Sample records for magnetic separation system

  1. HTS High Gradient Magnetic Separation system

    Microsoft Academic Search

    M. A. Daugherty; J. Y. Coulter; W. L. Hults

    1996-01-01

    We report on the assembly, characterization and operation of a high temperature superconducting (HTS) magnetic separator. The magnet is made of 624 m of Silver\\/BSCCO superconducting wire and has overall dimensions of 18 cm OD, 15.5 cm height and 5 cm ID. The HTS current leads are designed to operate with the warm end at 75 K and the cold

  2. HTS high gradient magnetic separation system

    Microsoft Academic Search

    M. A. Daugherty; J. Y. Coulter; W. L. Hults; D. E. Daney; D. D. Hill; D. E. McMurry; M. C. Martinez; L. G. Phillips; J. O. Willis; H. J. Boenig; F. C. Prenger; A. J. Rodenbush; S. Young

    1997-01-01

    We report on the assembly, characterization and operation of a high temperature superconducting (HTS) magnetic separator. The magnet is made of 624 m of Silver\\/BSCCO superconducting wire and has overall dimensions of 18 cm OD, 15.5 cm height and 5 cm ID. The HTS current leads are designed to operate with the warm end at 75 K and the cold

  3. Medical protein separation system using high gradient magnetic separation by superconducting magnet

    NASA Astrophysics Data System (ADS)

    Kamioka, Y.; Agatsuma, K.; Kajikawa, K.; Ueda, H.; Furuse, M.; Fuchino, S.; Iitsuka, T.; Nakamura, S.

    2014-01-01

    A high gradient magnetic separation system for medical protein using affinity magnetic nano-beads has been developed. Medical protein such as monoclonal antibody or immunoglobulin is an important substance as a medicine for cancer etc. However; the separation system of these medical protein has very low separation rate and the cost of product is extremely high. The developed system shows very high separation efficiency and can achieve low cost by large production rate compared to the system now using in this field. The system consists of a 3T superconducting magnet cooled by a cryo-cooler, a filter made of fine magnetic metal wires of about 30?m diameter and a demagnetization circuit and a liquid circulation pump for solvent containing medical protein. Affinity magnetic nano-beads is covered with the medical protein after agitation of solvent containing the protein and nano-beads, then the solvent flows through the system and the beads are trapped in the filters by high gradient magnetic field. The beads are released and flow out of the system by the AC demagnetization of the filters using LC resonance circuits after discharge of the magnet. The test results shows 97.8% of the magnetic nano-beads in pure water were captured and 94.1% of total beads were collected.

  4. HTS High Gradient Magnetic Separation system

    SciTech Connect

    Daugherty, M.A.; Coulter, J.Y.; Hults, W.L. [and others

    1996-09-01

    We report on the assembly, characterization and operation of a high temperature superconducting (HTS) magnetic separator. The magnet is made of 624 m of Silver/BSCCO superconducting wire and has overall dimensions of 18 cm OD, 15.5 cm height and 5 cm ID. The HTS current leads are designed to operate with the warm end at 75 K and the cold end cooled by a two stage Gifford-McMahon cryocooler. The upper stage of the cryocooler cools the thermal shield and two heat pipe thermal intercepts. The lower stage of the cryocooler cools the HTS magnet and the bottom end of the HTS current leads. The HTS magnet was initially characterized in liquid cryogens. We report on the current- voltage (I-V) characteristics of the HTS magnet at temperatures ranging from 15 to 40 K. At 40 K the magnet can generate a central field of 2.0 T at a current of 120 A.

  5. Development of high gradient magnetic separation system under dry condition

    NASA Astrophysics Data System (ADS)

    Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2010-11-01

    The interfusion of impurities such as metallic wear debris has been a problem in the manufacturing process of foods, medicines, and industrial products. Gravity separation system and membrane separation system has been used widely for powder separation, however magnetic separation system is much efficient to separate magnetic particles. Magnetic separation system under wet process is used conventionally, however, it has some demerit such as necessity of drying treatment after separation and difficulty of running the system in the cold region and so on. Thus, magnetic separation under dry process is prospective as alternative method. In this paper, we developed high gradient magnetic separation system (HGMS) under dry process. In dry HGMS system, powder coagulation caused by particle interaction is considerable. Powder coagulation causes a blockage of magnetic filters and results in decrease of separation performance of dry HGMS system. In order to investigate the effect of powder coagulation on separation performance, we conducted experiments with two kinds of powdered materials whose cohesive properties are different.

  6. Development of superconducting high gradient magnetic separation system for highly viscous fluid for practical use

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants processing highly viscous fluid such as foods or industrial products, it is necessary to remove the metallic wear debris originating from pipe in manufacturing line which triggers quality loss. In this study, we developed a high gradient magnetic separation (HGMS) system which consists of superconducting magnet to remove the metallic wear debris. The magnetic separation experiment and the particle trajectory simulation were conducted with polyvinyl alcohol (PVA) as a model material (viscosity coefficient was 10 Pa s, which is 10,000 times higher than that in water). In order to develop a magnetic separation system for practical use, the particle trajectory simulation by using solenoidal superconducting magnet was conducted, and the possibility of the magnetic separation for removing ferromagnetic stainless steel (SUS) particles in highly viscous fluid of 10 Pa s was indicated. Based on the results, the number of filters to obtain required separation efficiency was examined to design the practical separation system.

  7. Development of micro immuno-magnetic cell sorting system with lamination mixer and magnetic separator

    E-print Network

    Kasagi, Nobuhide

    experiments using plastic particles as model cells, and demonstrated that the number of separated particles separator Hiromichi Inokuchi, Yuji Suzuki and Nobuhide Kasagi A novel micro immuno-magnetic cell sorting for labeling target cells with magnetic beads, and a separator with an embedded coil, where continuous cell

  8. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. [Los Alamos National Lab., NM (United States); Tolt, T.L. [Lockheed Environmental Systems and Technologies (United States)

    1993-02-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  9. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. (Los Alamos National Lab., NM (United States)); Tolt, T.L. (Lockheed Environmental Systems and Technologies (United States))

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  10. Conceptual design of integrated microfluidic system for magnetic cell separation, electroporation, and transfection.

    PubMed

    Durdík, Š; Kraf?ík, A; Babincová, M; Babinec, P

    2013-09-01

    For the purposes of a successful ex vivo gene therapy we have proposed and analyzed a new concept of an integrated microfluidic system for combined magnetic cell separation, electroporation, and magnetofection. For the analysis of magnetic and electric field distribution (given by Maxwell equations) as well as dynamics of magnetically labeled cell and transfection complex, we have used finite element method directly interfaced to the Matlab routine solving Newton dynamical equations of motion. Microfluidic chamber has been modeled as a channel with height and length 1 mm and 1 cm, respectively. Bottom electrode consisted of 100 parallel ferromagnetic straps and the upper electrode was plate of diamagnetic copper. From the dynamics of magnetic particle motion we have found that the characteristic time-scales for the motion of cells (mean capture time ? 4 s) and gene complexes (mean capture time ? 3 min), when permanent magnets are used, are in the range suitable for efficient cell separation and gene delivery. The largest electric field intensity (?10 kV/m) was observed at the edges of the microelectrodes, in the close proximity of magnetically separated cells, which is optimal for subsequent cell electroporation. PMID:23260767

  11. A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems

    Microsoft Academic Search

    Jin-Woo Choi; Chong H Ahn; Shekhar Bhansali; H. Thurman Henderson

    2000-01-01

    A new filterless bio-separator separating magnetic microbeads from a carrier fluid has been designed, fabricated, and characterized as a core component of biological cell sampling and detecting systems. To maximize the sampling capability, a planar electromagnet surface with a serpentine coil and semi-encapsulated permalloy has been realized. Using this bio-separator, antibody-coated magnetic beads have been successfully separated from the bio-buffer

  12. An integrated open-cavity system for magnetic bead separation and manipulation.

    PubMed

    Abu-Nimeh, Faisal T; Salem, Fathi M

    2011-01-01

    Superparamagnetic beads are generally used in biomedical assays to manipulate, maneuver, separate, and transport bio-materials. We present a low-cost integrated system designed in bulk 0.5 ?m process to automate the manipulation and separation process of magnetic beads. The system consists of an 8 × 8 coil-array suitable for a single bead manipulation, or collaborative manipulation using pseudoparallel executions. The size of a single coil is 30 ?m × 30 ?m and the driver DC current source supports 8 different levels up to 1.5 mA. The total power consumption of the entire system is 9 mW when running at full power and it occupies an area of 248 ?m × 248 ?m. PMID:22256293

  13. Separation system

    DOEpatents

    Rubin, Leslie S. (Newton, MA)

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  14. A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques.

    PubMed

    Chen, Haitao; Kaminski, Michael D; Liu, Xianqiao; Mertz, Carol J; Xie, Yumei; Torno, Michael D; Rosengart, Axel J

    2007-01-01

    We describe the conceptual approach, theoretical background and preliminary experimental data of a proposed platform technology for specific and rapid decorporation of blood-borne toxins from humans. The technology is designed for future emergent in-field or in-hospital detoxification of large numbers of biohazard-exposed victims; for example, after radiological attacks. The proposed systems is based on nanoscale technology employing biocompatible, superparamagnetic nanospheres, which are functionalized with target-specific antitoxin receptors, and freely circulate within the human blood stream after simple intravenous injection. Sequestration of the blood-borne toxins onto the nanosphere receptors generates circulating nanosphere-toxin complexes within a short time interval; mathematical modeling indicates prevailing of unbound nanosphere receptors over target toxin concentrations at most therapeutic injection dosages. After a toxin-specific time interval nanosphere-toxin complexes are generated within the blood stream and, after simple arterial or venous access, the blood is subsequently circulated via a small catheter through a portable high gradient magnetic separator device. In this device, the magnetic toxin complexes are retained by a high gradient magnetic field and the detoxified blood is then returned back to the blood circulation (extracorporeal circulation). Our preliminary in vitro experiments demonstrate >95% first pass capture efficiency of magnetic spheres within a prototype high gradient magnetic separation device. Further, based on the synthesis of novel hydrophobic magnetite nanophases with high magnetization ( approximately 55 emu/g), the first biodegradable magnetic nanospheres at a size range of approximately 280 nm and functionalized with PEG-maleimide surface groups for specific antibody attachment are described here. In future applications, we envision this technology to be suitable for emergent, in-field usage for acutely biohazard exposed victims as both the injectable toxin-binding magnetic spheres and the separator device are made to be portable, light-weight, zero-power, and self- or helper-employed. Details of the technology are presented and the state-of-knowledge and research is discussed. PMID:17123743

  15. Development of high gradient magnetic separation system for removing the metallic wear debris to be present in highly viscous fluid

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2010-11-01

    In the industrial plants processing highly viscous fluid such as foods or industrial materials, there is an issue of contamination by metallic wear debris originating from pipe of manufacturing line. It is necessary to remove the metallic wear debris in highly viscous fluid, since these debris causes quality loss. In this study, we developed a high gradient magnetic separation system by using superconducting magnet to remove the metallic wear debris. The particle trajectory simulation and the magnetic separation experiment were conducted with polyvinyl alcohol as a model material. As a result, ca. 100% and 92.2% of the separation efficiency was achieved respectively for the highly viscous fluid of 1 Pa s and 6 Pa s in viscosity, with 14 and 30 mesh magnetic filters.

  16. Continuous magnetic separator and process

    DOEpatents

    Oder, Robin R. (Export, PA); Jamison, Russell E. (Lower Burrell, PA)

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  17. Development of magnetic device for cell separation

    NASA Astrophysics Data System (ADS)

    Haik, Yousef; Pai, Vinay; Chen, Ching-Jen

    1999-04-01

    A magnetic device that separates red blood cells from the whole blood on a continuous basis is presented. The device utilizes permanent magnets in alternating spatial arrangements. Red blood cells are coupled with magnetic microspheres to facilitate the magnetic separation. Effectiveness of red blood cells separation and purity of plasma solution was improved using the device over conventional centrifugal methods.

  18. Correspondence between neutron depolarization and higher order magnetic susceptibility to investigate ferromagnetic clusters in phase separated systems.

    PubMed

    Manna, Kaustuv; Samal, D; Bera, A K; Elizabeth, Suja; Yusuf, S M; Kumar, P S Anil

    2014-01-01

    It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal. PMID:24275331

  19. A Continuous Throughput Micro Magnetic Cell Separator

    NASA Astrophysics Data System (ADS)

    Inglis, David; Sturm, James C.; Austin, Robert H.

    2004-03-01

    Micro-fluidic total analysis systems for diagnosis, research and treatment require foolproof sorting and separation techniques. A bulk fluid sample invariably contains unwanted and useless matter that must be disposed of. The chip must first be able to separate the wheat from the chaff before doing any analysis. A micro-fluidic device that continuously separates blood cells from a whole blood sample via immunomagnetic labeling has been built. The device differentiates the flow of labeled cells from all other blood components such as RBC's, plasma, viruses, proteins and other unwanted blood components. A fluid sample passes over an array of micro-fabricated permanent magnets which alter the flow of cells tagged with magnetic beads. Separated target cells, for example CD4 positive WBCs, can then be passed on to subsequent phases on the TAS chip, ultimately allowing fast pheno and geno typing of cells from bulk fluid samples.

  20. Improvement of a High-Gradient Magnetic Separation System for Trapping Immunoglobulin in Serum

    Microsoft Academic Search

    Hiroshi Ueda; Koh Agatsuma; Shuichiro Fuchino; Tomohiro Imura; Mitsuho Furuse; Kazuhiro Kajikawa; Atsushi Ishiyama; Tatsuo Koizumi; Shinichiro Miyake

    2010-01-01

    Recently, affinity magnetic beads have been widely used in immunomagnetic cell sorting (IMCS) technology. Today, we can easily sort and analyse DNA and antibodies (immunoglobulin) using various types of affinity magnetic beads available in the market. The diameters of the affinity magnetic beads used in immunomagnetic cell sorting are above approximately 1 ??m because of the low magnetic fields induced

  1. Method of magnetic separation and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Oder, Robin R. (Inventor)

    1991-01-01

    An apparatus for magnetically separating and collecting particulate matter fractions of a raw sample according to relative magnetic susceptibilities of each fraction so collected is disclosed. The separation apparatus includes a splitter which is used in conjunction with a magnetic separator for achieving the desired fractionation.

  2. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  3. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection.

    PubMed

    Wang, Yixian; Ye, Zunzhong; Ping, Jianfeng; Jing, Shunru; Ying, Yibin

    2014-09-15

    An aptamer-based impedimetric bioassay using the microfluidic system and magnetic separation was developed for the sensitive and rapid detection of protein. The microfluidic impedance device was fabricated through integrating the gold interdigitated array microelectrode into a flow cell made of polydimethylsiloxane (PDMS). Aptamer modified magnetic beads were used to capture and separate the target protein, and concentrated into a suitable volume. Then the complexes were injected into the microfluidic flow cell for impedance measurement. To demonstrate the high performance of this novel detection system, thrombin was employed as the target protein. The results showed that the impedance signals at the frequency of 90 kHz have a good linearity with the concentrations of thrombin in a range from 0.1 nM to 10nM and the detection limit is 0.01 nM. Compared with the reported impedimetric aptasensors for thrombin detection, this method possesses several advantages, such as the increasing sensitivity, improving reproducibility, reducing sample volume and assay time. All these demonstrate the proposed detection system is an alternative way to enable sensitive, rapid and specific detection of protein. PMID:24709326

  4. Magnetic Separator Enhances Treatment Possibilities

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Since the earliest missions in space, NASA specialists have performed experiments in low gravity. Protein crystal growth, cell and tissue cultures, and separation technologies such as electrophoresis and magnetophoresis have been studied on Apollo 14, Apollo 16, STS-107, and many other missions. Electrophoresis and magnetophoresis, respectively, are processes that separate substances based on the electrical charge and magnetic field of a molecule or particle. Electrophoresis has been studied on over a dozen space shuttle flights, leading to developments in electrokinetics, which analyzes the effects of electric fields on mass transport (atoms, molecules, and particles) in fluids. Further studies in microgravity will continue to improve these techniques, which researchers use to extract cells for various medical treatments and research.

  5. A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis.

    PubMed

    Kim, Y C; Han, S; Hong, S

    2011-01-01

    It was recently reported that a UK company has developed a naturally non-toxic magnetoferritin to act as a draw solute for drawing water in forward osmosis process. The gist of this technology is the utilization of the magnetic nanoparticle and high-gradient magnetic separation for draw solute separation and reuse. However, any demonstration on this technology has not been reported yet. In this study, a feasibility test of magnetic separation using magnetic nanoparticle was therefore performed to investigate the possibility of magnetic separation in water treatment such as desalination. Basically, a magnetic separation system consisted of a column packed with a bed of magnetically susceptible wools placed between the poles of electromagnet and Fe3O4 magnetic nanoparticle was used as a model nanoparticle. The effect of nanoparticle size to applied magnetic field in separation column was experimentally investigated and the magnetic field distribution in a magnet gap and the magnetic field gradient around stainless steel wool wire were analyzed through numerical simulation. The amount of magnetic nanoparticle captured in the separator column increased as the magnetic field strength and particle size increased. As a result, if magnetic separation is intended to be used for draw solute separation and reuse, both novel nanoparticle and large-scale high performance magnetic separator must be developed. PMID:22097022

  6. Magnetically Stabilized Fluidized Beds for Solids Separation by Density

    Microsoft Academic Search

    R. E. Rosensweig; W. K. Lee; J. H. Siegell

    1987-01-01

    Systems for the dry separation of solids by density difference are described. They consist of a magnetically stabilized fluidized bed (MSB) as a host medium in which heavy solids sink and light solids float. The magnetic stabilization produces a fluidized medium with the absence of gas bubbling and thus enhances the separations efficiency by preventing remixing of the feed solids

  7. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions

    Microsoft Academic Search

    H. Geissel; P. Armbruster; K. H. Behr; A. Brünle; K. Burkard; M. Chen; H. Folger; B. Franczak; H. Keller; O. Klepper; B. Langenbeck; F. Nickel; E. Pfeng; M. Pfützner; E. Roeckl; K. Rykaczewski; I. Schall; D. Schardt; C. Scheidenberger; K.-H. Schmidt; A. Schröter; T. Schwab; K. Sümmerer; M. Weber; G. Münzenberg; T. Brohm; H.-G. Clerc; M. Fauerbach; J.-J. Gaimard; A. Grewe; E. Hanelt; B. Knödler; M. Steiner; B. Voss; J. Weckenmann; C. Ziegler; A. Magel; H. Wollnik; J. P. Dufour; Y. Fujita; D. J. Vieira; B. Sherrill

    1992-01-01

    The projectile fragment separator FRS designed for research and applied studies with relativistic heavy ions was installed at GSI as a part of the new high-energy SIS\\/ESR accelerator facility. This high-resolution forward spectrometer has been successfully used in first atomic and nuclear physics experiments using neon, argon, krypton, xenon, and gold beams in the energy range from 500 to 2000

  8. Proceedings of the 22nd sensor symposium, Oct. 20-21, 2005, Tokyo, pp 125 -128 Micro Magnetic Separator for Stem Cell Sorting System

    E-print Network

    Kasagi, Nobuhide

    Separator for Stem Cell Sorting System Hiromichi Inokuchi Yuji Suzuki Nobuhide Kasagi Naoki Shikazono sorting (uIMCS) system for ex- tracting stem cells from peripheral blood. In this report, micro magnetic, in which pluripotent stem cells extracted from a patient's body are cultured to differen- tiate

  9. Magnetic separation of micro-spheres from viscous biological fluids.

    SciTech Connect

    Chen, H.; Kaminski, M. D.; Xianqiao, L.; Caviness, P.; Torno, M.; Rosengart, A. J.; Dhar, P.; Chemical Engineering; Univ. of Chicago Pritzker School of Medicine; Illinois Inst. of Tech.

    2007-02-21

    A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow. In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v = 39:61 and v:v = 49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.

  10. Rotary drum separator system

    NASA Technical Reports Server (NTRS)

    Barone, Michael R. (Inventor); Murdoch, Karen (Inventor); Scull, Timothy D. (Inventor); Fort, James H. (Inventor)

    2009-01-01

    A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.

  11. Study of Phase Separation in Na 2O–B 2O 3 Glass System by Nuclear Magnetic Resonance

    Microsoft Academic Search

    Wei-Fang Du; Koji Kuraoka; Tomoko Akai; Tetsuo Yazawa

    2000-01-01

    The 11B nuclear magnetic resonance (NMR) spectra, together with X-ray diffraction (XRD) and scanning electron microscopy (SEM), have been used to investigate the phase separation in 15Na2O–85B2O3 binary glass. Based on the present investigation we suggest that the phase equilibrium in sodium borate glasses is controlled by the rate competition of the nucleation and crystal growth between two immiscible phases

  12. Conduction-cooled Bi 2Sr 2Ca 2Cu 3O x (Bi2223) magnet for magnetic separation

    Microsoft Academic Search

    H. Kumakura; T. Ohara; H. Kitaguchi; K. Togano; H. Wada; H. Mukai; K. Ohmatsu; H. Takei

    2001-01-01

    A prototype of a conduction-cooled Bi2Sr2Ca2Cu3Ox (Bi-2223) magnet system for magnetic separation was constructed. The magnet system has a 200 mm room temperature bore and generates fields higher than 1 T in an 11-liter room temperature space. The magnet axis of the system was designed to be horizontal in order to attain effective magnetic separation. The magnet consisted of 42

  13. A PURPOSE ORIENTED MAGNETIC SEPARATOR: SKIMMER

    SciTech Connect

    Salih Ersayin

    2005-08-09

    A magnetic separator was designed to selectively separate fine-liberated magnetite. The conceptual design was simulated using CFD techniques. A separator tank was fabricated and a magnetic drum was used to capture magnetic particles. The initial tank design was modified to eliminate application oriented problems. The new separator was able to produce a fine product as a concentrate at relatively high feed rates. A plant simulation showed that such a device could lower circulating loads around ball mills by 16%, thereby creating room for a 5-8% increase in throughput at the same energy level. However, it was concluded that further improvements in terms of both size and mineral selectivity are needed to have a marketable product.

  14. Coal preparation using magnetic separation. Volume 1. Magnetic separation study of Magnex processed coal

    SciTech Connect

    Porter, C.R.; Goens, D.N.

    1980-07-01

    The EPRI funded program was instituted to assess the capability of commercially available magnetic separators to process carbonyl treated coals from the Magnex Process. The Magnex Process is a dry beneficiation process which involves: (1) crushing, (2) heating, (3) carbonyl treatment, and (4) magnetic separation. The coal is crushed to nominally minus 4-mesh prior to treatment. The crushed coal is heated to approximately 170/sup 0/C (338/sup 0/F) then subjected to iron carbonyl vapors. Pyrite and ash are removed from the coal with low to medium intensity magnetic separators. Four kilogram samples of Magnex Processed coal were sent to each of five vendors who were interested in the applicability of their equipment for use in the Magnex Process. Three vendors, Eriez, Reading US, and Carpco demonstrated the capability to separate the magnetic material from the carbonyl treated coal using induced-magnetic-roll (IMR) separators. Each vendor evaluated and recommended the magnetic separator they considered most capable of handling the carbonyl treated coal. The IMR Separator was most often recommended and produced the best results by the vendors. A test program was initiated using the Eriez IMR Separator in conjunction with the Magnex Pilot Plant to optimize the IMR parameters of feed rate, current, roll speed, magnetic gap, size magnetic coil current, magnetic coil resistance, divider settings, and size fraction. The resulting preferred values for the parameters are attached on Table 1-1.

  15. Dual Magnetic Separator for TRI$?$P

    E-print Network

    G. P. A. Berg; O. C. Dermois; U. Dammalapati; P. Dendooven M. N. Harakeh; K. Jungmann; C. J. G. Onderwater; A. Rogachevskiy; M. Sohani; E. Traykov; L. Willmann; H. W. Wilschut

    2006-01-16

    The TRI$\\mu$P facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion-evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted. The separator performance was tested with the production and clean separation of $^{21}$Na ions, where a beam purity of 99.5% could be achieved. For fusion-evaporation products, some of the features of its operation as a gas-filled recoil separator were tested.

  16. New separators for battery systems

    Microsoft Academic Search

    J. Lee; V. Dagostino

    1981-01-01

    The reported study takes into consideration separators for miniature cells, such as silver\\/zinc button cells, and separators for aircraft nickel\\/cadmium batteries. It is pointed out that separators for energy systems having an aqueous electrolyte, either acid or basic, can be prepared by selective modification of radiation grafting parameters. A new family of separators, known as the 'SC' series, has been

  17. Thermodynamic Analysis of Separation Systems

    Microsoft Academic Search

    Ya?ar Demirel

    2004-01-01

    Separation systems mainly involve interfacial mass and heat transfer as well as mixing. Distillation is a major separation system by means of heat supplied from a higher temperature level at the reboiler and rejected in the condenser at a lower temperature level. Therefore, it resembles a heat engine producing a separation work with a rather low efficiency. Lost work (energy)

  18. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  19. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.

    PubMed

    Munir, Ahsan; Zhu, Zanzan; Wang, Jianlong; Zhou, Hong Susan

    2014-06-01

    A novel continuous switching/separation scheme of magnetic nanoparticles (MNPs) in a sub-microlitre fluid volume surrounded by neodymium permanent magnet is studied in this work using tangential microfluidic channels. Polydimethylsiloxane tangential microchannels are fabricated using a novel micromoulding technique that can be done without a clean room and at much lower cost and time. Negligible switching of MNPs is seen in the absence of magnetic field, whereas 90% of switching is observed in the presence of magnetic field. The flow rate of MNPs solution had dramatic impact on separation performance. An optimum value of the flow rate is found that resulted in providing effective MNP separation at much faster rate. Separation performance is also investigated for a mixture containing non-magnetic polystyrene particles and MNPs. It is found that MNPs preferentially moved from lower microchannel to upper microchannel resulting in efficient separation. The proof-of-concept experiments performed in this work demonstrates that microfluidic bioseparation can be efficiently achieved using functionalised MNPs, together with tangential microchannels, appropriate magnetic field strength and optimum flow rates. This work verifies that a simple low-cost magnetic switching scheme can be potentially of great utility for the separation and detection of biomolecules in microfluidic lab-on-a-chip systems. PMID:25014081

  20. ICR Heating in Ion Separation Systems

    SciTech Connect

    Timofeev, A.V. [Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 (Russian Federation)

    2005-12-15

    A systematic procedure for analyzing the physical processes that govern ICR heating in systems for ion separation is developed. The procedure is based on an analytic model of an rf antenna generating rf fields within a plasma column in a magnetic field and includes such issues as the calculation of rf fields, examination of the ICR interaction of ions with these fields, and determination of the distribution function of the ion flow at the exit from the ICR heating system. It is shown that, even in ICR heating systems with easily achievable parameter values, ions with appreciably different masses can be efficiently separated by energy.

  1. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    NASA Astrophysics Data System (ADS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-10-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  2. Magnetically-Separable and Highly-Stable Enzyme System Based on Crosslinked Enzyme Aggregates Shipped in Magnetite-Coated Mesoporous Silica

    SciTech Connect

    Lee, Jinwoo; Na, Hyon Bin; Kim, Byoung Chan; Lee, Jin Hyung; Lee, Byoungsoo; Kwak, Ja Hun; Hwang, Yosun; Park, Je-Geun; Gu, Man Bock; Kim, Jaeyun; Joo, Jin; Shin, Chae-Ho; Grate, Jay W.; Hyeon, Taeghwan; Kim, Jungbae

    2009-10-15

    Magnetically-separable and highly-stable enzyme system was developed by adsorption of enzymes in superparamagnetic hierarchically ordered mesocellular mesoporous silica (M-HMMS) and subsequent enzyme crosslinking. Superparamagnetic nanoparticles were homogeneously incorporated into hierarchically-ordered mesocellular mesoporous silica (HMMS) by the decomposition of preformed iron propionate complex. The size of incorporated superparamagnetic 15 nanoparticles was around 5 nm, generating a magnetically separable host with high pore volumes and large pores (M-HMMS). ?-chymotrypsin (CT) was adsorbed into M-HMMS with high loading (~30 wt%) in less than 30 minutes. Glutaraldehyde (GA) treatment of adsorbed CT resulted in nanometer scale crosslinked enzyme aggregates in M-HMMS (CLEA-M). The activity of these CT aggregates in M-HMMS (CLEA-M-CT) was 34 times than that of simply adsorbed CT in M20 HMMS, due to an effective prevention of enzyme leaching during washing via a ship-in-a-bottle approach. CLEA-M-CT maintained the intial activity not only under shaking (250 rpm) for 30 days, but also under recycled uses of 35 times. The same approach was employed for the synthesis of CLEA-M of lipase (CLEA-M-LP), and proven to be effective in improving the loading, activity, and stability of enzyme when compared to those of adsorbed LP in M-HMMS.

  3. Prediction of Separation Performance of Dry High Intensity Magnetic Separator for Processing of Para-Magnetic Minerals

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil Kumar; Singh, Veerendra; Suresh, Nikkam

    2015-03-01

    High intensity dry magnetic separators are gaining popularity for the separation of para-magnetic minerals due to the cost economic factor. Induced roll magnetic separator is found to be an effective dry separator for the separation of fine particles. Separation efficiency of this separator depends on mineral characteristics and the design features of equipment along with the optimization of process variables. Present investigation focuses on the prediction and validation of separation performance of minerals while treating in induced roll magnetic separator. Prediction of the separation is expressed in terms of separation angle at which a particle leaves the rotor surface by using a modified particle flow model derived by Cakir. The validation of the model is carried by capturing the particle trajectory using an image analyzer. It is found that Cakir's mathematical model produces reliable results and a new model is proposed to increase the reliability of separation angle prediction by including the particle shape factor.

  4. Compositional separation in Co-Mn magnetic thin films

    NASA Astrophysics Data System (ADS)

    Rogers, David J.; Maeda, Yasushi; Takei, Koji

    1995-11-01

    The compositional distribution in fcc Co-Mn magnetic thin films was studied in order to examine the possibility of a compositional separation, similar to that observed previously in hcp Co-Cr thin film magnetic recording media, occurring in an fcc alloy system. Spin-echo 59Co NMR study of Co75Mn25 films revealed a change from a homogeneous compositional distribution in a film deposited at a substrate temperature (Ts) of RT to a compositionally separated state in a film deposited at a Ts of 300 °C. Vibrating sample magnetometry revealed an associated three-fold enhancement in saturation magnetization in the films deposited at a Ts of 300 °C.

  5. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    NASA Astrophysics Data System (ADS)

    Safarik, Ivo; Horska, Katerina; Martinez, Lluis M.; Safarikova, Mirka

    2010-12-01

    A simple procedure for large scale isolation of Solanum tuberosum tuber lectin from potato starch industry waste water has been developed. The procedure employed magnetic chitosan microparticles as an affinity adsorbent. Magnetic separation was performed in a flow-through magnetic separation system. The adsorbed lectin was eluted with glycine/HCl buffer, pH 2.2. The specific activity of separated lectin increased approximately 27 times during the isolation process.

  6. Subsea separation systems

    SciTech Connect

    Pagot, P.R.; Werneck, M.; Assayag, S.; Cerqueira, M.B.; Herdeiro, M.A.N. [Petrobras, Rio de Janeiro (Brazil)

    1996-12-31

    Petrobras will install the first Petroboost subsea prototype in the world in early 1997, in the Marimba oil field in Campos Basin, Brazil. This paper presents a general description of Petroboost, the main features of the production system in Marimba, the current situation of the project, and future steps Petrobras intends to carry out to declare this technology available and ready to be used in deepwater fields in 1997. The success of the prototype in Marimba and the satisfactory completion of the test programs of some critical items are enough to declare the Petroboost technology available for deepwater.

  7. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S. (Ames, IA); Xue, Yongjun (Norwich, NY)

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  8. Magnetic nano-sorbents for fast separation of radioactive waste

    SciTech Connect

    Zhang, Huijin [Environmental Science Program, University of Idaho, Moscow, ID 83844 (United States); Kaur, Maninder [Department of Physics, University of Idaho, Moscow, ID 83844 (United States); Qiang, You [Environmental Science Program, University of Idaho, Moscow, ID 83844 (United States); Department of Physics, University of Idaho, Moscow, ID 83844 (United States)

    2013-07-01

    In order to find a cost effective and environmentally benign technology to treat the liquid radioactive waste into a safe and stable form for resource recycling or ultimate disposal, this study investigates the separation of radioactive elements from aqueous systems using magnetic nano-sorbents. Our current study focuses on novel magnetic nano-sorbents by attaching DTPA molecules onto the surface of double coated magnetic nanoparticles (dMNPs), and performed preliminary sorption tests using heavy metal ions as surrogates for radionuclides. The results showed that the sorption of cadmium (Cd) and lead (Pb) onto the dMNP-DTPA conjugates was fast, the equilibrium was reached in 30 min. The calculated sorption capacities were 8.06 mg/g for Cd and 12.09 mg/g for Pb. After sorption, the complex of heavy elements captured by nano-sorbents can be easily manipulated and separated from solution in less than 1 min by applying a small external magnetic field. In addition, the sorption results demonstrate that dMNP-DTPA conjugates have a very strong chelating power in highly diluted Cd and Pb solutions (1-10 ?g/L). Therefore, as a simple, fast, and compact process, this separation method has a great potential in the treatment of high level waste with low concentration of transuranic elements compared to tradition nuclear waste treatment. (authors)

  9. MSWI boiler fly ashes: magnetic separation for material recovery.

    PubMed

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. PMID:21306886

  10. Temperature and magnetic dual responsive microparticles for DNA separation

    Microsoft Academic Search

    Abdelhamid Elaissari

    2011-01-01

    The use of solid support in DNA separation from biological mixtures for diagnostics offers great potential for developing versatile separating tools. Although different polymer materials have been developed and studied for DNA separation, the application of such non-magnetic particles for DNA separation has remained limited. In this work, we describe the adsorption and desorption behavior of DNA on the temperature

  11. High gradient magnetic separation applied to environmental remediation

    SciTech Connect

    Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Avens, L.R.; Worl, L.A.; Schake, A.; de Aguero, K.J.; Padilla, D.D. [Los Alamos National Lab., NM (United States); Tolt, T.L. [Lockheed Environmental Systems and Technology Co., Inc., Las Vegas, NV (United States)

    1993-08-01

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design.

  12. Electro-expulsive separation system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (inventor); Lee, Robert D. (inventor)

    1987-01-01

    An electro-expulsive system has one or more overlapped conductors, each comprising a flexible ribbon conductor, which is folded back on itself. The conductors are embedded in an elastomeric material. Large current pulses are fed to the conductors from power storage units. As a result of the antiparallel currents, the opposed segments of a conductor are forcefully separated and the elastomeric material is distended. Voids in the elastomer aid the separation of the conductor segments. The distention is almost instantaneous when a current pulse reaches the conductor and the distention tends to remove any solid body on the surface of the elastomeric material.

  13. Magnetic separator having a multilayer matrix, method and apparatus

    DOEpatents

    Kelland, David R. (Lexington, MA)

    1980-01-01

    A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.

  14. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation

    NASA Astrophysics Data System (ADS)

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Zhang, Yulong; Egeland, Eirik B.; Gu, Dan D.; Calabrese, Paolo; Kapiris, Matteo J.; Karlsen, Frank; Minh, Nhut T.; Wang, K.; Jakobsen, Henrik

    2010-11-01

    A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays has been developed and demonstrated, which can merely employ one independent lab-on-chip to realize cell isolation. The simulation, design, microfabrication and test for the new electromagnetic micro separator were executed. The simulation results of the electromagnetic field in the separator show that special soft magnetic micro-pillar arrays can amplify and redistribute the electromagnetic field generated by the micro-coils. The separator can be equipped with a strong magnetic field to isolate the target cells with a considerably low input current. The micro separator was fabricated by micro-processing technology. An electroplating bath was hired to deposit NiCo/NiFe to fabricate the micro-pillar arrays. An experimental system was set up to verify the function of the micro separator by isolating the lymphocytes, in which the human whole blood mixed with Dynabeads® FlowComp Flexi and monoclonal antibody MHCD2704 was used as the sample. The results show that the electromagnetic micro separator with an extremely low input current can recognize and capture the target lymphocytes with a high efficiency, the separation ratio reaching more than 90% at a lower flow rate. For the electromagnetic micro separator, there is no external magnetizing field required, and there is no extra cooling system because there is less Joule heat generated due to the lower current. The magnetic separator is totally reusable, and it can be used to separate cells or proteins with common antigens.

