summer program at the University of Rochester.

  11. Estimation of hydrothermal deposits location from magnetization distribution and magnetic properties in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Choi, S.; Kim, C.; Park, C.; Kim, H.

    2013-12-01

    The North Fiji Basin is belong to one of the youngest basins of back-arc basins in the southwest Pacific (from 12 Ma ago). We performed the marine magnetic and the bathymetry survey in the North Fiji Basin for finding the submarine hydrothermal deposits in April 2012. We acquired magnetic and bathymetry datasets by using Multi-Beam Echo Sounder EM120 (Kongsberg Co.) and Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduce to the pole(RTP), analytic signal and magnetization. The study areas composed of the two areas(KF-1(longitude : 173.5 ~ 173.7 and latitude : -16.2 ~ -16.5) and KF-3(longitude : 173.4 ~ 173.6 and latitude : -18.7 ~ -19.1)) in Central Spreading Ridge(CSR) and one area(KF-2(longitude : 173.7 ~ 174 and latitude : -16.8 ~ -17.2)) in Triple Junction(TJ). The seabed topography of KF-1 existed thin horst in two grabens that trends NW-SE direction. The magnetic properties of KF-1 showed high magnetic anomalies in center part and magnetic lineament structure of trending E-W direction. In the magnetization distribution of KF-1, the low magnetization zone matches well with a strong analytic signal in the northeastern part. KF-2 area has TJ. The seabed topography formed like Y-shape and showed a high feature in the center of TJ. The magnetic properties of KF-2 displayed high magnetic anomalies in N-S spreading ridge center and northwestern part. In the magnetization distribution of KF-2, the low magnetization zone matches well with a strong analytic signal in the northeastern part. The seabed topography of KF-3 presented a flat and high topography like dome structure at center axis and some seamounts scattered around the axis. The magnetic properties of KF-3 showed high magnetic anomalies in N-S spreading ridge center part. In the magnetization of KF-2, the low magnetization zone mismatches to strong analytic signal in this area. The difference of KF-3

  12. Properties of mesons in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Fu, Wei-jie; Liu, Yu-xin

    2016-06-01

    By extending the Φ -derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, σ , and ρ mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of π 0 and σ meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the π ^{± } mass ascends suddenly at almost the same critical temperature. Meanwhile the ρ mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, T_c^{χ }, is always enhanced by the magnetic field. Moreover, our calculations indicate that the ρ mesons will get melted as the chiral symmetry has not yet been restored, but the σ meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.

  13. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Loss, damage, or existing defects in inventory real... Disposal of Inventory Property General § 1955.134 Loss, damage, or existing defects in inventory real... a result of fire, vandalism, or an act of God between the time of acceptance of the bid or offer...

  14. Magnetic properties of heterotrophic bacteria (abstract)

    NASA Astrophysics Data System (ADS)

    Verkhovceva, Nadezda V.; Glebova, Irina N.; Romanuk, Anatoly V.

    1994-05-01

    The magnetic properties (magnetic susceptibility and saturation magnetization) of six species of heterotrophic bacteria were studied: alcaligenes faecalis 81, arthrobacter globiformis BKM 685, bacillus cereus 8, leptothrix pseudo-ochracea D-405, proteus vulgaris 14, and seliberia stellata. It has been shown that the magnetic properties of bacteria depend on (1) the peculiarity of the micro-organism (species-specific and connected with cultivation conditions); (2) the source of the iron in the media. Most of the bacteria are diamagnetic in media with a minimum of iron (χ∞=-7.2-0.3×10-6 sm3/g). The spore forming species (bacillus cereus) has increased diamagnetism. Usually the bacteria are paramagnetic in iron-containing media because they concentrate into Fe compounds. The paramagnetism of the iron-concentrating species (anthrobacter globiformis -χpar=2.4×10-6, leptothrix pseudo-ochtracea χpar=11.0×10-6 and seliberia stellata χpar=3.2×10-6 sm3/g) depends, in general, on magnetically ordered compounds. Iron compounds not accumulated by proteus vulgaris and these species are always diamagnetic .

  15. Magnetic properties of pelagic marine carbonates

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew P.; Florindo, Fabio; Chang, Liao; Heslop, David; Jovane, Luigi; Larrasoaña, Juan C.

    2013-12-01

    Pelagic carbonates are deposited far from continents, usually at water depths of 3000-6000 m, at rates below 10 cm/kyr, and are a globally important sediment type. Recent advances, with recognition of widespread preservation of biogenic magnetite (the inorganic remains of magnetotactic bacteria), have fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence for the magnetic minerals typically preserved in pelagic carbonates, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records of pelagic carbonates, and what magnetic properties can tell us about the open-ocean environments in which pelagic carbonates are deposited. We also discuss briefly late diagenetic remagnetisations recorded by some carbonates. Despite recent advances in our knowledge of these phenomena, much remains undiscovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals in sediments and whether it carries a poorly understood biogeochemical remanent magnetisation. Recently developed techniques have potential for testing how different magnetotactic bacterial species, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions. Future work needs to test whether it is possible to develop proxies for ancient nutrient conditions from well-calibrated modern magnetotactic bacterial occurrences. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested; much remains to be learned about the relationship between climate and the organisms that biomineralised these large and novel magnetite morphologies. Rather than being a well-worn subject that has been studied for over 60 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.

  16. 13 CFR 120.922 - Pre-existing debt on the Project Property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pre-existing debt on the Project Property. 120.922 Section 120.922 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS... Project Property. In addition to its share of Project cost, a Third-Party Loan may include...

  17. Magnetic Properties of selected Prussian Blue Analogs

    NASA Astrophysics Data System (ADS)

    Shrestha, Manjita

    Prussian Blue Analogs (PBAs) of composition M[M(C,N)6 ] 2.xH2O are bimetallic cyanide complexes, where M and M are bivalent or trivalent transition metals and x is number of water molecule per unit cell. The PBAs form cubic framework structures, which consist mostly of alternating MIIIN6 and MIIC 6 octahedrals. However, occupancies of the octrahedrals are not perfect: they may be empty and the charges are balanced by the guest water molecules at the lattice site (C or N site) or the interstitial site (between the octahedrals) of the unit cell. Most (but not all) PBAs exhibit negative thermal expansion behavior, i.e. volume decrease with increasing temperature. Another area of interest in PBA research is the occurrence of unusual magnetic properties. Similar to other molecular magnets, large crystal-field splitting due to the octrahedral environment may result in a combination of low- or high-spin configurations of the localized magnetic moments, i.e. spin crossover effects may be found. My dissertation focuses on the magnetic properties of the selected 3d transition-metal PBAs, namely metal hexacyanochromates M3[Cr(C,N)6 ]2.xH2O, metal hexcyanoferrates M3[Fe(C,N)6]2.xH2O and metal hexcyanocobaltates M3[Co(C,N)6]2 .xH2O where M = Mn, Co, Ni and Cu. In particular, I analyzed the temperature and field dependencies of the bulk magnetic response of those PBAs. My results show that the magnetic susceptibility of all studied PBAs follows the Curie-Weiss behavior in the paramagnetic region up to room temperature; however, some of the compounds exhibit long-range magnetic order at lower temperatures (ferromagnetic or antiferromagnetic). In particular, the data provide evidence for magnetic ground states for most of the metal hexacyanochromates and all of the metal hexacyanoferrates but none of the hexacyanocobaltates that were studied. For each of the compounds, my analysis provides a measure of the effective magnetic moment, which is then compared with the predicted

  18. Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data

    NASA Astrophysics Data System (ADS)

    Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan

    2015-04-01

    The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.

  19. Magnetic properties of artificially synthesized ferritins

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Lee, H. I.; Cho, S.-B.; Yoon, S.; Suh, B. J.; Jang, Z. H.; St. Pierre, T. G.; Kim, S.-W.; Kim, K.-S.

    2005-05-01

    Human ferritin homopolymers with H or L subunits (rHF and rLF) were genetically engineered in E coli. Apoferritins were then reconstituted with 2000 Fe atoms. A big difference was observed in the rates of iron uptake, whereas the mean core size was similar in rHF and rLF. Magnetization of the recombinant human ferritins were measured as functions of temperature and field. The blocking temperature TB(H) at low fields is considerably higher in rLF than in rHF. From the fit of M(H ) data to a modified Langevin function: M(H )=M0L(μpH/kBT)+χaH, the effective magnetic moment μp is found to be much larger in rLF than in rHF. Experimental data demonstrate that the magnetic properties, in particular, the uncompensated spins of ferritin core are related to the biomineralization process in ferritins.

  20. Remanent magnetic properties of unbrecciated eucrites

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1991-01-01

    This study examines the remanent magnetic properties of five unbrecciated eucrites, ranging from the coarse-grained cumulate Moore County to the quenched melt rock ALH 81001 in order to assess the strength of the magnetic field associated with their parent body during their formation. Two of the meteorites are judged as unlikely to have preserved their primary thermal remanence because of large variations in subsample remanence intensity and direction (Ibitira), and lack of NRM resistance to AF and thermal demagnetization (PCA 82502). The lack of a strong (greater than 0.01 mT) magnetizing field during their cooling on the eucrite parent body is inferred from the low normalized NRM intensities for subsamples of ALH 81001 and Yamato 791195.

  1. High precision description and new properties of a spin-1 particle in a magnetic field

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2014-06-01

    The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer, and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.

  2. Electronic and magnetic properties of DUT-8(Ni).

    PubMed

    Trepte, Kai; Schwalbe, Sebastian; Seifert, Gotthard

    2015-07-14

    First principles calculations using density functional theory (DFT) have been performed to investigate the electronic and magnetic properties of DUT-8(Ni) (DUT - Dresden University of Technology). This flexible metal-organic framework (MOF) exists in two crystalline forms: DUT-8(Ni)open and DUT-8(Ni)closed. To identify the energetically favoured magnetic ordering, the density of states (DOS) and the energy difference between a low-spin (LS) and a high-spin (HS) coupling ΔELS-HS for those crystalline structures have been computed. Calculations on supercells have been carried out to include a variety of different magnetic couplings beyond a single unit cell. Several molecular model systems have been employed to further investigate the magnetic behaviour by introducing a diversity of chemical environments to the magnetic centers. The magnetic ground state of both crystalline structures has been found to be the low-spin state (S = 0). This low-spin ordering can be seen in the DOS as well as from ΔELS-HS calculations. Additionally, the calculations on the supercells confirm that the local character of the ordering (i.e. within the Ni dimers) is the most favoured one. However, the model systems indicate a change from the low-spin (S = 0) to a high-spin (S ≠ 0) ordering by introducing certain alterations into the chemical environment. Such alterations could be incorporated into the crystalline systems which should lead to similar results. PMID:26067446

  3. Philips 3T Intera Magnetic Resonance Imaging System and Upgrade of existing MRI equipment

    SciTech Connect

    Evanochko, William T

    2004-05-14

    The objective of this proposal was twofold. First, upgrade existing MRI equipment, specifically a research 4.1T whole-body system. Second, purchase a clinical, state-of-the-art 3T MRI system tailored specifically to cardiovascular and neurological applications. This project was within the guidelines of ''Medical Applications and Measurement Science''. The goals were: [1] to develop beneficial applications of magnetic resonance imaging; [2] discover new applications of MR strategies for medical research; and [2] apply them for clinical diagnosis. Much of this proposal searched for breakthroughs in this noninvasive and nondestructive imaging technology. Finally, this proposal's activities focused on research in the basic science of chemistry, biochemistry, physics, and engineering as applied to bioengineering. The centerpiece of this grant was our 4.1T ultra-high field whole-body nuclear magnetic resonance system and the newly acquired state-of-the-art, heart and head dedicated 3T clinical MRI system. We have successfully upgraded the equipment for the 4.1T system so that it is now state-of-the-art with new gradient and radio frequency amplifiers. We also purchase a unique In Vivo EKG monitoring unit that will permit tracking clinical quality EKG signals while the patient is in a high field MR scanner. Important upgrades of a peripheral vascular coil and a state-of-the-art clinical workstation for processing complex heart images were implemented. The most recent acquisition was the purchase of a state-of-the-art Philips 3T Intera clinical MRI system. This system is unique in that the magnet is only 5 1/2 feet long compare to over 12 feet long magnet of our 4.1T MRI system. The 3T MRI system is fully functional and its use and applications are already greatly benefiting the UAB with 200-300 micron resolution brain images and diagnostic quality MR angiography of coronary arteries in less than 5 minutes.

  4. Magnetic properties of ordered NiPt

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.; Franse, J. J. M.

    1988-04-01

    Thermal expansion, forced volume magnetostriction and high magnetic field data are presented on the ordered equiatomic NiPt compound. Values are derived for the magnetovolume parameter κC (≃3 × 10 -6kg2A-2m-4), and for the electronic and lattice Grüneisen parameters (Γ e ≊ 5.6; Γ latt ≊ 2.5) . Ordering effects on the magnetoelastic properties are studied for alloys containing 40-60 at % Ni.

  5. A comparative study of magnetic anisotropy measurement techniques in relation to rock-magnetic properties

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Jackson, Michael J.

    2014-08-01

    Magnetic anisotropy measurements are becoming increasingly common to many studies within the different disciplines of geology, involving sedimentary, igneous and metamorphic rocks. A plethora of techniques exists for measuring magnetic anisotropy of rocks. Some are rapid and non-destructive while others are more labor-intensive or may result in alteration of the magnetic minerals. All, however, have the potential of revealing a wealth of information when measured and interpreted correctly. In broad terms, anisotropy techniques subdivide into measurements of susceptibility, remanence and torque; here we consider the first two of these. Anisotropy of magnetic susceptibility (AMS) is by far the most utilized, and measures composite fabrics. Magnetic susceptibilities in high fields and low temperatures, however, are being increasingly used to isolate the paramagnetic contribution to the fabrics. When distinguishing between fabrics carried by different ferromagnetic phases, or to separate these from the diamagnetic and paramagnetic contributions to the fabric, then remanence anisotropy techniques become necessary. Anisotropies of thermal remanence (ATRMs), of anhysteretic remanence (AARM) and of isothermal remanence (AIRM) are the most common examples. Remanence anisotropy may be measured over the full spectrum of magnetic coercivities or over a targeted range (e.g. partial or ApARM). Moreover, anisotropies may be calculated using only the resolved field-parallel component of the vector, in which case a minimum of six different orientations is necessary to obtain a complete symmetric tensor, or using the three components (full vector) of the measured magnetic vectors (e.g. AvARM), in which case three orthogonal applied magnetizations are the minimum requirement. In this study we utilize a variety of magnetic remanence room temperature techniques to measure remanence anisotropy of selected coarse and finer grained gneiss-granulitic specimens with well-pronounced fabrics

  6. The containment property of the zero-velocity surfaces in the magnetic-binary problem

    NASA Astrophysics Data System (ADS)

    Mavraganis, A. G.

    1988-08-01

    A method which incorporates Gouda's (1985) model is used to determine the conditions for the existence of closed areas of motion in the three-dimensional magnetic-binary problem. The work of Banfi (1987) is extended to include more general models. The containment property of the zero-velocity surfaces has been generalized by employing models with incident magnetic moments.

  7. Soft magnetic properties of a ferritic Fe-Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Jin, S.; Sherwood, R. C.; Chin, G. Y.; Wernick, J. H.; Bordelon, C. M.

    1984-03-01

    Technologically important applications may exist for magnetically soft alloys that possess, in addition to the appropriate magnetic properties, relatively high mechanical strength and corrosion resistance. Such an alloy can be used, for example, for certain types of telephone receiver armature applications. In the present paper, we report the magnetic and mechanical properties of the ternary Fe-3Ni-5Cr alloy. The soft magnetic properties of the alloy are significantly improved by heat treatment within the (α+γ) two-phase region. Exemplary properties after heat treatment at ˜625 °C for 2 h are Hc˜1.2 Oe, μm˜4700, yield strength ˜59 ksi, and elongation ˜30%. The alloy exhibits reasonably good corrosion resistance. Magnetic, mechanical, and electrical properties of the alloy as well as the acoustic performance of telephone receivers using it, have been found to be comparable to those of the 2V-Permendur alloy.

  8. Magnetic properties of Fe/Zr multilayers

    SciTech Connect

    Dubowik, J.; Stobiecki, F.; Szymanski, B.

    1994-03-01

    Measurements of ferromagnetic resonance (FMR), magnetic moment, and torque curves have been made for three series of Fe/Zr multilayers (MLs) with thickness ratio of Fe to Zr sublayers equal to 2:1, 1:1, and 1:2, respectively. The authors show that Fe/Zr MLs readily yield to amorphization by a solid-state reaction (SSR) during the deposition process. Nevertheless, the resulting structure may be regarded as inhomogeneous one; there still exist some ferromagnetic phases that they relate to the Fe atoms in various surroundings.

  9. Size Effects on the Magnetic Properties of Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Chen, Jianping

    Finite size effects on the magnetic properties of nanoscale particles have been studied in this work. The first system studied was MnFe_2O _4 prepared by coprecipitation followed by digestion. The particles were single crystals with an average diameter controllable from 5 nm to 25 nm. These particles have a higher inversion degree of metal ion distribution between the tetrahedral sites and octahedral sites of the spinel structure than those synthesized with ceramic methods. This higher inversion leads to a higher Curie temperature. We found that the structure of the particles can be varied by heat treatment. The Curie temperature of the particles decreased after heat treatment in inert gas, however, it increased after heat treatment in air. The size effects show in two aspects on the MnFe_2O _4 particles. First, the Curie temperature decreased as particles size was reduced, which was explained by finite size scaling. Second, the saturation magnetization decreased as particle size decreased because of the existence of a nonmagnetic layer on the surface of MnFe_2 O_4 particles. The second system studied was Co particles synthesized with an inverse micelle technique. The particles were small (1-5 nm) and had a narrow size distribution. The Co particles were superparamagnetic at room temperature and showed a set of consistent magnetic data in magnetic moment per particle, coercivity, and blocking temperature. We found the anisotropy constant and saturation magnetization of Co particles had a strong size dependence. The anisotropy constant was above the bulk value of Co and increased as particle size decreased. The saturation magnetization increased as the particle became smaller. The magnetic properties of Co particles also strongly suggested a core/shell structure in each particle. But no physical inhomogeneity was observed. We have also studied ligand effects on the magnetic properties of Co particles. The magnetization of the Co particles was quenched by 36%, 27

  10. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.; Yar, A.

    2015-07-01

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO4.6H2O buffered with H3BO3 and acidized by dilute H2SO4. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (˜ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  11. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M. Yar, A.; Ahmad, F. Abdullah, M. Z.

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  12. Properties of GRB Lightcurves from Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Granot, Jonathan

    2016-04-01

    The energy dissipation mechanism within Gamma-Ray Burst (GRB) outflows, driving their extremely luminous prompt γ-ray emission is still uncertain. The leading candidates are internal shocks and magnetic reconnection. While the emission from internal shocks has been extensively studied, that from reconnection still has few quantitative predictions. We study the expected prompt-GRB emission from magnetic reconnection and compare its temporal and spectral properties to observations. The main difference from internal shocks is that for reconnection one expects relativistic bulk motions with Lorentz factors Γ' ≳ a few in the jet's bulk frame. We consider such motions of the emitting material in two anti-parallel directions (e.g. of the reconnecting magnetic-field lines) within an ultra-relativistic (with Γ ≫ 1) thin spherical reconnection layer. The emission's relativistic beaming in the jet's frame greatly affects the light-curves. For emission at radii R0 < R < R0 + ΔR (with Γ = const) the observed pulse width is ΔT ˜ (R0/2cΓ2) max (1/Γ', ΔR/R0), i.e. up to ˜Γ' times shorter than for isotropic emission in the jet's frame. We consider two possible magnetic reconnection modes: a quasi steady-state with continuous plasma flow into and out of the reconnection layer, and sporadic reconnection in relativistic turbulence that produces relativistic plasmoids. Both of these modes can account for many observed prompt-GRB properties: variability, pulse asymmetry, the very rapid declines at their end and pulse evolutions that are either hard to soft (for Γ' ≲ 2) or intensity tracking (for Γ' > 2). However, only the relativistic turbulence mode can naturally account also for the following correlations: luminosity-variability, peak luminosity - peak frequency and pulse width energy dependence / spectral lags.

  13. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Loss, damage, or existing defects in inventory real property. 1955.134 Section 1955.134 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE...

  14. Punching Deterioration Mechanism of Magnetic Properties of Cores

    NASA Astrophysics Data System (ADS)

    Kaido, Chikara; Mogi, Hisashi; Fujikura, Masahiro; Yamasaki, Jiro

    This paper discusses the deterioration mechanism of magnetic properties of cores due to punching and proposes the modeling, as the best design of motors, considering manufacturing motors, is important in order to improve the high performance of motors corresponding to energy saving. In producing motors, magnetic cores with laminated steel sheets are made of punched sheets, and then the magnetic properties of steel sheets are deteriorated by plastic deformation and the induced residual stress due to punching. In this paper, the punching deterioration mechanism is investigated by observing magnetic domains at steel surfaces near sheared parts. Tensile and compressive stresses induced at cut steel edges deteriorate the magnetic properties of punched steel sheets in high flux densities as the compression deterioration is stronger than the tension improvement, and improve permeabilities at low magnetic field because the increases in permeabilities with tensile stresses are emphasized. Therefore, it is necessary to model the magnetic properties of motor magnetic cores, taking account of these magnetic phenomena.

  15. Magnetic and electrical properties of TiO2:Nb thin films

    NASA Astrophysics Data System (ADS)

    Yu, Chang-Feng; Sun, Shih-Jye; Chen, Jian-Ming

    2014-02-01

    This study investigated the electrical and especially the magnetic properties of Niobium (Nb) doped TiO2 (TiO2:Nb) thin films. Experiments evidently present that both minimum of ferromagnetism and resistivity exist in a same Nb doping ratio (3.0%). The XPS experiments revealed that Nb doping simultaneously increases and compensates for oxygen vacancies. The proposed model explains magnetic and electrical properties by analyzing oxygen vacancies induced by vacuum annealing or by Nb doping.

  16. Modelling dielectric and magnetic properties of ferroconcrete

    NASA Astrophysics Data System (ADS)

    Frenzel, T.; Koch, M.

    2008-05-01

    This contribution discusses the modelling and parameterization of dielectric and magnetic properties of ferroconcrete by using numerical electromagnetic field analysis software. The software is based on the Method of Moments (MoM). The shielding effectiveness (SE) of the ferroconcrete DUT was already measured in a study by order of the government. According to these results, the ferroconcrete DUT is modelled and calculated. Therefore the DUT is subdivided into two parts. The first part represents the reinforcement mesh; the second part represents the lossy concrete with complex permittivity. Afterwards, the reflection and transmission properties of numerical analysed building materials are validated and compared with the measurement results in a frequency range of 30-1000 MHz.

  17. Metastable epitaxial magnets: A study of growth and magnetic properties

    NASA Astrophysics Data System (ADS)

    Wu, Stella Zhong

    1997-11-01

    Recent advancement in the information storage industry is demanding more fundamental understanding of magnetic systems, especially the magnetic thin films, surfaces, and interfaces. In this work, we were focusing on ultrathin ferromagnetic thin films of Ni on Cu(100), Cu(110) and Cu(111) single crystal substrates, and FeNi and CoNi binary alloy films on Cu(100) with varying atomic concentration. The growth of these films by molecular beam epitaxy was monitored using a number of experimental techniques. A pseudomorphic layer-by-layer growth was achieved which resulted in an fcc metastable crystalline structure with a ferromagnetic phase. The magnetic anisotropy behavior of these thin films was monitored using surface magneto-optic Kerr effect magnetometer at both polar and longitudinal geometries, and various spin reorientation transitions were found. The measurements of Curie temperature as a variation of film thickness as well as atomic concentration resulted in the proposal of a finite-size scaling law. By using this scaling law, the bulk Curie temperature for these metastable fcc binary alloys can be extrapolated, showing that Fe atoms exist in a low-spin ferromagnetic phase. In the Ni films, a dimensionality crossover from bulk to a 2-dimensional system at a few monolayer thickness was established. By alloying, we have been able to tune the electron occupation number in the 3d band. Combined with the 3d electronic band structure information we have gained by using ultraviolet photoemission spectroscopy study of these systems at normal emission, a conclusion of continuous band filling in CoNi alloy system was drawn. However, FeNi films show a different behavior at a certain composition. The recent collaboration with synchrotron radiation facility has enabled us to quantitatively characterize the spin moment and orbital moment from each element. An x-ray magnetic circular dichroism (XMCD) study was performed on CoNi alloy system, and resulted in the conclusion of

  18. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  19. Magnetic properties and microstructure of bulk Nd-Fe-B magnets solidified in magnetic field

    SciTech Connect

    Wang, C.; Lai, Y. S.; Hsieh, C. C.; Chang, W. C.; Chang, H. W.; Sun, A. C.

    2011-04-01

    The Nd-Fe-B bulk magnets with a slab shape of 0.9 x 4 x 15 mm{sup 3} were prepared by injection casting into a copper mold. The effects of applying a magnetic field during the casting process on the magnetic properties and microstructure of Nd{sub 9.5}Fe{sub 71.5}Ti{sub 2.5}Zr{sub 0.5}Cr{sub 1}B{sub 14.5}C{sub 0.5} alloy have been studied. The results show that the sample cast with magnetic field has a stronger (00L) texture of Nd{sub 2}Fe{sub 14}B phase with the c-axis perpendicular to the slab plane than the sample cast without magnetic field. The intensity of the texture weakens from surface to inner region of the bulk magnets. Applying a magnetic field during the casting process is helpful to refine the grain size effectively. As a result, the magnetic properties are improved from B{sub r} = 5.8 kG, {sub i}H{sub c} = 6.5 kOe, and (BH){sub max} = 5.9 MGOe for thesample cast without magnetic field to B{sub r} = 6.1 kG, {sub i}H{sub c} = 10.3 kOe, and (BH){sub max} = 7.3 MGOe for the sample cast with a 3.7 kOe magnetic field.

  20. Search for Correlations Between Crustal Magnetic Fields and Other Lunar Properties

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Halekas, J. S.; Lin, R. P.; Frey, S.; Hood, L. L.

    2002-01-01

    The correlation of surface magnetic fields with other known properties of the Moon can provide clues to the origin of the magnetization. In principle, crustal magnetization can exist anywhere from the surface down to the Curie isotherm (770 C for iron), which is at least several tens of kilometers beneath the surface. Thus, we must search for correlations of the magnetic field with both surface and subsurface properties. The significance of any statistical analysis depends on the amount of data available. The sparse electron reflection data from the Apollo program, which was confined within approximately 35 degrees of the lunar equator and undersampled by a factor of approximately 100, made statistical analysis difficult. With the exception of a linear magnetic feature that follows Rima Sirsalis and a tendency for strong anomalies to occur in association with unusual albedo markings of the Reiner Gamma class, no clear-cut association of surface magnetic fields with surface selenological features was found. Lunar Prospector MAG/ER data provide global coverage and improve the sampling of the surface magnetic field by more than an order of magnitude. The power of this new data set was demonstrated in a study of the magnetic properties of lunar nearside geologic units, which clearly showed that Cayley deposits are associated with magnetic anomalies. Another correlation appears to exist between the surface magnetic field and thorium concentration in the region antipodal to the Imbrium basin. Both of these correlations suggest that ejecta from the Imbium impact may be a significant source of anomalies.

  1. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  2. Magnetic Properties of Radiation Damage in Pu and Pu Alloys

    SciTech Connect

    McCall, S; Fluss, M J; Chung, B; Chapline, G; McElfresh, M; Jackson, D; Baclet, N; Jolly, L; Dormeval, M

    2005-03-31

    Among the many exceptional properties of Pu is its apparent lack of either local moments or cooperative magnetism. Lashley et al., have recently noted that little experimental evidence for the existence of local moments or collective magnetism has been found in over 50 years. Nevertheless the search for local moments in Pu and Pu-alloys continues, why? Plutonium's physical properties: resistance, magnetic susceptibility, and heat capacity, all support a system with an enhanced electron density of states. Pu sits on the edge of both magnetism and superconductivity and possesses one of the highest elemental Pauli susceptibilities, consistent with a highly correlated electron system. The low-density {delta}-Pu has eluded full first principles description and is both a challenge and an area of active investigation for theorists. The complex changes associated with the transition between the light and heavy actinides happen within the phase diagram of Pu, thus making Pu an intriguing and challenging solid-state system for continuing experimental and theoretical investigation. Recently, Griveau et al., observed the variations in the resistance and superconducting properties of Am metal as a function of pressure to 27GPa and T>0.4K. They postulate that the interesting features in the superconducting critical temperature, T{sub c}, vs. pressure, indicate a Mott-like, f-electron localization-delocalization transition as pressure drives Am towards a Pu and then a U-like structure. Hence, we posit that it would be reasonable to expect that dilating the Pu lattice will bring one to a similar transition. Experimental evidence supporting this point of view is given here.

  3. A Study of Magnetic Properties of Magnetotactic Bacteria

    PubMed Central

    Wajnberg, E.; de Souza, L. H. Salvo; de Barros, Henrique G. P. Lins; Esquivel, Darci M. S.

    1986-01-01

    The first direct measurements of magnetic properties of magnetotactic bacteria from natural samples are presented. Measurements were made at 4.2 K, using a Superconducting Quantum Interfering Device (SQUID) magnetometer. From the magnetization results an anisotropy is obtained that is typical of magnetized ferro- or ferri-magnetic materials. The average magnetic moment of the bacteria determined from the results is in good agreement with the estimated moment from electron microscopy. ImagesFIGURE 2 PMID:19431685

  4. Magnetic Properties of the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Badyukov, D. D.; Nazarov, M. A.; Rochette, P.; Feinberg, J. M.

    2013-12-01

    The Chelyabinsk meteorite (the fall of February 15, 2013; Russia) is a LL5 ordinary chondrite. Numerous (thousands) stones fell as a shower to the south and the south-west of the city of Chelyabinsk. The stones consist of two intermixed lithologies, with the majority (2/3) being a light lithology with a typical chondritic texture and shock stage S4 (~30 GPa). The second lithology (1/3) is an impact melt breccia (IMB) consisting of blackened chondrite fragments embedded in a fine-grained matrix. We investigated the magnetic properties of the meteorite stones collected immediately after the fall by the expedition of the Vernadsky Institute, Moscow. The low-field magnetic susceptibility (χ0) of 174 fragments (135 chondritic and 39 IMB) weighing >3 g was measured. Each sample was measured three times in mutually perpendicular directions to average anisotropy. Also hysteresis loops (saturation magnetization Ms, coercivity Bc) and back-field remanence demagnetization curves (coercivity of remanence Bcr) in the temperature range from 10K to 700°C and other characteristics of some pieces (NRM, SIRM with their thermal and alternating field demagnetization spectra) were acquired. The mean logχ0 is 4.57×0.09 (s.d.) for the light lithology and 4.65×0.09 (s.d.) (×10-9 m3/kg) for the IMB, indicating that IMB is slightly richer in metal than the light chondritic lithology. According to [1], Chelyabinsk is three times more magnetic than the average LL5 fall, but similar to other metal-rich LL5 (e.g., Paragould, Aldsworth, Bawku, Richmond), as well as L/LL chondrites (e.g., Glanerbrug, Knyahinya, Qidong). The estimation of metal content from the Ms value gives 3.7 wt.% for the light fragments and 4.1 wt.% for IMB whereas the estimation from χ0 yields overestimated contents, e.g., 6.9 wt.% for the light lithology. Thermomagnetic curves Ms(T) up to 800°C identify the main magnetic carriers at room temperature (T0) and above as taenite and kamacite (no tetrataenite found), in

  5. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  6. Optimization of the magnetic properties of nanostructured Y-Co-Fe alloys for permanent magnets

    NASA Astrophysics Data System (ADS)

    Tozman, P.; Venkatesan, M.; Coey, J. M. D.

    2016-05-01

    The structural and magnetic properties of ball-milled Fe-doped Y Co5-xFex(0 ≤ x ≤ 0.5) were investigated. The magnetization increases with Fe-doping up to the solid solubility limit, x = 0.3 without destroying the crystal structure or degrading the coercivity. A special magnet array is designed using ring magnets for pressing the powders under magnetic field in order to achieve magnetic alignment. A dramatic increase in magnetization is observed for magnetically aligned Y Co4.8Fe0.2 pressed ingots.

  7. Micromagnetic insight into a magnetoreceptor in birds: Existence of magnetic field amplifiers in the beak

    NASA Astrophysics Data System (ADS)

    Solov'Yov, Ilia A.; Greiner, Walter

    2009-10-01

    The Earth’s magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings of the ophthalmic nerves in the skin of the upper beak of homing pigeons and were shown to fulfill the special prerequisites of a biological receptor. Here we study the proposed receptor theoretically and formulate the criteria for which it becomes operational and can be used for registering the weak magnetic fields as, e.g., the geomagnetic field, by a bird.

  8. Magnetic properties modeling of soft magnetic composite materials using two-dimensional vector hybrid hysteresis model

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Liu, Fugui; Li, Yongjian; Zhao, Zhigang; Zhang, Changgeng; Yang, Qingxin

    2014-05-01

    A 2-D vector hybrid hysteresis model for a soft magnetic composite (SMC) material is established, which is combined with classical Preisach model and Stoner-Wohlfarth (S-W) model. The rotational magnetic properties of SMC materials were studied using the vector model, and the computed results were compared with the experimental measurement. It is shown that the vector hybrid model can effectively simulate the rotational magnetic properties under low magnetization fields.

  9. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  10. Microstructure and magnetic properties of Fe-Co alloys

    NASA Astrophysics Data System (ADS)

    Fingers, R. T.; Kozlowski, G.

    1997-04-01

    Fe-Co soft magnetic alloys exhibit high magnetic saturation, high yield strength, and moderate core loss. Use of such materials in cyclic high temperature high stress environments, such as generators and magnetic bearings, gives impetus to determining material properties. In particular, Hiperco® Alloy 50HS, provided by Carpenter Technology Corporation, has been a subject of our study. In order to fully understand the overall behavior of the alloy, both mechanical and magnetic properties must be investigated. Magnetic performance is a function of grain size, which varies with the annealing process. Fe-Co samples have been treated by various annealing recipes ranging in temperature from 1300 to 1350 °F and magnetic saturation along with hysteresis loop measurements made using a vibrating sample magnetometer. An etching and sample preparation process was developed and microstructural analyses were performed. The correlation between composition, heat treatment, microstructure, and magnetic properties of these samples is discussed.

  11. Using existing data to estimate aquifer properties, Great Lakes Region, USA

    USGS Publications Warehouse

    Darner, Robert A.; Sheets, Rodney A.

    2012-01-01

    To determine specific storage and porosity, areally limited and time-consuming aquifer tests are frequently done. Hydrogeologic studies often do not have the resources to collect such data and rely on existing data sources for aquifer properties. An alternative tool for determining these aquifer properties is the analysis of earth tides. The objective of this study was to determine whether existing water-level and barometric-pressure data could be used to determine aquifer properties, such as porosity and specific storage, on a regional scale. In this study, national databases from the Great Lakes Region were queried for continuous records of groundwater-level and barometric-pressure data. Records from 37 selected wells were then analyzed for barometric efficiency and earth-tide responses. Specific-storage (Ss) and porosity values were determined, and the quality of the results were assessed with a measure of the "goodness of fit" (percent variance) of reconstruction of the response. Records from wells completed in several aquifer systems were analyzed with varying degrees of success. Aquifer Ss values ranging from 5.9 x 10-8 to 3.8 x 10-6/m were derived, with percent variance of reconstruction ranging from 1% to 78%. Comparisons with aquifer and laboratory testing of Ss and porosity are favorable if the percent variance of reconstruction is above about 30%. Although the earth-tide-analysis method is not suitable for every situation, the Ss and porosity of aquifers can, in many places, be estimated with existing water-level and barometric-pressure data or with data that are relatively inexpensive to collect.

  12. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca

    NASA Astrophysics Data System (ADS)

    Raĭkher, Yu. L.; Stepanov, V. I.; Stolyar, S. V.; Ladygina, V. P.; Balaev, D. A.; Ishchenko, L. A.; Balasoiu, M.

    2010-02-01

    Ferrihydrite nanoparticles (2-5 nm in size) produced by bacteria Klebsiella oxytoca in the course of biomineralization of iron salt solutions from a natural medium exhibit unique magnetic properties: they are characterized by both the antiferromagnetic order inherent in a bulk ferrihydrite and the spontaneous magnetic moment due to the decompensation of spins in sublattices of a nanoparticle. The magnetic susceptibility enhanced by the superantiferromagnetism effect and the magnetic moment independent of the magnetic field provide the possibility of magnetically controlling these natural objects. This has opened up the possibilities for their use in nanomedicine and bioengineering. The results obtained from measurements of the magnetic properties of the ferrihydrite produced by Klebsiella oxytoca in its two main crystalline modifications are reported, and the data obtained are analyzed theoretically. This has made it possible to determine numerical values of the magnetic parameters of real biomineral nanoparticles.

  13. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  14. The properties of isolated chiral skyrmions in thin magnetic films

    NASA Astrophysics Data System (ADS)

    Leonov, A. O.; Monchesky, T. L.; Romming, N.; Kubetzka, A.; Bogdanov, A. N.; Wiesendanger, R.

    2016-06-01

    Axisymmetric solitonic states (chiral skyrmions) were first predicted theoretically more than two decades ago. However, until recently they have been observed in a form of skyrmionic condensates (hexagonal lattices and other mesophases). In this paper we report experimental and theoretical investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago by Romming et al (2013 Science 341 636). The results of spin-polarized scanning tunneling microscopy analyzed within the continuum and discrete models provide a consistent description of isolated skyrmions in thin layers. The existence region of chiral skyrmions is restricted by strip-out instabilities at low fields and a collapse at high fields. We demonstrate that the same equations describe axisymmetric localized states in all condensed matter systems with broken mirror symmetry, and thus our findings establish basic properties of isolated skyrmions common for chiral liquid crystals, different classes of noncentrosymmetric magnets, ferroelectrics, and multiferroics.

  15. Introducing artificial length scales to tailor magnetic properties

    NASA Astrophysics Data System (ADS)

    Fassbender, J.; Strache, T.; Liedke, M. O.; Markó, D.; Wintz, S.; Lenz, K.; Keller, A.; Facsko, S.; Mönch, I.; McCord, J.

    2009-12-01

    Magnetism is a collective phenomenon. Hence, a local variation on the nanoscale of material properties, which act on the magnetic properties, affects the overall magnetism in an intriguing way. Of particular importance are the length scales on which a material property changes. These might be related to the exchange length, the domain wall width, a typical roughness correlation length, or a length scale introduced by patterning of the material. Here we report on the influence of two artificially created length scales: (i) ion erosion templates that serve as a source of a predefined surface morphology (ripple structure) and hence allow for the investigation of roughness phenomena. It is demonstrated that the ripple wave length can be easily tuned over a wide range (25-175 nm) by varying the primary ion erosion energy. The effect of this ripple morphology on the induced uniaxial magnetic anisotropy in soft magnetic Permalloy films is studied. Only below a ripple wavelength threshold (≈60 nm) is a significant induced magnetic anisotropy found. Above this threshold the corrugated Permalloy film acts as a flat film. This cross-over is discussed in the frame of dipolar interactions giving rise to the induced anisotropies. (ii) Ion implantation through a lithographically defined mask, which is used for a magnetic property patterning on various length scales. The resulting magnetic properties are neither present in non-implanted nor in homogeneously implanted films. Here new insight is gained by the comparison of different stripe patterning widths ranging from 1 to 10 μm. In addition, the appearance of more complicated magnetic domain structures, i.e. spin-flop domain configurations and head-on domain walls, during hard axis magnetization reversal is demonstrated. In both cases the magnetic properties, the magnetization reversal process as well as the magnetic domain configurations depend sensitively on the artificially introduced length scale.

  16. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-01

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications. PMID:24201075

  17. Viking magnetic properties investigation: preliminary results.

    PubMed

    Hargraves, R B; Collinson, D W; Spitzer, C R

    1976-10-01

    Three permanent magnet arrays are aboard the Viking lander. By sol 35, one array, fixed on a photometric reference test chart on top of the lander, has clearly attracted magnetic particles from airborne dust; two other magnet arrays, one strong and one weak, incorporated in the backhoe of the surface sampler, have both extracted considerable magnetic mineral from the surface as a result of nine insertions associated with sample acquisition. The loose martian surface material around the landing site is judged to contain 3 to 7 percent highly magnetic mineral which, pending spectrophotometric study, is thought to be mainly magnetite. PMID:17793086

  18. Viking magnetic properties investigation - Preliminary results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Spitzer, C. R.

    1976-01-01

    Three permanent-magnet arrays are aboard the Viking lander. By sol 35, one array, fixed on a photometric reference test chart on top of the lander, has clearly attracted magnetic particles from airborne dust; two other magnet arrays, one strong and one weak, incorporated in the backhoe of the surface sampler, have both extracted considerable magnetic mineral from the surface as a result of nine insertions associated with sample acquisition. The loose Martian surface material around the landing site is judged to contain 3 to 7 per cent highly magnetic mineral which, pending spectrophotometric study, is thought to be mainly magnetite.

  19. Electronic and magnetic properties of nanoribbons

    NASA Astrophysics Data System (ADS)

    Fernando, Gayanath; Zhang, Zhiwei; Kocharian, Armen

    We have performed tight-binding calculations with open boundary conditions on a set of twisted nanoribbons (4x100), monitoring the band structure as a function of the twist angle θ. When this angle is zero, the ribbon is rectangular and when it is 60 degrees, the ribbon is cut from a honeycomb lattice. Depending on the parameters of the tight-binding model and the filling factor, semi-metallic or insulating behavior is observed. We have also studied the electronic structure of such ribbons due to the adsorption of small atoms such as nitrogen, a magnetic field and the Rashba spin-orbit interaction. The role of the adsorbed atoms and the Rashba term with regard to the conducting properties and the symmetry breaking of the ribbons will be discussed in some detail. In addition, the effects of electronic correlations on selected small ribbons will be examined. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  20. Magnetic properties of Ho1- x Lu x B12 solid solutions

    NASA Astrophysics Data System (ADS)

    Gabáni, S.; Gaz̆o, E.; Pristás̆, G.; Takác̆ová, I.; Flachbart, K.; Shitsevalova, N.; Siemensmeyer, K.; Sluchanko, N.

    2013-05-01

    Magnetic properties of the geometrically frustrated antiferromagnet HoB12 (with T N = 7.4 K) modified by substitution of magnetic Ho atoms through non-magnetic Lu ones are presented and discussed. In this case, in Ho1- x Lu x B12 solid solutions, both chemical pressure resulting from different Lu3+ and Ho3+ radii and magnetic dilution take place with increasing Lu content ( x) that change properties of the system. The received results show strong indication for the existence of a quantum critical point near x = 0.9, which separates the region of magnetic order (starting with HoB12 for x = 0) and the nonmagnetic region (ending with superconducting LuB12 for x = 1).

