Sample records for magnetic x-point oscillatory

  1. Magnetic Reconnection during Turbulence: Statistics of X-Points and Heating

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Servidio, S.; Wan, M.

    2017-12-01

    Magnetic reconnection is a ubiquitous plasma phenomenon that has been observed in turbulent plasma systems. It is an important part of the turbulent dynamics and heating of space, laboratory and astrophysical plasmas. Recent simulation and observational studies have detailed how magnetic reconnection heats plasma and this work has developed to the point where it can be applied to larger and more complex plasma systems. In this context, we examine the statistics of magnetic reconnection in fully kinetic PIC simulations to quantify the role of magnetic reconnection on energy dissipation and plasma heating. Most notably, we study the time evolution of these x-line statistics in decaying turbulence. First, we examine the distribution of reconnection rates at the x-points found in the simulation and find that their distribution is broader than the MHD counterpart, and the average value is approximately 0.1. Second, we study the time evolution of the x-points to determine when reconnection is most active in the turbulence. Finally, using our findings on these statistics, reconnection heating predictions are applied to the regions surrounding the identified x-points and this is used to study the role of magnetic reconnection in turbulent heating of plasma. The ratio of ion to electron heating rates is found to be consistent with magnetic reconnection predictions.

  2. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  3. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reachedmore » in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform

  4. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  5. Hinode observations and 3D magnetic structure of an X-ray bright point

    NASA Astrophysics Data System (ADS)

    Alexander, C. E.; Del Zanna, G.; Maclean, R. C.

    2011-02-01

    Aims: We present complete Hinode Solar Optical Telescope (SOT), X-Ray Telescope (XRT)and EUV Imaging Spectrometer (EIS) observations of an X-ray bright point (XBP) observed on the 10, 11 of October 2007 over its entire lifetime (~12 h). We aim to show how the measured plasma parameters of the XBP change over time and also what kind of similarities the X-ray emission has to a potential magnetic field model. Methods: Information from all three instruments on-board Hinode was used to study its entire evolution. XRT data was used to investigate the structure of the bright point and to measure the X-ray emission. The EIS instrument was used to measure various plasma parameters over the entire lifetime of the XBP. Lastly, the SOT was used to measure the magnetic field strength and provide a basis for potential field extrapolations of the photospheric fields to be made. These were performed and then compared to the observed coronal features. Results: The XBP measured ~15´´ in size and was found to be formed directly above an area of merging and cancelling magnetic flux on the photosphere. A good correlation between the rate of X-ray emission and decrease in total magnetic flux was found. The magnetic fragments of the XBP were found to vary on very short timescales (minutes), however the global quasi-bipolar structure remained throughout the lifetime of the XBP. The potential field extrapolations were a good visual fit to the observed coronal loops in most cases, meaning that the magnetic field was not too far from a potential state. Electron density measurements were obtained using a line ratio of Fe XII and the average density was found to be 4.95 × 109 cm-3 with the volumetric plasma filling factor calculated to have an average value of 0.04. Emission measure loci plots were then used to infer a steady temperature of log Te [ K] ~ 6.1. The calculated Fe XII Doppler shifts show velocity changes in and around the bright point of ±15 km s-1 which are observed to change

  6. Short-range magnetic order, irreversibility and giant magnetoresistance near the triple points in the (x, T) magnetic phase diagram of ZrMn6Sn6-xGax

    NASA Astrophysics Data System (ADS)

    Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.

    2010-04-01

    We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.

  7. Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials

    DOE PAGES

    Liu, Xiaojie; Wang, Cai-Zhuang

    2017-08-07

    Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.

  8. Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaojie; Wang, Cai-Zhuang

    Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.

  9. Explosive X-point collapse in relativistic magnetically dominated plasma

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  10. The effect of guide-field and boundary conditions on the features and signatures of collisionless magnetic reconnection in a stressed X-point collapse

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2015-12-01

    Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri

  11. Analysis of Ignitor Discharges with Double X-point Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    2008-11-01

    The Ignitor experiment was proposed and designed to achieve ignited and sub-ignited conditions in well confined deuterium-tritium plasmas. Thanks to its unique features (high magnetic field up to 13 T, high plasma current up to 11 MA, and high plasma density up to 5 x10^20 m-3), Ignitor is the only device capable of exploring plasma regimes that are relevant to a net power producing D-T reactor and are not accessible to other existing or planned machines. Double X-point scenarios with magnetic field up to 13 T and plasma current up to 9 MA are analyzed. In these configurations, the access to a high confinement state is assumed when the available plasma heating power, supported by the injected auxiliary power, is larger than the L-H threshold value, according to recent suggested scalings The H-regime is modeled by a global reduction of the thermal transport coefficients used for the L-regime. Situations in the presence and in the absence of sawtooth oscillations have been investigated. Quasi-stationary conditions can be attained when a process producing re- distribution of pressure and current profiles is active. B.Coppi, A.Airoldi, F.Bombarda, et al.,Nucl. Fusion 41, 1253 (2001) D.C. McDonald, A.J. Meakins, et al., PPCF 48, A439 (2006).

  12. Bright Points and Subflares in Ultraviolet Lines and X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Reichmann, E.; Tandberg-Hanssen, E.

    1999-01-01

    We have analyzed an active region which was observed in H.alpha (Multichannel Subtractive Double Pass Spectrograph), in UV lines (SMM/UVSP), and in X-rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X-rays. Using an extrapolation based on the Fourier transform, we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find two different zones: (1) a high-shear region (> 70 deg) where subflares occur, and (2) a low-shear region along the magnetic inversion line where UV bright points are observed. In these latter regions the magnetic topology is complex with a mixture of polarities. According to the velocity field observed in the Si IV lamda.1402 line and the extrapolation of the magnetic field, we notice that each UV bright point is consistent with emission from low-rising loops with downflows at both ends. We notice some hard X-ray emissions above the bright-point regions with temperatures up to 8 x 10(exp 6) K, which suggests some induced reconnection due to continuous emergence of new flux. This reconnection is also enhanced by neighboring subflares.

  13. Magnetic topological analysis of coronal bright points

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.

    2017-10-01

    Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at http://www.aanda.org

  14. Oscillatory magnetic tweezers based on ferromagnetic beads and simple coaxial coils

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier; Grabulosa, Mireia; Buscemi, Lara; Rico, Fèlix; Fabry, Ben; Fredberg, Jeffrey J.; Farré, Ramon

    2003-09-01

    We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 μm magnetite beads obtaining forces up to ˜2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.

  15. Oscillatory flow in the cochlea visualized by a magnetic resonance imaging technique.

    PubMed

    Denk, W; Keolian, R M; Ogawa, S; Jelinski, L W

    1993-02-15

    We report a magnetic resonance imaging technique that directly measures motion of cochlear fluids. It uses oscillating magnetic field gradients phase-locked to an external stimulus to selectively visualize and quantify oscillatory fluid motion. It is not invasive, and it does not require optical line-of-sight access to the inner ear. It permits the detection of displacements far smaller than the spatial resolution. The method is demonstrated on a phantom and on living rats. It is projected to have applications for auditory research, for the visualization of vocal tract dynamics during speech and singing, and for determination of the spatial distribution of mechanical relaxations in materials.

  16. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  17. A search for outflows from X-ray bright points in coronal holes

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    Properties of X-ray bright points using two of the instruments on Solar Maximum Mission were investigated. The mass outflows from magnetic regions were modeled using a two dimensional MHD code. It was concluded that mass can be detected from X-ray bright points provided that the magnetic topology is favorable.

  18. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.

    PubMed

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I

    2014-03-24

    Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

  19. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  20. Collective phase description of oscillatory convection

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-01

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  1. Bright Points and Subflares in UV Lines and in X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Tandberg-Hanssen, E.

    1998-01-01

    We have analysed an active region which was observed in Halpha (MSDP), UV lines (SMM/UVSP), and in X rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X rays. Using an extrapolation based on the Fourier transform we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find 2 different zones: 1. a high shear region (less than 70 degrees) where subflares occur 2. a low shear region along the magnetic inversion line where UV bright points are observed.

  2. Modified magnetism within the coherence volume of superconducting Fe1+δSexTe1-x

    NASA Astrophysics Data System (ADS)

    Leiner, J.; Thampy, V.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Sefat, A. S.; Sales, B. C.; Hu, Jin; Mao, Zhiqiang; Bao, Wei; Broholm, C.

    2014-09-01

    Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1+δSexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Δ [JR -R'] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements |ΔR |<ξ, where ξ =1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy [-1.2(2) meV/Fe], the overall reduction in magnetic interaction energy is Δ=-0.31(9) meV/Fe. Comparison to the superconducting condensation energy ΔESC=-0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe1+δSexTe1-x.

  3. Collective phase description of oscillatory convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp; Nakao, Hiroya

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shawmore » cells exhibiting oscillatory convection on the basis of the derived phase equations.« less

  4. Dissipation in the superconducting mixed state in the presence of a small oscillatory magnetic-field component

    NASA Astrophysics Data System (ADS)

    Risse, M. P.; Aikele, M. G.; Doettinger, S. G.; Huebener, R. P.; Tsuei, C. C.; Naito, M.

    1997-06-01

    We have studied the electric resistivity in superconducting amorphous Mo3Si films in a perpendicular magnetic field B0+B1 sin ωt with B1<0 we observed perfectly Ohmic behavior at currents I<magnetic flux transferred across the sample during each cycle of the oscillatory magnetic field because of the electric transport current.

  5. Simulation of Oscillatory Domain Wall Motion Driven by Spin Waves in Nanostrip with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Shang Fan; Chang, Liang Juan; Spintronics Laboratory Team

    2014-03-01

    We numerically investigate the spin waves (SW) induced domain wall (DW) oscillatory motion in a nanostrip with perpendicular magnetic anisotropy by means of micromagnetic simulation. SW carries spin angular momentum and can interact with DWs via Spin Transfer Torque (STT). Propagating SW can drive a DW motion depending on the in-plane tilt angle φ of the wall magnetization. We calculate the instantaneous velocity of DWs as a function of φwith different SW frequency f. We find that the DW motion under propagating SW depends not only on the frequencies f, but also on the in-plane tilt angle φ. The nanostrip considered is 50 nm wide and 4000 nm long. A DW at the center is subjected to a SW source 500 nm apart on the left with amplitude in the transverse direction and varying frequency f. The motions of the DW induced by the SW are accompanied by in-plane rotation of magnetization of DW. Once rotated by 90 degrees, the DW shows a backward motion towards the SW source. The oscillatory amplitude and frequency of the DW motion is analyzed. A phase diagram will be presented. This study provides new perspectives for the control and manipulation of DW in a nanostrip. Financial supports by Academia Sinica and National Science Council are acknowledged

  6. Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Bansi, C. D. K.; Tabi, C. B.; Motsumi, T. G.; Mohamadou, A.

    2018-06-01

    A fractional model is proposed to study the effect of heat transfer and magnetic field on the blood flowing inside oscillatory arteries. The flow is due to periodic pressure gradient and the fractional model equations include body acceleration. The proposed velocity and temperature distribution equations are solved using the Laplace and Hankel transforms. The effect of the fluid parameters such as the Reynolds number (Re), the magnetic parameter (M) and the radiation parameter (N) is studied graphically with changing the fractional-order parameter. It is found that the fractional derivative is a valuable tool to control both the temperature and velocity of blood when flow parameters change under treatment, for example. Besides, this work highlights the fact that in the presence of strong magnetic field, blood velocity and temperature reduce. A reversed effect is observed where the applied thermal radiation increase; the velocity and temperature of blood increase. However, the temperature remains high around the artery centerline, which is appropriate during treatment to avoid tissues damage.

  7. Anticorrelation of X-ray bright points with sunspot number, 1970-1978

    NASA Technical Reports Server (NTRS)

    Golub, L.; Davis, J. M.; Krieger, A. S.

    1979-01-01

    Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.

  8. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    PubMed

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.

  9. Brightness and magnetic evolution of solar coronal bright points

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, I.

    2004-12-01

    This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). BPs are loop-like features of enhanced emission in the coronal EUV and X-ray images of the Sun, that are associated to the interaction of opposite photospheric magnetic polarities with magnetic fluxes of ≈1018 - 1019 Mx. The study was carried out using several instruments on board the Solar and Heliospheric Observatory (SOHO): the Extreme Ultraviolet Imager (EIT), the Coronal Diagnostic Spectrometer (CDS) and the Michelson Doppler Imager (MDI), supported by the high resolution imaging from the Transition Region And Coronal Explorer (TRACE). The results confirm that, down to 1'' (i.e. ~715 km) resolution, BPs are made of small loops with lengths of ~6 Mm and cross-sections of ~2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures (in the range 3.2x10^4 - 3.5x10^5 K), but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals, for the first time, the existence of quasi-periodic oscillations with periods ranging 400 -- 1000 s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal TRACE and MDI images, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in

  10. X-rays from Magnetic B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, Corinne; Petit, Véronique; Caballero-Nieves, Saida Maria; Nazé, Yaël; Owocki, Stan; Wade, Gregg; Cohen, David; Townsend, Richard; David-Uraz, Alexandre; Shultz, Matt

    2018-01-01

    Recent surveys have found that ~10% of OB-type stars host strong (~1kG), mostly dipolar magnetic fields. The prominent idea describing the interaction between the stellar winds and the magnetic field is the magnetically confined wind shock model. In this model, the ionized wind material is forced to move along the closed magnetic field loops and collides at the magnetic equator creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the wind material confined by the magnetic fields of these stars. Some of these magnetic B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force is predicted to cause faster wind outflows along the field lines, which could lead to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this question from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere model, developed for slow rotators and implement the physics of rapid rotation. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role an added centrifugal acceleration plays in the magnetospheres of these stars.

  11. Implosive Collapse about Magnetic Null Points: A Quantitative Comparison between 2D and 3D Nulls

    NASA Astrophysics Data System (ADS)

    Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.

    2018-03-01

    Null collapse is an implosive process whereby MHD waves focus their energy in the vicinity of a null point, forming a current sheet and initiating magnetic reconnection. We consider, for the first time, the case of collapsing 3D magnetic null points in nonlinear, resistive MHD using numerical simulation, exploring key physical aspects of the system as well as performing a detailed parameter study. We find that within a particular plane containing the 3D null, the plasma and current density enhancements resulting from the collapse are quantitatively and qualitatively as per the 2D case in both the linear and nonlinear collapse regimes. However, the scaling with resistivity of the 3D reconnection rate—which is a global quantity—is found to be less favorable when the magnetic null point is more rotationally symmetric, due to the action of increased magnetic back-pressure. Furthermore, we find that, with increasing ambient plasma pressure, the collapse can be throttled, as is the case for 2D nulls. We discuss this pressure-limiting in the context of fast reconnection in the solar atmosphere and suggest mechanisms by which it may be overcome. We also discuss the implications of the results in the context of null collapse as a trigger mechanism of Oscillatory Reconnection, a time-dependent reconnection mechanism, and also within the wider subject of wave–null point interactions. We conclude that, in general, increasingly rotationally asymmetric nulls will be more favorable in terms of magnetic energy release via null collapse than their more symmetric counterparts.

  12. Oscillatory wake potential with exchange-correlation in plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  13. The Relationship Between X-Ray Radiance and Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Pevtsov, Alexei A.; Fisher, George H.; Acton, Loren W.; Longcope, Dana W.; Johns-Krull, Christopher M.; Kankelborg, Charles C.; Metcalf, Thomas R.

    2003-12-01

    We use soft X-ray and magnetic field observations of the Sun (quiet Sun, X-ray bright points, active regions, and integrated solar disk) and active stars (dwarf and pre-main-sequence) to study the relationship between total unsigned magnetic flux, Φ, and X-ray spectral radiance, LX. We find that Φ and LX exhibit a very nearly linear relationship over 12 orders of magnitude, albeit with significant levels of scatter. This suggests a universal relationship between magnetic flux and the power dissipated through coronal heating. If the relationship can be assumed linear, it is consistent with an average volumetric heating rate Q~B/L, where B is the average field strength along a closed field line and L is its length between footpoints. The Φ-LX relationship also indicates that X-rays provide a useful proxy for the magnetic flux on stars when magnetic measurements are unavailable.

  14. Excito-oscillatory dynamics as a mechanism of ventricular fibrillation.

    PubMed

    Gray, Richard A; Huelsing, Delilah J

    2008-04-01

    The instabilities associated with reentrant spiral waves are of paramount importance to the initiation and maintenance of tachyarrhythmias, especially ventricular fibrillation (VF). In addition to tissue heterogeneities, there are only a few basic purported mechanisms of spiral wave breakup, most notably restitution. We test the hypothesis that oscillatory membrane properties act to destabilize spiral waves. We recorded transmembrane potential (V(m)) from isolated rabbit myocytes using a constant current stimulation protocol. We developed a mathematical model that included both the stable excitable equilibrium point at resting V(m) (-80 mV) and the unstable oscillatory equilibrium point at elevated V(m) (-10 mV). Spiral wave dynamics were studied in 2-dimensional grids using variants of the model. All models showed restitution and reproduced the experimental values of transmembrane resistance at rest and during the action potential plateau. Stable spiral waves were observed when the model showed only 1 equilibrium point. However, spatio-temporal complexity was observed if the model showed both excitable and oscillatory equilibrium points (i.e., excito-oscillatory models). The initial wave breaks resulted from oscillatory waves expanding in all directions; after a few beats, the patterns were characterized by a combination of unstable spiral waves and target patterns consistent with the patterns observed on the heart surface during VF. In our model, this VF-like activity only occurred when the single cell period of V(m) oscillations was within a specific range. The VF-like patterns observed in our excito-oscillatory models could not be explained by the existing proposed instability mechanisms. Our results introduce the important suggestion that membrane dynamics responsible for V(m) oscillations at elevated V(m) levels can destabilize spiral waves and thus may be a novel therapeutic target for preventing VF.

  15. Relation of Giant Thermo-EMF, Magnetothermo-EMF, Magnetoresistance, and Magnetization to Magnetic Impurity States in Manganites Nd(1- x)Sr x MnO3 and Sm(1- x)Sr x MnO3

    NASA Astrophysics Data System (ADS)

    Koroleva, L. I.; Batashev, I. K.; Morozov, A. S.; Balbashov, A. M.; Szymczak, H.; Slawska-Waniew, A.