  15. Microstripes for transport and separation of magnetic particles

    PubMed Central

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled selective manipulation and separation of magnetically labelled species. PMID:22655020

  16. Plasma separation process: Magnet move to Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1989-07-01

    This is the final report on the series of operations which culminated with the delivery of the Plasma Separation Process prototype magnet system (PMS) to Building K1432 at Oak Ridge National Laboratory (ORNL). This procedure included real time monitoring of the cold mass support strut strain gauges and an in-cab rider to monitor the instrumentation and direct the driver. The primary technical consideration for these precautions was the possibility of low frequency resonant vibration of the cold mass when excited by symmetrical rough road conditions at specific speeds causing excess stress levels in the support struts and consequent strut failure. A secondary consideration was the possibility of high acceleration loads due to sudden stops, severe road conditions, of impacts. The procedure for moving and transportation to ORNL included requirements for real time continuous monitoring of the eight strut stain gauges and three external accelerometers. Because the strain gauges had not been used since the original magnet cooldown, it was planned to verify their integrity during magnet warmup. The measurements made from the strut strain gauges resulted in stress values that were physically impossible. It was concluded that further evaluation was necessary to verify the usefulness of these gauges and whether they might be faulty. This was accomplished during the removal of the magnet from the building. 6 figs., 1 tab.

  17. Monte Carlo study of phase separation in magnetic insulators

    E-print Network

    Murawski, Szymon; Paw?owski, Grzegorz; Robaszkiewicz, Stanis?aw

    2015-01-01

    In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-neighbors intersite Ising-like magnetic interactions $J$ and on-site Coulomb interactions $U$. The system has been analyzed by means of Monte Carlo simulations (in the grand canonical ensemble) on two dimensional square lattice (with $N=L\\times L =400$ sites) and the results for $U/(4J)=2$ as a function of chemical potential and electron concentration have been obtained. Depending on the values of interaction parameters the system exhibits homogeneous (anti-)ferromagnetic (AF) or non-ordered (NO) phase as well as phase separation PS:AF/NO state. Transitions between homogeneous phases (i.e. AF-NO transitions) can be of first or second order and the tricritical point is also present on the phase diagrams. The electron compressibility $K$ is an indicator of the phase separation and that quantity is of particular interest of this paper.

  18. Correlations, spin-charge separation, and magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Manchanda, Priyanka

    2015-03-01

    Much of the physics of condensed matter reflects electron-electron correlations. On an independent-electron level, correlations are described by a single Slater determinant with broken spin symmetry. This approach includes Hund's rule correlations as well the LSDA and LSDA+U approximations to density-functional theory (DFT). However, from Kondo and heavy-fermion systems it is known that the independent-electron approach fails to describe spin-charge separation in strongly correlated systems, necessitating the use of two or more Slater determinants. Using first-principle and model calculations, we show that spin-charge separation strongly affects the leading rare-earth anisotropy contribution in top-end permanent magnet materials such as Nd2Fe14B and SmCo5. Explicit correlation results are obtained for two limiting cases. First, we derive the density functional for tripositive rare-earth ions in a Bethe-type crystal field. The potential looks very different from the LSDA(+U) potentials, including gradient corrections. Second, we use a simple model to show that Kondo-type spin-charge separation yield a rare-earth anisotropy contribution absent in the independent-electron approach. This research is supported by DOE (DE-FG02-04ER46152).

  19. Magnetically induced phase separation and magnetic properties of Co-Mo hexagonal-close-packed structure thin films

    NASA Astrophysics Data System (ADS)

    Oikawa, K.; Qin, G. W.; Sato, M.; Kitakami, O.; Shimada, Y.; Sato, J.; Fukamichi, K.; Ishida, K.

    2003-08-01

    Magnetically induced phase separation along the Curie temperature in the hexagonal-close-packed phase of a Co-Mo binary system has been predicted by thermodynamic calculations. Furthermore, the phase separation and magnetic properties of Co-Mo sputtered thin films have been investigated. Nanoscale compositional fluctuation caused by the magnetically induced phase separation has been confirmed in the films deposited on a heated substrate in the same manner as Co-Cr-based alloys. The magnetic anisotropy constant of the Co-Mo films is larger than that of Co-Cr films. From these results, it is concluded that the Co-Mo system is promising for use as a base alloy system for high density recording media.

  20. Separation of Magnetic Field Lines in Two-Component Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-10-01

    The problem of the separation of random magnetic field lines in collisionless astrophysical plasmas is closely related to the problem of the magnetic field line random walk and is highly relevant to the transport of charged particles in turbulent plasmas. In order to generalize treatments based on quasi-linear theory, here we examine the separation of nearby magnetic field lines by employing a nonperturbative technique based on the Corrsin independence hypothesis. Specifically, we consider the case of two-component turbulence in which the magnetic field fluctuations are a mixture of one-dimensional (slab) and two-dimensional ingredients, as a concrete example of anisotropic turbulence that provides a useful description of turbulence in the solar wind. We find that random field trajectories can separate in general through three regimes of the behavior of the running diffusion coefficient: slow diffusive separation, an intermediate regime of superdiffusion, and fast diffusive separation at large distances. These features are associated with the gradual, exponential divergence of field lines within islands of two-dimensional turbulence, followed by diffusive separation at long distances. The types of behavior are determined not by the Kubo number but rather a related ratio that takes the turbulence anisotropy into account. These results are confirmed by computer simulations. We discuss implications for space observations of energetic charged particles, including ``dropouts'' of solar energetic particles.

  1. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Garn, Troy G. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Macaluso, Lawrence L. (Carson City, NV)

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  2. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

    PubMed Central

    Ijiri, Y.; Poudel, C.; Williams, P.S.; Moore, L.R.; Orita, T.; Zborowski, M.

    2014-01-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles. PMID:25382864

  3. Modeling high gradient magnetic separation from biological fluids.

    SciTech Connect

    Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine

    2006-01-01

    A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.

  4. Direct observation of magnetically induced phase separation in Co-W sputtered thin films

    NASA Astrophysics Data System (ADS)

    Oikawa, K.; Qin, G. W.; Sato, M.; Okamoto, S.; Kitakami, O.; Shimada, Y.; Fukamichi, K.; Ishida, K.; Koyama, T.

    2004-09-01

    Phase separation of Co-W sputtered thin films having a large magnetocrystalline anisotropy energy have been investigated. A nanoscale compositional fluctuation caused by magnetically induced phase separation was directly confirmed in the films deposited on a heated substrate in analogy with Co-Cr-based alloys. The difference between the phase separation features in Co-W and Co-Cr is attributed to the difference in their elastic energy. It is expected that the phase separation is enhanced by selecting optimum sputtering conditions. The Co-W system, therefore, is considered to be a promising candidate as a base alloy system for high-density recording media.

  5. Direct observation of magnetically induced phase separation in Co-W sputtered thin films

    SciTech Connect

    Oikawa, K.; Qin, G.W.; Sato, M.; Okamoto, S.; Kitakami, O.; Shimada, Y.; Fukamichi, K.; Ishida, K.; Koyama, T. [National Institute of Advanced Industrial Science and Technology, Sendai 983-8551 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); National Institute for Materials Science, Ibaraki 305-0047 (Japan)

    2004-09-27

    Phase separation of Co-W sputtered thin films having a large magnetocrystalline anisotropy energy have been investigated. A nanoscale compositional fluctuation caused by magnetically induced phase separation was directly confirmed in the films deposited on a heated substrate in analogy with Co-Cr-based alloys. The difference between the phase separation features in Co-W and Co-Cr is attributed to the difference in their elastic energy. It is expected that the phase separation is enhanced by selecting optimum sputtering conditions. The Co-W system, therefore, is considered to be a promising candidate as a base alloy system for high-density recording media.

  6. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R. (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Stewart, Walter F. (Las Cruces, NM); Tolt, Thomas L. (Los Alamos, NM); Worl, Laura A. (Los Alamos, NM)

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  7. Magnetic particle separation process for hazardous and radionuclide elements

    SciTech Connect

    Nunez, L. [Argonne National Lab., IL (United States); Pourfarzaneh, M. [Cortex-Biochem, Inc., San Leandro, CA (United States)

    1997-12-31

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has stimulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles that have selective coating is a new approach to the problems of metal removal and recycling [of industrial (e.g., mining, printing circuit board, plating)] corrosive waste streams. This concept of coated magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed.

  8. Quality testing of an innovative cascade separation system for multiple cell separation

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila

    2012-03-01

    Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.

  9. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    NASA Astrophysics Data System (ADS)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  10. Metals separation using solvent extractants on magnetic microparticles

    SciTech Connect

    Nunez, L. [Argonne National Lab., IL (United States); Pourfarzaneh, M. [CORTEX-BIOCHEM, Inc., San Leandro, CA (United States)

    1997-12-31

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed.

  11. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    SciTech Connect

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  12. Particle acceleration at 3D reconnecting magnetic separators

    NASA Astrophysics Data System (ADS)

    Threlfall, James; Neukirch, Thomas; Parnell, Clare; Stevenson, Julie

    2015-04-01

    We present results of test particle orbit calculations in three different environments which model separator reconnection in three dimensions. The test particle (electron and proton) orbits are calculated using the relativistic guiding centre approximation. We investigate test particle orbits in a time-dependent (analytical) electro-magnetic field configuration [detailed in Threlfall et al. (A&A, in press); arXiv:1410.6465]. These results are also compared with orbits based upon large-scale 3D MHD simulations of both a single reconnecting magnetic separator and an observationally driven 3D model of a solar active region which contains several topological features of interest, including separators. We discuss how the test-particle orbits and the energy gain depend on the initial conditions, and how observations (for example, of solar flares) may be used to constrain model parameters.

  13. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  14. Magnetic reconnection in 3D magnetosphere models: magnetic separators and open flux production

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P.

    2014-12-01

    There are multiple competing definitions of magnetic reconnection in 3D (e.g., Hesse and Schindler [1988], Lau and Finn [1990], and Boozer [2002]). In this work we focus on separator reconnection. A magnetic separator can be understood as the 3D analogue of a 2D x line with a guide field, and is defined by the line corresponding to the intersection of the separatrix surfaces associated with the magnetic nulls. A separator in the magnetosphere represents the intersection of four distinct magnetic topologies: solar wind, closed, open connected to the northern hemisphere, and open connected to the southern hemisphere. The integral of the parallel electric field along the separator defines the rate of open flux production, and is one measure of the reconnection rate. We present three methods for locating magnetic separators and apply them to 3D resistive MHD simulations of the Earth's magnetosphere using the BATS-R-US code. The techniques for finding separators and determining the reconnection rate are insensitive to IMF clock angle and can in principle be applied to any magnetospheric model. The present work examines cases of high and low resistivity, for two clock angles. We also examine the separator during Flux Transfer Events (FTEs) and Kelvin-Helmholtz instability.

  15. PHENIX magnet system

    NASA Astrophysics Data System (ADS)

    Aronson, S. H.; Bowers, J.; Chiba, J.; Danby, G.; Drees, A.; Fackler, O.; Franz, A.; Freidberg, J. P.; Guryn, W.; Harvey, A.; Ichihara, T.; Jackson, J.; Jayakumar, R.; Kahn, S.; Kashikhin, V.; Kroon, P. J.; Libkind, M.; Marx, M. D.; Meng, W. Z.; Messer, F.; Migluolio, S.; Ojha, I. D.; Prigl, R.; Riabov, G.; Ruggiero, R.; Saito, N.; Schleuter, R.; Severgin, Y.; Shajii, A.; Shangin, V.; Shea, T. K.; Sondheim, W. E.; Tanaka, K. H.; Thern, R.; Thomas, J. H.; Vasiliev, V.; Velissaris, C.; Yamamoto, R.; PHEN. I. X. Collaboration

    2003-03-01

    The PHENIX magnet system is composed of three spectrometer magnets with warm iron yokes and water-cooled copper coils. The Central Magnet (CM) is energized by two pairs of concentric coils and provides a field around the interaction vertex that is parallel to the beam. This allows momentum analysis of charged particles in the polar angle range from 70° to 110°. The north and south Muon Magnets (MMN and MMS) use solenoid coils to produce a radial magnetic field for muon analysis. They each cover a pseudorapidity interval of 1.1-2.3 and full azimuth. The coils are wound on cylindrical surfaces at the end of large tapered pistons. Each of the three magnets provides a field integral of about 0.8 T-m. The physical and operating parameters of the magnets and their coils are given along with a description of the magnetic fields generated. The geometric, thermal and magnetic analysis leading to the coil design is discussed. The magnetic volumes of the PHENIX magnets are very large and complex, so a new technique was developed to map the fields based on surface measurements of a single field component using single axis Hall probes mounted on a rotating frame. A discussion of the performance of the CM during the first year of PHENIX running is given.

  16. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    SciTech Connect

    Onal, G.; Renda, D.; Mustafaev, I.; Dogan, Z.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfur removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.

  17. Space Shuttle solid rocket booster separation system

    Microsoft Academic Search

    K. C. Elchert

    1982-01-01

    Separation of the Shuttle's solid rocket boosters (SRB) is accomplished by a method somewhat similar to that used for the Titan III. However, due primarily to the presence of the orbiter, the design of the SRB separation system has had to satisfy unique requirements. The supersonic staging of parallel boosters to clear a thrusting, winged, and manned vehicle is a

  18. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    SciTech Connect

    Buchholz, B.A.; Nunez, L.; Vandegrift, G.F.

    1995-05-01

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 {mu}m) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity {sup 60}Co {gamma}-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO{sub 3} solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles.

  19. Magnet/Syringe Separation Issues V.B. Graves

    E-print Network

    McDonald, Kirk

    of rigid pipe makes it impractical to ship and transport assembled system (syri to the syringe pump procurement. Fig. 1. Existing Design #12;2 Fig 2. Separated System Conceptual Layout to be tilted and may sit directly on the floor (or a mobile baseplate). · The syringe system no longer has

  20. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  1. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  2. Isotope separation system experiments at the TSTA

    SciTech Connect

    Inoue, M.; Konishi, S.; Yamanishi, T.; Ohira, S.; Watanabe, T.; Okuno, K.; Naruse, Y. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tritium Engineering Lab.); Sherman, R.H.; Barnes, J.W.; Bartlit, J.R.; Anderson, J.L. (Los Alamos National Lab., NM (United States). Materials Science and Technology Div.)

    1992-03-01

    The recent results of the Isotope Separation System (ISS) operations at the Tritium Systems Test Assembly (TSTA) with 100 g of tritium indicate that the system generally satisfies design goals, while system stability problems remain to be solved. In this paper, the authors configure the ISS system for the three column mode. which is one of the promising cascade configurations in a fusion fuel cycle, to eliminate such instability and operated it for six days. Fluctuations in flows and liquid levels were improved. Column separation characteristics obtained were satisfactory and agreed with the numerical analysis. The amount of discharged tritium was an acceptable effluent level. This means that the existing ISS system can be used as a three column system and possibly be applied to numerous fuel concepts. Presently, a new laser Raman spectroscopic gas analyzer has been installed at the ISS. This on-line system enables studies of the ISS dynamic behavior for further stability and performance data.

  3. Design consideration for magnetically suspended flywheel systems

    NASA Technical Reports Server (NTRS)

    Anand, D.; Kirk, J. A.; Frommer, D. A.

    1985-01-01

    Consideration is given to the design, fabrication, and testing of a magnetically suspended flywheel system for energy storage applications in space. The device is the prototype of a system combining passive suspension of the flywheel plate by samarium cobalt magnets and active control in the radial direction using eight separate magnetic coils. The bearing assembly was machined from a nickel-iron alloy, and the machine parts are all hydrogen annealed. Slots in the magnetic plate allow four independent quadrants for control. The motor/generator component of the system is a brushless dc-permanent magnetic/ironless engine using electronic communication. The system has been tested at over 2500 rpm with satisfactory results. The system characteristics of the flywheel for application in low earth orbit (LEO) are given in a table.

  4. MARS (Magnetic Airborne Recording System)

    Microsoft Academic Search

    P. Reimel

    1972-01-01

    The MARS (Magnetic Airborne Recording System) is a programmable, multisensor digital data collection system designed for collecting total field magnetic measurements together with associated flight parameters. The system provides the means of obtaining commercial computer formatted data of various magnetic and geomagnetic sources. The data could be used in advancing the Navy's MAD (Magnetic Airborne Detection) technology for improved ASW

  5. On-chip Magnetic Separation and Cell Encapsulation in Droplets†

    PubMed Central

    Chen, Aaron; Byvank, Tom; Chang, Woo-Jin; Bharde, Atul; Vieira, Greg; Miller, Brandon; Chalmers, Jeffrey J.; Bashir, Rashid; Sooryakumar, Ratnasingham

    2014-01-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment would prevent cross-contamination, provide high recovery yield, and enable study of biological traits at a single cell level. These advantages of on-chip biological experiments is a significant improvement for myriad of cell analyses over conventional methods, which require bulk samples providing only averaged information on cell metabolism. We report on a device that integrates mobile magnetic trap array with microfluidic technology to provide, combined functionality of separation of immunomagnetically labeled cells or magnetic beads and their encapsulation with reagents into pico-liter droplets. This scheme of simultaneous reagent delivery and compartmentalization of the cells immediately after sorting, all performed seamlessly within the same chip, offers unique advantages such as the ability to capture cell traits as originated from its native environment, reduced chance of contamination, minimal use and freshness of the reagent solution that reacts only with separated objects, and tunable encapsulation characteristics independent of the input flow. In addition to the demonstrated preliminary cell viability assay, the device can potentially be integrated with other up- or downstream on-chip modules to become a powerful single-cell analysis tool. PMID:23370785

  6. TREATMENT OF COMBINED SEWER OVERFLOWS BY HIGH GRADIENT MAGNETIC SEPARATION. ON-SITE TESTING WITH MOBILE PILOT PLANT TRAILER

    EPA Science Inventory

    Seeded water treatment using a SALA high gradient magnetic separator pilot plant system was conducted on combined sewer overflows and raw sewage at SALA Magnetics in Cambridge, MA and at on-site locations in the Boston area. Special emphasis was placed on specific design and oper...

  7. Phase separation dynamics in driven diffusive systems

    Microsoft Academic Search

    C. Yeung; T. Rogers; A. Hernandez-Machado; David Jasnow

    1992-01-01

    We study phase separation dynamics in a driven diffusive system. Our simulations are based on the Cahn-Hilliard equation with an additional flux term due to an external field. We study the dynamical scaling parallel and perpendicular to the field. A crossover is observed from isotropic domains at early times to extremely anisotropic domains at later times. We find that the

  8. Demonstration of magnetically activated and guided isotope separation

    NASA Astrophysics Data System (ADS)

    Mazur, Thomas R.; Klappauf, Bruce; Raizen, Mark G.

    2014-08-01

    Enriched isotopes are widely used in medicine, basic science and energy production, and the need will only grow in the future. The main method for enriching stable isotopes today, the calutron, dates back over eighty years and has an uncertain future, creating an urgent need, especially in nuclear medicine. We report here the experimental realization of a general and efficient method for isotope separation that presents a viable alternative to the calutron. Combining optical pumping and a unique magnet geometry, we observe substantial depletion of Li-6 throughput in a lithium atomic beam produced by an evaporation source over a range of flux. These results demonstrate the viability of our method to yield large degrees of enrichment in a manner that is amenable to industrial scale-up and the production of commercially relevant quantities.

  9. Magnetic separation - Advanced nanotechnology for future nuclear fuel recycle

    SciTech Connect

    Kaur, M.; Zhang, H.; Qiang, Y. [Department of Physics and Environmental Science, University of Idaho, Moscow, ID 83844 (United States); Martin, L.; Todd, T. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-07-01

    The unique properties of magnetic nanoparticles (MNPs), such as their extremely small size and high surface area to volume ratio, provide better kinetics for the adsorption of metal ions from aqueous solutions. In this work, we demonstrated the separation of minor actinides using complex conjugates of MNPs with diethylenetriamine-pentaacetic acid (DTPA) chelator. The sorption results show the strong affinity of DTPA towards Am (III) and Pu (IV) by extracting 97% and 80% of actinides, respectively. It is shown that the extraction process is highly dependent on the pH of the solution. If these long-term heat generating actinides can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. (authors)

  10. IMPROVEMENT OF IMMUNOMAGNETIC SEPARATION FOR ESCHERICHIA COLI O157:H7 DETECTION BY THE PICKPEN MAGNETIC PARTICLE SEPARATION DEVICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional immunomagnetic separation (IMS) procedures, which use an external magnetic source to capture magnetic particles against the side of a test tube, are labor intensive and can have poor sensitivity for the target organism due to high background microflora that is not effectively washed awa...

  11. Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids.

    PubMed

    Chen, Haitao; Bockenfeld, Danny; Rempfer, Dietmar; Kaminski, Michael D; Rosengart, Axel J

    2007-09-01

    A portable separator has been developed to quantitatively separate blood-borne magnetic spheres in potentially high-flow regimes for the human detoxification purpose. In the separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field that is generated by two permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nano/micro-spheres from the blood flow. In this study, a 3D numerical model was created and the effect of tubing-wire configurations on the capture efficiency of the system was analyzed using COMSOL Multiphysics 3.3(R). The results showed that the configuration characterized by bi-directionally alternating wires and tubes was the best design with respect to the four starting configurations. Preliminary in vitro experiments verified the numerical predictions. The results helped us to optimize a prototype portable magnetic separator that is suitable for rapid sequestration of magnetic nano/micro-spheres from the human blood stream while accommodating necessary clinical boundary conditions. PMID:17762081

  12. Titania deposited on soft magnetic activated carbon as a magnetically separable photocatalyst with enhanced activity

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Zhou, Shaoqi

    2010-08-01

    Magnetically separable composite photocatalysts, TiO 2 deposited on soft magnetic ferrite activated carbon (TFAC), were prepared by sol-gel and dip-coating technique. The prepared composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectra (FTIR), optical absorption spectroscopy, vibrating sample magnetometer (VSM) and nitrogen adsorption. These photocatalysts exhibited enhanced photocatalytic activity compared to Degussa P25 for the degradation of methyl orange (MO) in aqueous solution. The kinetics of MO degradation was well fitted to the Langmuir-Hinshelwood model. The samples showed good magnetic response and could be completely recovered by an external magnet. Furthermore, the photocatalysts could maintain high photocatalytic activity after five cycles, and the degradation rate of MO was still close to 90%.

  13. Magnetic separation studies on ferruginous chromite fine to enhance Cr:Fe ratio

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil Kumar; Banerjee, P. K.; Suresh, Nikkam

    2015-03-01

    The Cr:Fe ratio (chromium-to-iron mass ratio) of chromite affects the production of chrome-based ferroalloys. Although the literature contains numerous reports related to the magnetic separation of different minerals, limited work concerning the application of magnetic separation to fine chromite from the Sukinda region of India to enhance its Cr:Fe ratio has been reported. In the present investigation, magnetic separation and mineralogical characterization studies of chromite fines were conducted to enhance the Cr:Fe ratio. Characterization studies included particle size and chemical analyses, X-ray diffraction analysis, automated mineral analysis, sink-and-float studies, and magnetic susceptibility measurements, whereas magnetic separation was investigated using a rare earth drum magnetic separator, a rare earth roll magnetic separator, an induced roll magnetic separator, and a wet high-intensity magnetic separator. The fine chromite was observed to be upgraded to a Cr:Fe ratio of 2.2 with a yield of 55.7% through the use of an induced roll magnetic separator and a feed material with a Cr:Fe ratio of 1.6.

  14. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M.

    2011-11-01

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  15. Selective separation of fluorescent-magnetic nanoparticles with different magnetite-doping levels.

    PubMed

    Park, Sang-Eun; Park, Sang-Joon; Lee, Sang-Wha; Lee, Joong-Kee

    2011-05-01

    Fluorescent-labeled magnetic nanoparticles were explored as a biomedical agent for selective magnetic separation. By adjusting the loading volume of citrate-stabilized magnetites during a sol-gel reaction with silicon alkoxide, magnetites were simultaneously embedded into both the surface and inside the silica matrix, consequently leading to magnetic nanoparticles with different doping levels of magnetites. For endowing them with multifunctional tools in biomedical fields, magnetic nanoparticles were further encapsulated with silica thin layer labeled with fluorescent organic dyes (such as Alexa Fluor 488 and 594). Fluorescent-magnetic nanoparticles with different magnetism successfully displayed the differential separation of fluorescence spectra under an external magnetic field. PMID:21780495

  16. SUPERCONDUCTING OPEN-GRADIENT MAGNETIC SEPARATION FOR THE PRETREATMENT OF RADIOACTIVE OR MIXED WASTE VITRIFICATION FEEDS

    EPA Science Inventory

    Scientists need to gain a better understanding of the magnetic separation processes that can be used to separate deleterious constituents (crystalline, amorphous, and colloidal) in vitrification feed streams for borosilicate glass production without adding chemicals or generating...

  17. Haloing in bimodal magnetic colloids: the role of field-induced phase separation.

    PubMed

    Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Suloeva, L; Zubarev, A

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters--the initial nanoparticle concentration (?(0)) and the magnetic-to-thermal energy ratio (?)--and the three accumulation regimes are mapped onto a ?-?(0) phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems. PMID:23005414

  18. Present Status of KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Jeong, S. C.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Miyatake, H.; Oyaizu, M.; Kim, Y. H.; Mukai, M.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2014-03-01

    KISS (KEK Isotope Separation System) has been constructed at Nishina Re-search Center (NRC) of RIKEN to study the decay properties of heavy neutron-rich iso-topes with mass number around A˜200 along the neutron magic number of N = 126 for the astrophysical interest. The isotopes of interest will be produced by multi-nucleon transfer reactions in neutron-rich heavy ion collisions (e.g. 136Xe projectile on 198Pt target). KISS consists of a gas-cell system for thermalizing (stopping and neutralizing) and fast-transporting reaction products to the gas cell exit hole, a laser system for the res-onant ionization, and a mass-separator system followed by a detection system for the decay spectroscopy. KISS will allow us to study unknown isotopes produced in weak re-action channels under low background conditions. The off-line test of the KISS has been finished. As a next step, on-line test experiments have been performed to investigate the overall efficiency and selectivity of the system as a function of the injected 56Fe beam intensity from the RIKEN Ring Cyclotron (RRC).

  19. Measurement of the magnetic interaction between two bound electrons of two separate ions

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-01

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two 88Sr+ ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d-3.0(4) distance dependence for the coupling, consistent with the inverse-cube law.

  20. Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitantes.

    SciTech Connect

    Nunez, L.; Kaminski, M.; Chemical Engineering

    2000-11-01

    The Chernobyl nuclear reactor disaster in 1986 contaminated vast regions of prime grazing land. Subsequently, milk produced in the region has been contaminated with small amounts of the long-lived fission product cesium-137, and the Ukraine is seeking to deploy a simple separation process that will remove the Cs and preserve the nutritional value of the milk. Tiny magnetic particles containing crystalline silicotitanates (CST) have been manufactured and tested to this end. The results show that partitioning efficiency is optimized with low ratios of particle mass to volume. To achieve 90% Cs decontamination in a single-stage process, <3 g of magnetic CST per l milk is sufficient with a 30-min mixing time. A two-stage process would utilize <0.4 g/l per stage. The modeling of the magnetic CST system described herein can be achieved rather simply which is important for deployment in the affected Ukraine region.

  1. Magnetic search system

    NASA Astrophysics Data System (ADS)

    1984-09-01

    The Magnetic Search System (MSS) is virtually the only effective means of detecting and localizing buried ferrous objects such as pipelines, wrecks, mines, etc. It is also effective in the confirmation of the ferrous content of objects located by sonar. In spite of the importance of the magnetometer, as a search and classification sensor, it has not received the research and development emphasis accorded other sensor systems. An objective of this study program to improve MSS performance through the application of intelligent system concepts and the use of modern microprocessors. This document addresses the initial phase of this program, an in depth analysis of the system currently in use by the Explosive Ordnance Disposal Technology Center (EODTC).

  2. 2 COMMON COIL MAGNET SYSTEM

    Microsoft Academic Search

    Ramesh Gupta

    This paper introduces the common coil magnet system for the proposed very large hadron collider (VLHC) (1). In this system, the high energy booster (HEB), the injector to VLHC, is integrated as the iron dominated low field aperture within the coldmass of the common coil magnet design introduced earlier (2). This 4-in-1 magnet concept for a 2-in-1 machine should provide

  3. LLRF System for the CEBAF Separator Upgrade

    SciTech Connect

    Plawski, Tomasz E. [JLAB; Bachimanchi, Ramakrishna [JLAB; Hovater, J. Curt [JLAB; Seidman, David J. [JLAB; Wissmann, Mark J. [JLAB

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of four new 748.5 MHz normal conducting deflecting cavities in the 5th pass extraction region. This system will work together with the existing 499 MHz RF Separator in order to allow simultaneous delivery of the beam to four CEBAF experimental halls. The RF system employs two digital LLRF systems controlling four cavities in a vector sum. Cavity tune information of the individual cavities is also obtained using a multiplexing scheme of the forward and reflected RF signals. In this paper we will present detailed LLRF design and the current status of the CEBAF 748.5/499 MHz beam extraction system.

  4. DC Magnetics Measurement System Design

    NASA Technical Reports Server (NTRS)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  5. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...false Separation of piping systems. 153.292 Section...DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID...Design and Equipment Piping Systems and Cargo Handling Equipment...292 Separation of piping systems. Cargo piping...

  6. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...false Separation of piping systems. 153.292 Section...DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID...Design and Equipment Piping Systems and Cargo Handling Equipment...292 Separation of piping systems. Cargo piping...

  7. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...false Separation of piping systems. 153.292 Section...DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID...Design and Equipment Piping Systems and Cargo Handling Equipment...292 Separation of piping systems. Cargo piping...

  8. Investigation of the process of diamagnetic particle separation in a high-gradient ordered-structure magnetic field

    NASA Astrophysics Data System (ADS)

    Kashevskii, B. É.; Kashevskii, S. É.; Prokhorov, I. V.; Zholud', A. M.

    2011-05-01

    On the basis of the model of a flow-type magnetic filter with a transversely magnetized ordered system of long ferromagnetic rods of rectangular cross section, the process of high-gradient magnetic separation of microscopic diamagnetic particles (potato starch granules of sizes 8-30 ?m) from a liquid suspension has been investigated. The registered laws of change in the concentration and size distribution of particles at the suspension outlet from the filter agree with the theoretical conclusions obtained from the analysis of the magnetic field structure and thecharacter of the particle motion in the filter volume.

  9. Phosphate removal from solution using steel slag through magnetic separation.

    PubMed

    Xiong, Jibing; He, Zhenli; Mahmood, Qaisar; Liu, Dan; Yang, Xiaoe; Islam, Ejazul

    2008-03-21

    Steel slag with magnetic separation was used to remove phosphate from aqueous solutions. The influence of adsorbent dose, pH, and temperature on phosphate removal was investigated in a series of batch experiments. Phosphate removal increased with the increasing temperature, adsorbent dose and decreased with increasing initial phosphate concentrations, while it was at its peak at pH of 5.5. The phosphate removal predominantly occurred through ion exchange. The specific surface area of the steel slag was 2.09m2/g. The adsorption of phosphate followed both Langmuir and Freundlich isotherms. The maximum adsorption capacity of the steel slag was 5.3mgP/g. The removal rates of total phosphorus (TP) and dissolved phosphorus (DP) from secondary effluents were 62-79% and 71-82%, respectively. Due to their low cost and high capability, it was concluded that the steel slag may be an efficient adsorbent to remove phosphate both from solution and wastewater. PMID:17703877

  10. Separability and ground state factorization in quantum spin systems

    E-print Network

    Giampaolo, S M; Illuminati, F

    2009-01-01

    We investigate the existence and the properties of fully separable (fully factorized) ground states in quantum spin systems. Exploiting techniques of quantum information and entanglement theory we extend a recently introduced method and construct a general, self-contained theory of ground state factorization in frustration-free quantum spin models defined on lattices in any spatial dimension and for interactions of arbitrary range. We show that, quite generally, non exactly solvable models in external field admit exact, fully factorized ground state solutions. Unentangled ground states occur at finite values of the Hamiltonian parameters satisfying well defined balancing conditions between external fields and interaction strengths. These conditions are analytically determined together with the type of magnetic orderings compatible with factorization and the corresponding values of the fundamental observables such as energy and magnetization. The method is applied to a series of examples of increasing complexi...

  11. ALS superbend magnet system

    SciTech Connect

    Zbasnik, J.; Wang, S.T.; Chen, J.Y.; DeVries, G.J.; DeMarco, R.; Fahmie, M.; Geyer, A.; Green, M.A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.H.; Krupnick, J.; Marks, S.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Robin, D.A.; Schlueter, R.D.; Steier, C.; Taylor, C.E.; Wahrer, R.

    2000-09-15

    The Lawrence Berkeley National Laboratory is preparing to upgrade the Advanced Light Source (ALS) with three superconducting dipoles (Superbends). In this paper we present the final magnet system design which incorporates R&D test results and addresses the ALS operational concerns of alignment, availability, and economy. The design incorporates conduction-cooled Nb-Ti windings and HTS current leads, epoxy-glass suspension straps, and a Gifford-McMahon cryocooler to supply steady state refrigeration. We also present the current status of fabrication and testing.

  12. Integrated acoustic and magnetic separation in microfluidic channels Jonathan D. Adams,1

    E-print Network

    Fygenson, Deborah Kuchnir

    Integrated acoustic and magnetic separation in microfluidic channels Jonathan D. Adams,1 Patrick on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter-performance, multiparameter cell sorting in dis- posable devices.8­10 We report here on the integration of acoustic

  13. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: a facile three-in-one system for recognition and separation of endocrine disrupting chemicals.

    PubMed

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads via reversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms)=3.67 emu g(-1)). The hybrids bind the original template 17?-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. PMID:21063623

  14. Magnetic Membrane System

    DOEpatents

    McElfresh, Michael W.; (Livermore, CA); Lucas, Matthew S.; (Pasadena, CA)

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  15. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads via reversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17?-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads via reversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17?-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  16. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation

    Microsoft Academic Search

    Tao Dong; Qianhua Su; Zhaochu Yang; Yulong Zhang; Eirik B. Egeland; Dan D. Gu; Paolo Calabrese; Matteo J. Kapiris; Frank Karlsen; Nhut T. Minh; K. Wang; Henrik Jakobsen

    2010-01-01

    A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays has been developed and demonstrated, which can merely employ one independent lab-on-chip to realize cell isolation. The simulation, design, microfabrication and test for the new electromagnetic micro separator were executed. The simulation results of the electromagnetic field in the separator show that special soft magnetic micro-pillar arrays can amplify

  17. Separation of reversible domain-wall motion and magnetization rotation components in susceptibility spectra of amorphous magnetic materials

    NASA Astrophysics Data System (ADS)

    Yoon, S. S.; Kim, C. G.

    2001-05-01

    The reversible susceptibility spectra are measured for rectangular Co66Fe4NiB14Si15 samples with various easy-axis angles, ?, relative to the sample axis. A phenomenological method is proposed for the reversible spectra to separate the relaxation processes of domain-wall motion and magnetization rotation. The separation provides a method for measuring the static susceptibilities and the relaxation frequencies for the two reversible magnetization processes. The ? and the longitudinal stress dependence show that the separated spectra with relaxation frequencies near 360 kHz and 1.6 MHz correspond to relaxations of domain-wall motion and to magnetization rotation, respectively.