  1. Control over magnetic properties in bulk hybrid materials

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  2. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10‑16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  3. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    PubMed Central

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10−16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  4. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy.

    PubMed

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  5. Surface controlled magnetic properties of Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Mitra, Arijit; Bahadur, D.; Aslam, M.

    2013-02-01

    To understand the influence of surface organic-inorganic interactions on the magnetic properties of magnetic nanoparticles, magnetite (Fe3O4) of mean size 4-16 nm (standard deviation σ ≤ 15 %) are synthesized by three different thermolysis techniques. The surface functionality is controlled through either amine or amine-acid both taking as surfactant for Fe3O4 nanoparticles synthesis. Magnetic investigations revealed that samples prepared using amine as a multifunctional agent (only one surfactant) shows superior magnetic properties than the nanoparticles produced by the approach utilizing oleic acid and oleylamine.

  6. Correlation of magnetic properties with deformation in electrical steels

    NASA Astrophysics Data System (ADS)

    Papadopoulou, S.

    2016-03-01

    This paper investigates the utilization of magnetic Barkhausen Noise (MBN) and hysteresis loops methods for the non-destructive characterization of deformed electrical steel samples. For this reason electrical steel samples were subjected to uniaxial tensile tests on elastic and plastic region of deformations. Both the MBN and hysteresis loops were measured. The results shown a strong degradation of the magnetic properties on plastically strains. This was attributed to the irreversible movement of the magnetic domain walls, due to the presence of high dislocation density. The resulting magnetic properties were further evaluated by examining the microstructure of the deformed samples by using scanning electron microscopy.

  7. Viking magnetic properties investigation: further results.

    PubMed

    Hargraves, R B; Collinson, D W; Arvidson, R E; Spitzer, C R

    1976-12-11

    The amounts of magnetic particles held on the reference test chart and backhoe magnets on lander 2 and lander 1 are comparable, indicating the presence of an estimated 3 to 7 percent by weight of relatively pure, strongly magnetic particles in the soil at the lander 2 sampling site. Preliminary spectrophotometric analysis of the material held on the backhoe magnets on lander 1 indicates that its reflectance characteristics are indistinguishable from material within a sampling trench with which it has been compared. The material on the RTC magnet shows a different spectrum, but it is suspected that the difference is the result of a reflectance contribution from the magnesium metal covering on the magnet. It is argued that the results indicate the presence, now or originally, of magnetite, which may be titaniferous. PMID:17797090

  8. Viking magnetic properties investigation - Further results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Arvidson, R. E.; Spitzer, C. R.

    1976-01-01

    The amounts of magnetic particles held on the reference test chart and backhoe magnets on lander 2 and lander 1 are comparable, indicating the presence of an estimated 3 to 7 percent by weight of relatively pure, strongly magnetic particles in the soil at the lander 2 sampling site. Preliminary spectrophotometric analysis of the material held on the backhoe magnets on lander 1 indicates that its reflectance characteristics are indistinguishable from material within a sampling trench with which it has been compared. The material on the RTC magnet shows a different spectrum, but it is suspected that the difference is the result of a reflectance contribution from the magnesium metal covering on the magnet. It is argued that the results indicate the presence, now or originally, of magnetite, which may be titaniferous.

  9. Temperature effect on the magnetic property and ferroelectricity in hexaferrite SrFe12O19

    NASA Astrophysics Data System (ADS)

    Qiang, Gang; Jin, Yuan; Lu, Xiaowen; Cui, Xiaopeng; Deng, Dongmei; Kang, Baojuan; Yang, Wuguo; Cao, Shixun; Zhang, Jincang

    2016-07-01

    We studied the temperature effect on magnetic and electrical properties in bulk SrFe12O19 prepared by conventional ceramic technique. The jumping behavior of magnetization has been observed under the zero-field-cooling mode, but disappeared under the field-cooled cooling mode. The spin moment of iron ions reorients below 50 K leading to the magnetic structure changes. Magnetic parameters, saturation magnetization (Ms) and coercivity field (Hc), show opposite tendency with temperature throughout the measuring range, which is mainly ascribed to the Fe3+ ions situated at 4f2 and 2b sites. The curves of electrical polarization P vs temperature T under different external magnetic field indicate the existence of ferroelectricity and magnetoelectric coupling effect at low temperature, and the transition temperature T P is about 120 K.

  10. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  11. Existence, uniqueness, and equivalence theorems for magnetic monopoles in general (4p-1)-dimensional Yang-Mills theory

    SciTech Connect

    Gao Zhifeng; Zhang Jing

    2009-04-15

    In this paper, we use the method of calculus of variations to establish the existence of energy-minimizing radially symmetric magnetic monopole solutions in the general (4p-1)-dimensional Yang-Mills gauge field theory developed recently by Radu and Tchrakian. We also show that these solutions are either self-dual or anti-self-dual and, hence, unique. Our study extends the existence work of Belavin, Polyakov, Schwartz, and Tyupin and the equivalence and uniqueness work of Maison in three dimensions and the work of Yang in seven dimensions to the situation of arbitrary (4p-1) dimensions.

  12. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction

    SciTech Connect

    Zverev, V. I.; Tishin, A. M.; Chernyshov, A. S.; Mudryk, Ya; Gschneidner Jr., Karl A.; Pecharsky, Vitalij K.

    2014-01-21

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.

  13. Viking magnetic properties experiment - Extended mission results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Arvidson, R. E.; Cates, P. M.

    1979-01-01

    The backhoe magnets on Viking Lander (VL) 2 were successfully cleaned, followed by a test involving successive insertions of the cleaned backhoe into the surface. Rapid saturation of the magnets confirmed evidence from primary mission results that the magnetic mineral in the Martian surface is widely distributed, most probably in the form of composite particles of magnetic and nonmagnetic minerals. An image of the VL 2 backhoe taken via the X4 magnifying mirror demonstrates the fine-grained nature of the attracted magnetic material. The presence of maghemite and its occurrence as a pigment in, or a thin coating on, all mineral particles or as discrete, finely divided and widely distributed crystallites, are consistent with data from the inorganic analysis experiments and with laboratory simulations of results of the biology experiments on Mars.

  14. Lunar magnetic anomalies and surface optical properties

    NASA Astrophysics Data System (ADS)

    Hood, L. L.; Schubert, G.

    1980-04-01

    Consideration is given to the influence of lunar magnetic anomalies on the darkening of the lunar surface by solar wind ion bombardment. It is shown that lunar magnetic anomalies with dipole moments much greater than 5 x 10 to the 13th gauss cu cm will strongly deflect the typical solar wind, producing local plasma voids at the lunar surface. Direct measurements of lunar magnetic fields have shown most lunar magnetic fields to have moments below this level, with the exception of anomalies detected in the areas of the Reiner Gamma albedo feature, the Van de Graaff-Aitken region and Mare Marginis. Such magnetic anomalies are shown to be capable of accounting for the higher albedo and swirl-like morphology f these features by the deflection and focusing incident solar wind ions, which tend to darken the surface upon impact.

  15. Comparison of Microinstability Properties for Stellarator Magnetic Geometries

    SciTech Connect

    G. Rewoldt; L.-P. Ku; W.M. Tang

    2005-06-16

    The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presence of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.

  16. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  17. Magnetic Properties of the Recently Fallen Baszkowka Chondrite

    NASA Astrophysics Data System (ADS)

    Krol, E.; Lang, B.

    1996-03-01

    We are studying the magnetic properties of the Baszkowka L5 chondrite. This meteorite fell on August 25, 1994, at 4 PM local time in Baszkowka settlement, a distance of 2.5 km to the south from the center of Warsaw, the capital of Poland. The fall, which was observed, included a single 15 kg body of regular shape (the segment of a sphere). The magnetic study of the meteorite was inaugurated in the autumn of 1995. Having in mind a detailed examination of rock magnetic properties, we have started with measuremetns of the natural remanent magnetization and magnetic susceptibility. Until now the detailed parameters of the hysteresis loop have been determined. The examination of Curie temperatures of magnetic carriers and thermal plus AF demagnetication of specimens are in progress.

  18. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    NASA Astrophysics Data System (ADS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH)max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  19. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    SciTech Connect

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH){sub max} of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  20. Processing, properties and some novel applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadur, D.; Giri, J.; Nayak, Bibhuti B.; Sriharsha, T.; Pradhan, P.; Prasad, N. K.; Barick, K. C.; Ambashta, R. D.

    2005-10-01

    Magnetic nanoparticles have been prepared by various soft chemical methods including self-assembly. The bare or surface-modified particles find applications in areas such as hyperthermia treatment of cancer and magnetic field-assisted radioactive chemical separation. We present here some of the salient features of processing of nanostructured magnetic materials of different sizes and shapes, their properties and some possible applications. The materials studied included metals, metal--ceramic composites, and ferrites.

  1. The magnetic properties experiments on Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Hviid, S. F.; Gunnlaugsson, H. P.; Knudsen, J. M.; Goetz, W.; Pedersen, C. T.; Dinesen, A. R.; Mogensen, C. T.; Olsen, M.; Hargraves, R. B.

    1999-04-01

    The Mars Pathfinder lander carried two magnet arrays, each containing five small permanent magnets of varying strength. The magnet arrays were passively exposed to the wind borne dust on Mars. By the end of the Mars Pathfinder mission a bull's-eye pattern was visible on the four strongest magnets of the arrays showing the presence of magnetic dust particles. From the images we conclude that the dust suspended in the atmosphere is not solely single phase particles of hematite (α-Fe2O3) and that single phase particles of the ferrimagnetic minerals maghemite (γ-Fe2O3) or magnetite (Fe3O4) are not present as free particles in any appreciable amount. The material on the strongest magnets seems to be indistinguishable from the bright surface material around the lander. From X-ray fluorescence it is known that the soil consists mainly of silicates. The element iron constitutes about 13% of the soil. The particles in the airborne dust seem to be composite, containing a few percent of a strongly magnetic component. We conclude that the magnetic phase present in the airborne dust particles is most likely maghemite. The particles thus appear to consist of silicate aggregates stained or cemented by ferric oxides, some of the stain and cement being maghemite. These results imply that Fe2+ ions were leached from the bedrock, and after passing through a state as free Fe2+ ions in liquid water, the Fe2+ was oxidized to Fe3+ and then precipitated. It cannot, however, be ruled out that the magnetic particles are titanomagnetite (or titanomaghemite) occurring in palagonite, having been inherited directly from the bedrock.

  2. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  3. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals.

    PubMed

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-01-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  4. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4′-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  5. Electronic and magnetic properties of Co doped MoS2 monolayer

    PubMed Central

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-01-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor. PMID:27052641

  6. Electronic and magnetic properties of Co doped MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-04-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor.

  7. Synthesis and Magnetic Properties of CoPt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trung, Truong Thanh; Nhung, Do Thi; Nam, Nguyen Hoang; Luong, Nguyen Hoang

    2016-07-01

    Magnetic nanoparticles CoPt were prepared by the chemical reduction of cobalt (II) chloride and chloroplatinic acid, then the samples were ultrasonicated for 2 h. After annealing at various temperatures from 400°C to 700°C for 1 h, the samples showed hard magnetic properties with coercivity up to 1.15 kOe at room temperature.

  8. Electronic and magnetic properties of Am and Cm

    SciTech Connect

    Edelstein, N.

    1985-02-01

    A review of the present status of the analyses of the optical spectra of Am and Cm in various oxidation states is given. From these analyses, the magnetic properties of the ground states of these ions can be determined. These predicted values are compared with the various magnetic measurements available.

  9. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    NASA Astrophysics Data System (ADS)

    Antropov, V. P.; Antonov, V. N.

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  10. Magnetic response properties of gaudiene - a cavernous and aromatic carbocage.

    PubMed

    Rauhalahti, M; Muñoz-Castro, A; Sundholm, D

    2016-07-28

    A spherical and cavernous carbocage molecule exhibiting faces with larger ring sizes than regular fullerenes is a suitable species for investigating how molecular magnetic properties depend on the structure of the molecular framework. The studied all-carbon gaudiene (C72) is a highly symmetrical molecule with three- and four-fold faces formed by twelve membered rings. Here, we attempt to unravel the magnetic response properties of C72 by performing magnetic shielding and current density calculations with the external magnetic field applied in different directions. The obtained results indicate that the induced current density flows mainly along the chemical bonds that are largely perpendicular to the magnetic field direction. However, the overall current strength for different directions of the magnetic field is nearly isotropic differing by only 10% indicating that C72 can to some extent be considered to be a spherical aromatic molecule, whose current density and magnetic shielding are ideally completely isotropic. The induced magnetic field is found to exhibit long-range shielding cones in the field direction with a small deshielding region located perpendicularly to the field outside the molecule. The magnetic shielding is isotropic inside the molecular framework of C72, whereas an orientation-dependent magnetic response appears mainly at the exterior of the molecular cage. PMID:27352814

  11. Climate control of rock magnetic properties of cave sediments

    NASA Astrophysics Data System (ADS)

    Panaiotu, Cristian George; Roban, Relu

    2013-04-01

    Rock magnetic parameters of sediments reflect palaeoenvironmental and paleoclimatic conditions during deposition in the marine and in the continental realm. Cyclical changes in the magnetic mineral assemblages occurring at the orbital periodicities involved in the standard Milankovitch theory have been observed in numerous sedimentary records confirming the relationship between rock magnetism and past global change. In this respect cave sediments were longtime neglected, but in the last decade several studies about magnetic properties of cave sediments have been published. These studies have shown that the magnetic susceptibility data of cave sediments reflect both long- and short-term climatic oscillations. Magnetic susceptibility variations are attributed to changes in climate-controlled pedogenesis and the production of low coercivity magnetic mineral phases, magnetite and maghemite, outside the cave. The soils are then washed, blown or tracked into the cave where they accumulate, creating the changes observed in rock magnetic data. We present several studies of rockmagnetism in cave sediments from the Apuseni and South Carpathians Mountains (Romania). In each cave we used various rockmagnetic methods (variation of magnetic susceptibility with fields, frequency and temperature, anisotropy of magnetic susceptibility, hysteresis properties) and sedimentologic (granulometry, calcimetry, LOI, geochemistry) methods to characterized the studied deposits. In general the sections are relative short both in length (2 to 9 m) and time and the source area of sediments is highly variable, which make difficult the interpretation of magnetic signal in terms of climate. The best results can be obtained from fine sediments. When several magnetic parameters from several caves are plotted together a clear trend can be observed, which can be interpreted in terms of paleoclimate. Low magnetic susceptibility and low frequency dependence magnitudes indicate times of cooler

  12. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Liangruksa, Monrudee; Ganguly, Ranjan; Puri, Ishwar K.

    2010-11-01

    Magnetic fluid hyperthermia (MFH) is a noninvasive treatment that destroys cancer cells by heating a ferrofluid-impregnated malignant tissue with an ac magnetic field while causing minimal damage to the surrounding healthy tissue. The strength of the magnetic field must be sufficient to induce hyperthermia but it is also limited by the human ability to safely withstand it. The ferrofluid material used for hyperthermia should be one that is readily produced and is nontoxic while providing sufficient heating. We examine six materials that have been considered as candidates for MFH use. Examining the heating produced by nanoparticles of these materials, barium-ferrite and cobalt-ferrite are unable to produce sufficient MFH heating, that from iron-cobalt occurs at a far too rapid rate to be safe, while fcc iron-platinum, magnetite, and maghemite are all capable of producing stable controlled heating. We simulate the heating of ferrofluid-loaded tumors containing nanoparticles of the latter three materials to determine their effects on tumor tissue. These materials are viable MFH candidates since they can produce significant heating at the tumor center yet maintain the surrounding healthy tissue interface at a relatively safe temperature.

  13. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Hardoň, Štefan; Kopčanský, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  14. Effect of microscopic disorder on magnetic properties of metamaterials.

    PubMed

    Gorkunov, Maxim V; Gredeskul, Sergey A; Shadrivov, Ilya V; Kivshar, Yuri S

    2006-05-01

    We analyze the effect of microscopic disorder on the macroscopic properties of composite metamaterials and study how weak statistically independent fluctuations of the parameters of the structure elements can modify their collective magnetic response and left-handed properties. We demonstrate that even a weak microscopic disorder may lead to a substantial modification of the metamaterial magnetic properties, and a 10% deviation in the parameters of the microscopic resonant elements may lead to a substantial suppression of the wave propagation in a wide frequency range. A noticeable suppression occurs also if more than 10% of the resonant magnetic elements possess strongly different properties, and in the latter case the defects can create an additional weak resonant line. These results are of a key importance for characterizing and optimizing novel composite metamaterials with the left-handed properties at terahertz and optical frequencies. PMID:16803055

  15. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-02-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  16. Vortex magnetic structure in framboidal magnetite reveals existence of water droplets in an ancient asteroid

    NASA Astrophysics Data System (ADS)

    Kimura, Yuki; Sato, Takeshi; Nakamura, Norihiro; Nozawa, Jun; Nakamura, Tomoki; Tsukamoto, Katsuo; Yamamoto, Kazuo

    2013-10-01

    The majority of water has vanished from modern meteorites, yet there remain signatures of water on ancient asteroids. How and when water disappeared from the asteroids is important, because the final fluid-concentrated chemical species played critical roles in the early evolution of organics and in the final minerals in meteorites. Here we show evidence of vestigial traces of water based on a nanometre-scale palaeomagnetic method, applying electron holography to the framboids in the Tagish Lake meteorite. The framboids are colloidal crystals composed of three-dimensionally ordered magnetite nanoparticles and therefore are only able to form against the repulsive force induced by the surface charge of the magnetite as a water droplet parches in microgravity. We demonstrate that the magnetites have a flux closure vortex structure, a unique magnetic configuration in nature that permits the formation of colloidal crystals just before exhaustion of water from a local system within a hydrous asteroid.

  17. Vortex magnetic structure in framboidal magnetite reveals existence of water droplets in an ancient asteroid.

    PubMed

    Kimura, Yuki; Sato, Takeshi; Nakamura, Norihiro; Nozawa, Jun; Nakamura, Tomoki; Tsukamoto, Katsuo; Yamamoto, Kazuo

    2013-01-01

    The majority of water has vanished from modern meteorites, yet there remain signatures of water on ancient asteroids. How and when water disappeared from the asteroids is important, because the final fluid-concentrated chemical species played critical roles in the early evolution of organics and in the final minerals in meteorites. Here we show evidence of vestigial traces of water based on a nanometre-scale palaeomagnetic method, applying electron holography to the framboids in the Tagish Lake meteorite. The framboids are colloidal crystals composed of three-dimensionally ordered magnetite nanoparticles and therefore are only able to form against the repulsive force induced by the surface charge of the magnetite as a water droplet parches in microgravity. We demonstrate that the magnetites have a flux closure vortex structure, a unique magnetic configuration in nature that permits the formation of colloidal crystals just before exhaustion of water from a local system within a hydrous asteroid. PMID:24149376

  18. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-04-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  19. Photoluminescent Fe3O4/carbon nanocomposite with magnetic property.

    PubMed

    He, Xiaodie; Liu, Yang; Li, Haitao; Huang, Hui; Liu, Jinglin; Kang, Zhenhui; Lee, Shuit-Tong

    2011-04-01

    Fe(3)O(4)/carbon nanocomposite has been prepared by a facile chemical method, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy and scanning electron microscopy. The fluorescent and magnetic properties of the sample were investigated by fluorescence spectroscopy and vibrating-sample magnetometer, respectively. The results indicate that the Fe(3)O(4)/carbon nanocomposite exhibit good photoluminescent (emission ranging from 425 to 550 nm) and strong magnetic (saturation magnetization of 44.2 emu/g) properties. PMID:21269640

  20. Electric field control of magnetic properties and magneto-transport in composite multiferroics.

    PubMed

    Udalov, O G; Chtchelkatchev, N M; Beloborodov, I S

    2015-05-13

    We study magnetic state and electron transport properties of composite multiferroic system consisting of a granular ferromagnetic thin film placed above the ferroelectric substrate. Ferroelectricity and magnetism in this case are coupled by the long-range Coulomb interaction. We show that magnetic state and magneto-transport strongly depend on temperature, external electric field and electric polarization of the substrate. Ferromagnetic order exists at finite temperature range around ferroelectric Curie point. Outside the region the film is in the superparamagnetic state. We demonstrate that magnetic phase transition can be driven by an electric field and magneto-resistance effect has two maxima associated with two magnetic phase transitions appearing in the vicinity of the ferroelectric phase transition. We show that positions of these maxima can be shifted by the external electric field and that the magnitude of the magneto-resistance effect depends on the mutual orientation of external electric field and polarization of the substrate. PMID:25894743

  1. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  2. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  3. Structural and magnetic properties of Mg substituted Co nanoferrites

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Sharma, Neha; Yadav, Premlata; Parashar, Jyoti; Jadoun, Priya; Saxena, V. K.; Bhatnagar, D.; Sharma, K. B.

    2016-05-01

    The structural and magnetic properties of magnesium substituted cobalt nano ferrites CoxMg1-xFe2O4 (x= 0.2, 0.4 and 1.0) have been investigated. The structural characterization has been done by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). The magnetic studies indicate that the samples show ferromagnetic behaviour at room temperature as well as at low temperature. The magnetization decreases with Mg content in both the cases due to the less magnetic nature of Mg ions than that of the Co ions.

  4. Defective graphene and nanoribbons: electronic, magnetic and structural properties

    NASA Astrophysics Data System (ADS)

    Guerra, Thiago; Azevedo, Sérgio; Machado, Marcelo

    2016-03-01

    We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0 μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

  5. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  6. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet

    NASA Astrophysics Data System (ADS)

    Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi

    Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.

  7. Spatial variability of magnetic soil properties

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Hendrickx, Jan M.; Harrison, Bruce; Borchers, Brian; Norman, David I.; Ndur, Samuel; Jasper, Chris; Niemeyer, Patrick; Nartey, Robert; Vega, David N.; Calvo, Lucas; Simms, Janet E.

    2004-09-01

    The presence of magnetic iron oxides in the soil can seriously hamper the performance of electromagnetic sensors for the detection of buried land mines and unexploded ordnance (UXO). Previous work has shown that spatial variability in soil water content and texture affects the performance of ground penetrating radar and thermal sensors for land mine detection. In this paper we aim to study the spatial variability of iron oxides in tropical soils and the possible effect on electromagnetic induction sensors for buried low-metal land mine and UXO detection. We selected field sites in Panama, Hawaii, and Ghana. Along several horizontal transects in Panama and Hawaii we took closely spaced magnetic susceptibility readings using Bartington MS2D and MS2F sensors. In addition to the field measurements, we took soil samples from the selected sites for laboratory measurements of dual frequency magnetic susceptibility and textural characteristics of the material. The magnetic susceptibility values show a significant spatial variation in susceptibility and are comparable to values reported to hamper the operation of metal detectors in parts of Africa and Asia. The absolute values of susceptibility do not correlate with both frequency dependence and total iron content, which is an indication of the presence of different types of iron oxides in the studied material.

  8. High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession

    NASA Astrophysics Data System (ADS)

    Jiang, Chang-Jun; Fan, Xiao-Long; Xue, De-Sheng

    2015-05-01

    We focus on the ferromagnetic thin films and review progress in understanding the magnetization dynamic of coherent precession, its application in seeking better high frequency magnetic properties for magnetic materials at GHz frequency, as well as new approaches to these materials’ characterization. High frequency magnetic properties of magnetic materials determined by the magnetization dynamics of coherent precession are described by the Landau-Lifshitz-Gilbert equation. However, the complexity of the equation results in a lack of analytically universal information between the high frequency magnetic properties and the magnetization dynamics of coherent precession. Consequently, searching for magnetic materials with higher permeability at higher working frequency is still done case by case. Project supported by the National Basic Research Program of China (Grant No. 2012CB933101), the National Natural Science Foundation of China (Grant Nos. 11034004 and 51371093), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1251), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130211130003).

  9. Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments

    NASA Astrophysics Data System (ADS)

    Salazar-Aravena, D.; Corona, R. M.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2013-11-01

    The magnetic properties in multisegmented cylindrical nanostructures comprised of nanowire and nanotube segments are investigated numerically as a function of their geometry. In this work we report systematic changes in the coercivity and remanence in these systems. Besides, we have found the ideal conditions for a magnetic configuration with two antiparallel domains that could be used to help to stabilize magnetic nanoparticles inside ferromagnetic multisegmented cylindrical nanoparticles. This magnetic behavior is due to the fact that the tube segment reverses its magnetization before the wire segment, allowing the control of the magnetic domain walls motion between two segments. In this way, these magnetic nanoobjects can be an alternative to store information or even perform logic functions.

  10. High temperature structural and magnetic properties of cobalt nanorods

    SciTech Connect

    Ait Atmane, Kahina; Zighem, Fatih; Soumare, Yaghoub; Ibrahim, Mona; Boubekri, Rym; Maurer, Thomas; Margueritat, Jeremie; Piquemal, Jean-Yves; Ott, Frederic; Chaboussant, Gregory; Schoenstein, Frederic; Jouini, Noureddine; Viau, Guillaume

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  11. Diagnosing the Properties of the Solar Wind using Magnetic Topology

    NASA Astrophysics Data System (ADS)

    Mikic, Z.; Titov, V. S.; Lionello, R.; Downs, C.; Linker, J.; Torok, T.; Riley, P.

    2015-12-01

    Recent work suggests that the topology of the coronal magnetic field plays a key role in the source and properties of the slow solar wind, through the collection of separatrix surfaces and quasi-separatrix layers (QSLs) that define the S-web (Antiochos et al. 2011; Linker et al. 2011; Titov et al. 2011). We have accumulated extensive experience with using the squashing factor Q to analyze the underlying structural skeleton of the coronal magnetic field, to identify magnetic null points, separator field lines, QSLs, and separatrix surfaces, and their relationship with the topology of coronal hole boundaries. This will be extended by implementing slip mapping (Titov et al. 2009) to detect open, closed, and disconnected flux systems that are formed due to magnetic reconnection in a coronal model driven by both the differential rotation and evolution of the photospheric magnetic field. This idea is based on using forward and backward differences in time between the field line mapping expected from ideal MHD motions and the actual mapping to diagnose magnetic reconnection. This technique can identify regions in the photosphere where closed magnetic field lines are about to open (e.g., via interchange reconnection), and conversely, where open field lines are about to close. We will use these concepts to develop tools that relate the changing magnetic topology to the properties of the solar wind, to plan and interpret Solar Probe Plus and Solar Orbiter observations. Research supported by NASA's Living With a Star Program.

  12. Anomalous magnetic properties of VOx multiwall nanotubes

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Goodilin, E. A.; Grigorieva, A. V.; Ishchenko, T. V.; Kuznetsov, A. V.; Sluchanko, N. E.; Tretyakov, Yu D.; Semeno, A. V.

    2010-01-01

    Basing on the high frequency (60 GHz) electron spin resonance (ESR) and magnetic susceptibility study of the VOx multiwall nanotubes (VOx-NTs) in the range 4.2-300 K we report the ESR evidence of the presence of the antiferromagnetic V4+ dimers in VOx-NTs and the observation of an anomalous low temperature (T<50 K) growth of the magnetic susceptibility for V4+ quasi-free spins, which obey power law χ(T)~1/Tα with the exponent αapprox0.6. The estimates of the concentrations for various spin species (clusters) indicate that the non-interacting dimers should be an essential element in the VOx-NTs structure. The possibility of the disorder driven quantum critical regime in VOx-NTs is discussed.

  13. Magnetic Properties of Dipolar Chains in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Avgin, I.; Huber, D. L.

    2014-06-01

    We have investigated the dipole interaction energies per particle and the local dipole field distributions in a frozen-magnetization model of a ferrofluid chain in a saturating magnetic field. A lognormal distribution of particle diameters was assumed. The interaction energies were calculated for one-dimensional arrays of dipoles with moments parallel to the chain. We have computed the energies by various approximations related to the hard sphere particle diameter distribution. A similar approach was followed for the local field distributions. It was found that the energy per particle and mean local field were largely determined by the mean particle diameter, but the distribution of local fields was sensitive to both the mean diameter and the assumptions about spatial correlations between particles of different size. Detailed results are presented for water-soluble Fe3O4/PAA (polyacrylic acid).

  14. Basic magnetic properties of bituminous coal

    USGS Publications Warehouse

    Alexander, C.C.; Thorpe, A.N.; Senftle, F.E.

    1979-01-01

    Magnetic susceptibility and other static magnetic parameters have been measured on a number of bituminous coals from various locations in the United States. The paramagnetic Curie constant correlates negatively with carbon concentration on a moisture-free basis. The major contribution to the total paramagnetism comes from the mineral matter rather than from free radicals or broken bonds. Analysis of the data indicates that the specific paramagnetism is generally lower in the mineral matter found in high-ash compared to low-ash coal. A substantial number of the coal specimens tested also had a ferromagnetic susceptibility which appeared to be associated with magnetite. Magnetite and ??-iron spherules, possibly of meteoritic or volcanic origin, were found in several specimens. ?? 1979.

  15. Magnetic properties of nano-composite particles

    NASA Astrophysics Data System (ADS)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  16. Magnetic properties of novel epitaxial films

    SciTech Connect

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc ..cap alpha..-Fe and fcc ..gamma..-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk ..cap alpha..-Fe. The controversial ..gamma..-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism.

  17. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  18. Adsorption-induced magnetic properties and metallic behavior of graphene

    SciTech Connect

    Zhou, Yungang; Zu, Xiaotao T.; Gao, Fei; Lv, H. F.; Xiao, Haiyan J.

    2009-09-21

    Magnetic properties and electronic structures of graphene with Cl, S, and P adsorption have been investigated using ab initio calculations. The adsorption of Cl leads to Fermi level shifting to valence band, which results in metallic graphene. A band gap of 0.6 eV emerges in a S-absorbed graphene, leading to the semiconducting graphene. The unpaired electrons in the absorbed P atom is polarized and thus, exhibits a magnetic moment of 0.86 μB, while no magnetic moment has been observed after Cl and S adsorption. This demonstrates that the magnetic properties and conductive behavior of graphene can be modified via atom adsorption. Specially, P-absorbed graphene may be useful for spintronic applications, such as tunneling magnetoresistance.

  19. Probing magnetic properties of ferrofluids using temperature dependent magnetic hyperthermia studies

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Thakur, Jagdish; Naik, Vaman; Naik, Ratna

    2014-03-01

    Tuning the properties of magnetic nanoparticles is essential for biomedical and technological applications. An important phenomenon displayed by these nanoparticles is the generation of heat in the presence of an external oscillating magnetic field and is known as magnetic hyperthermia (MHT). The heat dissipation by the magnetic nanoparticles occurs via Neel relaxation (the flip of the internal magnetic moment of the nanoparticles) and Brownian relaxation (the physical rotation of the nanoparticles in the suspended media). Dextran coated iron oxide (Fe3O4) nanoparticles were synthesized using the co-precipitation method and characterized using XRD, TEM and DC magnetometry measurements. Roughly spherical in shape the particles have an average size of 13nm and a saturation magnetization of 65 emu/g. The MHT properties of these nanoparticles suspended in a weakly basic solution (ferrofluid) have been investigated as a function of the frequency and amplitude of magnetic field by incorporating a complete thermodynamical analysis of the experimental set-up. The heat generation is quantified using the specific power loss (SPL) and compared with the predictions of linear response theory. This analysis sheds light on important physical and magnetic properties of the nanoparticles.

  20. Magnetic structure and magnetic properties of nanocrystalline and amorphous Fe-Zr-N films

    NASA Astrophysics Data System (ADS)

    Sheftel, Elena N.; Harin, Eugene V.; Tedzhetov, Valentin A.; Kiryukhantsev-Korneev, Philipp V.; Levashov, Evgeny A.; Perov, Nikolai S.; Titova, Alexandra O.

    2016-08-01

    Data on the magnetic structure and magnetic properties of Fe-Zr-N films, which were prepared by reactive magnetron sputtering of a heated target and deposited on glass substrates, are reported. Depending on the Zr content (from 3 to 35 at%), the film compositions are characterized by Zr-to-N (at%) ratio from 0.3 to 36.5. The magnetic properties (saturation magnetization Ms, coercive field Hc) and magnetic structure (effective local magnetic anisotropy field D1/2Ha, grain size 2Rc, effective anisotropy field of stochastic domain D1/2, relative stochastic domain size RL/Rc) of the films are discussed in interrelation with their phase and structural states. The coercive field of the studied ferromagnetic nanocrystalline films was shown to obey the relationship Hc~(2Rc)6 and depends on not only the grain size but also the local magnetic anisotropy field D1/2Ha. As the grain size of ferromagnetic phase decreases, the contribution of the magnetoelastic component to the coercive field decreases. It was shown, by examples of weak ferromagnetic and superparamagnetic films with amorphous and mixed (amorphous+nanocrystalline) structures containing a nonferromagnetic phase, that the magnetic properties reflect the real structural and phase state of the films, which cannot be revealed by the X-ray diffraction analysis.

  1. Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles

    PubMed Central

    Vasilakaki, Marianna; Trohidou, Kalliopi N.; Nogués, Josep

    2015-01-01

    Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Monte Carlo simulations of the exchange bias properties of such nanoparticles. The coercivity, HC, and loop shift, Hex, present a non-monotonic dependence with the core diameter and the shell thickness, in excellent agreement with the available experimental data. Additionally, we demonstrate novel unconventional behavior in FiM/AFM particles. Namely, while HC and Hex decrease upon increasing FiM thickness for small AFM cores (as expected), they show the opposite trend for large cores. This presents a counterintuitive FiM size dependence for large AFM cores that is attributed to the competition between core and shell contributions, which expands over a wider range of core diameters leading to non-vanishing Hex even for very large cores. Moreover, the results also hint different possible ways to enhance the experimental performance of inverse core/shell nanoparticles for diverse applications. PMID:25872473

  2. Magnetic properties of NdFeB-coated rubberwood composites

    NASA Astrophysics Data System (ADS)

    Noodam, Jureeporn; Sirisathitkul, Chitnarong; Matan, Nirundorn; Rattanasakulthong, Watcharee; Jantaratana, Pongsakorn

    2013-01-01

    Magnetic properties of composites prepared by coating lacquer containing neodymium iron boron (Nd-Fe-B) powders on rubberwood were characterized by vibrating sample magnetometry (VSM), magnetic moment measurements, and attraction tests with an iron-core solenoid. The Nd-Fe-B powders were recycled from electronic wastes by the ball-milling technique. Varying the milling time from 20 to 300 min, the magnetic squareness and the coercive field of the Nd-Fe-B powders were at the minimum when the powders were milled for 130 min. It followed that the coercive field of the magnetic wood composites was increased with the milling time increasing from 130 to 300 min. For the magnetic wood composites using Nd-Fe-B obtained from the same milling time, the magnetic squareness and the coercive field were rather insensitive to the variation of Nd-Fe-B concentration in coating lacquer from 0.43 to 1.00 g/cm3. By contrast, the magnetization and magnetic moment were increased with the Nd-Fe-B concentration increasing. Furthermore, the electrical current in the solenoid required for the attraction of the magnetic wood composites was exponentially reduced with the increase in the amount of Nd-Fe-B used in the coating.

  3. Improvements of magnetic properties of Sr ferrite magnets by substitutions of La and Co

    SciTech Connect

    Ogata, Yasunobu; Kubota, Yutaka; Takami, Takashi; Tokunaga, Masaaki; Shinohara, Tadashi

    1999-09-01

    Recently, it is intensively required to improve the magnetic properties of Sr ferrite magnets in order to decrease the weight of motors used in automobiles and to improve the efficiency of motors used in electric appliances such as air conditioners. The effect of the simultaneous partial substitution of Co{sup 2+} for Fe{sup 3+} and of La{sup 3+} for Sr{sup 2+} ion in Sr ferrite on the magnetic properties of anisotropic Sr ferrite magnets was investigated. It was found that the coercive force of Sr ferrite magnets is increased without significant decrease in residual flux density by La-Co substitution. Temperature coefficients of coercive force were found to be also improved by La-Co substitution.

  4. Anomalous increase in the magnetorheological properties of magnetic fluid induced by silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, Rucha; Upadhyay, R. V.

    2014-12-01

    Magnetorheological properties are experimentally investigated in aqueous magnetic fluid containing spherical silica nanoparticles. A bi-dispersed system is prepared using aqueous suspension of silica nanoparticles and aqueous magnetic fluid. Both these fluids exhibit Newtonian viscosity with nominal values of 1.3 and 5.8 mPa\\cdot s at 20 °C. Three different samples are prepared by varying silica and magnetic fluid concentrations and keeping the total volume constant. The addition of silica nanoparticles leads to enhancement of the magnetic field induced viscosity up to the order 107 Pa\\cdot s. The magnetic field induced viscosity is analyzed using the structural viscosity model. Magnetic field induced static and dynamic yield stress values to reveal the existence of field induced clustering. An attempt is made to explain this yielding behavior using chain-like and micromechanical models. It is found that high silica fraction leads to the formation of chain-like structure. At low silica fraction, chains overlap and result into layer aggregates, which are responsible for the anomalous increase in the magnetorheological properties. This is further confirmed using magnetic field microscopic chain formations.

  5. Organization and magnetic properties of cigar-shaped ferrite nanocrystals

    NASA Astrophysics Data System (ADS)

    Ngo, A. T.; Pileni, M. P.

    2002-11-01

    Cigar-shaped maghemite (gamma-Fe2O3) nanocrystals dispersed in aqueous solution are subjected to a magnetic field during the deposition (process) on graphite. The nanocrystals can thus be oriented along their long axis to form ribbons at a mesoscopic scale whereas without a field the nanocrystals remain randomly oriented on the substrate. The magnetic properties markedly depend on the organization of the nanocrystals within the mesostructures.

  6. Electronic and transport properties of noncollinear magnetic monatomic Mn chains: Fano resonances in the superlattice of noncollinear magnetic barriers and magnetic anisotropic bands

    NASA Astrophysics Data System (ADS)

    Dai, C. J.; Yan, X. H.; Xiao, Y.; Guo, Y. D.

    2015-04-01

    By means of the density functional theory combined with non-equilibrium Green's function method, ballistic transport properties of one-dimensional noncollinear magnetic monatomic chains were investigated using the single-atomic Mn chains as a model system. Fano resonances are found to exist in the monatomic Mn chains with spin-spiral structure. Furthermore, in the monatomic Mn chains with magnetic soliton lattice, Fano resonances are enhanced and cause the conductance splitting in the transmission spectra. The Fano resonances in the noncollinear magnetic single-atomic Mn chains are arising from the coupling of the localized d-states and the extended states of the quantum channels. By constructing a theoretical model and calculating its conductance, it is found that the phenomena of Fano resonances and the accompanying conductance splitting exist universally in the superlattice of one-dimensional noncollinear magnetic barriers, due to the interference of the incident waves and reflected waves by the interfaces between the neighboring barriers. Moreover, the band structures of the ferromagnetic and spin-spiral monatomic Mn chains exhibit a strong dependence on the spatial arrangement of the magnetic moments of Mn atoms when spin-orbit coupling is considered.

  7. GEMAS: Unmixing magnetic properties of European agricultural soil

    NASA Astrophysics Data System (ADS)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  8. Magnetic properties and magnetic domains of Nd-Fe-B thin films

    SciTech Connect

    Chen, S. L.; Liu, W.; Zhang, Z. D.; Gunaratne, G. H.

    2008-01-15

    Anisotropic Nd-Fe-B thin films are fabricated by direct current magnetron sputtering on Si substrates heated to temperatures over a wide range. Surface morphology and magnetic domains of the Nd-Fe-B thin films prepared at different sputtering temperatures (25-600 deg. C) are observed by a scanning probe microscopy. The magnetic domains exhibit a rich variety of textures, changing from striped via maze to cloudlike as the sputtering temperature is increased. Variations in magnetic domains with substrate temperature are discussed using phase components and magnetic anisotropies of the thin films. In addition, patterns of magnetic domains are analyzed using the 'disorder functions', a set of characterizations of complex patterns with labyrinthine structures. The disorder function {delta}(1) and the structure factor {delta}k do not change appreciably until a substrate temperature of 350 deg. C, but increases significantly beyond 400 deg. C. The disorder in magnetic domains increases with increasing sputtering temperature. A simultaneous enhancement of the anisotropic c texture and the hard-magnetic properties of the thin films are observed. The significant change of the disorder function at T{sub s}=400 deg. C appears to be a precursor to the hardening of the Nd-Fe-B film. The most disordered magnetic domains of the film with the substrate temperature of 600 deg. C correspond to the optimum magnetic properties, with the maximum energy product (BH){sub max} of 22.4 MG Oe.

  9. Do micromagnetic simulations correctly predict hard magnetic hysteresis properties?

    NASA Astrophysics Data System (ADS)

    Toson, P.; Zickler, G. A.; Fidler, J.

    2016-04-01

    Micromagnetic calculations using the finite element technique describe semi-quantitatively the coercivity of novel rare earth permanent magnets in dependence on grain size, grain shape, grain alignment and composition of grain boundaries and grain boundary junctions and allow the quantitative prediction of magnetic hysteretic properties of rare earth free magnets based on densely packed elongated Fe and Co nanoparticles, which depend on crystal anisotropy, aspect ratio and packing density. The nucleation of reversed domains preferentially takes place at grain boundary junctions in granular sintered and melt-spun magnets independently on the grain size. The microstructure and the nanocompostion of the intergranular regions are inhomogeneous and too complex in order to make an exact model for micromagnetic simulations and to allow a quantitative prediction. The incoherent magnetization reversal processes near the end surfaces reduce and determine the coercive field values of Co- and Fe-based nanoparticles.

  10. Properties of hyperonic matter in strong magnetic fields

    SciTech Connect

    Yue, P.; Yang, F.; Shen, H.

    2009-02-15

    We study the effects of strong magnetic fields on the properties of hyperonic matter. We employ the relativistic mean field theory, which is known to provide excellent descriptions of nuclear matter and finite nuclei. The two additional hidden-strangeness mesons, {sigma}* and {phi}, are taken into account, and some reasonable hyperon potentials are used to constrain the meson-hyperon couplings, which reflect the recent developments in hypernuclear physics. It is found that the effects of strong magnetic fields become significant only for magnetic field strength B>5x10{sup 18} G. The threshold densities of hyperons can be significantly altered by strong magnetic fields. The presence of hyperons makes the equation of state (EOS) softer than that in the case without hyperons, and the softening of the EOS becomes less pronounced with increasing magnetic field strength.