    2018-02-01

    Thermo-EMF, magnetothermo-EMF, magnetoresistance, and magnetization of single-crystal samples of Nd(1- x)Sr x MnO3 and Sm(1- x)Sr x MnO3 with 0 ≤ x ≤ 0.3 have been studied experimentally. A sharp increase in the thermo-EMF and giant magnetothermo-EMF and magnetoresistance has been observed near the Curie point T C in compounds with 0.15 ≤ x ≤ 0.3. At the same time, no peculiarities have been found in compositions with x = 0. Since compounds with x > 0 consist of ferromagnetic clusters of the ferron type that reside in an antiferromagnetic A-type matrix, this means that the sharp increase in the thermo-EMF near T C is caused by ferrons. Indeed, the disappearance of ferrons due to a magnetic field or heating above T C leads to an abrupt decrease in the thermo-EMF. Therefore, thermo-EMF in alloyed magnetic semiconductors has been determined by the impurity concentration and the sample volume.

  16. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  17. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  18. Oscillatory noncollinear magnetism induced by interfacial charge transfer in superlattices composed of metallic oxides

    DOE PAGES

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...

    2016-11-22

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  19. Expansion of the tetragonal magnetic phase with pressure in the iron arsenide superconductor Ba 1 - x K x Fe 2 As 2

    DOE PAGES

    Hassinger, Elena; Gredat, G.; Valade, F.; ...

    2016-04-01

    In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba 1–xK xFe 2As 2 and Ba 1–xNa xFe 2As 2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x = 0.28 for Bamore » 1–xK xFe 2As 2. In a prior study, an unidentified phase was discovered for x < 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba 1–xK xFe 2As 2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba 1–xK xFe 2As 2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. As a result, this reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material.« less

  20. Model of Anisotropic Magnetization of In(1-x)Mn(x)S: Comparison to Experiment

    NASA Astrophysics Data System (ADS)

    Garner, J.; Franzese, G.; Byrd, Ashlee; Pekarek, T. M.; Miotkowski, I.; Ramdas, A. K.

    2004-03-01

    Calculations of and experimental results for the anisotropic magnetization of the new III-VI dilute magnetic semiconductor, In(1-x)Mn(x)S, are presented. The model Hamiltonian incorporates the interaction of the incomplete shell of Mn 3d-electrons with the crystal lattice within the point-ion approximation. Other terms in the Hamiltonian include the Zeeman interaction, the spin-orbit and the spin-spin terms. It is assumed the Mn atoms do not interact with each other (this is the singlet model, which is appropriate when x is small, here 2%). The temperature- and field- dependent magnetization is found from the energy eigenvalues of the Hamiltonian matrix, which was expressed in terms of an uncoupled angular momentum basis set. Magnetization versus temperature results are found for several field values, B, pointing along various directions relative to the underlying dilute magnetic semiconductor crystal lattice. In addition, the magnetization versus field is computed for several fixed temperatures and for various B-field directions and magnitudes. Overall, the agreement of this simple model with the experimental data is very good except at low temperatures (< 20 K) and high fields (> a few Tesla). It would be useful for quantitative comparison purposes to have optical absorption data in order to better fix the crystal potential parameters that are input parameters in the theory. In addition, the model could be improved by going beyond the point-ion approximation to better model the covalent bonds in the crystal.* Supported by UNF Research Grants, Research Corporation Award, CC4845, NSF Grant Nos. DMR-03-05653, DMR-01-02699, and ECS-01-29853 and Donors of the American Chemical Society Petroleum Research Fund PRF#40209-B5M, and a Purdue Univ. Academic Reimbursement Grant.

  1. 3D LDV Measurements in Oscillatory Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 < Rew < 6x10^6 over a flat and smooth bottom. A 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe

  2. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2013-10-01

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical "metric," the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.

  3. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    NASA Astrophysics Data System (ADS)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  4. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  5. OBSERVATION OF MAGNETIC RECONNECTION AT A 3D NULL POINT ASSOCIATED WITH A SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. Q.; Yang, K.; Cheng, X.

    Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The Geostationary Operational Environmental Satellites X-ray profile of the flare exhibited two peaks at ∼02:23 UT and ∼02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X-ray peak was originated from MRmore » in the current sheet (CS) underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null point located above the pre-eruption MFR. The interaction of the null point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null point, resulting in a significant displacement of the magnetic field surrounding the null. During the second step, the displaced magnetic field started to move back, resulting in a converging inflow and subsequently the MR around the null. The null-point reconnection is a different process from the current sheet reconnection in this flare; the latter is the cause of the main peak of the flare, while the former is the cause of the secondary peak of the flare and the conspicuous high-lying cusp structure.« less

  6. Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2.

    PubMed

    Walmsley, P; Putzke, C; Malone, L; Guillamón, I; Vignolles, D; Proust, C; Badoux, S; Coldea, A I; Watson, M D; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A

    2013-06-21

    We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

  7. Structural and magnetic phase transitions near optimal superconductivity in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; ...

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe 2(As 1-xP x) 2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (T s) and paramagnetic to antiferromagnetic (AF, T N) transitions in BaFe 2(As 1-xP x) 2 are always coupled and approach to T N ≈ T s ≥ T c (≈ 29 K) formore » x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggest that AF order in BaFe 2(As 1-xP x) 2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  8. X-ray bright points and He I lambda 10830 dark points

    NASA Technical Reports Server (NTRS)

    Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.

    1989-01-01

    Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with X-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.

  9. X-ray bright points and He I lambda 10830 dark points

    NASA Technical Reports Server (NTRS)

    Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.

    1989-01-01

    Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with x-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.

  10. Faraday Rotation Studies of Indium Antimonide and CADMIUM(1-X) Manganese(x) Telluride

    NASA Astrophysics Data System (ADS)

    Jimenez Gonzalez, Hector J.

    Faraday rotation has been studied in two material systems: narrow-gap InSb and wide-gap Cd_ {1-x}Mn_{x}Te. The measurements were done in the infrared region using high magnetic fields up to 150 kG. The Faraday rotation of n-type InSb has been measured for wavelengths between 8.0 and 13.0 μm at 9 K, using magnetic fields up to 150 kG. Measurements were made on samples with nominal carrier concentrations of 1 times 10^{14 }, 6 times 10 ^{14}, 1 times 10^{15}, and 5 times 10^{15} cm^{-3}. The experimental results have been successfully analyzed in terms of intraband and interband transitions at the Gamma point in the Brillouin zone, using a quantum-mechanical treatment. In this approach, there are three contributions to the Faraday rotation: (a) interband, (b) plasma, and (c) spin contributions. The interband contribution is dominant in the low concentration samples where the plasma and spin contributions, which are due to the free carriers, are small. At high carrier concentrations the spin and plasma contributions are dominant. In the low-magnetic -field regime the interband and plasma contributions are linearly proportional to the magnetic field and become small. This makes the spin contribution the leading contribution to the Faraday rotation at low magnetic fields. The 4 -band k cdot p Pidgeon and Brown model was used to calculate the energy levels and the matrix elements for these transitions. Quantum oscillatory effects were observed at low magnetic field. Cyclotron resonance absorption was observed in all samples for wavelengths _sp{~}{>}16.0 mum. The Faraday rotation of Cd_{1 -x}Mn_{x}Te has been measured for x = 0 to 0.27 at 300 and 77 K for photon energies between 0.1 and 1.5 eV, corresponding to wavelengths of 12.0 and 0.8 mum, respectively. We have developed a multioscillator model for the Faraday rotation using an analytical expression for the refractive index that includes contributions from interband transitions at the Gamma, L, and X points of the

  11. Structural and magnetic phase transitions in CeCu 6-xT x (T = Ag,Pd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew

    The structural and the magnetic properties of CeCu 6-xAg x (0 ≤ x ≤ 0.85) and CeCu 6-xPd x (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu 6-xAg x and CeCu 6-xPd x as a function of Ag/Pd composition are reported. The end member, CeCu 6, undergoes a structural phase transition from an orthorhombic ( Pnma) to a monoclinic (P2 1/c) phase at 240 K. In CeCu 6-xAg x, the structural phase transition temperature (T s) decreases linearlymore » with Ag concentration and extrapolates to zero at x S ≈ 0.1. The structural transition in CeCu 6-xPd x remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu 6-xAg x and CeCu 6-xPd x, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ 1 0 δ 2), where δ 1 ~ 0.62, δ 2 ~ 0.25, x = 0.125 for CeCu 6-xPd x and δ 1 ~ 0.64, δ 2 ~ 0.3, x = 0.3 for CeCu 6-xAg x. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.« less

  12. Structural and magnetic phase transitions in CeCu 6-xT x (T = Ag,Pd)

    DOE PAGES

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew; ...

    2015-12-15

    The structural and the magnetic properties of CeCu 6-xAg x (0 ≤ x ≤ 0.85) and CeCu 6-xPd x (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu 6-xAg x and CeCu 6-xPd x as a function of Ag/Pd composition are reported. The end member, CeCu 6, undergoes a structural phase transition from an orthorhombic ( Pnma) to a monoclinic (P2 1/c) phase at 240 K. In CeCu 6-xAg x, the structural phase transition temperature (T s) decreases linearlymore » with Ag concentration and extrapolates to zero at x S ≈ 0.1. The structural transition in CeCu 6-xPd x remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu 6-xAg x and CeCu 6-xPd x, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ 1 0 δ 2), where δ 1 ~ 0.62, δ 2 ~ 0.25, x = 0.125 for CeCu 6-xPd x and δ 1 ~ 0.64, δ 2 ~ 0.3, x = 0.3 for CeCu 6-xAg x. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.« less

  13. Inferring oscillatory modulation in neural spike trains

    PubMed Central

    Arai, Kensuke; Kass, Robert E.

    2017-01-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak. PMID:28985231

  14. Localized oscillatory states in magnetoconvection.

    PubMed

    Buckley, Matthew C; Bushby, Paul J

    2013-02-01

    Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.

  15. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9.more » We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.« less

  16. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  17. Magnetic suspension and pointing system

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1978-01-01

    An apparatus is reported for accurate pointing of instruments on a carrier vehicle and for isolation of the instruments from the vehicle's motion disturbances. The apparatus includes two assemblies with connecting interfaces. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plase which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides attitude fine pointing and roll positioning of the instruments as well as six degree-of-freedom isolation from carrier motion disturbances.

  18. Relationship Between Acoustic Voice Onset and Offset and Selected Instances of Oscillatory Onset and Offset in Young Healthy Men and Women.

    PubMed

    Patel, Rita R; Forrest, Karen; Hedges, Drew

    2017-05-01

    This study aimed to investigate the relationship between (1) onset of the acoustic signal (X 1 a ) and prephonatory phases associated with oscillatory onset and (2) offset of the acoustic signal (X 2 a ) with the postphonatory events associated with oscillatory offset across vocally healthy adults. High-speed videoendoscopy was captured simultaneously with the acoustic signal during repeated production of /hi.hi.hi/ at typical pitch and loudness from 56 vocally healthy adults (aged 20-42 years; 21 men, 35 women). The relationships between the acoustic sound pressure signal and oscillatory onset and offset events from the glottal area waveforms (GAWs) were statistically investigated using a multivariate linear regression analysis. The X 1 a is a significant predictor of the onset of first oscillatory motion (X 1 g ) and onset of sustained oscillations (X 2 g ). X 1 a as well as gender are significant predictors of the first medial contact of the vocal folds (X 1.5 g ). The X 2 a is a significant predictor of the first instance of oscillatory offset (X 3 g ), first instance of incomplete glottal closure (X 3.5 g ), and complete cessation of (vocal fold) oscillatory motion (X 4 g ). The acoustic signal onset is closely related to the X 1.5 g , but the latency between these events is longer for women compared to men. The X 2 a occurs immediately after incomplete glottal adduction. The emerging normative group latencies between the onset and offset of the acoustic and the GAW from this study appear promising for future investigations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  20. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  1. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  2. Magnetic-field induced quantum critical points of valence transition in Ce- and Yb-based heavy fermions

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2009-03-01

    Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.

  3. Magnetic phase transitions and magnetic structures in RTxX2, RSn1+xGe1-x and RSn2 compounds

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2018-02-01

    The work presents the review of magnetic properties of the RTxX2, RSn1+xGe1-x and RSn2 compounds. The RTxX2 (where R - rare earth, T - 3d-metal, X - p-electron element: Si, Ge, Sn, and 1 ≥ x > 0) and RSn1+xGe1-x compounds (where x ≈ 0.1) crystallize in the orthorhombic crystal structure of CeNiSi2-type and RSn2 compounds crystallize in ZrSi2-type structure. Both structures are described by the space group Cmcm. The RSn1+xGe1-x compounds seem to be interesting due to the replacement of d-metal to p-electron element. The non-stoichiometric CeNiSi2-type of RTxX2 compounds may be regarded as partially filled ZrSi2-type compounds. The transitions from paramagnetic to antiferromagnetic or ferromagnetic states are observed at low temperatures and there are lots of variants of magnetic structures ranging from simple collinear to the sine-modulated structures with commensurate or incommensurate propagation vector. The comparison of magnetic properties of these compounds may help to find answers to questions concerning mechanisms of interaction between the magnetic moments.

  4. Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2016-12-01

    Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.

  5. Reduction of the ordered magnetic moment and its relationship to Kondo coherence in Ce 1-xLa xCu 2Ge 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueland, B. G.; Jo, N. H.; Sapkota, A.

    The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce 1-xLa xCu 2Ge 2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x = 0:20, 0:40, 0:75, and 0:85. Magnetic Bragg peaks are found for 0:20 ≤ x ≤ 0:75, and both the Neel temperature, T N, and the ordered magnetic moment per Ce μ linearly decrease with increasing x. The reduction in μ points to strong hybridization of the increasingly diluted Ce 4f electrons, and we find a remarkable quadratic dependence of μ on the Kondo-coherence temperature. Here, we discussmore » our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce 1-xLa xCu 2Ge 2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.« less

  6. Reduction of the ordered magnetic moment and its relationship to Kondo coherence in Ce 1-xLa xCu 2Ge 2

    DOE PAGES

    Ueland, B. G.; Jo, N. H.; Sapkota, A.; ...

    2018-04-13

    The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce 1-xLa xCu 2Ge 2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x = 0:20, 0:40, 0:75, and 0:85. Magnetic Bragg peaks are found for 0:20 ≤ x ≤ 0:75, and both the Neel temperature, T N, and the ordered magnetic moment per Ce μ linearly decrease with increasing x. The reduction in μ points to strong hybridization of the increasingly diluted Ce 4f electrons, and we find a remarkable quadratic dependence of μ on the Kondo-coherence temperature. Here, we discussmore » our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce 1-xLa xCu 2Ge 2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.« less

  7. Statistics of Magnetic Reconnection X-Lines in Kinetic Turbulence

    NASA Astrophysics Data System (ADS)

    Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Shay, M. A.; Wan, M.; Servidio, S.; Wu, P.

    2016-12-01

    In this work we examine the statistics of magnetic reconnection (x-lines) and their associated reconnection rates in intermittent current sheets generated in turbulent plasmas. Although such statistics have been studied previously for fluid simulations (e.g. [1]), they have not yet been generalized to fully kinetic particle-in-cell (PIC) simulations. A significant problem with PIC simulations, however, is electrostatic fluctuations generated due to numerical particle counting statistics. We find that analyzing gradients of the magnetic vector potential from the raw PIC field data identifies numerous artificial (or non-physical) x-points. Using small Orszag-Tang vortex PIC simulations, we analyze x-line identification and show that these artificial x-lines can be removed using sub-Debye length filtering of the data. We examine how turbulent properties such as the magnetic spectrum and scale dependent kurtosis are affected by particle noise and sub-Debye length filtering. We subsequently apply these analysis methods to a large scale kinetic PIC turbulent simulation. Consistent with previous fluid models, we find a range of normalized reconnection rates as large as ½ but with the bulk of the rates being approximately less than to 0.1. [1] Servidio, S., W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk (2009), Magnetic reconnection and two-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 102, 115003.

  8. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  9. Evidence for magnetic-field-induced decoupling of superconducting bilayers in La 2-xCa 1+xCu 2O 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ruidan; Schneeloch, J. A.; Chi, Hang

    We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La 2-xCa 1+xCu 2O 6 with x = 0.10 and 0.15 and transition temperature Tmore » $$m\\atop{c}$$ = 54 K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO 2 bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.« less

  10. Evidence for magnetic-field-induced decoupling of superconducting bilayers in La 2-xCa 1+xCu 2O 6

    DOE PAGES

    Zhong, Ruidan; Schneeloch, J. A.; Chi, Hang; ...

    2018-04-24

    We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La 2-xCa 1+xCu 2O 6 with x = 0.10 and 0.15 and transition temperature Tmore » $$m\\atop{c}$$ = 54 K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO 2 bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.« less

  11. Europium mixed-valence, long-range magnetic order, and dynamic magnetic response in EuCu 2 ( Si x Ge 1 - x ) 2

    DOE PAGES

    Nemkovski, Krill S.; Kozlenko, D. P.; Alekseev, Pavel A.; ...

    2016-11-01

    In mixed-valence or heavy-fermion systems, the hybridization between local f orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin uctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic eld, chemical composition). Recently, similar effects (mixed-valence, Kondo uctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its 4f shell,more » and the magnetic Eu 2+ state (4f 7) has no orbital component in the usual LS coupling scheme, which can lead to a quite different and interesting physics. In the EuCu 2(Si xGe 1-x) 2 series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence uctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence uctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration x c ≈ 0:65. In conclusion, the sequence of magnetic ground states in the series is shown to re ect the evolution of the magnetic spectral response.« less

  12. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    PubMed Central

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  13. Multistage ordering and critical singularities in C o1 -xZ nxA l2O4(0 ≤x ≤1 ) : Dilution and pressure effects in a magnetically frustrated system

    NASA Astrophysics Data System (ADS)

    Naka, Takashi; Sato, Koichi; Matsushita, Yoshitaka; Terada, Noriki; Ishii, Satoshi; Nakane, Takayuki; Taguchi, Minori; Nakayama, Minako; Hashishin, Takeshi; Ohara, Satoshi; Takami, Seiichi; Matsushita, Akiyuki

    2015-06-01

    We report comprehensive studies of the crystallographic, magnetic, and thermal properties of a spinel-type magnetically frustrated compound, CoA l2O4 , and a magnetically diluted system, C o1- xZ nxA l2O4 . These studies revealed the effects of dilution and disorder when the tetrahedral magnetic Co ion was replaced by the nonmagnetic Zn ion. Low-temperature anomalies were observed in magnetic susceptibility at x <0.6 . A multicritical point was apparent at T =3.4 K and x =0.12 , where the antiferromagnetic, spin-glass-like, and paramagnetic phases met. At that point, the quenched ferromagnetic component induced by a magnetic field during cooling was sharply enhanced and was observable below x =0.6 . At x ˜0.6 , magnetic susceptibility and specific heat were described by temperature power laws, χ ˜C /T ˜T-δ , in accord with the site percolation threshold of the diamond lattice. This behavior is reminiscent of a quantum critical singularity. We propose an x -temperature phase diagram in the range 0 ≤x ≤1 for C o1- xZ nxA l2O4 . The transition temperature of CoA l2O4 determined from magnetic susceptibility measured under hydrostatic pressure increased with increasing pressure.