  18. Optimum shell separation for closed axial cylindrical magnetic shields Eugene Papernoa

    E-print Network

    Paperno, Eugene

    Optimum shell separation for closed axial cylindrical magnetic shields Eugene Papernoa Department The effect of shell separation on the axial shielding with closed double-shell cylindrical shields is investigated numerically. It is found that the optimum shell separation for practical, equal-thickness shields

  19. Element specific separation of bulk and interfacial magnetic hysteresis loops

    Microsoft Academic Search

    A. K. Suszka; C. J. Kinane; C. H. Marrows; B. J. Hickey; D. A. Arena; J. Dvorak; A. Lamperti; B. K. Tanner; S. Langridge

    2007-01-01

    We have studied the reversal of the bulk and interfacial magnetizations of the free layer of a spin valve using soft x-ray resonant magnetic scattering. By dusting the interface of the NiFe free layer with a few angströms of Co, we were able to distinguish between the interfacial and bulk magnetisms by tuning the x-ray photon energy. We measured hysteresis

  20. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    SciTech Connect

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China)

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078

  1. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan

    2013-12-01

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078

  2. Characterization of the physical parameters in a process of magnetic separation and pressure-driven flow of a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Cunha, F. R.; Sobral, Y. D.

    2004-11-01

    The equations governing the motion of a magnetic fluid are presented. These equations are non-linear and give rise to non-Newtonian effects attributable to the magnetization of the fluid. The equations are made dimensionless and the physical parameters of the coupled hydrodynamic-magnetic problem identified. The study is first applied to describe the motion of a magnetic droplet freely suspended in a viscous fluid undergoing a permanent magnetic field. A first-order theory is developed for the regime of small drop deformation in which viscous forces dominate inertial hydrodynamic force. At this regime, it is shown that the drift velocity of a magnetic drop scales with the square of the applied magnetic field and the deformation of the drop scales linearly with the applied field. Experiments are carried out and the range of validity of the small deformation analysis determined. The pressure-driven flow of a magnetic fluid is solved by a regular asymptotic expansion for two cases: a Poiseuille flow of a single magnetic fluid and a core pipe flow with a magnetic fluid adjacent to the tube wall. The theory is used to predict the volume rate of a viscous magnetic fluid separated from a non-magnetic viscous fluid by the action of a magnetic field. The apparent viscosity of a magnetic fluid as a function of magnetic parameters is also examined from our theory. A possible application of the present theoretical studies is on the remediation technology addressed to oil spills in natural environments.

  3. Phase separation in La-Ca manganites: Magnetic field effects

    NASA Astrophysics Data System (ADS)

    Tovar, M.; Causa, M. T.; Ramos, C. A.; Laura-Ccahuana, D.

    The coexistence of magnetic phases seems to be a characteristic of the La-Ca family of in colossal magnetoresistant manganites. We have analyzed this phenomenon in terms of a free energy, F, where magnetic and electronic contributions of two coexistent phases are included. Three order parameters describe the behavior of the mixed material: the magnetization of each phase and the metallic fraction. Due to the coupling between order parameters there is a range: T**? T? T* where coexistence is possible. Values for the phenomenological parameters are obtained from the experiment. In this paper we analyze the effects of an applied magnetic field on the range of T where the phase coexistence takes place, based on results obtained from dc-magnetization and ESR measurements.

  4. Separable and Partially Separable Systems in the Light of the Inverse Problem of Dynamics

    NASA Astrophysics Data System (ADS)

    Puel, François

    1995-03-01

    Using a generalization of Joukovsky's formula, we determine three-dimensional families of curves that are orbits only in separable potentials and we note the importance of ‘iso-energetic’ families of orbits. We also obtain more general families that are orbits of partially separable systems and we examine from this point of view the classical curvilinear coordinate systems.

  5. The RFX magnet system

    Microsoft Academic Search

    A Stella; M Guarnieri; F Bellina; P. P Campostrini; G Chitarin; F Trevisan; P Zaccaria

    1995-01-01

    The reversed field pinch (RFP) magnetic confinement requires both toroidal and poloidal components for the magnetic field induction. As in tokamaks, the former is provided by the toroidal and poloidal components for the the ohmic heating (OH) winding and the equilibrium field (EF) winding. The two induction field components have similar amplitudes, so that the toroidal component required in a

  6. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    EPA Science Inventory

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  7. Magnetic properties and loss separation in iron powder soft magnetic composite materials

    NASA Astrophysics Data System (ADS)

    De Wulf, Marc; Anestiev, Ljubomir; Dupré, Luc; Froyen, Ludo; Melkebeek, Jan

    2002-05-01

    New developments in powder metallurgical composites make soft magnetic composite (SMC) material interesting for application in electrical machines, when combined with new machine design rules and new production techniques. In order to establish these design rules, one must pay attention to electromagnetic loss characteristics of SMC material. In this work, five different series of iron based SMCs are produced and studied: (1) Pure iron powder with resin; (2) sintered iron based powders; (3) pure iron powder with additions of Zn-st and carbon; (4) iron based powder alloys (Fe,Nb,Si); (5) commercially available iron powder "Somaloy." The specimens were shaped as rectangular rods and characterized on a miniature single sheet tester which was calibrated to Epstein. The measured energy losses are analyzed following the loss separation theory of Bertotti, in which the total energy loss is decomposed into hysteresis loss, classical Foucault loss, and an excess loss component.

  8. Excitonic condensation in spatially separated one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Abergel, D. S. L.

    2015-05-01

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  9. The separated spin-charge Luttinger liquid in a magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Kaihua; Chen, Bin; Sun, Yunfeng; Han, Rushan

    As well know one-dimensional Luttinger liquid includes many striking properties. In our paper, we study the question of the physical properties of the separated spin-charge Luttinger liquid in an external magnetic field (h). We include more completely interaction such forward scattering (g 2 and g 4). Charge and spin cannot completely be separated due to the effect of magnetic field. We calculated also the correlation function and manifestly show the action of the interaction parameters.

  10. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    SciTech Connect

    Doctor, R.; Nunez, L. [Argonne National Lab., IL (US); Cicero-Herman, C.A. [Westinghouse Savannah River Co., Aiken, SC (US). Savannah River Technology Center; Ritter, J.A. [Univ. of South Carolina, Columbia, SC (US). Chemical Engineering Dept.; Landsberger, S. [Univ. of Texas, Austin, TX (US). Nuclear Engineering Dept.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  11. The magnet components database system

    Microsoft Academic Search

    M. J. Baggett; R. Leedy; C. Saltmarsh; J. C. Tompkins

    1990-01-01

    The philosophy, structure, and usage MagCom, the SSC magnet components database, are described. The database has been implemented in Sybase (a powerful relational database management system) on a UNIX-based workstation at the Superconducting Super Collider Laboratory (SSCL); magnet project collaborators can access the database via network connections. The database was designed to contain the specifications and measured values of important

  12. DCI wiggler magnet vacuum system

    SciTech Connect

    Souchet, R.; Marx, J.P.

    1988-09-30

    With the end of the high energy experiments in DCI, developments could take place at LURE and a five pole wiggler magnet program was launched in 1983 to exclusively dedicate DCI as a synchrotron radiation source. Design and performance measurements of the wiggler magnet vacuum system at DCI is presented. (AIP)

  13. The ESRF Miniature Pulsed Magnetic Field System

    SciTech Connect

    Linden, Peter J. E. M. van der; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble (France)

    2010-06-23

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  14. Initial operation of a plasma isotope separation system

    Microsoft Academic Search

    T. S. Bigelow; F. Tarallo

    2002-01-01

    Summary form only given. A plasma-based isotope separation system has been installed at TheragenicsTM Oak Ridge, TN facility and has recently been placed into operation. This facility is designed to separate stable isotopes of metallic elements utilizing the Plasma Separation Process' (PSP). In this process, electron cyclotron resonance heating using a microwave power source forms the plasma. Neutral particles of

  15. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  16. Separated set-systems and their geometric models

    NASA Astrophysics Data System (ADS)

    Danilov, Vladimir I.; Karzanov, Aleksander V.; Koshevoy, Gleb A.

    2010-11-01

    This paper discusses strongly and weakly separated set-systems as well as rhombus tilings and wiring diagrams which are used to produce such systems. In particular, the Leclerc-Zelevinsky conjectures concerning weakly separated systems are proved. Bibliography: 54 titles.

  17. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-06-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  18. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  19. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides.

    PubMed

    Drees, Y; Li, Z W; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2014-01-01

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors. PMID:25534540

  20. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides

    NASA Astrophysics Data System (ADS)

    Drees, Y.; Li, Z. W.; Ricci, A.; Rotter, M.; Schmidt, W.; Lamago, D.; Sobolev, O.; Rütt, U.; Gutowski, O.; Sprung, M.; Piovano, A.; Castellan, J. P.; Komarek, A. C.

    2014-12-01

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.

  1. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting

    NASA Astrophysics Data System (ADS)

    Chen, Shuang-yin; Chu, Man-sheng

    2014-03-01

    To achieve high efficiency utilization of Panzhihua vanadium titano-magnetite, a new process of metalizing reduction and magnetic separation based on hot briquetting is proposed, and factors that affect the cold strength of the hot-briquetting products and the efficiency of reduction and magnetic separation are successively investigated through laboratory experiments. The relevant mechanisms are elucidated on the basis of microstructural observations. Experimental results show that the optimal process parameters for hot briquetting include a hot briquetting temperature of 475°C, a carbon ratio of 1.2, ore and coal particle sizes of less than 74 ?m. Additionally, with respect to metalizing reduction and magnetic separation, the rational parameters include a magnetic field intensity of 50 mT, a reduction temperature of 1350°C, a reduction time of 60 min, and a carbon ratio of 1.2. Under these above conditions, the crushing strength of the hot-briquetting agglomerates is 1480 N, and the recovery ratios of iron, vanadium, and titanium are as high as 91.19%, 61.82%, and 85.31%, respectively. The new process of metalizing reduction and magnetic separation based on hot briquetting demonstrates the evident technological advantages of high efficiency separation of iron from other valuable elements in the vanadium titano-magnetite.

  2. Removal of freshwater microalgae by a magnetic separation method

    NASA Astrophysics Data System (ADS)

    Vergini, Sofia S.; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2013-04-01

    Some species of microalgae, with high growth rate and high lipid content, appear to be attractive alternatives as a feedstock for biodiesel production. The high-energy input for harvesting biomass and removing the water from the algae makes current commercial microalgal biodiesel production cost expensive. The major techniques currently employed in microalgae harvesting and recovery include centrifugation, coagulation-flocculation, bio-flocculation, filtration and screening, gravity sedimentation, and flotation. The purpose of this study was to investigate the harvesting of microalgae cells by coagulation using magnetic activated carbon, magnetite (FeO4) nanoparticles, and common chemical coagulants. Scenedesmus rubescens was selected and cultivated in 10 L flasks under continuous artificial light. Samples were taken at different operation intervals. Jar tests were conducted to investigate the effect of adsorption of microalgae on the magnetic material. The removal efficiency of microalgae was affected by the coagulants dose, stirring time and speed, and the initial microalgae concentration. The recovery of microalgae was greater in cultures with high initial microalgae concentration compared to cultures with low microalgae concentrations.

  3. High Temperature Superconducting Reciprocating Magnetic Separator Final Report

    SciTech Connect

    James F. Maguire

    2008-06-05

    In 2001, under DOE's Superconductivity Partnership Initiative (SPI), E. I. du Pont de Nemours & Co. (Dupont) was awarded a cost-share contract to build a fully functional full-scale model high temperature superconducting reciprocating magnet unit specifically designed for the koalin clay industry. After competitive bidding, American Superconductor (AMSC) was selected to provide the coil for the magnet. Dupont performed the statement of work until September 2004, when it stopped work, with the concurrence of DOE, due to lack of federal funds. DOE had paid all invoices to that point, and Dupont had provided all cost share. At this same time, Dupont determined that this program did not fit with its corporate strategies and notified DOE that it was not interesting in resuming the program when funding became available. AMSC expressed interest in assuming performance of the Agreement to Dupont and DOE, and in March 2005, this project was transferred to AMSC by DOE amendment to the original contract and Novation Agreement between AMSC and Dupont. Design drawings and some hardware components and subassemblies were transferred to AMSC. However, no funding was obligated by DOE and AMSC never performed work on the project. This report contains a summary of the work performed by Dupont up to the September 04 timeframe.

  4. Modeling aspects of magnetic actuators and magnetic suspension systems

    NASA Astrophysics Data System (ADS)

    Bloodgood, Vernon Dale, Jr.

    This dissertation is a study of new modeling techniques developed for magnetic suspension systems. The techniques discussed are modifications of magnetic circuit theory and fundamental eddy current models. The techniques are compared against experimental test results and finite element data. The information gained from the experimental testing is used to provide insight into magnetic bearing design. A small-gap modeling technique called extended circuit theory is developed that incorporates information about the system gained from finite element data, or experimental data, to be included in the analytic model. The variations between the classical magnetic circuit model and the finite element model are used to develop performance coefficients, which are in turn incorporated into the extended circuit model. The coefficients modify the classical theory to account for magnetomotive force losses, flux leakage and flux fringing. The theory is developed from fundamental principles. The techniques used to determine, and predict, the coefficients are discussed. The use of this method in optimal bearing design is also discussed. The extended circuit model is verified against experimental test results of a family of magnetic actuators. The actuators consist of a "C-shaped" stator and a flat armature. The pole separation distance was varied along with the location of the biasing permanent magnets and the windings. The permanent magnets were placed either on the pole faces, in the center of the armature, or at both locations, and the windings were wound on poles of the stator or on the back of the stator, resulting in a total of 22 design permutations. The experimental performance of each design is analyzed and efficiency trends are discussed. The diffusive model for eddy currents is analyzed along with the lumped parameter model to explore the "half-order" behavior of eddy currents commonly observed in experimental testing. A fractional order eddy current model is developed and compared against finite element data and experimental test results. The models developed are based on a frequency dependent resistance. The implications of using fractional order modeling techniques, along with control considerations, are discussed.

  5. Magnetism of perovskite oxides: The effect of strain and phase separation

    NASA Astrophysics Data System (ADS)

    Xie, Changkun

    The magnetic properties of perovskite oxides can be affected by various conditions such as doping concentration, finite size limitation, and mechanical strain, which are associated with a range of intriguing physical phenomena in highly correlated electron systems such as colossal magnetoresistance, high temperature superconductivity, and phase inhomogeneities. In this thesis, we studied several topics concerning the cobaltates and nickelates which are associated with magnetism in perovskite oxides. La0.5Sr0.5CoO3 is a ferromagnetic material with Curie temperature TC of 250 K. In a form of thin films, we studied strain effect on its ferromagnetism. However, ferromagnetism in thin films is affected by both finite size effect and strain effect. We have used a series of films of different thicknesses and on different substrates to quantitatively determine the change in TC contributed by each effect. The phase diagram of TC versus in-plane strain suggests that TC is suppressed by tensile strain and enhanced by compressive strain. The general method of separating strain and finite thickness effects should be applicable to any ordering phase transition in thin films. The local structure of LSCO thin films was investigated by Extended X-ray Absorption Fine Structure technique. Our results suggest that the tensile strain elongates the Co-O bond length, while compressive strain shortens the bond length. The change of bond length is mainly responsible for the modulation of TC upon strain. This is contrary to assumptions generally used in literature on strained manganite films. Current double exchange model is not adequate to describe the ferromagnetic mechanism for cobaltate. In a case of no La, we studied the magnetic properties of SrCoO 2.5+x. SrCoO2.5 is an antiferromaget with Neel temperature of 570 K. With a starting material of SrCoO 2.88, we have carried out oxidization and reduction experiments through an electrochemical method. The hole doping introduced into SrCoO2.5 by oxygen has shown to play a crucial role in determining the materials' ferromagnetic characters such as Curie temperature, spin state, magnetic saturation moment, etc. A magnetic phase diagram of SrCoO2.5+x is thus proposed for the first time. The striking feature of the diagram is the existence of several line phases which contain antiferromagnetic and ferromagnetic phases. In high contrast with La1-ySryCoO 3, SrCoO2.5+x can be phase separated into a number of magnetic regions for which each one has a unique oxygen/hole concentration such as x = 0, 0.25, 0.375, and 0.5, respectively. Our results suggest that the mobile holes are playing a key role in ferromagnetism and phase separation in the system. For perovskite nickelate, we have successfully grown high-quality epitaxial La1.67Sr0.33NiO4 films using pulsed laser deposition. For the first time, the x-ray diffraction superlattice peaks associated with charge stripe phase have been successfully observed in films. By studying the evolution of the stripe phase as the film thicknesses are decreased, we provide direct evidence for suppression of the stripe phase in thinner samples with thicknesses of less than 2600 A. A scenario of short-range ordered stripes due to a lattice clamping effect is proposed to account for the suppression in light of a model of electronic stripe-glass.

  6. Spin transverse separation in a two-dimensional electron-gas using an external magnetic field with a topological chirality

    NASA Astrophysics Data System (ADS)

    Tan, S. G.; Jalil, M. B. A.; Liu, Xiong-Jun; Fujita, T.

    2008-12-01

    We propose a two-dimensional electron-gas (2DEG) system in which an external magnetic field with a small chirality is applied to provide a topological spin gauge field that separates conduction electrons of opposite spins in the transverse direction. Additionally, the vertical electric field in the 2DEG, together with spin-orbit coupling, produces a SU(2) gauge field which reinforces or opposes the effect of the spin gauge. The system thus provides a tunable spin separation effect, where an applied gate voltage on the 2DEG can be used to modulate the transverse spin current. As this method leads to the enhancement or cancellation of spin separation due to the intrinsic spin-orbit coupling effect only, it may naturally distinguish the extrinsic effect from the intrinsic one.

  7. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    E-print Network

    Xu-Guang Huang

    2015-06-11

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and axial current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Similar effects also exist in rotating trapped Bose gases with Weyl-Zeeman spin orbit coupling. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects.

  8. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    E-print Network

    Huang, Xu-Guang

    2015-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and axial current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Similar effects also exist in rotating trapped Bose gases with Weyl-Zeeman spin orbit coupling. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects.

  9. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.

    PubMed

    Del Giudice, Francesco; Madadi, Hojjat; Villone, Massimiliano M; D'Avino, Gaetano; Cusano, Angela M; Vecchione, Raffaele; Ventre, Maurizio; Maffettone, Pier Luca; Netti, Paolo A

    2015-04-21

    The deflection of magnetic beads in a microfluidic channel through magnetophoresis can be improved if the particles are somehow focused along the same streamline in the device. We design and fabricate a microfluidic device made of two modules, each one performing a unit operation. A suspension of magnetic beads in a viscoelastic medium is fed to the first module, which is a straight rectangular-shaped channel. Here, the magnetic particles are focused by exploiting fluid viscoelasticity. Such a channel is one inlet of the second module, which is a H-shaped channel, where a buffer stream is injected in the second inlet. A permanent magnet is used to displace the magnetic beads from the original to the buffer stream. Experiments with a Newtonian suspending fluid, where no focusing occurs, are carried out for comparison. When viscoelastic focusing and magnetophoresis are combined, magnetic particles can be deterministically separated from the original streamflow to the buffer, thus leading to a high deflection efficiency (up to ~96%) in a wide range of flow rates. The effect of the focusing length on the deflection of particles is also investigated. Finally, the proposed modular device is tested to separate magnetic and non-magnetic beads. PMID:25732596

  10. Membrane separation systems---A research and development needs assessment

    SciTech Connect

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  11. Magnetic micro-actuators and systems (MAGMAS)

    Microsoft Academic Search

    Orphée Cugat; Jérôme Delamare; Gilbert Reyne

    2003-01-01

    Magnetic interactions provide outstanding performances for powerful integrated micro-actuators. This paper explains how magnetic interactions involving permanent magnets, currents, and various magnetic materials remain very effective and even improve as dimensions are reduced. The technological problems that have slowed the development of magnetic micro-actuators and systems (MAGMAS) are progressively being solved. As long as materials scientists continue to develop better

  12. The Magnetism of Meteorites and Early Solar System Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Collinson, D. W.

    1994-11-01

    The characteristics of the remanent magnetization of chondrite, achondrite and shergottite, nakhlite and chassignite (SNC) meteorites are described, and interpretation in terms of magnetizing fields in the ancient Solar System discussed. The magnetism of ordinary chondrites is commonly scattered in direction within samples, implying magnetization of constituent fragments before accumulation. The magnetic history of these meteorites is uncertain because of lack of knowledge of the origin and properties of tetrataenite, an ordered FeNi alloy often carrying the bulk of the magnetization. Achondrites also often possess scattered magnetization, the primary component probably being acquired during cooling after differentiation of the parent body. A magnetizing field of internal origin is possible. Estimates of magnetizing field strength are in the approximate range 5-100 ? T, with carbonaceous chondrites showing the highest values. The SNC meteorites, probably originating on Mars, provide evidence for a weak, ancient Martian magnetic field of the order 1 ? T.

  13. Efficiency comparison of two preparative mechanisms for magnetic separation of erythrocytes from whole blood

    NASA Astrophysics Data System (ADS)

    Graham, M. D.

    1981-03-01

    Separation efficiencies of erythrocytes, made paramagnetic by oxidation of their cellular oxyhemoglobin to methemoglobin with sodium nitrite, were compared under identical magnetic separation conditions with those of cells whose oxyhemoglobin had been reduced to deoxyhemoglobin through exposure to sodium dithionite, and the percentage of high-spin hemoglobin was estimated spectrophotometrically. Both parallel and transverse flow/matrix filter configurations gave greater average separation efficiencies, with less variability, for erythrocytes containing the dithionite-reduced hemoglobin. These findings are thought to originate in the characteristics of the oxidative reaction, since the spectrophotometric data indicate a similar variability in oxidation of oxyhemoglobin to methemoglobin.

  14. Designing magnetic systems for reliability

    SciTech Connect

    Heitzenroeder, P.J.

    1991-01-01

    Designing magnetic system is an iterative process in which the requirements are set, a design is developed, materials and manufacturing processes are defined, interrelationships with the various elements of the system are established, engineering analyses are performed, and fault modes and effects are studied. Reliability requires that all elements of the design process, from the seemingly most straightforward such as utilities connection design and implementation, to the most sophisticated such as advanced finite element analyses, receives a balanced and appropriate level of attention. D.B. Montgomery's study of magnet failures has shown that the predominance of magnet failures tend not to be in the most intensively engineered areas, but are associated with insulation, leads, ad unanticipated conditions. TFTR, JET, JT-60, and PBX are all major tokamaks which have suffered loss of reliability due to water leaks. Similarly the majority of causes of loss of magnet reliability at PPPL has not been in the sophisticated areas of the design but are due to difficulties associated with coolant connections, bus connections, and external structural connections. Looking towards the future, the major next-devices such as BPX and ITER are most costly and complex than any of their predecessors and are pressing the bounds of operating levels, materials, and fabrication. Emphasis on reliability is a must as the fusion program enters a phase where there are fewer, but very costly devices with the goal of reaching a reactor prototype stage in the next two or three decades. This paper reviews some of the magnet reliability issues which PPPL has faced over the years the lessons learned from them, and magnet design and fabrication practices which have been found to contribute to magnet reliability.

  15. Transcranial Magnetic Stimulation in a Finger-tapping Task Separates Motor from Timing

    E-print Network

    Moses, Elisha

    Transcranial Magnetic Stimulation in a Finger- tapping Task Separates Motor from Timing Mechanisms,3 , and Elisha Moses1 Abstract & We study the interplay between motor programs and their timing in the brain by using precise pulses of transcranial mag- netic stimulation (TMS) applied to the primary motor cortex

  16. Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia

    SciTech Connect

    Ahedo, Eduardo; Merino, Mario [Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2012-08-15

    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.

  17. Design and synthesis of reactive separation systems

    SciTech Connect

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  18. The CEBAF RF Separator System Upgrade

    SciTech Connect

    J. Hovater; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.

  19. Embedded system for audio source separation

    Microsoft Academic Search

    Laurentiu Frangu; M. Ma?za?rel; C. Chiculit?a?; S. Epure

    2010-01-01

    The paper presents an embedded system, designed for audio signal processing. It consists of a microphone array, the signal conditioning circuits, the AD converter, 2 DSP modules and the communication circuits, placed on a single board (excepting the microphone array). Up to 8 microphones receive the audio signals, which are recorded and processed, in order to provide information about the

  20. Thinking out of the box for magnetic mineral separation using low temperature magnetism

    NASA Astrophysics Data System (ADS)

    Lagroix, F.; Guyodo, Y. J. B.; Till, J. L.; Taylor, S. N.

    2014-12-01

    One timeless challenge in rock magnetic studies, inclusive of paleomagnetism and environmental magnetism, is decomposing a sample's bulk magnetic behaviour into its individual magnetic mineral components. We present a method permitting to decompose the magnetic behavior of a bulk sample experimentally and at low temperature avoiding any ambiguities in data interpretation due to heating induced alteration. A single instrument is used to measure the temperature dependence of the remanent magnetization and to apply different steps of AF demagnetizations and thermal demagnetization. The experimental method is validated on synthetic mixtures of magnetite, hematite, goethite as well as on natural loess samples where the contributions of magnetite, goethite, hematite and maghemite are successfully isolated. The experimental protocol can be adapted to target other iron bearing minerals relevant to the rock or sediment under study. One limitation rests on the fact that the method is based on remanent magnetization. Consequently, a quantitative decomposition of absolute concentration of individual components remains unachievable without assumptions. Nonetheless, semi-quantitative magnetic mineral concentrations were determined on synthetic and natural loess/paleosol samples in order to validate and test the method as a semi-quantitative tool in environmental magnetism studies.

  1. Study on separation of rare earth elements in complex system

    Microsoft Academic Search

    Hongtao CHANG; Mei LI; Zhaogang LIU; Yanhong HU; Fushun ZHANG

    2010-01-01

    The effect of the feed acidity, acetic acid concentration and rare earth concentration on the distribution ratio, separation coefficient and extraction capacity of light rare earth elements were studied in the P204(DEHPA)-HCl system and P507(HEH\\/EHP)-HCl system both containing acetic acid, respectively. The results showed that the distribution ratio and separation coefficient decreased with increasing of acidity, and increased with increasing

  2. Timescale separation of nonlinear singularly perturbed discrete systems

    Microsoft Academic Search

    Kyun-Sang Park; Jong-Tae Lim

    2010-01-01

    In this paper, we investigate the time-scale decomposition of the nonlinear singularly perturbed discrete system into lower-order subsystems; the slow subsystem and fast subsystems. In the singular perturbation method, the time-scale separation is inevitable for the analysis of the system stability and the composite control design. Using Tikhonov's theorem, we obtain the slow subsystem and the fast subsystem separated from

  3. Criterion for phase separation in one-dimensional driven systems.

    PubMed

    Kafri, Y; Levine, E; Mukamel, D; Schütz, G M; Török, J

    2002-07-15

    A general criterion for the existence of phase separation in driven density-conserving one-dimensional systems is proposed. It is suggested that phase separation is related to the size dependence of the steady-state currents of domains in the system. A quantitative criterion for the existence of phase separation is conjectured using a correspondence made between driven diffusive models and zero-range processes. The criterion is verified in all cases where analytical results are available, and predictions for other models are provided. PMID:12144403

  4. Flightweight Electro-Magnet Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Roy G.; Litchford, Ron; Robertson, Tony; Schmidt, Dianne; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    NASA has a need for lightweight high performance magnets to be used in propulsion systems involving plasmas. We report the design, construction, and testing of a six inch diameter by twelve inch long solenoid using high purity aluminum wire operating at a temperature of 77 Kelvin (K) for the current carrying element. High purity aluminum is the material of choice because of three properties that make it optimal for magnetic construction. At 77 K high purity aluminum has one of the lowest resistivities at 77 K of any metal (p = 0.254 muOMEGA-cm), thus reducing the power requirements for creating magnetic fields. Aluminum is a low-density (2.6989 g/cc) material and the end product magnet will be of low total mass compared to similar designs involving copper or other elements. The magneto-resistance of aluminum saturates at low magnetic fields and does not increase indefinitely as is the case in copper. The magnet consists of four layers of closely wound wire and is approximately 150 mm in diameter by 300 mm long. A cylinder made from G - 10 was machined with a spiral groove to hold the high purity Al wire and the wire wound on it. Following the winding, each layer was potted in STYCAST high thermal conductivity epoxy to provide insulation between the turns of the coil and mechanical strength. The magneto-resistance of the coil has been measured at the National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL in externally applied fields to 10 tesla. Following these tests it was energized to the full 2 tesla field it can produce using the facilities of the NHMFL at the Los Alamos National Laboratory. The results of all of these tests will be presented.

  5. Superconducting magnet system for RHIC

    SciTech Connect

    Thompson, P.A.; Cottingham, J.; Dahl, P.; Fernow, R.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Hahn, H.; Herrera, J.

    1985-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will operate at ion energies of 7 to 100/sup +/ GeV/Amu for ions as heavy as Au/sup 197/. This paper discusses the superconducting magnet system for this machine. It will consist of 372 dipoles typically 9.7 meters long with an operating field of 3.4 Tesla, 492 quadrupoles with typical length 1.4 meters, gradient 76 T/m, and approximately 1000 sextupole and corrector magnets. A detailed design has been developed for the dipoles which will have a clear bore of 76 mm; less detailed designs are presented for the other components. A proof-of-concept magnet has been constructed and successfully tested. 3 refs., 5 figs.

  6. Functionalization of electrospun magnetically separable TiO 2 -coated SrFe 12 O 19 nanofibers: strongly effective photocatalyst and magnetic separation

    Microsoft Academic Search

    Cong-Ju Li; Jiao-Na Wang; Xiu-Yan Li; Lian-Lian Zhang

    2011-01-01

    Magnetically separable TiO2-coated SrFe12O19 electrospun nanofibers were obtained successfully by means of sol–gel, electrospinning, and coating technology, followed\\u000a by heat treatment at 550–650 °C for 3 h. The average diameter of the electrospun fibers was 500–600 nm. The fibers were characterized\\u000a by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and vibrating sample\\u000a magnetometer (VSM). The optimized calcining temperature was

  7. Toroidal magnet system

    DOEpatents

    Ohkawa, Tihiro (La Jolla, CA); Baker, Charles C. (Naperville, IL)

    1981-01-01

    In a plasma device having a toroidal plasma containment vessel, a toroidal field-generating coil system includes fixed linking coils each formed of first and second sections with the first section passing through a central opening through the containment vessel and the second section completing the linking coil to link the containment vessel. A plurality of removable unlinked coils are each formed of first and second C-shaped sections joined to each other at their open ends with their bights spaced apart. The second C-shaped section of each movable coil is removably mounted adjacent the second section of a linking coil, with the containment vessel disposed between the open ends of the first and second C-shaped sections. Electric current is passed through the linking and removable coils in opposite sense in the respective adjacent second sections to produce a net toroidal field.

  8. ?-Detected NMR Search for Magnetic Phase Separation in Epitaxial GaAs:Mn

    NASA Astrophysics Data System (ADS)

    Song, Q.; Chow, K. H.; Miller, R. I.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Morris, G. D.; Kreitzman, S. R.; Levy, C. D. P.; Parolin, T. J.; Pearson, M. R.; Salman, Z.; Saadaoui, H.; Smadella, M.; Wang, D.; Yu, K. M.; Liu, X.; Furdyna, J. K.; MacFarlane, W. A.

    To test for the microscopic magnetic phase separation in the dilute magnetic semiconductor Ga1-xMnxAs sug-gested by low energy muon spin rotation measurements[1], we present a detailed analysis of the amplitudes of the 8Li ?-detected nuclear magnetic resonance in an epitaxially grown thin film of x = 5.4% Mn doped GaAs on a semi-insulating GaAs substrate with magnetic transition temperature TC =72 K. The spectrum at 100 K corresponds to 73% of the full room temperature amplitude, and at 60 K to about 62%. The 11% loss of signal through the magnetic tran-sition is much smaller than that ? 50% found by low energy ?SR[1], and may be entirely due to an amplitude change intrinsic to GaAs. This lack of evidence for phase separation is, however, consistent with the full volume fraction magnetism found by a second low energy ?SR measurement on a different sample using weak transverse field[2].

  9. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.

    PubMed

    Brandão, Delfina; Liébana, Susana; Campoy, Susana; Alegret, Salvador; Isabel Pividori, María

    2015-10-01

    This paper addresses a comparative study of immunomagnetic separation of Salmonella using micro and nano-sized magnetic carriers. In this approach, nano (300nm) and micro (2.8?m) sized magnetic particles were modified with anti-Salmonella antibody to pre-concentrate the bacteria from the samples throughout an immunological reaction. The performance of the immunomagnetic separation on the different magnetic carriers was evaluated using classical culturing, confocal and scanning electron microscopy to study the binding pattern, as well as a magneto-actuated immunosensor with electrochemical read-out for the rapid detection of the bacteria in spiked milk samples. In this approach, a second polyclonal antibody labeled with peroxidase as electrochemical reporter was used. The magneto-actuated electrochemical immunosensor was able to clearly distinguish between food pathogenic bacteria such as Salmonella enterica and Escherichia coli, showing a limit of detection (LOD) as low as 538CFUmL(-1) and 291CFUmL(-1) for magnetic micro and nanocarriers, respectively, in whole milk, although magnetic nanoparticles showed a noticeable higher matrix effect and higher agglomeration effect. These LODs were achieved in a total assay time of 1h without any previous culturing pre-enrichment step. If the samples were pre-enriched for 8h, the magneto immunosensor based on the magnetic nanoparticles was able to detect as low as 1CFU in 25mL of milk (0.04CFUmL(-1)). PMID:26078149

  10. Separation of Microcystin-LR by Cyclodextrin-Functionalized Magnetic Composite of Colloidal Graphene and Porous Silica.

    PubMed

    Sinha, Arjyabaran; Jana, Nikhil R

    2015-05-13

    Microcystin-LR belongs to the family of microcystins produced by cyanobacteria and known to be the most toxic of this family. Existence of cyanobacteria in water bodies leads to the contamination of drinking water with microcystin-LR and thus their separation is essential for an advanced water purification system. Here we report functional nanocomposite-based selective separation of microcystin-LR from contaminated water. We have synthesized cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica where the cyclodextrin component offers host-guest interaction with microcystin-LR and the magnetic component offers easier separation of microcystin-LR from water. High surface area and large extent of chemical functional groups offer high loading (up to 18 wt %) of cyclodextrin with these nanocomposites, and the dispersible form of the nanocomposite offers easier accessibility of cyclodextrin to microcystin-LR. We have shown that microcystin-LR separation efficiency is significantly enhanced after functionalization with cyclodextrin, and among all the tested cyclodextrins, ?-cyclodextrin offers the best performance. We have also found that graphene-based nanocomposite offers better performance over porous silica-based nanocomposite due to better accessibility of cyclodextrins for interaction with microcystin-LR. The proposed graphene-based functional nanocomposite is environment friendly, reusable, and applicable for advanced water purification. PMID:25906257

  11. Magnetic field in the Lobachevsky space and related integrable systems

    SciTech Connect

    Kurochkin, Yu. A., E-mail: yukuroch@dragon.bas-net.by; Otchik, V. S.; Ovsiyuk, E. M. [National Academy of Sciences of Belarus, Institute of Physics (Belarus)

    2012-10-15

    Various possibilities to define analogs of the uniform magnetic field in the Lobachevsky space are considered using different coordinate systems in this space. Quantum mechanical problem of motion in the defined fields is also treated. Variables in the Schroedinger equation are separated and diagonal operators are found. For some cases, exact solutions are obtained.

  12. System identification and trajectory optimization for guided store separation

    NASA Astrophysics Data System (ADS)

    Carter, Ryan E.