  11. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  12. Bio-inspired artificial cilia with magnetic dynamic properties

    NASA Astrophysics Data System (ADS)

    Sun, Leilei; Zheng, Yongmei

    2015-04-01

    Inspired by the structure and properties of natural cilia, we focused on a facile template-free approach to prepare magnetic artificial cilia grown on the substrate (glass, PDMS, or others). In an applied magnetic field, the cilia formed spontaneously and immediately from magnetic nanoparticles and elastomeric polymer in a liquid solvent by bottom-up self-assembly. The length of prepared cilia could be in the scale of millimeter and reach a high aspect ratio of even over 100. We studied the effect of the magnetic strength applied and the size of nanoparticles to get tunable scale of cilia. The cilia show reversibly bending in an external magnetic field and this bending actuation gave some important functions: to transport macroscopic nonmagnetic materials on the cilia and to mix liquids.

  13. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  14. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids.

    PubMed

    Shokrollahi, H

    2013-07-01

    This paper is aimed at conducting a survey of the synthetic methods and magnetic properties of nanoparticles as ferrofluids used in biomedicine. As compared with other works in the field, the distinctive feature of the current work is the systematic study of recent advances in ferrofluids utilized in hyperthermia and magnetic resonance imaging (MRI). The most important feature for application of ferrofluids is super-paramagnetic behavior of magnetic cores with relatively high saturation magnetization. Although Fe3O4 nanoparticles have traditionally been used in medicine; the modified Mn-ferrite has recently received special attention due to its higher saturation magnetization and r2-relaxivity as a contrast agent in MRI. Co-ferrite nanoparticles are also good candidates for hyperthermia treatment because of their high coercivity and magnetocrystalline anisotropy. The thermal decomposition and hydrothermal methods are good candidates for obtaining appropriate super-paramagnetic particles. PMID:23623058

  15. Growth, structure, morphology, and magnetic properties of Ni ferrite films

    PubMed Central

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  16. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  17. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  18. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  19. Artificial metamaterials for reprogrammable magnetic and microwave properties

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Adeyeye, Adekunle Olusola

    2016-01-01

    We demonstrate a reliable method for realizing various antiferromagnetic states in lithographically defined, dipolar coupled rhomboid nanomagnets. We directly probe the remanent state using magnetic force microscopy and measured the microwave absorptions using broadband ferromagnetic resonance spectroscopy technique. Reprogrammable microwave absorption properties are shown by switching between ferromagnetic and antiferromagnetic remanent states using a simple field initialization. There is a direct correlation between the magnetic remanent states and the microwave responses. Experimental results were supported by micromagnetic simulations which show a good agreement. The results may find applications in low power magnonic devices based on reprogrammable magnetic metamaterials.

  20. Magnetic and structural properties of Mn-Ga thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Siqian; Suzuki, Takao

    2016-05-01

    A systematic experimental work has been conducted to understand the magnetic properties of Mn-Ga thin films. Multilayer structured thin films of [MnGa 2 nm/Mn x nm]×25 (x = 0.2˜3.5, which corresponds to Mn at%56˜86) were sputter-deposited onto silica glass substrates, followed by annealing in vacuum. It is found that the magnetic properties strongly depend on x. For x = 0.5, the high magnetization values are found, where the nanocrystalline L10 structure is present. The samples with x = 2.0-3.0 exhibit the coercivity Hc higher than 10 kOe at room temperature where the nanocrystalline D022 structures are found to form. The correlation between the magnetic anisotropy constant K and saturation magnetization Ms is also discussed. The nth power dependence of magnetic anisotropy constant K on Ms is found, where the values of n are 7.8 and 1.9 for x = 0.5 and 2.5, respectively. The present result of the power dependence of n equals about 8 for the L10 MnGa suggests that the magnetic anisotropy in a nanocrystalline L10 MnGa phase is much different from the ordered FePt phase. On the other hand, the power dependence of the D022 nanocrystalline phase suggests the two-ion mechanism.

  1. Effect of Li doping on the magnetic properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Rajashabala, S.; Ramachandran, K.

    2013-06-01

    Zn1-xLixO (0 ≤ x ≥ 0.05) nanomaterials were synthesized by the solvothermal method and the influence of Li doping on the structural, optical, and magnetic properties was investigated. Morphological analysis by SEM revealed the formation of ZnO nanorods (NR) and Li-doped ZnO nanoparticles (NP), which indicate that doping of Li ions affects the morphology of ZnO. The magnetization curve of undoped ZnO indicates the co-existence of dia and antiferromagnetism, which changes to dia and ferrimagnetism with the addition of Li.

  2. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  3. Electrodeposition and magnetic properties of FeCo alloy films

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Zhou, Mingge; Zhu, Minggang; Yang, Xu; Yue, Ming

    2012-04-01

    FeCo alloys thin films have been successfully electrodeposited on Ag films. The morphology, structure, composition, and magnetic property of the FeCo films were characterized by scanning electron microscopy, x-ray diffraction, induction-coupled plasma spectrometry, vibrating sample magnetometer and network analyzer. The use of reverse pulse current in the process of electrodepostion can reduce the surface roughness obviously. The effects of anodic current density and thickness are studied. The results show that the film fabricated under appropriate conditions has low coercivity and excellent high-frequency magnetic property.

  4. Geometrical Effects on the Magnetic Properties of Nanoparticles.

    PubMed

    Di Paola, Cono; D'Agosta, Roberto; Baletto, Francesca

    2016-04-13

    Elucidating the connection between shape and properties is a challenging but essential task for a rational design of nanoparticles at the atomic level. As a paradigmatic example we investigate how geometry can influence the magnetic properties of nanoparticles, focusing in particular on platinum clusters of 1-2 nm in size. Through first-principle calculations, we have found that the total magnetization depends strongly on the local atomic arrangements. This is due to a contraction of the nearest neighbor distance together with an elongation of the second nearest neighbor distance, resulting in an interatomic partial charge transfer from the atoms lying on the subsurface layer (donors) toward the vertexes (acceptors). PMID:27007172

  5. Geometric properties of the magnetic Laplacian on the Euclidean 4-space

    SciTech Connect

    Kazmierowski, Dominique; Zinoun, Azzouz; Intissar, Ahmed

    2010-12-15

    When the four-dimensional Euclidean space is endowed with a covariant derivative that is either self-dual or antiself-dual and of constant curvature, the corresponding magnetic Laplacian is closely related to the sub-Laplacian of the quaternionic Heisenberg group. Some geometric properties of this operator are studied. In particular, it is proved that there exists a canonical orthogonal complex structure which provides a factorization in the sense of Schroedinger.

  6. Development of integrated AC-DC magnetometer using high-Tc SQUID for magnetic properties evaluation of magnetic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Takagi, Ryuki; Kusaka, Toki; Ishihara, Yuichi; Tsukamoto, Yuya; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-05-01

    We developed an integrated AC-DC magnetometer using a high critical temperature superconducting quantum interference device (high-Tc SQUID) to evaluate the static and dynamic magnetic properties of magnetic nanoparticles (MNPs) in solution. The flux-transformer method consisted of first-order planar and axial differential coils that were constructed for static and dynamic magnetization measurements, respectively. Vibrating-sample and harmonic detection techniques were used to reduce interference from excitation magnetic fields in the static and dynamic magnetization measurements, respectively. Static and dynamic magnetization measurements were performed on commercially available iron oxide nanoparticles in diluted solutions. The magnetic responses increased with the increase in concentration of the solutions in both measurement results. The magnetization curves showed that the diamagnetic signal due to the carrier liquid of the iron oxide nanoparticles existed in a dilute solution. Biasing with a proper DC magnetic field in the dynamic magnetization measurement resulted in improved signals of the second and third harmonics. Therefore, highly sensitive magnetic characterizations of MNPs utilizing the static and dynamic magnetization measurement are possible via the developed system.

  7. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Bayukov, O. A.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-07-01

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants KV≈1.7×105 erg/cm3 and KS≈0.055 erg/cm2 have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed.

  8. Thermal properties of stellar matter in the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Piloyan, Arpine

    2012-07-01

    Low statistics and selection effects of the existing observational records of neutron stars ( NSs) do not allow to draw a coherent picture of the NSs typology only from observations. From theoretical point of view the unsufficient understanding of the mechanism of Supernovae explosion as well as the uncertainties in the modeling of the stellar matter equation of state make the knowledge of the parameters of the NS's structure and thermal, magnetic field or spin evolution non robust. The model's which are including the effects of superfluidity, superconductivity in dense matter and electro dynamics of super strong magnetic fields due to The complicated physics of matter under extrim conditions need further detailed investigations. The results are demonstrating the influence of magnetic field on the cooling regulators of NSs such as neutrino emissivity, heat conductivity and specific heat in the presence of magnetic fields for the investigations of cooling evolution of magnetars.

  9. Magnetic properties of xenoliths from Yakut kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valeriy

    2014-05-01

    Lower continental crust is poorly known due to its limited availability. One source of information about the formation of the lower crust is the study of xenoliths found in kimberlites, mainly peridotites, eclogites and other rocks made by the kimberlite magma to the surface from great depths. Magnetic methods can solve problems related on the one hand, the definition of the phase composition of natural ferrimagnetics responsible for the magnetic properties of rocks, and on the other - with the establishment of the thermodynamic conditions in which they were formed - their genesis. For example, in [1, 2], there were differences in the magnetic properties of kimberlites taken from tubes with different diamond productivity. In this work, studies have been conducted of the magnetic properties and mineralogy of xenoliths from 10 Yakut kimberlit pipes, courtesy of Doctor of Geological and Mineralogical Sciences V. K. Garanin. Found that the natural remanent magnetization (NRM) and magnetic susceptibility (k0) of the investigated samples varies widely: NRM = (0.002-12.59) A/m, k0 = (0.23-59.9)*10-3 SI. Magnetic properties vary by species: average NRM peridotites (0.002-0.32) A/m order of magnitude smaller eclogitic rocks (0.58-12.59) A/m. Thermomagnetic analysis (TMA) of the test samples showed the presence of xenoliths of the ferromagnetic phase with a Curie point close to Tc magnetite. Because of the high correlation between the values of NRM, k0 and ferrimagnetic saturation magnetization (SM) can be inferred that the magnetic properties of the rocks studied at temperatures above ambient is basically determined by the concentration of magnetite in them. Besides magnetite TMA were also identified ferrimagnetic phase with Curie temperatures from -50°C to -125°C. Mineralogical analysis performed on three samples of peridotite tubes Udachnaya, Yubileynaya and Mir and two samples of eclogite tubes Udachnaya and Komsomolskaya, showed that at temperatures below room

  10. Magnetic Properties of Diluted Fcc System Nickel

    NASA Astrophysics Data System (ADS)

    Feng, Zhen

    Starting from Ni and Mg nitrates, about 20 samples of Ni_{rm p}Mg _{rm 1-p}O (0.06 <=q p <=q 0.86) were prepared and X-ray diffraction studies showed the samples to have the NaCl structure with the lattice constant fitting the equation a(p) = 4.2115 - 0.0340p A. Temperature dependent dc magnetic susceptibility (chi ) studies of the samples were carried out between 1.8K and 600K using a SQUID magnetometer and the Neel temperature T_{rm N} were determined from the peak in partial(chiT)/ partialT. The variation of t = T _{rm N}(p)/T _{rm N}(1) versus p is compared with that in Co_{rm p}Mg _{rm 1-p}O. For both systems, the variations for p > 0.31 are found to fit the predicted values for a simple cubic Heisenberg antiferromagnet and a theoretical basis for this anomalous results is advanced. The experimental percolation threshold p_{rm c} = 0.15 +/- 0.01. For p_ {rm c} <=q p <=q 0.33, chi below T_{rm N} shows irreversible behavior for the zero-field-cooled and field -cooled cases, suggestive of spin-glass-like behavior, also observed in other diluted fcc antiferromagnets such as Co_{rm p}Mg _{rm 1-p}O and Eu _{rm p}Sr_ {rm 1-p}Te. It is suggested that the differences in the t vs p variations for p < 0.33 in Ni_{rm p} Mg_{rm 1-p}O, Co_{rm p}Mg _{rm 1-p}O and Eu _{rm p}Sr_ {rm 1-p}Te may be related to the differences in the ratio of the next-nearest-neighbor to nearest-neighbor exchange constants in these systems. A higher order correction to Curie-Weiss law was applied for sample with 0.19 <=q p <=q 0.59 which explains why 1/ chi curve versus T bends downward with decreasing temperatures. For the sample Ni_{0.33} Mg_{0.67}O, the magnetization M versus magnetic field H (0 to 0.2T) are measured with temperature ranging from 5.2K to 13.4K at intervals of 0.2K. The magnitude of the non-linear susceptibility, a_3, is determined from the M versus H data at different temperatures. The divergence of a _3 around 9.4 +/- 0.6K indicates spin-glass behavior in this system.

  11. Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yapi; Yi, Yide; Shao, Wei; Shao, Yanfang

    2013-03-01

    With the development of modern ferromagnetic technology, soft magnetic powder cores (MPCs) of amorphous and nanocrystalline alloys have been intensively studied for their excellent soft magnetic properties such as high flux density, low coercivity and reduced core loss due to amorphous state and nanocrystalline grains of 10-20 nm dispersed in a residual amorphous matrix. In this paper, the microstructures and soft magnetic properties, i.e., maximum magnetic induction Bm, effective permeability μe, DC-bias properties and volume power losses PCV of MPCs made from amorphous powder of gas atomization and nanocrystalline powder of pulverized melt-spun ribbon were investigated and also compared on the basis of the same level of μe. It is found that μe of both kinds of MPC keeps unchanged up to 1 MHz. The amorphous MPC has lower PCV at lower frequency range, while the nanocrystalline MPC has lower PCV at high frequency range instead. Also, the nanocrystalline MPC has better DC-bias property. Moreover, the DC magnetic properties and the changes of PCV of both MPCs with frequency and flux density are also studied. Furthermore, the electromagnetic characteristics, the microstructures and the mechanisms accounting for these phenomena of both MPCs are also discussed.

  12. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  13. Magnetic properties of maraging steels in relation to nickel concentration

    SciTech Connect

    Ahmed, M.; Nasim, I.; Ayub, H.; Hasnain, K.

    1995-07-01

    Magnetic properties of maraging steels have been investigated as a function of nickel concentration. The alloys nickel content varied from 12 to 24 wt pct, while other alloying constituents were kept at a level maintained in the 18Ni-2,400 MPA-grade maraging steel. The magnetic properties were determined following aging for 1 hour in the temperature range of 450 to 750 C. In every alloy investigated, the coercive field increased with aging temperature, reaching a maximum around 670 C {+-} 30 C. The saturation magnetization values were lowest around temperatures where maximum coercive field was observed. The coercive field increased from {approximately}55 to {approximately}175 Oe ({approximately}4,380 to {approximately} 13,900 amp/meter) and the corresponding saturation magnetization decreased from {approximately}18,500 to {approximately}4,000 G ({approximately}1.85 to {approximately}0.4 T) in the alloys containing 12 and 24 wt pct Ni, respectively. The reverted austenite increased from 25 vol pct at 12 wt pct Ni to 10 vol pct at 24 wt pct Ni. The hardness and Charpy impact strength of the alloys have also been determined. An attempt has been made to correlate magnetic properties with different phase transformations occurring in maraging steels.

  14. Magnetic Properties of Different-Aged Chernozemic Soils

    NASA Astrophysics Data System (ADS)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  15. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  16. Thermodynamic properties of Heisenberg magnetic systems

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Wang, Huai-Yu; Long, Gui-Lu

    2014-03-01

    In this paper, we present a comprehensive investigation of the effects of the transverse correlation function (TCF) on the thermodynamic properties of Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM) systems with cubic lattices. The TCF of an FM system is positive and increases with temperature, while that of an AFM system is negative and decreases with temperature. The TCF lowers internal energy, entropy and specific heat. It always raises the free energy of an FM system but raises that of an AFM system only above a specific temperature when the spin quantum number is S >= 1. Comparisons between the effects of the TCFs on the FM and AFM systems are made where possible.

  17. Synthesis and properties of magnetic ceramic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sorescu, Monica

    2012-02-01

    Magnetic ceramic nanoparticles of the type xIn2O3-(1-x)alpha-Fe2O3, xV2O5-(1-x)alpha-Fe2O3 and xZnO-(1-x)alpha-Fe2O3 (x=0.1-0.7) were synthesized from the mixed oxides using mechanochemical activation for 0-12 hours. X-ray diffraction was used to derive the phase content, lattice constants and particle size information as function of ball milling time. Mossbauer spectroscopy results correlated with In3+, V5+ and Zn2+ substitution of Fe3+ in the hematite lattice. SEM/EDS measurements revealed that the mechanochemical activation by ball milling produced systems with a wide range of particle size distribution, from nanometer particles to micrometer agglomerates, but with a uniform distribution of the elements. Simultaneous DSC-TGA investigations up to 800 degrees C provided information on the heat flow, weight loss and the enthalpy of transformation in the systems under investigation. This study demonstrates the formation of a nanostructured solid solution for the indium oxide, an iron vanadate (FeVO4) for the vanadium oxide, and of the zinc ferrite (ZnFe2O4) for the zinc oxide. The transformation pathway for each case can be related to the oxidation state of the metallic specie of the oxide used in connection with hematite.

  18. GEMAS: Mineral magnetic properties of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Fabian, Karl; Nourgaliev, Danis; Reimann, Clemens

    2015-04-01

    The GEMAS survey of European agricultural soil provides a unique opportunity to create the first comprehensive overview of mineral magnetic properties in agricultural soil on a continental scale. Samples from the upper 20 cm were taken in large agricultural fields (Ap-sample) at a density of 1 site/2500 km2. After air drying and sieving to < 2 mm, low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k was measured on 2500 samples using a Bartington MS2B sensor to obtain frequency dependence of magnetic susceptibility kfd. Hysteresis properties are determined using a J coercivity spectrometer, built in the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T, taking approximately 15 minutes. This allows to measure a wide range of magnetic parameters for large sample collections. Because the GEMAS geochemical atlas provides a comprehensive set of geochemical measurements characterizing the individual soil samples, the new data allow to study magnetic parameters in relation to chemical and geological parameters. The results show a clear large scale spatial distribution with e.g. broad distinct lows of k over sandy sediments of the last glaciation in central northern Europe and other sedimentary basins. More localized positive k anomalies occur near young volcanism, or old basalts exposed on the surface. On the other hand, frequency dependence of k displays a much more scattered behavior, indicating either high noise level, or large local variability. Clearly distinguishable, small-scale patterns in the randomized data set indicate that the latter is more likely. This indicates that local influences on soil magnetic properties, including anthropogenic effects, may be easier detected by frequency dependence

  19. Magnetic properties prediction of NdFeB magnets by using support vector regression

    NASA Astrophysics Data System (ADS)

    Cheng, Wende

    2014-09-01

    A novel model using support vector regression (SVR) combined with particle swarm optimization (PSO) was employed to construct mathematical model for prediction of the magnetic properties of the NdFeB magnets. The leave-one-out cross-validation (LOOCV) test results strongly supports that the generalization ability of SVR is high enough. Predicted results show that the mean absolute percentage error for magnetic remanence Br, coercivity Hcj and maximum magnetic energy product (BH)max are 0.53%, 3.90%, 1.73%, and the correlation coefficient (R2) is as high as 0.839, 0.967 and 0.940, respectively. This investigation suggests that the PSO-SVR is not only an effective and practical method to simulate the properties of NdFeB, but also a powerful tool to optimatize designing or controlling the experimental process.

  20. Magnetic properties of tephras from Lake Van (Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Makaroglu, Ozlem; Caǧatay, Namık; Pesonen, Lauri J.; Orbay, Naci

    2013-04-01

    Here we present magnetic properties of tephra layers in the cores taken from Lake Van, Eastern Anatolia, Turkey. Lake Van is the fourth largest terminal Lake in the world by volume (607 km3). It is 460 m deep and has a salinity of 21.4 per mil and a pH of 9.81. It is located on the East Anatolian Plateau with present day water level of 1648 m.a.s.l., and surrounded by large stratovolcanoes Nemrut, Suphan, Tendurek, and Ararat to the west and north. It has accumulated varved-sediments with tephra units, which all provide important paleoenvironmental records. After a seismic survey, four different locations were selected for coring in Lake Van, with water depths varying between 60 m and 90 m. Four cores having between 3 and 4.8 m length were analyzed for for element geochemistry using XRF Core Scanner analysis. The sub-samples were taken into plastic boxes with a volume of 6.4 cm3 for mineral magnetic analysis. The mineral magnetic measurements included magnetic susceptibility (χ), anhysteretic remanent magnetisation (ARM), isothermal remanent magnetisation (IRM), hysteresis properties and thermomagnetic analyses. According to the mineral magnetic measurements and geochemical analysis, we identified the five tephra layers (T1-T5). These tephra units were correlated with the previously varve-dated units of Landmann et al. (2011). The varve ages of the tephra layers were used to obtain the age-depth model for the cores. According to the age models the cores extend back to 9500 ka BP (varve years). Down-core profiles of all the magnetic properties are highly correlatable between different cores, suggesting that the magnetic records are of regional character. ARM values are found to be more convenient than χ values for correlating the tephra layers. The hysteresis parameters of samples taken from these layers indicate that they are within Pseudo Single Domain range. IRM curves show that low coersivity magnetic minerals are dominated in all tephra layers. Measurements

  1. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    PubMed

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications. PMID:26726671

  2. Mechanical and hyperthermic properties of magnetic nanocomposites for biomedical applications.

    PubMed

    Kan-Dapaah, Kwabena; Rahbar, Nima; Tahlil, Abdullahi; Crosson, David; Yao, Nan; Soboyejo, Wole

    2015-09-01

    An understanding of the properties of multifunctional materials is important for the design of devices for biomedical applications. In this paper, a combination of experiments and models was used to study the mechanical and hyperthermic properties of magnetic nanoparticles (MNP)-filled PDMS composites for biomedical applications. These are studied as a function of the weight of MNP, γ-Fe2O3. The results showed the effects on mechanical behavior, and specific losses in a magnetic field. The measured Young's moduli are in good agreement with the moduli predicted from the Bergström-Boybce model. Specific losses calculated from magnetic measurements are used to predict the thermal dose under in-vivo conditions. The implications of the results were discussed for potential applications in biomedical devices. PMID:26005843

  3. Micromagnetic model for biaxial stress effects on magnetic properties

    NASA Astrophysics Data System (ADS)

    Sablik, M. J.; Riley, L. A.; Burkhardt, G. L.; Kwun, H.; Cannell, P. Y.; Watts, K. T.; Langman, R. A.

    1994-04-01

    A micromagnetic formulation has been developed for modeling the effect of biaxial stress on magnetoelastic processes in polycrystalline steels. The formulation uses a modified version of the Kashiwaya model for the effect of biaxial stress on magnetic properties and combines it with the Schneider-Cannell-Watts model for magnetoelastic processes in steels. In particular, the model involves use of an effective stress equal to one of the deviatoric (i.e. distortional) normal stress components, depending on whether the field is parallel to a tensile or compressive axis or to the third axis perpendicular to the plane of biaxial stress. Computer results are compared to experimental results on the effects of biaxial stress on magnetic properties in mild steel and in SAE-4130 steel. Good qualitative agreement is found in almost all cases, in that in going from one biaxial stress case to the next, the same kinds of changes are seen magnetically.

  4. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  5. Micromagnetic modeling of the effects of stress on magnetic properties

    SciTech Connect

    Zhu, B.; Lo, C. C. H.; Lee, S. J.; Jiles, D. C.

    2001-06-01

    A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau{endash}Lifshitz{endash}Gilbert equation. Magnetization curves of a nickel film were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field. {copyright} 2001 American Institute of Physics.

  6. Magnetic properties of a family of quinternary oxalates

    NASA Astrophysics Data System (ADS)

    Lhotel, E.; Simonet, V.; Ortloff, J.; Canals, B.; Paulsen, C.; Suard, E.; Hansen, T.; Price, D. J.; Wood, P. T.; Powell, A. K.; Ballou, R.

    2013-06-01

    We report on the magnetic properties of four isomorphous compounds of a family of quinternary oxalates down to 60 mK. In all these materials, the magnetic FeII ions with a strong magneto-crystalline anisotropy form a distorted kagome lattice, topologically equivalent to a perfect kagome one if nearest-neighbor interactions only are considered. All the compounds order at low temperature in an antiferromagnetic arrangement with magnetic moments at 120°. A remarkable magnetic behavior emerges below the Néel temperature in three compounds (with inter-kagome-layer Zr, Sn, Fe but not with Al): the spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce an unfamiliar slow spin dynamics in the ordered phase observed by AC susceptibility, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature.

  7. Thermodynamic properties of the magnetized Coulomb crystal lattices

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.

    2016-08-01

    It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.

  8. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  9. Magnetic properties of biaxially oriented Ni-V substrates

    SciTech Connect

    Bettinelli, D.; Petrisor, T.; Gambardella, U.; Boffa, V.; Ceresara, S.; Nistor, L.; Pop, V.; Scardi, P.

    1999-04-20

    The paper presents the structural and magnetic properties of a new non-magnetic biaxially textured substrate based on Ni{sub 100{minus}x}V{sub x} solid-solution for YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} tape fabrication. The effective atomic magnetic moment monotonously decreases with the vanadium concentration, causing a corresponding decrease of Curie temperature. The Curie temperature reaches the zero value at about 11.5% of vanadium. The texturing studies revealed that (100)[-001] cube texture can be easily developed up to x = 11 at.%, by a cold rolling process followed by a recrystallization thermal treatment. The X-ray {omega} and {phi} scans have demonstrated that the samples have a good out-of-plane and in-plane texture for the whole solubility range, with FWHM of 7{degree} and 11{degree}, respectively. The correlation between the magnetic and structural anisotropy was also studied.

  10. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    SciTech Connect

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  11. Bi-2223/Ag HTS coil magnetic field properties for magnet and bias winding

    NASA Astrophysics Data System (ADS)

    Jin, J. X.; Grantham, C.; Liu, H. K.; Dou, S. X.

    1997-08-01

    Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+x high-Tc supercondicting (HTS) multifilament wire, is used to prepare a HTS coil. The magnetic field behaviour of the HTS coil is studied with respect to its critical current and magnetic field properties. The anisotropic HTS wire has strong magnetic field dependent critical current, which causes critical current degradation when used in the form of a coil. The HTS coil magnetic field is measured and its distribution is investigated. The experimental results and analysis provide basic information for the design of a magnet or bias winding with the Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+x HTS wire.

  12. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes.

    PubMed

    Felicia, Leona J; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt% of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications. PMID:25353475

  13. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Felicia, Leona J.; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt % of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications.

  14. Crystal growth and magnetic properties of equiatomic CeAl

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Thamizhavel, A.

    2015-03-01

    Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group Cmcm (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a Neel temperature TN = 10 K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20 kOe. From the inverse magnetic susceptibility an effective moment of 2.66 μB/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10 K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the (2J + 1) degenerate ground state as 25 K and 175 K respectively for the fist and second excited states.

  15. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  16. On a few properties of very dilute matter frozen in space magnetic fields

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Schefers, K.

    2014-12-01

    For a case study, the flux-rope (FR) that passed Earth on June 2, 2014(1) (see also listing of magnetic clouds and their properties in the Wind SC MFI science team site at http://wind.gsfc.nasa.gov/mfi/mag_cloud_S1.html), we proceed to interpret plasma and magnetic field observations in the context of MHD. The observations used are 3s average interplanetary magnetic field (Wind/MFI instrument) and 3s plasma (Wind/SWE instruments) data(2). After identifying the observed correlation between electron density, temperature and pressure in the plasma frame of reference we proceed to establish the existence of a relationship between these plasma observables with the magnetic field pressure. By assuming ideal MHD conditions to be valid we proceed to confirm that the medium is diamagnetic, as is to be expected for the MHD state of matter and magnetic field which is assumed to be a superconducting medium. Additionally we infer the presence of magnetization work, as well as a few other constitutive properties of this state of matter. 1 Berdichevsky D. B., R. P. Lepping, and C. J. Farrugia, Geometric considerations of the evolution of magnetic flux ropes, Phys. Rev. E67, doi:10.1103/PhysRevE.036405. Lepping R. P. et al, A summary of Wind magnetic clouds for years 1995 - 2003: model-fitted parameters, associated errors and classifications, Ann. Geophysicae, 24, 215-245, 2006.2006 2 Ogilvie, K. W., et al, SWE, A comprehensive plasma instrument for the Wind spacecraft, Space Sci. Rev., 71, 55 - 77, 1995; Lepping R. P., et al , The Wind Magnetic Field Investigation, Space Sci. Rev., 71, 207 - 229, 1995.

  17. Magnetic properties and magnetization reversal of CoSm ∥ Cr thin films

    NASA Astrophysics Data System (ADS)

    Shan, Z. S.; Malhotra, S. S.; Liou, S. H.; Liu, Yi; Yu, M.; Sellmyer, D. J.

    1996-08-01

    In this paper the magnetic and structural properties of CoSm thin films with a Cr underlayer (CoSm‖Cr) are presented, with emphasis on the measurements of anisotropy at room and low temperature and magnetization reversal. The grain size of the Cr underlayer is about 250 Å and the thin CoSm layer (e.g., 240 Å) inherits this grain size. The CoSm layer consists of nanocrystallites, about 50 Å in diameter, embedded in an amorphous matrix. The Ar pressure, CoSm layer-thickness, and temperature dependencies of magnetic properties including magnetization, coercivity and especially the anisotropy were investigated systematically. CoSm‖Cr with coercivity up to 4.2 kOe at room temperature has been prepared. The intrinsic anisotropy is 4 × 10 6 and 1.4 × 10 7 erg/cm 3 at room temperature for CoSm(240 Å)‖Cr and CoSm(960 Å)‖Cr, respectively, and both increase to 3.9 × 10 7 erg/cm 3 at 10 K. Magnetization reversal studies indicate that the coercivity mechanism changes from wall pinning for samples prepared at lower Ar pressure (5-12 mT) to single-particle coherent rotation for samples prepared at higher pressure (30 mT). The correlations between the microstructure and magnetic properties are discussed.

  18. Gradient-based Magnetic Resonance Electrical Properties Imaging of Brain Tissues

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2015-01-01

    Electrical properties tomography (EPT) holds promise for noninvasively mapping at high spatial resolution the electrical conductivity and permittivity of biological tissues in vivo using a magnetic resonance imaging (MRI) scanner. In the present study, we developed a novel gradient-based EPT approach with greatly improved tissue boundary reconstruction and largely elevated robustness against measurement noise compared to existing techniques. Using a 7 Tesla MRI system, we report high-quality in vivo human brain electrical property images with refined structural details, which can potentially merit clinical diagnosis (such as cancer detection) and high-field MRI applications (local SAR quantification) in the future. PMID:25571378

  19. Superconducting and magnetic properties of Sr3Ir4Sn13

    DOE PAGESBeta

    Biswas, P. K.; Amato, A.; Khasanov, R.; Luetkens, H.; Wang, Kefeng; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    In this research, magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr₃Ir₄Sn₁₃. From magnetization measurements the lower and upper critical fields of Sr₃Ir₄Sn₁₃ are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr₃Ir₄Sn₁₃. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth λ. The dependence of λ⁻² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr₃Ir₄Sn₁₃ withmore » a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature λ(0) is 291(3) nm. The ratio Δ(0)/kBTc = 2.1(1) indicates that Sr₃Ir₄Sn₁₃ should be considered as a strong-coupling superconductor.« less

  20. Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Srinivasan

    Magnetic nanoparticles have recently attracted much attention for potential biomedical applications such as targeted drug delivery, magnetic resonance imaging contrast agents and hyperthermia treatment of cancerous cells. Future research on biomedical applications also includes use of magnetic nanoparticles for cell and DNA separation. By functionalizing magnetic nanoparticles with cells or DNA selective biomolecules, the particles attach to the target and are removed from the sample upon passing through magnetic field gradients. The field gradients apply a force that attracts the particles given by the equation F = ∇(m · B), where m is the magnetization of the MNP, and B is the applied magnetic field. This type of magnetic manipulation is potential for in vivo applications such as targeted drug delivery, magnetic resonance imaging contrast enhancement and hyperthermia treatment of cancer. The magnitude of the field gradients of magnetic nanoparticles are significantly reduced due to the inverse square law dependence of magnetic field strength and subsequently the forces set up are reduced. Although the research in this field has focused primarily on iron oxide nanoparticles, these oxide nanoparticles have a low magnetization that renders them ineffective, at the distances required for in vivo applications, due to the reduced forces felt by the nanoparticles. Successful implementation of such magnetic nanoparticles based system in vivo may require higher magnetization. The aim of this proposal is to synthesize high magnetization Fe-based MNPs functionalized with artificial proteins. The research described in this dissertation focuses on synthesis, size control, structural and magnetic characterization and associated experimental studies to characterize their properties for application in magnetic fluid hyperthermia and magnetic resonance imaging applications. The method used for the synthesis of the Fe-based nanoparticles is the conventional borohydride

  1. Measurement of dielectric and magnetic properties of soil

    SciTech Connect

    Patitz, W.E.; Brock, B.C.; Powell, E.G.

    1995-11-01

    The possibility of subsurface imaging using SAR technology has generated a considerable amount of interest in recent years. One requirement for the successful development of a subsurface imagin system is an understanding of how the soil affects the signal. In response to a need for an electromagnetic characterization of the soil properties, the Radar/Antenna department has developed a measurement system which determines the soils complex electric permittivity and magnetic permeability at UHF frequencies. The one way loss in dB is also calculated using the measured values. There are many reports of measurements of the electric properties of soil in the literature. However, most of these are primarily concerned with measuring only a real dielectric constant. Because some soils have ferromagnetic constituents it is desirable to measure both the electric and magnetic properties of the soil.

  2. Effect of Temperature and Grain Size on Magnetic Properties of Soft Magnetic Iron-Cobalt Alloys

    NASA Astrophysics Data System (ADS)

    Kozlowski, G.; Fingers, R. T.; Coate, J. E.; Rogacki, K.; Dabrowski, B.

    1997-03-01

    Two specific iron-cobalt alloys have been tested as part of the magnetic materials characterization program at Wright Laboratory. The first material is Hiperco Alloy 50HS from Carpenter Technology and the second is HS50 from Telcon Ltd. The planned use of such materials in cyclic high temperature high stress environments (generators and magnetic bearings) gives impetus to determining material properties. These soft magnetic alloys exhibit high magnetic saturation, high yield strength, and moderate core loss. In order to better understand the overall behavior of these alloys, both mechanical and magnetic phenomena have been investigated. Specimens of these materials have been heat treated by various recipes ranging in temperature from 1300 degF to 1350 degF and magnetic saturation along hysteresis loop measurements were made using a vibrating sample magnetometer and an a.c. susceptometer. Measurements of remanence, coercivity, permeabilities and saturation were made as a function of temperature. Mechanical testing was also conducted and these results were used in conjunction with the magnetic behavior to characterize the two specific alloys. Etching and sample preparation processes were developed and microstructural analyses were performed. The effect of composition and heat treatment of these two soft magnetic materials and how they may influence potential applications is discussed.

  3. Fe-nanoparticle coated anisotropic magnet powders for composite permanent magnets with enhanced properties

    NASA Astrophysics Data System (ADS)

    Marinescu, M.; Liu, J. F.; Bonder, M. J.; Hadjipanayis, G. C.

    2008-04-01

    Utilizing the chemical reduction of FeCl2 with NaBH4 in the presence of 2:17 Sm-Co powders, we synthesized composite Sm(Co0.699Fe0.213Cu0.064Zr0.024)7.4/nano-Fe anisotropic hard magnetic powders. The average particle size of the hard magnetic core powder was 21μm while the soft magnetic Fe nanoparticles deposited uniformly on the core powder had a particle size smaller than 100nm. Different reaction protocols, such as immersion of the hard magnetic core powder in each reagent, the use of microemulsion (micelle) technique, or doubling the weight ratio of FeCl2 to core powder, led to different degrees of magnetic coupling of the hard and soft magnetic components of the composite powder. A reaction time of 180s led to deposition of 3.5wt% Fe nanoparticles and improved magnetic properties of the composite powder compared to the uncoated Sm(Co0.699Fe0.213Cu0.064Zr0.024)7.4 powder. The respective magnetic hysteresis parameters were 4πM18kOe=11.3kG, 4πMr=11kG, and Hci>20kOe with a smooth demagnetization curve.

  4. Magnetic properties of nanocrystalline KNbO{sub 3}

    SciTech Connect

    Golovina, I. S. Shanina, B. D.; Kolesnik, S. P.; Geifman, I. N.; Andriiko, A. A.

    2013-11-07

    Newly synthesized undoped and iron-doped nanoscale powders of KNbO{sub 3} are investigated using magnetic resonance and static magnetization methods in order to determine how the crystal size and doping affect the structure of magnetic defects and material properties. Although the bulk crystals of KNbO{sub 3} are nonmagnetic, the undoped KNbO{sub 3} powder with average particle size of 80 nm exhibits magnetic properties. The ferromagnetic resonance signal and the magnetization curve registered on the powder are thoroughly analyzed. It is concluded that the appearance of the defect driven ferromagnetism in the undoped powder is due to the nano-size of the particles. This effect disappears in the iron-doped KNbO{sub 3} powder with particle sizes above 300 nm. In case of low doping (<1 mol. % Fe), a new electron paramagnetic resonance signal with g{sub eff} = 4.21 is found out in the KNbO{sub 3}:Fe powder. Such a signal has not been observed in the bulk crystals of KNbO{sub 3}:Fe. We suppose that this signal corresponds to individual paramagnetic Fe{sup 3+} ions having rhombic symmetry.

  5. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    NASA Astrophysics Data System (ADS)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  6. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  7. Magnetic antenna excitation of whistler modes. I. Basic properties

    SciTech Connect

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-15

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  8. Thermodynamic properties of magnetic strings on a square lattice

    NASA Astrophysics Data System (ADS)

    Mol, Lucas; Oliveira, Denis Da Mata; Bachmann, Michael

    2015-03-01

    In the last years, spin ice systems have increasingly attracted attention by the scientific community, mainly due to the appearance of collective excitations that behave as magnetic monopole like particles. In these systems, geometrical frustration induces the appearance of degenerated ground states characterized by a local energy minimization rule, the ice rule. Violations of this rule were shown to behave like magnetic monopoles connected by a string of dipoles that carries the magnetic flux from one monopole to the other. In order to obtain a deeper knowledge about the behavior of these excitations we study the thermodynamics of a kind of magnetic polymer formed by a chain of magnetic dipoles in a square lattice. This system is expected to capture the main properties of monopole-string excitations in the artificial square spin ice. It has been found recently that in this geometry the monopoles are confined, but the effective string tension is reduced by entropic effects. To obtain the thermodynamic properties of the strings we have exactly enumerated all possible string configurations of a given length and used standard statistical mechanics analysis to calculate thermodynamic quantities. We show that the low-temperature behavior is governed by strings that satisfy ice rules. Financial support from FAPEMIG and CNPq (Brazilian agencies) are gratefully acknowledged.

  9. Structural characterization and magnetic properties of steels subjected to fatigue

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Tang, F.; Biner, S. B.; Jiles, D. C.

    2000-05-01

    Studies have been made on the effects of residual stress and microstructure on the variations of magnetic properties of steels during fatigue. Strain-controlled fatigue tests have been conducted on 0.2wt% C steel samples which were (1) cold-worked, (2) cold-worked and annealed at 500 °C to relieve residual stress, and (3) annealed at 905 °C to produce a ferrite/pearlite structure. The changes of surface microstructure were studied by SEM replica technique. The dislocation structures of samples fatigued for different numbers of cycle were studied by TEM. In the initial stage of fatigue coercivity was found to behave differently for samples which have different residual stress levels. In the intermediate stage the magnetic hysteresis parameters became stable as the dislocation cell structure developed in the samples. In the final stage the magnetic parameters decreased dramatically. The decrease rate is related to the propagation rate of fatigue cracks observed in the SEM study, which was found to be dependent on the sample microstructure. The present results indicate that the magnetic inspection technique is able to differentiate the residual stress effects from the fatigue damage induced by cyclic loading, and therefore it is possible to detect the onset of fatigue failure in steel components via measurements of the changes in magnetic properties.—This work was sponsored by the National Science Foundation, under grant number CMS-9532056.

  10. Magnetic properties of magnetically soft nanocomposite Co-SiO2 prepared via mechanical milling.

    PubMed

    Mishra, S R; Dubenko, I; Losby, J; Marasinghe, K; Ali, Mehdi; Ali, N

    2005-12-01

    Nanocomposite of Co-SiO2, a soft magnetic material, with Co weight fraction x = 0.3 and 0.7 was prepared via mechanical milling. The magnetic properties of these samples, both zero-field-cooled (ZFC) and field-cooled (FC), have been measured as a function of x, milling time, and temperature. The structural assessment of the composite indicates a presence of only ferromagnetic (FM) hcp-Co phase in the composite. However, reported magnetic properties of these composites appear to be dependent on the presence of antiferromagnetic (AFM) phases of cobalt oxide as well. The observed enhancement in ZFC coercivity and a reduction in saturation magnetization with the milling time are due to an increase in defect density upon milling. The ZFC coercivity for the x = 0.3 samples has been found to be much higher than the x = 0.7 samples for all milling times. The coercivity above 50 K depends on temperature according to the law corresponding to isotropic uniaxial superparamagnetic particles. Below 50 K the presence of an AFM phase Co3O4 (TN approximately 33 K) and increased interparticle interactions bring in a departure from that law. The saturation magnetization is found to be temperature dependent for the x = 0.3 samples and temperature independent for the x = 0.7 samples, which further provides evidence of the presence of higher AFM phase fraction in the composite with a low metal volume fraction. The FC magnetic measurements show a presence of an exchange bias field and an enhanced coercivity which are higher than the ZFC measurements. All magnetic measurements indicate that the overall magnetic properties of the composite are dictated by the presence of a trace amount of cobalt oxides. PMID:16430144

  11. Particulate Processing and Properties of High Performance Permanent Magnets

    SciTech Connect

    Anderson, Iver. E.; Tang, W.; McCallum, R.W.

    2004-07-01

    High-performance permanent magnets (HPPM) are based on several intermetallic compounds of rare earth and transition metals, along with metalloid additions. This review will focus on magnetic materials based on Sm-Co (SmCo{sub 5} and Sm{sub 2}Co{sub 17}) and Nd{sub 2}Fe{sub 14}B intermetallics, the most well-known and well-commercialized representatives. These useful compounds generally have extremely high crystallographic anisotropy and are brittle, not generally acceptable properties for most metallurgical applications. However, their outstanding intrinsic magnetic properties and well-tailored microstructures were developed from extensive work on alloy design and advanced materials processing methods and prospects for their continued commercial development are strong. This review first gives a brief introduction to the basics of ferromagnetism to provide an understanding for the design foundations of HPPM materials. Next, the complex relationships between processing methods, resulting microstructures, and magnetic property responses will be examined for the two families of compounds cited. Brief descriptions of recent research activity in this field will also be presented.