  14. Metabolic response of Danaüs archippus and Saccharomyces cerevisiae to weak oscillatory magnetic fields

    NASA Astrophysics Data System (ADS)

    Russell, D. N.; Webb, S. J.

    1981-09-01

    Respiration of the insect larva, Danaüs archippus, and the yeast, Saccharomyces cerevisiae, in log phase has been monitored before and after an oscillatory magnetic insult of 0.005 Gauss rms amplitude and 40 50 min duration. Frequencies used were 10 16 Hz for the insect and 100 200 Hz for the yeast. Depression of as much as 30% in metabolic rate has been found to occur immediately after the field is both imposed and eliminated with a general recovery over the 30-min period thereafter both in and out of the imposed field, although complete recovery to original levels may take much longer. Evidence is given that the response may depend on the frequency pattern used. This data is used to formulate an hypothesis whereby changes in the geomagnetic field variability pattern may act as a biochronometric zeitgeber.

  15. Magnetization and photomagnetic effects in diluted magnetic microcrystalline Cd 1-xMn xTe

    NASA Astrophysics Data System (ADS)

    He, X.-F.; Kotlicki, A.; Dosanjh, P.; Turrell, B. G.; Carolan, J. F.; Jimenez-Sandoval, S.; Lozano-Tovar, P.

    1993-12-01

    We have investigated the magnetic and photomagnetic properties of microcrystalline Cd 1-xMn xTe prepared by rf sputtering. Magnetization measurements were carried out using an rf SQUID magnetometer in the temperature range of 1.8 to 300 K at various magnetic fields up to 5.5 T. For temperatures above 40 K, the sample showed Curie-Weiss behaviour with a Curie temperature indicating predominantly antiferromagnetic interactions. A spin-glass phase transition was also observed. Photomagnetization measurements were performed using a fibre-optic system. The light was shone onto the sample utilizing an optical fibre and the subsequent change in the magnetization was sensed by the SQUID. Photo-induced magnetization was observed when the sample was illuminated by unpolarized light. Our results enable qualitative and quantitative conclusions to be drawn on the magnetic behaviour and the interplay between optical and magnetic properties of the diluted magnetic microcrystalline semiconductors. PACS: 68.55.Gi; 75.50.Pp.

  16. Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhong

    2018-03-01

    The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).

  17. Point-contact spectroscopy of the iron chalcogenide superconductors: interplay between multiband superconductivity and magnetism

    NASA Astrophysics Data System (ADS)

    Park, Wan Kyu; Hunt, C. R.; Arham, H. Z.; Lu, X.; Greene, L. H.; Xu, Z. J.; Wen, J. S.; Lin, Z. W.; Li, Q.; Gu, G.

    2010-03-01

    We report point-contact conductance measurements on the iron chalcogenide superconductors, Fe1+yTe1-xSex. The excess Fe atoms are known to occupy the interstitial sites in the Te-Se plane, affecting the superconductivity as well as the magnetism in this family. For a compound having nominal values of y=0 and x=0.45, a single superconducting transition is observed at 14.2 K. In the superconducting state, BTK-like double peak structures due to Andreev reflection are observed. However, the peak position of different point contacts falls to a wide voltage range, 1.5 -- 4 mV. Additional multiple humps are sometimes observed in a much higher bias voltage range, 8 -- 15 mV. Most strikingly, conductance enhancement persists well above Tc. We will present possible interpretations of these experimental observations in terms of multiband superconductivity and the interplay between superconductivity and magnetism.

  18. Probing the impact of magnetic interactions on the lattice dynamics of two-dimensional Ti2X (X = C, N) MXenes.

    PubMed

    Sternik, Małgorzata; Wdowik, Urszula D

    2018-03-14

    Dynamical properties of the two-dimensional Ti 2 C and Ti 2 N MXenes were investigated using density functional theory and discussed in connection with their structures and electronic properties. To elucidate the influence of magnetic interactions on the fundamental properties of these systems, the nonmagnetic, ferromagnetic and three distinct antiferromagnetic spin arrangements on titanium sublattice were considered. Each magnetic configuration was also studied at two directions of the spin magnetic moment with respect to the MXene layer. The zero-point energy motion, following from the phonon calculations, was taken into account while analyzing the energetic stability of the magnetic phases against the nonmagnetic solution. This contribution was found not to change a sequence of the energetic stability of the considered magnetic structures of Ti 2 X (X = C, N) MXenes. Both Ti 2 X (X = C, N) systems are shown to prefer antiferromagnetic arrangement of spins between Ti layers and the ferromagnetic order within each layer. This energetically privileged phase is semiconducting for Ti 2 C and metallic for Ti 2 N. The type of magnetic order as well as the in-plane or out-of-plane spin polarizations have a relatively small impact on the structural parameters, Ti-X bonding length, force constants and phonon spectra of both Ti 2 X systems, leading to observable differences only between the nonmagnetic and any other magnetic configurations. Nonetheless, a noticeable effect of the spin orientation on degeneracy of the Ti-3d orbitals is encountered. The magnetic interactions affect to a great extent the positions and intensities of the Raman-active modes, and hence one could exploit this effect for experimental verification of the theoretically predicted magnetic state of Ti 2 X monolayers. Theoretical phonon spectra of Ti 2 X (X = C, N) MXenes exhibit a linear dependence on energy in the long-wavelength limit, which is typical for a 2D system.

  19. Magnetic phase diagram of ErGe 1-xSi x (0<x<1)

    NASA Astrophysics Data System (ADS)

    Thuéry, P.; El Maziani, F.; Clin, M.; Schobinger-Papamantellos, P.; Buschow, K. H. J.

    1993-10-01

    The composition-temperature magnetic phase diagram of ErGe 1- xSi x (0 < x < 1) has been deduced from the powder neutron diffraction investigation of the magnetic structure of several samples in the 1.5-15 K range. These compounds present an antiferromagnetic behaviour with 7.2 < TN < 11.5 K. Four magnetic phases are present: two that are commensurate with the crystal lattice (wavevectors (1/2,0,1/2) and (0,0,1/2) and two incommensurate (wavevectors (0,0, kz and ( k' x,0, k' z) with a slight deviation of kx, k' x and k' z from 1/2). Whatever x, an incommensurate phase appears below TN, the wavevector being (0,0, kz) for x < 0.40 and ( k' x,0, k' z) for x > 0.40. For 0.17 ≥ x ≤ 0.55, a first-order transition occurs as function of the temperature between these two phases. For x ≥ 0.65, a lock-in transition takes place at TIC, leading from the wavevector ( k' x,0, k' z) to (1/2,0,1/2), as was already observed in ErSi. Finally, for x < 0.17 or 0.55 < x < 0.65, the wavevectors of the incommensurate phases characterized by (0,0, kz) or ( k' x,0, k' z) respectively remain unchanged in the whole temperature range below TN. For x≥0.65, a small amount of a magnetic phase characterized by the wavevector (0,0, 1/2) coexists with the main phases, below a Néel temperature T' N slightly lower than TN. In all cases, the erbium magnetic moments are colinear along the orthorhombic α-axis; the arrangement of the moments in the commensurate phases is the same as in ErSi and the incommensurate orderings correspond to sine-wave amplitude modulations. A brief account on the theoretical interpretation of this phase diagram is finally given.

  20. Phase diagram of URu 2-xFe xSi 2 in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, S.; Jeon, I.; Kanchanavatee, N.

    2017-03-01

    The search for the order parameter of the hidden order (HO) phase in URu 2Si 2 has attracted an enormous amount of attention for the past three decades. Measurements in high magnetic fields H up to 45~T reveal that URu 2Si 2 displays behavior that is consistent with quantum criticality at a field near 35~T, where a cascade of novel quantum phases was found at and around the quantum critical point, suggesting the existence of competing order parameters. Experiments at high pressure P reveal that a first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phasemore » occurs under pressure at a critical pressure Pc. We have recently demonstrated that tuning URu 2Si 2 by substitution of Fe for Ru offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. In this study, we conducted electrical resistance measurements on URu 2-xFe xSi 2 for H < 65 T using the pulsed field facility at the NHMFL in Los Alamos, in order to establish the temperature T vs. H phase diagram of URu 2-xFe xSi 2 under magnetic fields.« less

  1. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  2. Magnetic properties of the layered III-VI diluted magnetic semiconductor Ga{sub 1−x}Fe{sub x}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekarek, T. M.; Edwards, P. S.; Olejniczak, T. L.

    2016-05-15

    Magnetic properties of single crystalline Ga{sub 1−x}Fe{sub x}Te (x = 0.05) have been measured. GaTe and related layered III-VI semiconductors exhibit a rich collection of important properties for THz generation and detection. The magnetization versus field for an x = 0.05 sample deviates from the linear response seen previously in Ga{sub 1−x}Mn{sub x}Se and Ga{sub 1−x}Mn{sub x}S and reaches a maximum of 0.68 emu/g at 2 K in 7 T. The magnetization of Ga{sub 1−x}Fe{sub x}Te saturates rapidly even at room temperature where the magnetization reaches 50% of saturation in a field of only 0.2 T. In 0.1 T atmore » temperatures between 50 and 400 K, the magnetization drops to a roughly constant 0.22 emu/g. In 0 T, the magnetization drops to zero with no hysteresis present. The data is consistent with Van-Vleck paramagnetism combined with a pronounced crystalline anisotropy, which is similar to that observed for Ga{sub 1−x}Fe{sub x}Se. Neither the broad thermal hysteresis observed from 100-300 K in In{sub 1−x}Mn{sub x}Se nor the spin-glass behavior observed around 10.9 K in Ga{sub 1−x}Mn{sub x}S are observed in Ga{sub 1−x}Fe{sub x}Te. Single crystal x-ray diffraction data yield a rhombohedral space group bearing hexagonal axes, namely R3c. The unit cell dimensions were a = 5.01 Å, b = 5.01 Å, and c = 17.02 Å, with α = 90°, β = 90°, and γ = 120° giving a unit cell volume of 369 Å{sup 3}.« less

  3. Fast imaging of filaments in the X-point region of Alcator C-Mod

    DOE PAGES

    Terry, J. L.; Ballinger, S.; Brunner, D.; ...

    2017-01-27

    A rich variety of field-aligned fluctuations has been revealed using fast imaging of D α emission from Alcator C-Mod's lower X-point region. Field-aligned filamentary fluctuations are observed along the inner divertor leg, within the Private-Flux-Zone (PFZ), in the Scrape-Off Layer (SOL) outside the outer divertor leg, and, under some conditions, at or above the X-point. The locations and dynamics of the filaments in these regions are strikingly complex in C-Mod. Changes in the filaments’ generation appear to be ordered by plasma density and magnetic configuration. Filaments are not observed for plasmas with n/nGreenwald ≲ 0.12 nor are they observed inmore » Upper Single Null configurations. In a Lower Single Null with 0.12 ≲ n/nGreenwald ≲ 0.45 and Bx∇B directed down, filaments typically move up the inner divertor leg toward the X-point. Reversing the field direction results in the appearance of filaments outside of the outer divertor leg. With the divertor targets “detached”, filaments inside the LCFS are seen. Lastly, these studies were motivated by observations of filaments in the X-point and PFZ regions in MAST, and comparisons with those observations are made.« less

  4. OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D.; Yang, K.

    2016-05-20

    We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggestsmore » the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.« less

  5. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  6. Shocks and currents in stratified atmospheres with a magnetic null point

    NASA Astrophysics Data System (ADS)

    Tarr, Lucas A.; Linton, Mark

    2017-08-01

    We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.

  7. Onset of oscillatory Rayleigh-Bénard magnetoconvection with rigid horizontal boundaries

    NASA Astrophysics Data System (ADS)

    Mondal, Hiya; Das, Alaka; Kumar, Krishna

    2018-01-01

    We present the results of linear stability analysis of oscillatory Rayleigh-Bénard magnetoconvection with rigid and thermally conducting boundaries. We have investigated two types of horizontal surfaces: (i) electrically conducting and (ii) boundaries which do not allow any outward current normal to the surface (magnetic vacuum conditions). For the case of electrically conducting boundaries, the critical Rayleigh number R ao(Q ,P r ,P m ) , the critical wave number ko(Q ,P r ,P m ) , and the frequency at the instability onset ω(Q ,P r ,P m ) increase as the Chandrasekhar number Q is raised for fixed non-zero values of thermal Prandtl Pr and magnetic Prandtl number Pm. For small values of Pr, the frequency of oscillation ω at the primary instability shows a rapid increase with Pm for very small values of Pm followed by a decrease at relatively larger values of Pm. In the limit of P r →0 , Rao and ko are found to be independent of Q. However, the frequency ω increases with Q, but decreases with Pm in this limit. The oscillatory instability is possible at the onset of magnetoconvection if and only if Chandrasekhar's criterion is valid (i.e., Pm > Pr) and Q is raised above a critical value Qc(P r ,P m ) such that the product P m *Qc≈91 for large Pm. For the stellar interior of an astrophysical body ( P m ≈10-4 and P r ≈10-8 ), the value of this product P m *Qc≈230 . The boundary conditions for magnetic vacuum change the critical values of Rayleigh number, wave number, and frequency of oscillation at the onset. The oscillatory magnetoconvection occurs in this case, if Q >Qc , where P m *Qc≈42 for large Pm. For steller interior, this value is approximately 64. A low-dimensional model is also constructed to study various patterns near the onset of oscillatory convection for rigid, thermally and electrically conducting boundaries. The model shows standing and drifting fluid patterns in addition to flow reversal close to the onset of magnetoconvection.

  8. Magnetic Properties of the Ferromagnetic Shape Memory Alloys Ni50+xMn27−xGa23 in Magnetic Fields

    PubMed Central

    Sakon, Takuo; Otsuka, Kohei; Matsubayashi, Junpei; Watanabe, Yuushi; Nishihara, Hironori; Sasaki, Kenta; Yamashita, Satoshi; Umetsu, Rie Y.; Nojiri, Hiroyuki; Kanomata, Takeshi

    2014-01-01

    Thermal strain, permeability, and magnetization measurements of the ferromagnetic shape memory alloys Ni50+xMn27−xGa23 (x = 2.0, 2.5, 2.7) were performed. For x = 2.7, in which the martensite transition and the ferromagnetic transition occur at the same temperature, the martensite transition starting temperature TMs shift in magnetic fields around a zero magnetic field was estimated to be dTMs/dB = 1.1 ± 0.2 K/T, thus indicating that magnetic fields influences martensite transition. We discussed the itinerant electron magnetism of x = 2.0 and 2.5. As for x = 2.5, the M4 vs. B/M plot crosses the origin of the coordinate axis at the Curie temperature, and the plot indicates a good linear relation behavior around the Curie temperature. The result is in agreement with the theory by Takahashi, concerning itinerant electron ferromagnets. PMID:28788645

  9. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  10. Characterizing Weak-Link Effects in Mo/Au Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Stephen

    2011-01-01

    We are developing Mo/Au bilayer transition-edge sensors (TESs) for applications in X-ray astronomy. Critical current measurements on these TESs show they act as weak superconducting links exhibiting oscillatory, Fraunhofer-like, behavior with applied magnetic field. In this contribution we investigate the implications of this behavior for TES detectors, under operational bias conditions. This includes characterizing the logarithmic resistance sensitivity with temperature, (alpha, and current, beta, as a function of applied magnetic field and bias point within the resistive transition. Results show that these important device parameters exhibit similar oscillatory behavior with applied magnetic field, which in turn affects the signal responsivity, noise and energy resolution.

  11. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes

    NASA Astrophysics Data System (ADS)

    Don, Wai-Sun; Borges, Rafael

    2013-10-01

    In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of

  12. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  13. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.

  14. Magnetic structure in Mn1 -xCoxGe compounds

    NASA Astrophysics Data System (ADS)

    Altynbaev, E.; Siegfried, S.-A.; Strauß, P.; Menzel, D.; Heinemann, A.; Fomicheva, L.; Tsvyashchenko, A.; Grigoriev, S.

    2018-04-01

    The magnetic system of the pseudobinary compound Mn1 -xCoxGe has been studied using small-angle neutron scattering and susceptibility measurements. It is found that Mn1 -xCoxGe orders magnetically at low temperatures in the whole concentration range of x ∈[0 /0.9 ] . Four different states of the magnetic structure have been found at low temperatures: the long-range-ordered (LRO) short-period helical magnetic structure at x magnetic structure at xc 1≤x ≤xc 2≈0.45 ; the long-period helical magnetic structure at xc 2<x ≤0.8 , with helical wave vector ks≪1 nm-1 ; and the ferromagneticlike structure at x ≈0.9 .

  15. Diffusion of chemically reactive species in MHD oscillatory flow with thermal radiation in the presence of constant suction and injection

    NASA Astrophysics Data System (ADS)

    Sasikumar, J.; Bhuvaneshwari, S.; Govindarajan, A.

    2018-04-01

    In this project, it is proposed to investigate the effect of suction/injection on the unsteady oscillatory flow of an incompressible viscous electrically conducting fluid through a channel filled with porous medium and non-uniform wall temperature. The fluid is subjected to a uniform magnetic field normal to the channel and the velocity slip at the cold plate is taken into consideration. With the assumption of magnetic Reynolds number to be very small, the induced magnetic field is neglected. Assuming pressure gradient to be oscillatory across the ends of the channel, resulting flow as unsteady oscillatory flow. Under the usual Bousinessq approximation, a mathematical model representing this fluid flow consisting of governing equations with boundary conditions will be developed. Closed form solutions of the dimensionless governing equations of the fluid flow, namely momentum equation, energy equation and species concentration can be obtained . The effects of heat radiation and chemical reaction with suction and injection on temperature, velocity and species concentration profiles will be analysed with tables and graphs.

  16. Radial Distribution of X-Ray Point Sources Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas

    2009-11-01

    We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB

  17. Magnetic phase diagrams of CexLa1-xB6 in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Akatsu, Mitsuhiro; Kazama, Nanako; Goto, Terutaka; Nemoto, Yuichi; Suzuki, Osamu; Kido, Giyuu; Kunii, Satoru

    We have performed ultrasonic measurements under high magnetic fields up to 30 T by using the hybrid magnet at the National Institute for Materials Science to investigate the magnetic phase diagram for antiferroquadrupole (AFQ) phase II in CexLa1-xB6. With increasing Ce concentration x from x=0.50, the AFQ phase transition temperatures TQ indicate an almost linear increase in various fields. The large magnetic anisotropy of AFQ phase II, in which TQH∥[0 0 1] is much smaller than TQH∥[1 1 0] and TQH∥[1 1 1] in high magnetic fields, is revealed in x=0.75,0.60 as well as in x=0.50. These experimental results support the theoretical calculation based on the Γ5-type AFQ ordering and the magnetic field induced octupole Txyz.