    Combat aircraft utilize expendable stores such as missiles, bombs, flares, and external tanks to execute their missions. Safe and acceptable separation of these stores from the parent aircraft is essential for meeting the mission objectives. In many cases, the employed missile or bomb includes an onboard guidance and control system to enable precise engagement of the selected target. Due to potential interference, the guidance and control system is usually not activated until the store is sufficiently far away from the aircraft. This delay may result in large perturbations from the desired flight attitude caused by separation transients, significantly reducing the effectiveness of the store and jeopardizing mission objectives. The purpose of this research is to investigate the use of a transitional control system to guide the store during separation. The transitional control system, or "store separation autopilot", explicitly accounts for the nonuniform flow field through characterization of the spatially variant aerodynamics of the store during separation. This approach can be used to mitigate aircraft-store interference and leverage aerodynamic interaction to improve separation characteristics. This investigation proceeds in three phases. First, system identification is used to determine a parametric model for the spatially variant aerodynamics. Second, the store separation problem is recast into a trajectory optimization problem, and optimal control theory is used to establish a framework for designing a suitable reference trajectory with explicit dependence on the spatially variant aerodynamics. Third, neighboring optimal control is used to construct a linear-optimal feedback controller for correcting deviations from the nominal reference trajectory due varying initial conditions, modeling errors, and flowfield perturbations. An extended case study based on actual wind tunnel and flight test measurements is used throughout to illustrate the effectiveness of the approach and to highlight the anticipated benefits of guided store separation.

  13. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    SciTech Connect

    Kaur, Maninder [Idaho Univ., Moscow, ID (United States); Johnson, Andrew [Idaho Univ., Moscow, ID (United States); Tian, Guoxin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Jiang, Weilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rao, Linfeng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Paszczynski, Andrzej [Idaho Univ., Moscow, ID (United States); Qiang, You [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Idaho Univ., Moscow, ID (United States)

    2013-01-01

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  14. A simple and rapid harvesting method for microalgae by in situ magnetic separation.

    PubMed

    Xu, Ling; Guo, Chen; Wang, Feng; Zheng, Sen; Liu, Chun-Zhao

    2011-11-01

    A simple and rapid harvesting method by in situ magnetic separation with naked Fe(3)O(4) nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe(3)O(4) nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe(3)O(4) nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting. PMID:21890346

  15. Magnetic Bearing Sets for a Flywheel System

    Microsoft Academic Search

    Guilherme Goncalves Sotelo; R. de Andrade; A. C. Ferreira

    2007-01-01

    This paper presents a magnetic bearing set developed to work in a flywheel energy storage system. The bearing set is composed of a permanent magnetic bearing (PMB) and a superconducting magnetic bearing (SMB). A new configuration of a PMB having Nd-Fe-B magnet rings and a back yoke is proposed and compared with an existing one. Finite element method (FEM) simulations

  16. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  17. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  18. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    SciTech Connect

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  19. Separating Introspection and Intercession to Support Metamorphic Distributed Systems \\Lambda

    E-print Network

    Stirewalt, Kurt

    Separating Introspection and Intercession to Support Metamorphic Distributed Systems \\Lambda E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and R. E. K. Stirewalt Software Engineering and Network Systems, forward error correction. 1 Introduction Increasingly, distributed applications are required to adapt

  20. Separating Introspection and Intercession to Support Metamorphic Distributed Systems

    E-print Network

    Sadjadi, S. Masoud

    to insulate application components from platform vari- ations and changes in network conditions and canSeparating Introspection and Intercession to Support Metamorphic Distributed Systems £ E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and R. E. K. Stirewalt Software Engineering and Network Systems

  1. The magnetic field induced phase separation in a model of a superconductor with local electron pairing.

    PubMed

    Kapcia, Konrad; Robaszkiewicz, Stanis?aw

    2013-02-13

    We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential and focus on paramagnetic effects of the external magnetic field. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach (VA), which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case shows that the system can exhibit not only the homogeneous phases-superconducting (SS) and non-ordered (NO)-but also the phase separated states (PS: SS-NO). Depending on the values of interaction parameters, the PS state can occur in higher fields than the SS phase (field induced PS). Some ground state results beyond the VA are also presented. PMID:23334285

  2. Ares I Stage Separation System Design Certification Testing

    NASA Technical Reports Server (NTRS)

    Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan

    2009-01-01

    NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.

  3. Common coil magnet system for VLHC

    Microsoft Academic Search

    Ramesh Gupta; Lawrence Berkeley

    1999-01-01

    This paper introduces the common coil magnet system for the proposed Very Large Hadron Collider (VLHC). In this system, the high energy booster (HEB), the injector to VLHC, is integrated as the iron dominated low field aperture within the coldmass of the common coil magnet design introduced earlier. This 4-in-1 magnet concept for a 2-in-1 machine should provide a major

  4. Interaction effects in magnetic granular systems

    NASA Astrophysics Data System (ADS)

    Knobel, M.; Nunes, W. C.; Brandl, A. L.; Vargas, J. M.; Socolovsky, L. M.; Zanchet, D.

    2004-12-01

    Interactions in magnetic granular systems are difficult to address in real systems. Several experimental results have been obtained along the last 50 years, but few theoretical approaches have been developed to account for these extremely complex systems. A brief review on the role of interactions on the magnetic properties of granular magnetic systems is given, with a focus on a novel approach known as interacting superparamagnetic model. Two different systems are tested, and the results are discussed in terms of such phenomenological model.

  5. The use of membranes in hybrid industrial separation systems: Final report

    Microsoft Academic Search

    1987-01-01

    Objective of this study was to identify industrial separations amenable to processing via hybrid separations systems consisting of electrically driven membrane processes and conventional unit-separation processes, and to design and evaluate such hybrid systems for specific industrial separations. The rationale for developing hybrid systems is that the resulting separation system often offers significant advantages over the exclusive use of the

  6. Design and Development of Integrated Compact Multiphase Separation System (CMSS)

    SciTech Connect

    Ram S. Mohan; Ovadia Shoham

    2006-04-30

    The petroleum industry has relied in the past mainly on conventional vessel-type separators, which are bulky, heavy and expensive, to process wellhead production of oil-water-gas flow. Economic and operational pressures continue to force the petroleum industry to seek less expensive and more efficient separation alternatives in the form of compact separators. The compact dimensions, smaller footprint and lower weight of compact separators have a potential for cost savings to the industry, especially in offshore and subsea applications. Also, compact separators reduce the inventory of hydrocarbons significantly, which is critical for environmental This report presents a brief overview of the activities and tasks accomplished during the Budget Period II (October 09, 2004-April 30, 2006) of the DOE project titled ''Design and Development of Integrated Compact Multiphase Separation System (CMSS{copyright})''. An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with discussions. The findings of this investigation are summarized in the ''Conclusions'' section In this investigation, the concept of CMSS{copyright} has been developed and is proven through simulation studies and validated by experimental data. As part of the second phase of the project (Budget Period II--10/09/2004-04/30/2006) experimental investigation of the integrated CMSS{copyright} for different configurations has been conducted in order to evaluate the performance of the individual separation components, and determine how they will affect the performance of each other when integrated in the CMSS{copyright}. An intelligent control system is also developed to improve the total system efficiency of Compact Multiphase Separation System (CMSS{copyright}). In mature oil fields, water handling poses a huge problem. Thus water knock out at the earliest stage helps in significant cost savings during handling, separation and transportation of oil. One of the objectives of the CMSS{copyright} configuration is to knock out free water from the upstream fluids. The results from theoretical and experimental studies show that Free Water Knock Out (FWKO) CMSS{copyright} system can be readily deployed in the field using the control system strategies designed, implemented and tested in this study.

  7. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external...delivers transcranial repetitive pulsed magnetic fields of sufficient magnitude...

  8. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external...delivers transcranial repetitive pulsed magnetic fields of sufficient magnitude...

  9. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external...delivers transcranial repetitive pulsed magnetic fields of sufficient magnitude...

  10. Thermal regenerative cracking apparatus and separation system therefor

    SciTech Connect

    Gartside, R.J.; Woebcke, H.N.

    1982-09-07

    This invention relates to an apparatus and method embodied in a trc system for rapidly separating particulate solids from a mixed phase solids-gas stream which may be at velocities up to 150 ft./sec. And at high temperature. Specifically, the device is designed for incorporation at the discharge of solid-gas reacting trc systems having low residence time requirements and carried out in tubular type reactors. Separation is effected by projecting solids by centrifugal force against a bed of solids as the gas phase makes a 180/sup 0/ directional change, said solids changing direction only 90/sup 0/ relative to the incoming stream.

  11. Low residence time solid-gas separation device and system

    SciTech Connect

    Gartside, R. J.; Woebcke, H. N.

    1985-12-03

    An apparatus and method embodied in a TRC system for rapidly separating particulate solids from a mixed phase solids-gas stream which may be at velocities up to 150 ft./sec. and at high temperature. Specifically, the device is designed for incorporation at the discharge of solid-gas reacting TRC systems having low residence time requirements and carried out in tubular type reactors. Separation is effected by projecting solids by centrifugal force against a bed of solids as the gas phase makes a 180/sup 0/ directional change, said solids changing direction only 90/sup 0/ relative to the incoming stream.

  12. Spinel type CoFe oxide porous nanosheets as magnetic adsorbents with fast removal ability and facile separation.

    PubMed

    Ge, X; Gu, C D; Wang, X L; Tu, J P

    2015-09-15

    Adsorption is often time consuming due to slow diffusion kinetic. Sizing he adsorbent down might help to accelerate adsorption. For CoFe spinel oxide, a magnetically separable adsorbent, the preparation of nanosheets faces many challenges including phase separation, grain growth and difficulty in preparing two-dimensional materials. In this work, we prepared porous CoFe oxide nanosheet with chemical formula of Co2.698Fe0.302O4 through topochemical transformation of a CoFe precursor, which has a layered double hydroxide (LDH) analogue structure and a large interlayer spacing. The LDH precursor was synthesized from a cheap deep eutectic solvent (DES) system. The calcined Co2.698Fe0.302O4 has small grain size (10-20nm), nanosheet morphology, and porous structure, which contribute to a large specific surface area of 79.5m(2)g(-1). The Co2.698Fe0.302O4 nanosheets show fast removal ability and good adsorption capacity for both organic waste (305mgg(-1) in 5min for Congo red) and toxic heavy metal ion (5.27mgg(-1) in 30min for Cr (VI)). Furthermore, the Co2.698Fe0.302O4 can be separated magnetically. Considering the precursor can be prepared through a fast, simple, surfactant-free and high-yield synthetic strategy, this work should have practical significance in fabricating adsorbents. PMID:26005799

  13. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    PubMed

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. PMID:23894024

  14. Identification of Heavy and Superheavy Nuclides Using Chemical Separator Systems

    SciTech Connect

    Turler, Andreas

    1999-12-31

    With the recent synthesis of superheavy nuclides produced in the reactions {sup 48}Ca+{sup 238}U and {sup 48}Ca+{sup 242,244}Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, axn) reaction products. In the following, a study of (HI, axn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

  15. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    PubMed

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-01

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption. PMID:26069936

  16. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS.

    PubMed

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2000-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  17. BNL Pulsed Magnet Magnet System Cooldown and Structural Analyses

    E-print Network

    McDonald, Kirk

    Cooling Between Shots, with a Helium Purge to Limit Activation BNL Pulsed Magnet ­Inertially Cooled , 30K-10 Dist Category UC20 c,dated October 1986 Channel Edge Thermal Model #12;Pulse Magnet Cooldown 66K He 85K - Choose Insulation Systems. Determine where Kapton is used. · Stress Analysis, Assess Radial load

  18. Why Are Computational Neuroscience and Systems Biology So Separate?

    Microsoft Academic Search

    Erik De Schutter

    2008-01-01

    Despite similar computational approaches, there is surprisingly little interaction between the computational neuroscience and the systems biology research communities. In this review I reconstruct the history of the two disciplines and show that this may explain why they grew up apart. The separation is a pity, as both fields can learn quite a bit from each other. Several examples are

  19. Swing-out rail system separates overhead crane rails

    NASA Technical Reports Server (NTRS)

    Pitkin, R. G.

    1966-01-01

    Swing-out rail system separates and reconnects the overhead traveling crane rails of a building to provide for the passage of a thick concrete radiation shield sliding door through the rails. In the swing-out position, the rail cantilevered from an axial shaft.

  20. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  1. Hybrid membrane--PSA system for separating oxygen from air

    DOEpatents

    Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  2. Dual Fan Separator within the Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Stapleton, Tom; Converse, Dave; Broyan, James Lee, Jr.

    2014-01-01

    Since NASA's new spacecraft in development for both LEO and Deep Space capability have considerable crew volume reduction in comparison to the Space Shuttle, it is clear that NASA requires a smaller and less expensive commode. The UTAS Universal Waste Management System (UWMS) was designed to address these new constraints, resulting in an 80% volume reduction in the cabin while enhancing performance. Whereas all of the current space commodes use air flow to capture both urine and feces and separate air from the captured air/urine mixture, the UWMS commode and urine fans and the urine separator were combined into a single unit. This unit enables use of a single motor and motor controller, which provides considerable packaging and weight efficiency. In some of the intended platform applications for the UWMS, the urine is pumped to a water reclamation system. The ISS Urine Processor Assembly (UPA) system requires delivered urine to include less than 0.25% air inclusion. Air inclusion in centrifugal urine separators is greatly dependent on its rotational speed. To satisfy this requirement, a gear reducer was included, allowing the fans to rotate at a much higher speed than the separator. This new design, the Dual Fan Separator (DFS) has been designed, prototyped and tested. This paper will outline the studies and analysis performed to develop the design configuration for testing. The studies included a configuration trade study, dynamic stability analysis of the rotating bodies and a performance analysis of included labyrinth seals. NASA is considereing a program to fly the UWMS aboard the ISS as a flight experiment. The goal of the design activity is to elevate the Technical Readiness Level (TRL) of the Dual Fan Separator and determine if the concept is ready to be included in flight experiment deliverable.

  3. 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications.

    PubMed

    Chen, Haitao; Kaminski, Michael D; Rosengart, Axel J

    2008-01-01

    High gradient magnetic separation (HGMS) of magnetic materials from fluids or waste products has many established industrial applications. However, there is currently no technology employing HGMS for ex-vivo biomedical applications, such as for the removal of magnetic drug- or toxin-loaded spheres from the human blood stream. Importantly, human HGMS applications require special design modifications as, in contrast to conventional use where magnetic elements are permanently imbedded within the separation chambers, medical separators need to avoid direct contact between the magnetic materials and blood to reduce the risk of blood clotting and to facilitate convenient and safe treatment access for many individuals. We describe and investigate the performance of a magnetic separator prototype designed for biomedical applications. First, the capture efficiency of a prototype HGMS separator unit consisting of a short tubing segment and two opposing magnetizable fine wires along the outside of the tubing was investigated using 2D mathematical modeling. Second, the first-pass effectiveness to remove commercially available, magnetic polystyrene spheres from human blood using a single separator unit was experimentally verified. The theoretical and experimental data correlated well at low flow velocities (<5.0 cm/s) and high external magnetic fields (>0.05 T). This prototype separator unit removed >90% in a single pass of the magnetic spheres from water at mean flow velocity < or =8.0 cm/s and from blood mimic fluids (ethylene glycol-water solutions) at mean flow velocity < or =2.0 cm/s. In summary, we describe and prove the feasibility of a HGMS separator for biomedical applications. PMID:17400018

  4. A universal DC characterisation system for hard and soft magnetic materials

    Microsoft Academic Search

    Philip Anderson

    2008-01-01

    A fully automatic system has been designed for the accurate measurement of the DC magnetic properties of soft and hard ferromagnetic materials utilising discrete calibrated instruments in order to provide a traceable calibration route separate from the transfer of standard magnetic test samples. Custom written software is used to operate the system in one of three modes, constant dH\\/dt, variable

  5. Liquid-phase separation in glass-forming systems

    Microsoft Academic Search

    P. F. James

    1975-01-01

    This review is concerned with the process of liquid-phase separation in glass-forming systems. In the first part a general account of phase equilibria is presented together with a discussion of the thermodynamic behaviour of systems exhibiting liquid-liquid immiscibility. The estimation of free energies from phase-boundary data and the location of the spinodal boundary are briefly considered. The origin of immiscibility

  6. Separating systems and oriented graphs of diameter two

    Microsoft Academic Search

    Béla Bollobás; Alex D. Scott

    2007-01-01

    We prove results on the size of weakly and strongly separating set systems and matrices, and on cross-intersecting systems. As a consequence, we improve on a result of Katona and Szemeredi (6), who proved that the minimal number of edges in an oriented graph of order n with diameter 2 is at least (n\\/2)log2(n\\/2). We show that the minimum is

  7. Combined ICR heating antenna for ion separation systems

    SciTech Connect

    Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2011-01-15

    A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.

  8. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  9. Magnetic QCA systems G.H. Bernsteina,

    E-print Network

    Metlushko, Vitali

    Magnetic QCA systems G.H. Bernsteina, *, A. Imrea , V. Metlushkoc , A. Orlova , L. Zhoua , L. Jia in an altogether new paradigm. Magnetic interactions between nanomagnets are sufficiently strong to allow room recent work of the Notre Dame group on magnetically coupled QCA. q 2005 Elsevier Ltd. All rights reserved

  10. Orientation and Strain Dependence of the Magnetic Phase Separation at Perovskite Cobaltite Interfaces

    NASA Astrophysics Data System (ADS)

    Bose, S.; Sharma, M.; Torija, M. A.; Gazquez, J.; Varela, M.; Ambaye, H.; Goyette, R.; Lauter, V.; Fitzsimmons, M. R.; Schmitt, J.; Leighton, C.

    2013-03-01

    We recently showed that the degraded magnetic and electronic properties in very thin STO(001)/La1-xSrxCoO3 films is due to a form of magnetic phase separation. This is primarily due to the strain driven accumulation of O vacancies near the interface. In this work we demonstrate how this understanding allows us to engineer these interfacial properties via crystallographic orientation and strain control. Using PNR, magnetometry and transport, we show how this degradation can be significantly mitigated by using LAO(001) and STO(110) substrates cf. STO(001). PNR on 400Å x =0.28 films reveals an interfacial layer with suppressed magnetism on all three substrates. However, while this layer is 150Å on STO(001), it extends at most to 30Å on LAO(001) and STO(110). Transport measurements on x =0.5 films show that at a thickness of ~ 55Å, films on STO(110) and LAO(001) exhibit AMR whereas films on STO(001) are dominated by inter-cluster GMR. Finally, thickness dependent magnetometry shows that the magnetic order deteriorates more quickly on STO(001) than on LAO(001) and STO(110). Our work thus opens up a possible new route to tailor interfacial magneto-electronic properties in oxide heterostructures. We recently showed that the degraded magnetic and electronic properties in very thin STO(001)/La1-xSrxCoO3 films is due to a form of magnetic phase separation. This is primarily due to the strain driven accumulation of O vacancies near the interface. In this work we demonstrate how this understanding allows us to engineer these interfacial properties via crystallographic orientation and strain control. Using PNR, magnetometry and transport, we show how this degradation can be significantly mitigated by using LAO(001) and STO(110) substrates cf. STO(001). PNR on 400Å x =0.28 films reveals an interfacial layer with suppressed magnetism on all three substrates. However, while this layer is 150Å on STO(001), it extends at most to 30Å on LAO(001) and STO(110). Transport measurements on x =0.5 films show that at a thickness of ~ 55Å, films on STO(110) and LAO(001) exhibit AMR whereas films on STO(001) are dominated by inter-cluster GMR. Finally, thickness dependent magnetometry shows that the magnetic order deteriorates more quickly on STO(001) than on LAO(001) and STO(110). Our work thus opens up a possible new route to tailor interfacial magneto-electronic properties in oxide heterostructures. Work supported by NSF and DOE; at ORNL by US DOE-BES MS&E Div; at UCM by ERC Starting Investigator Award

  11. Magnetization of planar four-fermion systems

    SciTech Connect

    Caldas, Heron [Departamento de Ciencias Naturais, Universidade Federal de Sao Joao del Rei, 36301-160 Sao Joao del Rei, MG (Brazil); Ramos, Rudnei O. [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2009-09-15

    We consider a planar system of fermions, at finite temperature and density under a static magnetic field parallel to the two-dimensional plane. This magnetic field generates a Zeeman effect and then a spin polarization of the system. The critical properties are studied from the Landau's free energy. The possible observable consequences of the magnetization of planar systems such as polymer films and graphene are discussed.

  12. Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis

    NASA Astrophysics Data System (ADS)

    Pope, S. A.; Zhang, T. L.; Balikhin, M. A.; Delva, M.; Hvizdos, L.; Kudela, K.; Dimmock, A. P.

    2011-04-01

    In situ measurements of the magnetic field are vital to the study of many fundamental problems in planetary research. Therefore the magnetometer experiment is a key element of the payload of Venus Express. In addition to the interaction of the solar wind with Venus, these measurements are crucial for the study of atmospheric escape and detection of lightning. However, the methodology for the magnetic field measurements had to be different to the traditional approach, because Venus Express is not a magnetically clean spacecraft. A technique based on two-point simultaneous measurements of the magnetic field and systems identification software is used to separate the natural magnetic field from the spacecraft generated interference. In this paper an overview of the techniques developed to separate these two field types and the results achieved for 1 Hz Venus Express data are presented. Previous publications suggest that the resulting Venus Express cleaned data is of comparable quality to measurements made from onboard magnetically clean spacecraft (Zhang et al., 2008a, b; Slavin et al., 2009).

  13. Separation and measurement of silver nanoparticles and silver ions using magnetic particles.

    PubMed

    Mwilu, Samuel K; Siska, Emily; Baig, R B Nasir; Varma, Rajender S; Heithmar, Ed; Rogers, Kim R

    2014-02-15

    The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to unintentional release into the environment. To protect consumer health and the environment, there is an urgent need to develop tools that can characterize and quantify these materials at low concentrations and in complex matrices. In this study, magnetic nanoparticles coated with either dopamine or glutathione were used to develop a new, simple and reliable method for the separation/pre-concentration of trace amounts of silver nanoparticles followed by their quantification using inductively coupled plasma mass spectrometry (ICP-MS). The structurally modified magnetic particles were able to capture trace amounts of silver nanoparticles (~2 ppb) and concentrate (up to 250 times) the particles for analysis with ICP-MS. Under laboratory conditions, recovery of silver nanoparticles was >99%. More importantly, the magnetic particles selectively captured silver nanoparticles in a mixture containing both nano-particulate and ionic silver. This unique feature addresses the challenges of separation and quantification of silver nanoparticles in addition to the total silver in environmental samples. Spiking experiments showed recoveries higher than 97% for tap water and both fresh and saline surface water. PMID:24295749

  14. Accessible and green manufacturing of magnetite (ferrous ferric oxide) nanocrystals and their use in magnetic separations

    NASA Astrophysics Data System (ADS)

    Yavuz, Cafer Tayyar

    This work describes the first size dependent magnetic separation in nanoscale. Magnetite (Fe3O4) nanocrystals of high quality and uniform size were synthesized with monodispersity below 10%. Magnetite nanocrystals of 4 nm to 33 nm (average diameter) were produced. Batch synthesis was shown to go up to 20 grams which is more than 10 times of a standard nanocrystal synthesis, without loosing the quality and monodispersity. Reactor design for mass (1 gram per hour) production of magnetite nanocrystals is reported for the first time. The cost of a kg of lab purity magnetite nanocrystals was shown to be 2600. A green synthesis that utilizes rust and edible oils was developed. The cost of a kg was brought down to 22. Size dependency of magnetism was shown in nanoscale for the first time. Reversible aggregation theory was developed to explain the low field magnetic separation and solution behavior of magnetite nanocrystals. Arsenic was removed from drinking water with magnetite nanocrystals 200 times better than commercial adsorbents. Silica coating was successfully applied to enable the known silica related biotechnologies. Magnetite-silica nanoshells were functionalized with amino groups. For the first time, silver was coated on the magnetite-silica nanoshells to produce triple multishells. Anti-microbial activity of multishells is anticipated.

  15. On a plasma sheath separating regions of oppositely directed magnetic field

    Microsoft Academic Search

    E. G. Harris

    1962-01-01

    Summary  An exact solution of the Vlasov equations is found which describes a layer of plasma confined between two regions of oppositely\\u000a directed magnetic field. The electrons and ions have Maxwellian distributions on the plane where the magnetic field vanishes.\\u000a In the coordinate system, in which the electron and ion drift velocities are equal in magnitude but opposite in direction,\\u000a the

  16. Noise enhanced stability in magnetic systems

    Microsoft Academic Search

    Marco Trapanese

    2009-01-01

    In this paper noise enhanced stability in magnetic systems is studied by both an Ising-type model and a Preisach-Arrhenius model as well as a dynamic Preisach model. It is shown that in one nonequilibrium Ising system noise enhanced stability occurs and that dynamic Preisach model has the capability to predict the occurrence of noise enhanced stability in magnetic systems. On

  17. Helium 2 cooling systems for long term missions in space: phase separation and hybrid cooling systems

    Microsoft Academic Search

    G. Klipping; I. Klipping; U. Schmidtchen

    1980-01-01

    The suitability of helium 2 (superfluid helium) phase separation and hybrid cooling systems for astronomical and aeronomical observations in space, e.g., infrared radiation, was studied. The different aspects of phase separation under conditions of weightlessness are treated and the active phase separator for a liquid helium cooled infrared observatory for Spacelab, German Infrared Laboratory (GIRL) is described. For long-term (more

  18. Rapid removal and separation of iron(II) and manganese(II) from micropolluted water using magnetic graphene oxide.

    PubMed

    Yan, Han; Li, Haijiang; Tao, Xue; Li, Kun; Yang, Hu; Li, Aimin; Xiao, Shoujun; Cheng, Rongshi

    2014-06-25

    A novel two-dimensional carbon-based magnetic nanomaterial, magnetic graphene oxide (MGO), was prepared and then used as an efficient adsorbent. MGO showed rapid and complete removal of iron(II) (Fe) and manganese(II) (Mn) from micropolluted water bodies over a wide pH range. After saturated adsorption, MGO could be rapidly separated from water under an external magnetic field. Results of the adsorption equilibrium study indicated that the adsorption of Fe and Mn by MGO took place via monolayer heterogeneous and spontaneous processes resulting from the heterogeneity of the MGO surface as well as from the electrostatic interactions between surface acidic groups of MGO and metal ions. In addition, both the Fe and Mn uptake of MGO was very slightly affected by NaCl, although it decreased with increased humic acid in solutions. In an Fe/Mn binary aqueous system, both metal ions can be efficiently removed at low concentrations, but MGO showed preferential adsorption of Fe in a concentrated aqueous mixture. The adsorption behavior in the binary system was due to different affinities of surface oxygen-containing functional groups on MGO to Fe and Mn. Finally, unlike traditional approaches in recycling and reusing an adsorbent, the Fe- and Mn-loaded MGO can be directly applied as a new adsorbent to achieve the efficient removal of fluoride from aqueous solutions. PMID:24787443

  19. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles

    PubMed Central

    2012-01-01

    Thiol group functionalized silica-coated magnetic nanoparticles (Si-MNPs@SH) were synthesized for rapid and selective magnetic field-based separation of mixed proteins. The highest adsorption efficiencies of binary proteins, bovine serum albumin (BSA; 66 kDa; pI = 4.65) and lysozyme (LYZ; 14.3 kDa; pI = 11) were shown at the pH values corresponding to their own pI in the single-component protein. In the mixed protein, however, the adsorption performance of BSA and LYZ by Si-MNPs@SH was governed not only by pH but also by the molecular weight of each protein in the mixed protein. PMID:22650609

  20. Comment on "Criteria for Separability of Multipartite Quantum System"

    NASA Astrophysics Data System (ADS)

    Chang, Da-Wei

    2015-07-01

    Recently, Tao et al. (Int. J. Theor. Phys. 52 (6), 1970-1978, 2013) established a representation of density matrix for multipartite quantum system. Moreover, according to this representation of the density matrix for multipartite quantum system, Tao et al. (Int. J. Theor. Phys. 52 (6), 1970-1978, 2013) have presented two necessary criteria for separability of multipartite quantum system of arbitrary dimensions, for example, see Theorem 2.1 and Theorem 2.2. In this Comment, we would like to point out that Theorem 2.2 given by Tao et al. (Int. J. Theor. Phys. 52 (6), 1970-1978, 2013) is incorrect in general.

  1. Chemical separation of primordial Li+ during structure formation caused by nanogauss magnetic field

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Kawasaki, Masahiro

    2015-01-01

    During the structure formation, charged and neutral chemical species may have separated from each other at the gravitational contraction in primordial magnetic field (PMF). A gradient in the PMF in a direction perpendicular to the field direction leads to the Lorentz force on the charged species. Resultantly, an ambipolar diffusion occurs, and charged species can move differently from neutral species, which collapses gravitationally during the structure formation. We assume a gravitational contraction of neutral matter in a spherically symmetric structure, and calculate fluid motions of charged and neutral species. It is shown that the charged fluid, i.e. proton, electron, and 7Li+, can significantly decouple from the neutral fluid depending on the field amplitude. The charged species can, therefore, escape from the gravitational collapse. We take the structure mass, the epoch of the gravitational collapse, and the comoving Lorenz force as parameters. We then identify a parameter region for an effective chemical separation. This type of chemical separation can reduce the abundance ratio of Li/H in early structures because of inefficient contraction of 7Li+ ion. Therefore, it may explain Li abundances of Galactic metal-poor stars which are smaller than the prediction in standard big bang nucleosynthesis model. Amplitudes of the PMFs are controlled by a magnetohydrodynamic turbulence. The upper limit on the field amplitude derived from the turbulence effect is close to the value required for the chemical separation.

  2. Manipulation of magnetic phase separation and orbital occupancy in manganites by strain engineering and electric field

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Song, Cheng; Pan, Feng; Key Laboratory of Advanced Materials (MOE) Team

    2015-03-01

    The modification of electronic phases in correlated oxides is one of the core issues of condensed matter. We report the reversible control of ferromagnetic phase transition in manganite films by ionic liquid gating, replicating the La1-xSrxMnO3 (LSMO) phase diagram. The formation and annihilation of an insulating and magnetically hard phase in the soft magnetic matrix, which randomly nucleates and grows across the film, is directly observed under different gate voltages (VG) . The realization of reversible metal-insulator transition in colossal magnetoresistance materials can lead to the development of four-state memories. The orbital occupancy and magnetic anisotropy of LSMO films are manipulated by VG in a reversible and quantitative manner. Positive and negative VG increases and reduces the occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), respectively. This finding fills in the blank of electrical manipulation of four degrees of freedom in correlated system.

  3. Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells

    PubMed Central

    Wilson, Robert J.; Hu, Wei; Fu, Cheryl Wong Po; Koh, Ai Leen; Gaster, Richard S.; Earhart, Christopher M.; Fu, Aihua; Heilshorn, Sarah C.; Sinclair, Robert; Wang, Shan X.

    2009-01-01

    Optical observations of 100 nm metallic magnetic nanoparticles are used to study their magnetic field induced self assembly. Chains with lengths of tens of microns are observed to form within minutes at nanoparticle concentrations of 1010 per mL. Chain rotation and magnetophoresis are readily observed, and SEM reveals that long chains are not simple single particle filaments. Similar chains are detected for several 100 nm commercial bio-separation nanoparticles. We demonstrate the staged magnetic condensation of different types of nanoparticles into composite structures and show that magnetic chains bind to immunomagnetically labeled cells, serving as temporary handles which allow novel magnetic cell manipulations. PMID:20161001

  4. Active tensor magnetic gradiometer system final report for Project MM–1514

    USGS Publications Warehouse

    Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond

    2014-01-01

    An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.

  5. Infinite-Order Symmetries for Quantum Separable Systems

    SciTech Connect

    Miller, W. [School of Mathematics, University of Minnesota, Minneapolis (United States); Kalnins, E.G. [Department of Mathematics, University of Waikato, Hamilton (New Zealand); Kress, J.M. [School of Mathematics, University of New South Wales, Sydney (Australia); Pogosyan, G.S. [Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 (Russian Federation); Departamento de Matematicas, CUCEA, Universidad de Guadalayara (Mexico)

    2005-10-01

    We develop a calculus to describe the (in general) infinite-order differential operator symmetries of a nonrelativistic Schroedinger eigenvalue equation that admits an orthogonal separation of variables in Riemannian n space. The infinite-order calculus exhibits structure not apparent when one studies only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the space. Similarly, we can develop a calculus for conformal symmetries of the time-dependent Schroedinger equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries.

  6. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    Microsoft Academic Search

    R. R. Judkins; T. D. Burchell

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  7. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    Microsoft Academic Search

    Roddie R. Judkins; Timothy D. Burchell

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known \\

  8. IMPROVEMENT OF MAGNETICALLY SEPARATED FERROUS CONCENTRATE BY SHREDDING: A PERFORMANCE TEST. TEST NO. 4.07, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    This report describes a series of test runs in which ferrous product magnetically recovered from municipal waste was further shredded in a small (50 hp) hammermill to free attached or entrapped contaminant. A belt magnet was then used to separate metal from the liberated contamin...

  9. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  10. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  11. Dual Fan Separator within the Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Stapleton, Tom; Converse, Dave; Broyan, James Lee, Jr.

    2014-01-01

    Since NASA's new spacecraft in development for both LEO and Deep Space capability have considerable crew volume reduction in comparison to the Space Shuttle, the need became apparent for a smaller commode. In response the Universal Waste Management System (UWMS) was designed, resulting in an 80% volume reduction from the last US commode, while enhancing performance. The ISS WMS and previous shuttle commodes have a fan supplying air flow to capture feces and a separator to capture urine and separate air from the captured air/urine mixture. The UWMS combined both rotating equipment components into a single unit, referred to at the Dual Fan Separator (DFS). The combination of these components resulted in considerable packaging efficiency and weight reduction, removing inter-component plumbing, individual mounting configurations and required only a single motor and motor controller, in some of the intended UWMS platform applications the urine is pumped to the ISS Urine Processor Assembly (UPA) system. It requires the DFS to include less than 2.00% air inclusion, by volume, in the delivered urine. The rotational speed needs to be kept as low as possible in centrifugal urine separators to reduce air inclusion in the pumped fluid, while fans depend on rotational speed to develop delivered head. To satisfy these conflicting requirements, a gear reducer was included, allowing the fans to rotate at a much higher speed than the separator. This paper outlines the studies and analysis performed to develop the DFS configuration. The studies included a configuration trade study, dynamic stability analysis of the rotating bodies and a performance analysis of included labyrinth seals. NASA is considering a program to fly the UWMS aboard the ISS as a flight experiment. The goal of this activity is to advance the Technical Readiness Level (TRL) of the DFS and determine if the concept is ready to be included as part of the flight experiment deliverable.

  12. Sugaring-out: A novel phase separation and extraction system

    Microsoft Academic Search

    Bin Wang; Thaddeus Ezejias; Hao Feng; Hans Blaschek

    2008-01-01

    In this study, we made a novel observation that by introducing a monomeric sugar or a disaccharide into an acetonitrile–water solution, the acetonitrile (ACN) can be separated from water to form a new phase. The two-phase formation triggered by sugar addition was visualized with Sudan I. The ability of different sugars to form an ACN–water two-phase system and the effect

  13. Separating systems and oriented graphs of diameter two

    E-print Network

    Scott, Alexander Alexander

    Separating systems and oriented graphs of diameter two B´ela Bollob´as Alex Scott April 24, 2006 proved that the minimal number of edges in an oriented graph of order n with diameter 2 is at least (n/2 number of edges in an oriented graph of order n and diameter 2 is at least (n/2) log2(n/2). They also

  14. Inhomogeneous Magnetism in Single Crystalline Sr3CuIrO6+delta: Implications to Phase-Separation Concepts

    Microsoft Academic Search

    Asad Niazi; P. L. Paulose; E. V. Sampathkumaran

    2002-01-01

    The single crystalline form of an insulator, Sr3CuIrO6+delta, is shown to exhibit unexpectedly more than one magnetic transition (at 5 and 19 K) with spin-glass-like magnetic susceptibility behavior. On the basis of this finding, viz., inhomogeneous magnetism in a chemically homogeneous material, we propose that the idea of ``phase separation'' described for manganites is more widespread in different ways. The

  15. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    PubMed

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (?), selectivity (?), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (?ip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (?sw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. PMID:25542704

  16. Spectral functions in a magnetic field as a probe of spin-charge separation in a Luttinger liquid

    E-print Network

    Silvio Rabello; Qimiao Si

    2003-02-07

    We show that the single-particle spectral functions in a magnetic field can be used to probe spin-charge separation of a Luttinger liquid. Away from the Fermi momentum, the magnetic field splits both the spinon peak and holon peak; here the spin-charge separation nature is reflected in the different magnitude of the two splittings. At the Fermi momentum, the magnetic field splits the zero-field peak into {\\it four} peaks. The feasibility of experimentally studying this effect is discussed.