  12. Magnetic properties of tektites and other related impact glasses

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N. S.; Cournède, C.; Scaillet, B.

    2015-12-01

    We present a comprehensive overview of the magnetic properties of the four known tektite fields and related fully melted impact glasses (Aouelloul, Belize, Darwin, Libyan desert and Wabar glasses, irghizites, and atacamaites), namely magnetic susceptibility and hysteresis properties as well as properties dependent on magnetic grain-size. Tektites appear to be characterized by pure Fe2+ paramagnetism, with ferromagnetic traces below 1 ppm. The different tektite fields yield mostly non-overlapping narrow susceptibility ranges. Belize and Darwin glasses share similar characteristics. On the other hand the other studied glasses have wider susceptibility ranges, with median close to paramagnetism (Fe2+ and Fe3+) but with a high-susceptibility population bearing variable amounts of magnetite. This signs a fundamental difference between tektites (plus Belize and Darwin glasses) and other studied glasses in terms of oxygen fugacity and heterogeneity during formation, thus bringing new light to the formation processes of these materials. It also appears that selecting the most magnetic glass samples allows to find impactor-rich material, opening new perspectives to identify the type of impactor responsible for the glass generation.

  13. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeary, Lucas W.; Moon, Ji-Won; Rawn, Claudia J.; Love, Lonnie J.; Rondinone, Adam J.; Thompson, James R.; Chakoumakos, Bryan C.; Phelps, Tommy J.

    2011-12-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, ZnyFe1-yFe2O4) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with ZnxFe1-xOOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (Ms) reported in the literature. The averaged Ms values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  14. Aging of magnetic properties in MgO films

    SciTech Connect

    Balcells, Ll.; Konstantinovic, Z.; Martinez, B.; Beltran, J. I.; Martinez-Boubeta, C.; Arbiol, J.

    2010-12-20

    In this work we report on the magnetic behavior of MgO thin films prepared by sputtering. A severe aging process of the ferromagnetic properties is detected in magnetic samples exposed to ambient atmosphere. However, ferromagnetism can be successively switched on again by annealing samples in vacuum. We suggest this behavior reflects the key role played by defects in stabilizing ferromagnetism in MgO films and is likely to be closely related to the hydrogen-driven instability of V-type centers in this material.

  15. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  16. Electronic and magnetic properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  17. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  18. Existence and qualitative properties of travelling waves for an epidemiological model with mutations

    NASA Astrophysics Data System (ADS)

    Griette, Quentin; Raoul, Gaël

    2016-05-01

    In this article, we are interested in a non-monotonic system of logistic reaction-diffusion equations. This system of equations models an epidemic where two types of pathogens are competing, and a mutation can change one type into the other with a certain rate. We show the existence of travelling waves with minimal speed, which are usually non-monotonic. Then we provide a description of the shape of those constructed travelling waves, and relate them to some Fisher-KPP fronts with non-minimal speed.

  19. Magnetic and magnetodielectric properties of erbium iron garnet ceramic

    SciTech Connect

    Maignan, A.; Singh, K.; Simon, Ch.; Lebedev, O. I.; Martin, C.

    2013-01-21

    An Er{sub 3}Fe{sub 5}O{sub 12} ceramic has been sintered in oxygen atmosphere at 1400 Degree-Sign C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ({epsilon} Prime ) and losses (tan {delta}) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er{sup 3+} spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on {epsilon} Prime for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal {epsilon} Prime (H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the {epsilon} Prime (H) curve is observed. From this experimental study, it is concluded that the {epsilon} Prime anomaly, starting above the compensation temperature T{sub c} (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.

  20. Fabrication and Magnetic Properties of Co-Doped TiO2 Powders Studied by Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ge, Shi-Hui; Wang, Xin-Wei; Kou, Xiao-Ming; Zhou, Xue-Yun; Xi, Li; Zuo, Ya-Lu; Yang, Xiao-Lin; Zhao, Yu-Xuan

    2005-07-01

    Co0.04Ti0.96O2 powders are fabricated by sol-gel method. The structure and magnetic properties are investigated under different annealing conditions systematically with emphasis on the influence of oxygen pressure. Pure anatase structure was acquired for all the samples annealed at 450 degrees C for one hour. The samples annealed in air exhibit evident room-temperature ferromagnetism (RTFM) with a small magnetic moment of 0.029 μB per Co atom and coercivity Hc of 26 Oe, while the samples annealed in vacuum have strong RTFM with a larger magnetic moment of 1.18 μB per Co atom and Hc of 430 Oe. The zero-field spin echo nuclear magnetic resonance spectrum of 59Co is obtained to prove the existence of Co clusters in the latter samples, implying that the Co clusters are responsible for the strong RTFM in the samples annealed in vacuum. No Co cluster could be observed using both XPS and NMR techniques in the samples annealed in air, implying that the RTFM found in these samples is intrinsic.

  1. Synthesis and magnetic properties of Fe-Pt-B nanocomposite permanent magnets with low Pt concentrations

    SciTech Connect

    Zhang Wei; Louzguine, Dmitri V.; Inoue, Akihisa

    2004-11-22

    Microstructure and magnetic properties of melt-spun Fe{sub 80-x}Pt{sub x}B{sub 20} (x=20,22,24) alloy ribbons have been investigated. A homogeneous nanoscale mixed structure with amorphous and fcc {gamma}-FePt phases was formed in the melt-spun ribbons. The average sizes of the amorphous and fcc {gamma}-FePt phases are about 5 nm, and the enrichment phenomenon of B is recognized in the coexistent amorphous phase. The melt-spun ribbons exhibit soft magnetic properties. The nanocomposite structure consisting of fct {gamma}{sub 1}-FePt, fcc {gamma}-FePt, and Fe{sub 2}B phases was obtained in the melt-spun ribbons annealed at 798 K for 900 s, and their average grain sizes are about 20 nm. The remanence (B{sub r}), reduced remanence (M{sub r}/M{sub s}), coercivity ({sub i}H{sub c}), and maximum energy product (BH){sub max} of the nanocomposite alloys are in the range of 0.93-1.05 T, 0.79-0.82, 375-487 kA/m, and 118-127 kJ/m{sup 3}, respectively. The good hard magnetic properties are interpreted as resulting from exchange magnetic coupling between nanoscale hard fct {gamma}{sub 1}-FePt and soft magnetic fcc {gamma}-FePt or Fe{sub 2}B phases.

  2. Temperature Dependence of AC Magnetic Properties of FeCo-Based Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Xiao, J. Q.; Yu, R. H.; Basu, S.

    1998-03-01

    AC magnetic properties of soft FeCo-based alloys have been studied at different temperatures and frequencies. Samples of Fe_49Co_49V2 (Hiperco50), Fe_49Co_49V_1.7Nb_0.3 (Hiperco 50HS), and Fe_72Co_27Cr_0.5Mn_0.5 (Hiperco 27) were selected and heat-treated to obtain different microstructures. TEM observation reveals that the ordering parameter of the BCC phase in Hiperco 50 series vary with the cooling rate, and a high temperature disordered phase with a high density of defects can be retained through rapid quenching, whereas Hiperco 27 exhibits a disordered structure which is insensitive to the heat treatment. Toroidal laminated samples were used to measure AC magnetic properties. At low frequencies, all the samples either with ordered or disordered phases show low coercivity H_c, high magnetization and initial permeability μ. As the frequency increases, Hc increases and μ decreases due to the damping effect of the magnetic domain walls. In a certain range of frequencies, magnetic permeability spectra show a dispersion zone where the permeability sharply decreases near to zero. This magnetic permeability dispersion zone shifts to lower frequencies with increasing temperature and decreasing ordering parameter. The effect of microstructure, frequency and temperature on core losses will be also presented.

  3. Transport and magnetic properties of RTX and related compounds

    NASA Astrophysics Data System (ADS)

    Goruganti, Venkateshwarlu

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new magnetic materials is always an interesting topic from both a technological and basic research prospective; it is even more interesting when unusual magnetic phases are observed. Ternary intermetallic plumbides are interesting because of their unconventional magnetic ordering and variety of multiple magnetic transitions. Crystalline electric fields (CEF) also strongly effect the magnetic properties of these intermetallics. To understand the phase transitions, CEF effects, and magnetic interactions, a systematic study of the RNiPb, R 2Ni2Pb, R5NiPb3 and RCuGe systems were conducted. Among the results for NdNiPb a single antiferromagnetic transition was found at 3.5K, while the superconductivity found in some ingots of this material was shown not to correspond to a bulk behavior for this phase. Nd2Ni 2Pb was shown to have a canted zero field magnetic structure with a low temperature metamagnetic transition 3 T. In NdCuGe, a 3K AF transition was found along with a corresponding magnon contribution to the specific heat and magnetic and thermodynamic behavior from which the detailed CEF configuration was obtained. In a series of measurements on recently-synthesized R 5NiPb3 (R=Ce, Nd, Gd), for Ce5NiPb 3 a transition at 48 K was found, which was confirmed to be ferromagnetic character from field dependent heat capacity and Curie-Weiss susceptibility. Nd5NiPb3 exhibits two transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. For Gd5NiPb3, a ferro- or ferrimagnetic transition was found at 68 K. For the Ce and Nd materials metamagnetism was also observed at low temperatures. In addition, very large metallic type gamma terms were found in the specific heat, as well as a

  4. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Shen, Shijun; Jiang, Bin; Jiang, Zhongtao; Yang, Hong; Pan, Fusheng

    2016-05-01

    This paper studies the effect of the existing state of Y element on the high temperature oxidation resistance of magnesium alloys. Different levels of Al element were added into Mg-2.5Y alloy to obtain different existing state of Y. The oxidation rate of Mg-2.5Y-2.5Al alloy is the highest among Mg-2.5Y, Mg-2.5Y-2.5Al and Mg-2.5Y-4.2Al alloys at 500 °C. An effective and protective Y2O3/MgO composite oxide film was formed on the surface of Mg-2.5Y alloy after oxidized at 500 °C for 360 min. The results show that the dissolved Y element in the matrix was beneficial to improve the oxidation resistance of magnesium alloys. Once Y element transformed to the high temperature stable Al2Y compound, its ability in preventing oxidation would disappear. The formation of Al2Y compound severely deteriorated the oxidation resistance of Mg-2.5Y alloy. In addition, the dissolved Al can also cause the rise of oxidation resistance at a certain extent.

  5. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Khan, Shakeel; Asokan, K.; Ahmed, Hilal; Khan, Imran

    2012-10-01

    Nanoparticles of CoFe2O4 and CoIn0.15Fe1.85O4 ferrites were prepared by citrate gel route and characterized to understand their structural, electrical, and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase cubic spinel structure. The average grain sizes from the Scherrer formula were below 50 nm. Microstructural features were obtained by scanning electron microscope and compositional analysis by energy dispersive spectroscopy. The hysteresis curve shows enhancement in coercivity while reduction in saturation magnetization with the substitution of In3+ ions. Enhancement of coercivity is attributed to the transition from multidomain to single domain nature. Electrical properties, such as dc resistivity as a function of temperature and ac conductivity as a function of frequency and temperature were studied for both the samples. The activation energy derived from the Arrhenius equation was found to increase in the doped sample. The dielectric constant (ɛ') and dielectric loss (tan δ) are also studied as a function of frequency and temperature. The variation of dielectric properties ɛ', tan δ, and ac conductivity (σac) with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Co2+ and Co3+ ions at B-sites. Magnetization and electrical property study showed its dominant dependence on the grain size.

  6. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  7. Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Zeng, Yanping

    2015-10-01

    Non-oriented electrical steels with different amounts of copper were prepared and the microstructure and magnetic properties of each kind of steel were studied. The results show that there exist a large number of Cu-rich metastable precipitates in the hot-rolled bands of the steels containing copper. They not only can decrease the sensitivity of the microstructures and magnetic properties of the steels to the change of process parameters but also can significantly reduce the core loss of the steels by improving the recrystallization textures without obviously decreasing the magnetic induction. Therefore, it is possible to control the microstructures and then magnetic properties of non-oriented electrical steels by the copper precipitates.

  8. Magnetic structure and Magnetic transport Properties of Graphene Nanoribbons With Sawtooth Zigzag Edges

    PubMed Central

    Wang, D.; Zhang, Z.; Zhu, Z.; Liang, B.

    2014-01-01

    The magnetic structure and magnetic transport properties of hydrogen-passivated sawtooth zigzag-edge graphene nanoribbons (STGNRs) are investigated theoretically. It is found that all-sized ground-state STGNRs are ferromagnetic and always feature magnetic semiconductor properties, whose spin splitting energy gap Eg changes periodically with the width of STGNRs. More importantly, for the STGNR based device, the dual spin-filtering effect with the perfect (100%) spin polarization and high-performance dual spin diode effect with a rectification ratio about 1010 can be predicted. Particularly, a highly effective spin-valve device is likely to be realized, which displays a giant magnetoresistace (MR) approaching 1010%, which is three orders magnitude higher than the value predicted based on the zigzag graphene nanoribbons and six orders magnitude higher than previously reported experimental values for the MgO tunnel junction. Our findings suggest that STGNRs might hold a significant promise for developing spintronic devices. PMID:25533701

  9. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  10. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-01

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  11. Discontinuous properties of current-induced magnetic domain wall depinning

    PubMed Central

    Hu, X. F.; Wu, J.; Niu, D. X.; Chen, L.; Morton, S. A.; Scholl, A.; Huang, Z. C.; Zhai, Y.; Zhang, W.; Will, I.; Xu, Y. B.; Zhang, R.; van der Laan, G.

    2013-01-01

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 1011 A.m−2) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of “Barkhausen jumps”. A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime. PMID:24170087

  12. Magnetic Properties of Bio-Synthesized Magnetite Nanoparticles

    SciTech Connect

    Rawn, Claudia J; Yeary, Lucas W; Moon, Ji Won; Love, Lonnie J; Thompson, James R; Phelps, Tommy Joe

    2005-01-01

    Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65 C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.

  13. Unusual magnetic properties of superconducting Bi/Ni bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, Hexin; Jin, Xiaofeng; Jin Group Team

    Superconductivity and ferromagnetism are two incompatible phenomena. However, the interaction between them attracts numerous physicists' interests for both theoretical and experimental purposes. Recently, increasing experimental discoveries reveal unconventional effects in superconductor and ferromagnet hybrids, which stimulates a new field called superconducting spintronics. In present work, we report various intriguing magnetic properties of an unexpected superconducting bilayer consisting of non-superconducting Bi and ferromagnetic Ni. A large spontaneous magnetization is induced when the temperature is decreased below the superconductivity transition temperature, which indicates a complex interaction between superconductivity and ferromagnetism in this bilayer. The zero field cooling results show normal Meissner effect while the field cooling results show paramagnetic Meissner effect. Besides, magnetic hysteresis loops in low temperatures show flux pinning and flux jumping effects. Our findings pave the way for exploring unconventional superconductivity coupled to ferromagnetism and potential applications in superconducting spintronics.

  14. Magnetic properties of nanocrystalline Ni Zn ferrites doped with samarium

    NASA Astrophysics Data System (ADS)

    Gama, L.; Diniz, A. P.; Costa, A. C. F. M.; Rezende, S. M.; Azevedo, A.; Cornejo, D. R.

    2006-10-01

    We describe the influence of the temperature of sintering on the structure and the static magnetic properties in Ni 0.5Zn 0.5Sm xFe 2-xO 4 ferrites prepared by combustion synthesis. The increase in Sm content increases the lattice parameter and decreases the mean grain size. The material treated at 600 °C should be single spinel ferrite but with low magnetization saturation. Calcinations carried out at 800 and 1000 °C resulted in materials with cubic spinel phase, but a small amount of SmFeO 3 was also formed. A smooth diminution of the saturation magnetization with an increase in Sm amount was observed. The highest Curie temperatures were obtained for sample treatment at 1000 °C with higher Sm content.

  15. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  16. The effect of mechanical milling on the soft magnetic properties of amorphous FINEMET alloy

    NASA Astrophysics Data System (ADS)

    Gheiratmand, T.; Hosseini, H. R. Madaah; Davami, P.; Gjoka, M.; Song, M.

    2015-05-01

    The effect of milling time on the magnetic properties of FINEMET amorphous ribbons has been investigated using X-ray diffraction, Mössbauer spectroscopy, thermo-magnetic measurements, transmission electron microscopy and SQUID magnetometery. Ribbons were melt-spun at a wheel speed of 38 ms-1 and then mechanically milled for different periods up to 45 min. The results showed that the partially crystallization of the amorphous powder occurs during milling. TEM observations confirmed the formation of small volume fraction of the crystalline phase with ~9 nm crystallite size in the amorphous matrix for the ribbon milled for 45 min. Thermo-magnetic measurements indicated the enhancement of the Curie temperature of amorphous phase during milling which is due to the annihilation of free volumes and microstructural ordering. The Hopkinson effect led to the monotonic increase of magnetization with respect to the temperature before reaching the Curie temperature of the milled samples. Moreover; the magnetization increased with the formation of the Fe(Si) phase while the coercivity decreased. Mössbauer spectroscopy and thermo-magnetic measurements revealed the existence of 13% Fe in crystalline phase. The composition of crystalline phase was determined as Fe-16.5Si. Hyperfine field values increased with milling time, suggesting the ordering of the structure and enhancement of the number of Fe-Fe atomic pairs in the crystalline phase comparing to the primary amorphous ribbon.

  17. The magnetic properties of the star Kepler-78

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Donati, J.-F.; Lin, D.; Laine, R. O.; Hatzes, A.

    2016-06-01

    Kepler-78 is host to a transiting 8.5-h orbit super-Earth. In this paper, the rotation and magnetic properties of the planet host star are studied. We first revisit the Kepler photometric data for a detailed description of the rotation properties of Kepler-78, showing that the star seems to undergo a cycle in the spot pattern of ˜1300 d duration. We then use spectropolarimetric observations with Canada-France-Hawaii Telescope (CFHT)/ESPaDOnS to measure the circular polarization in the line profile of the star during its rotation cycle, as well as spectroscopic proxies of the chromospheric activity. The average field has a strength of 16 G. The magnetic topology is characterized by a poloidal and a toroidal component, encompassing 60 per cent and 40 per cent of the magnetic energy, respectively. Differential rotation is detected with an estimated rate of 0.105±0.039 rad d-1. Activity tracers vary with the rotation cycle of the star; there is no hint that a residual activity level is related to the planetary orbit at the precision of our data. The description of the star magnetic field's characteristics then may serve as input for models of interactions between the star and its close-by planet, e.g. Ohmic dissipation and unipolar induction.

  18. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    SciTech Connect

    Hu, Tao; Hong, Jisang

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  19. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  20. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  1. MBE growth and magneto-optic properties of magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Falco, Charles M.; Engel, Brad N.

    Recent interest in the magnetic and magneto-optic properties of transition metal/transition metal multilayers has been stimulated by the discovery of perpendicular magnetism in particular systems such as Co/Pd and Co/Pt. Due to their favorable magneto-optic wavelength dependence and enhanced corrosion resistance, these materials show promise as future data storage media. However, partially due to the large variety of thin-film deposition methods and growth conditions, it has been difficult to obtain a clear understanding of the mechanisms of magnetic anisotropy in these systems. In order to create controlled and well characterized model systems, we have grown a series of epitaxial Co/Pd superlattices oriented along the three high-symmetry crystal directions [001], [110], and [111] on single-crystal GaAs substrates by molecular beam epitaxy [MBE]. Simultaneously, we have deposited polycrystalline Co/Pd multilayers on Si substrates mounted alongside the GaAs for direct comparisons of epitaxial and non-epitaxial films produced under identical conditions. The structural properties of these multilayers were determined by low-and reflection high-energy electron diffraction (LEED and RHEED), low- and high-angle X-ray diffraction, and scanning tunneling microscopy (STM). The dependence of the uniaxial magnetic anisotropy energy on the Co thickness in these superlattices showed significant systematic differences for each of the three crystal orientations. A review of our work on the structural influences responsible for these differences is presented.

  2. Fermi surface, magnetic, and superconducting properties in actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Settai, Rikio; Haga, Yoshinori; Machida, Yo; Izawa, Koichi; Honda, Fuminori; Aoki, Dai

    2014-08-01

    The de Haas-van Alphen effect, which is a powerful method to explore Fermi surface properties, has been observed in cerium, uranium, and nowadays even in neptunium and plutonium compounds. Here, we present the results of several studies concerning the Fermi surface properties of the heavy fermion superconductors UPt3 and NpPd5Al2, and of the ferromagnetic pressure-induced superconductor UGe2, together with those of some related compounds for which fascinating anisotropic superconductivity, magnetism, and heavy fermion behavior has been observed. xml:lang="fr"

  3. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-08-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  4. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-05-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  5. Magnetic Interactions Influence the Properties of Helium Defects in Iron.

    SciTech Connect

    Seletskaia, Tatiana; Osetskiy, Yury N; Stoller, Roger E; Stocks, George Malcolm

    2005-01-01

    Density functional theory calculations of He defect properties in iron have shown an unexpected influence of magnetism arising from the defect's electronic structure. In contrast with previous work that neglected such effects, the results indicate that the tetrahedral position is energetically more favorable for the He interstitial than the octahedral site. This may have significant implications for He clustering and bubble nucleation, which will impact material performance in future fusion reactors. These results provide the basis for development of improved atomistic models.

  6. Structural and magnetic properties of sonoelectrocrystallized magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mosivand, S.; Monzon, L. M. A.; Ackland, K.; Kazeminezhad, I.; Coey, J. M. D.

    2014-02-01

    The effect of ultrasound power on the morphology, structure and magnetic properties of magnetite nanoparticles synthesized from iron electrodes by the electro-oxidation method was investigated. Samples made in aqueous solution in the absence or presence of an organic stabilizer (thiourea, tetramethylammonium chloride, sodium butanoate or β-cyclodextrine) were characterized by x-ray diffraction, transmission and scanning electron microscopy, magnetometry and Mössbauer spectrometry. The iron is almost all in the form of 20-85 nm particles of slightly nonstoichiometric Fe3-δO4, with δ ≈ 0.10. Formation of a paramagnetic secondary phase in the presence of sodium butanoate or β-cyclodextrine is supressed by ultrasound. Specific magnetization of the magnetite nanoparticles ranges from 19 to 90 A m2 kg-1 at room temperature, and it increases with particle size in each series. The particles show no sign of superparamagnetism, and the anhysteretic and practically temperature-independent magnetization curves are associated with a stable magnetic vortex state throughout the size range. The spin structure of the particles and the use of magnetization measurements to detect magnetite in unknown mixtures are discussed.

  7. Anisotropic magnetic properties of EuAl2Si2

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Kulkarni, Ruta; Thamizhavel, A.; Bonville, P.; Dhar, S. K.

    2015-03-01

    EuAl2Si2 is known to crystallize in the CaAl2Si2-type trigonal structure. We have grown single crystals of EuAl2Si2 by flux method, using Al-Si eutectic (87.8% Al) as self-flux, and investigated their anisotropic magnetic properties by means of magnetization, electrical resistivity and heat capacity in zero and applied magnetic fields, and 151Eu Mössbauer spectroscopy. Magnetic susceptibility data show an antiferromagnetic transition at TN = 33.3 K in agreement with the previously reported value on polycrystalline sample. The isothermal magnetization at 2 K measured along and perpendicular to the c-axis shows anisotropic behaviour, which is rather unexpected as Eu2+ is an S-state ion. The spin flip fields along the two directions are 2.8 and 4.8 T, respectively, while two closely spaced spin-flop transitions in the ab-plane are observed near 1.4 and 1.6 T. The electrical resistivity shows an upturn between TN and 60 K as the temperature is lowered below ~ 60 K, suggesting the presence of antiferromagnetic correlations in the paramagnetic state. Magnetoresistivity at 2 K in 14 T is nearly 1070 % for H // [0001]. The results of heat capacity and 151Eu Mössbauer spectroscopy are in conformity with a bulk transition at 33.3 K.

  8. Synthesis and magnetic properties of single phase titanomagnetites

    SciTech Connect

    Schoenthal, W. Liu, X.; Cox, T.; Laughlin, D. E.; McHenry, M. E.; Mesa, J. L.; Diaz-Michelena, M.; Maicas, M.

    2014-05-07

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1−x)Fe{sub 3}O{sub 4−x}Fe{sub 2}TiO{sub 4} solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe{sub 2}TiO{sub 4}), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  9. Magnetic properties of ultrathin Co/Ag/Pt(111) films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Tzeng, C. L.; Ho, H. Y.; Shern, C. S.

    2003-11-01

    The magnetic properties of Co on Pt(111) with 1 ML Ag buffer layer were studied by magneto-optical Kerr effect. The easy axis of the magnetization of Co deposited on 1 ML Ag/Pt(111) switches from the out-of-plane to the in-plane direction when the coverage of Co is larger than 1 ML. The easy axis can transform from the in-plane to the out-of-plane direction after high temperature annealing for 2-7 ML Co/1 ML Ag/Pt(111). The study of Auger electron spectroscopy shows that the spin reorientation transition occurs when 1 ML Ag atoms diffuse to the top layer. The perpendicular magnetic anisotropy is significantly enhanced after further annealing at higher temperatures. The enhancement of the perpendicular magnetic anisotropy is attributed to the formation of Co-Pt alloy after the atomic exchange between Co and Ag. The possible mechanisms for the spin reorientation transition and the enhancement in the perpendicular magnetic anisotropy are discussed.

  10. Structural and magnetic properties of nickel antimony ferrospinels

    SciTech Connect

    Ivanov, S. A.; Tellgren, R.; Porcher, F.; Andre, G.; Ericsson, T.; Nordblad, P; Sadovskaya, N.; Kaleva, G.; Politova, E.; Baldini, M.; Sun, C.; Arvanitis, D.; Kumar, P. Anil; Mathieu, R.

    2015-05-05

    Spinel-type compounds of Fe–Ni–Sb–O system were synthesized as polycrystalline powders. The crystal and magnetic properties were investigated using X-ray and neutron powder diffraction, Mössbauer and X-ray absorption spectroscopy and magnetization measurements. The samples crystallize in the cubic system, space group Fd – 3 m. The distribution of cations between octahedral and tetrahedral sites was refined from the diffraction data sets using constraints imposed by the magnetic, Mössbauer and EDS results and the ionic radii. The cation distribution and the temperature dependence of the lattice parameter (a) and the oxygen positional parameter (u) were obtained. A chemical formula close to Fe0.8Ni1.8Sb0.4O4 was determined, with Sb5+ cations occupying octahedral sites, and Fe3+ and Ni2+ occupying both tetrahedral and octahedral sites. Fe3+ mainly (85/15 ratio) occupy tetrahedral sites, and conversely Ni2+ mainly reside on octahedral ones. The magnetic unit cell is the same as the crystallographic one, having identical symmetry relations. The results indicate that the compounds have a collinear ferrimagnetic structure with antiferromagnetic coupling between the tetrahedral (A) and octahedral (B) sites. Uniquely, the temperature dependence of the net magnetization of this rare earth free ferrimagnet exhibits a compensation point.

  11. Magnetic and transport properties of PrRhSi3.

    PubMed

    Anand, V K; Adroja, D T; Hillier, A D

    2013-05-15

    We have investigated the magnetic and transport properties of a noncentrosymmetric compound PrRhSi3 by dc magnetic susceptibility χ(T), isothermal magnetization M(H), thermoremanent magnetization M(t), specific heat Cp(T), electrical resistivity ρ(T,H) and muon spin relaxation (μSR) measurements. At low fields χ(T) shows two anomalies near 15 and 7 K with an irreversibility between ZFC and FC data below 15 K. In contrast, no anomaly is observed in Cp(T) or ρ(T) data. M(H) data at 2 K exhibit very sharp increase below 0.5 T and a weak hysteresis. M(t) exhibits very slow relaxation, typical for a spin-glass system. Even though the absence of any anomaly in Cp(T) is consistent with the spin-glass type behavior, there is no obvious origin of spin-glass behavior in this structurally well ordered compound. The crystal electric field (CEF) analysis of Cp(T) data indicates a CEF-split singlet ground state lying below a doublet at 81(1) K and a quasi-triplet at 152(2) K. The ρ(T) data indicate a metallic behavior, and ρ(H) exhibits a very high positive magnetoresistance, as high as ~300% in 9 T at 2 K. No long range magnetic order or spin-glass behavior was detected in a μSR experiment down to 1.2 K. PMID:23604428

  12. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    SciTech Connect

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-27

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  13. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.

    PubMed

    Hao, Hongying; Sun, Dandan; Xu, Yanyan; Liu, Ping; Zhang, Guoying; Sun, Yaqiu; Gao, Dongzhao

    2016-01-15

    Uniform hematite (α-Fe2O3) nanoplates exposing {001} plane as basal planes have been prepared by a facile solvothermal method under the assistance of sodium acetate. The morphological evolution of the nanoplates was studied by adjusting the reaction parameters including the solvent and the amount of sodium acetate. The results indicated that both the adequate nucleation/growth rate and selective adsorption of alcohol molecules and acetate anions contribute to the formation of the plate-like morphology. In addition, the size of the nanoplates can be adjusted from ca. 180nm to 740nm by changing the reaction parameters. Three nanoplate samples with different size were selected to investigate the gas sensing performance, photocatalytic and magnetic properties. As gas sensing materials, all the α-Fe2O3 nanoplates exhibited high gas sensitivity and stability toward n-butanol. When applied as photocatalyst, the α-Fe2O3 nanoplates show high photodegradation efficiency towards RhB. Both the gas sensing performance and the photocatalytic property of the products exhibit obvious size-dependent effect. Magnetic measurements reveal that the plate-like α-Fe2O3 particles possess good room temperature magnetic properties. PMID:26476200

  14. Subtle trade-off existing between (anti)aromaticity, push-pull interaction, keto-enol tautomerism, and steric hindrance when defining the electronic properties of conjugated structures.

    PubMed

    Kleinpeter, Erich; Bölke, Ute; Koch, Andreas

    2010-07-22

    The spatial magnetic properties (through space NMR shieldings, TSNMRS) of conjugated structures (benzenoid/quinonoid keto/enol tautomers, 1,3-dihydroxyaryl-2-aldehydes, Don-pi-Acc chromophores with trade-off existing push-pull vs aromatic behavior) have been calculated by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept, and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values, thus obtained, can be successfully employed to quantify and visualize (anti)aromaticity and to identify readily hereby zwitterionic structures due to push-pull behavior of the compounds studied. In addition, the push-pull behavior was quantified by the quotient (pi*/pi) approach of the central partial C=C double bond. PMID:20586465

  15. Microstructure and Magnetic Properties of Iron-Cobalt-Based Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Yu, R. H.; Basu, S.; Taylor, R.; Unruh, K. M.; Xiao, J. Q.

    1998-03-01

    The magnetic properties in a temperature range of 20-700^circ C of Fe_49Co_49V2 (Hiperco50), Fe_49Co_49V_1.7Nb_0.3 (Hiperco 50HS), and Fe_72Co_27Cr_0.5Mn_0.5 (Hiperco 27) have been studied. The samples were annealed at high temperature followed by cooling to room temperature with different rates to achieve different microstructures. The details of the microstructures have been analyzed in association with temperature dependence of the magnetic properties. The structural evolution has also been studied using differential scanning calorimetry (DSC) and TEM. The ordering parameter was determined by neutron diffraction. The coercivity H_c, saturation magnetization Ms and initial magnetic permeability μ were found to decrease with increasing temperature up to 750^circ C. Microstructural observation indicates that the second phase was formed during thermal cycling or aging at 600^circ C. For the ordered Hiperco 50 series, this second phase acts as a barrier for the domain wall movement resulting in the increase of Hc and decrease of Ms and μ. Hiperco 27 samples, which retains their disordered phase, exhibit relatively high H_c, and lower Ms and μ at room temperature. Mössbauer analysis indicates that the magnetic moments tends to align parallel to the surfaces of the sample and the average hyperfine fields decrease as the ordering parameter increases.

  16. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  17. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  18. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  19. Anisotropic magnetic properties and magnetic structure of YbPdSi.

    PubMed

    Tsujii, Naohito; Keller, Lukas; Dönni, Andreas; Kitazawa, Hideaki

    2016-08-24

    YbPdSi with orthorhombic crystal structure (space group Pmmn) exhibits a magnetic transition at [Formula: see text] K, below which a ferromagnetic moment develops with an enhanced electronic specific-heat coefficient [Formula: see text] mJ K(-2) mol(-1). We have investigated the magnetization, electrical resistivity, and specific heat of YbPdSi using single crystalline samples as functions of temperature and magnetic field. It has been found that the ferromagnetic moment points to the c-direction, although the magnetic moments have an Ising-like anisotropy along the b-direction above the magnetic-transition temperature. Field dependence of the magnetization and electrical resistivity shows a metamagnetic-like transition at [Formula: see text] T when field is applied along the b-axis below T  =  3 K, suggesting the existence of an antiferromagnetic component along this direction. The magnetic structure has been investigated by neutron diffraction using powder samples. The magnetic unit cell is identical to the crystal unit cell. The Rietveld fitting has revealed that Yb at the 2a and 2b positions exhibit a collinear ferromagnetic order along the c-axis, whereas Yb at the 4e position undergoes a non-collinear order, involving the ferromagnetic moment along the c-axis and an antiferromagnetic component along the b-axis. The ferromagnetic moments determined by the neutron diffraction are 0.26, 1.3, and 0.15 [Formula: see text] for Yb at the 4e, 2b, and 2a sites, respectively. The reduced moments for the 4e and the 2a sites suggest that the Kondo screening effect is important in YbPdSi. PMID:27351383

  20. Anisotropic magnetic properties and magnetic structure of YbPdSi

    NASA Astrophysics Data System (ADS)

    Tsujii, Naohito; Keller, Lukas; Dönni, Andreas; Kitazawa, Hideaki

    2016-08-01

    YbPdSi with orthorhombic crystal structure (space group Pmmn) exhibits a magnetic transition at {{T}\\text{m}}=8 K, below which a ferromagnetic moment develops with an enhanced electronic specific-heat coefficient γ ∼ 200 mJ K‑2 mol‑1. We have investigated the magnetization, electrical resistivity, and specific heat of YbPdSi using single crystalline samples as functions of temperature and magnetic field. It has been found that the ferromagnetic moment points to the c-direction, although the magnetic moments have an Ising-like anisotropy along the b-direction above the magnetic-transition temperature. Field dependence of the magnetization and electrical resistivity shows a metamagnetic-like transition at {{H}\\text{m}}=0.3 T when field is applied along the b-axis below T  =  3 K, suggesting the existence of an antiferromagnetic component along this direction. The magnetic structure has been investigated by neutron diffraction using powder samples. The magnetic unit cell is identical to the crystal unit cell. The Rietveld fitting has revealed that Yb at the 2a and 2b positions exhibit a collinear ferromagnetic order along the c-axis, whereas Yb at the 4e position undergoes a non-collinear order, involving the ferromagnetic moment along the c-axis and an antiferromagnetic component along the b-axis. The ferromagnetic moments determined by the neutron diffraction are 0.26, 1.3, and 0.15 {μ\\text{B}} for Yb at the 4e, 2b, and 2a sites, respectively. The reduced moments for the 4e and the 2a sites suggest that the Kondo screening effect is important in YbPdSi.

  1. Theoretical study of magnetic properties and x-ray magnetic circular dichroism of the ordered Fe{sub 0.5}Pd{sub 0.5} alloy

    SciTech Connect

    Galanakis, I.; Ostanin, S.; Alouani, M.; Dreysse, H.; Wills, J. M.

    2000-01-01

    A detailed theoretical study of magnetic and structural properties of Fe{sub 0.5}Pd{sub 0.5} ordered face-centered tetragonal (fct) alloy, using both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energy surface as a function of the lattice parameters a and c shows a long valley where stable structures may exist. Our calculation using the GGA predicts a magnetic phase transition from perpendicular to parallel magnetization as a function of the lattice parameter, whereas LSDA favors always the [001] magnetization axis for all values of the lattice parameters. The spin and orbital magnetic moments and x-ray magnetic circular dichroism spectra are calculated for the easy [001] and the hard [100] magnetization axis and for three sets of experimental lattice parameters, and are compared to the available experimental results on these films. A supercell calculation for a 4 monolayer Fe{sub 0.5}Pd{sub 0.5} thin film produced similar results. While the spin magnetic moments are in fair agreement with experiment, the orbital magnetic moments are considerably underestimated. To improve the agreement with experiment we included an atomic orbital polarization term; however, the computed orbital moments scarcely changed. (c) 2000 The American Physical Society.

  2. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-05-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications.

  3. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties.

    PubMed

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-12-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications. PMID:27245169

  4. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy.

    PubMed

    Ryzhkov, Aleksandr V; Melenev, Petr V; Balasoiu, Maria; Raikher, Yuriy L

    2016-08-21

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters. PMID:27544124

  5. Magnetic properties of manganese based one-dimensional spin chains.

    PubMed

    Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu

    2015-12-14

    We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively. PMID:26455515

  6. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  7. Properties of magnetic helicity flux in turbulent dynamos

    SciTech Connect

    Vishniac, Ethan T.; Shapovalov, Dmitry E-mail: dmsh@jhu.edu

    2014-01-10

    We study the flux of small-scale magnetic helicity in simulations of driven statistically homogeneous magnetohydrodynamic turbulence in a periodic box with an imposed large-scale shear. The simulations show that in the regime of strong dynamo action the eddy-scale magnetic helicity flux has only two significant terms: advective motion driven by the large-scale velocity field and the Vishniac-Cho (VC) flux which moves helicity across the magnetic field lines. The contribution of all the other terms is negligible. The VC flux is highly correlated with the large-scale electromotive force and is responsible for large-scale dynamo action, while the advective term is not. The VC flux is driven by the anisotropy of the turbulence. We derive analytical expressions for it in terms of the small-scale velocity or magnetic field. These expressions are used to predict the existence and strength of dynamo action for different turbulent anisotropies and tested against the results of the simulations.

  8. Magnetic and Thermoelectric Properties of Boron-Rich Solids

    NASA Astrophysics Data System (ADS)

    Mori, Takao

    Boron forms various compounds with metal atoms occupying voids in the boron framework. As a synthesis method it has been found that the addition of small amounts of third elements like carbon, nitrogen, and silicon can result in the formation of novel and varied rare earth boron cluster structures. A wide variation of 1D, 2D, and 3D magnetic behavior with unexpectedly strong magnetic interactions has been discovered in rare earth boron icosahedra compounds which are magnetically dilute, f-electron insulators. As an intriguing phenomenon, the B12 icosahedra cluster, which is a building block of the structure, has been indicated to function as a novel mediator of magnetic interaction. These phenomena are borides. Attractive high temperature thermoelectric properties are also emerging in borides. Attractive high temperature thermoelectric properties are also emerging in this group of compounds, which is striking due to the great potential of utilizing waste heat. Recent developments on the long awaited n-type counterpart to boron carbide, the homologous series of RE-B-C(N) compounds, REB17CN, REB22C2N, and REB28.5C4, will be presented together with those of p-type REB44Si2. General new ways to improve the thermoelectric properties are also discussed. For example, seeding with highly electrically conductive metallic borides like REB4 and REB6 is found to be a way to significantly increase the thermoelectric figure of merit. Electric resistivity significantly decreases while Seebeck coefficients and thermal conductivity are not sizably affected.

  9. Dielectric and magnetic properties of some gadolinium silica nanoceramics

    SciTech Connect

    Coroiu, I. Pascuta, P. Bosca, M. Culea, E.

    2013-11-13

    Some nanostructure gadolinium silica glass-ceramics were obtained undergoing a sol gel method and a heat-treatment at 1000°C about two hours. The magnetic and dielectric properties of these samples were studied. The magnetic properties were evidenced performing susceptibility measurements in the 80-300K temperature range. A Curie-Weiss behavior has acquired. The values estimated for paramagnetic Curie temperature being small and positive suggest the presence of weak ferromagnetic interactions between Gd{sup 3+} ions. The dielectric properties were evaluated from dielectric permittivity (ε{sub r}) and dielectric loss (tanδ) measurements at the frequency 1 kHz, 10 kHz and 100 kHz, in the 25-225°C temperature range and dielectric dispersion at room temperature for 79.5 kHz - 1GHz frequency area. The dielectric properties suggest that the main polarization mechanism corresponds to interfacial polarization, characteristic for polycrystalline-structured dielectrics. The polycrystalline structure of the samples is due to the polymorphous transformations of the nanostructure silica crystallites in the presence of gadolinium oxide. They were highlighted by SEM micrographs.

  10. Magnetic properties of the orthorhombic NdPd

    NASA Astrophysics Data System (ADS)

    Dhar, Vijay; Provino, A.

    2016-09-01

    The equiatomic NdPd compound crystallizes in the orthorhombic CrB structure type (oS8, Cmcm, No. 63). The NdPd phase melts congruently at 1240 °C, as observed by differential thermal analysis; one further sharp thermal effect detected at 1040 °C is very likely due to a structural transition. We confirm the CrB prototype for the low-temperature form of NdPd. The lattice parameters of this compound are a=3.842(2) Å, b=10.776(7) Å, c=4.605(2) Å, as obtained from Guinier powder pattern; those for the corresponding iso-structural LaPd compound, prepared as non-magnetic reference, are a=3.947(2) Å, b=11.036(3) Å, c=4.663(2) Å. Despite the fact that NdPd has been known since long, its physical properties have not been investigated till date. Here we report the results of magnetization, heat capacity and electrical resistivity measurements performed on this compound. NdPd undergoes a single ferromagnetic transition close to 15 K, inferred from a sharp upturn in the magnetization at lower temperatures and from Arrott plots measured at selected temperatures between 1.9 and 18 K. The coercive field and remnant magnetization at 1.9 K are 320 Oe and 0.24 μB/f.u., which become negligible at 15 K. A sharp peak in the heat capacity at ≈15 K confirms the bulk magnetic transition. Isothermal magnetization at 2 K shows a tendency to saturation, reaching a value of 1.9 μB/f.u. at the maximum applied field of 70 kOe. The zero field resistivity shows an anomaly near 15 K, in correspondence with the magnetic and heat capacity data. A negative magnetoresistivity, typical of a ferromagnet, is observed in the magnetically ordered state in an applied magnetic field of 50 kOe. LaPd is a typical Pauli paramagnet with a Sommerfeld coefficient γ=3.9 mJ/mol K2.