  18. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  19. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  20. Magnetic and magnetocaloric properties in second-order phase transition La1-xKxMnO3 and their composites

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Linh, Dinh Chi; Yen, Pham Duc Huyen; Bau, Le Viet; Ky, Vu Hong; Wang, Zhihao; Piao, Hong-Guang; An, Nguyen Manh; Yu, Seong-Cho

    2018-03-01

    In this work, we present a detailed study on the magnetic properties and the magnetocaloric effect (MCE) of La1-xKxMnO3 compounds with x=0.05-0.2. Our results pointed out that the Curie temperature (TC) could be controlled easily from 213 to 306 K by increasing K-doping concentration (x) from 0.05 to 0.2. In the paramagnetic region, the inverse of the susceptibility can be analyzed by using the Curie-Weiss law, χ(T)=C/(T-θ). The results have proved an existence of ferromagnetic clusters at temperatures above TC. Based on Banerjee's criteria, we also pointed out that the samples are the second-order phase transition materials. Their magnetic entropy change was calculated by using the Maxwell relation and a phenomenological model. Interestingly, the samples with x=0.1-0.2 exhibit a large MCE in a range of 282-306 K, which are suitable for room-temperature magnetic refrigeration applications. The composites obtained from single phase samples (x=0.1-0.2) exhibit the high relative cooling power values in a wide temperature range. From the viewpoint of the refrigerant capacity, the composites formed out of La1-xKxMnO3 will become more useful for magnetic refrigeration applications around room-temperature.

  1. Selective mass enhancement close to the quantum critical point in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Grinenko, V.; Iida, K.; Kurth, F.; ...

    2017-07-04

    A quantum critical point (QCP) is currently being conjectured for the BaFe 2(As 1-xP x) 2 system at the critical value x c ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H c2. Here we report H c2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that Hmore » c2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe 2(As 1-xP x) 2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.« less

  2. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  3. X-ray Magnetic Scattering From Surfaces^*

    NASA Astrophysics Data System (ADS)

    Gibbs, Doon

    1997-03-01

    In the last several years, there have been continuing efforts to probe long-ranged magnetic order at surfaces by x-ray and neutron diffraction, following many earlier studies by low energy electron diffraction. The main motivation has been to discover how bulk magnetic structures are modified near a surface, where the crystal symmetry is broken. In this talk, we describe x-ray scattering studies of the magnetic structure observed near the (001) surface of the antiferromagnet uranium dioxide.(G. M. Watson, Doon Gibbs, G. H. Lander, B. D. Gaulin, L.E. Berman, Hj. Matzke and W. Ellis, Phys. Rev. Lett. 77), 751 (1996). Within about 50 Åof the surface, the intensity of the magnetic scattering decreases continuously as the bulk Neel temperature is approached from below. This contrasts with the bulk magnetic ordering transition which is discontinuous. Recent measurements of the specular magnetic reflectivity suggest that the width of the magnetic interface diverges as a power-law in reduced temperature reminiscent of surface induced disorder. Related experiments concerned with magnetic crystallography of Co_3-Pt(111) surfaces(S. Ferrer, P. Fajardo, F. de Bergevin, J. Alvarez, X. Torrelles, H. A. van der Vegt and V. H. Etgens, Phys. Rev. Lett. 77), 747 (1996). and interfacial magnetic roughness of Co/Cu multilayers(J. F. MacKay, C. Teichert, D.E. Savage and M.G. Lagally, Phys. Rev. Lett. 77), 3925 (1996). will also be discussed. ^* Work at Brookhaven National Laboratory is supported by the U.S. DOE under Contract No. DE-AC02-CH7600016.

  4. First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, Y., E-mail: yasir_saeed54321@yahoo.co; Shaukat, A., E-mail: schaukat@gmail.co; Nazir, S., E-mail: nazirsafdar@gmail.co

    2010-01-15

    First principles calculations based on the density functional theory (DFT) within the local spin density approximation are performed to investigate the electronic structure and magnetic properties of Cr-based zinc blende diluted magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb) for 0<=x<=0.50.The behaviour of magnetic moment of Al{sub 1-x}Cr{sub x}X at each Cr site as well as the change in the band gap value due to spin down electrons has been studied by increasing the concentration of Cr atom and through changing X from N to Sb. Furthermore, the role of p-d hybridization is analyzed in the electronic band structuremore » and exchange splitting of d-dominated bands. The interaction strength is stronger in Al{sub 1-x}Cr{sub x}N and becomes weaker in Al{sub 1-x}Cr{sub x}Sb. The band gap due to the spin down electrons decreases with the increased concentration of Cr in Al{sub 1-x}Cr{sub x}X, and as one moves down along the isoelectronic series in the group V from N to Sb. Our calculations also verify the half-metallic ferromagnetic character in Cr doped AlX. - Graphical abstract: The prototype structures of Cr doped AlX (X=N, P, As, Sb) compounds: (A) zinc blende AlP for x=0, (B) Cr{sub 1}Al{sub 7}P{sub 8} for x=0.125, (C) Cr{sub 1}Al{sub 3}P{sub 4} for x=0.25, (D) Cr{sub 1}Al{sub 1}P{sub 2} for x=0.5.« less

  5. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  6. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE PAGES

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; ...

    2017-08-07

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  7. Micro Coronal Bright Points Observed in the Quiet Magnetic Network by SOHO/EIT

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.

    1997-01-01

    When one looks at SOHO/EIT Fe XII images of quiet regions, one can see the conventional coronal bright points (> 10 arcsec in diameter), but one will also notice many smaller faint enhancements in brightness (Figure 1). Do these micro coronal bright points belong to the same family as the conventional bright points? To investigate this question we compared SOHO/EIT Fe XII images with Kitt Peak magnetograms to determine whether the micro bright points are in the magnetic network and mark magnetic bipoles within the network. To identify the coronal bright points, we applied a picture frame filter to the Fe XII images; this brings out the Fe XII network and bright points (Figure 2) and allows us to study the bright points down to the resolution limit of the SOHO/EIT instrument. This picture frame filter is a square smoothing function (hlargelyalf a network cell wide) with a central square (quarter of a network cell wide) removed so that a bright point's intensity does not effect its own background. This smoothing function is applied to the full disk image. Then we divide the original image by the smoothed image to obtain our filtered image. A bright point is defined as any contiguous set of pixels (including diagonally) which have enhancements of 30% or more above the background; a micro bright point is any bright point 16 pixels or smaller in size. We then analyzed the bright points that were fully within quiet regions (0.6 x 0.6 solar radius) centered on disk center on six different days.

  8. Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points

    NASA Astrophysics Data System (ADS)

    Bagashvili, Salome R.; Shergelashvili, Bidzina M.; Japaridze, Darejan R.; Kukhianidze, Vasil; Poedts, Stefaan; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; De Causmaecker, Patrick

    2018-03-01

    A set of 23 observations of coronal jet events that occurred in coronal bright points has been analyzed. The focus was on the temporal evolution of the mean brightness before and during coronal jet events. In the absolute majority of the cases either single or recurrent coronal jets (CJs) were preceded by slight precursor disturbances observed in the mean intensity curves. The key conclusion is that we were able to detect quasi-periodical oscillations with characteristic periods from sub-minute up to 3–4 minute values in the bright point brightness that precedes the jets. Our basic claim is that along with the conventionally accepted scenario of bright-point evolution through new magnetic flux emergence and its reconnection with the initial structure of the bright point and the coronal hole, certain magnetohydrodynamic (MHD) oscillatory and wavelike motions can be excited and these can take an important place in the observed dynamics. These quasi-oscillatory phenomena might play the role of links between different epochs of the coronal jet ignition and evolution. They can be an indication of the MHD wave excitation processes due to the system entropy variations, density variations, or shear flows. It is very likely a sharp outflow velocity transverse gradients at the edges between the open and closed field line regions. We suppose that magnetic reconnections can be the source of MHD waves due to impulsive generation or rapid temperature variations, and shear flow driven nonmodel MHD wave evolution (self-heating and/or overreflection mechanisms).

  9. Wave propagation in anisotropic medium due to an oscillatory point source with application to unidirectional composites

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.

    1986-01-01

    The far-field displacements in an infinite transversely isotropic elastic medium subjected to an oscillatory concentrated force are derived. The concepts of velocity surface, slowness surface and wave surface are used to describe the geometry of the wave propagation process. It is shown that the decay of the wave amplitudes depends not only on the distance from the source (as in isotropic media) but also depends on the direction of the point of interest from the source. As an example, the displacement field is computed for a laboratory fabricated unidirectional fiberglass epoxy composite. The solution for the displacements is expressed as an amplitude distribution and is presented in polar diagrams. This analysis has potential usefulness in the acoustic emission (AE) and ultrasonic nondestructive evaluation of composite materials. For example, the transient localized disturbances which are generally associated with AE sources can be modeled via this analysis. In which case, knowledge of the displacement field which arrives at a receiving transducer allows inferences regarding the strength and orientation of the source, and consequently perhaps the degree of damage within the composite.

  10. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  11. Relationship between acoustic voice onset and offset and selected instances of oscillatory onset and offset in young healthy males and females

    PubMed Central

    Patel, Rita; Forrest, Karen; Hedges, Drew

    2016-01-01

    Objective To investigate the relationship between (1) onset of the acoustic signal and pre-phonatory phases associated with oscillatory onset and (2) offset of the acoustic signal with the post-phonatory events associated with oscillatory offset across vocally healthy adults. Subjects and Methods High-speed videoendoscopy was captured simultaneously with the acoustic signal during repeated production of /hi.hi.hi/ at typical pitch and loudness from 56 vocally healthy adults (age 20–42 years; 21 male, 35 female). The relationship between the acoustic sound pressure signal and oscillatory onset /offset events from the glottal area waveforms (GAW), were statistically investigated using a multivariate linear regression analysis. Results The onset of the acoustic signal (X1a) is a significant predictor of the onset of first oscillations (X1g) and onset of sustained oscillations (X2g). X1a as well as gender are significant predictors of the first instance of medial contact (X1.5g). The offset of the acoustic signal (X2a) is a significant predictor of the first instance of oscillatory offset (X3g), first instance of incomplete glottal closure (X3.5g), and cessation of vocal fold motion (X4g). Conclusions The acoustic signal onset is closely related to the first medial contact of the vocal folds but the latency between these events is longer for females compared to males. The offset of the acoustic signal occurs immediately after incomplete glottal adduction. The emerging normative group latencies between the onset/offset of the acoustic and the GAW from this study appear promising for future investigations. PMID:27769696

  12. Drift-based scrape-off particle width in X-point geometry

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Eich, T.

    2017-04-01

    The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.

  13. Operating Point Self-Regulator for Giant Magneto-Impedance Magnetic Sensor.

    PubMed

    Zhou, Han; Pan, Zhongming; Zhang, Dasha

    2017-05-11

    The giant magneto-impedance (GMI) magnetic sensor based on the amorphous wire has been believed to be tiny dimensions, high sensitivity, quick response, and small power consumption. This kind of sensor is usually working under a bias magnetic field that is called the sensor's operating point. However, the changes in direction and intensity of the external magnetic field, or the changes in sensing direction and position of the sensor, will lead to fluctuations in operating point when the sensor is working without any magnetic shield. In this work, a GMI sensor based on the operating point self-regulator is designed to overcome the problem. The regulator is based on the compensated feedback control that can maintain the operating point of a GMI sensor in a uniform position. With the regulator, the GMI sensor exhibits a stable sensitivity regardless of the external magnetic field. In comparison with the former work, the developed operating point regulator can improve the accuracy and stability of the operating point and therefore decrease the noise and disturbances that are introduced into the GMI sensor by the previous self-regulation system.

  14. Operating Point Self-Regulator for Giant Magneto-Impedance Magnetic Sensor

    PubMed Central

    Zhou, Han; Pan, Zhongming; Zhang, Dasha

    2017-01-01

    The giant magneto-impedance (GMI) magnetic sensor based on the amorphous wire has been believed to be tiny dimensions, high sensitivity, quick response, and small power consumption. This kind of sensor is usually working under a bias magnetic field that is called the sensor’s operating point. However, the changes in direction and intensity of the external magnetic field, or the changes in sensing direction and position of the sensor, will lead to fluctuations in operating point when the sensor is working without any magnetic shield. In this work, a GMI sensor based on the operating point self-regulator is designed to overcome the problem. The regulator is based on the compensated feedback control that can maintain the operating point of a GMI sensor in a uniform position. With the regulator, the GMI sensor exhibits a stable sensitivity regardless of the external magnetic field. In comparison with the former work, the developed operating point regulator can improve the accuracy and stability of the operating point and therefore decrease the noise and disturbances that are introduced into the GMI sensor by the previous self-regulation system. PMID:28492514

  15. Magnetic structure of NiS2 -xSex

    NASA Astrophysics Data System (ADS)

    Yano, S.; Louca, Despina; Yang, J.; Chatterjee, U.; Bugaris, D. E.; Chung, D. Y.; Peng, L.; Grayson, M.; Kanatzidis, Mercouri G.

    2016-01-01

    NiS2 -2 xSex is revisited to determine the magnetic structure using neutron diffraction and magnetic representational analysis. Upon cooling, the insulating parent compound, NiS2, becomes antiferromagnetic with two successive magnetic transitions. The first transition (M 1 ) occurs at TN˜39 K with Γ1ψ1 symmetry and a magnetic propagation vector of k =(000 ) . The second transition (M 2 ) occurs at TN˜30 K with k =(0.5 ,0.5 ,0.5 ) and a Γ1ψ2 symmetry with face-centered translations, giving rise to four possible magnetic domains. With doping, the system becomes metallic. The transition to the M 2 state is suppressed prior to x =0.4 while the M 1 state persists. The M 1 magnetic structure gradually vanishes by x ˜0.8 at a lower concentration than previously reported. The details of the magnetic structures are provided.

  16. On oscillatory magnetoconvection in a nanofluid layer in the presence of internal heat source and Soret effect

    NASA Astrophysics Data System (ADS)

    Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd

    2017-11-01

    The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.

  17. Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Xinyuan

    2014-11-01

    In this paper we consider multi-frequency highly oscillatory second-order differential equations x″ (t) + Mx (t) = f (t , x (t) ,x‧ (t)) where high-frequency oscillations are generated by the linear part Mx (t), and M is positive semi-definite (not necessarily nonsingular). It is known that Filon-type methods are effective approach to numerically solving highly oscillatory problems. Unfortunately, however, existing Filon-type asymptotic methods fail to apply to the highly oscillatory second-order differential equations when M is singular. We study and propose an efficient improvement on the existing Filon-type asymptotic methods, so that the improved Filon-type asymptotic methods can be able to numerically solving this class of multi-frequency highly oscillatory systems with a singular matrix M. The improved Filon-type asymptotic methods are designed by combining Filon-type methods with the asymptotic methods based on the variation-of-constants formula. We also present one efficient and practical improved Filon-type asymptotic method which can be performed at lower cost. Accompanying numerical results show the remarkable efficiency.

  18. Magnetic phase diagram, static properties and relaxation of the insulating spin glass Co 1- xMn x(SCN) 2(CH 3OH) 2

    NASA Astrophysics Data System (ADS)

    DeFotis, G. C.; Just, E. M.; Pugh, V. J.; Coffey, G. A.; Hogg, B. D.; Fitzhenry, S. L.; Marmorino, J. L.; Krovich, D. J.; Chamberlain, R. V.

    1999-07-01

    ≈10 -12 s. Strong and weak irreversibility lines are determined for x=0.24 5; both vary as τg∝ h0.56, with zero-field temperatures of Ts(0)=5.5 5 K and Tw(0)=9.8 5 K, respectively. The exponent is closer to that recently predicted (0.53) for a short-range three-dimensional Ising spin glass than to the value 2/3 of the DeAlmeida-Thouless line in the infinite range mean-field Ising model. The existence of strong random anisotropy may account for the presence of a weak irreversibility line with the observed exponent. The T- x magnetic phase diagram exhibits a crossing of paramagnetic-ordered state phase boundaries and an associated tetracritical point at x≈0.20 5 and T≈2.6 0 K. Spin glass properties are apparent for compositions close to the tetracritical point.

  19. Magnetic properties of Zn1-xNixO

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Giri, N.; Sarkar, S.; Ray, Ruma

    2018-05-01

    Ni doped ZnO (Zn1-xNixO for 0.01 ≤ x ≤ 0.11) have been prepared by chemical precipitation method. X-ray diffraction corroborates a hexagonal wurzite structure without any impurity phases upto 11% Ni doping. Morphology of the particles is investigated by FE-SEM which exhibits either rod or tube like structure depending on the dopant concentration. Magnetization of Zn1-xNixO for 0.03 ≤ x ≤ 0.11 measured at room temperature infers the paramagnetic behavior. Zero field cooled and field cooled magnetization for x = 0.11 follows Curie-Weiss behavior above 122 K with effective paramagnetic moment 3.9μB. The non-linear magnetic hysteresis loop at 2 K with a small coercivity (300 Oe) indicates signature of ferromagnetic ordering.

  20. ROSAT Pointed Observations of Cool Magnetic White Dwarfs

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Porter, J. G.; Davis, J. M.

    1995-01-01

    Observational evidence for the existence of a chromosphere on the cool magnetic white dwarf GD 356 has been reported. In addition, there has been theoretical speculations that cool magnetic white dwarfs may be sources of coronal X-ray emission. This emission, if it exists, would be distinct from the two types of X-ray emission (deep photospheric and shocked wind) that have already been observed from hot white dwarfs. We have used the PSPC instrument on ROSAT to observe three of the most prominent DA white dwarf candidates for coronal X-ray emission: GD 356, KUV 2316+123, and GD 90. The data show no significant emission for these stars. The derived upper limits for the X-ray luminosities provide constraints for a revision of current theories of the generation of nonradiative energy in white dwarfs.

  1. DNA Molecules in Microfluidic Oscillatory Flow

    PubMed Central

    Chen, Y.-L.; Graham, M.D.; de Pablo, J.J.; Jo, K.; Schwartz, D.C.

    2008-01-01

    The conformation and dynamics of a single DNA molecule undergoing oscillatory pressure-driven flow in microfluidic channels is studied using Brownian dynamics simulations, accounting for hydrodynamic interactions between segments in the bulk and between the chain and the walls. Oscillatory flow provides a scenario under which the polymers may remain in the channel for an indefinite amount of time as they are stretched and migrate away from the channel walls. We show that by controlling the chain length, flow rate and oscillatory flow frequency, we are able to manipulate the chain extension and the chain migration from the channel walls. The chain stretch and the chain depletion layer thickness near the wall are found to increase as the Weissenberg number increases and as the oscillatory frequency decreases. PMID:19057656

  2. Theory of magnetic cataclysmic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.

    1988-01-01

    The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.