  17. Spectral functions in a magnetic field as a probe of spin-charge separation in a Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Rabello, Silvio; Si, Qimiao

    2000-10-01

    We show that the single-particle spectral functions in a magnetic field can be used to probe spin-charge separation of a Luttinger liquid. Away from the Fermi momentum, the magnetic field splits both the spinon peak and holon peak; here the spin-charge separation nature is reflected in the different magnitude of the two splittings. At the Fermi momentum, the magnetic field splits the zero-field peak into four. The feasibility of studying this effect using angle-resolved photoemission and momentum-resolved tunneling is discussed.

  18. Space Shuttle separate-surface control-system study

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Montgomery, R. C.

    1984-01-01

    A control system concept is presented that produces proportional control of yaw moment for the space shuttle from early entry to Mach 2 with only software modifications of the vehicle. It uses separate deflections of the inboard and outboard elevon surfaces and is evaluated, by determining the maximum static yawing moment available by considering the deflection limits of the elevon surfaces. A proportional moment slightly in excess of that produced by the most effective reaction control system (RCS) jet for yaw control can be obtained. In addition to the static moment study, a control law is designed which is intended to produce desired flying qualities.

  19. Internal Entropy Production in Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Valko, L.; Morris, H.

    2002-11-01

    In the framework of the mathematically and conceptually simple two-level mean-field model of an electronic spin system characterised by the spin-lattice relaxation time, actual magnetic phenomena have been evaluated within the language of irreversible thermodynamics, namely in terms of internal entropy production. A suitable description of both reversible and irreversible magnetization processes is presented which enables one to distinguish between them. It is suggested that, on the basis of this model, the majority of the phenomena observed in magnetic systems, for example, the construction of hysteresis loops, the energy balance of magnetization processes, the Steinmetz rule, etc., should be experimentally evaluated.

  20. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    PubMed

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 ?g Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 ?g Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. PMID:23789985

  1. Magnetic Verification of the G0 Superconducting Magnet System

    NASA Astrophysics Data System (ADS)

    Lee, Lawrence

    2001-04-01

    The G0 Superconducting Magnet System (SMS) is a toroidal magnet composed of 8 superconducting coils placed symmetrically about a central beam axis. The entire assembly is iron-free, containing no iron pole faces nor return yokes, and is housed in a common liquid nitrogen heat shield and cryostat. As such, the spectrometer magnetic fields can be completely determined if sufficient knowledge of the current filaments in the coils is available. However, since the coils are not visible nor directly accessible when the SMS is cooled, measurements of external magnetic fields at ``key'' reference points must be used to discover or reconstruct the location of the current filaments to high precision. In order to accomplish this task, a Magnetic Verification Device has been constructed to scan the fringe-field regions of the G0 SMS to locate a series of zero-crossing points in specific components of the magnetic field. This Magnetic Verification Device -- which includes a 3D-motion gantry with 2 high precision 3-axis Hall Probes, and a host of temperature, inclination, and photo sensors -- will be described in detail.

  2. Magnetic properties of anisotropic Sr-La-system ferrite magnets

    SciTech Connect

    Yamamoto, H.; Nagakura, M. (School of Science and Technology, Meiji Univ., 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214 (JP)); Terada, H. (College of Engineering, Chubu Univ., 1200 Matsumoto-cho, Kasugai 487 (JP))

    1990-05-01

    This paper presents an experiment carried out to investigate the effect of La{sub 2}O{sub 3} addition to the magnetic and physical properties of strontium ferrite magnets. It was found that the La{sub 2}O{sub 3} addition to SrO {center dot} 6Fe{sub 2}O{sub 3} (stoichiometric composition) was very useful in stabilizing the magnetoplumbite structure and that these Sr-La-system ferrites had excellent properties as a permanenent magnet. Compositions were chosen according to the formula ((SrO){sub 1/n+1}(Fe{sub 2}O{sub 3}){sub n/n+1}){sub 100{minus}x}(La{sub 2}O{sub 3}){sub x}, where n was varied between 5.0 and 6.5, and x between 0 and 5.0. The optimum conditions for making magnets and some properties of typical specimens are discussed.

  3. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  4. Planetary magnetism in the outer solar system.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1973-01-01

    A brief review of the salient considerations which apply to the existence of magnetic fields in connection with planetary and subplanetary objects in the outer solar system is given. Consideration is given to internal dynamo fields, fields which might originate from interaction with the solar wind or magnetospheres (externally driven dynamos) and lastly fossil magnetic fields such as have been discovered on the moon. Where possible, connection is made between magnetism, means of detection, and internal body properties.

  5. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  6. The effect of charge separation on nonlinear electrostatic waves in a magnetized dusty plasma with two-temperature ions

    SciTech Connect

    Maharaj, S. K. [Hermanus Magnetic Observatory, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Pillay, S. R. [University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Singh, S. V.; Reddy, R. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai-410218 (India)

    2008-09-07

    In view of the observations of parallel (to Earth's magnetic field) spiky electric field structures by the FAST satellite, a theoretical study is conducted using a dusty plasma model comprising Boltzmann distributed hot and cool ions, Boltzmann electrons and a negatively charged cold dust fluid to investigate the existence of similar low frequency nonlinear electrostatic waves in a dusty plasma which could have a similar appearance as the observed waveforms. Charge separation effects are incorporated into our model by the inclusion of Poisson's equation as opposed to assuming quasineutrality. The system of nonlinear equations is then numerically solved. The resulting electric field structure is examined as a function of various plasma parameters such as Mach number, driving electric field amplitude, bulk dust drift speed, particle densities and particle temperatures.

  7. Label-free cell separation and sorting in microfluidic systems

    PubMed Central

    Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed

    2010-01-01

    Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490

  8. Chemical separations schemes for partitioning and transmutation systems.

    SciTech Connect

    Laidler, J.

    2002-05-02

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, {sup 99}Tc and {sup 129}I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining.

  9. A hazard separation system for dismantlement of nuclear weapon components

    SciTech Connect

    Lutz, J.D.; Purvis, S.T.; Hospelhorn, R.L.; Thompson, K.R.

    1995-04-01

    Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

  10. Magnetic suspension and balance system study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1984-01-01

    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.

  11. Optimal design of hybrid magnet in maglev system with both permanent and electro magnets

    Microsoft Academic Search

    Takashi Onuki; Yasushi Toda

    1993-01-01

    A magnetic levitation system with both permanent magnets and electromagnets has less power loss than a conventional attractive-type system. In this paper, the authors propose an analysis procedure of the hybrid magnet in the experimental levitation system. First, they make a two-dimensional analysis of the hybrid magnet. Though the vector potential A method is often adopted to solve magnetic problems,

  12. A phenomenological study on dilute magnetic system

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar; Paul, Somnath; Sarkar, A.

    2015-06-01

    A phenomenological study on DMS has been undertaken. The developed simple formulation is made to examine the dependence of magnetism in the system with cluster size of local magnet, temperature and concentration of the clusters in dielectric background. The overall success is found to be good.

  13. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz (Livermore, CA)

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  14. Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

    PubMed Central

    Chou, Yen-Chun; Lu, Chia-Feng; Guo, Wan-Yuo; Wu, Yu-Te

    2010-01-01

    Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT). The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature. PMID:20445739

  15. Mass separation of a multicomponent plasma flow in a curvilinear magnetic field

    SciTech Connect

    Papernyi, V. L.; Krasov, V. I. [Irkutsk State University (Russian Federation)

    2011-11-15

    The motion of a metal plasma flow of a vacuum-arc discharge in a transportation plasma-optical system with a curvilinear magnetic field is studied experimentally and numerically. The flow position at the output of the system is shown to depend on the cathode material, which determines the mass-to-charge ratio of plasma ions. As a result, the flow with a greater ion mass-to-charge ratio moves along a trajectory with a larger radius. A similar effect is observed in the case of a multicomponent plasma flow generated by a composite cathode. The results of two-fluid MHD simulations of a plasma flow propagating in a curvilinear magnetic field agree qualitatively with the experimental data.

  16. Common Coil Magnet System for VLHC

    SciTech Connect

    Gupta, R.

    1999-02-12

    This paper introduces the common coil magnet system for the proposed very large hadron collider (VLHC). In this system, the high energy booster (HEB), the injector to VLHC, is integrated as the iron dominated low field aperture within the coldmass of the common coil magnet design introduced earlier. This 4-in-1 magnet concept for a 2-in-1 machine should provide a major cost reduction in building and operating VLHC. Moreover, the proposed design reduces the field quality problems associated with the large persistent currents in Nb{sub 3}Sn magnets. The paper also shows that the geometric field harmonics can be made small. In this preliminary magnetic design. the current dependence in harmonics is significant but not umnanageable.

  17. Magnetic Levitation System The following figure shows the cross section of a magnetic levitation (MAGLEV) train.

    E-print Network

    Hagan, Martin

    Magnetic Levitation System The following figure shows the cross section of a magnetic levitation in matched pairs. The magnetic attraction of the vertically paired magnets balances the force of gravity and levitates the vehicle above the guideway. d h z Train Track Magnets Fixed Reference Line Magnets

  18. Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging.

    PubMed

    An, Hongyu; Lin, Weili

    2002-10-01

    Approaches to obtain quantitative, noninvasive estimates of total cerebral blood volume (tCBV) and cerebral venous blood volume (vCBV) separately in humans are proposed. Two sequences were utilized, including a 3D high-resolution gradient-echo (GE) sequence and a 2D multi-echo GE/spin-echo (MEGESE) sequence. Images acquired by the former sequence provided an estimate of background magnetic field variations (DeltaB), while images obtained by the latter sequence were utilized to obtain separate measures of tCBV and vCBV with and without contrast agent. Prior to the calculation of vCBV and tCBV, the acquired images were corrected for signal loss induced by the presence of DeltaB. vCBV and tCBV were estimated to be 2.46% +/- 0.28% and 3.20% +/- 0.41%, respectively, after the DeltaB correction, which in turn provided a vCBV/tCBV ratio of 0.77 +/- 0.04, in excellent agreement with results reported in the literature. Our results demonstrate that quantitative estimates of vCBV and tCBV can be obtained in vivo. PMID:12353273

  19. Control of separated flow in a reflected shock interaction using a magnetically-accelerated surface discharge

    NASA Astrophysics Data System (ADS)

    Atkinson, Michael D.; Poggie, Jonathan; Camberos, José A.

    2012-12-01

    A numerical investigation was carried out to explore the effects of a magnetically-accelerated surface discharge on a separated, turbulent boundary layer in supersonic flow. The geometry and test conditions were chosen for comparison to experiments carried out at Princeton University. For those studies, a reflected shock interaction was created using a 14° shock generator acting on an incoming turbulent boundary layer with a Reynolds number based on momentum thickness of 1 × 104 and a freestream Mach number of 2.6. Three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) calculations were carried out to simulate the experiments, using the US3D code developed at the University of Minnesota. The baseline code was modified to include a semi-empirical model of the surface discharge actuator, implemented through source terms in the momentum equation, vibrational energy equation, and total energy equation. The computational results for the baseline flow and several control cases were compared to experimental measurements of mean surface pressure. The level of discrepancy was typical of well-resolved RANS computations of three-dimensional, separated flows: qualitative agreement was obtained, and the general experimental trends were captured by the numerical model. Substantial three-dimensionality was observed even in the baseline flow, and significant changes in the flow topology were observed with the application of the actuator. Because of the highly three-dimensional nature of this shock interaction, the initial interpretation of the experiments may need to be revisited.

  20. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  1. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  2. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells

    PubMed Central

    2010-01-01

    Background Highly purified infected red blood cells (irbc), or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS) offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary. Methods A dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from Plasmodium falciparum cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates. Results In HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%). With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures. Conclusion The novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods. PMID:20122252

  3. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  4. Wafer distribution system for a clean room using a novel magnetic suspension technique

    Microsoft Academic Search

    K. H. Park; K. Y. Ahn; S. H. Kim; Y. K. Kwak

    1998-01-01

    A linear transport system, which is capable of reducing the weight of a moving carrier by separating power-supplying devices, is developed by using a new magnetic levitation technique. This system is designed to distribute a wafer between semiconductor fabrication process modules in clean rooms, because it can eliminate particles and oil contamination that normally exist in conventional transporter systems due

  5. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (d- and l-cysteine, d- and l-arginine, d- and l-leucine, d- and l-glutamine and d- and l-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, d- and l-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates. PMID:25976126

  6. Preliminary results of pre-combustion removal of mercury, arsenic, and selenium from coal by dry magnetic separation

    SciTech Connect

    Oder, R.R.; Jamison, R.E.; Brandner, E.D.

    1999-07-01

    The authors report the results of preliminary measurements of pre-combustion separation of major metal oxides and trace elements from coal by dry magnetic separation. The measurements have been made as part of ETCi's development of MagMill{trademark} technology for removing mineral matter from coal at the pulverizer at the front end of a coal fired power plant. The technology is specific to separation of mercury, arsenic, and selenium because of their associations with iron pyrites in coal. Measurements were made on a suite of five Eastern US and five Illinois Basin bituminous rank coals prepared at 8 Mesh topsize and processed as 8 Mesh by zero fractions through a dry Para Trap Magnetic Separator. Measurements of major metals and trace elements were made on the feed coal, the magnetic refuse fraction and the magnetic clean coal product. The range of weight recoveries measured for 13 of the trace elements for the suite of coals indicates a significant potential for pre-combustion removal of trace elements and especially for mercury, selenium, and arsenic by dry magnetic methods. While these three elements are important because they are considered hazardous air pollutant precursors, pre-combustion removal of arsenic is especially important because of its role in poisoning catalysts used in emerging SO{sub x} and NO{sub x} control technologies.

  7. SST-1 Magnet System Refurbishment: An Update

    NASA Astrophysics Data System (ADS)

    Pradhan, Subrata; SST-1 Mission Team

    The Magnet System of the Steady State Superconducting Tokamak (SST-1) has been completely refurbished under the SST-1 Mission. Since Jan 2009, a wide spectrum of refurbishment has been undertaken which, includes developing reliable designs and processes leading to the fabrication of leak tight low DC resistances in SST-1 magnet winding packs, equipping each of the sixteen SST-1 Toroidal Field (TF) magnets with a supercritical helium cooled bubble type thermal shields and testing each of the prepared TF magnets under representative conditions in cold with nominal currents along with manifolds and isolators in near representative conditions. Each of the sixteen SST-1 TF magnets has been tested fully and successfully in a dedicated test stand in nineteen campaigns during June 10, 2010 and was concluded on Jan 24, 2011. These campaigns ensured that all the sixteen TF magnets could be charged to their nominal currents of 10000 A in either two-phase or supercritical cooling conditions with leak-tight inter-double pancake resistances being in the range of 150 pico ohms to 1200 pico ohms. The supercritical helium cooled thermal shields welded in the inner bore of the TF magnets have also performed as per the design specifications. Subsequently, the assemblies of the SST-1 TF magnets and the Poloidal Field (PF) magnets in SST-1 machine shell have begun. The SST-1 TF magnets are being assembled in pairs (known as octants) together with a SST-1 vacuum vessel module, sector of 80 K bubble type thermal shields and a pair of outer-inter-coil-structures. The octant assemblies have been completed. The nine superconducting Poloidal Field (PF) magnets will shortly be assembled being supported from the TF cases. The resistive central solenoid magnets, compensating coils and the newly designed in-vessel radial control coils will be subsequently assembled. The assembled magnets inside the cryostat are expected to be cooled down starting from Jan 2012 when a detailed engineering validation of the magnet system would be undertaken. The detailed SST-1 magnet system refurbishment including some of the first-of-its-kind test results are discussed in this paper

  8. DEMONSTRATION OF BULLETIN: DISC TUBE? MODULE TECHNOLOGY ROCHEM SEPARATION SYSTEMS, INC.

    EPA Science Inventory

    The Rochem Disc Tube? Module System uses membrane separation to treat aqueous solutions ranging from seawater to leachate contaminated with organic solvents. The system uses reverse osmosis through a semipermeable membrane to separate purified water from contaminated liquids. Osm...

  9. Solenoid Magnet System Michael Lamm

    E-print Network

    McDonald, Kirk

    #12;Gradient made by 3 axial coils same turn density but increase # of layers (3,2,2 layers) ­ Wound (Thermal Siphon) PS Baseline Design 4-5T 2.5 T Axial Gradient Vadim Kashikhin, task leader See Next/high conductivity aluminum needed (like ATLAS Central Solenoid) #12;3-2-2 magnet design Gradient Uniformity meets

  10. Simulations of strongly phase-separated liquid-gas systems

    E-print Network

    A. J. Wagner; C. M. Pooley

    2006-08-22

    Lattice Boltzmann simulations of liquid-gas systems are believed to be restricted to modest density ratios of less than 10. In this article we show that reducing the speed of sound and, just as importantly, the interfacial contributions to the pressure allows lattice Boltzmann simulations to achieve high density ratios of 1000 or more. We also present explicit expressions for the limits of the parameter region in which the method gives accurate results. There are two separate limiting phenomena. The first is the stability of the bulk liquid phase. This consideration is specific to lattice Boltzmann methods. The second is a general argument for the interface discretization that applies to any diffuse interface method.

  11. Application of magnetic fluids in tribotechnical systems

    NASA Astrophysics Data System (ADS)

    Uhlmann, E.; Spur, G.; Bayat, N.; Patzwald, R.

    2002-11-01

    This paper presents the results of investigations on applications of magnetic fluids as lubricant. Magnetic fluids can be used as lubricants in gears, plain bearings and roller bearings. With an appropriate designed magnetic field the lubricants can be fixed at those places, where they are needed. The main advantage of the use of magnetic fluids as lubricant is based on the considerable reduction of the maintenance for the lubricant supply, because the lubricant is prevented from leaving the contact zone of the tribological system. Further advantages are the small amount of the necessary lubricant and the avoidance of leakages. The rheological and tribological behaviour of magnetic fluids was investigated and compared with conventional lubricants between friction pairs under boundary conditions.

  12. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F. (Walnut Creek, CA)

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  13. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  14. Optimal design of hybrid magnet in maglev system with both permanent and electro magnets

    SciTech Connect

    Onuki, Takashi; Toda, Yasushi (Waseda Univ., Tokyo (Japan))

    1993-03-01

    A magnetic levitation system with both permanent magnets and electromagnets has less power loss than a conventional attractive-type system. In this paper, the authors propose an analysis procedure of the hybrid magnet in the experimental levitation system. First, they make a two-dimensional analysis of the hybrid magnet. Though the vector potential A method is often adopted to solve magnetic problems, they propose the magnetic field intensity H method. Second, utilizing the sequential quadratic programming method, they attempt to optimize the arrangement of permanent magnets, which have the maximum guidance force. Finally, they investigate the responses of the experimental magnet levitation system by simulations.

  15. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  16. Permanent-magnet-less synchronous reluctance system

    DOEpatents

    Hsu, John S

    2012-09-11

    A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

  17. Magnetically Coupled Adjustable Speed Drive Systems

    SciTech Connect

    Chvala, William D.; Winiarski, David W.

    2002-08-18

    Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive

  18. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  19. Magnetic Structure and Phase Separation in Epitaxial SrCoOx Thin Films

    NASA Astrophysics Data System (ADS)

    Rueckert, F. J.; Abughayada, C.; Sabok, S. A.; He, F.; Mohottala, H.; Budnick, J. I.; Hines, W. A.; Dabrowski, B.; Wells, B. O.

    2013-03-01

    Bulk SrCoOx separates into three distinct ferromagnetic phases as the oxygen content is increased from x = 2.75 to 3.0, corresponding to TC = 165 K (SrCoO2.75) , TC = 220 K (SrCoO2.88) , and TC = 280 K (SrCoO3.0) . Over this composition, the lattice evolves smoothly and remains a single crystallographic phase. Using pulsed laser deposition and electrochemical oxidation, we have prepared epitaxial films of SrCoOx of varying thickness and orientation on SiTiO3 substrates. While in polycrystalline samples intermediate oxygen concentrations show a two-phase magnetic behavior, 100nm thick (0 0 1) films remain single phase but still favor the same ferromagnetic transitions. Thicker, 150 nm (1 1 1) films also order at comparable TC's, but again show two-phase behavior during deoxidation. Resonant x-ray diffraction on these samples reveals both commensurate and incommensurate ordering dependent on the oxidation state. This implies a charge or orbital ordering which may be influenced by finite size effects. Bulk SrCoOx separates into three distinct ferromagnetic phases as the oxygen content is increased from x = 2.75 to 3.0, corresponding to TC = 165 K (SrCoO2.75) , TC = 220 K (SrCoO2.88) , and TC = 280 K (SrCoO3.0) . Over this composition, the lattice evolves smoothly and remains a single crystallographic phase. Using pulsed laser deposition and electrochemical oxidation, we have prepared epitaxial films of SrCoOx of varying thickness and orientation on SiTiO3 substrates. While in polycrystalline samples intermediate oxygen concentrations show a two-phase magnetic behavior, 100nm thick (0 0 1) films remain single phase but still favor the same ferromagnetic transitions. Thicker, 150 nm (1 1 1) films also order at comparable TC's, but again show two-phase behavior during deoxidation. Resonant x-ray diffraction on these samples reveals both commensurate and incommensurate ordering dependent on the oxidation state. This implies a charge or orbital ordering which may be influenced by finite size effects. The work is supported by the NSF through contract # DMR-0907197 (UConn) and DMR-0706610 (NIU). Research at the CLS is supported by NSERC, NRC, CIHR, Prov. of Sask., WD Canada, and U. Saskatchewan.

  20. Yoke-free magnetic system for low field studies in magnetically affected reaction yield spectroscopy

    Microsoft Academic Search

    Evgeny V. Kalneus; Dmitri V. Stass; Yuri A. Grishin

    2005-01-01

    The article reports the development of a specialized magnetic system for application in low field studies of chemical reactions involving paramagnetic intermediates. We have designed and built a yoke-free magnetic system optimized for creating rather low static homogeneous magnetic fields that can be cleanly swept through zero value. The actually built system creates magnetic field in the range from ``-500''

  1. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  2. Superconducting magnetic system of the detector KEDR

    Microsoft Academic Search

    V. V. Anashin; L. M. Barkov; G. A. Blinov; G. M. Kolachev; S. G. Pivovarov; V. P. Smakhtin; S. V. Sukhanov

    1992-01-01

    The detector KEDR will be used in high-energy physics experiments on the storage ring VEPP-4M. The authors describe the KEDR magnetic system, which consists of a main superconducting coil, compensating superconducting solenoids, and an iron yoke closing the magnetic flux. The main superconducting coil is a one-layer solenoid of 3-m diameter and 3-m length with an inductance of 1.2 H,

  3. Wide gap, permanent magnet biased magnetic bearing system

    NASA Astrophysics Data System (ADS)

    Boden, Karl

    1992-05-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  4. PDMAEMA-grafted core-shell-corona particles for nonviral gene delivery and magnetic cell separation.

    PubMed

    Majewski, Alexander P; Stahlschmidt, Ullrich; Jérôme, Valérie; Freitag, Ruth; Müller, Axel H E; Schmalz, Holger

    2013-09-01

    Monodisperse, magnetic nanoparticles as vectors for gene delivery were successfully synthesized via the grafting-from approach. First, oleic acid stabilized maghemite nanoparticles (?-Fe2O3) were encapsulated with silica utilizing a reverse microemulsion process with simultaneous functionalization with initiating sites for atom transfer radical polymerization (ATRP). Polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) from the core-shell nanoparticles led to core-shell-corona hybrid nanoparticles (?-Fe2O3@silica@PDMAEMA) with an average grafting density of 91 polymer chains of DP(n) = 540 (PDMAEMA540) per particle. The permanent attachment of the arms was verified by field-flow fractionation. The dual-responsive behavior (pH and temperature) was confirmed by dynamic light scattering (DLS) and turbidity measurements. The interaction of the hybrid nanoparticles with plasmid DNA at various N/P ratios (polymer nitrogen/DNA phosphorus) was investigated by DLS and zeta-potential measurements, indicating that for N/P ? 7.5 the complexes bear a positive net charge and do not undergo secondary aggregation. The hybrids were tested as transfection agents under standard conditions in CHO-K1 and L929 cells, revealing transfection efficiencies >50% and low cytotoxicity at N/P ratios of 10 and 15, respectively. Due to the magnetic properties of the hybrid gene vector, it is possible to collect most of the cells that have incorporated a sufficient amount of magnetic material by using a magnetic activated cell sorting system (MACS). Afterward, cells were further cultivated and displayed a transfection efficiency of ca. 60% together with a high viability. PMID:23889326

  5. Magnetic Tracking System for Radiation Therapy

    Microsoft Academic Search

    Wing-Fai Loke; Tae-Young Choi; Teimour Maleki; Lech Papiez; Babak Ziaie; Byunghoo Jung

    2010-01-01

    Intensity-modulated radiation therapy (IMRT) requires precise delivery of the prescribed dose of radiation to the target and surrounding tissue. Irradiation of moving body anatomy is possible only if stable, accurate, and reliable information about the moving body structures are provided in real time. This paper presents a magnetic position tracking system for radiation therapy. The proposed system uses only four

  6. Image processing system for magnetic domain observation

    Microsoft Academic Search

    H. Okuno; H. Murai; Y. Sakaki

    1988-01-01

    This research presents the design and results of an image processing system for static and dynamic observation of magnetic domains. The technique is based on the use of a polarizing microscope, a CCD camera, a frame memory, and a personal computer. Because it is not necessary to use the processed data for real time control, a system was designed in

  7. Fuel cell system with separating structure bonded to electrolyte

    DOEpatents

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY); Quek, Shu Ching (Clifton Park, NY); Hasz, Wayne Charles (Pownal, VT); Powers, James Daniel (Santa Monica, CA)

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  8. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    NASA Astrophysics Data System (ADS)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized for the enhanced detection of uranium in environmental matrices. By relying on alpha-particle detection in well-formed and dense nMAG films, it was possible to improve soil detection of uranium by more than ten-thousand-fold. Central for this work was a detailed understanding of the chemistry at the iron oxide interface, and the role of the organic coatings in mediating the sorption process.

  9. Separation of The Geomagnetic Disturbance Field On The Ground Into External and Internal Parts Using The Elementary Current System Method

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A.; Amm, O.; Viljanen, A.; Bear Working Group

    Traditionally the separation of the ground geomagnetic field variations into external and internal parts is carried out by applying methods familiar from the potential the- ory. However, these methods require a separate field interpolation and extrapolation, can be computationally slow, require a minimum wavelength to be specified to which the spatial resolution is limited globally. A novel method that utilizes elementary cur- rent systems can overcome these shortcomings. The basis of the method is the fact that inside a domain free of current flow, the magnetic field can be continued to any selected plane in terms of equivalent currents. Two layers of equivalent currents, each composed of superposition of spherical elementary systems, are placed to reproduce the ground magnetic field effect: One above the surface of the Earth representing the magnetic field of ionospheric origin, and one below it representing the magnetic field caused by induced currents in the Earth. The method can be applied for single time steps and the solution of the associated underdetermined linear system is found to be fast and reliable when using singular value decomposition. The applicability of the method is evaluated using synthetic magnetic data computed from different ionospheric current models and associated image currents placed below the surface of the Earth. Following these tests, the method is applied to the measure- ments of Baltic Electromagnetic Array Research (BEAR) (June - July 1998). External and internal components of the geomagnetic variations were computed for the entire measurement period. Also the adequacy of the sparser IMAGE magnetometer network for the 2D field separation was tested.

  10. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  11. Light scattering investigation of phase separation in a micelle system

    SciTech Connect

    Wilcoxon, J.P.; Martin, J.E.; Odinek, J.

    1993-12-31

    We report a real-time, two-dimensional light scattering study of the evolution of structure in a two component nonionic micelle system during phase separation via spinodal decomposition. Our principal finding is that domain growth proceeds much slower than the cube root of time prediction for simple binary fluids. In fact, the growth kinetics can be empirically described as a stretched exponential approach to a pinned domain size. Although the kinetics are not yet understood, this anomalous behavior may be due to the ability of the spherical micelles to reorganize into more complex structures. The domain structure also shows some anomalies. Although at short times the expected structure factor for a critical quench is observed, at long times the structure factor crosses over to the off-critical form. However, in all cases the average scattered intensity is proportional to the cube of the domain size. These findings are discussed in comparison to standard theories of and experimental work on binary fluids.

  12. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  13. A magnet system for HEP experiments

    NASA Astrophysics Data System (ADS)

    Gaddi, A.

    2012-02-01

    This chapter describes the sequence of steps that lead to the design of a magnet system for modern HEP detectors. We start looking to the main types of magnets used in HEP experiments, along with some basic formulae to set the main parameters, such as ampere-turns, impedance and stored energy. A section is dedicated to the description of the iron yoke, with emphasis on magnet-detector integration and assembly, steel characteristics, stray field issues and alternative design. In the second part of the chapter we start looking at a brief history of superconducting magnets and a comparison between warm and superconducting ones. Following that, we describe the commonly used superconducting cables, the conductor design and technology and the winding techniques. A section of the chapter is dedicated to the cryogenic design, vacuum insulation and other ancillary systems. We also describe the power circuit, with the power supply unit, the current leads, the current measurement devices and other instruments and safety systems. A section is dedicated to the measurement of the B field in HEP experiments and a final one briefly describes a few applications of these kind of magnets outside their application in high energy physics detectors.

  14. Magnetic field perturbations in the systems where only poloidal magnetic field is present*

    E-print Network

    1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider

  15. Improvement of the safety systems in cell separators. The new safety concept for the cell separator AS 104 (Fresenius).

    PubMed

    Neumann, H J; Meisberger, A; Mathieu, B

    1987-09-01

    The new, extended safety requirements for cell separators call for a new generation of machines to address current safety needs. In order to ensure safe treatment, the complete safety concept is of decisive importance - this includes closed seal-less systems, continuous operation, fractions collected externally to the centrifuge, and pump tubings, connections and clamps which are color and direction coded. 'Human failure' as a cause of fault should be excluded for these highly technical appliances - for example, through the use of 'fail-safe' circuits, drip-controlled ACD flow by a separate adjustable pump, detection of damages to blood components by hemolysis control. PMID:3316023

  16. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    Microsoft Academic Search

    Guiyin Fang; Xu Liu; Shuangmao Wu

    2009-01-01

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance)

  17. Retroactivity Attenuation in Bio-molecular Systems Based on Timescale Separation

    E-print Network

    Del Vecchio, Domitilla

    1 Retroactivity Attenuation in Bio-molecular Systems Based on Timescale Separation Shridhar Jayanthi and Domitilla Del Vecchio Abstract--As with several engineering systems, bio-molecular systems a mechanism that exploits the natural timescale separation present in bio-molecular systems to attenuate

  18. Phase separation, ferromagnetism and magnetic irreversibility in La 1- xSr xMn 1- yFe yO 3

    NASA Astrophysics Data System (ADS)

    Zakhvalinskii, V. S.; Laiho, R.; Lashkul, A. V.; Lisunov, K. G.; Lähderanta, E.; Nekrasova, Yu. S.; Petrenko, P. A.

    2011-08-01

    Magnetic susceptibility, ?(T), is investigated in ceramic La1-xSrxMn1-yFeyO3 (LSMFO) samples with x=0.3 and y=0.15-0.25. A ferromagnetic (FM) transition observed in LSMFO is accompanied with an appreciable decrease of the transition temperature with increasing y, which is connected to breaking of the FM double-exchange interaction by doping with Fe. Strong magnetic irreversibility, observed in low (B=10 G) field, gives evidence for frustration of the magnetic state of LSMFO. The FM transition, which is expanded with increasing B, is more pronounced in the samples with y=0.15-0.20 and broadens considerably at y=0.25, where the irreversibility is increased. Well above the transition, ?(T) exhibits a Curie-Weiss asymptotic behavior, yielding very large values of the effective Bohr magneton number per magnetic ion, incompatible with those of Mn or Fe single ions. At y=0.15 and 0.20 a critical behavior of ?-1(T)?(T/TC-1)? in the region of the FM transition is characterized by influence of two different magnetic systems, a 3D percolative one with ?=?p?1.8 and TC=TC(p), and a non-percolative 3D Heisenberg spin system, with ?=?H?1.4 and TC=TC(H), where TC(p)separation, with onset already near the room temperature, leading to generation of nanosize FM particles in the paramagnetic host matrix of LSMFO. The ferromagnetism of LSMFO is attributable to percolation over the system of such particles and generation of large FM clusters, whereas the frustration is governed presumably by a system of smaller weakly-correlated magnetic units, which do not enter the percolative FM clusters.

  19. Phase-separated alloys for bulk exchange-biased permanent magnets

    NASA Astrophysics Data System (ADS)

    Lewis, L. H.; Harland, C. L.; McCallum, R. W.; Kramer, M. J.; Dennis, K. W.

    2006-04-01

    Explorations in the metallurgical synthesis from the melt of bulk permanent magnets with coercivity conferred by the exchange bias mechanism were carried out in a two-phase materials system composed of ferromagnetic FeCo and antiferromagnetic, nominally equiatomic AuMn. Rapid solidification synthesis of composite alloys of nominal composition (Fe65Co35)100-x(AuMn)x (x=5, 10, and 15) was carried out. The ribbons possess AuMn and Au2Mn spherical phases in a bcc (Fe,Co) matrix with a bimodal size distribution of nanoscaled and micron sizes. Magnetization measurements of the composite confirm an exchange bias effect correlated with a coercivity increase over that of the (Fe,Co) melt-spun base alloy. While the exchange bias effect is small, the enhanced coercivity and shifted hysteresis loop observed in a single sample create a strong argument for coercivity enhancement conferred by the exchange bias interaction between antiferromagnetic and ferromagnetic phases in a bulk melt-spun nanocomposite material.

  20. Phase-separated alloys for bulk exchange-biased permanent magnets

    SciTech Connect

    Lewis, L. H.; Harland, C. L.; McCallum, R. W.; Kramer, M. J.; Dennis, K. W. [Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2006-04-15

    Explorations in the metallurgical synthesis from the melt of bulk permanent magnets with coercivity conferred by the exchange bias mechanism were carried out in a two-phase materials system composed of ferromagnetic FeCo and antiferromagnetic, nominally equiatomic AuMn. Rapid solidification synthesis of composite alloys of nominal composition (Fe{sub 65}Co{sub 35}){sub 100-x}(AuMn){sub x} (x=5, 10, and 15) was carried out. The ribbons possess AuMn and Au{sub 2}Mn spherical phases in a bcc (Fe,Co) matrix with a bimodal size distribution of nanoscaled and micron sizes. Magnetization measurements of the composite confirm an exchange bias effect correlated with a coercivity increase over that of the (Fe,Co) melt-spun base alloy. While the exchange bias effect is small, the enhanced coercivity and shifted hysteresis loop observed in a single sample create a strong argument for coercivity enhancement conferred by the exchange bias interaction between antiferromagnetic and ferromagnetic phases in a bulk melt-spun nanocomposite material.

  1. Paleomagnetic recording fidelity of nonideal magnetic systems

    NASA Astrophysics Data System (ADS)

    Muxworthy, Adrian R.; Krása, David; Williams, Wyn; Almeida, Trevor P.

    2014-06-01

    suite of near-identical magnetite nanodot samples produced by electron-beam lithography have been used to test the thermomagnetic recording fidelity of particles in the 74-333 nm size range; the grain size range most commonly found in rocks. In addition to controlled grain size, the samples had identical particle spacings, meaning that intergrain magnetostatic interactions could be controlled. Their magnetic hysteresis parameters were indicative of particles thought not to be ideal magnetic recorders; however, the samples were found to be excellent thermomagnetic recorders of the magnetic field direction. They were also found to be relatively good recorders of the field intensity in a standard paleointensity experiment. The samples' intensities were all within ˜15% of the expected answer and the mean of the samples within 3% of the actual field. These nonideal magnetic systems have been shown to be reliable records of the geomagnetic field in terms of both direction and intensity even though their magnetic hysteresis characteristics indicate less than ideal magnetic grains.