  11. Investigation of transport and magnetic properties of SiC/Cu diluted magnetic semiconductor nano-multilayer films

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Li, Chunjing; Fu, Yuting; Li, Yanghua; Bu, Dechong; An, Yukai; Liu, Jiwen

    2016-09-01

    The SiC/Cu nano-multilayer films were deposited on Si substrates using radio frequency and direct current alternative sputtering technique. In this paper, the transport and magnetic properties of the films were investigated. XRR shows the SiC/Cu periodical structures of the films. XRD confirms that the 3C-SiC crystal structure is formed in the films without heating substrates. The XPS indicates that the Cu atoms substitute for Si sites of the SiC lattice and exist in a mixed valance state of Cu+ and Cu2+. The best fitting for the plots of ln ρ versus T-1/4 using the combination of the Mott and the band gap VRH models suggests that the carriers in the films are strongly localized. The films have a typical semiconductor characteristic and an obvious room temperature ferromagnetism which should arise from the bond magnetic polarons. The maximum values of saturation magnetization and carrier concentration are up to 15.2 emu/cm3 and 1.86E + 22/cm3 respectively.

  12. Magnetic Properties of Ni(2+)(aq) from First Principles.

    PubMed

    Mareš, Jiří; Liimatainen, Helmi; Pennanen, Teemu O; Vaara, Juha

    2011-10-11

    The aqueous solution of the Ni(2+) ion was investigated using a first principles molecular dynamics (FPMD) simulation based on periodic density-functional theory (DFT) calculations. Statistical averages of the magnetic properties corresponding to the triplet spin state of the ion, the hyperfine coupling, g and zero-field splitting tensors, as well as the resulting paramagnetic nuclear magnetic resonance (pNMR) shielding terms were calculated using DFT from instantaneous simulation snapshots extracted from the FPMD trajectory. We report comprehensive tests of the reliability of systematically selected DFT functionals for the properties. The isotropic nuclear shielding of the (17)O nuclei can be obtained with good predictive power. The accuracy of the calculated (1)H shieldings is limited by the fact that the spin-density on the proton sites is not reproduced reliably with the tested functionals, rendering the dominant Fermi contact isotropic shielding term less well-defined. On the other hand, the dominant spin-dipole term of the shielding anisotropy, which gives a practically vanishing isotropic contribution, can be obtained with good reliability for both the (1)H and (17)O nuclei. The anisotropic shielding tensor can be thus utilized reliably in the calculation of Curie-type paramagnetic relaxation. We discuss the evolution of the pNMR properties through the first and second solvation shells of the ion, toward the bulk solvent. The magnetic properties of the dominant, six-coordinated solution are compared to those of the metastable, 5-fold coordinated intermediate occurring in the dissociative exchange process. PMID:26598159

  13. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  14. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    NASA Astrophysics Data System (ADS)

    Pariona, N.; Camacho-Aguilar, K. I.; Ramos-González, R.; Martinez, Arturo I.; Herrera-Trejo, M.; Baggio-Saitovitch, E.

    2016-05-01

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a "plum pudding", where hematite NPs "raisins" are surrounded by ferrihydrite "pudding". Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere.

  15. Distribution of Helical Properties of Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kuzanyan, Kirill M.; Lamburt, Victor G.; Zhang, Hong-Qi; Bao, Shu-Dong

    2003-06-01

    We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic magnetographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss other regularities which can be revealed by further analysis such as possible dependence on longitude, time, and magnetic field strength, etc.

  16. Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Siebert, R.; Schaefer, R.; Kaestner, A.; Van Swygenhoven, H.; Lehmann, E.; Grünzweig, C.

    The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.

  17. Nano-structured magnetic metamaterial with enhanced nonlinear properties

    PubMed Central

    Kobljanskyj, Yuri; Melkov, Gennady; Guslienko, Konstantin; Novosad, Valentyn; Bader, Samuel D.; Kostylev, Michael; Slavin, Andrei

    2012-01-01

    Nano-structuring can significantly modify the properties of materials. We demonstrate that size-dependent modification of the spin-wave spectra in magnetic nano-particles can affect not only linear, but also nonlinear magnetic response. The discretization of the spectrum removes the frequency degeneracy between the main excitation mode of a nano-particle and the higher spin-wave modes, having the lowest magnetic damping, and reduces the strength of multi-magnon relaxation processes. This reduction of magnon-magnon relaxation for the main excitation mode leads to a dramatic increase of its lifetime and amplitude, resulting in the intensification of all the nonlinear processes involving this mode. We demonstrate this experimentally on a two-dimensional array of permalloy nano-dots for the example of parametric generation of a sub-harmonic of an external microwave signal. The characteristic lifetime of this sub-harmonic is increased by two orders of magnitude compared to the case of a continuous magnetic film, where magnon-magnon relaxation limits the lifetime. PMID:22745899

  18. Magnetic and magnetocaloric properties of bulk dysprosium chromite

    SciTech Connect

    McDannald, A.; Kuna, L.; Jain, M.

    2013-09-21

    In this work, a polycrystalline bulk DyCrO{sub 3} sample was prepared by a solution route and the structural and magnetic properties were investigated. The phase purity and ionic valence state of the DyCrO{sub 3} sample were determined by x-ray diffraction/Raman spectroscopy and x-ray photoelectron spectroscopy, respectively. The AC and DC magnetization measurements revealed the onset of antiferromagnetic order at 146 K with an effective moment of 8.88 μ{sub B}. Isothermal magnetization measurements of this material are presented for the first time, showing a peak in the coercive field at 80 K that is explained by the competition between the paramagnetic Dy{sup 3+} and Cr{sup 3+} sublattices. DyCrO{sub 3} was found to display a large magnetocaloric effect (8.4 J/kg K) and relative cooling power (217 J/kg) at 4 T applied field, which renders DyCrO{sub 3} useful for magnetic refrigeration between 5 K and 30 K.

  19. Configurations and magnetic properties of Mn-B binary clusters

    NASA Astrophysics Data System (ADS)

    Cui-Ju, FENG; Bin-Zhou, MI

    2016-05-01

    We investigate the structures and magnetic properties of boron-doped manganese clusters using first-principle density functional theory. We arrive at the lowest energy structures for clusters by simultaneously optimizing the cluster geometries, total spins, and relative orientations of individual atomic moments. For MnnB (n=2-12) clusters, the theoretical results indicate that the B atom prefers the surface site for all the lowest-energy structures except Mn10B cluster. The doped B atom enhances the stability of pure Mnn cluster. We also have studied the magnetic behavior of Mn-B clusters in the size range. Based on the analysis of the different magnetic behavior of boron-doped manganese clusters, we have further studied Mn9B2 and Mn8B3 clusters and it indicates that the doping of non-magnetism B element can induce all the Mn atoms align ferromagnetic coupling. Furthermore, a stable pearl necklace nanowire ([Mn8B3]n→∞) which retains the ferromagnetic ordering of all the manganese atoms has been predicted.

  20. Magnetic and structural properties of MnRh thin Films

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anurag; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Suzuki, Takao

    2016-03-01

    A systematic study of magnetic and structural properties of MnRh thin films fabricated by sputter-deposition onto silica glass has been conducted. The MnRh thin films are found to be of the CsCl-type structure, and ferromagnetic at room temperature. The MnRh thin film undergoes the magnetic phase transition between antiferromagnetic and ferromagnetic states at a temperature around 175 K and 310 K during the cooling and heating process, respectively. The temperature dependence of the magnetization shows a thermal hysteresis of about 120 K. An exchange bias field of about 450 Oe at 5 K was observed with the coercivity of 900 Oe and unidirectional anisotropy constant of about 0.45 erg/cm2. The magnetic field dependence of M-T shows that the transition temperature of about 230 K remains unchanged with increasing field during the temperature variation process. A detailed STEM-EDS analysis indicates a non-uniform compositional distribution of Mn and Rh with an average composition of Mn58Rh42 at%. A high resolution STEM-HAADF analysis reveals the compositional variations within the CsCl-type MnRh grains. It is proposed that the origin of exchange bias effect is resulted from the exchange coupling between the ferromagnetic region with Mn-rich and the antiferromagnetic region with nearly the equiatomic composition.

  1. Regularities in temperature, magnetic field and pressure effect on the resistive properties of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Polyakov, P. I.; Kucherenko, S. S.

    2002-08-01

    The influence of hydrostatic pressure, magnetic field and temperature on resistivity behaviour of bulk and film samples La 0.9Mn 1.1O 3 and La 0.56Ca 0.24Mn 1.2O 3 at action of magnetic field and temperature has been analysed. It is established that the maximum of magnetoresistive and the revealed baroresistive, magnetobaroresistive effects coincide at the same temperature Tpp. This temperature is equal to the "metal-semiconductor" phase transition temperature Tms. "Cooling" and "heating" effects of pressure and magnetic field have been revealed. A mutual correspondence of T- P- H (6.2 K, 1 kbar, 2.7 kOe) influence on polycrystalline sample La 0.9Mn 1.1O 3 resistivity has been determined. The linear change of Tms( P) and Tms( H) in La 0.9Mn 1.1O 3, La 0.56Ca 0.24Mn 1.2O 3 resistivity have been found. An importance of the regularities of elastic-deforming correspondence of T- H- P influence on magnetic, resistivity properties, phase transitions and effects was elucidated and explained. An alternating influence of T- H- P and its role in resistivity has been pointed. A correlation between structural, elastic and resistive properties is specified.

  2. Growth and magnetic properties of Ni-doped Bi2Se3 topological insulator crystals

    NASA Astrophysics Data System (ADS)

    Yang, H.; Liu, L. G.; Zhang, M.; Yang, X. S.

    2016-09-01

    Transition metal doped topological insulators NixBi2-xSe3 were grown by the modified Bridgeman method. Their phase structures, electrical and magnetic transport properties were studied. The lattice constant c decreased with the increasing Ni concentration. All samples are highly c-axis oriented and exhibit weak metallic resistivity. The resistivity increased with both the increasing applied magnetic field and Ni concentration. The resistivity data could be fitted by different formulas below and above 30 K, respectively. The magnetic changed as the Ni dopant concentrations increased, which implied the nickel entering the matrix structure. For the sample with small amount of Ni (x=0.03), a behavior in the curves of temperature dependent of magnetism closely resembled a paramagnet. Bulk ferromagnetism was observed in highly doped samples (x≥0.05) from M(T) data. The samples with (x≥0.05) showed clear hysteresis loops, which suggested the existence of ferromagnetism ordering. All Ni-doped samples are observed with similar weak diamagnetic signals. It was considered that there were three possible origins of ferromagnetism: Ni-Se compound, the interaction of the doped Ni atoms and magnetic contamination.

  3. Two-dimensional magnetic property measurement for magneto-rheological elastomer

    NASA Astrophysics Data System (ADS)

    Zeng, Jianbin; Guo, Youguang; Li, Yancheng; Zhu, Jianguo; Li, Jianchun

    2013-05-01

    Magneto-rheological elastomer (MRE) is a new kind of smart material. Its rheological properties can be altered and controlled in a real time manner when it is applied an external magnetic field. For calculating magnetic properties of MRE material, usually Maxwell-Garnet equation is used to acquire an approximately effective permeability. This equation treats the magnetic property of particles as linear. However, when the applied magnetic field is alternating or rotating, the nonlinearity of magnetic property and magnetic hysteresis cannot be neglected. Hence, the measurement and modelling of the magnetic properties under alternating and rotating magnetic fields are essential to explore new applications of the material. This paper presents the investigation on the magnetic hysteresis properties of MRE material under one-dimensional (1-D) alternating and two-dimensional (2-D) rotating magnetic field excitations. A kind of MRE material, consisting of 70% carbonyl iron particles, 10% silicone oil, and 20% silicone rubber, was used to investigate the magnetic properties. The diameter of carbonyl iron particles is 3-5 μm. The measurement results, such as the relations between magnetic field intensity (H) and magnetic flux density (B) under different magnetic field excitations on the MRE sample, have been obtained and analyzed. These data would be useful for design and analysis of MRE smart structures like MR dampers.

  4. Effects of spin-orbit coupling on magnetic properties of discrete and extended magnetic systems.

    PubMed

    Dai, Dadi; Xiang, Hongjun; Whangbo, Myung-Hwan

    2008-10-01

    In accounting for the magnetic properties of discrete and extended compounds with unpaired spins, it is crucial to know the nature of their ground and low-lying excited states. In this review we surveyed quantum mechanical descriptions on how these states are affected by spin-orbit coupling and attempted to provide a conceptual framework with which to think about spin-orbit coupling and its applications. PMID:18484639

  5. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    PubMed Central

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2015-01-01

    Sensitivity and spatial resolution in Magnetic Particle Imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer’s magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance. PMID:25729125

  6. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  7. The magnetic and hyperfine properties of iron in silicon carbide

    NASA Astrophysics Data System (ADS)

    Elzain, M.; Al-Harthi, S. H.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Barwani, M.

    2014-04-01

    The magnetic and hyperfine properties of iron impurities in 3C- and 6H- silicon-carbide are calculated using the abinitio method of full-potential linear-augmented-plane-waves. The iron atoms are introduced at substitutional carbon, Fe C , and silicon, Fe Si , sites as well as at the tetrahedral interstitial sites with four nearest neighbours carbon atoms, Fe I (C), and four nearest neighbours silicon atoms, Fe I (Si). The effect of introducing vacancies at the neighbours of these sites is also studied. Fe atoms with complete neighbors substituted at Si or C sites are found to be nonmagnetic, while Fe atoms at interstitial sites are magnetic. Introduction of a vacancy at a neighboring site reverse the picture.

  8. Magnetic properties of superconductors with an inverted distribution

    SciTech Connect

    Idlis, B.G.; Kopaev, Y.V.

    1980-12-01

    A study is made of a semiconductor with an inverted distribution of quasiparticles created by external pumping. For pumping rates above a threshold value, a superconducting state may be created due to the electron--electron repulsion and such a state exhibits ideal paramagnetism rather than the Meissner effect. The fluctuation correction to the magnetic susceptibility is calculated for pumping levels below the threshold and it is shown that this correction is also paramagnetic and diverges as (..mu../sub c/-..mu..)/sup -1/2/ at the threshold (..mu.. is the chemical potential of nonequilibrium particles). The possibility of insulating pairing of nonequilibrium electrons and holes in such systems is also taken into account (for congruent Fermi surfaces) and it is shown that it does not affect the magnetic susceptibility of either the normal or superconducting phases. The transport properties of such systems are also briefly discussed.

  9. Magnetic properties of electrospun non-woven superconducting fabrics

    NASA Astrophysics Data System (ADS)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas; Hauet, Thomas; Hartmann, Uwe

    2016-03-01

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi2Sr2CaCuO8 (Bi-2212) nanowires. The individual nanowires have a diameter of ˜150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigated by electron microscopy.

  10. Structure and magnetic properties of hexagonal arrays of ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo Padrón; Azevedo, A.; Rezende, S. M.

    2009-04-01

    Here we present a model that explains a number of the magnetic properties of arrays of cylindrical ferromagnetic nanowires. The model properly considers the magnetostatic contributions from the wire inhomogeneities, here taken as a chain of ellipsoidal grains, as well as the dipolar interactions summed in the overall array of hexagonal symmetry. Carrying out the complete sum of both the dipolar interactions between the ellipsoidal grains and between the nanowires, we obtain an analytical expression for the magnetostatic energy. The effective anisotropy field extracted from the magnetostatic energy predicts the change in the magnetization easy direction from parallel to perpendicular to the wire axis. The expressions contain information on microscopic parameters such as packing factor, length and diameter of the nanowires, and shape and size of the ellipsoids. The model has been used to interpret ferromagnetic resonance data of Ni nanowires fabricated by electrodeposition in porous anodic aluminum oxide membranes.

  11. Magnetic properties of sputtered Permalloy/molybdenum multilayers

    SciTech Connect

    Romera, M.; Ciudad, D.; Maicas, M.; Aroca, C.

    2011-10-15

    In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer has a thickness close to the transition thickness between Neel and Bloch domain walls.

  12. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  13. Structural, optical, and magnetic properties of FeVO3

    NASA Astrophysics Data System (ADS)

    Singh, Pooja; Gupta, Anurag; Dogra, Anjana

    2016-05-01

    We report the structural, optical, and magnetic properties of polycrystalline FeVO3 synthesized by solid state reaction technique.While FeVO3 has rhombohedral crystal structure with space group R-3c (167) identical to the parentα-Fe2O3, the lattice volume reduces due to the replacement of Fe3+ with V3+ having smaller ionic radii. The most remarkable outcome of doping is reduction in band gap from 2.1 (α-Fe2O3) to 1.5 eV (FeVO3), which is favorable for photo-electrochemical applications. Although the canted ferromagnetism persists in FeVO3, an enhancement in magnetic moment is observed as compared to the parent compound.

  14. Properties of Ni/Nb magnetic/superconducting multilayers

    SciTech Connect

    Mattson, J.E.; Osgood III, R.M.; Potter, C.D.; Sowers, C.H.; Bader, S.D.

    1997-05-01

    We examine structural, magnetic, and superconducting properties of magnetic/superconducting Ni/Nb multilayers. The Ni(Nb) films are textured {l_brace}111{r_brace}({l_brace}110{r_brace}) and have smooth interfaces. The average moment of the Ni atoms in the structure drops by 80{percent} from that of bulk Ni for 19 {Angstrom} thick Ni layers in proximity to 140 {Angstrom} thick Nb layers, and goes to zero for smaller Ni thicknesses. The Nb layer is not superconducting for thicknesses {lt}100 {Angstrom} in the presence of a 19 {Angstrom} thick ferromagnetic Ni layer. The behavior of the superconducting critical temperature as a function of the superconducting layer thickness was fitted and an interfacial scattering parameter and scattering time for the paramagnetic Ni regime determined.

  15. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    SciTech Connect

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai-Zhuang Ho, Kai-Ming

    2015-06-28

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co{sub 5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co{sub 11}Zr{sub 2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co{sub 5}Zr phase and larger than that of the low-temperature Co{sub 5.25}Zr phase. Our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  16. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    DOE PAGESBeta

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that themore » magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

  17. FeGa/MgO/Fe/GaAs(001) magnetic tunnel junction: Growth and magnetic properties

    NASA Astrophysics Data System (ADS)

    Gobaut, B.; Ciprian, R.; Salles, B. R.; Krizmancic, D.; Rossi, G.; Panaccione, G.; Eddrief, M.; Marangolo, M.; Torelli, P.

    2015-06-01

    Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction.

  18. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    NASA Astrophysics Data System (ADS)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  19. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    SciTech Connect

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  20. Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Naito, Tomoyuki; Yoshida, Takafumi; Fujishiro, Hiroyuki

    2015-09-01

    We have studied the effects of Ti doping on the magnetic properties of MgB2 superconducting bulks. The trapped field, which was obtained by field-cooled magnetization, {B}{{T}}{FC}, was about 3.6 T at 13 K at the surface of the single Ti5-20% doped MgB2 bulks, which was about 1.3 times larger than that of the non-doped bulk. The {B}{{T}}{FC} of 4.6 T was achieved at 14.1 K in the centre of the doubly stacked Ti-doped MgB2 bulks. The remanent magnetic flux density, which corresponds to the trapped field by zero-field cooled magnetization, {B}{{T}}{ZFC}, was comparable with the absolute value of coercive force with a very small vortex creep rate of about 2% over 40 h. These results suggested that the MgB2 bulk was an excellent ‘quasi-permanent’ magnet. The critical current density, {J}{{c}}, under magnetic field was also enhanced by Ti doping; under 3 T at 20 K, the {J}{{c}} of 4.0× {10}3 A cm-2 for the pristine sample was enhanced to that of 1.6-1.8 × {10}4 A cm-2 for the Ti-doped samples. The irreversibility field exceeded 5 T at 20 K for the Ti-doped samples. The existence of nanometric unreacted B and strongly Mg-deficient Mg-B particles and TiB2 layers at the periphery of Ti precipitates was suggested in the Ti-doped bulks by microscopic observation. The improvement of the vortex pinning properties in Ti-doped MgB2 originated from the creation of the nanometric nonsuperconducting particles and TiB2 layers acting as strong vortex pinning centres.

  1. Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties.

    PubMed

    Su, Qing; Zhang, Wenrui; Lu, Ping; Fang, Shumin; Khatkhatay, Fauzia; Jian, Jie; Li, Leigang; Chen, Fanglin; Zhang, Xinghang; MacManus-Driscoll, Judith L; Chen, Aiping; Jia, Quanxi; Wang, Haiyan

    2016-08-10

    Ordered arrays of metallic nanopillars embedded in a ceramic matrix have recently attracted considerable interest for their multifunctionality in advanced devices. A number of hurdles need to be overcome for achieving practical devices, including selections of metal-ceramic combination, creation of tunable and ordered structure, and control of strain state. In this article, we demonstrate major advances to create such a fine nanoscale structure, i.e., epitaxial self-assembled vertically aligned metal-ceramic composite, in one-step growth using pulsed laser deposition. Tunable diameter and spacing of the nanopillars can be achieved by controlling the growth parameters such as deposition temperature. The magnetic metal-ceramic composite thin films demonstrate uniaxial anisotropic magnetic properties and enhanced coercivity compared to that of bulk metal. The system also presents unique anisotropic electrical transport properties under in-plane and out-of-plane directions. This work paves a new avenue to fabricate epitaxial metal-ceramic nanocomposites, which can simulate broader future explorations in nanocomposites with novel magnetic, optical, electrical, and catalytical properties. PMID:27438729

  2. Properties of GRB light curves from magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Granot, Jonathan

    2016-07-01

    The energy dissipation mechanism within gamma-ray burst (GRB) outflows, driving their extremely luminous prompt γ-ray emission is still uncertain. The leading candidates are internal shocks and magnetic reconnection. While the emission from internal shocks has been extensively studied, that from reconnection still has few quantitative predictions. We study the expected prompt-GRB emission from magnetic reconnection and compare its temporal and spectral properties to observations. The main difference from internal shocks is that for reconnection one expects relativistic bulk motions with Lorentz factors Γ'≳ a few in the jet's bulk frame. We consider such motions of the emitting material in two antiparallel directions (e.g. of the reconnecting magnetic-field lines) within an ultrarelativistic (with Γ ≫ 1) thin spherical reconnection layer. The emission's relativistic beaming in the jet's frame greatly affects the light curves. For emission at radii R0 < R < R0 + ΔR (with Γ = const), the observed pulse width is ΔT ˜ (R0/2cΓ2) max (1/Γ', ΔR/R0), i.e. up to ˜Γ' times shorter than for isotropic emission in the jet's frame. We consider two possible magnetic reconnection modes: a quasi-steady state with continuous plasma flow into and out of the reconnection layer, and sporadic reconnection in relativistic turbulence that produces relativistic plasmoids. Both of these modes can account for many observed prompt-GRB properties: variability, pulse asymmetry, the very rapid declines at their end and pulse evolutions that are either hard to soft (for Γ' ≲ 2) or intensity tracking (for Γ' > 2). However, the relativistic turbulence mode is more likely to be relevant for the prompt sub-MeV emission and can naturally account also for the peak luminosity - peak frequency correlation.

  3. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.

    PubMed

    Tsindlekht, M I; Genkin, V M; Felner, I; Zeides, F; Katz, N; Gazi, Š; Chromik, Š; Dobrovolskiy, O V; Sachser, R; Huth, M

    2016-06-01

    dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above [Formula: see text] and [Formula: see text] the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode. PMID:27143621

  4. Magnetic Resonance Based Electrical Properties Tomography: A Review

    PubMed Central

    Zhang, Xiaotong; Liu, Jiaen

    2014-01-01

    Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104

  5. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    NASA Astrophysics Data System (ADS)

    Ramirez, Sylvester

    In this dissertation research we investigated thermal properties of three groups of nanostructured materials: (i) magnetic; (ii) reduced graphene oxide films; and (iii) hybrid magnetic -- graphite -- graphene composites. The thermal measurements were conducted using the transient "hot disk" and "laser flash" techniques. The rare-earth free nanostructured SrFe12O19 permanent magnets were produced by the current activated pressure assisted densification technique. The thermal conductivity of the nanostructured bulk magnets was found to range from 3.8 to 5.6 W/mK for the in-plane and 2.36 W/mk to 2.65 W/mK for the cross-plane directions, respectively. The heat conduction was dominated by phonons near the room temperature. The anisotropy of heat conduction was explained by the brick-like alignment of crystalline grains with the longer grain size in-plane direction. The thermal conductivity scales up with the average grain size and mass density of the material revealing weak temperature dependence. Using the nanostructured ferromagnetic Fe3O4 composites as an example system, we incorporated graphene and graphite fillers into magnetic material without changing their morphology. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000°C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from ˜3 W/mK to ˜61 W/mK at room temperature. The cross-plane thermal conductivity, K⊥, revealed an interesting opposite trend of decreasing to a very small value of ˜0.09 W/mK in the reduced graphene oxide films annealed at 1000°C. The obtained films demonstrated an exceptionally strong

  6. Magnetic interactions influence the properties of helium defects in iron.

    PubMed

    Seletskaia, Tatiana; Osetsky, Yuri; Stoller, R E; Stocks, G M

    2005-02-01

    Density functional theory calculations of He defect properties in iron have shown an unexpected influence of magnetism arising from the defect's electronic structure. In contrast with previous work that neglected such effects, the results indicate that the tetrahedral position is energetically more favorable for the He interstitial than the octahedral site. This may have significant implications for He clustering and bubble nucleation, which will impact material performance in future fusion reactors. These results provide the basis for development of improved atomistic models. PMID:15783579

  7. Magnetic properties of ultrathin Ni/Co/Pt(111) films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Shern, C. S.; Yao, Y. D.

    2004-06-01

    Magnetic properties of one monolayer (ML) Ni/1 ML Co/Pt(111) film upon thermal annealing were investigated. Increases in polar Kerr rotation correspond to the topmost Ni layer incorporated with the second Co layer on Pt, and the further alloying of Co-Pt during the annealing. Interestingly, Curie temperature shifted dramatically to 325 K when the film was annealed at 830 K. The alloy formation of Ni-Pt and top-layer enrichment of Pt may be the main reason causing the great shift of Curie temperature.

  8. Effects of gadolinium and silicon substitution on magnetic properties and microstructure of Nd-Fe-B-Nb bulk nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Yan, Mi; Tao, Shan; Husain, S. Wilayat; Liu, Zhongwu

    2015-03-01

    The magnetic properties, phase evolution and microstructure of Fe70-xMxB19Nd7Nb4 (M=Si, Gd, Si+Gd; x=0-2.5 at%) bulk nanocomposite permanent magnets in the form of rods produced by annealing the amorphous precursor have been investigated systematically. Microstructural examination, three-dimensional atom probe microanalysis, δM-plots, X-ray diffraction analysis and magnetometer studies deduced that good magnetic properties in the magnets originate from the homogenous microstructure consisting of exchange coupled, soft magnetic (α-Fe, Fe3B) and hard magnetic (Nd,Gd)2Fe14B nanophases. Optimally annealed Fe70B19Nd7Nb4 rod magnets exhibit magnetic properties of Br=0.61 T, iHc=876 kA/m and (BH)max=50.2 kJ/m3. Gadolinium and silicon addition to quaternary Fe70B19Nd7Nb4 alloy increased the mass fraction of hard magnetic phase, strengthened the exchange coupling interactions and enhanced the magnetic properties. Gadolinium and silicon segregated into hard magnetic phase which led to enhance coercivity up to 1115 kA/m. Enhancement in the coercivity is mainly resulted by hard phase increment as well as domain wall pinning, while strengthening of exchange coupling is caused by grain size refinement and increase in Curie temperature of the magnetic phases. The Fe67B19Nd7Gd2Nb4Si1 magnetic rods of 1.2 mm in diameter demonstrated the best magnetic properties such as intrinsic coercivity, iHc of 1115 kA/m, remanence, Br of 0.57 T and maximum energy product, (BH)max of 65.7 kJ/m3.

  9. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.

    PubMed

    Chatterjee, Biplab K; Bhattacharjee, Kaustav; Dey, Abhishek; Ghosh, Chandan K; Chattopadhyay, Kalyan K

    2014-06-01

    The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (M(R)/M(S) ~ 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (M(R)/M(S) ~ 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (K(E)) of the system. A high-temperature enhancement of H(C) and K(E) for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies. PMID:24714977

  10. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    NASA Astrophysics Data System (ADS)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro.

  11. Magnetism as a distortion of a pre-existent primordial energy field and the possibility of extraction of electrical energy directly from space

    NASA Astrophysics Data System (ADS)

    Depalma, Bruce

    The spatial distortion induced into the homogeneous primordial energy field (PEF) by the anisotropy of the magnet is what is called magnetism. It is the thesis here that the distortion of the PEF occasioned by the magnet is the operative principle in the class of machinery known as induction machines. The PEF is also distorted as a consequence of the spatial reaction to the centripetal force field existing within the rotating magnetized conductor. Based on an effect first discovered by Michael Faraday in 1831, the N machine/space power generator is an electrical machine which has the possibility of producing electrical energy with significantly less mechanical power input than the presently used induction machines.

  12. Rock-magnetic properties of multicomponent natural remanent magnetization in alluvial red beds (NE Spain)

    NASA Astrophysics Data System (ADS)

    Kruiver, Pauline P.; Langereis, Cor G.; Dekkers, Mark J.; Krijgsman, Wout

    2003-05-01

    An earlier study of the cyclic Miocene red bed sequence of La Gloria (Spain) by Krijgsman et al. indicated complicated behaviour of the natural remanent magnetization (NRM) in parts of the section, particularly close to reversal boundaries. We resampled part of the section with high resolution and used extensive rock-magnetic analyses to characterize the magnetic remanence carriers. Below a conspicuous hydromorphous layer, the magnetic contributions of haematite and magnetite are approximately equal, while in the brown layers on top of the hydromorphous layer the contribution of magnetite is drastically reduced. This is probably related to a change in hydrological conditions. The NRM is characterized by: (1) a low-temperature (200-360 °C) overprint of unknown age, (2) a medium-temperature (360-580 °C) component, interpreted as the characteristic remanent magnetization (ChRM); and (3) a high-temperature haematite component (600- 680 °C), carrying the same directions as the medium-temperature component. There is no perceivable delay in NRM acquisition between the medium- and the high-temperature components; they are both regarded as primary. The behaviour of the NRM seems to be similar in the cyclic lithologies. The acquisition of NRM thus seems to be independent of lithology in the cyclic part of the section. The higher sampling resolution yielded the detection of a new polarity zone, which probably represents a geomagnetic feature according to rock-magnetic properties. However, the more detailed magnetostratigraphy of the resampled part of the section indicates that the earlier correlation to the geomagnetic polarity timescale is no longer tenable. Therefore, the La Gloria section should no longer be used as a magnetostratigraphic dating tool of mammal biochronology.

  13. Magnetic and Structural Properties of Ultra-Thin Cobalt Films

    NASA Astrophysics Data System (ADS)

    Wiedmann, Michael Helmut

    In situ polar Kerr effect measurements have been used to study the magnetic anisotropy of Au(111)/Co/X, Pd(111)/Co/X, Cu(111)/Co/X, and Pd(100)/Co/X sandwiches, where X is the nonmagnetic metal Ag, Au, Cu, Ir, and Pd or the insulator MgO. The films were grown by molecular beam epitaxy (MBE). For the metals, we found that the magnitude of the Co/X perpendicular interface anisotropy is strongly peaked at ~1 atomic layer (1.5-2.5 A) coverage. To investigate structural influences on the anisotropy, we have used reflection high energy diffraction (RHEED) and low energy electron diffraction (LEED) to measure changes resulting from overlayer coverage. Analysis of digitized RHEED images captured every ~ 1 A during metal overlayer coverage shows no abrupt change of the in-plane lattice constant. We have also investigated the out-of-plane lattice spacing as a function of nonmagnetic metal coverage by measuring LEED I-V curves along the (0,0) rod. In the case of Cu, where the LEED behavior is nearly kinematic, we see no evidence of any abrupt structural changes at ~1 atomic layer coverage. These results suggest the observed peak in magnetic anisotropy is not structural in origin. The influence of an insulating overlayer, MgO, on the perpendicular magnetic properties was also investigated.

  14. Magnetic properties of point defects in proton irradiated diamond

    NASA Astrophysics Data System (ADS)

    Makgato, T. N.; Sideras-Haddad, E.; Ramos, M. A.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A.; Shrivastava, S.; Erasmus, R.

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1-2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1-1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μeff~(0.1-0.2)μB. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K.

  15. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Lamali, A.; Rochette, P.; Boustie, M.; Berthe, L.

    2007-06-01

    The effects of shock waves on the natural remanent magnetization and the intrinsic magnetic properties of geological materials remain poorly known. Still, hypervelocity impact phenomena are of primary importance in the evolution of many extraterrestrial bodies and of Earth. We present new experiments in which four rocks with different lithology and magnetic mineralogy (titanomagnetite, magnetite, monoclinic pyrrhotite, titanohematite) were shocked using a high-order explosive (penthrite) that provided maximum pressure of about 30 GPa. The shock wave was modelled numerically and we studied the effects on the natural remanent magnetization as well as on the intrinsic magnetic properties of the shocked rocks as a function of the distance to the explosion. The intrinsic magnetic properties of the rock are permanently modified by the shock wave. The shock wave was able to superimpose a new fabric (with a minimum susceptibility axis parallel to the direction of shock) to the original magnetic fabric of the rock. Magnetite-, titanomagnetite- and pyrrhotite-bearing rocks show a noticeable increase of coercivity for pressure above 10 GPa. These changes are attributed to fracturing and/or dislocations of the ferromagnetic grains. These results show that the magnetic properties of meteorites, which are commonly shocked to pressures well above 10 GPa (e.g. Martian meteorites), may not be representative of the magnetic properties of their parent body. Natural remanent magnetization appears to be much more resistant to shock than isothermal remanent magnetization, probably because it is carried by grains with higher coercivity. For titanomagnetite-bearing rocks, we observe both a partial shock demagnetization of the original thermoremanent magnetization and the appearance of a shock magnetization. The demagnetizing effect of the shock wave depends closely on the coercivity spectrum of the grains carrying the original remanence, and the shock-remagnetizing effect depends on the

  16. Structural and magnetic properties of Co + implanted n-GaN dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Husnain, G.; Tao, Fa; Yao, Shu-De

    2010-05-01

    The n-type GaN epilayer was grown on sapphire prepared by metal organic chemical vapour deposition and subsequently Co + ions implanted. The properties of Co + ions implanted GaN epilayer were investigated by structural and magnetic measurements. The results of Rutherford backscattering spectrometry and channeling illustrate that an excellent crystalline quality ( χmin=1.3%) of as-grown GaN. After the implantation of 150 keV Co + ions with dose 3×10 16 cm -2 into GaN and subsequently annealed at 700, 800 and 900 °C, no secondary phase or metal related-peaks were detected by typical XRD. In addition high-resolution X-ray diffraction (HRXRD) was performed to study structural related properties. The magnetization curves were obtained by SQUID and AGM measurements, a well-defined hysteresis loop was observed even at 300 K. The temperature dependence of magnetization was taken in FC and ZFC conditions showed the highest Curie temperature ( TC) ∼370 K recorded for Co + implanted GaN.

  17. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    SciTech Connect

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078

  18. Magnetic structure and magnetic transport properties of graphene nanoribbons with sawtooth zigzag edges.

    PubMed

    Wang, D; Zhang, Z; Zhu, Z; Liang, B

    2014-01-01

    The magnetic structure and magnetic transport properties of hydrogen-passivated sawtooth zigzag-edge graphene nanoribbons (STGNRs) are investigated theoretically. It is found that all-sized ground-state STGNRs are ferromagnetic and always feature magnetic semiconductor properties, whose spin splitting energy gap E(g) changes periodically with the width of STGNRs. More importantly, for the STGNR based device, the dual spin-filtering effect with the perfect (100%) spin polarization and high-performance dual spin diode effect with a rectification ratio about 10(10) can be predicted. Particularly, a highly effective spin-valve device is likely to be realized, which displays a giant magnetoresistace (MR) approaching 10(10)%, which is three orders magnitude higher than the value predicted based on the zigzag graphene nanoribbons and six orders magnitude higher than previously reported experimental values for the MgO tunnel junction. Our findings suggest that STGNRs might hold a significant promise for developing spintronic devices. PMID:25533701

  19. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-01

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs. PMID:16805609

  20. Switching Properties of sub-100 nm Perpendicular Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Piotrowski, Stephan; Bapna, Mukund; Chien, Chia-Ling; Wang, Weigang; Majetich, Sara; Ross, Caroline

    2015-03-01

    Perpendicular magnetic tunnel junctions (p-MTJs) have great potential for realizing high-density non-volatile memory and logic devices. It is critical to solve scalability problem to implement such devices, to achieve low resistance area and to reduce switching current density while maintaining thermal stability. We present our recent results on fabrication of high resolution Ta/CoFeB/MgO/CoFeB/Ta p-MTJ devices and characterization of their switching properties as well as topography and current mapping by using nanoscale Conductive Atomic Force Microscopy. Our patterning method is based on using hydrogen silsesquioxane resist mask combined with ion beam etching. It allows to fabricate p-MTJ devices down to 40 nm in diameter while maintaining the magnetic quality of the multilayers. Repeatable, consistent switching behaviour has been observed in the obtained p-MTJ devices of 500 nm down to 40 nm with 10 - 800 mV voltage applied. Switching field increased as device diameter decreased, from 580 Oe at 500 nm (MR = 10%) to 410 Oe at 80 nm (MR = 9%). We discuss the effect of device sizes on the switching properties. This work was supported in part by C-SPIN, one of the six centers of STARnet, a Semiconductor Research Corporation Program sponsored by MARCO and DARPA and in part through the National Science Foundation through NCN-Needs Program, Contract 12207020-EEC.

  1. Magnetic properties of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Glenis, Spiros; Typek, Janusz; Zolnierkiewicz, Grzegorz; Berczynski, Pawel; Wardal, Kamil; Guskos, Aleksander; Sibera, Daniel; Moszyński, Dariusz; Lojkowski, Witold; Narkiewicz, Urszula

    2012-04-01

    Fine particles of ZnFe2O4 were synthesized by a wet chemical method in the (80 wt.% Fe2O3 + 20 wt.% ZnO) system. The morphological and structural properties of the mixed system were investigated by scanning electron microscopy, X-ray diffraction, inductively coupled plasma atomic emission, and X-ray photoelectron spectroscopy. The major phase was determined to be the ZnFe2O4 spinel with particle size of 11 nm. The magnetic properties of the material were investigated by ferromagnetic resonance (FMR) in the temperature range from liquid helium to room temperature. A very intense, asymmetric FMR signal from ZnFe2O4 nanoparticles was recorded, which has been analyzed in terms of two Callen-lineshape lines. Temperature dependence of the FMR parameters was obtained from fitting the experimental lines with two component lines. Analysis of the FMR spectra in terms of two separate components indicates the presence of strongly anisotropic magnetic interactions.

  2. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  3. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  4. Structural and magnetic properties of chromium doped zinc ferrite

    SciTech Connect

    Sebastian, Rintu Mary; Thankachan, Smitha; Xavier, Sheena; Mohammed, E. M.; Joseph, Shaji

    2014-01-28

    Zinc chromium ferrites with chemical formula ZnCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125 nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)

  5. Mimicking the magnetic properties of rare earth elements using superatoms

    PubMed Central

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A. W.

    2015-01-01

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel “magic boron” counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  6. Magnetic properties and magnetic phase diagram of frustrated Co1 - xFexPt3 compounds

    NASA Astrophysics Data System (ADS)

    Kim, T. H.; Cadeville, M. C.; Dinia, A.; Rakoto, H.

    1997-04-01

    The investigation of the magnetic properties of the pseudobinary Co1-xFexPt3 L12 ordered compounds resulting from alloying ferromagnet CoPt3 and frustrated antiferromagnet FePt3 is reported. The magnetic phase diagram of this system shows the presence of a pure spin glass phase that separates the ferromagnetic region from the antiferromagnetic one. On the Co-rich side (x<0.6), two re-entrant spin glass phases are found to emerge at low temperature in the ferromagnetic region. On the iron-rich side, an antiferromagnetic region with two antiferromagnetic [1/2 1/20] and [1/200] structures is observed for 1⩾x⩾0.8. This magnetic phase diagram is discussed comparatively with the previously determined (Fe-Mn)Pt3 and (Co-Mn)Pt3 phase diagrams. The randomness of the average exchange interaction is suggested to arise from a competition between the three dominant magnetic interactions JCoCo, JFeFe, and JCoFe of 3d atoms in sites of second nearest neighbors in the L12 structure.

  7. Tables of thermodynamic properties of helium magnet coolant. Revision A

    SciTech Connect

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: ``Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10{sup 8} Pa``, Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923--1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: ``Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres``, Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  8. Tables of thermodynamic properties of helium magnet coolant

    SciTech Connect

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10{sup 8} Pa'', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923--1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres'', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  9. Tables of thermodynamic properties of helium magnet coolant, revision A

    NASA Astrophysics Data System (ADS)

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: 'Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10(exp 8) Pa', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923-1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: 'Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  10. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Srivastava, Manish; Singh, Jay; Layek, Samar; Yashpal, Madhu; Materny, Arnulf; Ojha, Animesh K.

    2015-02-01

    In the present study, monodispersed CeO2 nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ˜461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  11. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    SciTech Connect

    Kumar, Sumeet; Ojha, Animesh K.; Srivastava, Manish E-mail: manish-mani84@rediffmail.com; Singh, Jay; Layek, Samar; Yashpal, Madhu; Materny, Arnulf

    2015-02-15

    In the present study, monodispersed CeO{sub 2} nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce{sup 4+} into Ce{sup 3+} at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm{sup -1} for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce{sup 3+} ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO{sub 2} samples.

  12. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  13. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect

    Casadei, Cecilia

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  14. Effects of time on the magnetic properties of terbium-doped LaMnO3

    NASA Astrophysics Data System (ADS)

    Liu, Weibin; Zhang, Yingtang; Guan, Wen; Kinsman, William; Yuan, Xinqiang; Chen, Ziyu

    2012-09-01

    The magnetic properties of the perovskite form of LaMnO3 have been shown strong interest in recent years due to its high potential for use in magnetic devices. In this paper, the magnetic properties of a 30% terbium-doped LaMnO3 (LMTO) perovskite manganite synthesized by a conventional solid-state reaction were investigated. Data on these properties was recorded periodically via SQUID and VSM to reveal it to be best described magnetically as a spin glass system. Thus, the time effect must be taken into consideration in instantaneously determining this material’s spin glass state as well as the overall magnetic properties in the absence of a magnetic field. The results of this paper point to a more in-depth understanding of the change in magnetic properties associated with doped LaMnO3.