  3. Evolution of magnetic properties of CaMn1-x Nb x O3 with Nb-doping

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Fita, I.; Wisniewski, A.; Puzniak, R.; Martin, C.; Mogilyansky, D.; Jung, G.; Gorodetsky, G.

    2015-08-01

    Magnetic and structural properties of Nb-doped CaMnO3 have been studied and the effect of doping with 0.02  ⩽  x  ⩽  0.1 has been investigated. Substitution of Nb5+ ion for the Mn4+ site of the parent matrix causes one-electron doping with the chemical formula \\text{CaMn}1-2x4+\\text{Mn}x3+\\text{Nb}x5+{{\\text{O}}3} , accompanied by a monotonous increase of the lattice parameters, unit-cell volume, average Mn-O bond distance and a decrease in Mn-O-Mn bond angle, with increasing x. Low temperature magnetic ground state of CaMn1-x Nb x O3 has been found to be dependent on niobium doping level. The ground magnetic state evolves from mostly antiferromagnetic, with a weak ferromagnetic component for x = 0.02-0.08, to charge ordered C-type antiferromagnetic state at x = 0.1. Spontaneous magnetization increases sharply with increasing doping level, approaches a maximal value of 4.1 emu g-1 at T = 10 K for x = 0.08, and then decreases rapidly to reach a very small value of 0.2 emu g-1 for x = 0.1. Anomalous negative magnetization behavior below the magnetic transition temperature has been observed for the compound with x = 0.04 in the field cooled magnetization and remanent dc magnetization measurements. Vertical and horizontal shifts of the hysteresis loop of the field cooled sample have been observed for CaMn0.9Nb0.1O3 as possible signatures of the exchange bias effect. The effect of hydrostatic pressure on dc magnetization for the sample with x  >  0.02 revealed a significant increase of the ferromagnetic phase volume under pressure, linked to progressive suppression of a negative magnetization in x = 0.04 sample.

  4. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  5. Oscillatory dependence of current driven domain wall motion on current pulse length

    NASA Astrophysics Data System (ADS)

    Thomas, Luc

    2007-03-01

    The motion of domain walls (DW) in magnetic nanowires driven by spin torque from spin-polarized current is of considerable interest. Most previous work has considered the effect of dc or ˜microsecond long current pulses. Here, we show that the dynamics of DWs driven by nanosecond-long current pulses is unexpectedly complex. In particular, we show that the current driven motion of a DW, confined to a pinning site in a permalloy nanowire, exhibits an oscillatory dependence on the current pulse length with a period of just a few nanoseconds [1]. This behavior can be understood within a surprisingly straightforward one dimensional analytical model of the DW's motion. When a current pulse is applied, the DW's position oscillates within the pinning potential out of phase with the DW's out-of-plane magnetization, where the latter acts like the DW's momentum. Thus, the current driven motion of the DW is akin to a harmonic oscillator, whose frequency is determined by the ``mass'' of the DW and where the restoring force is related to the slope of the pinning potential. Remarkably, when the current pulse is turned off during phases of the DW motion when it has enough momentum, the amplitude of the oscillations can be amplified such that the DW exits the pinning potential well after the pulse is turned off. This oscillatory depinning occurs for currents smaller than the dc threshold current, and, moreover, the DW moves against the electron flow, opposite to the propagation direction above the dc threshold. These effects can be further amplified by using trains of current pulses whose lengths and separations are matched to the DW's oscillation period. In this way, we have demonstrated a five fold reduction in the threshold current required to move a DW out of a pinning site, making this effect potentially important for technological applications. [1] L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner and S.S.P. Parkin, Nature 443, 197 (2006).

  6. Debye temperatures and magnetic structures of UFe xAl 12- x (3.6⩽ x⩽5) intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Rećko, K.; Dobrzyński, L.; Szymański, K.; Hoser, A.

    2000-03-01

    Uranium ternary compounds UFe xAl 12- x crystallize in a body-centred tetragonal structure ThMn 12 (I 4/mmm No.139). The neutron powder diffraction, magnetization measurements as well as Mössbauer investigations clearly indicate the magnetic ordering within the iron sites. The rearrangement of iron magnetic moments from uncompensated antiferromagnetic system in UFe xAl 12- x with x<4, through coexistence of antiferro- and ferromagnetic iron components (4⩽ x<5) to pure ferromagnetic ordering for alloy with x=5 is observed. The neutron diffraction studies of magnetic structures of the aforementioned powder samples show a very rich world of possible uranium-iron magnetic interactions. For all these alloys the magnetic neutron scattering is generally weak in comparison to the nuclear one. Because of identical chemical and magnetic unit cells there are no pure magnetic reflections. Therefore, in order to extract magnetic part of the scattering one should be particularly careful in taking proper account of the thermal vibration effects.

  7. X-ray studies of highly magnetized neutron stars and their environs

    NASA Astrophysics Data System (ADS)

    Kumar, Harsha Sanjeev

    Supernova explosions are among the most energetic events known in the universe, leaving supernova remnants (SNRs) as their relics. The cores of massive stars collapse to form neutron stars, among the most compact and strongest magnets in the cosmos. The thesis studies a sample of such magnetic "beauties" in X-rays, the magnetars and high-magnetic field pulsars (HBPs), with the motivation to understand their evolutionary links. We also address the connection between these sources by investigating their environs through their securely associated SNRs. Magnetars have ultra-high magnetic fields B ~ 1014 -- 1015 Gauss (G) and include the soft-gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). The HBPs have magnetic fields B ~ 1013 -- 10 14 G, intermediate between the classical rotation-powered pulsars (B ~ 1012 G) and magnetars. We focussed on two HBPs: J1119-6127 and J1846-0258, with similar spin-properties and associated with the SNRs G292.2-0.5 and Kes 75, respectively. In our studies, magnetar-like behavior was discovered from the Crab-like pulsar J1846-0258, clearly establishing a connection between the HBPs and magnetars for the first time, while no such behavior has been observed from PSR J1119-6127 so far. J1119-6127's overall X-ray properties together with its compact pulsar wind nebula resemble more the classical rotation-powered pulsars. We studied two magnetars, one from each sub-class: SGR 0501+4516 and AXP 1E 1841-045. The spectral and statistical analysis of the bursts and the persistent X-ray emission properties observed from them were found consistent with the magnetar model predictions as well as those seen in other SGRs. Finally, we probed the environment of these stellar magnets by performing a detailed X-ray imaging and spatially resolved spectroscopic study of two SNRs: G292.2-0.5 and Kes 73 associated with J1119-6127 and 1E 1841-045, respectively. We found that both SNRs point to very massive progenitors ( ≳ 25 solar masses), further

  8. Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro

    2018-01-01

    Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.

  9. Phonon-assisted oscillatory exciton dynamics in monolayer MoSe 2

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-10-13

    In monolayer semiconductor transition metal dichalcogenides, the exciton–phonon interaction strongly affects the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe 2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M), suggesting the significance of zone-edge acoustic phonons and hence the deformation potential in exciton-phonon coupling in MoSe 2. Moreover, oscillatory behavior is observed in the steady-state emission linewidth and in time-resolved PLE data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role playedmore » by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.« less

  10. Study of magnetism in Cr doped (Bi1-xSbx)2Te3

    NASA Astrophysics Data System (ADS)

    Richardella, Anthony; Kandala, Abhinav; Kempinger, Susan; Samarth, Nitin; Grutter, Alex; Borchers, Julie

    2015-03-01

    The quantum anomalous Hall (QAH) effect was first observed in Cr doped films of the topological insulator (TI) (Bi1-xSbx)2Te3. This ferromagnetic TI opens a gap at the Dirac point and, when the Fermi energy lies inside this gap, a quantized QAH conductance can be observed. The origin of ferromagnetism in this material is still not well understood with the mechanism typically attributed to either a high van-Vleck susceptibility or a carrier mediated RKKY like interaction. To elucidate this we have studied Cry(Bi1-xSbx)2-yTe3 thin films grown by MBE on SrTiO3 (STO) substrates using polarized neutron reflectivity (PNR) while in-situ backgating the film to change the position of the Fermi energy. The films are also characterized by XRD, AFM, TEM and low temperature transport measurements. PNR measurements provide a direct measure of the depth dependent magnetization of a sample. We use this to study how the magnetization changes as the Fermi energy is moved towards the Dirac point. Funded by DARPA and ARO-MURI.

  11. Multi-frame acquisition scheme for efficient energy-dispersive X-ray magnetic circular dichroism in pulsed high magnetic fields at the Fe K-edge

    PubMed Central

    Strohm, Cornelius; Perrin, Florian; Dominguez, Marie-Christine; Headspith, Jon; van der Linden, Peter; Mathon, Olivier

    2011-01-01

    Using a fast silicon strip detector, a multi-frame acquisition scheme was implemented to perform energy-dispersive X-ray magnetic circular dichroism at the iron K-edge in pulsed high magnetic fields. The acquisition scheme makes use of the entire field pulse. The quality of the signal obtained from samples of ferrimagnetic erbium iron garnet allows for quantitative evaluation of the signal amplitude. Below the compensation point, two successive field-induced phase transitions and the reversal of the net magnetization of the iron sublattices in the intermediate phase were observed. PMID:21335909

  12. Magnetic properties of Ce xY 1-xPt compared to Ce xLa 1-xPt ones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocko, M.; Zadro, K.; Drobac, D.

    In this paper, we have investigated the magnetic properties of the Ce xY 1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θ p, is negative and at low temperature θ C is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost themore » theoretical value of the isolated Ce 3+ ion, μ = 2.54 μ B, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θ C differs within 1 K from the Curie temperature, T C, which is determined by the resistivity measurements. The most intriguing result of the investigation of Ce xY 1-xPt is the linear concentration dependence of T C vs. x and, moreover, it is the same as in Ce xLa 1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. Finally, we offer the explanations of these intriguing experimental results.« less

  13. Magnetic properties of Ce xY 1-xPt compared to Ce xLa 1-xPt ones

    DOE PAGES

    Ocko, M.; Zadro, K.; Drobac, D.; ...

    2017-12-05

    In this paper, we have investigated the magnetic properties of the Ce xY 1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θ p, is negative and at low temperature θ C is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost themore » theoretical value of the isolated Ce 3+ ion, μ = 2.54 μ B, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θ C differs within 1 K from the Curie temperature, T C, which is determined by the resistivity measurements. The most intriguing result of the investigation of Ce xY 1-xPt is the linear concentration dependence of T C vs. x and, moreover, it is the same as in Ce xLa 1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. Finally, we offer the explanations of these intriguing experimental results.« less

  14. Adaptive design of an X-ray magnetic circular dichroism spectroscopy experiment with Gaussian process modelling

    NASA Astrophysics Data System (ADS)

    Ueno, Tetsuro; Hino, Hideitsu; Hashimoto, Ai; Takeichi, Yasuo; Sawada, Masahiro; Ono, Kanta

    2018-01-01

    Spectroscopy is a widely used experimental technique, and enhancing its efficiency can have a strong impact on materials research. We propose an adaptive design for spectroscopy experiments that uses a machine learning technique to improve efficiency. We examined X-ray magnetic circular dichroism (XMCD) spectroscopy for the applicability of a machine learning technique to spectroscopy. An XMCD spectrum was predicted by Gaussian process modelling with learning of an experimental spectrum using a limited number of observed data points. Adaptive sampling of data points with maximum variance of the predicted spectrum successfully reduced the total data points for the evaluation of magnetic moments while providing the required accuracy. The present method reduces the time and cost for XMCD spectroscopy and has potential applicability to various spectroscopies.

  15. Relaxation in x-space magnetic particle imaging.

    PubMed

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  16. Estimating Total Heliospheric Magnetic Flux from Single-Point in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Owens, M. J.; Arge, C. N.; Crooker, N. U.; Schwardron, N. A.; Horbury, T. S.

    2008-01-01

    A fraction of the total photospheric magnetic flux opens to the heliosphere to form the interplanetary magnetic field carried by the solar wind. While this open flux is critical to our understanding of the generation and evolution of the solar magnetic field, direct measurements are generally limited to single-point measurements taken in situ by heliospheric spacecraft. An observed latitude invariance in the radial component of the magnetic field suggests that extrapolation from such single-point measurements to total heliospheric magnetic flux is possible. In this study we test this assumption using estimates of total heliospheric flux from well-separated heliospheric spacecraft and conclude that single-point measurements are indeed adequate proxies for the total heliospheric magnetic flux, though care must be taken when comparing flux estimates from data collected at different heliocentric distances.

  17. Study of magnetic behavior in hexagonal-YMn1-xFexO3 (x=0 and 0.2) nanoparticles using remanent magnetization curves

    NASA Astrophysics Data System (ADS)

    Chauhan, Samta; Singh, Amit Kumar; Srivastava, Saurabh Kumar; Chandra, Ramesh

    2016-09-01

    We have studied the magnetic behavior of YMn1-xFexO3 (x=0 and 0.2) nanoparticles synthesized by conventional solid state reaction method. The as-synthesized nanoparticles were found to have hexagonal phase with P63cm space group confirmed by X-Ray diffraction. The particle size was found to be ~70 nm as confirmed by both X-Ray diffraction and Transmission Electron Microscopy. DC magnetization and memory effect measurements imply that the h-YMnO3 nanoparticles bear a resemblance to super spin-glass state following de Almeida-Thouless like behavior which is being suppressed by Fe-doping. The Fe-doping in YMnO3 enhances the antiferromagnetic (AFM) transition temperature TN to ~79 K and induces a new magnetic state due to the surface spins which is realized as diluted antiferromagnet in a field (DAFF) as explored by the thermoremanent and isothermoremanent magnetization measured with different applied magnetic field.

  18. An Exploration of the Emission Properties of X-Ray Bright Points Seen with SDO

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Elsden, T.; Muglach, K.

    2012-01-01

    We present preliminary results of a study of X-ray Bright Point (XBP) EUV emission and its dependence on other properties. The XBPs were located using a new, automated XBP finder for AlA developed as part of the Feature Finding Team for SDO Computer Vision. We analyze XBPs near disk center, comparing AlA EUV fluxes, HMI LOS magnetic fields, and photospheric flow fields (derived from HMI data) to look for relationships between XBP emission, magnetic flux, velocity fields, and XBP local environment. We find some evidence for differences in the mean XBP temperature with environment. Unsigned magnetic flux is correlated with XBP emission, though other parameters play a role. The majority of XBP footpoints are approaching each other, though at a slight angle from head-on on average. We discuss the results in the context of XBP heating.

  19. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.

    2001-12-01

    In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.

  20. Observations of the variability of coronal bright points by the Soft X-ray Telescope on Yohkoh

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Harvey, Karen; Hirayama, Tadashi; Nitta, Nariaki; Shimizu, Toshifumi; Tsuneta, Saku

    1992-01-01

    We present the initial results of a study of X-ray bright points (XBPs) made with data from the Yohkoh Soft X-ray Telescope. High temporal and spatial resolution observations of several XBPs illustrate their intensity variability over a wide variety of time scales from a few minutes to hours, as well as rapid changes in their morphology. Several XBPs produced flares during their lifetime. These XBP flares often involve magnetic loops, which are considerably larger than the XBP itself, and which brighten along their lengths at speeds of up to 1100 km/s.

  1. Interplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.

    PubMed

    Karki, Amar B; Garlea, V Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E W; Jin, Rongying

    2013-06-04

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As(1-x)P(x))2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe(1-x)Pd(x)Te. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T(N/S), and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions.

  2. [Recent results in research on oscillatory chemical reactions].

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  3. Oscillatory bistability of real-space transfer in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Do˙ttling, R.; Scho˙ll, E.

    1992-01-01

    Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.

  4. Magnetic x-ray dichroism in ultrathin epitaxial films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of highmore » resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.« less

  5. Doping dependence of the magnetic excitations in La 2 - x Sr x CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, D.; Miao, H.; Walters, A. C.

    The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high-temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La 2–xSr xCuO 4, spanning the doping phase diagram from the antiferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the antinodal direction. This phenomenology is discussed in terms of the nature of the magnetism inmore » the doped cuprates. As a result, survival of the high-energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low-energy excitations remains ambiguous.« less

  6. Doping dependence of the magnetic excitations in La 2 - x Sr x CuO 4

    DOE PAGES

    Meyers, D.; Miao, H.; Walters, A. C.; ...

    2017-02-15

    The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high-temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La 2–xSr xCuO 4, spanning the doping phase diagram from the antiferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the antinodal direction. This phenomenology is discussed in terms of the nature of the magnetism inmore » the doped cuprates. As a result, survival of the high-energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low-energy excitations remains ambiguous.« less

  7. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOEpatents

    Eberhard, P.H.

    A point-sensitive NMR imaging system in which a main solenoid coil produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An rf generator irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  8. Reduction of the ordered magnetic moment and its relationship to Kondo coherence in Ce1 -xLaxCu2Ge2

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Jo, N. H.; Sapkota, A.; Tian, W.; Masters, M.; Hodovanets, H.; Downing, S. S.; Schmidt, C.; McQueeney, R. J.; Bud'ko, S. L.; Kreyssig, A.; Canfield, P. C.; Goldman, A. I.

    2018-04-01

    The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce1 -xLaxCu2Ge2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x =0.20 , 0.40, 0.75, and 0.85. Magnetic Bragg peaks are found for 0.20 ≤x ≤0.75 , and both the Néel temperature TN and the ordered magnetic moment per Ce μ linearly decrease with increasing x . The reduction in μ points to strong hybridization of the increasingly diluted Ce 4 f electrons, and we find a remarkable quadratic dependence of μ on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory and show that Ce1 -xLaxCu2Ge2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.

  9. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  10. Structure symmetry determination and magnetic evolution in Sr 2Ir 1–xRh xO 4

    DOE PAGES

    Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; ...

    2015-11-23

    We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr 2Ir 1–xRh xO 4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I4 1/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO 6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μ B/Ir for x = 0 to 0.18 μ B/Ir for x = 0.12. As a result, the magnetic structuremore » at x = 0.12 is different from that of the parent compound while the moments remain in the basal plane.« less

  11. The appearance, motion, and disappearance of three-dimensional magnetic null points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A., E-mail: namurphy@cfa.harvard.edu; Parnell, Clare E.; Haynes, Andrew L.

    2015-10-15

    While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field,more » which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.« less

  12. High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x

    NASA Astrophysics Data System (ADS)

    Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.

    2017-02-01

    The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x  =  0.5  +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx  ≈  0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.