  2. Autonomous Underwater Vehicle Magnetic Mapping System

    NASA Astrophysics Data System (ADS)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional compensation methods that do not use electrical current terms. Recent demonstrations of the AUV MM System conducted at test plots seeded with inert munitions show reliable detection of 75mm and larger projectiles at altitudes of over 2 meters above the seafloor. Improvement ratios between 11 and 12.4 were observed in the survey data after magnetic compensation, reducing system noise to approximately ±0.25 nano-Tesla. Co-registered side scan sonar images were acquired with the magnetic data to augment target analysis and interpretation. No net drift of the navigation solution was observed during survey missions thus confirming target positional accuracy to better than 1 meter.;

  3. Identification of new astatine isotopes using the gas-filled magnetic separator, Sassy

    SciTech Connect

    Yashita, S.

    1983-01-01

    A He-filled on-line separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two-neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +/- 0.02 MeV and 180 +/- 80 msec for /sup 194/At, and 7.12 +/- 0.02 MeV and 200 +/- 100 msec for /sup 195/At.

  4. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  5. Assembly of multiple components in a hybrid microcapsule: designing a magnetically separable Pd catalyst for selective hydrogenation.

    PubMed

    Amali, Arlin Jose; Sharma, Bikash; Rana, Rohit Kumar

    2014-09-15

    In analogy to the role of long-chain polyamines in biosilicification, poly-L-lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates. PMID:25088358

  6. Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process

    SciTech Connect

    Malobabic, Sina; Jupe, Marco; Ristau, Detlev [Laser Component Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30149 Hannover (Germany) [Laser Component Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30149 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universitaet Hannover, Hannover (Germany)

    2013-06-03

    Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.

  7. Integrated calibration of magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; GuoQuan, Ren; Zhining, Li

    2015-01-01

    Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

  8. Implementation and control of the magnetic linear actuation system

    Microsoft Academic Search

    Chin E. Lin; Kuo G. Lin

    2000-01-01

    The paper constructs a new magnetic actuation system to be used in platform support with accurate positioning and control for vibration isolation. To achieve the goal, tasks of dynamic modeling and analysis, hardware implementation, and performance tests are carried out. In the system configuration, the actuator drives the permanent magnet by generating magnetic force via two current-carrying coils. The magnetic

  9. System characterization of a magnetically suspended flywheel

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Dave K.; Plant, David P.

    1988-01-01

    The purpose of flywheel energy storage is to provide a means to save energy during times when the satellite is in sunlight, and then return the energy during the time when the satellite is in darkness. Typically, an energy storage device operates cyclically, where for satellites in Low Earth Orbit (LEO) the typical period is 60 minutes of sunlight followed by 30 minutes of darkness. If a lifetime of 17 years is required the energy storage system must be capable of sustaining approximately 100,000 cycles. The recent developments at the University of Maryland and how these progressions apply to a 500 Watt-hour magnetically suspended flywheel stack energy storage system are covered. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of non-contacting displacement transducers, and performance enhancements of magnetic bearings. The experimental results show that a stack flywheel energy storage system is a feasible technology.

  10. An experimental analogue for convection and phase separation in hydrothermal systems

    Microsoft Academic Search

    Simon Emmanuel; Brian Berkowitz

    2006-01-01

    Experiments were conducted to explore the behavior of convection and heat transfer during phase separation in porous media. Phase separation is considered to be an important process in many mid-ocean ridge hydrothermal systems in which a dense brine separates from a lighter, less saline vapor phase at supercritical temperatures. As this process occurs at high temperatures and pressures in seawater

  11. Beam-Energy Dependence of Charge Separation along the Magnetic Field in Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au +Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  12. High gradient magnetic separation of iron oxide minerals from soil clays 

    E-print Network

    Schulze, Darrell Gene

    1977-01-01

    steel wool, placed in a strong magnetic field (1. 6 Tesla), provides the magnetic field and magnetic field gradients necessary to trap weakly magnetic, clay size particles flowing through the filter as a dilute suspension in pH 10. 5 Na C03 solution.... Of the total dithionite-citrate-bicarbonate extractable Fe 0 in 2 3 the 2-0. 2 um size fraction of six soils, 70 to 94X was recovered in the magnetic fraction which consisted of 1. 6 to 27. 7X Fe 0 by weight. For the &0. 2 pm size fraction, 11 to 40X...

  13. Separation of Binary Liquid Systems by Sorption—A Comparison with Pervaporation

    Microsoft Academic Search

    R. C. Bindal; B. M. Misra

    1986-01-01

    Studies were carried out on the separation of the ethanol-water and the methanol-acetone systems by sorption using different commercially available molecular sieves (m.s.) as adsorbents. The separation factor (?) is found to be around 100 for m.s. 3A\\/ethanol-water system and is around 85 for m.s. 4A\\/ methanol-acetone system at respective azeotropic compositions. These separation factors appear to be better than

  14. Strong Magnetic Fields in Nova Systems

    NASA Astrophysics Data System (ADS)

    Stockman, H. S.; Schmidt, G. D.

    The discovery of variable circular polarization in V1500 Cygni (the remnant of Nova Cygni 1975) is the strongest evidence for the presence of highly magnetic white dwarfs in nova systems. If interpreted in terms of diluted cyclotron emission from a hot accretion shock, the recent observations of Schmidt and Stockman (1990 preprint, Ap. J. 1991) of the color dependence of the circular polarization can provide a empirical lower-limit to the primary's magnetic field strength of B > 25 x 106 gauss. Such a field strength is comparable to those observed in other magnetic variables, thus providing support for the general picture of the current and pre-nova system and the explanation for the observed search-light and period changes following the eruption. Schmidt and Stockman have also measured lengthening of the polarimetric period indicating that the system will be resynchronized within a few centuries and well before the next nova eruption. This is an independent confirmation of a significant magnetic moment for the white dwarf primary.

  15. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.

    PubMed

    Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian

    2015-01-01

    The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. PMID:25257214

  16. Cost comparisons for SSC magnet dependent systems

    SciTech Connect

    NONE

    1985-08-15

    An SSC Cost Estimating Task Force was appointed by the SSC Director in May, 1985. The charge to the task force was to perform a detailed review of costs for all superconducting magnet design styles that are under consideration for the SSC. Cost information on five magnet styles was reviewed in detail by the task force members. The basic cost information was developed by participating laboratories and by industry. Details of the procedure and analysis are presented in Chapter III. The purpose of this report is to provide a comparison of all SSC construction project cost information that is dependent on the various magnet styles. It is emphasized that the costs displayed in the tables of this report are not the total costs for an SSC construction project. Only those systems for which costs vary with magnet style are included. In Appendix E, current results are compared with the relevant parts of the 1984 SSC Reference Designs Study (RDS) cost estimate. Following the method used in the RDS, the costs that are developed here are non-site specific. The labor rates utilized are based on a national average for the various labor categories. The Conventional Systems costs for underground structures are derived from an extension of the ``median-site`` model as described in the RDS.

  17. Phase Separation in One-Dimensional Driven Diffusive Systems

    Microsoft Academic Search

    M. R. Evans; Y. Kafri; H. M. Koduvely; D. Mukamel

    1998-01-01

    A driven diffusive model of three types of particles that exhibits phase separation on a ring is introduced. The dynamics is local and comprises nearest-neighbor exchanges that conserve each of the three species. For the case in which the three densities are equal, it is shown that the model obeys detailed balance. The Hamiltonian governing the steady state distribution in

  18. Phase Separation by Spinodal Decomposition in Isotropic Systems

    Microsoft Academic Search

    John W. Cahn

    1965-01-01

    The theory of phase separation from a single phase fluid by a spinodal mechanism is given. The predicted structure may be described in terms of a superpositioning of sinusoidal composition modulations of a fixed wavelength, but random in amplitude, orientation, and phase. Sections through a calculated structure are shown. These show that the structure has many of the geometrical features

  19. Continuous flow system for controlling phases separation near λ transition

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Poli?ski, J.; Kempi?ski, W.; Trybu?a, Z.; ?o?, Sz.; Cho?ast, K.; Kociemba, A.

    2014-01-01

    As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach ?-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-?-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

  20. Separation of estimation and control for discrete time systems

    Microsoft Academic Search

    HANS S. WITSENHAUSEN

    1971-01-01

    An attempt is made to coordinate the numerous results relating to separation of estimation and control in discrete time stochastic control theory. The results vary widely depending upon the assumptions about linearity, criteria, information pattern, constraints, and noise distributions. Some of the less well-known underlying concepts are discussed with the help of a fairly general model.

  1. Continuous flow system for controlling phases separation near ? transition

    SciTech Connect

    Chorowski, M.; Poli?ski, J. [Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27,50-560 Wroc?aw (Poland); Kempi?ski, W.; Trybu?a, Z.; ?o?, Sz. [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17,60-179 Pozna? (Poland); Cho?ast, K.; Kociemba, A. [Polish Oil and Gas Company, Odolanow, ul. Krotoszynska 148, 63-430 Odolanow (Poland)

    2014-01-29

    As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach ?-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-?-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

  2. Phase separated membrane bioreactor: Results from model system studies

    Microsoft Academic Search

    G. R. Petersen; P. K. Seshan; E. H. Dunlop

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the

  3. Modelling and system identification of active magnetic bearing systems

    Microsoft Academic Search

    Young Man Cho; Sriram Srinavasan; Jae-Hyuk Oh; Hwa Soo Kim

    2007-01-01

    Active magnetic bearing (AMB) systems have recently attracted much attention in the rotating machinery industry due to their advantages over traditional bearings such as fluid film and rolling element bearings. The AMB control system must provide robust performance over a wide range of machine operating conditions and over the machine lifetime in order to make this technology commercially viable. An

  4. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  5. Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species

    Microsoft Academic Search

    Clotilde Ribaut; Antoine Berry; Séverine Chevalley; Karine Reybier; Isabelle Morlais; Daniel Parzy; Françoise Nepveu; Françoise Benoit-Vical; Alexis Valentin

    2008-01-01

    BACKGROUND: Parasite concentration methods facilitate molecular, biochemical and immunological research on the erythrocytic stages of Plasmodium. In this paper, an adaptation of magnetic MACS® columns for the purification of human Plasmodium species is presented. This method was useful for the concentration\\/purification of either schizonts or gametocytes. RESULTS AND CONCLUSIONS: The magnetic removal of non-parasitized red blood cells (in vivo and

  6. Magnetism and superconductivity in heavy fermion systems

    SciTech Connect

    Brison, J.P.; Keller, N.; Lejay, P.; Tholence, J.L.; Huxley, A.; Bernhoeft, N.; Buzdin, A.I.; Fak, B.; Flouquet, J.; Schmidt, L.; Fisher, R.A. [Centre de Recherches sur les Tres Basses Temperatures, Grenoble (France); Stepanov, A. [DRFMC-SPSMS, Grenoble (France); Phillips, N. [Lawrence Berkeley Lab., CA (United States); Vettier, C. [European Synchrotron Research Facility, Grenoble (France)

    1994-04-01

    The authors discuss some consequences of the interplay between magnetism and superconductivity in the two heavy fermion systems URu{sub 2}Si{sub 2} and UPt{sub 3}, notably on the temperature dependence of the specific heat, on possible observation of Larkin-Ouchinnikov-Fulde-Ferrel phase, and on the anisotropy of the upper critical field. The authors demonstrate that in UPt{sub 3}, a clear double steep superconducting transition can be obtained reversibly.

  7. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    Microsoft Academic Search

    Sims; James R

    2008-01-01

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by

  8. Modeling and analysis of a nonlinear PDE-system for phase separation and damage

    E-print Network

    Segatti, Antonio

    Modeling and analysis of a nonlinear PDE-system for phase separation and damage Christiane Kraus of technical products, change the microstructure over time. For instance, phase separation, coarsening and damage processes take place. The Cahn-Hilliard system is a well established model to describe phase

  9. Method of separating and recovering uranium and related cations from spent Purex-type systems

    DOEpatents

    Mailen, J.C.; Tallent, O.K.

    1987-02-25

    A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.

  10. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.

    PubMed

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-01

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe?O?@SiO?@Au), composed of a Fe?O? cluster core, a thin Au shell and a SiO? layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe?O?@SiO?@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe?O?@SiO?@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level. PMID:25329447

  11. An approach to the synthesis of separate surface automatic flight control systems.

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Henry, S.

    1973-01-01

    A method is presented for the analysis of separate surface automatic flight control systems. The feasibility of such systems is demonstrated by the analysis of an example system, a separate surface wing-leveler for a Cessna 172. This example system employs a separate surface aileron with 15% of the basic airplane roll control power. A 90% reduction in bank-angle gust response can be obtained when compared with the basic airplane. The system does not feed back to the pilot's wheel. When failed (even hardover) the pilot retains more than adequate control of the airplane.

  12. Influence of magnetic nanoparticle size on the particle dispersion and phase separation in an ABA triblock copolymer.

    PubMed

    Wu, Jinrong; Li, Hui; Wu, Siduo; Huang, Guangsu; Xing, Wang; Tang, Maozhu; Fu, Qiang

    2014-02-27

    Oleic acid modified iron oxide nanoparticles (IONs) with different sizes were synthesized and mixed with styrene-butadiene-styrene block copolymer (SBS) with a lamellar structure. The octadecene segments on the oleic acid molecules have chemical affinity with the polybutadiene (PB) blocks, which makes IONs tend to be selectively confined in the microphase-separated PB domains. However, the dispersion state strongly depends on the ratio of the particle diameter (d) to the lamellar thickness (l) of the PB domains, which further changes the phase separation of SBS. When d/l ?0.5, most of IONs are concentrated in the middle of the PB layers at low particle loading. Upon increasing the particle loading, part of IONs contact each other to form long strings due to their strong magnetic interactions. Away from the strings, IONs are either selectively dispersed in the middle and at the interfaces of the PB domains, or randomly distributed at some regions in which the phase separation of SBS is suppressed. The phase separation of SBS transforms from the lamellar structure to a cylinder structure when the IONs loading is higher than 16.7 wt %. As d is comparable to l, IONs aggregate to form clusters of 100 to 300 nm in size, but within the clusters IONs are still selectively dispersed in the PB domains instead of forming macroscopic phase separation. It is interpreted in terms of the relatively small conformational entropy of the middle blocks of SBS; thus, incorporation of nanoparticles does not lead to much loss of conformational entropy. Although incorporation of IONs with d/l ?1 significantly increases the interfacial curvature and roughness, it has less influence on the phase separation structure of SBS due to the inhomogeneous dispersion. When d is larger than l, IONs are macroscopically separated from the SBS matrix to form clusters of hundreds of nanometers to several micrometers. More interestingly, the phase separation of SBS transforms from the lamellar structure to a two-phase co-continuous structure, probably due to the rearrangement of SBS molecules to cover the clusters with PB segments and the strong magnetic interaction exerting additional force on the SBS matrix during the evaporation of the solvent and the subsequent thermal annealing process. PMID:24479376

  13. Retroactivity Attenuation in Bio-Molecular Systems Based on Timescale Separation

    E-print Network

    Jayanthi, Shridhar

    As with several engineering systems, bio-molecular systems display impedance-like effects at interconnections, called retroactivity. In this paper, we propose a mechanism that exploits the natural timescale separation ...

  14. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect

    None

    2010-10-01

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  15. Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils.

    PubMed

    Xu, Shiying; Guo, Changjuan; Li, Yongxian; Yu, Zerong; Wei, Chaohai; Tang, Youwen

    2014-01-15

    Core-shell magnetic methyl parathion (MP) imprinted polymers (Fe3O4@MPIPs) were fabricated by a layer-by-layer self-assembly process. In order to take full advantage of the synergistic effect of hydrogen-binding interactions and ?-? accumulation between host and guest for molecular recognition, methacrylic acid and 4-vinyl pyridine were chosen as co-functional monomers and their optimal proportion were investigated. The core-shell and crystalline structure, morphology and magnetic properties of Fe3O4@MPIPs were characterized. The MP-imprinted nanoshell was almost uniform and about 100nm thick. Binding experiments demonstrated that Fe3O4@MPIPs possessed excellent binding properties, including high adsorption capacity and specific recognition, as well as fast adsorption kinetics and a fast phase separation rate. The equilibration adsorption capacity reached up to 9.1mg/g, which was 12 times higher than that of magnetic non-imprinted polymers, while adsorption reached equilibrium within 5min at a concentration of 0.2mmol/L. Furthermore, Fe3O4@MPIPs successfully provided selective separation and removal of MP in soils with a recovery and detection limit of 81.1-87.0% and 5.2ng/g, respectively. PMID:24275470

  16. Improvements of measuring system on magnetic levitation system for the determination of magnetic flux quantum

    Microsoft Academic Search

    F. Shiota; T. Morokuma

    2002-01-01

    A development of a video frame synchronized data sampling system is in progress for superconducting magnetic levitation system parameters to correct an error of vertical displacement reading due to attitude change of floating body using real time movement analysis in equilibrium condition.

  17. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    SciTech Connect

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).

  18. Preliminary magnetic studies of lagoon and stream sediments from Chascomús Area (Argentina)—magnetic parameters as indicators of heavy metal pollution and some results of using an experimental method to separate magnetic phases

    NASA Astrophysics Data System (ADS)

    Chaparro, Marcos A. E.; Lirio, Juan M.; Nuñez, Héctor; Gogorza, Claudia S. G.; Sinito, Ana M.

    2005-11-01

    Magnetic properties of lagoon and stream sediments from Chascomús area (Buenos Aires Province) and the relevance of various magnetic parameters as giving pollution status are studied in the present work. This work is focussed on magnetic parameters, such as concentration-dependent (magnetic susceptibility, saturation anhysteric and isothermal remanent magnetisation) and feature-dependent parameters (S-ratio, coercivity of remanence, anhysteric susceptibility/magnetic susceptibility-ratio), as pollution indicators. Firstly and most importantly, different magnetic parameters and chemical measurements were correlated in order to investigate their goodness, obtaining the best results for feature-dependent magnetic parameters. Coercivity of remanence correlate very well with chemical variables, showing correlations at high level of significance up to 0.9094, and the anhysteric susceptibility/magnetic susceptibility-ratio also shows very good correlations (up to 0.8376). Some results and advantages of using a new experimental method in order to discriminate hard and soft magnetic phases are also shown. This method uses alternately backfield isothermal remanent magnetisation and alternating field demagnetisation. From the experimental separation, the presence of hard magnetic phases in some samples was confirmed.

  19. Strain-induced oxygen defect formation and interfacial magnetic phase separation in SrTiO3(001)/La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Leighton, Chris

    2012-02-01

    The remarkable functionality and epitaxial compatibility of complex oxides provides many opportunities for new physics and applications in oxide heterostructures. Perovskite manganites and cobaltites provide excellent examples, being of interest for solid oxide fuel cells, catalysis, ferroelectric RAM, gas sensing, resistive switching memory, and oxide spintronics. However, the same delicate balance between phases that provides this diverse functionality also leads to a serious problem - the difficulty of maintaining desired properties close to the interface with other oxides. Although this problem is widespread, manifests itself in several ways, and could present a significant roadblock to the development of heterostructured devices for oxide electronics, there is no consensus as to its origin, or even whether it is driven by electronic or chemical effects. In this work, using SrTiO3(001)/La1-xSrxCoO3 as a model system, we have combined epitaxial growth via high pressure oxygen sputtering with high resolution x-ray diffraction, atomic resolution electron microscopy and spectroscopy, and detailed magnetic, transport, and neutron scattering measurements to determine the fundamental origin of the deterioration in interfacial transport and magnetism. The effect is found to be due to nanoscopic magnetic phase separation in the near-interface region driven by a significant depletion in interfacial hole doping due to accumulation of O vacancies. This occurs due to a novel mechanism for accommodation of lattice mismatch with the substrate based on formation and long-range ordering of O vacancies, thus providing a fundamental link between strain state and O vacancy density. Further impacts of the O vacancy ordering and interfacial magnetic phase separation, such as formation of a spin-state superlattice and an extraordinary coercivity enhancement, will also be discussed. Work in collaboration with M. Sharma, M. Torija, J. Schmitt, C. He, S. El-Khatib, J. Gazquez, M. Varela, M. Laver and J. Borchers.

  20. Problems of loss separation for crystalline and consolidated amorphous soft magnetic materials

    Microsoft Academic Search

    H. Pfutzner; P. Schonhuber; B. Erbil; G. Harasko; T. Klinger

    1991-01-01

    Losses were measured as a function of magnetization frequency fd for two advanced soft magnetic alloys: laser-scribed 0.23-mm HI-B steel ZDKH (designated HB) and consolidated amorphous Powercore (designated PC). Although domain observations on HB yielded distinct domain refinements due to the laser treatment, anomalous losses Wa still proved to be higher than the classical ones. A further refinement resulted from

  1. Application of a capillary-assembled microfluidic system for separation of cephalosporins.

    PubMed

    Koczka, Peter I; Gaspar, Attila

    2014-09-01

    This paper demonstrates a simple and easy setting up of a fused-silica capillary-assembled microfluidic system (?CE). This system incorporates a split-flow pressure injection of the sample into a microfluidic system made from PDMS and a short (?20 cm) length of fused-silica capillary as a separation unit. The on-capillary detection was carried out by fiber optic spectrometry. A mixture of six cephalosporin antibiotics was separated in the ?CE system and the obtained results were compared to those achievable by conventional CE. The six components could be separated within 8.5 min with the number of theoretical plates around 10?000. PMID:24789628

  2. Stage separation study of Nike-Black Brant V Sounding Rocket System

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  3. Short communication Hedgehog structure in nematic and magnetic systems

    E-print Network

    Paris-Sud XI, Université de

    1097 Short communication Hedgehog structure in nematic and magnetic systems N. Schopohl and T structure of hedgehog point disclinations in magnetic and nematic liquid crystal systems is investigated. In the nematic hedgehog the solution is uniaxial everywhere. Nematic hedgehogs are very much larger than magnetic

  4. Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis

    Microsoft Academic Search

    Andrew J. Gawron; R. Scott Martin; Susan M. Lunte

    2001-01-01

    The application of microchip capillary electrophoresis (CE) systems to biomedical and pharmaceutical analysis is described and reviewed. Fabrication, instrumentation, and operation of the systems are discussed. An overview of applications is presented, covering four main areas: DNA sequencing, genetic analysis, immunoassays, and protein and peptide analysis. These systems have the potential to dramatically change the way that biochemical analyses are

  5. Magnetic properties of strongly frustrated and correlated systems

    NASA Astrophysics Data System (ADS)

    Lacroix, Claudine

    2009-10-01

    While consequences of frustration of magnetic interactions are much studied in localized spin systems, much less studies have been performed on frustrated metallic systems. However, several effects of strong geometrical frustration in metallic correlated system have also been experimentally observed in rare-earth or transition metal compounds: coexistence of magnetic and non-magnetic sites in ordered magnetic structure, heavy fermion behaviour and anomalous Hall effect due to spin chirality are consequences of frustration. An overview of the experimental observations and of the proposed models is given. Other interesting effects due to magnetic frustration in metallic systems, which have been predicted theoretically, are also reviewed.

  6. Phase separation time\\/temperature dependence of thermoplastics-modified thermosetting systems

    Microsoft Academic Search

    Xiujuan Zhang; Xiaosu Yi; Yuanze Xu

    2008-01-01

    The cure-induced phase separation processes of various thermoplastics(TP)-modified thermosetting systems which show upper\\u000a critical solution temperature (UCST) or lower critical solution temperature (LCST) were studied with emphasis on the temperature\\u000a dependency of the phase separation time and its potential application in the cure time-temperature processing window. We found\\u000a that the phase separation time\\/temperature relationship follows the simple Arrhenius equation. The

  7. Magnet systems for the International Thermonuclear Experimental Reactor

    SciTech Connect

    Henning, C.D.; Miller, J.R.

    1988-09-22

    The definition phase for the International Thermonuclear Experimental Reactor (ITER) has been nearly completed, thus beginning a three-year design effort by teams from the European Community (EC), Japan, US, and USSR. Preliminary parameters for the superconducting magnet system have been established to guide more detailed design work. Radiation tolerance of the superconductors and insulators has been important because it sets requirements for the neutron-shield dimension and sensitively influences reactor size. Major levels of mechanical stress appear in the structural cases of the inboard legs of the toroidal-field (TF) coils. The winding packs of the TF coils include significant fractions of steel that provide support against in-plane separating loads, but they offer little support against out-of-plane loads unless shear-bonding of the conductors can be maintained. Heat removal from nuclear and ac loads has not limited the fundamental design, but it has nonnegligible economic consequences. 3 refs., 3 figs., 5 tabs.

  8. Magnetic Resonance Imaging System Based on Earth's Magnetic Field

    E-print Network

    Stepi?nik, Janez

    of the magnetic field enables scanning of very large volume samples. Reduction in S/N ratio due to the weak in the case of strong magnetic fields, detection and processing of low frequency signal are less 655 DOI: 10 Vol. 32, No. 6, pp. 655­667, 2004 #12;demanding for the electronics. The techniques used

  9. Magnetically separable Cu2O/chitosan-Fe3O4 nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Cao, Chunhua; Xiao, Ling; Chen, Chunhua; Cao, Qihua

    2015-04-01

    A novel magnetically-separable visible-light-induced photocatalyst, Cu2O/chitosan-Fe3O4 nanocomposite (Cu2O/CS-Fe3O4 NC), was prepared via a facile one-step precipitation-reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu2O/CS-Fe3O4 NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV-vis/DRS. The photocatalytic activity of Cu2O/CS-Fe3O4 NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu2O/CS-Fe3O4 NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu2O was wrapped in chitosan matrix embedded with Fe3O4 nanoparticles. The tight combination of magnetic Fe3O4 and semiconductor Cu2O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu2O/CS-Fe3O4 NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B were still above 87% after five reaction cycles, indicating that Cu2O/CS-Fe3O4 NCs had excellent reusability and stability.

  10. Novel hydrogen separation device development for coal gasification system applications

    SciTech Connect

    Not Available

    1991-12-01

    This report summarizes all results obtained under Task 1, Operation and Parameter Testing using Subscale Cells. Stable Electrochemical Hydrogen Separation Device (EHSD) operation was demonstrated with the 4,400 hour life test of an EHSD. It was found that N{sub 2}, C0{sub 2} and CH{sub 4} behave as equivalent inerts; EHSD performance is not affected by the balance of feed gas containing these components. High H{sub 2} purity, >99%, is one of the main features of the EHSD. This product purity level is not sacrificed by increased H{sub 2} recovery. Co, however, does adversely affect EHSD performance and therefore feed stream pretreatment is recommended. Concentrations up to 10 ppM H{sub 2}S and NH{sub 3} were added to the feed gas stream to determine their effect on EHSD performance. These impurities did not affect EHSD performance.

  11. Phase separated membrane bioreactor: results from model system studies.

    PubMed

    Petersen, G R; Seshan, P K; Dunlop, E H

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial [correction of terrestial] simulation. PMID:11537387

  12. Phase separated membrane bioreactor - Results from model system studies

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.

  13. Model system studies with a phase separated membrane bioreactor

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  14. Separation and characterization of alkyl phenol formaldehyde resins demulsifier by adsorption chromatography, gel permeation chromatography, infrared spectrometry and nuclear magnetic resonance spectroscopy

    Microsoft Academic Search

    Jinxin Li; Jinjun Zhang; Haijun Yang; Yongcheng Ning

    2006-01-01

    This paper deals with the separation and characterization of alkyl phenol formaldehyde resins demulsifier by infrared spectrometry and nuclear magnetic resonance spectroscopy after separation of the different surfactants and low molecular additives by adsorption chromatography. Firstly, the types of surfactants are identified by methylene blue chloride–chloroform test method and the elemental analysis such as Ca, K, Mg, Na, P, S

  15. Development of superconducting magnet systems for HIFExperiments

    SciTech Connect

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  16. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, R.F.

    1998-07-21

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described. 7 figs.

  17. Neural control of magnetic suspension systems

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  18. Image processing system for magnetic domain observation

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Murai, H.; Sakaki, Y.

    1988-11-01

    This research presents the design and results of an image processing system for static and dynamic observation of magnetic domains. The technique is based on the use of a polarizing microscope, a CCD camera, a frame memory, and a personal computer. Because it is not necessary to use the processed data for real time control, a system was designed in which the data processing was performed after the acquisition of all data. The static image is obtained by a combination of averaging, subtraction of background noise, and median filtering methods. A dynamic image with 85(V)×96(H) pixels/field is acquired at the sampling rate of 30 fields/s. Using this system, static and dynamic domain images of Supermalloy multilayered core and amorphous ribbon were obtained.

  19. Magnetic resonance of the musculoskeletal system

    SciTech Connect

    Berquist, T.H.; Ehman, R.L.; Richardson, M.L.

    1986-01-01

    Magnetic Resonance of the Musculoskeletal System features coverage of the use of MRI in evaluation of specific diseases: bone and soft tissue tumors; infections; musculoskeletal trauma; spinal disorders; and miscellaneous conditions. The authors comparisons of MRI with computed tomography, ultrasound, isotopes, and other techniques will assist the physician in determining which clinical problems are best evaluated by MRI. Where MRI is the optimal technique, the text outlines the examination procedure, indicates which sequences provide the most information, and describes the pathologic findings that can be observed in MRI scans. An outstanding selection of more than 250 detail-revealing illustrations depicts representatives MRI findings.

  20. Separation of gas from liquid in a two-phase flow system

    NASA Technical Reports Server (NTRS)

    Hayes, L. G.; Elliott, D. G.

    1973-01-01

    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.

  1. STATISTICAL PROPERTIES OF STFT RATIOS FOR TWO CHANNEL SYSTEMS AND APPLICATIONS TO BLIND SOURCE SEPARATION

    E-print Network

    Maryland at College Park, University of

    separation and noise re- duction for small electronic devices (e.g. speech recogni- tion front ends, personal techniques can be e ectively applied to source separation, source localization, signal enhancement, and noiseSTATISTICAL PROPERTIES OF STFT RATIOS FOR TWO CHANNEL SYSTEMS AND APPLICATIONS TO BLIND SOURCE

  2. DETERMINATION OF THE EFFICIENCY OF AN ION EXCHANGE SYSTEM IN SEPARATING THE LITHIUM ISOTOPES (PRELIMINARY STUDY)

    Microsoft Academic Search

    R. E. Blanco; A. H. Kibbey; J. T. Roberts

    1954-01-01

    The lithium isotopic separation factors for the ion exchange systems ; studied appear to be quite low, of the magnitude of 1.003. Any possible effects ; on the separation factor attributable to concentration or the presence of ; complexing agents were within the limits of experimental error. The HTU for ; lithium ion exchange is low, i.e., a fraction of

  3. Phase Separation Behavior of Cocamidopropyl Betaine\\/Water\\/Polyethylene Glycol System

    Microsoft Academic Search

    Xiaoyan YOU; Wei QIN; Youyuan DAI

    2009-01-01

    Phase separation behavior of cocamidopropyl betaine\\/water\\/polyethylene glycol (PEG) system was studied. The effects of concentration and molecular weight of PEG on the phase separation behavior were investigated. Clouding occurred when the concentration of PEG was large enough in the betaine aqueous solution, and the concentration of PEG at cloud point decreased with the increase of PEG molecular weight for a

  4. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems

    Microsoft Academic Search

    L. Rigamonti; M. Grosso; M. Giugliano

    2009-01-01

    This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection

  5. Theoretical study on separate sensible and latent cooling air-conditioning system

    Microsoft Academic Search

    Jiazhen Ling; Yunho Hwang; Reinhard Radermacher

    2010-01-01

    The advantage of separating sensible and latent cooling (SSLC) via the use of separate cycles is saving energy by raising the evaporating temperature of the sensible cooling process. In this study, the pertinent characteristics of the SSLC system using two parallel vapor compression cycles were investigated. The requirement for high air flow rate through the sensible evaporator was the most

  6. Statistical characterization of the interchange-instability spectrum of a separable ideal-magnetohydrodynamic model system

    E-print Network

    Tatsuno, Tomoya

    Statistical characterization of the interchange-instability spectrum of a separable ideal-magnetohydrodynamic model system R. L. Dewar,1,2, * T. Tatsuno,3,2 Z. Yoshida,2 C. Nührenberg,4 and B. F. McMillan1 1 mode equa- tions are completely separable, so both the toroidal Fourier harmonic index n

  7. An expert decision support system for monitoring and diagnosis of petroleum production and separation processes

    Microsoft Academic Search

    Christine W. Chan

    2005-01-01

    Automation of operations of petroleum production and separation facilities are desirable because the plants are often located in remote areas difficult to access in the severe Prairie winters. This paper presents the development process of an expert decision support system for monitoring, control and diagnosis of a petroleum production and separation plant. Data from various components of the plant are

  8. Human simulated intelligent control of magnetic levitation systems

    Microsoft Academic Search

    Peng Xu; Yuanhong Dan

    2010-01-01

    The single freedom magnetic levitation ball system is the base of magnetic products, it is essential to study the magnetic levitation ball system. After linearizing and analyzing the nonlinear model of Maglev system, the schema of the human-simulated intelligent control(HSIC) is proposed to deal with the nonlinear and unstable system , moreover the master control algorithms and the parameter self-tuning

  9. New baseline for the magnet cooling system Yury Ivanyushenkov

    E-print Network

    McDonald, Kirk

    for the system · Specify instrumentation and a control system and select a platform (LabView ?) · Specify safety1 New baseline for the magnet cooling system Yury Ivanyushenkov Engineering and Instrumentation;4 Liquid nitrogen cooling system: Instrumentation and Control Instrumentation: Inside the magnet

  10. Design and Fabrication of a Magnetic System to Investigate Magnetized Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Bates, Evan M.; Romero-Talamas, Carlos A.

    2013-10-01

    The interest in researching the dynamics and equilibrium of magnetized dusty plasma crystallization has led to the design and fabrication of a novel experimental setup at UMBC. The proposed magnets will be an important subsystem of this setup, and will produce a uniform magnetic field of several tesla for a duration of several seconds. The magnets will be arranged in the Helmholtz configuration and will have a cooling system for temperature compensation of the coils, as well as the ability to adjust the orientation of the magnetic field with respect to gravity. Planned experiments include propagation of magnetized waves in dusty plasma crystals under various boundary conditions.

  11. PHYSICAL REVIEW B 84, 024417 (2011) Coercivity enhancement driven by interfacial magnetic phase separation in

    E-print Network

    Pennycook, Steve

    2011-01-01

    . Leighton1,* 1 Department of Chemical Engineering and Materials Science, University of Minnesota-separated layer, leading us to advance an explanation for the coercivity enhancement in terms of the pinning to STO, lead to exceptionally high tunneling magnetoresistance (TMR) at cryogenic temperatures.2

  12. Improvement of the superconducting magnetic levitation system for the determination of the magnetic flux quantum

    Microsoft Academic Search

    T. Endo; Y. Sakamoto; F. Shiota; K. Nakayama; Y. Nezu; M. Kikuzawa; K. Hara

    1989-01-01

    The authors describe an improvement of the preliminary superconducting magnetic levitation system in progress for the absolute determination of the magnetic flux quantum. This improvement includes the development of the flux-up method to determine the flux in terms of the Josephson voltage. The improvement is essential for the determination of the magnetic flux quantum as well as of the coil

  13. Studies in matter antimatter separation and in the origin of lunar magnetism

    NASA Technical Reports Server (NTRS)

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.