  15. Magnetic structure and resonance properties of a hexagonal lattice of antidots

    NASA Astrophysics Data System (ADS)

    Marchenko, A. I.; Krivoruchko, V. N.

    2012-02-01

    Static and resonance properties of ferromagnetic films with a hexagonal lattice of antidots (pores in the film) were studied. The description of the system is based on micromagnetic modeling and analytical solutions of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters were investigated. The nature of the dependences of a dynamic system response on the frequency at fixed magnetic fields and on the field at fixed frequency when the field changes were explored. They cause the static magnetic order to change. It was found that the specific peculiarities of the system dynamics remain unchanged for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown that the angular field dependences of each mode are characterized by a twofold symmetry, and the related easy axes are mutually rotated by 60 °. As a result, a hexagonal symmetry of the system's static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for the function of the working elements of magnonics devices.

  16. Magnetic properties of ultra thin epitaxial Fe films on GaAs(001)

    SciTech Connect

    Morton, S A; Tobin, J G; Spangenberg, M; Neal, J R; Shen, T H; Waddill, G D; Matthew, J D; Greig, D; Malins, A R; Seddon, E A; Hopkinson, M

    2003-10-02

    The magnetic properties of epitaxial Fe films on GaAs in the range of the first few monolayers have been the subject of a considerable number of investigations in recent years. The absence of magnetic signatures at room temperature has been attributed to the existence of a magnetic ''dead'' layer as well as superparamagnetism. By examining the temperature dependence of the magnetic linear dichroism of the Fe core level photoelectrons, we found that these ''non-ferromagnetic'' layers had in fact a Curie temperature, T{sub c}, substantially lower than room temperature, e.g., a T{sub c} of about 240K for thin films of a nominal thickness of 0.9 nm. The values of Curie temperature were sensitive to the initial GaAs substrate conditions and the thickness of the Fe over-layer with a layer of thickness of 1.25 nm showing a T{sub c} above room temperature. The data suggest that the ultrathin Fe films on GaAs(001) are ferromagnetic, although a weaker exchange interaction in the films lead to a substantial reduction in Curie temperature.

  17. An investigation of the magneto-optical properties of thin-film magnetic structures

    NASA Astrophysics Data System (ADS)

    Tsidaeva, N. I.; Abaeva, V. V.; Enaldieva, E. V.; Magkoev, T. T.; Turiev, A. M.; Ramonova, A. G.; Butkhuzi, T. T.; Tvauri, I.

    2013-11-01

    This study reports on the performance of multilayer film structures, which are a very prospective material for thin-film magnetic sensors. The magnetic and magneto-optical properties of iron and cobalt thin films and also ferromagnetic (FM)/non-magnetic layer (NML)/FM trilayers, prepared using a magnetron sputtering system, are presented. The FM layer thickness of tFe and tCo in trilayers varied from 25 to 100 Å and the NML thickness of tNML varied from 5 to 2000 Å. In the NML/FM samples, the NML thickness varied from 0 to 400 Å. The dependences of the hysteresis characteristics of Fe films on the NML thickness were found. The dependence of the transverse Kerr effect (TKE) magnitude on tFe was established. It was shown experimentally that TKE is sensitive to the magnetization up to a certain depth range below the surface of ferromagnetic—the information depth. It was discovered that the in-plane hysteresis characteristic of the trilayers is strongly dependent on tnml. So existence of the exchange coupling between FM layers through NML and its oscillatory behaviour (from antiferromagnetic (AF) to ferromagnetic (F) order) were experimentally established. It was found that the period AF-F-AF oscillations of exchange coupling is equal to 5-10 Å.

  18. A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Ge, Kunpeng; Pan, Yongxin; Williams, Wyn; Liu, Qingsong; Qin, Huafeng

    2013-10-01

    Single-domain magnetite particles produced by magnetotactic bacteria (magnetosomes) and aligned in chains are of great interest in the biosciences and geosciences. Here, we investigated angular variation of magnetic properties of aligned Magnetospirillum magneticum AMB-1 cells, each of which contains one single fragmental chain of magnetosomes. With measurements at increasing angles from the chain direction, we observed that (i) the hysteresis loop gradually changes from nearly rectangular to a ramp-like shape (e.g., Bc and remanence decrease), (ii) the acquisition and demagnetization curves of IRM shift toward higher fields (e.g., Bcr increases), and (iii) the FORC diagram shifts toward higher coercivity fields (e.g., Bc,FORC increases). For low-temperature results, compared to unoriented samples, the samples containing aligned chains have a much lower remanence loss of field-cooled (δFC) and zero-field-cooled (δZFC) remanence upon warming through the Verwey transition, higher δ-ratio (δ = δFC/δZFC) for the measurement parallel to the chain direction, and lower δ-ratio, larger δFC and δZFC values for the perpendicular measurement. Micromagnetic simulations confirm the experimental observations and reveal that the magnetization reversal of magnetosome chain appears to be noncoherent at low angles and coherent at high angles. The simulations also demonstrate that the angular dependence of magnetic properties is related to the dispersion degree of individual chains, indicating that effects of anisotropy need to be accounted for when using rock magnetism to identify magnetosomes or magnetofossils once they have been preserved in aligned chains. Additionally, this study experimentally demonstrates an empirical correspondence of the parameter Bc,FORC to Bcr rather than Bc, at least for magnetite chains with strong shape anisotropy. This suggests FORC analysis is a good discriminant of magnetofossils in sediments and rocks.

  19. Thermoelectric Properties of Non-Metallic Topological Insulator Bi2 Te 3 at High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Qu, Dong-Xia; Hor, Yew San; Cava, Robert J.; Ong, N. Phuan; Princeton University Team

    2011-03-01

    Three-dimensional topological insulators are a new class of electronic systems characterized by a bulk insulating state and conducting surface states with Dirac-like energy-momentum dispersion [1, 2]. One of the interesting aspects of this material is how the surface states affect thermoelectric properties of the whole electronic system, given that the bismuth based topological insulators are also excellent thermoelectric materials. We studied the low-temperature thermoelectric transport properties of high-mobility bulk topological insulator Bi 2 Te 3 at high magnetic fields up to 35 T. We found remarkably large quantum oscillations in the thermopower of the surface states over a field range of 14 to 35 T. The existence of a non-zero Berry's phase in surface electrons is confirmed from the magneto-oscillations of both thermopower and magnetoresistance. Supported by NSF-MRSEC under Grant DMR 08-19860.

  20. Stability, structure refinement, and magnetic properties of β-Fe 2(PO 4)O

    NASA Astrophysics Data System (ADS)

    Ijjaali, M.; Malaman, B.; Gleitzer, C.; Warner, J. K.; Hriljac, J. A.; Cheetham, A. K.

    1990-06-01

    We previously reported the existence and properties of a low-temperature modification of metastable β-Fe 2(PO 4)O. Its structure was proposed by analogy with NiCr(PO 4)O, but the magnetic measurements were hampered by traces of Fe 3O 4. We have now obtained a purer sample and a single crystal, allowing precise structure refinement, detailed magnetic characterization, and an investigation of the temperature stability range. The single crystal X-ray study confirms the structure as previously proposed: tetragonal ( Z = 4), SG {I4 1}/{amd}, with a single iron site in face-sharing octahedra, and isolated PO 4 tetrahedra; the reliability factor is R = 0.0345 ( Rw = 0.0363). The magnetic susceptibility has been measured from 4 to 850 K. The magnetization at zero applied field is around 0.01 emu/g at 300 and 88 K, and 0.04 emu/g at 3.5 K. The χ = f( T) curve displays several unusual features: above TN (408 K) the Curie constant continuously decreases as a consequence of short-range magnetic order; below 100 K the susceptibility displays a small second maximum at 12 K. The magnetic structure has been investigated by low temperature powder neutron diffraction methods. At 17 K the Fe (II/III) spins are ordered ferromagnetically within the chains of face-sharing FeO 6 octahedra, with the spin direction along (001). The chains are ordered antiferromagnetically with respect to each other. The phase stability has been investigated by high temperature X-ray diffraction. The nonreversible β → α transition takes place at ˜800°C and is completed at ˜840°C; however, the β phase stability is slightly lower in the presence of FeCl 2 traces or under high pressure.

  1. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes.

    PubMed

    Tu, F; Drost, M; Vollnhals, F; Späth, A; Carrasco, E; Fink, R H; Marbach, H

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ∼160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties. PMID:27454990

  2. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  3. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes

    NASA Astrophysics Data System (ADS)

    Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H.

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit–vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2–16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ∼160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties.

  4. Magnetic properties of Ni substituted Y-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-01

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba2Co2-xNixFe12O22 (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (Ms) decreases with Ni contents. Ni2+, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co2+ having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba2Co1.5Ni0.5Fe12O22 shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature TC is increased with Ni contents, while TS is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3bVI, 6cIV*, 6cVI, 18hVI, 6cIV, and 3aIV sites at below TC. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe3+ and obtained the isomer shift (δ), magnetic hyperfine field (Hhf), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  5. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  6. Magnetic properties of FeCu (3 d transition metals) SiB alloys with fine grain structure

    SciTech Connect

    Sawa, T. ); Takahashi, Y. )

    1990-05-01

    Soft magnetic properties were investigated together with crystallization process and grain size for FeCu (3{ital d} transition metals) SiB alloys with fine grains. They were rapidly quenched from the melt to achieve amorphous states and then annealed above their crystallization temperatures. In the group of 3{ital d} transition metals studied, low magnetic core loss at high frequency was obtained for V-substituted Fe-based alloys, because only a bcc Fe solid solution with diameter of about 20 nm precipitated. On the other hand, Cr- or Mn-substituted alloys could not be attained with good soft magnetic properties because of the existence of Fe-metalloid compounds besides the bcc phase by annealing above their crystallization temperatures. The effect of grain size on the soft magnetic properties is more prominent at lower frequency. Diffraction peaks which are characteristics of an ordered phase (DO{sub 3}) are observed, which is the origin of excellent soft magnetic properties in FeAlSi alloys.

  7. Psychometric Properties of the Existence Subscale of the Purpose in Life Questionnaire for Chinese Adolescents in Hong Kong

    PubMed Central

    Law, Ben M. F.

    2012-01-01

    The current study aims to test the psychometric properties of the Existence Subscale of the Purpose in Life Questionnaire (EPIL) for early adolescence. The Purpose in Life Questionnaire (PIL), originally created by Craumbaugh and Maholick, is a 20-item scale measuring different dimensions of life purposes. The current study selected seven items representative of the existence dimension to form another scale, the EPIL. The analysis was based on 2842 early adolescents, ranging from 11 to 14 years old. Principal axis factoring found one factor, with 60% variance being explained. Cronbach's alpha for the EPIL was 0.89, which was high. The factor structure was stable across genders. Criterion-related validity was determined when the scale was used to differentiate volunteers and nonvolunteers. Construct validity was found when the scale was associated with life satisfaction. The results give support to the fact that the EPIL could be used alone to measure the psychological well-being of early adolescents and the appropriateness of the EPIL in adolescent research. PMID:22927785

  8. Magnetic Properties of Obsidians from the Southwestern U.S

    NASA Astrophysics Data System (ADS)

    Sternberg, R. S.; Gilder, S.; Renne, P. R.; Shackley, S.

    2010-12-01

    Geochemical signatures of Southwestern U.S. obsidians have been intensively studied, in part to use as a provenance method for archaeological obsidians (Shackley, 2005). We have examined magnetic properties of unoriented samples from 10 geologic obsidian sources in Arizona, Nevada, and New Mexico. Five samples from each source were used, and each sample was cut into two specimens. Magnetic susceptibilities of all 100 specimens were measured on a susceptometer at F&M; alternating field demagnetizations of all 100 specimens were done on a cryogenic magnetometer at the BGC; and hysteresis curves, back-field IRMs, and thermomagnetic curves were done for nine specimens on a VFTB at LMU. The overall mean and interquartile range for susceptibilities of all 100 specimens are 56 and 9-85 x10-8 m3/kg. The overall mean and interquartile range for the NRM of all 100 specimens are 3.4 and 0.40-8.5 x10-4 A m2/kg. Variability within source groups is considerably smaller, so that a scatter plot of NRM against susceptibility (Figure 1) shows that several of the sites can be discriminated based on these two properties. AF demagnetization shows that in the large majority of cases a characteristic magnetic direction is isolated by 150 mT peak field. The overall mean and interquartile range for the median destructive fields for all 100 specimens are 96 and 52-117 mT. For the nine specimens used to measure hysteresis curves, seven of these plot in the middle of the pseudosingle domain field on a Day plot, while the other two plot on the boundary between the pseudosingle and the multidomain fields. All of these samples have a Curie temperature component just below 580°C. Eight of these nine samples have a low-temperature Curie temperature component lower than 200°C. We plan to further examine this component using low temperatures, and to consider statistical discrimination of these different sources using multivariate statistics applied to these various properties.

  9. Magnetic properties study on Fe-doped calcium phosphate

    NASA Astrophysics Data System (ADS)

    Silva, C. C.; Vasconcelos, I. F.; Sombra, A. S. B.; Valente, M. A.

    2009-11-01

    Calcium phosphates are very important for applications in medicine due to their properties such as biocompatibility and bioactivity. In order to enhance these properties, substitution of calcium with other ions has been proposed. Partial substitution of calcium by different ions has been made in order to improve the properties of the calcium phosphates and also to allow new applications of apatite in medicine. In this work, hydroxyapatite [Ca10(PO4)6(OH)2—HAP] was prepared by high-energy dry milling (20 h) and mixed with iron oxide (5 wt.%). The mixture was calcinated at 900 °C for 5 h with a heating rate of 3 °C min-1 in an attempt to introduce iron oxide into the HAP structure. The sintered sample was characterized using x-ray diffraction (XRD) and magnetization. The 57Fe-Mössbauer spectra of the calcium phosphate oxides were also measured, revealing the presence of iron in three different phases: Ca2Fe2O5, Fe2O3 and hydroxyapatite.

  10. Structural and magnetic properties of epitaxial CrO2 thin films grown on TiO2 (001) substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyu; Zhong, Xing; Visscher, P. B.; LeClair, Patrick R.; Gupta, Arunava

    2013-04-01

    The structural and magnetic properties of epitaxial CrO2 thin films grown on (001)-oriented TiO2 substrates by atmospheric pressure chemical vapor deposition are investigated. Due to the competition between demagnetization and a relatively weak perpendicular magnetocrystalline anisotropy, the deposited CrO2 (001) films exhibit magnetic properties that are significantly different from CrO2 (100) and CrO2 (110) films grown on TiO2 substrates. Based on the thickness dependence of M-H curves, a surface anisotropy is confirmed to exist, likely originating from strain in the film. The out-of-plane hysteresis curves can be well described by a distribution of effective anisotropy that may be due to a varying local demagnetizing field and a distribution of strain across the film. For the in-plane magnetization, the hysteresis curves are consistent with stripe or vortex domain structures of an almost closed flux configuration at remanence.

  11. Electronic and Magnetic Properties of Double Perovskites and Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Erten, Onur

    Transition metal oxides exhibit a wide range of fascinating phenomena ranging from high Tc superconductivity to colossal magnetoresistance. In this thesis, we examine the novel electronic and magnetic properties of double perovskites and oxide interfaces. First we focus on Sr2FeMoO6 which has a half-metallic ground state and a ferrimagnetic Tc=420 K, well above the room temperature. There are very few half-metals in nature and along with its high Tc, Sr2FeMoO6 has enormous potential in spintronics applications. We develop a minimal model that couples the conduction electrons on Mo (4d1) to the core spins of Fe (3d5). Delocalization of conduction electrons and maximizing the kinetic energy drives the long-range magnetic order. "Integrating out" the conduction electrons, we derive a new effective Hamiltonian, H eff, only for the localized spins. Heff is unique to double perovskites, and with its peculiar double square root form, it is different from standard Heisenberg or Anderson-Hasegawa Hamiltonians. Using Heff, we perform the first 3D, finite temperature calculations of double perovskites, going well beyond previous mean field or small cluster calculations. Next we consider Sr2CrOsO6 which has the highest Tc among all perovskites with a net moment. Its insulating behavior is puzzling given that Cr and Os are in the 3d3 and 5d3 configurations, half filled in t2g orbitals. The net moment at low temperature is M(0)=0.75 muB and non-monotonic magnetization as a function of temperature are quite unusual. To address these questions, we organize the problem through the hierarchy of its energy scales. To deal with the highest energy scale, the charge sector, we develop a multi-band Hubbard model that has different on-site Coulomb correlations on the Cr and Os sites. We solve this model using slave-rotor mean field theory which captures the essentials of the metal-Mott insulator transition and goes well beyond Hartree-Fock. We find a new criterion for the Mott transition

  12. Structural and magnetic properties of Co substituted Li0.5Fe2.5O4

    NASA Astrophysics Data System (ADS)

    Patil, R. P.; Patil, S. B.; Jadhav, B. V.; Delekar, S. D.; Hankare, P. P.

    2016-03-01

    Nanocrystalline Li0.5Fe2.5-xCoxO4 (2.5≥x≥0) system was prepared by sol-gel route. Formation of single phase cubic spinel structure for all the compositions was confirmed from their X-ray diffraction studies. These ferrite samples existed as homogenous and uniform grains as observed from Scanning Electron Microscopy technique. The magnetic studies indicated that, the ferrimagnetic behavior decreases with Cobalt substitution. In general, the substitution of cobalt plays an important role in changing the structural and magnetic properties of these ferrites.

  13. Effect of argon ion etching on the magnetic properties of FeCoB films

    NASA Astrophysics Data System (ADS)

    Zhu, Junwei; Zhou, Kan; Yang, Yi; Tang, Dongming; Zhang, Baoshan; Lu, Mu; Lu, Huaixian

    2015-01-01

    In this paper, a new method to modify Ta underlayers by an argon ion etching technology is introduced. Surface roughness of Ta underlayers, as well as soft magnetic properties of post-deposited FeCoB films can be improved by applying a proper ion etching process. The reduction of magnetic coercivity of FeCoB films deposited on the modified Ta underlayers is attributed to the improvement of interfacial roughness, which can reduce magnetic ripples in magnetic films. The microwave damping linewidth of magnetic films is also found to be related to the interfacial roughness. Ta underlayers modified by the ion etching can reduce the influence of two-magnon scattering effect, and thus tune microwave properties of magnetic films. All the results prove that argon ion etching is an effective way to tailor magnetic properties of magnetic films.

  14. Magnetic properties of Fe-Mn-Pt for heat assisted magnetic recording applications

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Hong, Yang-Ki; Kim, Seong-Gon; Gao, Li; Thiele, Jan-Ulrich

    2015-02-01

    We calculate the electronic structures of FePt and Fe0.5Mn0.5Pt using first-principles calculations based on density functional theory within the local-spin-density approximation. The Curie temperature (Tc) was calculated by mean field approximation. Composition dependence of the Cure temperature (Tc(x)) of Fe1-xMnxPt was used to identify a composition to meet the desired Tc in the range of 600-650 K. The identified composition (0.0294 ≤ x ≤ 0.0713) gives saturation magnetization (Ms) in the range of 1041-919 emu/cm3 and magnetocrystalline anisotropy constant (K) in the range of 9.96-8.36 × 106 J/m3 at 0 K. Temperature dependent M(T) and K(T) of Fe1-xMnxPt (0.0294 ≤ x ≤ 0.0713) were calculated using the Brillouin function and Callen-Callen experimental relation, respectively. Fe1-xMnxPt (0.0294 ≤ x ≤ 0.0713) shows 930-800 emu/cm3 of Ms and 7.18-5.61 × 106 J/m3 of K at 300 K, thereby satisfying desired magnetic properties for heat-assisted magnetic recording media to achieve 4 Tb/in.2 areal density.

  15. Magnetic properties of fully dense Sm 2Fe 17N x magnets prepared by shock compression

    NASA Astrophysics Data System (ADS)

    Mashimo, Tsutomu; Huang, Xinsheng; Hirosawa, Satoshi; Makita, Ken; Kato, Yoshio; Mitsudo, Seitarou; Motokawa, Mitsuhiro

    2000-02-01

    Fully dense Sm 2Fe 17N x bulk bodies with the porosities of 2-10% were prepared by shock compression combined with a propellent gun in a certain low-pressure region, using the magnetically aligned powder pellets without binder. The consolidated state and porosity of the shock-consolidated bulk bodies mainly depended on the driving shock pressure, while the vacuum atmosphere was slightly effective to consolidation. Doping of Zn (2 wt%) was also effective to consolidation. The magnetic properties of the shock-consolidated bulk bodies were dominated mainly by driving shock pressure. The coercivity and maximum energy product (( BH) max) were almost constant in the driving shock pressure range up to about 16 GPa in a copper standard capsule, and began to decrease beyond it due to partial decomposition by the residual temperature. As a result, it was found that if we chose the appropriate shock conditions, the decrease rate of (( BH) max) from the starting material could be suppressed to less than 20-30%, which may be mainly caused by the decrease in remanent magnetization, probably due to the scattering effect of particle alignment in the process of shock consolidation. The values of ( BH) max of the bulk bodies prepared in a certain low-pressure region were stable over 20 MGOe. A large bulk body of cm scale with a ( BH) max of 22.5 MGOe was prepared by using an explosive system.

  16. A facile route to synthesize core/shell structured carbon/magnetic nanoparticles hybrid and their magnetic properties

    SciTech Connect

    Qi, Xiaosi; Xu, Jianle; Zhong, Wei; Du, Youwei

    2015-07-15

    Graphical abstract: Controllable synthesis of core/shell structured carbon/magnetic nanoparticles hybrid and their tunable magnetic properties. - Highlights: • The paper reports a simple route for core/shell structured carbon/magnetic nanoparticles hybrid. • By controlling the temperature, Fe{sub 3}O{sub 4}@CNCs, Fe@HCNTs and Fe@LCNTs were produced selectively. • The magnetic properties of the obtained core/shell structured hybrid could be tuned effectively. - Abstract: By controlling the pyrolysis temperature, core/shell structured Fe{sub 3}O{sub 4}/carbon nanocages, Fe/helical carbon nanotubes and Fe/low helicity of carbon nanotubes could be synthesized selectively over Fe{sub 2}O{sub 3} nanotubes generated by a hydrothermal method. The transmission electron microscopic and scanning electron microscopic investigations revealed that the efficiency of generating core/shell structured hybrid was high, exceeding 90%. Because of the magnetic nanoparticles tightly wrapped in graphitic layers, the obtained core/shell structured hybrids showed high stability and good magnetic properties. And the magnetic properties of the obtained core/shell structured hybrid could be tuned by the decomposition temperature and time. Therefore, a simple, inexpensive and environment-benign route was proposed to produce magnetism-tunable core/shell structured hybrid in large quantities.

  17. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    SciTech Connect

    Soffa, W.A.

    1993-01-01

    Effort was made to understand the relation between polytwinned microstructures which develop during ordering (A1[r arrow]L1[sub o]) in Fe-Pd and Fe-Pt ferromagnets and their magnetic properties. The microcrystalline, high coercivity state mimics the structures produced by melt-spinning rare earth permanent magnets.

  18. Downstream properties of magnetic flux transfer events. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Siscoe, G. L.

    1984-01-01

    Attention is given to the downstream evolution of the field line tubes known as 'flux transfer events' (FTEs), whose magnetic field and plasma properties are distinct from those of the nearby unmerged magnetosheath and magnetosphere field lines. After the FTE has moved 200 earth radii down the tail, its drained portion reaches 25 earth radii radially outward from the tail boundary. It is suggested that most multiple crossings of the tail boundary observed by spacecraft are encounters with tailward-moving FTEs, thereby explaining both the behavior of boundary normals during multiple crossings and how the sign of the IMF causes the observed dawn-dusk asymmetries in the thickness of the magnetotail boundary layer.

  19. Electrical and magnetic properties of Co-Zn-Mg ferrite

    NASA Astrophysics Data System (ADS)

    Oza, M. H.; Baldha, G. J.

    2016-05-01

    The series Co(0.8)Zn0.2-XMgXFe2O4 has been synthesized using standard ceramic technique and characterized using different techniques. The XRD analysis shows single phase cubic structure of the sample. It was also observed from XRD that lattice constant values calculated from these data were found to increase on increasing value of concentration X. The a.c susceptibility was carried out which exhibited ferromagnetic ordering. The Neel's temperature Tc determined from it increases with increasing X. There is an agreement in ferrimagnetic behaviour between magnetization and susceptibility data. This also suggests that A-B interaction increases with increasing X. The electrical properties of Zn - Mg substituted Co ferrite were found through DC resistivity measurements.

  20. Magnetic properties of Pm in NdNi

    SciTech Connect

    Nishimura, K.; Mori, K.; Ohya, S.; Muto, S.; Isikawa, Y.

    1996-06-01

    Magnetic properties of Pm as an impurity in NdNi single crystal were investigated by means of low-temperature nuclear orientation of the {sup 144}Pm isotope. The angular distribution of {gamma}-ray anisotropy revealed that the direction of the hyperfine field experienced by the nuclei was in the ({ital a},{ital c}) plane and made an angle of 29(10){degree} and/or 209(10){degree} with the {ital a} axis. The strength of the field was deduced to be 395(48) T with a full-field site fraction of 76(3){percent} from the temperature dependence of the anisotropy. The {beta} decay of {sup 144}Pm was found to proceed mainly via the {Delta}{ital J}{sub {beta}}=1 matrix element. A brief discussion of crystal electric field effects and exchange interactions is given. {copyright} {ital 1996 The American Physical Society.}

  1. Magnetic properties of Apollo samples and implications for regolith formation

    NASA Technical Reports Server (NTRS)

    Pearce, G. W.; Strangway, D. W.; Gose, W. A.

    1974-01-01

    The magnetic properties of a number of Apollo 17 samples have been measured and confirm that regoliths of mare sites (Apollo 11, 12, 15 valley, and 17 valley) differ markedly from those of highland sites (Apollo 14, 16, and 17 massif) in the ratio of content of metallic to ferrous iron and in the grain size of metallic iron. The ratio of metallic to ferrous iron is correlated with mean particle size, a parameter representing maturity, for soils of Apollo 16 and roughly correlated with the age of the sites for soils of different sites. It is suggested that the ratio of metallic to ferrous iron may be an effective indicator of relative soil maturity for any one site and of the age of the soil material for any sites.

  2. Small magnetic structures in the photosphere, radiative properties

    NASA Astrophysics Data System (ADS)

    Palacios, Judith; Domingo, Vicente; Cabello, Iballa; Bonet, José Antonio; Sánchez Almeida, Jorge

    The three dimensional structure of small magnetic field features in the photosphere, their dynamic behavior and their radiative properties are studied. We analyze data obtained in simultaneous observations made on Sept 29 and 30, 2007 with the HINODE spacecraft and the Swedish Solar Telescope (SST) in La Palma in different wavelengths, such as CaII (396.85 nm) and CN (388.35 nm) and other with Hinode data; and Gband (430.56 nm) with SST. Tha analysis is completed with high resolution Gband and Gcontinuum (436.39 nm) images from SST obtained on 2005 and 2006. Magnetograms have been obtained from both observatories. SST images have been processed with MOMFB code. Ribbon-like structures and "flowers" are studied in detail. Comparisons with solar atmospheric models are presented.

  3. Microstructure and Magnetic Properties of Electrodeposited Cobalt Film

    SciTech Connect

    Bhuiyan, Md S; Taylor, B. J.; Paranthaman, Mariappan Parans; Thompson, James R; Sinclair, J.

    2008-01-01

    Cobalt films were electrodeposited onto both iron and copper substrates from an aqueous solution containing a mixture of cobalt sulfate, boric acid, sodium citrate, and vanadyl sulfate. The structural, intermetallic diffusion and magnetic properties of the electrodeposited films were studied. Cobalt electrodeposition was carried out in a passively divided cell aided by addition of vanadyl sulfate to keep the counter electrode clean. The divided electrolytic cell with very negative current densities cause the electrodeposited Co to adopt a face-centered cubic (fcc) structure, which is more magnetically reversible than the hexagonally close-packed (hcp) structured Co. The coercive field is also significantly less in the fcc-electrodeposited cobalt than in the hcp. SEM images show dense, uniform Co films without any cracks or porosity. Beside the deposition current, thickness of the film was also found to affect the crystal orientation particularly on iron substrates. Diffusion of cobalt film into the iron substrate was studied under reduced environment and a fast process was observed.

  4. Transition metal doped semiconductor quantum dots: Optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem

    We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.

  5. Microwave properties of composites with glass coated amorphous magnetic microwires

    NASA Astrophysics Data System (ADS)

    Starostenko, S. N.; Rozanov, K. N.; Osipov, A. V.

    2006-03-01

    The complex permittivity and permeability of composites filled with Fe-based microwires are measured in a coaxial line at frequencies from 0.01 to 10 GHz.The samples under study consist of closely packed wire sections with various orientations relative to wave vector. The composites, where the wires are collinear to the coaxial axis, are found to be low permeable. Their permittivity has frequency dispersion governed by the length of the wire and its linear impedance. The middle section of the wire has higher impedance than that of the end sections where the regular domain structure is distorted. Magnetic bias parallel to the wire axis affects the linear impedance and parameters of dielectric absorption of a composite, the effect is proportional to bias strength. The samples of a coil-type structure, where the wires are wound around the coaxial axis, display the intensive magnetic absorption attributed to the domain wall motion. The absorption takes place in the megahertz band, at microwaves the permeability is close to unity. The microwave properties of diluted composites filled with randomly oriented permeable wires are discussed.

  6. Texture and magnetic properties of exchange bias systems

    NASA Astrophysics Data System (ADS)

    Aley, N. P.; Bowes, M.; Kröger, R.; O'Grady, K.

    2010-05-01

    We report on the magnetic and structural properties of IrMn/CoFe exchange bias systems deposited onto a dual seed layer of NiCr(X)/Ru(5 nm), with X=2, 6, and 20 nm. Samples with the structure NiCr (Xnm)/IrMn (7 nm)/CoFe (3 nm)/Ta (10 nm) with X=2, 6, and 20 nm were prepared by dc sputtering for magnetic characterization. A second set of samples with structure NiCr (Xnm)/IrMn (10 nm) with X=2, 6, and 20 nm were deposited onto TEM grids for structural characterization by TEM. A method of manipulating of the TEM grid to allow a qualitative analysis of the in-plane texture of the samples is described and used to analyze the microstructure of these samples. The microstructure and particularly the texture are correlated with the anisotropy constant (KAF) of the antiferromagnet (AF) layer, with an optimum NiCr seed layer of 6 nm to give a maximum value of KAF of 1.2×107 ergs/cc.

  7. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  8. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.

    PubMed

    Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing

    2016-12-01

    Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. PMID:27612819

  9. Magnetic properties of greigite in the Late Pleistocene sediments of the North Caspian

    NASA Astrophysics Data System (ADS)

    Bol'shakov, V. A.; Dolotov, A. V.

    2012-06-01

    The results of magnetic and X-ray studies of the magnetic extracts separated from highly magnetically susceptible horizons of the Late Pleistocene sediments from the North Caspian Basin are presented. Greigite is shown to be the major carrier of magnetic properties in these horizons. Its coercive parameters are characteristic of the predominantly single-domain state of magnetic grains. It is found that the Curie point of greigite is at least 460°C, while the specific magnetization of pure greigite is half the saturation magnetization of magnetite.

  10. Magnetic properties of the Olivenza meteorite - Possible implications for its evolution and an early Solar System magnetic field

    NASA Astrophysics Data System (ADS)

    Collinson, D. W.

    1987-08-01

    The magnetic properties of samples of the Olivenza chondrite (LL5) obtained from four collections have been investigated. The natural remanent magnetization (NRM) consists of a very stable primary component, which is randomly scattered in direction on a scale of about 1 cu mm or less within the samples, and a secondary magnetization widely varying in intensity, and probably also in direction. The origin of the secondary NRM is not clear, and may be of terrestrial origin. It is concluded that the NRM is carried by the ordered nickel-iron mineral, tetrataenite. The origin of the primary NRM could be a magnetic field associated with the solar nebula, out of which the metal grains condensed and acquired a thermoremanent magnetization (TRM), or Olivenza could be a fine-grained breccia, the constituent fragments possessing randomly directed magnetization. The implications for the origin and evolution of Olivenza and its parent body if the former magnetizing process has occurred are discussed.

  11. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    SciTech Connect

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-10-15

    We present a study on the magnetic properties of naked and silica-coated Fe{sub 3}O{sub 4} nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO{sub 2} shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO{sub 2} functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe{sub 3}O{sub 4} nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  12. Hard magnetic Sm(Fe,Si)9 carbides: Structured and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bessais, L.; Djéga-Mariadassou, C.; Nandra, A.; Appay, M. D.; Burzo, E.

    2004-02-01

    The structural and magnetic properties of the metastable hexagonal SmFe9-xSixC compounds, where x is 0.25, 0.5, 0.75, and 1, have been investigated by means of powder x-ray diffraction, Curie temperature, magnetic moment and coercivity measurements, iron-57 Mössbauer spectroscopy, and high-resolution transmission electron microscopy. The Rietveld analysis points out a lattice expansion after carbon insertion. Upon carbonation the Curie temperatures are systematically 26 to 70 K higher than those of the homologous Sm2(Fe,Si)17C2. The magnetic moment per iron atom increases with x but remains below that of the non-carbonated alloys. The statistical occupation of silicon in 3g site and the random distribution of the 2e dumbbell iron atoms have been taken into account to calculate the Wigner-Seitz cell volumes, which rule the hyperfine parameter assignment. The following sequence of isomer shift δ{2e}>δ{3g}>δ{6l} is used to deduce the following sequence of hyperfine field HHF{2e}>HHF{6l}>HHF{3g}. From Sm(Fe,Si)9 to their carbides, the increase of isomer shift is less pronounced for the 2e site with no carbon neighbor. The small volume effect on the weighted average isomer shift may indicate hybridization between 2p of carbon and 3d of iron stronger than that of nitrides. The best coercivity of 15 kOe is obtained for SmFe8.75Si0.25C with annealing temperature of the noncarbonated powder at 750°C. However, SmFe8.5Si0.5C, with 13 kOe and an optimal grain size around 22 nm, presents a better thermal stability and might be suitable for permanent-magnet applications.

  13. EXIST Perspective for SFXTs

    NASA Astrophysics Data System (ADS)

    Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.

    2009-12-01

    Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B < 1E10 G) or alternatively very high (B>1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.

  14. Magnetic and Magneto-Optical Properties of Doped Oxides

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammed

    This thesis describes the growth, structural characterisation, magnetic and magneto-optics properties of lanthanum strontium manganite (LSMO), GdMnO3 and transition metal (TM)-doped In2O3 thin films grown under different conditions. The SrTiO3 has been chosen as a substrate because its structure is suitable to grow epitaxial LSMO and GdMnO3 films. However, the absorption of SrTiO3 above its band gap at about 3.26 eV is actually a limitation in this study. The LSMO films with 30% Sr, grown on both SrTiO3 and sapphire substrates, exhibit a high Curie temperature (Tc) of 340 K. The magnetic circular dichroism (MCD) intensity follows the magnetisation for LSMO on sapphire; however, the measurements on SrTiO3 were dominated by the birefringence and magneto-optical properties of the substrate. In the GdMnO3 thin films, there are two well-known features in the optical spectrum; the charge transfer transition between Mn d states at 2 eV and the band edge transition from the oxygen p band to d states at about 3 eV; these are observed in the MCD. This has been measured at remanence as well as in a magnetic field. The optical absorption at 3 eV is much stronger than at 2 eV, however, the MCD is considerably stronger at 2 eV. The MCD at 2 eV correlates well with the Mn spin ordering and it is very notable that the same structure appears in this spectrum, as is seen in LaMnO3. The results of the investigations of Co and Fe-doped In2O3 thin films show that TM ions in the films are TM2+ and substituted for In3+. The room temperature ferromagnetism observed in TM-doped In2O3 is due to the polarised electrons in localised donor states associated with oxygen vacancies. The formation of Fe3O4 nanoparticles in some Fe-doped films is due the fact that TM-doped In2O3 thin films are extremely sensitive to the growth method and processing condition. However, the origin of the magnetisation in these films is due to both the Fe-doped host matrix and also to the nanoparticles of Fe3O4.

  15. Characterization of self-similarity properties of turbulence in magnetized plasmas

    SciTech Connect

    Scipioni, A.; Rischette, P.; Bonhomme, G.; Devynck, P.

    2008-11-15

    The understanding of turbulence in magnetized plasmas and its role in the cross field transport is still greatly incomplete. Several previous works reported on evidences of long-time correlations compatible with an avalanche-type of radial transport. Persistence properties in time records have been deduced from high values of the Hurst exponent obtained with the rescaled range R/S analysis applied to experimental probe data acquired in the edge of tokamaks. In this paper the limitations of this R/S method, in particular when applied to signals having mixed statistics are investigated, and the great advantages of the wavelets decomposition as a tool to characterize the self-similarity properties of experimental signals are highlighted. Furthermore the analysis of modified simulated fractional Brownian motions (fBm) and fractional Gaussian noises (fGn) allows us to discuss the relationship between high values of the Hurst exponent and long range correlations. It is shown that for such simulated signals with mixed statistics persistence at large time scales can still reflect the self-similarity properties of the original fBm and do not imply the existence of long range correlations, which are destroyed. It is thus questionable to assert the existence of long range correlations for experimental signals with non-Gaussian and mixed statistics just from high values of the Hurst exponent.

  16. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Jeffrey Scott Leib

    2003-05-31

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H{sub c} in cases 1, 3, and 5, and the uniaxial character of the Gd{sub 5}(Si{sub 2}Ge{sub 2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M{sub s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from theory and calculation

  17. Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties

    PubMed Central

    Zhao, Junhong; Zhang, Youjuan; Run, Zhen; Li, Pengwei; Guo, Qifei; Pang, Huan

    2015-01-01

    Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 μm forms with the “fractal growth rule” and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (TB) shows a dependence on size and shape, and a smaller size resulted in a lower TB. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance. PMID:26246988

  18. Magnetic properties of nearly stoichiometric CeAuBi{sub 2} heavy fermion compound

    SciTech Connect

    Adriano, C.; Jesus, C. B. R.; Pagliuso, P. G.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Garcia, D. J.

    2015-05-07

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX{sub 2} (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu{sub 1−x}Bi{sub 2−y} by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu{sub 1−x}Bi{sub 2−y} (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at T{sub N} = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (H{sub c} ∼ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu{sub 0.92}Bi{sub 1.6} exhibits a weak heavy fermion behavior with strongly localized Ce{sup 3+} 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J{sub RKKY} exchange parameters between the Ce{sup 3+} ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu{sub 1−x}Bi{sub 2−y} compounds, and we compare our results with the isostructural compound CeCuBi{sub 2}.

  19. Electronic, magnetic and topological properties of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi

    Transition metal oxides have been the ideal platform for designing materials with exotic properties due to the complex interplay between spin, charge, and orbital degrees of freedom which can be fine-tuned by varying pressure, temperature, and external magnetic field to give rise to novel phases. Transition metal oxides are also a challenge from the theoretical point of view. The (semi)local density approximation for the exchange correlation functional that is often used in density functional calculations fails to adequately describe the many-body effects of 3d and 4f electrons thereby leading to underestimated band gaps. Several techniques, such as hybrid functionals, dynamical mean field theory, and DFT+U, have been developed over the past few decades to account for the many-body effects of 3d and 4f electrons. The DFT+U method, which will be used extensively throughout this thesis, has proved to be very successful in modeling gap opening, structure optimization and predicting transport properties. Rare earth nickelates have attracted a lot of attention in recent years due to their complex phase diagram that arises from the competition between spin, charge, and orbital degrees of freedom. Of particular interest is the metal-insulator transition that occurs upon cooling for RNiO3 (R=rare earth, except for La) which was found to be accompanied by symmetry lowering, later theorized as the evidence for charge ordering. By using first principles calculations, we found that the charge difference between Ni ions in the "charge-ordered" phase is negligibly small, while various aspects such as core energy levels, spectral weight immediately above and below the Fermi level, and magnetic moments do differ. Using Wannier function analysis, the charge states of Ni ions in the lower symmetry structure are systematically studied and found to correlated to the number of Wannier charge centers at the Ni site. The same approach was applied to study the charge states of Ag I and Ag

  20. Influence of abrasive waterjet cutting on the magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Schoppa, A.; Louis, H.; Pude, F.; von Rad, Ch.

    2003-01-01

    The laminations for magnetic cores used in electric motors, generators, ballasts are manufactured by punching, mechanical cutting or cutting by laser of coils of electrical steels. The magnetic material close to the cutting edge is essentially influenced by these processes. Compared with these methods the deterioration of the magnetic properties after the waterjet cutting of electrical steels is very low.

  1. The influence of microstructure on magnetic properties of nanocrystalline Fe-Pt-Nb-B permanent magnet ribbons

    SciTech Connect

    Randrianantoandro, N.; Greneche, J. M.; Crisan, A. D.; Crisan, O.; Marcin, J.; Kovac, J.; Hanko, J.; Skorvanek, I.; Svec, P.; Chrobak, A.

    2010-11-15

    A FePt-based hard-magnetic nanocomposite of exchange spring type was prepared by isothermal annealing of melt-spun Fe{sub 52}Pt{sub 28}Nb{sub 2}B{sub 18} (atomic percent) ribbons. The relationship between microstructure and magnetic properties was investigated by qualitative and quantitative structural analysis based on the x-ray diffraction, transmission electron microscopy, and {sup 57}Fe Moessbauer spectrometry on one hand and the superconducting quantum interference device magnetometry on the other hand. The microstructure consists of L1{sub 0}-FePt hard-magnetic grains (15-45 nm in diameter) dispersed in a soft magnetic medium composed by A1 FePt, Fe{sub 2}B, and boron-rich (FeB)PtNb remainder phase. The ribbons annealed at 700 deg. C for 1 h exhibit promising hard-magnetic properties at room temperature: M{sub r}/M{sub s}=0.69; H{sub c}=820 kA/m and (BH){sub max}=70 kJ/m{sup 3}. Strong exchange coupling between hard and soft magnetic phases was demonstrated by a smooth demagnetizing curve and positive {delta}M-peak in the Henkel plot. The magnetic properties measured from 5 to 750 K reveals that the hard characteristics remains rather stable up to 550 K, indicating a good prospect for the use of these permanent magnets in a wide temperature range.

  2. Investigation of magnetic properties of MnBi/Co and MnBi/Fe65Co35 nanocomposite permanent magnets by micro-magnetic simulation

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Yue, M.; Wang, T.; Wu, Q.; Zhang, D. T.; Gao, Y.