  13. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  14. Improved equivalent magnetic network modeling for analyzing working points of PMs in interior permanent magnet machine

    NASA Astrophysics Data System (ADS)

    Guo, Liyan; Xia, Changliang; Wang, Huimin; Wang, Zhiqiang; Shi, Tingna

    2018-05-01

    As is well known, the armature current will be ahead of the back electromotive force (back-EMF) under load condition of the interior permanent magnet (PM) machine. This kind of advanced armature current will produce a demagnetizing field, which may make irreversible demagnetization appeared in PMs easily. To estimate the working points of PMs more accurately and take demagnetization under consideration in the early design stage of a machine, an improved equivalent magnetic network model is established in this paper. Each PM under each magnetic pole is segmented, and the networks in the rotor pole shoe are refined, which makes a more precise model of the flux path in the rotor pole shoe possible. The working point of each PM under each magnetic pole can be calculated accurately by the established improved equivalent magnetic network model. Meanwhile, the calculated results are compared with those calculated by FEM. And the effects of d-axis component and q-axis component of armature current, air-gap length and flux barrier size on working points of PMs are analyzed by the improved equivalent magnetic network model.

  15. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    NASA Astrophysics Data System (ADS)

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  16. Magnetic suspension and pointing system. [on a carrier vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  17. Microfluidic mixing through oscillatory transverse perturbations

    NASA Astrophysics Data System (ADS)

    Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.

    2018-05-01

    Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.

  18. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  19. Single polymer dynamics under large amplitude oscillatory extension

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    2016-09-01

    Understanding the conformational dynamics of polymers in time-dependent flows is of key importance for controlling materials properties during processing. Despite this importance, however, it has been challenging to study polymer dynamics in controlled time-dependent or oscillatory extensional flows. In this work, we study the dynamics of single polymers in large-amplitude oscillatory extension (LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is generated using a feedback-controlled stagnation point device known as the Stokes trap, thereby generating an oscillatory planar extensional flow with alternating principal axes of extension and compression. Our results show that polymers experience periodic cycles of compression, reorientation, and extension in LAOE, and dynamics are generally governed by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency (Deborah number De). Single molecule experiments are compared to BD simulations with and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and good agreement is obtained across a range of parameters. Moreover, transient bulk stress in LAOE is determined from simulations using the Kramers relation, which reveals interesting and unique rheological signatures for this time-dependent flow. We further construct a series of single polymer stretch-flow rate curves (defined as single molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from the linear to nonlinear response regimes are interpreted in the context of accumulated fluid strain in LAOE.

  20. The structural and magnetic properties of Fe2-xNiGa1+x Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang (张玉洁), Y. J.; Xi (郗学奎), X. K.; Meng (孟凡斌), F. B.; Wang (王文洪), W. H.; Liu (刘恩克), E. K.; Chen (陈京兰), J. L.; Wu (吴光恒), G. H.

    2015-04-01

    The structural and magnetic properties of Fe2-xNiGa1+x (x=0~1) Heusler alloys have been investigated by experimental observation and calculation. In this system, a structural transition is found as a function of composition. A higher Ga content leads to an atomic-order transformation from Hg2CuTi to B2. The magnetization decreases due to the dilution effect and the competition between the magnetic interactions and enhanced covalent bonding. The calculation of electronic structure indicates that adding Ga enhances the p-d orbital hybridization between the transition-metal and main-group-element atoms at nearest-neighbor distance. A magnetic and a structural phase diagram have been obtained in which the composition dependences of the lattice constant, the ordering temperature and the Curie temperature show cusps at a critical composition of x=0.32.

  1. Age-related changes to oscillatory dynamics in hippocampal and neocortical networks.

    PubMed

    Rondina, Renante; Olsen, Rosanna K; McQuiggan, Douglas A; Fatima, Zainab; Li, Lingqian; Oziel, Esther; Meltzer, Jed A; Ryan, Jennifer D

    2016-10-01

    Recent models of hippocampal function have emphasized its role in relational binding - the ability to form lasting representations regarding the relations among distinct elements or items which can support memory performance, even over brief delays (e.g., several seconds). The present study examined the extent to which aging is associated with changes in the recruitment of oscillatory activity within hippocampal and neocortical regions to support relational binding performance on a short delay visuospatial memory task. Structural magnetic resonance imaging and MEG were used to characterize potential age-related changes in hippocampal volume, oscillatory activity, and subsequent memory performance, and the relationships among them. Participants were required to bind the relative visuospatial positions of objects that were presented singly across time. Subsequently, the objects were re-presented simultaneously, and participants were required to indicate whether the relative spatial positions among the objects had been maintained. Older and younger adults demonstrated similar task accuracy, and older adults had preserved hippocampal volumes relative to younger adults. Age-group differences were found in pre-stimulus theta (∼5Hz) and beta (∼20Hz) oscillations, and this pre-stimulus activity was related to hippocampal volumes in younger adults. Age-group differences were also found in the recruitment of oscillatory activity from the pre-stimulus period to the task. Only younger adults showed a task-related change in theta power that was predictive of memory performance. In contrast, older adults demonstrated task-related alpha (∼10Hz) oscillatory power changes that were not observed in younger adults. These findings provide novel evidence for the role of the hippocampus and functionally connected regions in relational binding that is disrupted in aging. The present findings are discussed in the context of current models regarding the cognitive neuroscience of

  2. Pressure effects on magnetic ground states in cobalt doped multiferroic Mn 1-xCo xWO 4

    DOE PAGES

    Wang, Jinchen; Ye, Feng; Chi, Songxue; ...

    2016-04-28

    Using x-ray and high pressure neutron diffraction, we studied the pressure effect on structural and magnetic properties of multiferroic Mn 1-xCo xWO 4 single crystals (x = 0, 0.05, 0.135 and 0.17), and compared it with the effects of doping. Both Co doping and pressure stretch the Mn-Mn chain along the c direction. At high doping level (x = 0.135 and 0.17), pressure and Co doping drive the system in a very similar way and induce a spin-flop transition for the x = 0.135 compound. In contrast, magnetic ground states at lower doping level (x = 0 and 0.05) aremore » robust against pressure but experience a pronounced change upon Co substitution. As Co introduces both chemical pressure and magnetic anisotropy into the frustrated magnetic system, our results suggest the magnetic anisotropy is the main driving force for the Co induced phase transitions at low doping level, and chemical pressure plays a more significant role at higher Co concentrations.« less

  3. Magnetism in La₂O₃(Fe₁₋ xMn x)₂Se₂ tuned by Fe/Mn ratio

    DOE PAGES

    Lei, Hechang; Bozin, Emil S.; Llobet, A.; ...

    2012-09-17

    We report the evolution of structural and magnetic properties in La₂O₃(Fe₁₋ xMn x)₂Se₂. Heat capacity and bulk magnetization indicate an increased ferromagnetic component of the long-range magnetic order and possible increased degree of frustration. Atomic disorder on Fe(Mn) sites suppresses the temperature of the long-range order whereas intermediate alloys show a rich magnetic phase diagram.

  4. Effect of boron on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}B{sub x} Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramudu, M., E-mail: macrams2@gmail.com; Raja, M. Manivel; Kamat, S. V.

    2016-05-23

    The partial substitution of Si with B on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}Bx (x = 0-0.5) alloys was systematically investigated. X-ray and microstructural investigations show the presence of second phase at the grain boundaries which increases with increasing boron content. From thermal analysis studies, it was observed that L2{sub 1}-B2 ordering temperature remain constant whereas the melting point decreases with increase in boron addition and merges with ordering temperature at x = 0.5. The increase in T{sub C} for the alloys x ≥ 0.25 was attributed to the increase in second phase due to boron.

  5. The Influence of Oscillatory Fractions on Mass Transfer of Non-Newtonian Fluid in Wavy-Walled Tubes for Pulsatile Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Donghui; Bian, Yongning

    2018-03-01

    The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.

  6. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.

    2009-12-01

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  7. Ce 3 - x Mg x Co 9 : Transformation of a Pauli Paramagnet into a Strong Permanent Magnet

    DOE PAGES

    Lamichhane, Tej N.; Taufour, Valentin; Palasyuk, Andriy; ...

    2018-02-23

    In this article we report on the synthesis of single-crystal and polycrystalline samples of Ce 3-xMg xCo 9 solid solution (0 ≤ x ≲ 1.4) and characterization of their structural and magnetic properties. The crystal structure remains rhombohedral in the whole composition range and Mg partially replaces Ce in the 6c site of the CeCo 3 structure. Ferromagnetism is induced by Mg substitutions starting as low as x = 0.18 and reaching a Curie temperature as high as 450 K for x = 1.35 . Measurements on single crystals with x = 1.34 and T C = 440 K indicatemore » an axial magnetic anisotropy with an anisotropy field of 6 T and a magnetization of 6 μ B/f.u. at 300 K. Coercicity is observed in the polycrystalline samples consistent with the observed axial magnetic anisotropy. Our discovery of ferromagnetism with large axial magnetic anisotropy induced by substituting a rare-earth element by Mg is a very promising result in the search of inexpensive permanent-magnet materials and suggests that other nonmagnetic phases, similar to CeCo 3, may also conceal nearby ferromagnetic phases.« less

  8. Ce 3 - x Mg x Co 9 : Transformation of a Pauli Paramagnet into a Strong Permanent Magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, Tej N.; Taufour, Valentin; Palasyuk, Andriy

    In this article we report on the synthesis of single-crystal and polycrystalline samples of Ce 3-xMg xCo 9 solid solution (0 ≤ x ≲ 1.4) and characterization of their structural and magnetic properties. The crystal structure remains rhombohedral in the whole composition range and Mg partially replaces Ce in the 6c site of the CeCo 3 structure. Ferromagnetism is induced by Mg substitutions starting as low as x = 0.18 and reaching a Curie temperature as high as 450 K for x = 1.35 . Measurements on single crystals with x = 1.34 and T C = 440 K indicatemore » an axial magnetic anisotropy with an anisotropy field of 6 T and a magnetization of 6 μ B/f.u. at 300 K. Coercicity is observed in the polycrystalline samples consistent with the observed axial magnetic anisotropy. Our discovery of ferromagnetism with large axial magnetic anisotropy induced by substituting a rare-earth element by Mg is a very promising result in the search of inexpensive permanent-magnet materials and suggests that other nonmagnetic phases, similar to CeCo 3, may also conceal nearby ferromagnetic phases.« less

  9. Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, M.; Hattori, Y.; Morrison, P. J.

    2015-05-15

    A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally aroundmore » the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.« less

  10. Structural and magnetic properties of SrMn1-xRuxO3 perovskites

    NASA Astrophysics Data System (ADS)

    Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Maxwell, T.

    2007-03-01

    Ferromagnetism of SrRuO3 is unique among 4d transition metal based perovskite oxides. On substitution of Mn its TC decreases from 163 K to 0 for x˜0.5-0.6 followed by a formation of an antiferromagnetic insulating state at a quantum critical point. The other end member of the SrMn1-xRuxO3 family, a cubic perovskite SrMnO3 is a G-type antiferromagnet with TN=233 K. We have synthesized the complete SrMn1-xRuxO3 solid solution. The polycrystalline samples were characterized by neutron difraction, magnetic, and transport experiments. The incorporation of Ru in the SrMnO3 matrix (0.1<=x<=0.4) results in a phase transition to a C-type antiferromagnetic state accompanied by a cubic-tetragonal transition. The intermediate substitution level induces a spin-glass behavior, due to competing ferro- and antiferromagnetic interactions. Mixed valence Mn^3+/Mn^4+ and Ru^4+/Ru^5+ pairs introduce additional frustration to the magnetic states. The glassy behavior can be observed for x up to 0.7 in the tetragonal structure. Supported by NSF (DMR-0302617) and the U.S. Department of Education

  11. Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.

    2013-12-01

    We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.

  12. Model of inter-cell interference phenomenon in 10 nm magnetic tunnel junction with perpendicular anisotropy array due to oscillatory stray field from neighboring cells

    NASA Astrophysics Data System (ADS)

    Ohuchida, Satoshi; Endoh, Tetsuo

    2018-06-01

    In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.

  13. Oscillatory integration windows in neurons

    PubMed Central

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  14. Parallel Tracks as Quasi-steady States for the Magnetic Boundary Layers in Neutron-star Low-mass X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkut, M. Hakan; Çatmabacak, Onur, E-mail: mherkut@gmail.com

    The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere–disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at themore » innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608–52, 4U 1636–53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.« less

  15. Parallel Tracks as Quasi-steady States for the Magnetic Boundary Layers in Neutron-star Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Erkut, M. Hakan; Çatmabacak, Onur

    2017-11-01

    The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere-disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at the innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608-52, 4U 1636-53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.

  16. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less

  17. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Skryabin, Dmitry V.; Malomed, Boris A.

    2018-06-01

    We consider the model of fiber-laser cavities near the zero-dispersion point, based on the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, including the third-order dispersion (TOD) term. It is well known that this model supports stable dissipative solitons. We demonstrate that the same model gives rise to several families of robust bound states of the solitons, which exists only in the presence of the TOD. There are both stationary and dynamical bound states, with oscillating separation between the bound solitons. Stationary states are multistable, corresponding to different values of the separation. With the increase of the TOD coefficient, the bound state with the smallest separation gives rise the oscillatory state through the Hopf bifurcation. Further growth of TOD leads to a bifurcation transforming the oscillatory limit cycle into a strange attractor, which represents a chaotically oscillating dynamical bound state. Families of multistable three- and four-soliton complexes are found too, the ones with the smallest separation between the solitons again ending by a transition to oscillatory states through the Hopf bifurcation.

  18. The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys

    NASA Astrophysics Data System (ADS)

    Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.

    2000-07-01

    A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.

  19. Perpendicular magnetic anisotropy in amorphous NdxCo1 -x thin films studied by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Cid, R.; Alameda, J. M.; Valvidares, S. M.; Cezar, J. C.; Bencok, P.; Brookes, N. B.; Díaz, J.

    2017-06-01

    The origin of perpendicular magnetic anisotropy (PMA) in amorphous NdxCo1 -x thin films is investigated using x-ray magnetic circular dichroism (XMCD) spectroscopy at the Co L2 ,3 and Nd M4 ,5 edges. The magnetic orbital and spin moments of the 3 d cobalt and 4 f neodymium electrons were measured as a function of the magnetic field orientation, neodymium concentration, and temperature. In all the studied samples, the magnetic anisotropy of the neodymium subnetwork is always oriented perpendicular to the plane, whereas the anisotropy of the orbital moment of cobalt is in the basal plane. The ratio Lz/Sz of the neodymium 4 f orbitals changes with the sample orientation angle, being higher and closer to the atomic expected value at normal orientation and smaller at grazing angles. This result is well explained by assuming that the 4 f orbital is distorted by the effect of an anisotropic crystal field when it is magnetized along its hard axis, clearly indicating that the 4 f states are not rotationally invariant. The magnetic anisotropy energy associated to the neodymium subnetwork should be proportional to this distortion, which we demonstrate is accessible by applying the XMCD sum rules for the spin and intensity at the Nd M4 ,5 edges. The analysis unveils a significant portion of neodymium atoms magnetically uncoupled to cobalt, i.e., paramagnetic, confirming the inhomogeneity of the films and the presence of a highly disordered neodymium rich phase already detected by extended x-ray-absorption fine structure (EXAFS) spectroscopy. The presence of these inhomogeneities is inherent to the evaporation preparation method when the chosen concentration in the alloy is far from its eutectic concentrations. An interesting consequence of the particular way in which cobalt and neodymium segregates in this system is the enhancement of the cobalt spin moment which reaches 1.95 μB in the sample with the largest segregation.

  20. Coupled coils, magnets and Lenz's law

    NASA Astrophysics Data System (ADS)

    Thompson, Frank

    2010-03-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results.

  1. Magnetic properties of Co 2 2+ Co 1 - x 3+ Fe x 3+ BO5 ( x = 0.10) single crystals with a ludwigite structure

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Kazak, N. V.; Bayukov, O. A.; Platunov, M. S.; Velikanov, D. A.; Bezmaternykh, L. N.; Ivanova, N. B.; Ovchinnikov, S. G.

    2017-04-01

    The investigation of mixed Co-Fe ludwigite single crystals shows that their magnetic properties are close to the magnetic properties of Fe3BO5 despite the predominance of cobalt ions. The magnetic properties of Co3 - x Fe x BO5 single crystals with x = 0.10 are studied in detail. Magnetometric measurements demonstrate a strong magnetic anisotropy with easy magnetization axis b, and the orbital magnetic moment of cobalt is in a frozen state. The detected temperature dependence of the absorption of Mössbauer spectra allowed us to determine the magnetic ordering temperature, which agrees with the results of magnetization measurements ( T C = 84 K).

  2. Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te

    DOE PAGES

    Stock, C.; Rodriguez, E. E.; Bourges, P.; ...

    2017-04-07

    The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less

  3. Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stock, C.; Rodriguez, E. E.; Bourges, P.

    The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less

  4. Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.

    2017-04-01

    The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.

  5. Oscillatory serotonin function in depression.

    PubMed

    Salomon, Ronald M; Cowan, Ronald L

    2013-11-01

    Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 min for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI) to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz) while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy, 3,4-methylenedioxy-N-methylamphetamine) users because of their chronically diminished 5HT function compared with non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared with a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. Copyright

  6. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOEpatents

    Eberhard, Philippe H.

    1985-01-01

    A point-sensitive NMR imaging system (10) in which a main solenoid coil (11) produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils (PZ1 and PZ2) powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils (PX1, PX2; PY1, PY2) superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An RF generator (22) irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  7. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As as probed with neutron & x-ray reflectivfity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  8. Magnetization reversal properties of Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Sanjay; Pal, Sudipta, E-mail: sudipta.pal@rediffmail.com; Bose, Esa

    2015-06-24

    We report measurements of the temperature dependent magnetic properties of single phase orthorhombic perovskites system associated with space group Pbnm compounds Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7). Magnetic properties radically changes with the doping of Gd or Nd. A magnetization reversal is observed below the Neel temperature (T{sub N}), in DC magnetization measurements (at 50 Oe) in the doped compounds. The reversal of magnetization may be due to the antiparallel coupling between the two magnetic sublattices (|Pr+ Gd/ Nd | and Mn). The hysteresis plot taken at 50K indicates a ferrimagnetic characteristic and existence of spin canting of ionsmore » in the magnetic sublattices.« less

  9. Waiting Points in Nova and X-ray Burst Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunayama, Tomomi; Smith, Michael Scott; Lingerfelt, Eric J

    2008-01-01

    In nova and X-ray burst nucleosynthesis, waiting points are nuclei in the reaction path which interrupt the nuclear flow towards heavier nuclei, typically because of a weak proton capture reaction and a long beta+ lifetime. Waiting points can influence the energy generation and final abundances synthesized in these explosions. We have constructed a systematic, quantitative set of criteria to identify rp-process waiting points, and use them to search for waiting points in post-processing simulations of novae and X-ray bursts. These criteria have been incorporated into the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to enable anyone to run customizedmore » searches for waiting points.« less

  10. Waiting Points in Nova and X-ray burst Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunayama, Tomomi; Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831-0117; Smith, Michael S.