    1975-01-01

    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  14. Haloing in bimodal magnetic colloids: the role of field induced phase separation , P.Kuzhir1

    E-print Network

    Boyer, Edmond

    .Kuzhir1 , G.Bossis1 , A.Meunier1 , L.Suloeva2 and A.Zubarev3 1 University of Nice Sophia Antipolis-sized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles

  15. Magnetic measurements at Lawrence Berkeley Laboratory. Revision

    Microsoft Academic Search

    M. I. Green; P. Barale; L. Callapp; M. Case-Fortier; D. Lerner; D. Nelson; R. Schermer; G. Skipper; D. Van Dyke; C. Cork; K. Halbach; W. Hassenzahl; E. Hoyer; S. Marks; T. Harten; K. Luchini; J. Milburn; J. Tanabe; F. Zucca; R. Keller; F. Selph; W. Gilbert; M. A. Green; R. Schafer; C. Taylor; W. Greiman; D. Hall; J. MacFarlane

    1991-01-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of

  16. Magnetic measurements at Lawrence Berkeley Laboratory

    Microsoft Academic Search

    M. I. Green; P. Barale; L. Callapp; M. Case-Fortier; D. Lerner; D. Nelson; R. Schermer; G. Skipper; D. Vandyke; C. Cork; K. Halbach; W. Hassenzahl; E. Hoyer; S. Marks; T. Harten; K. Luchini; J. Milburn; J. Tanabe; F. Zucca; R. Keller; F. Selph; W. Gilbert; M. A. Green; J. ONeil; R. Schafer; C. Taylor; W. Greiman; D. Hall; J. MacFarlane

    1991-01-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of

  17. An experimental analogue for convection and phase separation in hydrothermal systems

    E-print Network

    Simon, Emmanuel

    systems. In double diffusive systems, convection is driven by chemical and thermal gradients as both systems have been studied extensively: (1) double diffusive convec- tion and (2) two-layer immiscibleAn experimental analogue for convection and phase separation in hydrothermal systems Simon Emmanuel

  18. Absorption degree analysis on biogas separation with ionic liquid systems.

    PubMed

    Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping

    2014-10-22

    For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. PMID:25459814

  19. Moltox™ Chemical Air Separation System-A Progress Report 

    E-print Network

    Erickson, D. C.; Brown, W. R.; Dunbobbin, B. R.; Massey, R. G.

    1986-01-01

    A new low energy route to tonnage oxygen production, the MOLTOX™ system, is now commencing pilot plant testing. The process, its history, and potential applications will be described, in addition to recent results of the pilot plant test program...

  20. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine.

    PubMed

    He, Yonghuan; Huang, Yanyan; Jin, Yulong; Liu, Xiangjun; Liu, Guoquan; Zhao, Rui

    2014-06-25

    The construction of molecularly imprinted polymers on magnetic nanoparticles gives access to smart materials with dual functions of target recognition and magnetic separation. In this study, the superparamagnetic surface-molecularly imprinted nanoparticles were prepared via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using ofloxacin (OFX) as template for the separation of fluoroquinolones (FQs). Benefiting from the living/controlled nature of RAFT reaction, distinct core-shell structure was successfully constructed. The highly uniform nanoscale MIP layer was homogeneously grafted on the surface of RAFT agent TTCA modified Fe3O4@SiO2 nanoparticles, which favors the fast mass transfer and rapid binding kinetics. The target binding assays demonstrate the desirable adsorption capacity and imprinting efficiency of Fe3O4@MIP. High selectivity of Fe3O4@MIP toward FQs (ofloxacin, pefloxacin, enrofloxacin, norfloxacin, and gatifloxacin) was exhibited by competitive binding assay. The Fe3O4@MIP nanoparticles were successfully applied for the direct enrichment of five FQs from human urine. The spiked human urine samples were determined and the recoveries ranging from 83.1 to 103.1% were obtained with RSD of 0.8-8.2% (n = 3). This work provides a versatile approach for the fabrication of well-defined MIP on nanomaterials for the analysis of complicated biosystems. PMID:24853973

  1. A determination of the magnetic flux quantum using superconducting magnetic levitation system

    Microsoft Academic Search

    F. Shiota; H. Hirai; Y. Nezu; K. Nakayama; T. Endo; Y. Sakamoto; K. Hara

    1990-01-01

    A refinement of a preliminary superconducting magnetic levitation system is in progress for the determination of the magnetic flux quantum ?0. A novel superconducting coil with a conic section has been fabricated, so that the Meissner effect of the system seems to remain intact and the basic characteristic of the levitation system is much improved

  2. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  3. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A

    NASA Astrophysics Data System (ADS)

    Xia, Donghui; Huang, Mei; Zhou, Jun; Bai, Xingyu; Zheng, Tieliu; Rao, Jun; Zhuang, Ge

    2014-04-01

    A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a compressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribution was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting the magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.

  4. Flow Phenomena and Heat Transfer Augmentation during Phase Separation of Partially Miscible Solvent Systems

    NASA Astrophysics Data System (ADS)

    Ullmann, Amos; Gat, Sharon; Brauner, Neima

    2010-03-01

    The phenomena associated with phase separation via spinodal decomposition (SD) and nucleation of binary and ternary partially miscible solvent systems are discussed. Micro flow visualizations were also conducted to follow the drop formation and dynamics during the phase separation. The possibility of using the unique characteristics of phase transition in such systems for enhancing convective heat transfer rates was tested. Experiments show that with phase separation the convective heat transfer coefficients can be augmented by a factor of up to 2.2 compared to heat transfer rates obtained in single phase flow (without phase separation). In the case of free convection from a cylindrical surface, the heat transfer coefficients were found to be augmented by up to 100% compared to free convection in single phase liquid. The various mechanisms responsible for the heat transfer enhancement during phase separation are discussed.

  5. THE SUPERCONDUCTION MAGNETS OF THE ILC BEAM DELIVERY SYSTEM.

    SciTech Connect

    PARKER,B.; ANEREELA, M.; ESCALLIE, J.; HE, P.; JAIN, A.; MARONE, A.; NOSOCHKOV, Y.; SERYI, A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  6. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. PMID:24931095

  7. A Regenerable VOC Control System (RVCS) for Characterizing Properties of Sorbents Used in Separation Technologies

    NASA Technical Reports Server (NTRS)

    Nolek, Sara D.; Monje, Oscar A.

    2010-01-01

    This slide presentation reviews the design, method of operation, and testing of a regenerable Volatile Organic Compound (VOC) control system that characterizes properties of sorbents used in separation technologies.

  8. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A. (Longmont, CO); Krantz, William B. (Boulder, CO)

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  9. Design and synthesis of reactive separation systems. Final report

    SciTech Connect

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  10. Arc-wall interaction phenomena immediately after contact separation in magnet-blast interrupters

    Microsoft Academic Search

    E. Gauster; W. Rieder

    1995-01-01

    Arc-wall interaction phenomena without and with a baffle plate arranged next the switching contacts opposite to the direction of arc motion were investigated in a model interrupter. The criterion considered was the time of reduced arc motion immediately after contact separation. Arc current geometry of contacts and walls, contact material (Cu, Ag\\/C, Ag\\/SnO2, Ag\\/CdO) and the materials of lateral walls

  11. Arc-wall interaction phenomena immediately after contact separation in magnet-blast interrupters

    Microsoft Academic Search

    E. Gauster; W. F. Rieder

    1996-01-01

    Arc-wall interaction phenomena, with and without a baffle plate arranged next the switching contacts opposite to the direction of arc motion, were investigated in a model interrupter. The criterion considered was the time of reduced arc motion immediately after contact separation. Arc current, geometry of contacts and walls, contact materials (Cu, Ag\\/C, Ag\\/SnO2, Ag\\/CdO) and the materials of lateral walls

  12. Potential benefits of magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.; Dress, David A.; Kilgore, Robert A.

    1987-01-01

    The potential of Magnetic Suspension and Balance Systems (MSBS) to improve conventional wind tunnel testing techniques is discussed. Topics include: elimination of model geometry distortion and support interference to improve the measurement accuracy of aerodynamic coefficients; removal of testing restrictions due to supports; improved dynamic stability data; and stores separation testing. Substantial increases in wind tunnel productivity are anticipated due to the coalescence of these improvements. Specific improvements in testing methods for missiles, helicopters, fighter aircraft, twin fuselage transports and bombers, state separation, water tunnels, and automobiles are also forecast. In a more speculative vein, new wind tunnel test techniques are envisioned as a result of applying MSBS, including free-flight computer trajectories in the test section, pilot-in-the-loop and designer-in-the-loop testing, shipboard missile launch simulation, and optimization of hybrid hypersonic configurations. Also addressed are potential applications of MSBS to such diverse technologies as medical research and practice, industrial robotics, space weaponry, and ore processing in space.

  13. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    SciTech Connect

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  14. Application of magnetite hexacyanoferrate composites in magnetically assisted chemical separation of cesium

    Microsoft Academic Search

    R. D. Ambashta; D. S. Deshingkar; P. K. Wattal; D. Bahadur

    2006-01-01

    Summary  Potassium nickel hexacyanoferrate composite with magnetite finds application in the recovery of cesium from low-level liquid\\u000a waste using magnetic assistance. The apparent sorption capability of hexacyanoferrate-magnetite composite and potassium nickel(II)\\u000a hexacyanoferrate(II) matched indicating no loss in sorption capability as a consequence of coating to nanoscale magnetite\\u000a substrate. Selectivity for cesium in a broad pH range, selectivity in the presence of

  15. Moisture separator for steam generator level measurement system

    Microsoft Academic Search

    Cantineau

    1987-01-01

    This patent describes a system for measuring the level of liquid in a steam generator comprising: a lower tap connected to the steam generator at a point below the lowest liquid level to be measured; an upper tap connected to the steam generator at a point above the highest liquid level to be measured; a reference leg external to the

  16. A novel concentrating photovoltaic system with two separate receivers

    Microsoft Academic Search

    Alaeddine Mokri; Mahieddine Emziane

    2011-01-01

    A common approach for converting sunlight to electricity at a low cost is either to achieve high conversion efficiencies and\\/or by using low-cost systems. High solar energy conversion efficiency by using photovoltaic devices has been achieved by concentrating sunlight on a multi- junction monolithically stacked solar cell. The process of manufacturing monolithically stacked solar cells is complex and makes restrictions

  17. Vision System Development Through Separation of Management and Processing

    E-print Network

    British Columbia, University of

    to address the subtasks of vision system development, such as OpenCV, VXL and Gandalf [2], [3], [4 Computer Vision library (OpenCV)[2] is a com- prehensive and widely used image processing framework. The overall design of OpenCV relies on declaring data type defi- nitions for image and vision entities

  18. Separating Safety and Control Systems to Reduce Complexity

    E-print Network

    Lawford, Mark

    and implement- ing software intensive systems. Actually, there are three different kinds of complex- ity and programming complexity that are of primary importance. Complexity is important to Software Engineers because complexity. Abstraction is not unique to the software world. It has been used effec- tively for ages

  19. Hall effect magnetic regulation systems for the CESR injector

    Microsoft Academic Search

    C. R. Dunnan

    1989-01-01

    Two distinct Hall effect regulation systems have been designed for reduction of hysteresis effects in the linac and transfer line magnets used for injection into the Cornell Electron Storage Ring (CESR) synchrotron. One magnetic field probe described integrates a precision Hall sensor element with low-drift preamplification electronics in a temperature-regulated remote sensing module. Magnetic field stability better than five parts

  20. Magnetic Form Factor of Ni-Pt Alloy System

    Microsoft Academic Search

    Yutaka Nakai; Izumi Tomeno; Jun Akimitsu; Yuji Ito

    1979-01-01

    Magnetic form factor of Ni-Pt alloy system with 8.5, 24, 32 and 46 at.% Pt was measured by means of the polarized neutron diffraction. The form factors were analyzed with the results that the atomic magnetic moment of Ni atom decreases with increasing Pt concentration and that of Pt atom has parallel magnetic moment. Experimental results were explained by a

  1. ? SR study of real space magnetic phase separation in Mn3O4

    NASA Astrophysics Data System (ADS)

    Zakjevskii, Alexander; Thaler, Alexander; Reig-I-Plessis, Dalmau; Brodsky, Isaac; Gim, Yewon; Aczel, Adam; Cooper, S. Lance; MacDougall, Gregory

    2015-03-01

    The material Mn3O4 is a magnetically frustrated spinel which exhibits three distinct magnetic transitions below 42 K. Recent work has shown that the lowest of these is accompanied by an orthorhombic structural distortion, implying strong magneto-elastic coupling. Magnetic force microscopy (MFM) measurements indicate a substantial region of phase coexistence below this transition, with domain walls that order on the mesoscale. It is further suggested that a tradeoff in ordered volume with field may play a role in the recent quantum phase transition reported in this material. To follow up on these ideas, we have performed a series of zero- and transverse-field muon spin rotation measurements on single-crystal Mn3O4. The zero-field data clearly show the co-existence of ordered and disorder volumes, consistent with MFM results. Here we report these data, and further attempts to vary the ordered volume with applied field. We will discuss both zero- and transverse-field results within the context of the current understanding of the material. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-FG02-07ER46453.

  2. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.

    PubMed

    Samouhos, Michail; Taxiarchou, Maria; Tsakiridis, Petros E; Potiriadis, Konstantinos

    2013-06-15

    The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.%Cfix), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe?O? ? Fe?O? ? FeO ? Fe sequence. The dielectric constants [real (?') and imaginary (??) permittivities] of red mud-lignite mixture were determined at 2.45 GHz, in the temperature range of 25-1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained. PMID:23611801

  3. A Two-Magnet System to Push Therapeutic Nanoparticles

    PubMed Central

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-01-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically “inject”, or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier. PMID:21243119

  4. Sequential separation of ultra-trace U, Th, Pb, and lanthanides using a simple automatic system.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2015-06-15

    Uranium, thorium, lead, and the lanthanides were automatically and sequentially separated with a single anion-exchange column. This separation was achieved using eluents consisting of a simple and highly pure acid mixture of HCl, HNO3, acetic acid, and HF. The elements of interest were separated from the major constituents, which included alkaline metal elements, alkaline earth metal elements, and iron. This simple and automatic system is driven with pressurized nitrogen gas and controlled using a computer program. An optimized separation was accomplished under the following conditions: a 50 mm long and 2 mm diameter column, 11 ?m diameter anion-exchange resin, and a 35 ?L min(-1) flow rate. Using this system, 50 ng of varied elements in a 100 ?L feed solution were perfectly separated within 5 h with >400 decontamination factors and >95% yield. In order to evaluate the performance of this system, a reference powdered rock sample was separated using this system. Abundances of objective elements, including 0.23 ng of lutetium, were accurately determined without corrections of chemical recovery yield or subtraction of the process blank. This separation technique saves time and effort for chemical processing, and is useful for ultra-trace quantitative and isotopic analyses of elements in small environmental samples. PMID:25994104

  5. Effects of frequency separation in periodic active noise control systems

    Microsoft Academic Search

    Sen M. Kuo; Ajay B. Puvvala

    2006-01-01

    In many practical active noise control (ANC) applications, the primary noise contains multiple closely-spaced harmonics. A narrow-band feedforward ANC system consists of an adaptive filter excited by a composite reference signal, which is the sum of multiple sinusoids corresponding to the harmonic frequencies of the primary noise. This paper analyzes and shows that the convergence of this direct-form controller is

  6. Tunneling gap of two laterally separated quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Kollar, Marcus; Sachdev, Subir

    2001-03-01

    Kang et al(W. Kang et al, Nature 403, 59 (2000).) have measured the conductance between two lateral quantum Hall systems, where tunneling takes place between the one-dimensional edge states of the two systems. They found that a non-interacting model could not explain the location of zero-bias peaks in the conductance. This is because the spectrum is considerably modified by electron-electron interactions, as Mitra and Girvin(A. Mitra and S. Girvin, Bull. Am. Phys. Soc. 45, 136 (2000).) have shown by means of a self-consistent Hartree-Fock calculation. We show that the tunneling gap in the presence of interactions can in fact be evaluated directly. The low-energy physics of the edge states is described by a Luttinger liquid with hybridization between the two branches, which can be mapped onto a sine-Gordon model. After determining the Luttinger liquid parameters for two unhybridized systems, we use the exactly known particle spectrum(Al. B. Zamolodchikov, Int. J. Mod. Phys. 10, 1125 (1995).) of the sine-Gordon model to obtain the tunneling gap for the interacting case. This quantity can be directly compared to the experimental results.

  7. Superconducting magnetic energy storage for electric utilities and fusion systems

    Microsoft Academic Search

    J. D. Rogers; H. J. Boenig; W. V. Hassenzahl

    1978-01-01

    Energy storage inductors, under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy system are described. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility network are discussed. In the

  8. Overview of ITER magnet system and European contribution

    Microsoft Academic Search

    C. Sborchia; E. Barbero Soto; R. Batista; B. Bellesia; A. Bonito Oliva; E. Boter Rebollo; T. Boutboul; E. Bratu; J. Caballero; M. Cornelis; J. Fanthome; R. Harrison; M. Losasso; A. Portone; H. Rajainmaki; P. Readman; P. Valente

    2011-01-01

    The superconducting magnet system of ITER consists of four main sub-systems: Toroidal Field (TF) coils, Central Solenoid (CS) coils; Poloidal Field (PF) coils; and Correction Coils (CC). Like many other ITER systems, the magnet components are supplied in-kind by six Domestic Agencies (DAs). The technical specifications, manufacturing processes and procedures required to fabricate these components are particularly challenging. The management

  9. Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems

    SciTech Connect

    Dzhezherya, Yu. I. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Demishev, K. O., E-mail: demishev.k@gmail.com [National Technical University Kiev Polytechnic Institute (Ukraine); Korenivskii, V. N. [KTH Royal Institute of Technology (Sweden)

    2012-08-15

    The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.

  10. Development of a micro nuclear magnetic resonance system

    Microsoft Academic Search

    Artem Goloshevsky

    2004-01-01

    Application of Nuclear Magnetic Resonance (NMR) to on-line\\/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can

  11. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La$_{2-x}$Sr$_x$CoO$_4$

    E-print Network

    Drees, Y; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2015-01-01

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconduc...

  12. A methodology for designing controllers for industrial systems based on nonlinear separation model and control

    Microsoft Academic Search

    Masatoshi Nakamura; Satoru Goto; Takenao Sugi

    1999-01-01

    A feasible method of controller design for industrial nonlinear dynamic systems is proposed, by separating the nonlinear dynamic system into nonlinear static parts and a linear dynamic part. The proposed method of industrial controller design reduces the existing gaps between the control theory and the actual field. In the controller construction procedure of a system, the nonlinearities are eliminated by

  13. Moltox™ Chemical Air Separation System-A Progress Report

    E-print Network

    Erickson, D. C.; Brown, W. R.; Dunbobbin, B. R.; Massey, R. G.

    .S. Department of Energy Wash1ngton, D.C. ABSTRACT A new low energy route to tonnage oxygen product1on, the HOLTOX~ system, 1s now commenc1ng p110t plant test1ng. The process, 1ts h1story, and potent1a1 app11cat10ns will be descr1bed, 1n add1t1on... to recent results of the p110t plant test program. Future development needs and plans for commerc1a11zat10n w111 be outlined. INTRODUCTION More than 300,000 TID of large tonnage cryogen1c oxygen plant capac1ty was bu11t 1n the 1960's and 1970's...

  14. Power-Invariant Magnetic System Modeling 

    E-print Network

    Gonzalez Dominguez, Guadalupe Giselle

    2012-10-19

    Hans Cristian Oersted discovered that an electric current produced a magnetic field in its neighborhood. The nature of this phenomenon was fully explored by André Ampère and Wilhelm Eduard Weber. They showed that a current loop was magnetically...

  15. l-Cysteine functionalized magnetic nanoparticles (LCMNP): a novel magnetically separable organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitriles in water.

    PubMed

    Khalafi-Nezhad, Ali; Nourisefat, Maryam; Panahi, Farhad

    2015-07-01

    In this study, l-cysteine was chemically grafted to magnetic nanoparticles in order to prepare a reusable magnetic material incorporating an amino acid moiety. For this purpose, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were reacted with trimethoxy(vinyl)silane to produce vinyl-functionalized magnetic nanoparticles (VMNP). Reaction of a VMNP substrate with l-cysteine in the presence of azobisisobutyronitrile (AIBN) resulted in the production of l-cysteine-functionalized magnetic nanoparticles (LCMNP). The LCMNP material was characterized using different microscopy and spectroscopy techniques such as FT-IR, XRD, TEM, SEM, EDX, VSM, and elemental analysis. Also, LCMNP was analyzed by thermogravimetric analysis (TGA) in order to determine its thermal behavior. The applicability of the LCMNP material was evaluated in a three-component coupling reaction between a nucleophile, salicylaldehyde and malononitrile as the catalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives. The catalyst system showed high catalytic activity in this process and target products were obtained in high isolated yields in water as a green solvent. The LCMNP catalyst was reusable in this reaction at least 7 times with no significant decrease in its catalytic activity. PMID:26098281

  16. Improvement of the Superconducting Magnetic Levitation System for an Absolute Determination of the Magnetic Flux Quantum

    Microsoft Academic Search

    Fuyuhiko Shiota; Ko Hara; Takaaki Hirata

    1984-01-01

    The superconducting magnetic levitation system for the absolute determination of the magnetic flux quantum phi0 is improved. Resolution of the vertical position of the floating body with laser interferometer becomes 1\\/100 mum order, which corresponds to 1 ppm of the gravitational potential energy of the floating body. An outline of this system and some temporary results are described.

  17. Versatile fabrication of ultralight magnetic foams and application for oil-water separation.

    PubMed

    Chen, Ning; Pan, Qinmin

    2013-08-27

    Ultralow-density (<10 mg cm(-3)) materials have many important technological applications; however, most of them were fabricated using either expensive materials or complicated procedures. In this study, ultralight magnetic Fe2O3/C, Co/C, and Ni/C foams (with a density <5 mg cm(-3)) were fabricated on the centimeter scale by pyrolyzing commercial polyurethane sponge grafted with polyelectrolyte layers based on the corresponding metal acrylate at 400 °C. The ultralight foams consisted of 3D interconnected hollow tubes that have a diameter of micrometer and nanoscale wall thickness, forming hierarchical structures from macroscopic to nanometer length scales. More interesting was that the wall thickness and morphology of the microtubes could be tuned by controlling the concentrations of acrylic acid and metallic cations. After modification with low-surface-energy polysiloxane, the ultralight foams showed superhydrophobicity and superoleophilicity, which quickly and selectively absorbed a variety of oils from a polluted water surface under magnetic field. The oil absorption capacity reached 100 times of the foams' own weight, exhibiting one of the highest values among existing absorptive counterparts. By controlling the composition and conformation of the grafted polyelectrolyte layers, the present approach is extendable to fabricate a variety of ultralow-density materials desirable for absorptive materials, electrode materials, catalyst supports, etc. PMID:23875978

  18. ISABELLE magnet power supply system performance analysis

    SciTech Connect

    Edwards, R.J.

    1981-01-01

    The power supply system that will energize the superconducting magnets in the ISABELLE 400 x 400 GeV accelerator must supply various voltages and currents. The voltages for the correction winding range from ten to one hundred twenty-five volts unipolar and bipolar with current rating of 50 to 300 amperes. The main field winding requires voltages from 90V (at flattop) to 600V during maximum ramp rate or acceleration cycle. The power supplies are programmable over their full range of output current with a reproducibility error varying from +- 10 ppM to +- 400 ppM of full scale. Included within the reproducibility error are the long and short term stability requirements of the power supplies. The purpose of this paper is to define some of the design goals and outline the approach taken in reaching these goals.

  19. Retroactivity Attenuation in BioMolecular Systems Based on Timescale Separation

    Microsoft Academic Search

    Shridhar Jayanthi; Domitilla Del Vecchio

    2011-01-01

    As with several engineering systems, bio-molecular systems display impedance-like effects at interconnections, called retroactivity. In this paper, we propose a mechanism that exploits the natural timescale separation present in bio-molecular systems to attenuate retroactivity. Retroactivity enters the dynamics of a bio-molecular system as a state dependent disturbance multiplied by gains that can be very large. By virtue of the system

  20. Magnet system for a thermal barrier Tandem Mirror Reactor

    SciTech Connect

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed.

  1. Yoke-free magnetic system for low field studies in magnetically affected reaction yield spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalneus, Evgeny V.; Stass, Dmitri V.; Grishin, Yuri A.

    2005-08-01

    The article reports the development of a specialized magnetic system for application in low field studies of chemical reactions involving paramagnetic intermediates. We have designed and built a yoke-free magnetic system optimized for creating rather low static homogeneous magnetic fields that can be cleanly swept through zero value. The actually built system creates magnetic field in the range from "-500" to "+500" G in a cylindrical working region with a length of 8 cm and a diameter of 1 cm with a relative field homogeneity of about 10-4 without using ferromagnetic elements or employing a field-sensing feedback loop. At a distance of greater than or equal to 15 cm from the center of the system along the sweeping axis, the magnetic field does not exceed 100 G due to active shielding, which allows putting magnetic field-sensitive elements of the installation that close to the sample. We have tried to provide a detailed account of the design choices we faced and the compromises we had reached for each key aspect of the system, being rather specific about the reasoning behind each decision. The system actually built was thoroughly tested to verify the assumptions made at the design and the calculation stages and to check their practical realizability. The system will serve as the basis of a magnetically affected reaction yield spectrometer that is currently being developed in our laboratory, but hopefully can also be used in a wider array of applications centered around studies in low magnetic fields.

  2. A magnetically separable biocatalyst for resolution of racemic naproxen methyl ester.

    PubMed

    Ozyilmaz, Elif; Sayin, Serkan

    2013-11-01

    Candida rugosa lipase (CRL) was encapsulated via the sol-gel method, using 5, 11, 17, 23-tetra-tert-butyl-25,27-bis(2-aminopyridine)carbonylmethoxy-26, 28-dihydroxy-calix[4]arene-grafted magnetic Fe3O4 nanoparticles (Calix-M-E). The catalytic activity of encapsulated lipase (Calix-M-E) was tested both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic naproxen methyl ester. The present study demonstrated that the calixarene-based compound has the potential to enhance both reaction rate and enantioselectivity of the lipase-catalyzed hydrolysis of racemic naproxen methyl ester. The encapsulated lipase (Calix-M-E) had great catalytic activity and enantioselectivity (E > 400), as well as remarkable reusability as compared to the encapsulated lipase without supports (E = 137) for S-Naproxen. PMID:23525833

  3. EVIDENCE FOR TWO SEPARATE BUT INTERLACED COMPONENTS OF THE CHROMOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Reardon, K. P. [Osservatorio Astrofisico di Arcetri, 50125 Firenze (Italy); Wang, Y.-M.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Muglach, K., E-mail: kreardon@arcetri.astro.it, E-mail: yi.wang@nrl.navy.mil, E-mail: hwarren@nrl.navy.mil, E-mail: karin.muglach@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01

    Chromospheric fibrils are generally thought to trace out low-lying, mainly horizontal magnetic fields that fan out from flux concentrations in the photosphere. A high-resolution ({approx}0.''1 pixel{sup -1}) image, taken in the core of the Ca II 854.2 nm line and covering an unusually large area, shows the dark fibrils within an active region remnant as fine, looplike features that are aligned parallel to each other and have lengths comparable to a supergranular diameter. Comparison with simultaneous line-of-sight magnetograms confirms that the fibrils are centered above intranetwork areas (supergranular cell interiors), with one end rooted just inside the neighboring plage or strong unipolar network but the other endpoint less clearly defined. Focusing on a particular arcade-like structure lying entirely on one side of a filament channel (large-scale polarity inversion), we find that the total amount of positive-polarity flux underlying this 'fibril arcade' is {approx}50 times greater than the total amount of negative-polarity flux. Thus, if the fibrils represent closed loops, they must consist of very weak fields (in terms of total magnetic flux), which are interpenetrated by a more vertical field that contains most of the flux. This surprising result suggests that the fibrils in unipolar regions connect the network to the nearby intranetwork flux, while the bulk of the network flux links to remote regions of the opposite polarity, forming a second, higher canopy above the fibril canopy. The chromospheric field near the edge of the network thus has an interlaced structure resembling that in sunspot penumbrae.

  4. Evidence for Two Separate but Interlaced Components of the Chromospheric Magnetic Field

    NASA Technical Reports Server (NTRS)

    Reardom, K. P.; Wang, Y.-M.; Muglach, K.; Warren, H. P.

    2011-01-01

    Chromospheric fibrils are generally thought to trace out low-lying, mainly horizontal magnetic elds that fan out from flux concentrations in the photosphere. A high-resolution (approximately 0.1" per pixel) image, taken in the core of the Ca II 854.2 nm line and covering an unusually large area, shows the dark brils within an active region remnant as fine, looplike features that are aligned parallel to each other and have lengths comparable to a supergranular diameter. Comparison with simultaneous line-of-sight magnetograms confirms that the fibrils are centered above intranetwork areas (supergranular cell interiors), with one end rooted just inside the neighboring plage or strong unipolar network but the other endpoint less clearly defined. Focusing on a particular arcade-like structure lying entirely on one side of a lament channel (large-scale polarity inversion), we find that the total amount of positive-polarity flux underlying this "fibril arcade" is approximately 50 times greater than the total amount of negative-polarity flux. Thus, if the brils represent closed loops, they must consist of very weak fields (in terms of total magnetic flux), which are interpenetrated by a more vertical field that contains most of the flux. This surprising result suggests that the fibrils in unipolar regions connect the network to the nearby intranetwork flux, while the bulk of the network flux links to remote regions of the opposite polarity, forming a second, higher canopy above the fibril canopy. The chromospheric field near the edge of the network thus has an interlaced structure resembling that in sunspot penumbrae.

  5. Method and system for producing hydrogen using sodium ion separation membranes

    DOEpatents

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  6. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  7. PERFORMANCE EVALUATION OF SEPARATED APERTURE SENSOR GPR SYSTEM FOR LAND MINE DETECTION

    Microsoft Academic Search

    K. Moustafa; Khalid F. A. Hussein

    2007-01-01

    In this paper, the performance of the separated-aperture sensor working as ground-penetrating radar (GPR) is assessed over the operating frequency band. The capability of the separated- aperture sensor to d etect buriedtargets is examinedby evaluating andcomparing the electromagnetic coupling between the transmitting andreceiving antennas in two cases: (i) when the system is placed over an empty groundand(ii) when it is

  8. Magnetic mirror fusion systems: Characteristics and distinctive features

    SciTech Connect

    Post, R.F.

    1987-08-10

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

  9. Applications of magnetic sensors for low cost compass systems

    Microsoft Academic Search

    Michael J. Caruso

    2000-01-01

    A method for heading determination is described that will include the effects of pitch and roll as well as the magnetic properties of the vehicle. Using solid-state magnetic sensors and a tilt sensor, a low cost compass system can be realized. Commercial airlines today use attitude and heading reference systems that cost tens of thousands of dollars. For general aviation,

  10. Unobtrusive Integration of Magnetic Generator Systems into Common Footwear

    E-print Network

    to carrying relatively large-capacity batteries is to harvest the energy of everyday human motion and useUnobtrusive Integration of Magnetic Generator Systems into Common Footwear by Jeffrey Yukio of Magnetic Generator Systems into Common Footwear by Jeffrey Yukio Hayashida Submitted to the Department

  11. Microscopic Faraday rotation measurement system using pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V =a?-2+b. The values of a and b were compared to their magnetic susceptibilities.

  12. Semi-continuous in situ magnetic separation for enhanced extracellular protease production-modeling and experimental validation.

    PubMed

    Cerff, Martin; Scholz, Alexander; Käppler, Tobias; Ottow, Kim E; Hobley, Tim J; Posten, Clemens

    2013-08-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS) constitutes an excellent adsorptive method for efficient extracellular protease removal during cultivation. In this work, the impact of semi-continuous ISMS on the overall protease yield has been investigated. Results reveal significant removal of the protease from Bacillus licheniformis cultivations. Bacitracin-functionalized magnetic particles were successfully applied, regenerated and reused up to 30 times. Immediate reproduction of the protease after ISMS proved the biocompatibility of this integrated approach. Six subsequent ISMS steps significantly increased the overall protease yield up to 98% because proteolytic degradation and potential inhibition of the protease in the medium could be minimized. Furthermore, integration of semi-continuous ISMS increased the overall process efficiency due to reduction of the medium consumption. Process simulation revealed a deeper insight into protease production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. PMID:23475553

  13. Thermal modeling of the Tevatron magnet system

    SciTech Connect

    Jay C. Theilacker; Arkadiy L. Klebaner

    2004-07-20

    Operation of the Tevatron at lower temperatures, for the purpose of allowing higher energies, has resulted in a renewed interest in thermal modeling of the magnet strings. Static heat load and AC loses in the superconducting coils are initially transported through subcooled liquid helium. Heat exchange between the subcooled liquid and a counter flowing two-phase stream transfers the load to the latent heat. Stratification of the two-phase helium stream has resulted in considerably less heat exchange compared to the original design. Spool pieces have virtually no heat transfer to the two-phase resulting in a ''warm'' dipole just downstream. A model of the magnet string thermal behavior has been developed. The model has been used to identify temperature profiles within magnet strings. The temperature profiles are being used in conjunction with initial magnet quench performance data to predict the location of quench limiting magnets within the Tevatron. During thermal cycles of magnet strings, the model is being used to ''shuffle'' magnets within the magnet string in order to better match the magnets quench performance with its actual predicted temperature. The motivation for this analysis is to raise the operating energy of the Tevatron using a minimal number of magnets from the spares pool.

  14. APPLICATION OF LIQUID-LIQUID SYSTEMS TO THE SEPARATION OF LITHIUM ISOTOPES

    Microsoft Academic Search

    Drury

    1951-01-01

    A systematic effort to develop a liquid-liquid system suitable for the- ; separation of lithium isotopes is described. The study included a search for ; immiscible solvent pairs; preparation of a number of lithium compounds, ; solubility studies of lithium compounds in individual solvents, distribution ; studies of lithium compounds in two phase liquidliquid systems; and determination ; of isotopic

  15. A Separation Principle for Non-UCO Systems: The Jet Engine Stall and Surge Example

    E-print Network

    Maggiore, Manfredi

    the Moore-Greitzer three state model (MG3) to design stabilizing controllers for stall and surge, see on the estimation of the entire state of the system, and it seems that no attempt has been made to designA Separation Principle for Non-UCO Systems: The Jet Engine Stall and Surge Example Manfredi

  16. Separation model design of manufacturing systems using the distributed agent-oriented Petri net

    Microsoft Academic Search

    Chung-hsien Kuo; Han-pang Huang; Muder Jeng; Li-der Jeng

    2005-01-01

    Manufacturing systems are hardly modelled and analysed in detail due to the complex and interactive behaviours of the production, movement, maintenance and dispatch on the shopfloor. In this paper, an agent-based modelling methodology is proposed to model the manufacturing systems using the separation model design approach. The agent models are constructed using the distributed agent-oriented Petri net (DAOPN). The DAOPN

  17. Development of a Systems Engineering Model of the Chemical Separations Process

    SciTech Connect

    Sun, Lijian; Li, Jianhong; Chen, Yitung; Clarksean, Randy [Department of Mechanical Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas NV, 89154-4027 (United States); Ladler, Jim; Vandergrift, George [Argonne National Laboratory-East (United States)

    2002-07-01

    Work is being performed to develop a general-purpose systems engineering model for the AAA separation process. The work centers on the development of a new user interface for the AMUSE code and on the specification of a systems engineering model. This paper presents background information and an overview of work completed to date. (authors)

  18. Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A.; Amm, O.; Viljanen, A.; Bear Working Group

    2003-03-01

    Traditionally the separation of the ground geomagnetic field variations into external and internal parts is carried out by applying methods using harmonic functions. However, these methods may require a separate field interpolation and extrapolation, can be computationally slow, and require a minimum wavelength to be specified to which the spatial resolution is limited globally. A novel method that utilizes elementary current systems can overcome these shortcomings. The basis is the fact that inside a domain free of current flow, the magnetic field can be continued to any selected plane in terms of equivalent currents. Two layers of equivalent currents, each composed of superposition of spherical elementary systems, are placed to reproduce the ground magnetic field: One above the surface of the Earth representing the field of ionospheric origin, and one below it representing the field caused by induced currents in the Earth. The method can be applied for single time steps and the solution of the associated underdetermined linear system is found to be fast and reliable when using singular value decomposition. The applicability of the method is evaluated using synthetic magnetic data computed from different ionospheric current models and associated image currents placed below the surface of the Earth. Following these tests, the method is applied to the measurements of Baltic Electromagnetic Array Research (BEAR) (June-July 1998). External and internal components of geomagnetic variations were computed for the entire measurement period. Also the adequacy of the sparser IMAGE magnetometer network for the full field separation was tested.