    2015-11-01

    Demagnetization curves of anisotropic nanocomposite MnBi/Co and MnBi/Fe65Co35 permanent magnets were investigated by micro-magnetic finite element method. Effects of volume ratio, deviation degree of orientation and intrinsic magnetic properties of the soft magnetic phase on the magnetic properties of the magnets were investigated. From the viewpoint of practical applications, to meet the requirement of hardness parameters, ĸ=K/(μ0MS2)1/2>1, the calculation maximum (BH)max of MnBi/Co and MnBi/Fe65Co35 magnets are about 199 kJ/m3 (V(Co)=22 vol%) and 196 kJ/m3 (V(FeCo)=14 vol%), respectively, indicating their good potential in application. Compared with single phase MnBi magnet, the (BH)max of nanocomposite MnBi/Co and MnBi/Fe65Co35 magnets increases by 66% and 63%, respectively. The remanence and coercivity of MnBi/Co nanocomposite magnets reduce as appearing a deviation degree of orientation, result of greatly decrease of the magnetic energy product.

  3. The magnetic and chemical structural property of the epitaxially-grown multilayered thin film

    NASA Astrophysics Data System (ADS)

    Lee, Hwachol

    L10 FePt- and Fe-related alloys such as FePtRh, FeRh and FeRhPd have been studied for the high magnetocrystalline anisotropy and magnetic phase transition property for the future application. In this work, the thin film structural and magnetic property is investigated for the selected FePtRh and FeRhPd alloys. The compositionally-modulated L10 FePtRh multilayered structure is grown epitaxially on a-plane Al2O3 with Cr and Pt buffer layer at 600degC growth temperature by DC sputtering technique and examined for the structural, interfacial and magnetic property. For the epitaxially grown L10 [Fe50Pt45Rh5 (FM) (10nm) / Fe50Pt25Rh25 (AFM) (20nm)]x8 superlattice, the magnetically and chemically sharp interface formation between layers was observed in X-ray diffraction, transmission electron microscopy and polarized neutron reflectivity measurements with the negligible exchange bias at room and a slight coupling effect at lower temperature regime. For FeRhPd, the magnetic phase transition of epitaxially-grown 111-oriented Fe46Rh48Pd6 thin film is studied. The applied Rhodium buffer layer on a-plane Al2O3 (11 20) at 600degC shows the extraordinarily high quality of epitaxial film in (111) orientation, where two broad and coherent peak in rocking curve, and Laue oscillations are observed. The epitaxially-grown Pd-doped FeRh on Pt (111) grown at 600degC, 700degC exhibits the co-existing stable L10 (111) and B2 (110) structures and magnetic phase transition around 300degC. On the other hand, the partially-ordered FeRhPd structure grown at 400degC, 500degC shows background high ferromagnetic state over 5K˜350K temperature. For the reduced thickness of Fe46Rh48Pd 6, the ferromagnetic state becomes dominant with a reduced portion of the film undergoing a magnetic phase transition. For some epitaxial FeRhPd film, the spin-glass-like disordered state is also observed in field dependent SQUID measurement. For the tri-layered FeRhPd with thin Pt spacer, the background

  4. Magnetic properties of nanocrystalline Fe0.5Ni0.5 permalloy

    NASA Astrophysics Data System (ADS)

    De, D.; Majumdar, S.; Giri, S.

    2012-06-01

    We investigate magnetic properties of nanocrystalline Fe0.5Ni0.5 alloy embedded in the amorphous SiO2 host with volume fractions φ ≈ 10%. The static and dynamic aspects of the magnetic properties are investigated by investigating thermal and time dependence of low-field dc magnetization. Signature of strong interparticle interaction is noted in the magnetization results. The relaxation process at low temperature is fitted with stretched exponential function, displaying coexistence of ferromagnetic and glassy magnetic components.

  5. Magnetic properties in Pd doped ZnS from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Dong, Xinlong; Li, Qiuhang; Xu, Mingxiang

    2013-11-01

    First-principles calculations based on density functional theory within the general gradient approximation (GGA) are performed to study the electronic structure and magnetic properties of Pd doped ZnS. It is found that an isolated Pd atom doped 2 × 2 × 2 ZnS supercell shows half-metallic ferromagnetic character with a total magnetic moment of 2.0 μ B per supercell, which is significantly enhanced compared with the pure ZnS supercell. The strong ferromagnetic coupling of the local magnetic moments can be explained in terms of strong hybridisation between Pd-4 d and S-3 p states. The hybridisation between Pd and the neighbouring S atoms leads to a strong coupling chain Pd(4 d)-S(3 p)-Zn(3 d)-S(3 p)-Pd(4 d), which induces strong indirect long range FM coupling between Pd dopants. The results of several doping configurations demonstrate that ferromagnetic coupling exists between the two doped palladium atoms. These results suggest that Pd doped ZnS can also be considered as suitable candidates for exploring new half-metallic ferromagnetism in semiconductors.

  6. Magnetic properties of Dy2Ti2O7

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1973-01-01

    Measurements were made of the magnetization, differential magnetic susceptibility, and magnetic entropy of powered samples of Dy2Ti2O7. The saturation magnetic moment is 4.7 + or - 0.2 Bohr magnetons per Dy ion, instead of 10 as predicted by Hund's rules. A temperature-independent magnetization is observed in the saturation region. Absolute values of magnetic entropy have been obtained for temperatures from 1.25 to 20 K, in applied fields up to 10.4 tesla. The magnetic entropy approaches a maximum value consistent with a ground-state multiplicity of 2. Low field magnetization and differential susceptibility data show a transition to antiferromagnetism near 1.35 K. A construction of the magnetic specific heat from the zero field entropy shows an anomaly near the same temperature.

  7. Tuning the Magnetic Properties of Cobalt-Based Metallic Glass Nanocomposites

    NASA Astrophysics Data System (ADS)

    Veligatla, Medha; Das, Santanu; Lee, Won Ki; Hwang, Junyeon; Thumthan, Orathai; Hao, Yaowu; Mukherjee, Sundeep

    2016-01-01

    Temperature-induced variation in magnetic properties for cobalt-based metallic glass was investigated. The formation of metastable nanocrystalline phases prior to complete devitrification and their effect on magnetic properties for Co72B19.2Si4.8Cr4 metallic glass was studied. The nature, shape, and distribution of the intermediate nanocrystalline phases were characterized using transmission electron microscopy and x-ray diffraction. A drastic change in magnetic properties was found in going from a fully amorphous state to different stages of nanocrystallization. The coercivity changes from amorphous soft magnetic state ( H c ~ 0.12 Oe) to a nanocrystalline-dispersed hard magnetic state ( H c ~ 187 Oe), with no significant change in saturation magnetization. This suggests potential use in futuristic magnetic switches, fluxgate sensors, and electromagnetic shielding devices.

  8. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  9. Evolution of phase, texture, microstructure and magnetic properties of Fe-Cr-Co-Mo-Ti permanent magnets

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; ul Haq, A.; Yan, Mi; Iqbal, Zafar

    2012-08-01

    Magnetic phase evolution, crystallographic texture, microstructure and magnetic properties of Fe-28Cr-15Co-3.5Mo-1.8Ti alloy have been investigated by X-ray diffractometry, scanning transmission electron microscopy and magnetometry techniques as a function of processing conditions. Heat treatment conditions for obtaining optimum textural, microstructural and magnetic properties have been established by the experimentations. The Goss {110}<001> and cube type {001}<010> textures have been developed in an optimal treated Fe-28Cr-15Co-3.5Mo-1.8Ti magnets. The coercive force in Fe-28Cr-15Co-3.5Mo-1.8Ti magnets depends critically on the shape anisotropy of rod-like Fe Co Ti-rich α1 particles and remanence on the alignment and elongation of α1 particles parallel to applied magnetic field <100> directions. The optimum magnetic properties obtained in Fe-28Cr-15Co-3.5Mo-1.8Ti alloy are intrinsic coercive force, iHc, of 78.8 kA/m (990 Oe), remanence, Br of 1.12 T (11.2 kG) and energy product, (BH)max of 52.5 kJ/m3 (6.5 MGOe). The development of Fe-28Cr-15Co-3.5Mo-1.8Ti magnets as well as characterization of texture, microstructural and magnetic properties in the current study would be helpful in designing the new Fe-Cr-Co-Mo based magnets suitable for scientific and technological applications.

  10. Magnetic Properties of Lunar Samples: an Exhaustive Survey of the Apollo Collection

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Andrade Lima, E.; Rochette, P.; Weiss, B. P.; Uehara, M.; Quesnel, Y.; Baratchart, L.; Leblond, J.; Chevillard, S.

    2014-12-01

    Detailed paleomagnetic studies of lunar samples shed light on the existence and timing of the ancient lunar dynamo, with insights to the inner structure and thermal evolution of the Moon, as well as constraints for the lunar dynamo models [e.g., 1-6]. However these studies are usually performed on small cm-scale samples, typically below 100 mg. Such a small size, combined with anisotropy and other spurious effects have been shown to be the source of additional complexity [7]. We measured the natural remanent magnetization and magnetic susceptibility of 105 large Apollo samples (mass range 40 g to 2.9 kg, median mass 350 g). For this, following the approach utilized for the initial paleomagnetic evaluation of Apollo 11 samples [8], we developed a dedicated magnetometer using a fluxgate sensor and a rotating stage, which allowed measuring the bulk samples in their original Teflon and aluminum packaging under nitrogen atmosphere. Despite a number of caveats (no demagnetization steps, existence of viscous magnetization and other soft secondary magnetization), the ratio of natural remanent magnetization to susceptibility gives a rough estimate of the paleointensity. The evolution of the paleointensity with the estimated age of the samples will provide a broad picture of the evolution of the lunar dynamo. Susceptibility, as a proxy to the bulk metal content in lunar rocks [9], is also a valuable source of information per se but is currently available only for a small fraction of the Apollo collection. Our survey will allow identification of rocks with unusual magnetic properties, and therefore potentially unusual petrogenesis. References: [1] Fuller & Cisowski 1987. In Jacobs (Ed.) Geomagnetism, 307-455 [2] Garrick-Bethell et al. 2009. Science 323:356-359 [3] Cournède et al. 2012. EPSL 33:31-42 [4] Shea et al. 2012. Science 335:453-456 [5] Suavet et al. 2013. PNAS 110:8453-8456 [6] Tikoo et al. 2014. EPSL in press [7] Tikoo et al. 2012. EPSL 337:93-103 [8] Doell & Gromm

  11. Vector magnetic properties of Fe-based amorphous sheets under alternating flux condition

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Todaka, T.; Enokizono, M.

    2012-04-01

    This paper presents measured vector magnetic properties of Fe-based amorphous sheets under alternating flux conditions in arbitrary direction. It is well known that amorphous material has usually isotropic magnetic property; however it is changeable by heat-treatment and shows complicated aspects. In this paper, the relationship between the magnetic flux density and field strength vector and iron loss under alternating flux conditions is measured by using a vector magnetic property measurement system. Moreover, the iron losses depending on the exciting frequency are discussed. The results show a weak anisotropy in plane and the frequency dependence of the iron losses shows different tendency in each direction.

  12. Damping properties for vibration suppression in electrohydraulic servo-valve torque motor using magnetic fluid

    NASA Astrophysics Data System (ADS)

    Peng, Jinghui; Li, Songjing; Han, Hasiaoqier

    2014-04-01

    Aiming to suppress high frequency vibrations of a torque motor in electrohydraulic servo-valves, damping properties of an ester-based Fe3O4 magnetic fluid operating in the squeeze mode are studied in this Letter. The expression of damping forces due to the magnetic fluid on the torque motor is derived and simplified based on the measured magneto-viscosity property. Dynamic characteristics of the torque motor with and without the magnetic fluid are simulated and tested. Damping properties of magnetic fluid for the vibration suppression of a torque motor are verified by the good agreement between the predicted and tested results.

  13. Distribution of local magnetic properties in three-phase induction motor model core

    SciTech Connect

    Enokizono, M.; Morikawa, M.; Fujiyama, S.; Sievert, J.; Serikawa, I.

    1999-09-01

    Efficiency improvement of electrical machines, is a very important problem. However the local magnetic properties in core materials have not yet understood fully. On the other hand, the concept of the two-dimensional magnetic property has been reported. It means the relationship between the magnetic field strength vector H and the flux density vector B. They are not usually parallel but have a phase angle in space. This paper presents the measured local vector-magnetic properties in a three-phase induction motor model core.

  14. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect

    Picraux, Samuel T; Manandhar, Pradeep; Nazaretski, E; Thompson, J

    2009-01-01

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  15. Investigation of magnetic properties of thin films using computer simulation

    NASA Astrophysics Data System (ADS)

    Balakirev, N. A.; Zhikharev, V. A.; Gumarov, G. G.

    2012-03-01

    A two-dimensional dendrite is generated within the diffusion limited aggregation (DLA) model in the presence of an external magnetic field. The magnetic interaction between a grown dendrite and diffusing atoms results in the elongation of the dendrite in the direction of the magnetic field. The dependence is studied of the dendrite elongation on the grid occupation. The energy of the magnetic anisotropy is calculated for an elongated dendrite. The FMR spectra are calculated in geometries when the static magnetic field is either perpendicular or parallel to dendrite plane. It is shown that the FMR signals in latter case depend on the static magnetic field orientation with respect to the elongation direction.

  16. Effects of wear on structure-sensitive magnetic properties of ceramic ferrite in contact with magnetic tape

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1985-01-01

    Wear experiments and electron microscopy and diffraction studies were conducted to examine the wear and deformed layers in single-crystal Mn-Zn (ceramic) ferrite magnetic head material in contact with magnetic tape and the effects of that contact on magnetic properties. The crystalline state of the single-crystal magnetic head was changed drastically during the sliding process. A nearly amorphous structure was produced on its wear surface. Deformation in the surficial layer of the magnetic head was a critical factor in readback signal loss above 2.5 dB. The signal output level was reduced as applied normal load was increased. Considerable plastic flow occurred on the magnetic tape surface with sliding, and the signal loss due to the tape wear was approximately 1 dB.

  17. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    SciTech Connect

    Kolesnikov, S. V. Klavsyuk, A. L.; Saletsky, A. M.

    2015-10-15

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  18. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. V.; Klavsyuk, A. L.; Saletsky, A. M.

    2015-10-01

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  19. Magnetic properties of Fe-Mn-Pt for heat assisted magnetic recording applications

    SciTech Connect

    Park, Jihoon; Hong, Yang-Ki; Kim, Seong-Gon; Gao, Li; Thiele, Jan-Ulrich

    2015-02-07

    We calculate the electronic structures of FePt and Fe{sub 0.5}Mn{sub 0.5}Pt using first-principles calculations based on density functional theory within the local-spin-density approximation. The Curie temperature (T{sub c}) was calculated by mean field approximation. Composition dependence of the Cure temperature (T{sub c}(x)) of Fe{sub 1−x}Mn{sub x}Pt was used to identify a composition to meet the desired T{sub c} in the range of 600–650 K. The identified composition (0.0294 ≤ x ≤ 0.0713) gives saturation magnetization (M{sub s}) in the range of 1041–919 emu/cm{sup 3} and magnetocrystalline anisotropy constant (K) in the range of 9.96–8.36 × 10{sup 6 }J/m{sup 3} at 0 K. Temperature dependent M(T) and K(T) of Fe{sub 1−x}Mn{sub x}Pt (0.0294 ≤ x ≤ 0.0713) were calculated using the Brillouin function and Callen-Callen experimental relation, respectively. Fe{sub 1−x}Mn{sub x}Pt (0.0294 ≤ x ≤ 0.0713) shows 930–800 emu/cm{sup 3} of M{sub s} and 7.18–5.61 × 10{sup 6 }J/m{sup 3} of K at 300 K, thereby satisfying desired magnetic properties for heat-assisted magnetic recording media to achieve 4 Tb/in.{sup 2} areal density.

  20. Technique to quantitatively measure magnetic properties of thin structures at <10 NM spatial resolution

    DOEpatents

    Bajt, Sasa

    2003-07-08

    A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.

  1. A study on the magnetic properties of melt spun Co-Hf-Zr-B nanocomposite ribbons

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Lin, Y. H.; Shih, C. W.; Chang, W. C.; Shaw, C. C.

    2014-05-01

    Magnetic properties of melt spun Co86.5Hf11.5-xZrxB2 (x = 0-5) ribbons have been investigated. For the ribbons spun at the wheel speed of 40 m/s, hard magnetic properties with high energy product ((BH)max) of 34.4-52.8 kJ/m3 and intrinsic coercivity (iHc) of 176-216 kA/m were obtained for x = 0-2, but soft magnetic behavior was observed for x = 3-5 due to the appearance of the amorphous phase. By annealing the ribbons with x = 3-5, hard magnetic properties were improved arisen from the formation of magnetically hard phase. The variation of magnetic properties for Co86.5Hf11.5-xZrxB2 ribbons was correlated to microstructure change. Proper Zr substitution for Hf was helpful in refining the grain size from 10-35 nm for x = 0 to 5-15 nm for x = 1, and thus improving the magnetic properties effectively. The optimal hard magnetic properties of Co86.5Hf10.5Zr1B2 ribbons might be originated from the fine magnetically hard Co11(Hf, Zr)2 phase, and the exchange coupling effect among grains and/or with the face-center-cubic Co phase.

  2. Investigation of magnetic properties of Fe3O4 nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    NASA Astrophysics Data System (ADS)

    Nemala, H.; Thakur, J. S.; Naik, V. M.; Vaishnava, P. P.; Lawes, G.; Naik, R.

    2014-07-01

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe3O4 nanoparticles, subjected to external magnetic fields of various frequencies (188-375 kHz) and amplitudes (140-235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (˜65 emu/g) compared to the bulk value of Fe3O4 (˜95 emu/g). This is due to the presence of a finite surface layer (˜1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe3O4 core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m3) of Fe3O4 nanoparticles.

  3. Size-dependent structure and magnetic properties of co-evaporated Fe-SiO2 nanoparticle composite film under high magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui; Li, Guojian; Du, Jiaojiao; Li, Mengmeng; Wang, Jianhao; Wang, Qiang

    2016-05-01

    Composite film of Fe nanoparticles embedded in a SiO2 matrix has been prepared by the co-evaporation of Fe and SiO2. Both source temperature and in-situ high magnetic field (HMF) have been used to adjust the Fe particle size and the growth of Fe-SiO2 film. The size of Fe particle decreased with increasing the source temperature without HMF. When HMF was presented during the growth of the film, the size of Fe particle was enlarged and reduced for source temperatures of 1300 °C and 1400 °C, respectively. Meanwhile, the preferred orientation of the film grown at 1400 °C became uniform with the application of HMF. In addition, it is also found that the film was formed in two layers. One layer is formed by the Fe particle, while the other is free of Fe particles due to the existence of more SiO2. The structural variation has a significant effect on the magnetic properties. The coercivity (90 Oe) of the 1300 °C film is much higher than that (6 Oe) of the 1400 °C film with a small particle size and uniform orientation. The saturation magnetization can be increased by increasing the Fe particle volume fraction. This study develops a new method to tune the soft magnetic properties by the co-evaporation of Fe and SiO2.

  4. Physicochemical properties of magnetic fluids based on synthetic oils

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Ramazanova, A. G.; Yashkova, V. I.; Balmasova, O. V.

    2013-04-01

    A technique for synthesizing magnetic fluids based on Alkaren synthetic oil is described. The optimum synthesis conditions for the magnetite are selected, and the magnetic phase-stabilizer quantitative ratio is calculated. A magnetic fluid based on synthetic hydrocarbon oil is synthesized, and its physicochemical characteristics are determined.

  5. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties

    NASA Astrophysics Data System (ADS)

    Gan, Wentao; Gao, Likun; Sun, Qingfeng; Jin, Chunde; Lu, Yun; Li, Jian

    2015-03-01

    Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties were obtained successfully by precipitated CoFe2O4 nanoparticles on the wood surface and then treated with a layer of octadecyltrichlorosilane (OTS). The as-fabricated wood composites exhibited excellent magnetic property and the water contact angle of the OTS-modified magnetic wood surface reached as high as 150°, revealed the superhydrophobic property. Moreover, accelerated aging tests suggested that the treated wood composites also have an excellent anti-ultraviolet property.

  6. Magnetic, thermoelectric, and electronic properties of layered oxides and carbon materials

    NASA Astrophysics Data System (ADS)

    Caudillo, Roman

    The structure and physical properties of layered oxides and carbon materials were studied. Two layered carbon materials were studied: carbon nanotubes (CNTs) synthesized by electron irradiation from amorphous carbon in situ in a transmission electron microscope (TEM) and a carbon and silver nanocomposite consisting of graphitic carbon nanospheres encapsulating Ag nanoparticles. In the CNT experiments, the effect of electron irradiation in the TEM is shown to alter drastically their structure and properties, even being able to transform amorphous carbon into a CNT. This suggests a possible alternative synthesis technique for the production of CNTs, in addition to providing a method for tailoring their properties. The structure and magnetic properties of the carbon and silver nanocomposite was characterized with x-ray diffraction, scanning and transmission electron microscopy techniques, and magnetic susceptibility measurements with a superconducting quantum interference device (SQUID) magnetometer. While the sp2 bonding gives a graphene sheet its mechanical properties, the p pi electrons are responsible for its electronic and magnetic properties. In a flat graphene sheet the ppi electrons are itinerant, but in a narrow ppi band. The introduction of curvature to the graphene sheets that encapsulate the Ag nanoparticles is demonstrated to narrow the ppi band sufficiently to result in "ferromagnetic" behavior. A model that is able to explain spin localization and ferrimagnetic spin-spin interactions in graphitic materials with positive curvature is presented. Layered oxides from the family of the P2 NaxCoO 2 structure were synthesized and their properties studied. Na xCoO2 has a rich phase diagram ranging form a promising Na-rich thermoelectric composition to the hydrated Na-poor composition Na 0.33CoO2 1.3H2O that is superconductive. Intermediate to these two Na compositions exists an insulating phase with x ≈ 0.5 that presents a variety of interesting structural

  7. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots

    NASA Astrophysics Data System (ADS)

    Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.

    2016-06-01

    dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above 0.66{{T}\\text{c}} and 0.78{{T}\\text{c}} the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode.

  8. Local Magnetic Properties in Non-oriented Electrical Steel and Their Dependence on Magnetic Easy Axis and Misorientation Parameters

    NASA Astrophysics Data System (ADS)

    Gallaugher, Matthew; Samimi, Arash; Krause, Thomas W.; Clapham, Lynann C.; Chromik, Richard R.

    2015-03-01

    An understanding of how material parameters, especially orientation and misorientation, influence the magnetic properties of non-oriented electrical steel (NOES) is important for improving the efficiency of the material in service. In this study, the local magnetic properties were measured using magnetic Barkhausen noise (MBN) on different test locations on different strips of NOES material. Local variations in magnetic properties, texture, and misorientation were revealed. A new interpretation for misorientation, called the easy axis misorientation (EAM), was created to describe the alignment of the magnetic easy axes between neighboring grains. This new EAM, visualized as a single value parameter or graphed as a distribution, was shown to be more effective at predicting the isotropic magnetic properties than previously used texture parameters based on standard orientation/misorientation definitions. It was found that a larger EAM value, especially when associated with a lower small angle EAM intensity distribution, was associated with a larger MBN energy. A larger MBN energy has been previously associated with lower losses, and therefore a greater material efficiency.

  9. The magnetic and transport properties of template-synthesized carbon-based and related nanomaterials

    NASA Astrophysics Data System (ADS)

    Friedman, Adam Louis

    The porous alumina template-assisted method of nanoscale materials preparation provides a simple, relatively inexpensive, yet highly controllable and repeatable process for nanomaterial synthesis. Various nanostructures can then be made utilizing the porous structure as a scaffold. In this dissertation we study the porous alumina anodization process, the synthesis of porous alumina-assisted materials, and the basic physical properties of these materials, primarily concentrating on the magnetic and transport properties. First, we study the porous alumina formation process as a function of anodization voltage, acid type, and acid concentration. We find that while acid type strongly affects the growth characteristics of porous alumina, pH does not. We also study the stability of pore formation. We characterize the two- and three-dimensional stability of the growth process. We find that in three dimensions, an unstable formation region as a function of pH and voltage will cause the formation of dendrite structures. Next, we study the synthesis of materials in the porous alumina templates. Through chemical self-assembly, electrodeposition is able to make a wide variety of nanowires and nanotubes and we seek to optimize this process. Third, we study the optical properties Au and Ag nanowire arrays embedded in porous alumina. We find that such materials have use as negative index metamaterials owing to the existence of both transverse and longitudinal surface plasmon resonances. Next, we study the basic magnetic properties of new PAni-ferromagnet composite nanostructures and compare these properties to the magnetic properties of the nanotubes and the nanowires alone. We find the high dielectric properties of the PAni to strongly shield the ferromagnetic nanowires from magnetostatic interactions. Fifth, we make devices out of carbon nanotubes synthesized by CVD in the alumina templates. We investigate the transport properties of these carbon nanotubes. Further, we find

  10. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    SciTech Connect

    Xu, Wenfei; Yang, Jing E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Chu, Junhao; Tang, Xiaodong E-mail: xdtang@sist.ecnu.edu.cn

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher

  11. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Xu, Wenfei; Yang, Jing; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Tang, Xiaodong; Chu, Junhao

    2015-05-01

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (HC) and the saturation magnetization (MS) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.

  12. Tuning of magnetic properties in cobalt ferrite nanocrystals

    SciTech Connect

    Cedeno-Mattei, Y.; Roman, F.; Perales-Perez, O.; Tomar, M. S.; Voyles, P. M.; Stratton, W. G.

    2008-04-01

    Cobalt ferrite (CoFe{sub 2}O{sub 4}) possesses excellent chemical stability, good mechanical hardness, and a large positive first order crystalline anisotropy constant, making it a promising candidate for magneto-optical recording media. In addition to precise control of the composition and structure of CoFe{sub 2}O{sub 4}, its practical application will require the capability to control particle size at the nanoscale. The results of a synthesis approach in which size control is achieved by modifying the oversaturation conditions during ferrite formation in water through a modified coprecipitation approach are reported. X-ray diffraction, transmission electron microscopy (TEM) diffraction, and TEM energy-dispersive x-ray spectroscopy analyses confirmed the formation of the nanoscale cobalt ferrite. M-H measurements verified the strong influence of synthesis conditions on crystal size and hence, on the magnetic properties of ferrite nanocrystals. The room-temperature coercivity values increased from 460 up to 4626 Oe under optimum synthesis conditions determined from a 2{sup 3} factorial design.

  13. Modelling of microstructural effects on magnetic hysteresis properties

    NASA Astrophysics Data System (ADS)

    Dupré, L.; Sablik, M. J.; Van Keer, R.; Melkebeek, J.

    2002-09-01

    In this paper, the relationship between microstructural properties of steels and the material parameters in the Preisach model and in the Jiles-Atherton (JA) model is discussed, in the instance where both models describe quasi-static hysteretic magnetic behaviour. It is shown how the material parameters in both hysteresis models should be modified to reflect their dependence on dislocation density and grain size. The dependence of the Preisach material parameters on these microstructural features is identified starting from hysteresis loops calculated by the microstructurally dependent modified JA model. For the Preisach model, a Lorentzian distribution function is used for the distribution function. This makes it possible to compare predictions here to results of an earlier paper in which the Lorentzian distribution was used for Preisach fits to experimental data for steels of different grain sizes. Also, in a different earlier paper, it was shown how the Lorentzian distribution can be formulated so that it connects with salient features of the JA model. The procedure in this paper enables one to examine and predict microstructural variations of Preisach parameters in steels not only for the case of grain size variation but also for the case of variation in dislocation density.

  14. Magnetic properties of Mn-Bi melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Nishimura, Ryuji; Nishio-Hamane, Daisuke

    2014-01-01

    Mn-Bi melt-spun ribbons with the low temperature phase (LTP) of MnBi were produced by melt-spinning and subsequent annealing. The as-rapidly quenched Mn-Bi melt-spun ribbons contained some LTP MnBi phase and exhibited a high coercivity exceeding 8 kOe. Annealing of the melt-spun ribbons resulted in an increase in the amount of the LTP MnBi phase. A maximum remanence value of 42 emu/g was achieved in Mn50Bi50 melt-spun ribbon annealed at 673 K for 1 h. High-temperature measurements revealed that the coercivity of the annealed Mn50Bi50 melt-spun ribbon increased with increasing ambient temperature. Although the Mn50Bi50 melt-spun ribbons showed a much smaller coercivity than Nd15Fe77B8 melt-spun ribbon at room temperature, it exhibited a higher coercivity at temperatures of 473 K and higher. Therefore, the magnetic properties of Mn50Bi50 melt-spun ribbon are comparable to those of Nd-Fe-B melt-spun ribbon at an ambient temperature of 473 K and become superior to those of Nd-Fe-B melt-spun ribbon at 573 K.

  15. Local geometrical properties of magnetic configurations with nested equilibrium magnetic surfaces

    SciTech Connect

    Skovoroda, A. A.

    2009-04-15

    The complete set of universal local relationships between geometrical (the curvature and torsion of the force lines of the magnetic field and the field complementary to it) and magnetic (|B|, |{nabla}{Phi}|, b {center_dot} ({nabla} x b), and the local shear s) quantities in currentless magnetic configurations comprising a system of equilibrium nested magnetic surfaces, including those with several magnetic axes, is derived. Possible applications of these relationships are discussed.

  16. Investigation of Transport Properties for FeSe1-xTex Thin Films under Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sawada, Yuichi; Nabeshima, Fuyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-07-01

    We investigated the transport properties under magnetic fields of up to 9 T for FeSe1-xTex thin films on CaF2. Measurements of the temperature dependence of the electrical resistivity revealed that for x = 0.2-0.4, where Tc is the highest, the width of the superconducting transition increased with increasing magnetic field, while the width was almost the same with increasing magnetic field for x = 0-0.1. In addition, the temperature dependence of the Hall coefficient drastically changed between x = 0.1 and 0.2 at low temperatures. These results indicate that clear differences in the nature of the superconductivity and electronic structure exist between x = 0-0.1 and x ≥ 0.2.

  17. Structural and magnetic properties of LaMn1-xFexO3 (0

    NASA Astrophysics Data System (ADS)

    Zhou, X.-D.; Pederson, L. R.; Cai, Q.; Yang, J.; Scarfino, B. J.; Kim, M.; Yelon, W. B.; James, W. J.; Anderson, H. U.; Wang, C.

    2006-04-01

    Electronic, structural, and magnetic properties of Mn-doped lanthanum ferrites were studied by neutron diffraction, superconducting quantum interference device, and impedance spectroscopy. Neutron diffraction refinements were performed with the constraint of full La occupancy, which showed the presence of excess oxygen when x<0.4. Mixed valent Mn cations and cation vacancies, therefore, exist in all the samples. The samples with x>0.7 are magnetically ordered at room temperature with orthorhombic symmetry (Pbnm). When x<0.3 the structure is rhombohedral and magnetically disordered above 16 K. The majority carriers, electron holes, correspond to high oxidation states of Mn. The carrier concentration is determined from the Seebeck coefficients, and is a function of temperature and Fe concentration. The measurements of conductivity and Seebeck coefficients show polaron hopping at elevated temperatures.

  18. Structure and magnetic properties of a Ni3(Al, Fe, Cr) single crystal subjected to high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Rigmant, M. B.; Stepanova, N. N.; Davydov, D. I.; Shishkin, D. A.; Terent'ev, P. B.; Vinogradova, N. I.

    2016-05-01

    The structure and magnetic properties of the Ni3(Al, Fe, Cr) single crystal subjected to high-temperature tensile deformation to failure at 850-900°C have been studied. No recrystallized grains and metastable phases were found. The rupture zone of the alloy subjected to deformation (at 900°C) to the highest degree demonstrates the fragmentation accompanied by rotation of atomic layers and changes of the chemical composition in the nickel and aluminum sublattices. Magnetic studies of the alloy have shown the existence of two Curie temperatures for samples cut from the rupture zone. Samples cut away from the rupture zone exhibit no additional magnetic transitions; twines and planar stacking faults in the alloy structure. The alloy deformed to the lower degree of deformation (at 850°C) also demonstrates twins; no ferromagnetic state was found to form.

  19. Hydrogen effect on electronic and magnetic properties of Cd1-xMnxTe: Ab initio study

    NASA Astrophysics Data System (ADS)

    Larabi, A.; Merad, G.; Abdelaoui, I.; Sari, A.

    2016-07-01

    Hydrogen effect on electronic and magnetic properties of diluted magnetic semiconductor (DMS) Cd1-xMnxTe for x composition of 0.125 has been investigated using the projected augmented wave (PAW) based on density functional theory (DFT) formalism within the generalized gradient approximation (GGA). The results show that the Mn dopant is spin-polarized with magnetic moment of 4.189 μB per Mn atom at x≈0.125. The calculated formation energies indicate that the hydrogen is not stable in CdTe and the lowest energy position for H is at the Cd-Mn bond center in Cd0.875Mn0.125Te. We find also that the existence of interstitial hydrogen decreases the magnetic moment of Cd0.875Mn0.125Te diluted magnetic semiconductor. From the calculated density of state, we observed that the presence of hydrogen does not cause a change in electronic properties of Cd0.875Mn0.125Te.

  20. Magnetic properties and concurrence for fluid {sup 3}He on kagome lattice

    SciTech Connect

    Ananikian, N. S. Ananikian, L. N.; Lazaryan, H. A.

    2012-10-15

    We present the results of magnetic properties and entanglement for kagome lattice using Heisenberg model with two- and three-site exchange interactions in strong magnetic field. Kagome lattice correspond to the third layer of fluid {sup 3}He absorbed on the surface of graphite. The magnetic properties and concurrence as a measure of pairwise thermal entanglement are studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. The system exhibits different magnetic behaviors depending on the values of the exchange parameters (J{sub 2}, J{sub 3}). We have obtained the magnetization plateaus at low temperatures. The central theme of the paper is comparing the entanglement and magnetic behavior for kagome lattice. We have found that in the antiferromagnetic region behavior of the concurrence coincides with the magnetic susceptibility one.

  1. Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd–Fe–B magnets

    NASA Astrophysics Data System (ADS)

    Xiang-Bin, Li; Shuo, Liu; Xue-Jing, Cao; Bei-Bei, Zhou; Ling, Chen; A-Ru, Yan; Gao-Lin, Yan

    2016-07-01

    To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into (Pr0.25Nd0.75)30.6Cu0.15FebalB1 (wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd–Fe–B magnets are investigated. The experimental results show that by adding 3 wt.% Tb2S3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer (EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of H A, which accounts for the coercivity enhancement. Moreover, compared with Tb2S3-free magnets, the reversible temperature coefficients of remanence (α) and coercivity (β) and the irreversible flux loss of magnetic flow (h irr) values of Tb2S3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved. Project supported by the Science Funds from the Ministry of Science and Technology, China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).

  2. Preliminary Results of the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Hviid, S. F.; Bertelsen, P.; Goetz, W.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.; Squyres, S. W.; Bell, J. F., III; Yen, A.; Johnson, M. J.

    2004-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the air-borne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments (Viking 1 & 2, 1976 and Mars Pathfinder, 1997) that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent, this minor constituent probably being dominated by the mineral maghemite (gamma-Fe2O3). The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. In detail, the objectives are: a) To identify the magnetic mineral(s) in the dust, soil and rocks on Mars. b) To establish if the magnetic material is present in the form of nanosized (d < 10 nm) superparamagnetic crystallites embedded in the micrometer sized airborne dust part icles. c) To establish if the magnets are culling a subset of strongly magnetic particles or if essentially all particles of the airborne dust are sufficiently magnetic to be attracted by the magnets. d) Detect compositional differences between the airborne dust and the soil and rock sites which are investigated at two landing sites. To accomplish these goals the Mars Exploration Rovers each carry a set of permanent magnets of several different strengths and sizes. Each magnet has its own specific objective.

  3. Soft magnetic properties of LaCo13 and La(Co, Fe)13 alloys

    NASA Astrophysics Data System (ADS)

    Huang, M. Q.; Wallace, W. E.; McHenry, M. E.; Chen, Q.; Ma, B. M.

    1998-06-01

    LaCo13 and La(Co, Fe)13 alloys have been prepared and studied as high temperature, high performance soft magnetic materials. The dc magnetic properties have been measured over a temperature range of 10-1273 K in fields of 0 to 5 T. Data obtained show that the dc magnetic properties (Hc,K1) of the La(Co, Fe)13 bulk alloys are comparable with Fe bulk alloy and Tc=1021-1297 K are higher than that of Fe and Hiperco; ac magnetic properties are first time reported in a bulk LaCo13 alloy, showing a reasonably higher power loss than that of commercial Hiperco alloy. The ac magnetic properties can be improved by making LaCo13 alloys as laminated thin sheets.

  4. Nanomechanical control of properties of biological membranes achieved by rodlike magnetic nanoparticles in a superlow-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Klyachko, N. L.; Gribanovskii, S. L.; Golovin, D. Yu.; Samodurov, A. A.; Majouga, A. G.; Sokolsky-Papkov, M.; Kabanov, A. V.

    2015-05-01

    It is proposed to use single-domain rodlike magnetic nanoparticles (MNPs) as mediators for nanomechanical control of properties of biological membranes and cells on the molecular or cellular level by exposing them to a homogeneous nonheating low-frequency magnetic field (AC MF). The trigger effect is achieved due to rotatory-oscillatory motion of MNPs in the AC MF, which causes the needed deformations in macromolecules of the membrane interacting with these MNPs.

  5. Effect of cation substitution on the magnetic and magnetotransport properties of epitaxial Fe3-xVxO4 films

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Liu, Jie; Zheng, Dongxing; Tang, Min; Li, Peng; Bai, Haili

    2015-03-01

    The effect of cation on the structure, magnetic and magnetotransport properties of epitaxial Fe3-xVxO4 (0 ≤ x ≤ 0.6) films fabricated by reactive cosputtering was investigated systematically. Four kinds of cations (Fe2+, Fe3+, V2+ and V3+) exist in the Fe3-xVxO4 films. The Fe3-xVxO4 films reveal semiconducting property and increased resistivity with increasing V content. The systematic change of the decreased saturation magnetization and enhanced exchange bias is closely related to the spin canting and antiferromagnetic coupling, which is caused by the V substitution on B sites. The presents of V2+ (3d3) enlarge the anisotropy, and further increase the coercivity. With the combined effects of the larger anisotropy, spin canting and enhanced antiferromagnetic coupling caused by V substitution, the Fe3-xVxO4 films exhibit enhanced four-fold symmetric anisotropic magnetoresistance.

  6. Fe-DOPED Ga12N12 CLUSTERS: ELECTRONIC AND MAGNETIC PROPERTIES

    NASA Astrophysics Data System (ADS)

    Lu, Pengfei; Wu, Chengjie; Cong, Zixiang; Li, Yiluan; Zhang, Xianlong; Yu, Zhongyuan; Cao, Huawei

    2013-12-01

    In this paper, we have investigated the structural, electronic and magnetic properties of Ga12N12 cluster doped with monodoped and bidoped Fe atoms within the density functional theory (DFT). Substitutional, exohedral and endohedral doping are considered. It is observed that both monodoped and bidoped clusters tend to be in exohedral doping. Mulliken population analysis is performed to obtain the charge transfer and magnetic moment. The magnetic moment is mainly derived from 3d orbitals of Fe atom for all isomers, while the magnetic properties would rely on the Fe-Fe distance.

  7. DFT investigation on structure, electronic and magnetic properties of Crn (n=2-8) clusters

    NASA Astrophysics Data System (ADS)

    Shah, Esha V.; Kumar, Vipin; Roy, Debesh R.

    2016-05-01

    A density functional investigation on the series of chromium clusters, i.e., Crn (n=2-8) is performed for finding their lowest energy structures and various electronic and magnetic properties. For electronic properties, we have predicted binding energy, HOMO-LUMO (HLG), chemical hardness (η) etc., and also for magnetic behavior, we have predicted the magnetic moments of the lowest energy cluster isomers. A systematic search imposing all possible initial magnetic configurations of the clusters is considered for finding lowest energy structures. All the calculations is carried out using a very popular GGA functional Perdew, Burke and Ernzerhof (PBE), as implemented in the VASP code.

  8. Magnetic properties of barium ferrite dispersed within polystyrene-butadiene-styrene block copolymers.

    PubMed

    Chipara, M; Skomski, R; Ali, N; Hui, D; Sellmyer, D J

    2009-06-01

    Magnetic properties of nanocomposite materials obtained by dispersing barium ferrite nanoparticles within polystyrene-butadiene-styrene block copolymer, in the temperature range, 300 to 500 K are reported. The temperature dependence of the magnetization at saturation, averaged uniaxial magnetocrystalline anisotropy, and coercive field of thick films are analyzed. A "matrix effect" was noticed within the glass transition range of the hard component (polystyrene) of the polymeric matrix. The reported modifications of the magnetic properties were assigned to the competition between the magnetic and mechanical reorientation of nanoparticles within the polymeric matrix. Such modifications were not observed in barium ferrite dispersed in cement. PMID:19504902

  9. Atomistic simulation of static magnetic properties of bit patterned media

    NASA Astrophysics Data System (ADS)

    Arbeláez-Echeverri, O. D.; Agudelo-Giraldo, J. D.; Restrepo-Parra, E.

    2016-09-01

    In this work we present a new design of Co based bit pattern media with out-of-plane uni-axial anisotropy induced by interface effects. Our model features the inclusion of magnetic impurities in the non-magnetic matrix. After the material model was refined during three iterations using Monte Carlo simulations, further simulations were performed using an atomistic integrator of Landau-Lifshitz-Gilbert equation with Langevin dynamics to study the behavior of the system paying special attention to the super-paramagnetic limit. Our model system exhibits three magnetic phase transitions, one due to the magnetically doped matrix material and the weak magnetic interaction between the nano-structures in the system. The different magnetic phases of the system as well as the features of its phase diagram are explained.

  10. Magnetic surfactants as molecular based-magnets with spin glass-like properties.

    PubMed

    Brown, Paul; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Hatton, T Alan; Baker, Peter J

    2016-05-01

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets. PMID:27028571

  11. Magnetic surfactants as molecular based-magnets with spin glass-like properties

    NASA Astrophysics Data System (ADS)

    Brown, Paul; Smith, Gregory N.; Padrón Hernández, Eduardo; James, Craig; Eastoe, Julian; Nunes, Wallace C.; Settens, Charles M.; Hatton, T. Alan; Baker, Peter J.

    2016-05-01

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  12. Magnetic and magnetotransport properties of erbium silicide epitaxial films

    NASA Astrophysics Data System (ADS)

    Chroboczek, J. A.; Briggs, A.; Joss, W.; Auffret, S.; Pierre, J.