    2008-05-21

    In nova and X-ray burst nucleosynthesis, waiting points are nuclei in the reaction path which delay the nuclear flow towards heavier nuclei, typically because of a weak proton capture reaction and a long {beta}{sup +} lifetime. Waiting points can influence the energy generation and final abundances synthesized in these explosions. We have constructed a systematic, quantitative set of criteria to identify rp-process waiting points, and use them to search for waiting points in post-processing simulations of novae and X-ray bursts. These criteria have been incorporated into the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to enable anyone to runmore » customized searches for waiting points.« less

  11. Hall and transverse even effects in the vicinity of a quantum critical point in Tm{sub 1-x}Yb{sub x}B{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluchanko, N. E., E-mail: nes@lt.gpi.ru; Azarevich, A. N.; Bogach, A. V.

    2012-09-15

    The angular, temperature, and magnetic field dependences of the resistance recorded in the Hall effect geometry are studied for the rare-earth dodecaboride Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions where the metal-insulator and antiferromagnetic-paramagnetic phase transitions are observed in the vicinity of the quantum critical point x{sub c} Almost-Equal-To 0.3. The measurements performed on high-quality single crystals in the temperature range 1.9-300 K for the first time have revealed the appearance of the second harmonic contribution, a transverse even effect in these fcc compounds near the quantum critical point. This contribution a is found to increase drastically both under the Tm-to-ytterbiummore » substitution in the range x > x{sub c} and with an increase in the external magnetic field. Moreover, as the Yb concentration x increases, a negative peak of a significant amplitude appears on the temperature dependences of the Hall coefficient R{sub H}(T) for the Tm{sup 1-x}Yb{sub x}B{sub 12} compounds, in contrast to the invariable behavior R{sub H}(T) Almost-Equal-To const found for TmB{sub 12}. The complicated activation-type behavior of the Hall coefficient is observed at intermediate temperatures for x {>=} 0.5 with activation energies E{sub g}/k{sub B} Almost-Equal-To 200 K and E{sub a}/k{sub B} 55-75 K, and the sign inversion of R{sub H}(T) is detected at liquid-helium temperatures in the coherent regime. Renormalization effects in the electron density of states induced by variation of the Yb concentration are analyzed. The anomalies of the charge transport in Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions in various regimes (charge gap formation, intra-gap many-body resonance, and coherent regime) are discussed in detail and the results are interpreted in terms of the electron phase separation effects in combination with the formation of nanosize clusters of rare earth ions in the cage-glass state of the studied dodecaborides. The data obtained

  12. Microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys observed by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Z. Y.; Han, S. H.; Wang, Y. T.; Wang, W. H.; Han, B. S.

    2005-03-01

    The microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys have been achieved simultaneously by employing a magnetic force microscope directly on the as-cast cylinder rod surface for the first time. By varying the content of Fe, the microstructure of the Pr-based alloy changes progressively from a full glassy state to a composite state with nanocrystalline particles embedded in the glassy matrix, and finally into a nanostructured state. The accompanying magnetic property gradually changes from paramagnetic to hard. The experiment directly evidences the existence of exchange coupling between the crystallites and the variety of the grain-size-dependent magnetic properties can be well explained by Löffler et al.'s new random-anisotropy model (Löffler, et al., Phys. Rev. Lett. 85 (9) (2000) 1990).

  13. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  14. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-07-01

    Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.

  15. Solar Magnetism eXplorer (Solme X)

    NASA Technical Reports Server (NTRS)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  16. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  17. Frontiers in imaging magnetism with polarized x-rays

    DOE PAGES

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. Furthermore, the opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  18. Brain oscillatory substrates of visual short-term memory capacity.

    PubMed

    Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C

    2009-11-17

    The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.

  19. A Magnetohydrodynamic Simulation of Magnetic Null-point Reconnections in NOAA AR 12192, Initiated with an Extrapolated Non-force-free Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Hu, Qiang; Kumar, Sanjay; Nayak, Sushree S.

    2018-06-01

    The magnetohydrodynamics of the solar corona is simulated numerically. The simulation is initialized with an extrapolated non-force-free magnetic field using the vector magnetogram of the active region NOAA 12192, which was obtained from the solar photosphere. Particularly, we focus on the magnetic reconnections (MRs) occurring close to a magnetic null point that resulted in the appearance of circular chromospheric flare ribbons on 2014 October 24 around 21:21 UT, after the peak of an X3.1 flare. The extrapolated field lines show the presence of the three-dimensional (3D) null near one of the polarity-inversion lines—where the flare was observed. In the subsequent numerical simulation, we find MRs occurring near the null point, where the magnetic field lines from the fan plane of the 3D null form a X-type configuration with underlying arcade field lines. The footpoints of the dome-shaped field lines, inherent to the 3D null, show high gradients of the squashing factor. We find slipping reconnections at these quasi-separatrix layers, which are co-located with the post-flare circular brightening observed at chromospheric heights. This demonstrates the viability of the initial non-force-free field, along with the dynamics it initiates. Moreover, the initial field and its simulated evolution are found to be devoid of any flux rope, which is congruent with the confined nature of the flare.

  20. Thermoelectric and Magnetic Properties of Sn1- x O2:Mn0.5 x Co0.5 x Nanoparticles Produced by the Microwave Technique

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Habib, Sami; Azam, Ameer

    2017-02-01

    Nanoparticles (NPs) of Sn1- x O2:Mn0.5 x Co0.5 x with x = 0.02, 0.04, 0.06, 0.08 and 0.1 were synthesized by the microwave-assisted route and characterized for their thermoelectric and magnetic properties. As a result of Mn and Co co-doping, a considerable increase in the values of energy band gap and lattice constant c of Sn1- x O2:Mn0.5 x Co0.5 x NPs was observed. The x-ray photoelectron spectroscopy spectra revealed that Mn and Co ions were incorporated in their 4+ and 2+ states, respectively. The resistivity and calculated activation energy of these NPs were found to decrease by increasing the Mn and Co contents. A negative Seebeck coefficient was observed, whose value was found to be significantly increased by increasing the value of x. The magnetic measurement results revealed that all the microwave-synthesized Sn1- x O2:Mn0.5 x Co0.5 x NPs including the pure SnO2 have distinctly wide hysteresis loops. This indicates that samples have room-temperature ferromagnetism. The optimum value for x to have maximum saturation magnetism was observed to be 0.04. Diamagnetic contributions from the core of these NPs were noticed at higher magnetic fields. The observed magnetism was attributed to the presence of defects at the NPs' interfacing sites, grain boundaries, atom vacancies and an optimum level of Mn and Co co-dopants. The observed wide hysteresis loops in these NPs might be useful for producing nanoscale magnets and magnetic memory devices. Moreover, the observed thermoelectric properties, i.e. Seebeck coefficient and power factor in these NPs, might be useful for the development of thermoelectric devices.

  1. Structural and magnetic properties and superconductivity in Ba(Fe 1-xTM x) 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaler, Alexander

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe 2As 2. We grew four series of Ba(Fe 1-xTM 2) 2As 2 (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe 1-xCr x) 2As 2 and Ba(Fe 1-xCo x) 2As 2 to heat treatment to explore what changes might be induced.

  2. Magnetic and structural properties of Mn1-xCrxAlGe (0 ≤ x ≤ 1.0)

    NASA Astrophysics Data System (ADS)

    Masumitsu, Hayato; Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Hiroi, Masahiko; Uwatoko, Yoshiya; Koyama, Keiichi

    2018-06-01

    The magnetic and structural properties of Mn1-xCrxAlGe (0 ≤ x ≤ 1.0) compounds were investigated. The spontaneous magnetization Ms and Curie temperature TC of Mn1-xCrxAlGe has a cusp at x = 0.2. The maximum values of Ms and TC are 1.74 μB/f.u. and 601 K, respectively. It was found that the tetragonal Cu2Sb-type structure was stable for 0 ≤ x ≤ 0.75, whereas orthorhombic TiSi2-type structure was observed for x ≥ 0.8. The reciprocal susceptibility as a function of temperature suggested that the magnetic moment of Cr is antiferromagnetically coupled with that of Mn in Cu2Sb-type structure.

  3. Detailed magnetic and structural analysis mapping a robust magnetic C 4 dome in Sr 1 - x Na x Fe 2 As 2

    DOE PAGES

    Taddei, K. M.; Allred, J. M.; Bugaris, D. E.; ...

    2016-04-20

    The recently discovered C 4 tetragonal magnetic phase in hole-doped members of the iron-based superconductors provides new insights into the origin of unconventional superconductivity. Previously observed in Ba 1-xNa xFe 2As 2 (with A = K, Na), the C 4 magnetic phase exists within the well studied C 2 spin-density wave (SDW) dome, arising just before the complete suppression of antiferromagnetic (AFM) order but after the onset of superconductivity. Here in this paper, we present detailed x-ray and neutron diffraction studies of Sr 1-xNa xFe 2As 2 (0.10 ≤ x ≤ 0.60) to determine their structural evolution and the extentmore » of the C 4 phase. Spanning Δx ~ 0.14 in composition, the C 4 phase is found to extend over a larger range of compositions, and to exhibit a significantly higher transition temperature, T r ~ 65K, than in either of the other systems in which it has been observed. The onset of this phase is seen near a composition (x~0:30) where the bonding angles of the Fe 2As 2 layers approach the perfect 109.46° tetrahedral angle. We discuss the possible role of this return to a higher symmetry environment for the magnetic iron site in triggering the magnetic reorientation and the coupled re-entrance to the tetragonal structure. Finally, we present a new phase diagram, complete with the C 4 phase, and use its observation in a third hole-doped 122 system to suggest the universality of this phase.« less

  4. Oscillatory Correlates of Visual Consciousness

    PubMed Central

    Gallotto, Stefano; Sack, Alexander T.; Schuhmann, Teresa; de Graaf, Tom A.

    2017-01-01

    Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences). PMID:28736543

  5. Very Luminous X-ray Point Sources in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  6. A compact permanent-magnet system for measuring magnetic circular dichroism in resonant inelastic soft X-ray scattering.

    PubMed

    Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa

    2017-03-01

    A compact and portable magnet system for measuring magnetic dichroism in resonant inelastic soft X-ray scattering (SX-RIXS) has been developed at the beamline BL07LSU in SPring-8. A magnetic circuit composed of Nd-Fe-B permanent magnets, which realised ∼0.25 T at the center of an 11 mm gap, was rotatable around the axis perpendicular to the X-ray scattering plane. Using the system, a SX-RIXS spectrum was obtained under the application of the magnetic field at an angle parallel, nearly 45° or perpendicular to the incident X-rays. A dedicated sample stage was also designed to be as compact as possible, making it possible to perform SX-RIXS measurements at arbitrary incident angles by rotating the sample stage in the gap between the magnetic poles. This system enables facile studies of magnetic dichroism in SX-RIXS for various experimental geometries of the sample and the magnetic field. A brief demonstration of the application is presented.

  7. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  8. Magnetic state of a Zn1 - x Cr x Se bulk crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Korolev, A. V.; Teploukhov, S. G.; Chukalkin, Yu. G.; Parkhomenko, V. D.; Gruzdev, N. B.

    2008-06-01

    The spin system of a Zn1 - x Cr x Se bulk crystal ( x = 0.045) was studied using thermal-neutron diffraction and magnetic measurements. Previously, it was reported in the literature that thin films (˜200 nm thick) of this type of semiconductors exhibit a ferromagnetic order. In this study, the ferromagnetic order is found to be absent in the bulk crystal.

  9. Structural, magnetic, and electrical properties of perpendicularly magnetized Mn4-xFexGe thin films

    NASA Astrophysics Data System (ADS)

    Niesen, Alessia; Teichert, Niclas; Matalla-Wagner, Tristan; Balluf, Jan; Dohmeier, Niklas; Glas, Manuel; Klewe, Christoph; Arenholz, Elke; Schmalhorst, Jan-Michael; Reiss, Günter

    2018-03-01

    We investigated the structural, magnetic, and electrical properties of the perpendicularly magnetized Mn4-xFexGe thin films (0.3 ≤ x ≤ 1). The tetragonally distorted structure was verified for all investigated stoichiometries. High coercive fields in the range of 1.61 T to 3.64 T at room temperature were measured and showed increasing behavior with decreasing Fe content. The magnetic moments range from (0.16 ± 0.02) μB/f.u for Mn3Fe1Ge to (0.08 ± 0.01) μB/f.u for Mn3.4Fe0.6Ge. X-ray absorption spectroscopy revealed ferromagnetic coupling of the Mn and Fe atoms in Mn4-xFexGe and the ferrimagnetic ordering of the Mn magnetic moments. Anomalous Hall effect measurements showed sharp magnetization switching. The resistivity values are in the range of 207 μΩ cm to 457 μΩ cm depending on the stoichiometry. From the contribution of the ordinary Hall effect in the anomalous Hall effect measurements, Hall constants, the charge carrier density, and mobility were deduced. The thermal conductivity was calculated using the Wiedemann-Franz law. All these values are strongly influenced by the stoichiometry. An alternative method was introduced for the determination of perpendicular magnetic anisotropy. The values range between 0.26 MJ/m3 and 0.36 MJ/m3.

  10. Tuning of magnetism in DyMn1-xFexO3 (x<0.1) system by iron substitution

    NASA Astrophysics Data System (ADS)

    Mihalik, Matúš; Mihalik, Marián; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Fitta, Magdalena; Quintero, Pedro A.; Meisel, Mark W.

    2018-05-01

    The effect of Fe doping on the magnetism of DyMn1-xFexO3 (x<0.1) single crystals is reported. Specifically, TN of the Mn sublattice decreases from 38 K (x = 0) to 33 K (x = 0.1), TS = 17.9 K (x = 0) connected with the transition of Mn-spins into the cycloidal magnetic phase decreases to 15.9 K (x = 0.01) and vanishes for higher x concentrations, while the ordering temperature of the Dy sublattice varies between 5.9 K (x = 0.01) and 4.1 K (x = 0.02). These results indicate the ground state magnetic structure of DyMnO3 can be destabilized, and the multiferroicity is completely suppressed by very low Fe doping. Similar effects were previously observed in the multiferroic TbMn1-xFexO3 system.

  11. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang

    2017-10-01

    The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.

  12. Influence of oxygen vacancies on the magnetic and electrical properties of La1-xSrxMnO3-x/2 manganites

    NASA Astrophysics Data System (ADS)

    Trukhanov, S. V.; Lobanovski, L. S.; Bushinsky, M. V.; Khomchenko, V. A.; Pushkarev, N. V.; Troyanchuk, I. O.; Maignan, A.; Flahaut, D.; Szymczak, H.; Szymczak, R.

    2004-11-01

    The crystal structure, magnetization and electrical transport depending on the temperature and magnetic field for the doped stoichiometric La_{1-x}^{3 + } Sr_x^{2 + } Mn_{1-x}^{3 + } Mn_x^{4 + } O_3^{2-} as well as anion-deficient La_{1-x}^{3 + } Sr_x^{2 + } Mn^{3 + }O_{3-x/2}^{2-} (0le x le 0.30) ortomanganite systems have been experimentally studied. It is established that the stochiometric samples in the region of the 0 le x le 0.125 are an O'-orthorhombic perovskites whereas in the 0.175 le x le 0.30 - a rhombohedric. For the anion-deficient system the symmetry type of the unit cell is similar to the stoichiometric one. As a doping level increases the samples in the ground state undergo a number of the magnetic transitions. It is assumed that the samples with the large amount of oxygen vacancies are a cluster spin glasses (0.175 < x le 0.30) and temperature of the magnetic moment freezing is 40 K. All the anion-deficient samples are semiconductors and show considerable magnetoresistance over a wide temperature range with a peak for the x = 0.175 only. Concentration dependences of the spontaneous magnetization and magnetic ordering temperature for the anion-deficient La_{1-x}^{3 + } Sr_x^{2 + } Mn^{3 + }O_{3-x/2}^{2-} system have been established by the magnetic measurements and compared with those for the stoichiometric La_{1-x}^{3 + } Sr_x^{2 + } Mn_{1-x}^{3 + } Mn_x^{4 + } O_3^{2-} one. The magnetic propeprties of the anion-deficient samples may be interpreted on the base of the superexchange interaction and phase separation (chemical disorder) models.

  13. Quantum phase transition and non-Fermi liquid behavior in Fe1-x Co x Si (x ⩾ 0.7).

    PubMed

    Samatham, S Shanmukharao; Suresh, K G; Ganesan, V

    2018-04-11

    We report on the nature of electron correlations in Fe 1-x Co x Si ([Formula: see text]) using combined results of magnetization, specific heat and transport properties. Doping driven quantum critical point is observed to occur at [Formula: see text]. The magnetically unstable regime is identified to be centered around [Formula: see text] [[Formula: see text

  14. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds-synthesis, X-Ray studies and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machura, B., E-mail: basia@ich.us.edu.pl; Switlicka, A.; Zwolinski, P.

    2013-01-15

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH){sub 4}Hg(SCN){sub 4}]{sub n} (1) [Cu(indH){sub 4}Hg(SCN){sub 4}]{sub n} (2) and [Cu(ampy){sub 2}Hg(SCN){sub 4}]{sub n} (3), have one-dimensional coordination structure. Two compounds [Cu(pzH){sub 2}Hg(SCN){sub 4}]{sub n} (4) and [Cu(abzimH)Hg(SCN){sub 4}]{sub n} (5) form two-dimensional nets, whereas the complexes [Cu(pyCN){sub 2}Hg(SCN){sub 4}]{sub n} (6) and [Cu(pyCH(OH)(OMe)){sub 2}Hg(SCN){sub 4}]{sub n} (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the threemore » dimensional net. In 2 the N-H Bullet Bullet Bullet S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H Bullet Bullet Bullet N and N-H Bullet Bullet Bullet S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the three dimensional net. - Graphical abstract: Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compound-synthesis,X-Ray studies and magnetic properties. Highlights: Black-Right-Pointing-Pointer Novel heterobimetallic Cu/Hg coordination polymers were synthesised. Black-Right-Pointing-Pointer The multidimensional structures have been proved by single X-ray analysIs. Black-Right-Pointing-Pointer A variation in the crystalline architectures was observed depending on auxiliary ligands. Black-Right-Pointing-Pointer Magnetic measurements indicate weak exchange interaction between Cu(II) in the crystal lattices below 10 K.« less

  15. Brightness and magnetic evolution of solar coronal bright points

    NASA Astrophysics Data System (ADS)

    Ugarte Urra, Ignacio

    This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). The study was carried out using several instruments on board the Solar and Heliospheric Observatory, supported by the high resolution imaging from the Transition Region And Coronal Explorer. The results confirm that, down to 1" resolution, BPs are made of small loops with lengths of [approximate]6 Mm and cross-sections of ≈2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures, but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals the existence of quasi-periodic oscillations with periods ranging 400--1000s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal coronal images and magnetograms, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in terms of magnetic reconnection events. Finally, a electron density study of six coronal bright points produces values of ≈1.6×10 9 cm -3 , closer to active region plasma than to quiet Sun. The analysis of a large coronal loop (half length of 72 Mm) introduces the discussion on the prospects of future plasma diagnostics of BPs with forthcoming solar missions.