  19. Low-field classroom nuclear magnetic resonance system

    E-print Network

    Zimmerman, Clarissa Lynette

    2010-01-01

    The goal of this research was to develop a Low-field Classroom NMR system that will enable hands-on learning of NMR and MRI concepts in a Biological-Engineering laboratory course. A permanent magnet system, designed using ...

  20. Spatiotemporally separating electron and phonon thermal transport in L1{sub 0} FePt films for heat assisted magnetic recording

    SciTech Connect

    Xu, D. B., E-mail: dongbin.xu@seagate.com [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, 117576 Singapore (Singapore); Sun, C. J., E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg; Ho, P.; Chen, J. S.; Chow, G. M., E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg [Department of Materials Science and Engineering, National University of Singapore, 117576 Singapore (Singapore); Brewe, D. L.; Heald, S. M.; Zhang, X. Y. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Han, S.-W. [Department of Physics Education and Institute of Fusion Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-06-28

    We report the spatio-temporal separation of electron and phonon thermal transports in nanostructured magnetic L1{sub 0} FePt films at the nanometer length scale and the time domain of tens of picosecond, when heated with a pulsed laser. We demonstrate that lattice dynamics measured using the picosecond time-resolved laser pump/X-ray probe method on the FePt (002) and Ag (002) Bragg reflections from different layers provided the information of nanoscale thermal transport between the layers. We also describe how the electron and phonon thermal transports in nanostructured magnetic thin films were separated.

  1. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; /Fermilab; Balle, C.; Casas-Cubillos, J.; Perin, A.; Vauthier, N.; /CERN

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.

  2. Improvement of the superconducting magnetic levitation system for the determination of the magnetic flux quantum

    SciTech Connect

    Endo, T.; Sakamoto, Y. (Electrotechnical Lab., 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305 (JP)); Shiota, F.; Nakayama, K.; Nezu, Y. (National Research Lab. of Metrology, Tsukuba-shi, Ibaraki (JP)); Kikuzawa, M.; Hara, K. (Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275 (JP))

    1989-04-01

    The authors describe an improvement of the preliminary superconducting magnetic levitation system in progress for the absolute determination of the magnetic flux quantum. This improvement includes the development of the flux-up method to determine the flux in terms of the Josephson voltage. The improvement is essential for the determination of the magnetic flux quantum as well as of the coil current in terms of the Josephson voltage and quantized Hall resistance.

  3. Direct observation of magnetic domains in phase separated Nd0.7Ca0.3MnO3 single crystals

    Microsoft Academic Search

    Xiao-Juan Fan; Hideomi Koinuma; Tetsuya Hasegawa

    2002-01-01

    The magnetic properties of single-crystalline Nd0.7Ca0.3MnO3 were studied with both macroscopic and microscopic probes. The magnetization shows large irreversibility behavior between zero-field-cooled and field-cooled data at low field, suggesting a phase separation driven by competition between ferromagnetic and antiferromagnetic phases. The scanning superconducting quantum interference device microscope observations under zero field gave clear evidence that the compound includes ferromagnetic regions

  4. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  5. Evidence for Two Separate but Interlaced Components of the Chromospheric Magnetic Field

    NASA Technical Reports Server (NTRS)

    Muglach, K.; Reardon, K. P.; Wang, Y.-M.; Warren, H. P.

    2012-01-01

    Chromospheric fibrils are generally thought to trace out horizontal magnetic fields that fan out from flux concentrations in the photosphere. A high-resolution (0.2") image taken in the core of the Ca IJ854.2 nm line shows the dark fibrils within an active region remnant as fine, loop-like features that are aligned parallel to each other and have lengths on the order of a supergranular diameter (approx.30 Mm). Comparison with a line-of-sight magnetogram confirms that the fibrils are centered above intranetwork areas, with one end rooted just inside the neighboring plage or strong unipolar network but the other endpoint less clearly defined. Focusing on a particular arcade-like structure lying entirely on one side of a filament channel (large-scale polarity inversion), we find that the total amount of positive-polarity flux underlying this "fibril arcade' is 50 times greater than the total amount of negative-polarity flux. Thus, if the fibrils represent closed loops, they must consist of very weak fields (in terms of flux density), which are interpenetrated by a more vertical field that contains most of the flux. This surprising result suggests that the fibrils in unipolar regions connect the network to the nearby intranetwork flux, while the bulk of the network flux is diverted upward into the corona and connects to remote regions of the opposite polarity. We conclude that the chromospheric field near the edge of the network has an interlaced structure resembling that in sunspot penumbrae, with the fibrils representing the low-lying horizontal flux that remains trapped within the highly nonpotential chromospheric layer.

  6. PWM Current Driver Design and Implement for Electric Magnet of Magnetic Suspension System

    Microsoft Academic Search

    Yi-Hua Fana; Kuan-Yu Chen; Cheng-Ju Wu; Po-Chaoo Lee

    2007-01-01

    This research used the pulse width modulation technique to design a switched current driver design for the electric magnets of magnetic suspension system. Dye to the phenomenon of the MOSFET, the driver can operate in the great voltage and under the bigger electric currents than the traditional push-pull linear driver. Furthermore, the relationship of the force slew rate and the

  7. A system for measuring magnetic core noise as a function of the magnetization level

    Microsoft Academic Search

    Akira Yoshihiro; Kazunori Kajiwara; Kousei Mori; Toshikatsu Sonoda; Ryuzo Ueda; Yoshiteru Miki

    1995-01-01

    The problem of magnetic core noise is considered in terms of non-repeatability of the hysteresis loop trace for any repetition of the magnetization process. The examination condition is that the effect of eddy currents is reduced to as low a level as possible. Based on such premises, this paper presents a system which periodically extracts the fluctuation voltage, induced at

  8. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    SciTech Connect

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation.

  9. Magnetic levitation system for moving objects

    DOEpatents

    Post, Richard F. (Walnut Creek, CA)

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  10. Magnetic levitation system for moving objects

    DOEpatents

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  11. Phase separation transition in a driven diffusive system with anti-ferromagnetic interaction

    Microsoft Academic Search

    Anasuya Kundu; P. K. Mohanty

    2011-01-01

    One-dimensional non-equilibrium systems with short-range interaction can undergo phase transitions from homogeneous states to phase separated states as interaction (?) among particles is increased. One of the model systems where such a transition has been observed is the extended Katz–Lebowitz–Spohn (KLS) model with ferromagnetically interacting particles at ?=4\\/5. Here, the system remains homogeneous for small interaction strength (?4\\/5), and for

  12. The magnetic field, force and inductance of the system consisting of a thin ellipsoidal coil and a ferromagnetic ellipsoid

    Microsoft Academic Search

    Jan Purczynski; Pawel Rolicz; Ryszard Sikora

    1975-01-01

    The method of separation of variables has been applied to determine the magnetic field of the system consisting of a thin\\u000a ellipsoidal coil and a ferromagnetic ellipsoid of revolution. The inductance and the force acting between the coil and the\\u000a ellipsoid are also examined.

  13. Indirect hydrogen versus helium or nitrogen cooling for fusion cryogenic and magnet systems Clarke R.H1

    E-print Network

    Glowacki, Bartek A.

    347 Indirect hydrogen versus helium or nitrogen cooling for fusion cryogenic and magnet systems also enables the pre-separation of exhaust gases, increased fuel recycling and reduced refrigeration power. Resource concerns are causing helium's use in fusion to be scrutinised, although sometimes

  14. Reactions of the nervous system to magnetic fields

    NASA Technical Reports Server (NTRS)

    Kholodov, Y. A.

    1974-01-01

    This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.

  15. TS Fuzzy Control of Magnetic Levitation Systems Using QEA

    Microsoft Academic Search

    Gwo-Ruey Yu; Yu-Jie Huang

    2009-01-01

    This paper proposed the design of T-S fuzzy control for magnetic levitation systems. The maglev systems are linearized at the equilibrium point first. Then the error state equations are derived and the proportional integral (PI) controller is applied to eliminate the steady-state tracking error. The nonlinear dynamic equations of the magnetic levitation systems are represented by a T-S fuzzy model.

  16. MAGNETIC DRUM SEPARATOR PERFORMANCE SCALPING SHREDDED TROMMEL OVERFLOW AT NOMINAL DESIGN CONDITIONS. TEST NO. 4.03, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    This report describes the first test of the shredded trommel overs magnetic drum separator at the New Orleans, Louisiana, resource recovery facility. Shredded trommel overs refers to waste which reports to the oversize discharge from the trommel and is subsequently shredded. For ...

  17. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  18. Fe on W(110), a stable magnetic reference system

    NASA Astrophysics Data System (ADS)

    Miesch, S.; Fognini, A.; Acremann, Y.; Vaterlaus, A.; Michlmayr, T. U.

    2011-01-01

    Time resolved pump probe experiments with ultra short infrared pump and x-ray photoemission probe pulses require a stable magnetic reference system with reproducible magnetic properties. In search of such a system we found in iron on tungsten an ideal sample. The coercive field of this system remains constant at 12.2±1 Oe between 15 and 25 monolayers. Kerr effect measurements and scanning electron microscopy with polarization analysis images prove that the magnetization switches from single domain to single domain state. Capping with Au increases the coercive field and prevents the Fe layer from deterioration.

  19. Magnetic Bearing Controller Improvements for High Speed Flywheel System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.; Kascak, Peter E.; Provenza, Andrew J.

    2003-01-01

    A magnetic bearing control system for a high-speed flywheel system is described. The flywheel utilizes a five axis active magnetic bearing system, using eddy current sensors for position feedback to the bearing controller. Magnetic bearing controller features designed to improve flywheel operation and testing are described. Operational improvements include feed forward control to compensate for rotor imbalance, moving notch filtering to compensate for synchronous and harmonic rotational noise, and fixed notching to prevent rotor bending mode excitation. Testing improvements include adding safe gain, bearing current hold, bearing current zero, and excitation input features. Performance and testing improvements provided by these features are measured and discussed.

  20. Temperature-induced phenomena in systems of magnetic nanoparticles

    Microsoft Academic Search

    Abdul Wazed Bhuiya

    2009-01-01

    Magnetic nanoparticle ensembles have received a lot of attention, stemming in part from their current and potential applications in biomedicine and in the development of high-density magnetic storage media. Key to the functionality of these systems are microscopic structures and mechanisms that make them exhibit unique properties and behave differently from their bulk counterparts. We studied microscopic structures and processes

  1. Magnetically induced electric fields and currents in the circulatory system

    Microsoft Academic Search

    Thomas S. Tenforde

    2005-01-01

    Blood flow in an applied magnetic field gives rise to induced voltages in the aorta and other major arteries of the central circulatory system that can be observed as superimposed electrical signals in the electrocardiogram (ECG). The largest magnetically induced voltage occurs during pulsatile blood flow into the aorta, and results in an increased signal at the location of the

  2. Passive magnetic bearing for flywheel energy storage systems

    Microsoft Academic Search

    Alexei V. Filatov; Eric H. Maslen

    2001-01-01

    This paper proposes a novel type of passive noncontact magnetic suspension. An advantageous feature of passive suspension systems is that they are intrinsically stable, in contrast to active magnetic bearings and therefore can provide much higher reliability, which is known to be the crucial factor in applications requiring continuous noncontact suspension of high-speed rotors. An example of such an application

  3. Behavioral/Systems/Cognitive Functional Magnetic Resonance Imaging Reveals the

    E-print Network

    Murray, Scott

    magnetic resonance imaging (fMRI) has been extensively used to study the neural sub- strates of the handBehavioral/Systems/Cognitive Functional Magnetic Resonance Imaging Reveals the Neural Substrates the everyday act of reaching out to pick up a coffee cup seems like a single fluid action, arguably

  4. Failure modes and effects analysis of fusion magnet systems

    SciTech Connect

    Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

  5. Improvement of magnetic circuit in levitation system using HTS and soft magnetic material

    Microsoft Academic Search

    Mojtaba Ghodsi; Toshiyuki Ueno; Toshiro Higuchi

    2005-01-01

    This paper presents improvement of a novel levitation system in which soft magnetic material can be levitated by high-temperature superconductor (HTS). The levitation system consists of two permanent magnets, HTS samples of Dy1Ba2Cu3Oy (DBCO), and movable yoke with cylindrical parts to which trapped flux in the HTS is gathered and produces an attractive force. The attractive force generally increases with

  6. Field-Coupled Nano-Magnetic Logic Systems

    NASA Astrophysics Data System (ADS)

    Pulecio, Javier F.

    The following dissertation addresses the study of nano-magnetic devices configured to produce logic machines through magnetostatic coupling interactions. The ability for single domain magnets to reliably couple through magnetostatic interactions is essential to the proper functionality of Magnetic Cellular Automata (MCA) devices (p. 36). It was significant to explore how fabrication defects affected the coupling reliability of MCA architectures. Both ferromagnetic and anti-ferromagnetic coupling architectures were found to be robust to common fabrication defects. Experiments also verified the functionality of the previously reported MCA majority gate [1] and a novel implementation of a ferromagnetic MCA majority gate is reported. From these results, the study of clocking Magnetic Cellular Automata (MCA) interconnect architectures was investigated (p. 54). The wire architectures were saturated under distinct directions of an external magnetic field. The experimental results suggested ferromagnetic coupled wires were able to mitigate magnetic frustrations better than anti-ferromagnetic coupled wires. Simulations were also implemented supporting the experimental results. Ferromagnetic wires were found to operate more reliably and will likely be the primary interconnects for MCA. The first design and implementation of a coplanar cross wire system for MCA was constructed which consisted of orthogonal ferromagnetic coupled wires (p. 68). Simulations were implemented of a simple crossing wire junction to analyze micro-magnetic dynamics, data propagation, and associated energy states. Furthermore, two systems were physically realized; the first system consisted of two coplanar crossing wires and the second was a more complex system consisting of over 120 nano-magnetic cells. By demonstrating the combination of all the possible logic states of the first system and the low ground state achieved by the second system, the data suggested coplanar cross wire systems would indeed be a viable architecture in MCA technology. Finally, ongoing research of an unconventional method for image processing using nano-magnetic field-based computation is presented (p. 79). In magnetic field-based computing (MFC), nano-disks were mapped to low level segments of an image, and the magnetostatic coupling of magnetic dipole moments was directly related to the saliency of a low level segment for grouping. A proof of concept model for two MFC systems was implemented. Details such as the importance of fabricating circular nano-magnetic cells to mitigate shape anisotropy, experimental coupling analysis via Magnetic Force Microscopy, and current results from a complex MFC system is outlined.

  7. Prototype of a magnetically suspended flywheel energy storage system

    Microsoft Academic Search

    David P. Plant; J. A. Kirk; D. K. Anand

    1989-01-01

    The authors describe recent progress in the development of a 500 Wh magnetically suspended flywheel stack energy storage system. The design of the system and a critical study of the noncontacting displacement transducers and their placement in the stack system are discussed. The storage system has been designed and constructed and is undergoing experimental analysis. The results acquired from the

  8. Power spectrum analysis of the average-fluctuation density separation in interacting particle systems

    Microsoft Academic Search

    R. J. Leclair; R. U. Haq; V. K. B. Kota; N. D. Chavda

    2008-01-01

    The power spectrum analysis using the Lomb-Scargle false alarm probability statistic shows a clear separation between the average and fluctuating parts of the state density in embedded two-body random matrix ensembles with a mean-field for both fermion and boson systems as well as in the nuclear shell model.

  9. Power spectrum analysis of the average–fluctuation density separation in interacting particle systems

    Microsoft Academic Search

    R. J. Leclair; R. U. Haq; V. K. B. Kota; N. D. Chavda

    2008-01-01

    The power spectrum analysis using the Lomb–Scargle false alarm probability statistic shows a clear separation between the average and fluctuating parts of the state density in embedded two-body random matrix ensembles with a mean-field for both fermion and boson systems as well as in the nuclear shell model.

  10. STATISTICAL PROPERTIES OF STFT RATIOS FOR TWO CHANNEL SYSTEMS AND APPLICATIONS TO BLIND SOURCE SEPARATION

    E-print Network

    Balan, Radu V.

    to problems of source separation and noise re­ duction for small electronic devices (e.g. speech recogni­ tionSTATISTICAL PROPERTIES OF STFT RATIOS FOR TWO CHANNEL SYSTEMS AND APPLICATIONS TO BLIND SOURCE received at two sensors can factor out the role of the power spectrum of emitting sources, under

  11. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    PubMed

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments. PMID:25246100

  12. Improving Aircraft Sequencing and Separation at a Small Aircraft Transportation System Airport

    E-print Network

    Valasek, John

    Improving Aircraft Sequencing and Separation at a Small Aircraft Transportation System Airport Kyle and procedures for approach and landing during instrument meteorological conditions, the NASA small aircraft, and evaluation was conducted with multiple pilots flying simultaneously in a real-time distributed simulation

  13. Features of air conditioning systems with separation of a moisture on high pressure

    Microsoft Academic Search

    Yuriy Dyachenko; Alexander Chichindaev

    2000-01-01

    In activity the analysis of the literature, directional on study of features of activity of a AHRS with separation of a moisture on high pressure is executed. As a result of study of design features of a AHRS the describing systems of a sectional type are established four indication: 1) a way of cooling of air high-pressure; 2) a degree

  14. CoreSim: A Simulator For Evaluating Locator/ID Separation Protocol Mapping Systems

    E-print Network

    Politècnica de Catalunya, Universitat

    the Internet today. The scalability issues of the current Internet Routing architecture were previouslyCoreSim: A Simulator For Evaluating Locator/ID Separation Protocol Mapping Systems Florin Coras- plementations exist, with a small experimental testbed, but there are no tools to evaluate how these proposals

  15. Separation of single-walled carbon nanotubes with a gel permeation chromatography system.

    PubMed

    Flavel, Benjamin S; Moore, Katherine E; Pfohl, Moritz; Kappes, Manfred M; Hennrich, Frank

    2014-02-25

    A gel permeation chromatography system is used to separate aqueous sodium dodecyl sulfate suspensions of single-walled carbon nanotubes (SWCNTs). This automated procedure requires no precentrifugation, is scalable, and is found to yield monochiral SWCNT fractions of semiconducting SWCNTs with a purity of 61-95%. Unsorted and resulting monochiral fractions are characterized using optical absorption and photoluminescence spectroscopy. PMID:24460395

  16. Optimal design of hybrid separation systems for in-plant waste reduction

    SciTech Connect

    Hamad, A.A.; Crabtree, E.W.; El-Halwagi, M.M. [Auburn Univ., AL (United States); Garrison, G.W. [Matrix Process Integration, Leesburg, VA (United States)

    1996-12-31

    A general procedure for using hybrid separation systems to prevent pollution is presented. The design procedure integrates segregation, interception, and recycle. A systematic method developed to identify the optimal design combination is illustrated through a case study. The case study presented is the removal of cresol from aqueous wastes in a tricresyl phosphate plant. 21 refs., 4 figs.

  17. Variance Reduction for Particle Filters of Systems with Time Scale Separation

    E-print Network

    Del Moral , Pierre

    1 Variance Reduction for Particle Filters of Systems with Time Scale Separation Dror Givon, dimensional reduction, variance reduction, Rao-Blackwellization, stochastic differential equations, jump) the use of the averaging principle for the dimensional reduction of the dynamics for each particle during

  18. Solids removal from a coldwater recirculating system - comparison of swirl separator and radial-flow settlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solids removal across two settling devices, i.e., a swirl separator and a radial-flow settler, and across a microscreen drum filter was evaluated in a fully recirculating system containing a single 150 m3 'Cornell-type' dual-drain tank during the production of food-size Arctic char and rainbow trout...

  19. Separation of Concerns in the Formal Design of RealTime Shared DataSpace Systems #

    E-print Network

    Mousavi, Mohammad

    the idea of separation of concerns at the specification and design level, and it establishes a robust at the specification and design level, and, second, it establishes a robust theoretical basis that allows rigid. Subsequently, Section 5 uses the introduced theory to model an academic case study, a control system

  20. Separation of Concerns in the Formal Design of Real-Time Shared Data-Space Systems

    E-print Network

    Mousavi, Mohammad

    the idea of separation of concerns at the specification and design level, and it establishes a robust at the specification and design level, and, second, it establishes a robust theoretical basis that allows rigid. Subsequently, Section 5 uses the introduced theory to model an academic case study, a control system

  1. Focus on hybrid magnetic/superconducting systems Focus on hybrid magnetic/superconducting systems

    NASA Astrophysics Data System (ADS)

    Cooley, Lance; Moshchalkov, Victor; Li, Qiang

    2011-02-01

    Like antagonistic cousins from a common heritage, the competition between superconductivity and magnetism for correlated electron states, and coexistence in some rare cases, produces a rich variety of physical behavior, useful materials, and technologically important properties. Many pages of Superconductor Science and Technology are devoted to cuprates, pnictides, and other compounds where the mechanism of superconductivity itself is intertwined with magnetism. This focus issue explores another area, in which superconductivity and magnetism are combined as a hybrid system to create new properties not possible with either system alone, or to improve upon the properties of either system in dramatic ways. In recent years, great progress has been made in this exciting, relatively new field, followed by many workshops and special sessions in major international conferences. A concise and up-to-date focus issue of Superconductor Science and Technology is timely to summarize the latest developments. We, the Guest Editors, would like to thank those colleagues who contributed their most recent and interesting findings to this focus issue: Silhanek and co-workers reported both theoretical and experimental investigations of the dynamics of vortex chains for different arrangements of magnetic moments. Their approach of time-dependent Ginzburg-Landau formalism now replaces the previously proposed empirical models to explain the most relevant properties of the dynamics of these S/F hybrid systems. Hikino and co-workers presented a new route to observe the spin-wave excitation by the Josephson effect, through a theoretical investigation of the resistively shunted junction model, extended by considering the gauge invariance including magnetization. When the magnetization is driven by the microwave adjusted to the ferromagnetic resonance frequency, the dc supercurrent is induced in the junction, and the current-voltage curve shows step structures as a function of applied voltage. The magnitudes of step-height can be controlled by tuning the shape of interface. Nevirkovets and Belogolovskii demonstrated theoretically and experimentally that an ultra thin ferromagnetic layer, nearly transparent for non-superconducting charge transport, can block the transport of charge-carrier superconducting correlations as a cut-off filter in some device applications, for instance, a few nanometer thick ferromagnetic layer in a double barrier S1IS2FIS3 multi-terminal devices (S, I, and F are superconductor, insulator, and ferromagnetic metal, respectively) considerably improves the device's input-output isolation in comparison with the symmetric S1IS2IS3 devices. These are just a few examples among many exciting works published in this focus issue. Last but not the least, we owe many thanks to Tom Miller, the publisher of Superconductor Science and Technology, who not only agreed to publish this focus issue, but also was an inspirational driver that made the Guest Editors' work a lot easier and rewarding.

  2. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    PubMed

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100?°C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100?°C did not change the magnetic properties of the setup. PMID:24593603

  3. Biological effects of magnetic fields from superconducting magnetic energy storage systems

    SciTech Connect

    Tenforde, T.S.

    1989-12-01

    Physical interaction mechanisms and potential biological effects of static and slowly time-varying magnetic fields are summarized. The results of laboratory and human health studies on this topic are related to the fringe magnetic field levels anticipated to occur in the proximity of superconducting magnetic energy storage (SMES) systems. The observed biological effects of magnetic fields include: (1) magnetic induction of electrical potentials in the circulatory system and other tissues, (2) magneto-orientation of macromolecules and membranes in strong magnetic fields, and (3) Zeeman interactions with electronic spin states in certain classes of charge transfer reactions. In general, only the first of these interactions is relevant to the establishment of occupational exposure guidelines. Physical hazards posed by the interactions of magnetic fields with cardiac pacemakers and other implanted medical devices, e.g., aneurysm clips and prostheses, are important factors that must also be considered in establishing exposure guidelines. Proposed guidelines for limiting magnetic field exposure are discussed. 50 refs., 1 fig.

  4. Elastic effects in diverse material systems: Phase separation of coherent binary alloys and carbon nanotube systems

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel Anthony

    2000-11-01

    The role of elastic strain is found to have dominant effects in two disparate topics in materials physics. Specifically, the first part discusses large-scale three dimensional simulations of the phase separation process for elastically-coherent binary alloys with and without external strain. The second part focuses on the elastic effects and electrical properties of addimer-induced defects on carbon nanotubes. For both two- and three-dimensional binary alloys, the effects of long-range elastic fields on the phase separation process with and without external strain were investigated with large-scale Langevin simulations. The elastic effects incorporated in the model are the result of anisotropy and dilational misfits introduced via inhomogeneities in the elastic constants of the constituents. To understand the domain morphology, a developed selection criterion indicates their shape and/or orientation based on the system's shear moduli. Subjected to external stresses, precipitates and their orientation can be altered continuously into lamellar configurations. For moderate external strain, late-time, large-scale splitting of domains is observed. Other aspects of the coarsening process---dynamic scaling of the correlation functions and local inverse coarsening---are also discussed. With tension in carbon nanotubes, the presence of addimers are shown through classical molecular dynamics and tight binding simulations to form defects that wrap themselves about the nanotube, which are short segments of a tube with a changed helicity. Such formations can lead to nanotube-based quantum dots. These heterojunctions are most favorable for (n,0) zigzag tubes, where addimers induce plastic transformations on these otherwise brittle tubes. These defects and heterojunctions are also investigated through STM images and conductance signatures. Prominent "ring-like" features are observed in the STM images, whose positions correlate with the underlying geometry of the defect. By contrast, most of the defects have only a relatively modest effect on the transport properties. However, the defects do induce localized-states either above or below the Fermi level. The STM images and conductances of nanotube-heterojunctions are also explored.

  5. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  6. Usefulness of two-point Dixon fat-water separation technique in gadoxetic acid-enhanced liver magnetic resonance imaging

    PubMed Central

    Ding, Ying; Rao, Sheng-Xiang; Chen, Cai-Zhong; Li, Ren-Chen; Zeng, Meng-Su

    2015-01-01

    AIM: To compare differences between volumetric interpolated breath-hold examination (VIBE) using two-point Dixon fat-water separation (Dixon-VIBE) and chemically selective fat saturation (FS-VIBE) with magnetic resonance imaging examination. METHODS: Forty-nine patients were included, who were scanned with two VIBE sequences (Dixon-VIBE and FS-VIBE) in hepatobiliary phase after gadoxetic acid administration. Subjective evaluations including sharpness of tumor, sharpness of vessels, strength and homogeneity of fat suppression, and artifacts that were scored using a 4-point scale. The liver-to-lesion contrast was also calculated and compared. RESULTS: Dixon-VIBE with water reconstruction had significantly higher subjective scores than FS-VIBE in strength and homogeneity of fat suppression (< 0.0001) but lower scores in sharpness of tumor (P < 0.0001), sharpness of vessels (P = 0.0001), and artifacts (P = 0.034). The liver-to-lesion contrast on Dixon-VIBE images was significantly lower than that on FS-VIBE (16.6% ± 9.4% vs 23.9% ± 12.1%, P = 0.0001). CONCLUSION: Dixon-VIBE provides stronger and more homogenous fat suppression than FS-VIBE, while has lower clarity of focal liver lesions in hepatobiliary phase after gadoxetic acid administration. PMID:25945017

  7. Magnetically Separable Fe3O4/AgBr Hybrid Materials: Highly Efficient Photocatalytic Activity and Good Stability

    NASA Astrophysics Data System (ADS)

    Cao, Yuhui; Li, Chen; Li, Junli; Li, Qiuye; Yang, Jianjun

    2015-06-01

    Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was 0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached 85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL) techniques.

  8. Magnetically Separable Fe3O 4/AgBr Hybrid Materials: Highly Efficient Photocatalytic Activity and Good Stability.

    PubMed

    Cao, Yuhui; Li, Chen; Li, Junli; Li, Qiuye; Yang, Jianjun

    2015-12-01

    Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was 0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached 85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL) techniques. PMID:26058513

  9. Preparation of anionic polyelectrolyte modified magnetic nanoparticles for rapid and efficient separation of lysozyme from egg white.

    PubMed

    Chen, Jia; Lin, Yuexin; Jia, Li

    2015-04-01

    Poly(sodium 4-styrenesulfonate) modified magnetic nanoparticles (PSS-MNPs) were successfully synthesized and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, vibrating sample magnetometry, and Fourier-transform infrared spectrometry. The PSS-MNPs were found to enable effective separation of lysozyme from egg white. The impacts of solution pH, ionic strength, and contact time on the adsorption process were investigated. The adsorption kinetic data were well fitted using a pseudo-second-order kinetic model and the adsorption equilibrium can be reached in 3 min. The adsorption isotherm data could be well described by the Langmuir equation. The maximum adsorption capacity of PSS-MNPs for lysozyme was calculated to be 476.2 mg g(-1) according to the Langmuir adsorption isotherm. The fast and efficient adsorption of lysozyme by PSS-MNPs was mainly based on electrostatic interactions between them. The adsorbed lysozyme can be eluted using 20mM phosphate buffer (pH 7.0) containing 1.0M NaCl with a recovery of 96%. The extracted lysozyme from egg white demonstrated high purity, retaining about 90.7% of total lysozyme activity. PMID:25728660

  10. Lithium isotope separation factors of some two-phase equilibrium systems

    Microsoft Academic Search

    A. A. Palko; J. S. Drury; G. M. Begun

    1976-01-01

    Isotope separation factors of seventeen two-phase equilibrium systems for lithium isotope enrichment have been determined. In all cases, lithium amalgam was used as one of the lithium-containing phases and was equilibrated with an aqueous or organic phase containing a lithium compound. In all systems examined, isotopic exchange was found to be extremely rapid, and 6Li was concentrated in the amalgam

  11. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-03-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  12. Bionanocomposites containing magnetic graphite as potential systems for drug delivery.

    PubMed

    Ribeiro, Lígia N M; Alcântara, Ana C S; Darder, Margarita; Aranda, Pilar; Herrmann, Paulo S P; Araújo-Moreira, Fernando M; García-Hernández, Mar; Ruiz-Hitzky, Eduardo

    2014-12-30

    New magnetic bio-hybrid matrices for potential application in drug delivery are developed from the assembly of the biopolymer alginate and magnetic graphite nanoparticles. Ibuprofen (IBU) intercalated in a Mg-Al layered double hydroxide (LDH) was chosen as a model drug delivery system (DDS) to be incorporated as third component of the magnetic bionanocomposite DDS. For comparative purposes DDS based on the incorporation of pure IBU in the magnetic bio-hybrid matrices were also studied. All the resulting magnetic bionanocomposites were processed as beads and films and characterized by different techniques with the aim to elucidate the role of the magnetic graphite on the systems, as well as that of the inorganic brucite-like layers in the drug-loaded LDH. In this way, the influence of both inorganic components on the mechanical properties, the water uptake ability, and the kinetics of the drug release from these magnetic systems were determined. In addition, the possibility of modulating the levels of IBU release by stimulating the bionanocomposites with an external magnetic field was also evaluated in in vitro assays. PMID:25455784

  13. Counter-current chromatographic separation of nucleic acid constituents with an extremely hydrophilic solvent system

    PubMed Central

    Shibusawa, Yoichi; Shoji, Atsushi; Suzuka, Chihiro; Yanagida, Akio; Ito, Yoichiro

    2010-01-01

    Nucleic acid constituents such as nucleobases, nucleosides and nucleotides were separated by counter-current chromatography using a type J coil planet centrifuge. The separation was performed with an extremely hydrophilic solvent system composed of 1-propanol/800 mM potassium phosphate buffer (pH 7.4) (1 : 1) by eluting the lower aqueous phase at a flow-rate of 0.5 ml/min. Eight kinds of nucleic acid constituents, including UMP, AMP, deoxyAMP, uridine, urasile, 2’ deoxy uridine, adenosine and adenine were well resolved within 170 min. PMID:20362294

  14. Tuning Range-Separated Density Functional Theory for Photocatalytic Water Splitting Systems

    E-print Network

    Bokareva, Olga S; Bokarev, Sergey I; Kühn, Oliver

    2015-01-01

    We discuss the applicability of long-range separated density functional theory (DFT) to the prediction of electronic transitions of a particular photocatalytic system based on an Ir(III) photosensitizer (IrPS). Special attention is paid to the charge-transfer properties which are of key importance for the photoexcitation dynamics, but and cannot be correctly described by means of conventional DFT. The optimization of the range-separation parameter is discussed for IrPS including its complexes with electron donors and acceptors used in photocatalysis. Particular attention is paid to the problems arising for a description of medium effects by a polarizable continuum model.

  15. An electrically tunable optical zoom system with separated focusing and zooming functions

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Chen, Po-Ju; Lin, Yi-Hsin

    2013-09-01

    In this paper, we demonstrated an electrically tunable optical zoom system with separated focusing and zooming functions. The optical mechanism is discussed. The focusing distance and magnification of the image can be controlled separately by focusing lenses and zooming lenses. As a result, the zoom ratio is independent of objective distance and only depends on the tunable range of the lens power of the active-optical elements. This study helps designing many applications with an optical zoom function, such as cell phones, holographic projectors, pico projectors and endoscopes.

  16. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  17. Onset of a Propagating Self-Sustained Spin Reversal Front in a Magnetic System

    NASA Astrophysics Data System (ADS)

    Kent, Andrew D.

    2014-03-01

    The energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical magnetic instability in which all the spins in a sample rapidly reverse in a run-away process known as magnetic deflagration. A well-defined front separating reversed and un-reversed spins develops that propagates at a constant speed. This process is akin to a chemical reaction in which a flammable substance ignites and the resulting exothermic reaction leads via thermal conduction to increases in the temperature of an adjacent unburned substance that ignites it. In a magnetic system the reaction is the reversal of spins that releases Zeeman energy and the magnetic anisotropy barrier is the reaction's activation energy. An interesting aspect of magnetic systems is that these key energies-the activation energy and the energy released-can be independently controlled by applied magnetic fields enabling systematic studies of these magnetic instabilities. We have studied the instability that leads to the ignition of magnetic deflagration in a thermally driven Mn12-Ac molecular magnet single crystal. Each Mn12-ac molecule is a uniaxial nanomagnet with spin 10 and energy barrier of 60 K. We use a longitudinal field (a field parallel to the easy axis) to set the energy released and a transverse field to control the activation energy. A heat pulse is applied to one end of the crystal to initiate the process. We study the crossover between slow magnetic relaxation and rapid, self-sustained magnetic deflagration as a function of these fields at low temperature (0.5 K). An array of Hall sensors adjacent to a single crystal is used to detect and measure the speed of the spin-reversal front. I will describe a simple model we developed based on a reaction-diffusion process that describes our experimental findings. I will also discuss prospects for observing spin-fronts driven by magnetic dipole interactions between molecules that can be sonic, i.e. travel near the speed of sound (~ 1000 m/s). In collaboration with P. Subedi, S. Velez, F. Macià, S. Li, M. P. Sarachik, J. Tejada, S. Mukherjee and G. Christou. Supported by NSF-DMR-1006575.

  18. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  19. A liquid helium cryogenic system design for the GEM magnet

    Microsoft Academic Search

    G. Deis; R. P. Warren; D. E. Richied; N. N. Martovetsky; J. J. Krupczak; A. Sidi-Yekhlef; J. R. Pace; C. A. Collins

    1993-01-01

    The Superconducting Super Collider (SSC) Gammas, Electrons, Muons (GEM) magnet is a large superconducting solenoid with a total mass of 1.05 à 10⁶ kg and a stored energy of 2.5 G. A cryogenic system to cool and to maintain the GEM magnet to liquid helium temperature is described. The system is designed to operate effectively under a variety of operating

  20. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Samtarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2002-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.