    1991-02-01

    Hexagonal Er3Si5 films epitaxially grown on Si show strong anisotropies in magnetization and magnetotransport below the ordering temperature. The magnetoresistance has a cusplike positive anomaly or is negative and featureless for a magnetic field applied, respectively, along or perpendicular to the [0001] axis. A noncollinear structure, composed of an antiferromagnetic and a ferromagnetic component accounts for the magnetization data. The latter used in conjunction with the Yamada-Takada theory of magnetotransport accounts for the magnetoresistance data.

  13. Magnetic, thermodynamic and transport properties at the first and second order magnetic phase transitions in Dy5Si3 compound

    NASA Astrophysics Data System (ADS)

    Falkowski, M.; Kowalczyk, A.; Toliński, T.

    2013-04-01

    We present extended studies including the dc and ac magnetic susceptibility, magnetization, specific heat, electrical resistivity and magnetoresistivity measurements for the Dy5Si3 compound with the hexagonal Mn5Si3-type structure. The results indicate that this compound orders antiferromagnetically below TN=137 K. The magnetic properties of Dy5Si3 are mainly governed by the presence of the magnetic moments of Dy3+ ions. In the paramagnetic range, the magnetic susceptibility follows the Curie-Weiss law with μeff=10.57 μB/Dy, which is very close to the theoretical value of 10.6 μB. From the magnetometric, specific heat and transport data it has been found that below 50 K this compound reveals a non-collinear magnetic order, associated with a phase transition, probably of the first order type. On the basis of the thermodynamic approach, we report the magnetocaloric properties in the whole temperature range but concentrate mainly on the region around 50 K. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change ΔSM as well as the adiabatic temperature change ΔTad using the specific heat data. In spite of the only moderate ΔSM values a significant relative cooling power has been observed.

  14. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect

    Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  15. Magnetic Properties of Melt Particles of Suevitic Samples From the Bosumtwi Impact Structure, Ghana.

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Pesonen, L. J.; Lehtinen, M.

    2006-12-01

    The magnetic anomaly over Bosumtwi impact structure has recently raised a debate about its origin. Plado et al. (2000) presented a magnetic model where a strongly remanently magnetized melt or melt-rich body was proposed as a source of this anomaly. Recent deep drilling through the Bosumtwi structure, however, failed to penetrate into the expected melt body. Also, the recent investigations of petrophysical parameters of samples from deep drill cores (Elbra et al., 2006) did not yield any strongly magnetic body. In order to find out whether the current drill cores simply lack the melt or the expected highly magnetized body escaped the drilling, we separated individual melt particles from deep drill core samples and from exposed suevitic rocks, and measured their magnetic properties. Preliminary results of our investigation show differences in magnetic properties between the melt from inside and outside the crater. The melt from drill core samples shows merely a paramagnetic signal of magnetic susceptibility and only a weak intensity of remanence. The melt from exposed rocks, however, shows slightly higher magnetizations. Currently, the more detailed rock-magnetic studies of separate melt inclusions, combined with X-ray diffraction measurements, are carried out in order to identify the nature of magnetic minerals in the melt and to verify if the melt is enough highly magnetic to be the source of the magnetic anomaly. References: Elbra T., Pesonen L.J. (2006) Petrophysical and rock-magnetic properties of impactites from deep drill core of Bosumtwi impact structure. Meteoritics and Planetary Science 41, Supplement, August, A49. Plado J., Pesonen L.J., Koeberl C., Elo S. (2000) The Bosumtwi meteorite impact structure, Ghana: A magnetic model. Meteoritics and Planetary Science 35, 723-732.

  16. Magnetic properties of samples containing small indium particles

    NASA Astrophysics Data System (ADS)

    Perenboom, J. A. A. J.; Wyder, P.; Meier, F.

    1981-01-01

    Earlier measurements of the magnetization of small indium particles embedded in paraffin were extended in order to observe the transition from a regime of quantum size effects to a regime with normal bulk behavior. Static-magnetization data have been collected in applied magnetic fields up to 8 T in the temperature range from 3 to 300 K for samples with a mean particle diameter in the range from 2 to 10 nm. The measured temperature dependence at different values of the applied magnetic field reveals a paramagnetic contribution to the magnetization which can be accurately described with the magnetization of a spin triplet level, S=1. The Curie constant is orders of magnitude in excess of one spin per particle and seems to be strongly correlated with the sample handling procedure. In some of our samples we have found also a contribution to the magnetization highly nonlinear with the magnetic field, essentially temperature independent up to room temperature, and saturating at fields around 0.6 T. This contribution resembles strongly the magnetization behavior of ferromagnets. No quantum size effects have been observed in the present data.

  17. Magnetic Properties of the WC-Co Cermet Powders

    NASA Astrophysics Data System (ADS)

    Serban, V. A.; Malaescu, I.; Ercuta, A.; Marin, C. N.; Stefu, N.; Opris, C.; Codrean, C.; Utu, D.

    2010-08-01

    The magnetic behavior, both quasistatic (50 Hz) and dynamic (10 kHz-1 MHz) of a set of three powder samples from the WC-Co cermet system were investigated in the as-cast state. The results have shown magnetic hysteresis in the low frequency AC fields. In high frequency fields, the complex magnetic permeability was examined; a weak maximum of the imaginary component that was detected in the frequency range close to 100 kHz was attributed to structure-dependent magnetic relaxation.

  18. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  19. Some Peculiar Properties of Magnetic Clouds as Observed by the WIND Spacecraft

    NASA Technical Reports Server (NTRS)

    Berdichevsky, D.; Lepping, R. P.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Lazarus, A. J.; Steinburg, J. T.; Mariani, F.

    1999-01-01

    We aimed at understanding the common characteristics of magnetic clouds, relevant to solar-interplanetary connections, but exceptional ones were noted and are stressed here through a short compendium. The study is based on analyses of 28 good or better events (Out of 33 candidates) as identified in WIND magnetic field and plasma data. These cloud intervals are provided by WIND-MFI's Website under the URL (http://lepmfi.gsfc.nasa.gov/mfi/mag_cloud_publ.html#table). The period covered is from early 1995 to November 1998. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in usually 1-hour averaged form for the cloud analyses. Some of the findings are: (1) one small duration event turned out to have an approximately normal size which was due to a distant almost "skimming" passage by the spacecraft; (2) One truly small event was observed, where 10 min averages had to be used in the model fitting; it had an excellent model fit and the usual properties of a magnetic cloud, except it possessed a small axial magnetic flux; (3) One cloud ha a dual axial-field-polarity, in the sense that the "core" had one polarity and the annular region around it had an opposite polarity. This event also satisfied the model and with a ve3ry good chi-squared value. Some others show a hint of this dual polarity; (4) The temporal distribution of occurrence clouds over the 4 years show a dip in 1996; (5) About 50 % of the clouds had upstream shocks; any others had upstream pressure pulses; (6) The overall average speed (390 km/s) of the best 28 events is less than the normally quoted for the average solar wind speed (420 km/s) The average of central cloud speed to the upstream solar wind speed was not much greater than one (1.08), even though many of these clouds were drivers of interplanetary shocks. Cloud expansion is partly the reason for the existence of upstream shocks; (7) The cloud axes often (about 50 % of the time) revealed reasonable

  20. Thermodynamic properties of anisotropic spin ladder in a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2015-08-01

    We address thermodynamic properties of quasi-one dimensional two leg antiferromagnetic ladder in the presence of magnetic field. A generalized bond operator formalism is used to transform the spin model to a hard core bosonic gas. We have implemented Green's function approach to obtain the temperature dependence of spin excitation spectrum in field induced spin polarized phase. The results show energy gap that vanishes at critical magnetic field for fixed values of temperatures. We have also found the temperature dependence of the specific heat and magnetization component in the magnetic field direction for various magnetic field strengths and anisotropies in the Heisenberg interactions on both leg and rung couplings. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the spin polarized phase region. Furthermore we studied the temperature dependence of the longitudinal magnetization for different magnetic field and anisotropy parameters.

  1. Magnetic, DC Transport, and Microwave Properties of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Paul Phong

    This thesis involves three major projects: (1) Effects of bromination on YBa_2Cu _3O_{7-x} (YBCO) single crystals, (2) Power dependence of the microwave surface impedance of YBCO thin films, and (3) Microwave properties of YBCO Josephson junctions. In the first project, de-oxygenated non-superconducting YBa_2Cu_3O _{6.2} single crystals are doped with Br. The resulting crystals (YBCOBr) become superconducting with T_{c} {~}.92 K, Delta T_{c} {~} 1.0 K. The normal resistivity in the best sample is linear in temperature. The large ratio in resistivity of the brominated to the pristine YBCO single crystals suggests that bromination greatly increases the scattering rate. The upper critical fields are measured resistively and the corresponding coherence lengths xi_ {ab}(0) and xi_{c }(0) are estimated. A comparison with the fully oxygenated YBCO single crystals shows that xi_{ab}(0) remains approximately the same, whereas xi_{c} (0) decreases by a factor of {~ }3, suggesting that Br never enters the CuO _2 planes. The pinning energy for vortex motion in the ab plane decreases after bromination and this decrease can be attributed to the increased anisotropy. Compared with the fully oxygenated YBCO single crystals, the critical current density is suppressed by bromination and is strongly dependent on the applied magnetic field. The reduced lower critical field H_{c1} in YBCOBr indicates a reduction in the carrier density. The second project involves measurements of the surface impedance Z_{s} for the first time as a function of frequency (1-20 GHz), temperature (4.2-91 K), and peak rf magnetic field (0 < H_{rf} < 500 Oe) for high-quality epitaxial YBa_2Cu _3O_{7-x} thin films, using a stripline-resonator technique. The results for Z_{s} in the low- and intermediate-rf-field regime (H_ {rm rf} < 50 Oe at 77 K) are explained quantitatively by a power-dependent coupled-grain model, which treats the film as a network of superconducting grains connected by grain boundaries

  2. Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Kleshcheva, S. M.; Perov, D. V.

    2016-02-01

    The magnetic properties of 3D nanocomposites representing Mn-Zn, Ni-Zn, Co-Zn, La-Co-Zn, and Nd-Co-Zn spinel ferrite particles embedded in the interspherical spaces of opal matrices are studied. Experimental data are obtained in the temperature interval 2-300 K by measuring the magnetization at a static magnetic field strength of up to 50 kOe and the ac magnetic susceptibility at an alternating magnetic field amplitude of 4 kOe and a frequency of 80 Hz.

  3. Magnetic properties in kagomé lattice with RKKY interaction: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-03-01

    The magnetic properties of the kagomé lattice have been studied with Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interactions in a spin-7/2 Ising model using Monte Carlo simulations. The RKKY interaction between the two magnetic layers is considered for different distances. The magnetizations and magnetic susceptibilities of this lattice are given for different triquadratic interactions around each triangular face. The critical temperature is obtained for a fixed size. The magnetic hysteresis cycle of kagomé lattice with RKKY interactions is obtained for different temperatures and for different crystal field with a fixed size of nonmagnetic layer.

  4. Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe60Ru20B20 alloy

    NASA Astrophysics Data System (ADS)

    Boutahar, A.; Lassri, H.; Hlil, E. K.

    2015-11-01

    Magnetic, magnetocaloric properties and phenomenological model of amorphous Fe60Ru20B20 alloy are investigated in detail. The amorphous alloy has been synthesized using melt spinning method. The magnetic transition nature undergoes a second-order magnetic phase transition from ferromagnetic to paramagnetic states with a Curie temperature of 254 K. Basis on the thermodynamic Maxwell's relation, magnetic entropy change (-ΔSM) is calculated. Further, we also report a theoretical investigation of the magnetocaloric effect using a phenomenological model. The best model parameters and their variation with temperature and the magnetic field were determined. The theoretical predictions are found to agree closely with experimental measurements.

  5. The "Newton Challenge": Properties of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.

    2005-05-01

    Inspired by the observations of thin (ion-scale) current sheets at important magnetospheric boundaries, the study of the properties of thin current sheets has become very popular in recent years. Most of these investigations, however, have ignored the question of how the sheets are formed. Instead, usually a simple Harris-type current sheet is postulated at the outset, and the resulting behavior is then determined. Recently, a collaborative effort, dubbed the "Newton Challenge" and involving J. Birn, K. Galsgaard, M. Hesse, M. Hoshino, J. Huba, G. Lapenta, P.~L. Pritchett, K. Schindler, L. Yin, J. Büchner, T. Neukirch, and E.~R. Priest, was begun to investigate the transition from thicker to thin current sheets that can occur as a result of magnetopause deformations imposed by the solar wind. A standard 2-D model problem in which current sheet thinning was forced by imposing a finite deformation of the field above and below the current sheet was studied by a variety of physical models ranging from resistive MHD to fully kinetic particle models. The aim was to determine whether differences would arise between the fluid and kinetic treatments that might affect the onset of magnetic reconnection. The initial results indicate that full-particle, hybrid, and Hall-MHD models lead to fast reconnection and similar final states despite differences in energy transfer and dissipation. Resistive MHD simulations show reduced reconnection rates that depend on the magnitude of the resistivity. These results will be reviewed, and additional features of forced reconnection, including continuous forcing, open boundaries, the presence of a normal field component, and 3-D effects, will be discussed.

  6. Effect of external magnetic field on the co-existence of superconductivity and antiferromagnetism in rare earth nickel borocarbides (RNi2B2C)

    NASA Astrophysics Data System (ADS)

    Das, Salila; Padhi, Prakash Chandra

    2016-03-01

    In this paper, we have studied the effect of external magnetic field in the co-existing phase of superconducting and antiferromagnetism (AFM) of rare earth nickel borocarbides. The AFM in these systems might have originated due to both localized “f” electrons as well as itinerant electrons which are responsible for conduction. On the other hand, superconductivity (SC) is due to spin density wave, arising out of Fermi surface instability. The AFM order is mostly influenced by hybridization of the “f” electron with the conduction electron. Here, we have obtained the dependence of superconducting energy gap as well as staggered magnetic field on temperature T and energy ɛk in a framework based on mean field Hamiltonian using double time electron Green’s function. We have shown in our calculation the effect of external magnetic field on superconducting and antiferromagnetic order parameters for YNi2B2C in the presence of hybridization. The ratio of the calculated effective gap and TC is close to BCS value which agrees quite well with experimental results.

  7. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGESBeta

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  8. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ∼18 K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ∼3 K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  9. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  10. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles.

    PubMed

    Granitzer, P; Rumpf, K; Gonzalez-Rodriguez, R; Coffer, J L; Reissner, M

    2015-12-21

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature. PMID:26575478

  11. Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry.

    PubMed

    Gysin, Urs; Rast, Simon; Aste, Andreas; Speliotis, Thanassis; Werle, Christoph; Meyer, Ernst

    2011-07-15

    Magnetic properties of nanomagnetic and biomagnetic systems are investigated using cantilever magnetometry. In the presence of a magnetic field, magnetic films or particles deposited at the free end of a cantilever give rise to a torque on the mechanical sensor, which leads to frequency shifts depending on the applied magnetic field. From the frequency response, the magnetic properties of a magnetic sample are obtained. The magnetic field dependences of paramagnetic and ferromagnetic thin films and particles are measured in a temperature range of 5-320 K at a pressure below 10(-6) mbar. We present magnetic properties of the ferromagnetic materials Fe, Co and Ni at room temperature and also for the rare earth elements Gd, Dy and Tb at various temperatures. In addition, the magnetic moments of magnetotactic bacteria are measured under vacuum conditions at room temperature. Cantilever magnetometry is a highly sensitive tool for characterizing systems with small magnetic moments. By reducing the cantilever dimensions the sensitivity can be increased by an order of magnitude. PMID:21659684

  12. Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles.

    PubMed

    Saranu, Srinivasa; Selve, Sören; Kaiser, Ute; Han, Luyang; Wiedwald, Ulf; Ziemann, Paul; Herr, Ulrich

    2011-01-01

    Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media. PMID:21977439

  13. Electrical and magnetic properties of hot-deformed Nd-Fe-B magnets with different DyF3 additions

    NASA Astrophysics Data System (ADS)

    Sawatzki, Simon; Dirba, Imants; Schultz, Ludwig; Gutfleisch, Oliver

    2013-10-01

    The effect of deformation and DyF3 additions on the electrical resistivity and the magnetic performance has been studied in hot-deformed Nd-Fe-B melt-spun ribbons and correlated with respective microstructures. Despite the nanocrystallinity of hot-compacted magnets, the specific electrical resistivity measured by four-point-method was shown to be comparable with that of sintered magnets. Die-upsetting reduces electrical resistivity within the magnetically hard plane because of an enhanced shape anisotropy of the grains. The addition of DyF3 overcompensates this reduction due to the presence of electrically insulating Dy-F rich inclusions and thus reduces eddy current losses within the magnet. Magnetic measurements reveal an increase in coercivity without a change in remanence for die-upset magnets with a total height reduction of 63% and 1.2 wt. % Dy (1.6 wt. %DyF3). Both properties, remanence and coercivity, demonstrate an effective reduction in heavy rare earth Dy for Nd-Fe-B magnets.

  14. Crystalline and magnetic properties of MnAs under pressure

    NASA Astrophysics Data System (ADS)

    Maki, K.; Kaneko, T.; Hiroyoshi, H.; Kamigaki, K.

    1998-01-01

    Lattice constants and magnetization in MnAs were measured under pressures up to 24 kbar at room temperature and 10 kbar at 80 K, respectively. Compresibilities in the MnP-type phase was obtained at pressures from 8 to 24 kbar. Magnetic moment of Mn ion was about 1.6 μ B under 8—10 kbar.

  15. On the Thermodynamics and Other Constitutive Properties of a Class of Strongly Magnetized Matter Observed in Astrophysics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, Daniel B.; Schefers, Kendric

    2015-05-01

    It is shown that the occurrence of magnetization work is a consistent thermodynamic explanation of the property of anti-correlation between temperature and density of the electrons gas in a class of magnetic-field-dominated structures observed in the interplanetary medium. In this model, a 7/4 scaling ratio for magnetization work to electron-gas work explains the often observed anomalous adiabatic polytropic exponent {{γ }a}=1/2. This interpretation is built on the theoretical conjecture of a matter state having spatial confinement of most hadronic elements of matter, i.e., matter held in place by the action of what is here denominated as a “super-strong” magnetic field, which together with the plasma it contains satisfies—on medium to large spatial-temporal scales—ideal magnetohydrodynamics. Several elements of the interpretation are tested for a case study, the flux-rope (FR) structure passing Wind SC on 1998 June 2. This allows us to extract, for a 185 s sample interval inside the FR, the following constitutive properties of this diamagnetic state of matter: (i) sound speed, (ii) thermal temperature, (iii) magnetic permeability, and (iv) a low limit to its dielectric permittivity. The intervals of coherence, i.e., thermodynamic homogeneity, extend from a few to many 104 km for plasma and magnetic field average with a sampling rate of 3s per value. We point out that this state of matter, which we identify to be an amorphous three-dimensional Langmuir lattice, differs from other materials studied in the laboratory at extreme low temperatures and is well described as BCS-superconductors because in our case we understand that (a) the magnetic permeability is non-zero, and (b) substantial field-aligned, convected-current density exists.

  16. Structure, micromechanical and magnetic properties of polycarbonate nanocomposites

    NASA Astrophysics Data System (ADS)

    Maniks, J.; Zabels, R.; Merijs Meri, R.; Zicans, J.

    2013-12-01

    The current study evaluates the applicability of polycarbonate (PC) for development of magnetic polymer nanocomposites with CoFe2O4 nanofiller, the amount of which was changed from 0 to 5 wt. %. Ethylene-vinyl acetate elastomer in the amount of 10 wt. % was added as toughener. Upon introduction of the magnetic filler a magnetic hysteresis loop was observed: at 5 wt.% of CoFe2O4 saturation magnetization of the nanocomposite was 2,2 emu/g, remanent magnetization was 0,8 emu/g and coercivity is 1200 G. Nanoindentation tests showed that nanofiller-reinforced samples maintain reasonable plasticity characterized by work of plastic indentation, while their modulus and hardness were improved by up to 14% and 20%, correspondingly. Structural study revealed clustering of the nanofiller at the contents above 2 wt.% that led to reduction of strengthening effect.

  17. Magnetic Property in Large Array Niobium Antidot Thin Films

    NASA Astrophysics Data System (ADS)

    Tinghui, Chen; Hsiang-Hsi, Kung; Wei-Li, Lee; Institute of Physics, Academia Sinica, Taipei, Taiwan Team

    2014-03-01

    In a superconducting ring, the total flux inside the ring is required to be an integer number of the flux quanta. Therefore, a supercurrent current can appear within the ring in order to satisfy this quantization rule, which gives rise to certain magnetic response. By using a special monolayer polymer/nanosphere hybrid we developed previously, we fabricated a series of superconducting niobium antidot thin films with different antidot diameters. The antidots form well-ordered triangular lattice with a lattice spacing about 200 nm and extend over an area larger than 1 cm2, which enables magnetic detections simply by a SQUID magnetometer. We observed magnetization oscillation with external magnetic field due to the supercurrent screening effect, where different features for large and small antidot thin films were found. Detailed size and temperature dependencies of the magnetization in niobium antidot nanostructures will be presented.

  18. Electronic and magnetic properties of Si substituted Fe3Ge

    DOE PAGESBeta

    Shanavas, Kavungal Veedu; McGuire, Michael A.; Parker, David S.

    2015-09-23

    Using first principles calculations we studied the effect of Si substitution in the hexagonal Fe3Ge. We find the low temperature magnetic anisotropy in this system to be planar and originating mostly from the spin-orbit coupling in Fe-d states. Reduction of the unitcell volume reduces the in-plane magnetic anisotropy, eventually turning it positive which reorients the magnetic moments to the axial direction. We find that substituting Ge with the smaller Si ions also reduces the anisotropy, potentially enhancing the region of stability of the axial magnetization, which is beneficial for magnetic applications. Thus our experimental measurements on samples of Fe3Ge1–xSix confirmmore » these predictions and show that substitution of about 6% of the Ge with Si increases by approximately 35 K the temperature range over which anisotropy is uniaxial.« less

  19. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Adamski, Paweł; Moszyński, Dariusz

    2016-09-01

    Four nanocomposites containing mixed phases of Co3Mo3N and Co2Mo3N doped with chromium have been prepared. A linear fit is found for relation between Co2Mo3N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2-300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping.

  20. Properties of magnetic elements in the quiet Sun using the marker-controlled watershed method

    NASA Astrophysics Data System (ADS)

    Xie, Z. X.; Yu, D. R.; Zhang, J.; Yang, S. H.; Hu, Q. H.

    2009-10-01

    Context: The quiet Sun is an important part of understanding the global magnetic properties of the Sun. A recently launched observation system, named HINODE, provides a lot of high-resolution images for studying the quiet Sun. Obviously, it is time-consuming to analyze these images by hand. It is desirable to develop a technique for recognizing magnetic elements, thus automatically computing magnetic properties and the relationship between magnetic elements and granulation. Aims: We design an automatic method of recognizing magnetic elements based on the features of HINODE magnetograms and of measuring their properties. Then we study the relationship between magnetic elements and granulation. Methods: We used the magnetogram, continuum image, and Dopplergram on April 16, 2007, which were taken with the Solar Optical Telescope instrument aboard HINODE. The field of view is 147.60 arcsec×162.30 arcsec in a quiet solar region, locating at disk center. We introduced the mark-controlled watershed method to detect magnetic elements automatically, because it is a popular image-segmentation method for dealing with overlapping objects. We took the centers that are the local maximum in all directions as the marks for restraining over-segmentation. We computed the properties of the detected magnetic elements and the relation among magnetic field strength, relative continuum intensity, and Doppler velocity at the same locations of magnetic elements. Results: We obtain the following results: (1) 34% of our observation region are covered by magnetic fields; (2) the magnetic flux distribution of all elements reaches a peak at 1.07× 1016 Mx for the whole region; (3) the relative continuum intensity distribution at the locations of magnetic elements reaches a peak at 0.97, which shows that the majority of magnetic elements located at the areas where the relative continuum intensity is less than its average. The relative continuum intensities in the areas with strong flux density

  1. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-01

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model. PMID:27176463

  2. Magnetic and magneto-optical properties of cobalt-platinum alloys with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Weller, D.; Brändle, H.; Gorman, G.; Lin, C.-J.; Notarys, H.

    1992-11-01

    Co1-xPtx alloys with Pt contents in the range 0.45≤x≤0.9 show sizable perpendicular magnetic anisotropy, 100% perpendicular remanence and coercivities in the range 160 kA/m. Thin films of this material are grown by electron beam evaporation onto fused silica or Si, at substrate temperatures between 150 and 350 °C. Spectroscopic investigations of the polar Kerr rotation show a significant enhancement of the Pt related UV peak. A comparison of the static signal levels R×(θk2+ɛk2)1/2 of Co/Pt multilayers and alloys shows an overall 50% enhancement in the case of alloys. Curie temperatures around 200 °C are observed for Co˜22Pt˜78 compositions. These properties, together with the potentially high chemical stability and ease of manufacturing make Co1-xPtx alloys very attractive materials for short wavelength magneto-optic recording.

  3. Magnetic Properties of Ge1-x-yMnxEuyTe Mixed Crystals

    NASA Astrophysics Data System (ADS)

    Dobrowolski, W.; Brodowska, B.; Arciszewska, M.; Kuryliszyn-Kudelska, I.; Domukhovski, V.; Wójcik, M.; Slynko, V. E.; Slynko, E. I.; Dugaev, V. K.

    2007-04-01

    Interesting possibilities of application gives co-occurrence of ferroelectric and ferromagnetic properties. GeMnTe is known to possess such unique properties. Here, we report preliminary AC magnetic susceptibility and magnetization studies of GeMnTe co-doped with another magnetic ion — Europium, aimed at investigating of Eu ions influence on the magnetic properties of the resulting quaternary compound. We found that the Curie temperature of GeMnEuTe substantially (about 3 times) exceeds the values of TC reported in GeMnTe crystals and layers with similar Mn composition, equal ˜40 K. The origin of this substantial Curie temperature enlargement is not fully explained yet. However, the spin-echo resonance data may suggest that the Mn2+ ions system is in a mixed valence state and that an additional channel of interaction between magnetic ions is open.

  4. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles

    SciTech Connect

    Mao, Yuanbing; Parsons, Jason; McCloy, John S.

    2013-03-31

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, scalable molten-salt reaction at 700 °C in air. Their structural and morphological properties were characterized by x-ray diffraction and transmission electron microscopy. Magnetic properties were evaluated using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field. The magnetization curve shows a paramagnetic-ferromagnetic transition at TC ~275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO showed more complex magnetic behavior suggesting a re-entrant spin glass.

  5. The formation of sunspot penumbra. Magnetic field properties

    NASA Astrophysics Data System (ADS)

    Rezaei, R.; Bello González, N.; Schlichenmaier, R.

    2012-01-01

    Aims: We study the magnetic flux emergence and formation of a sunspot penumbra in the active region NOAA 11024. Methods: We simultaneously observed the Stokes parameters of the photospheric iron lines at 1089.6 nm with the TIP and 617.3 nm with the GFPI spectropolarimeters along with broad-band images using G-band and Ca ii K filters at the German VTT. The photospheric magnetic field vector was reconstructed from an inversion of the measured Stokes profiles. Using the AZAM code, we converted the inclination from line-of-sight (LOS) to the local reference frame (LRF). Results: Individual filaments are resolved in maps of magnetic parameters. The formation of the penumbra is intimately related to the inclined magnetic field. No penumbra forms in areas with strong magnetic field strength and small inclination. Within 4.5 h observing time, the LRF magnetic flux of the penumbra increases from 9.7 × 1020 to 18.2 × 1020 Mx, while the magnetic flux of the umbra remains constant at ~3.8 × 1020 Mx. Magnetic flux in the immediate surroundings is incorporated into the spot, and new flux is supplied via small flux patches (SFPs), which on average have a flux of 2-3 × 1018 Mx. The spot's flux increase rate of 4.2 × 1016 Mx s-1 corresponds to the merging of one SFP per minute. We also find that, during the formation of the spot penumbra, a) the maximum magnetic field strength of the umbra does not change; b) the magnetic neutral line keeps the same position relative to the umbra; c) the new flux arrives on the emergence side of the spot while the penumbra forms on the opposite side; d) the average LRF inclination of the light bridges decreases from 50° to 37°; and e) as the penumbra develops, the mean magnetic field strength at the spot border decreases from 1.0 to 0.8 kG. Conclusions: The SFPs associated with elongated granules are the building blocks of structure formation in active regions. During the sunspot formation, their contribution is comparable to the

  6. Preparation and Magnetic Properties of MnBi-based Hard/Soft Composite Magnets

    SciTech Connect

    Ma, Yilong; Liu, Xubo; Gandha, Kinjal; Vuong, Nguyen V.; Yang, Y. B.; Yang, Jinbo; Poudyal, Narayan; Cui, Jun; Liu, J.Ping

    2014-05-07

    Bulk anisotropic composite magnets based on MnBi/Co(Fe) exhibiting the different morphology of the soft magnetic phase were prepared by powder metallurgy processing. First, single-phase MnBi bulk magnets were produced using a maximum energy product [(BH)m] of 6.3 MGOe at room temperature. The nanoscale soft phase with the different morphology was then added to form a composite magnet. It was observed that addition of magnetic soft-phase nanoparticles and nanoflakes causes a dramatic coercivity reduction. However, the addition of soft magnetic phase nanowires enhanced the composite magnetization without sacrificing the coercivity. Nevertheless, a kink was still observed on the demagnetization curves and the coercivity decreased when the soft-phase content was larger than 10 wt. %, which was caused by the agglomeration of the soft phase nanowires that also led to a decreased degree of texture.

  7. Structure and magnetic properties of Y1-xLuxFeO3 (0 ≤ x ≤ 1) ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Xue-ping; Tang, Yan-kun; Sun, Yue; Xu, Ming-xiang

    2012-03-01

    Polycrystalline Lu-doped YFeO3 samples with perovskite structure were synthesized by solid-state reaction. Powder X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis manifest the high quality of the samples. Room temperature 57Fe Mössbauer spectra indicate that only the Fe3+ exists in the samples, which excludes the formation of multiple valence of Fe. The large effective magnetic moments of Fe3+ obtained from the temperature dependence of magnetization data can be explained in terms of the formation of ferromagnetic clusters. Field-dependent magnetization reveals that all the samples show weak ferromagnetic property due to the small canting of the Fe3+ moments. The field-induced spin-reorientation was detected on YFeO3 and was gradually suppressed by Lu3+ doping. Polarization hysteresis loops of Y1-xLuxFeO3 (0 ≤ x ≤ 1) were observed at room temperature. Our results suggest that the multiferroic properties may exist in the Y1-xLuxFeO3 (0 ≤ x ≤ 1) ceramics.

  8. Synthesis and magnetic properties of hard/soft SrFe12O19/Ni0.7Zn0.3Fe2O4 nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Radmanesh, M. A.; Seyyed Ebrahimi, S. A.

    2012-09-01

    Magnetic nanocomposite SrFe12O19/Ni0.7Zn0.3Fe2O4 powders with different weight fractions of the Ni0.7Zn0.3Fe2O4 soft ferrite were synthesized by a combination of the sol-gel self-propagation and glyoxilate precursor methods. The results of magnetic measurements revealed the higher Mr/Ms ratio for the nanocomposites than that for the single phase SrFe12O19 which proves the existence of the intergrain exchange coupling between hard and soft magnetic phases with the exchange spring behavior. The highest Mr/Ms ratio of 0.63 was obtained in the composite consisting of 80 wt% of SrFe12O19 and 20 wt% Ni0.7Zn0.3Fe2O4. The microstructural studies of this sample exhibited the average dimensions of hard and soft phases about 20 nm and 15 nm, respectively which are small enough for strong exchange coupling according to the theoretical studies. The variations of the reduced remanence (Mr/Ms) with increasing the weight fraction of the soft phase could be also explained by the role of the exchange and dipolar interactions in tuning the magnetic properties of the nanocomposites.

  9. Magnetic properties of a Nd7Pd3 single crystal

    NASA Astrophysics Data System (ADS)

    Matsushita, Takuya; Shimomura, Koji; Tsutaoka, Takanori

    2013-08-01

    Magnetization, magnetic susceptibility and electrical resistivity measurements have been carried out for Nd7Pd3 single crystals having the Fe7Th3-type hexagonal structure with the space group P63 mc. Nd7Pd3 possesses an antiferromagnetic (AF) state at temperatures below T N = 39 K and a ferromagnetic or ferrimagnetic one at temperatures below T C = 34 K. Another magnetic transition or a magnetic structure change was found at T t = 15.7 K. In the ferromagnetic state, Nd7Pd3 has a relatively large magnetic anisotropy; the easy magnetization direction is the a-axis, and hard one is the c-axis. Metamagnetic transitions were observed in the AF state along the c-axis and in the c-plane; the critical field H C increases with increasing temperature. The magnetization curve has an inflection point even in the paramagnetic state at 45 K in the c-plane, indicating a field-induced transition in the region having antiferromagnetic short-range order.

  10. Porous Silicon Nanocomposites with Combined Hard and Soft Magnetic Properties.

    PubMed

    Rumpf, Klemens; Granitzer, Petra; Michor, Herwig

    2016-12-01

    Magnetic nanostructures of two ferromagnetic metals have been combined within porous silicon, and the magnetic switching behavior of the resulting porous silicon/metal nanocomposite has been modified by varying the arrangement. The two magnetic materials are Ni and Co, whereas Co is the magnetic harder one. These "hard/soft" magnetic nanocomposites have been achieved by two different routes. On the one hand, double-sided porous silicon has been used whereas one side has been filled with Ni nanostructures and the other one with Co nanostructures. On the other hand, Ni and Co have been deposited within one porous layer alternatingly. The filling of the pores has been carried out by electrodeposition with varying the deposition parameters. In systems which offer two distinct slopes of the hysteresis curves due to the different saturation behavior of the two types of deposited metal, magnetic exchange coupling is not present. For samples which show smooth hysteresis curves exchange, coupling between the Ni and Co nanostructures seems to be present. The aim is to control especially the structure size of the soft and the hard magnetic materials and the distance between them at the nanoscale to optimize exchange coupling resulting in a maximum energy product. PMID:27624341

  11. The effect of magnetic annealing on crystallographic texture and magnetic properties of Fe-2.6% Si

    NASA Astrophysics Data System (ADS)

    Salih, M. Z.; Uhlarz, M.; Pyczak, F.; Brokmeier, H.-G.; Weidenfeller, B.; Al-hamdany, N.; Gan, W. M.; Zhong, Z. Y.; Schell, N.

    2015-05-01

    The effect of magnetic annealing on crystallographic texture, microstructure, defects density and magnetic properties of a Fe-2.6% Si steel has been analyzed. After two stage cold rolling (75% and 60% cold rolled) with intermediate annealing process at (600 °C/1 h) the sample annealed at 600 °C for one hour during which different magnetic field of 0, 7 and 14 T were applied has been investigated. The effect of defects density after cold rolling process on the recrystallization texture and magnetic properties was characterized. Heat treatments under a high external field of 14 T show a drastic improvement of the magnetic properties such as significantly increased permeability. Neutron diffraction measurements were preferred for measurement of the bulk sample texture so that sufficient grain statistics were obtained. Because of its small wavelength (0.05-0.2 Å) Synchrotron diffraction with high photon energy was used to evaluate the defects density by a modified Williamson-Hall plot.

  12. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  13. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  14. Magnetic properties of cherts from the Basque-Cantabrian basin and surrounding regions: archeological implications

    NASA Astrophysics Data System (ADS)

    Larrasoaña, Juan; Beamud, Elisabet; Olivares, Maitane; Murelaga, Xabier; Tarriño, Andoni; Baceta, Juan; Etxebarria, Nestor

    2016-04-01

    We present the first rock magnetic study of archeologically-relevant chert samples from the Basque-Cantabrian basin (BCB) and surrounding regions, which was conducted in order to test the usefulness of non-destructive magnetic properties for assessing chert quality, distinguishing source areas, and identifying heated samples in the archeological record. Our results indicate that the studied BCB cherts are diamagnetic and have very low amounts of magnetic minerals. The only exception is the chert of Artxilondo, which has a mean positive magnetic susceptibility associated with larger concentrations of magnetic minerals. But even in this case, the magnetic susceptibility is within the lower range of other archeologically-relevant cherts elsewhere, which indicates that the studied BCB cherts can be considered as flint. The similar mean values for all magnetic properties, along with their associated large standard deviations, indicates that rock magnetic methods are of limited use for sourcing different types of flint except in some specific contexts involving the Artxilondo flint. With regards to the identification of chert heating in the archeological record, our results indicate only a minor magnetic enhancement of BCB natural flint samples upon heating, which we attribute to the low amount of non-silica impurities. In any case, the diamagnetic behavior of most BCB natural flints, along with the local use only of the Artxilondo type, suggests that any flint tool within the core of the BCB with positive magnetic susceptibility values is likely to have been subjected to heating for improving its knapping properties. Further studies are necessary to better identify the type, origin and grain size of magnetic minerals in BCB natural flints, and to apply non-destructive magnetic properties to flint tools in order to identify the use of heat treatment in the BCB archeological record.

  15. Magnetic and magneto-optic properties of sputtered Co/Ni multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Y. B.; He, P.; Woollam, J. A.; Shen, J. X.; Kirby, R. D.; Sellmyer, D. J.

    1994-05-01

    We have investigated the magnetic and magneto-optic properties of Co/Ni multilayers deposited on Ag and Au buffer layers. The samples with Au buffer layers show perpendicular magnetic anisotropy, but those with Ag buffer layers do not. The structure and degree of crystalline alignment of the buffer layer are evidently crucial to development of perpendicular magnetic anisotropy. We also present the results of polar Kerr rotation measurements as a function of wavelength and layer thickness of the multilayers.

  16. Influence of Nanocrystalline Ferrite Particles on Properties of Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Mueller, Robert; Habisreuther, Tobias; Hiergeist, Robert; Steinmetz, Hanna; Zeisberger, Matthias; Gawalek, Wolfgang

    Nanocrystalline mainly superparamagnetic ferrite particles ≈ 10 nm are used for the preparation of magnetic fluids. Barium hexaferrite BaFe12-2xTixCoxO19 powders with mean particle sizes < 30 nm show the transition to single domain Stoner-Wohlfarth behaviour. Hysteresis parameters, losses and the initial susceptibility versus temperature were obtained by VSM. Ba-ferrite ferrofluids have been prepared using Isopar M or dodecane as carrier liquid. Small Angle Neutron Scattering curves lead to a bimodal size distribution consisting of single magnetic particles and aggregated magnetic particles. Particle size investigations were done by TEM.

  17. Magnetic Anomalies and Rock Magnetic Properties Related to Deep Crustal Rocks of the Athabasca Granulite Terrane, Northern Canada

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; Williams, M. L.

    2010-12-01

    The Athabasca granulite terrane in northernmost Saskatchewan, Canada is an exceptional exposure of lower crustal rocks having experienced several high temperature events (ca 800C) during a prolonged period of deep-crustal residence (ca 1.0 GPa) followed by uplift and exhumation. With little alteration since 1.8 Ga these rocks allow us to study ancient lower crustal lithologies. Aeromagnetic anomalies over this region are distinct and complex, and along with other geophysical measurements, define the Snowbird Tectonic zone, stretching NE-SW across northwestern Canada, separating the Churchill province into the Hearne (mid-crustal rocks, amphibolite facies) from the Rae (lower crust rocks, granulite facies). Distinct magnetic highs and lows appear to relate roughly to specific rock units, and are cut by mapped shear zones. Over fifty samples from this region, collected from the major rock types, mafic granulites, felsic granulites, granites, and dike swarms, as well as from regions of both high and low magnetic anomalies, are being used to investigate magnetic properties. The intention is to investigate what is magnetic in the lower crust and how it produces the anomalies observed from satellite measurements. The samples studied reveal a wide range of magnetic properties with natural remanent magnetization ranging from an isolated high of 38 A/m to lows of 1 mA/m. Susceptibilities also range over several orders of magnitude, from 1 to 1 x10-4 SI. Magnetite is identified in nearly all samples using both low and high temperature measurements, but concentrations are generally very low. Hysteresis properties on 41 samples reveal nearly equal numbers of samples represented by PSD and MD grains, with a few samples (N=6) plotting in or close to the SD region. Low temperature measurements indicate that most samples contain magnetite, showing a marked Verway transition around 120K. Also identified in nearly half of the samples is pyrrhotite, noted by low temperature

  18. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    SciTech Connect

    Soni, Himadri R. Jha, Prafulla K.

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  19. Light induced magnetic properties of spiropyrane tris(oxalato)chromate (III) single crystals

    SciTech Connect

    Morgunov, R.B.; Mushenok, F.B.; Aldoshin, S.M.; Yur'eva, E.A.; Shilov, G.V.; Tanimoto, Y.

    2009-06-15

    The effect of UV light on Weiss temperature and ESR spectra in 1-isopropyl-3, 3, 5', 6'-tetramethylspiro[indolin-2,2'-[2H]pyrano[3,2-b]pyridinium] tris(oxalato)chromate (III) (Sp{sub 3}Cr(C{sub 2}O{sub 4}){sub 3}) has been found. Additional line has been observed in the ESR spectra of irradiated samples in 'strong' magnetic fields of {approx}15 kOe. The analysis of angular dependences of the ESR spectra allowed a contribution of Cr{sup 3+} ions to magnetic properties of Sp{sub 3}Cr(C{sub 2}O{sub 4}){sub 3} to be determined. The zero-field splitting parameters D=0.619 cm{sup -1}, E=0.024 cm{sup -1} were derived from the experimental data. The parameters were typical for Cr{sup 3+} in the chromium oxalate. Weiss temperature changed sign from 25 to -25 K under UV irradiation. The value of Weiss temperature and its changing cannot be explained by exchange interaction, dipole-dipole interaction or the effect of crystal field. The existence of Weiss temperature is explained by the changes in amount and spin of paramagnetic particles. The change is due to thermoactivated redistribution of electrons between chromium ions and spiropyrane molecules. Light-induced transfer of electrons is also explaining the change in sign of Weiss temperature under UV irradiation. - Graphical abstract: Fragment of crystal structure of (Sp{sub 3}Cr(C{sub 2}O{sub 4}){sub 3}). Temperature dependences of reciprocal molar magnetic moment of the sample at T=2 K: (1) before irradiation, and (2) after UV irradiation.

  20. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives.

    PubMed

    Liang, Cai; Gooneratne, Chinthaka P; Wang, Qing Xiao; Liu, Yang; Gianchandani, Yogesh; Kosel, Jurgen

    2014-09-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. PMID:25587418