  16. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  17. Waveform inversion of oscillatory signatures in long-period events beneath volcanoes

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.; Nakano, M.

    2002-01-01

    The source mechanism of long-period (LP) events is examined using synthetic waveforms generated by the acoustic resonance of a fluid-filled crack. We perform a series of numerical tests in which the oscillatory signatures of synthetic LP waveforms are used to determine the source time functions of the six moment tensor components from waveform inversions assuming a point source. The results indicate that the moment tensor representation is valid for the odd modes of crack resonance with wavelengths 2L/n, 2W/n, n = 3, 5, 7, ..., where L and W are the crack length and width, respectively. For the even modes with wavelengths 2L/n, 2W/n, n = 2, 4, 6,..., a generalized source representation using higher-order tensors is required, although the efficiency of seismic waves radiated by the even modes is expected to be small. We apply the moment tensor inversion to the oscillatory signatures of an LP event observed at Kusatsu-Shirane Volcano, central Japan. Our results point to the resonance of a subhorizontal crack located a few hundred meters beneath the summit crater lakes. The present approach may be useful to quantify the source location, geometry, and force system of LP events, and opens the way for moment tensor inversions of tremor.

  18. An analytic data analysis method for oscillatory slug tests.

    PubMed

    Chen, Chia-Shyun

    2006-01-01

    An analytical data analysis method is developed for slug tests in partially penetrating wells in confined or unconfined aquifers of high hydraulic conductivity. As adapted from the van der Kamp method, the determination of the hydraulic conductivity is based on the occurrence times and the displacements of the extreme points measured from the oscillatory data and their theoretical counterparts available in the literature. This method is applied to two sets of slug test response data presented by Butler et al.: one set shows slow damping with seven discernable extremities, and the other shows rapid damping with three extreme points. The estimates of the hydraulic conductivity obtained by the analytic method are in good agreement with those determined by an available curve-matching technique.

  19. Structural and magnetic properties of morphotropic phase boundary involved Tb 1-xGd xFe 2 compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtaza, Adil; Yang, Sen; Zhou, Chao

    2016-09-01

    In the present paper, structural, magnetic and magnetostrictive properties of Tb 1-xGd xFe 2 (0 <= x <= 1.0) were studied. Synchrotron x-ray diffraction (XRD) results show the non-cubic symmetry of Tb 1-xGd xFe 2 at room temperature and composition-induced crystallographic phase transition from rhombohedral phase to tetragonal phase. The Gd concentration dependent lattice parameters, lattice distortion and change of easy magnetic direction were detected by synchrotron XRD. With the Gd concentration increases, Curie temperature Tc increases while room temperature magnetization and magnetostriction coefficient lambda(111) and the anisotropy of TbFe 2 decrease. The decrease in spontaneous magnetostriction coefficient lambda(111) withmore » increasing Gd substitution can be understood on the basis of the single-ion model; the corresponding decrease of magnetostriction for Tb 1-xGd xFe 2, and the large magnetostriction value occurs on the Tb-rich side, are ascribed to decrease of lambda(111)« less

  20. Structural and Magnetic Properties of Transition-Metal-Doped Zn 1-x Fe x O.

    PubMed

    Abdel-Baset, T A; Fang, Yue-Wen; Anis, B; Duan, Chun-Gang; Abdel-Hafiez, Mahmoud

    2016-12-01

    The ability to produce high-quality single-phase diluted magnetic semiconductors (DMS) is the driving factor to study DMS for spintronics applications. Fe-doped ZnO was synthesized by using a low-temperature co-precipitation technique producing Zn 1-x Fe x O nanoparticles (x= 0, 0.02, 0.04, 0.06, 0.08, and 0.1). Structural, Raman, density functional calculations, and magnetic studies have been carried out in studying the electronic structure and magnetic properties of Fe-doped ZnO. The results show that Fe atoms are substituted by Zn ions successfully. Due to the small ionic radius of Fe ions compared to that of a Zn ions, the crystal size decreases with an increasing dopant concentration. First-principle calculations indicate that the charge state of iron is Fe (2+) and Fe (3+) with a zinc vacancy or an interstitial oxygen anion, respectively. The calculations predict that the exchange interaction between transition metal ions can switch from the antiferromagnetic coupling into its quasi-degenerate ferromagnetic coupling by external perturbations. This is further supported and explains the observed ferromagnetic bahaviour at magnetic measurements. Magnetic measurements reveal that decreasing particle size increases the ferromagnetism volume fraction. Furthermore, introducing Fe into ZnO induces a strong magnetic moment without any distortion in the geometrical symmetry; it also reveals the ferromagnetic coupling.

  1. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  2. Enhanced magnetization in VxFe3-xO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pool, V. L.; Kleb, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y. U.

    2015-12-01

    Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions.

  3. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i 1 - x F e x Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi 1-xFe xSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤ x ≤ 1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤ 0.5. For films with x ≥ 0.05, ferromagnetism is observed in SQUID magnetometry with a saturationmore » magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤ 0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi 1-xFe xSb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Finally, statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.« less

  4. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i 1 - x F e x Sb

    DOE PAGES

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.; ...

    2018-01-12

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi 1-xFe xSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤ x ≤ 1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤ 0.5. For films with x ≥ 0.05, ferromagnetism is observed in SQUID magnetometry with a saturationmore » magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤ 0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi 1-xFe xSb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Finally, statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.« less

  5. Radio-frequency measurements of UNiX compounds (X=Al, Ga, Ge) in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Alsmadi, A. M.; Alyones, S.; Mielke, C. H.; McDonald, R. D.; Zapf, V.; Altarawneh, M. M.; Lacerda, A.; Chang, S.; Adak, S.; Kothapalli, K.; Nakotte, H.

    2009-11-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to ~60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency Δ f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in Δ f. The results of our skin-depth measurements were compared with previously published B- T phase diagrams for these three compounds.

  6. Projection x-space magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  7. Picosecond Dynamics of Excitonic Magnetic Polarons in Colloidal Diffusion-Doped Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-11-24

    Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.

  8. Design principles for robust oscillatory behavior.

    PubMed

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  9. Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekh; May, Andrew F.; Koehler, Michael R.

    2016-11-30

    In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less

  10. Anisotropic spin-density distribution and magnetic anisotropy of strained La1-xSrxMnO3 thin films: angle-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Shibata, Goro; Kitamura, Miho; Minohara, Makoto; Yoshimatsu, Kohei; Kadono, Toshiharu; Ishigami, Keisuke; Harano, Takayuki; Takahashi, Yukio; Sakamoto, Shoya; Nonaka, Yosuke; Ikeda, Keisuke; Chi, Zhendong; Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Fujihira, Jun-ichi; Uchida, Akira; Watanabe, Kazunori; Fujihira, Hideyuki; Fujihira, Seiichi; Tanaka, Arata; Kumigashira, Hiroshi; Koide, Tsuneharu; Fujimori, Atsushi

    2018-01-01

    Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1-xSrxMnO3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.

  11. Large magnetic anisotropy predicted for rare-earth-free F e 16 - x C o x N 2 alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Wang, Cai -Zhuang; Yao, Yongxin

    Structures and magnetic properties of Fe 16–xCo xN 2 are studied using adaptive genetic algorithm and first-principles calculations. We show that substituting Fe with Co in Fe 16N 2 with a Co/Fe ratio ≤1 can greatly improve the magnetic anisotropy of the material. The magnetocrystalline anisotropy energy from first-principles calculations reaches 3.18 MJ/m 3 (245.6 μeV per metal atom) for Fe 12Co 4N 2, much larger than that of Fe 16N 2, and is one of the largest among the reported rare-earth-free magnets. From our systematic crystal structure searches, we show that there is a structure transition from tetragonal Femore » 16N 2 to cubic Co 16N 2 in Fe 16–xCo xN 2 as the Co concentration increases, which can be well explained by electron counting analysis. As a result, different magnetic properties between the Fe-rich (x ≤ 8) and Co-rich (x > 8) Fe 16–xCo xN 2 is closely related to the structural transition.« less

  12. Large magnetic anisotropy predicted for rare-earth-free F e 16 - x C o x N 2 alloys

    DOE PAGES

    Zhao, Xin; Wang, Cai -Zhuang; Yao, Yongxin; ...

    2016-12-23

    Structures and magnetic properties of Fe 16–xCo xN 2 are studied using adaptive genetic algorithm and first-principles calculations. We show that substituting Fe with Co in Fe 16N 2 with a Co/Fe ratio ≤1 can greatly improve the magnetic anisotropy of the material. The magnetocrystalline anisotropy energy from first-principles calculations reaches 3.18 MJ/m 3 (245.6 μeV per metal atom) for Fe 12Co 4N 2, much larger than that of Fe 16N 2, and is one of the largest among the reported rare-earth-free magnets. From our systematic crystal structure searches, we show that there is a structure transition from tetragonal Femore » 16N 2 to cubic Co 16N 2 in Fe 16–xCo xN 2 as the Co concentration increases, which can be well explained by electron counting analysis. As a result, different magnetic properties between the Fe-rich (x ≤ 8) and Co-rich (x > 8) Fe 16–xCo xN 2 is closely related to the structural transition.« less

  13. Cationic distribution assisted tuning of magnetic properties of Li{sub 0.5-x/2}Zn{sub x}Fe{sub 2.5-x/2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, S.; Raghuvanshi, S.; Gehlot, K.

    2016-05-15

    Zn addition induced modification of cationic distribution for tuning magnetic properties of Li{sub 0.5-x/2}Zn{sub x}Fe{sub 2.5-x/2}O{sub 4} (x = 0, 0.1, 0.25, 0.3, 0.5, 0.7, 0.9, 1.0) powders is studied by x-ray diffraction (XRD) and magnetic measurements. XRD shows the formation of cubic spinel structure, with Scherrer’s grain diameter ranging between 26.7 to 37.8 nm. With Zn addition, oxygen anions are displaced in such a way that the A-B interaction weakens, whereas A-A and B-B interaction strengthens; furthermore it also pushes Fe{sup 3+} and Li{sup 1+} ions to B site, leading to changes in magnetic properties. Highest saturation magnetization (M{submore » s}) of 64.6 A m{sup 2} / kg was obtained for sample with x = 0.25 and lowest coercivity (H{sub c}) of 4949.9 A/m was obtained for the sample with x = 0.7. Calculated values of experimental magnetic moment ‘n{sub B}’ and Neel magnetic moment ‘n{sub N}’, display similar trend as that of M{sub s}. Present results very clearly show a strong correlation between Zn-addition induced changes in cation distribution and magnetic properties, which can be utilized effectively for tuning magnetic properties.« less

  14. MAGNETIC FLUX SUPPLEMENT TO CORONAL BRIGHT POINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of anmore » MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.« less

  15. Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation.

    PubMed

    Giovanni, Assenza; Capone, Fioravante; di Biase, Lazzaro; Ferreri, Florinda; Florio, Lucia; Guerra, Andrea; Marano, Massimo; Paolucci, Matteo; Ranieri, Federico; Salomone, Gaetano; Tombini, Mario; Thut, Gregor; Di Lazzaro, Vincenzo

    2017-01-01

    Non-invasive brain stimulation (NIBS) has been under investigation as adjunct treatment of various neurological disorders with variable success. One challenge is the limited knowledge on what would be effective neuronal targets for an intervention, combined with limited knowledge on the neuronal mechanisms of NIBS. Motivated on the one hand by recent evidence that oscillatory activities in neural systems play a role in orchestrating brain functions and dysfunctions, in particular those of neurological disorders specific of elderly patients, and on the other hand that NIBS techniques may be used to interact with these brain oscillations in a controlled way, we here explore the potential of modulating brain oscillations as an effective strategy for clinical NIBS interventions. We first review the evidence for abnormal oscillatory profiles to be associated with a range of neurological disorders of elderly (e.g., Parkinson's disease (PD), Alzheimer's disease (AD), stroke, epilepsy), and for these signals of abnormal network activity to normalize with treatment, and/or to be predictive of disease progression or recovery. We then ask the question to what extent existing NIBS protocols have been tailored to interact with these oscillations and possibly associated dysfunctions. Our review shows that, despite evidence for both reliable neurophysiological markers of specific oscillatory dis-functionalities in neurological disorders and NIBS protocols potentially able to interact with them, there are few applications of NIBS aiming to explore clinical outcomes of this interaction. Our review article aims to point out oscillatory markers of neurological, which are also suitable targets for modification by NIBS, in order to facilitate in future studies the matching of technical application to clinical targets.

  16. Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation

    PubMed Central

    Assenza, Giovanni; Capone, Fioravante; di Biase, Lazzaro; Ferreri, Florinda; Florio, Lucia; Guerra, Andrea; Marano, Massimo; Paolucci, Matteo; Ranieri, Federico; Salomone, Gaetano; Tombini, Mario; Thut, Gregor; Di Lazzaro, Vincenzo

    2017-01-01

    Non-invasive brain stimulation (NIBS) has been under investigation as adjunct treatment of various neurological disorders with variable success. One challenge is the limited knowledge on what would be effective neuronal targets for an intervention, combined with limited knowledge on the neuronal mechanisms of NIBS. Motivated on the one hand by recent evidence that oscillatory activities in neural systems play a role in orchestrating brain functions and dysfunctions, in particular those of neurological disorders specific of elderly patients, and on the other hand that NIBS techniques may be used to interact with these brain oscillations in a controlled way, we here explore the potential of modulating brain oscillations as an effective strategy for clinical NIBS interventions. We first review the evidence for abnormal oscillatory profiles to be associated with a range of neurological disorders of elderly (e.g., Parkinson’s disease (PD), Alzheimer’s disease (AD), stroke, epilepsy), and for these signals of abnormal network activity to normalize with treatment, and/or to be predictive of disease progression or recovery. We then ask the question to what extent existing NIBS protocols have been tailored to interact with these oscillations and possibly associated dysfunctions. Our review shows that, despite evidence for both reliable neurophysiological markers of specific oscillatory dis-functionalities in neurological disorders and NIBS protocols potentially able to interact with them, there are few applications of NIBS aiming to explore clinical outcomes of this interaction. Our review article aims to point out oscillatory markers of neurological, which are also suitable targets for modification by NIBS, in order to facilitate in future studies the matching of technical application to clinical targets. PMID:28659788

  17. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  18. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depthmore » measurements were compared with previously published B-T phase diagrams for these three compounds.« less

  19. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  20. Magnetic properties of Co2Fe(Ga1-xSix) alloys

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Chakraborty, Dibyashree; Srinivasan, Ananthakrishnan

    2014-09-01

    Magnetic and crystallographic properties of bulk Co2Fe(Ga1-xSix) alloys with 0≤x≤1 are reported in this work. The alloys with x=0.75 and 1.00 exhibit L21 structure whereas the alloys with x=0, 0.25 and 0.50 crystallized in the disordered A2 phase. Unit cell volume of this series of alloys decreased from 189.1 to 178.5 Å3 as x was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC) which showed a systematic variation with x (1089 K, 1075 K, 1059 K, 1019 K and 1015 K for x=0, 0.25, 0.5, 0.75 and 1.00, respectively). The saturation magnetization moment Ms for the alloys with x=0, 0.25 and 0.50 are 5.05μB, 5.23μB, 5.49μB, respectively, in accordance with the Slater-Pauling rule, but alloys with x=0.75 and 1.00 deviated from this rule. The effective moment per magnetic atom (pc) of the alloys was estimated from the inverse DC magnetic susceptibility data above TC. A comparison of Ms with pc reveals the half-metallic character of the alloys.

  1. Particle acceleration in relativistic magnetic flux-merging events

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  2. Superconducting, magnetic and magnetotransport properties of FeTe1-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Sudesh, Varma, G. D.

    2018-05-01

    The single crystalline samples with compositions FeTe1-xSex (0.25 ≤ x ≤ 0.50) have been prepared via self-flux method and the superconducting, magnetic and magnetotransport properties of the grown crystals were investigated. The superconducting onset temperatures have been determined from the measurements of zero field cooled magnetization and resistance with temperatures. In the present case, highest superconducting transition temperature TC (onset) ˜ 15 K has been obtained for x=0.5. The HC2 (T=0 K) values have been estimated by fitting the experimental HC2 - T plots with WHH model. The highest HC2(0) has been obtained for x=0.5. The activation energy of the thermally activated flux flow has been found from the broadening of superconducting transition in an applied magnetic field using the Arrhenius law. Our results show that the activation energy (U0) decreases with the increasing magnetic field. Furthermore, the magnetization measurements for x=0.4 and 0.5 samples have been performed at T=5 K in the magnetic field range ±7 T to estimate critical current density at different applied magnetic fields using Bean formula. We see that the sample x=0.5 has higher values of JC as compared to that of x=0.4 at all magnetic fields. This is in conformity with the behavior of U0-H plots.

  3. The X-ray corona and the photospheric magnetic field.

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Vaiana, G. S.; Van Speybroeck, L. P.

    1971-01-01

    Soft X-ray photographs of the solar corona have been obtained on four flights of a rocket-borne grazing incidence telescope having a resolution of a few arc sec. The configuration of the X-ray emitting structures in the corona has been compared to the magnetic field distribution measured by photospheric longitudinal magnetograms. The X-ray structures trace the three-dimensional configuration of the magnetic field through the lower corona. Active regions in the corona take the form of tubular structures connecting regions of opposite magnetic polarity within the same or adjacent chromospheric active regions. Higher, larger structures link widely separated active regions into complexes of activity covering substantial fractions of the disk. The complexes are separated by areas of low average field in the photosphere. Interconnections across the solar equator appear to originate over areas of preceding polarity.

  4. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    NASA Astrophysics Data System (ADS)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  5. Thermal transport properties, magnetic susceptibility and neutron diffraction studies of the (Cr100-xAlx)95Mo5 alloy system

    NASA Astrophysics Data System (ADS)

    Muchono, B.; Sheppard, C. J.; Venter, A. M.; Prinsloo, A. R. E.

    2018-05-01

    The Seebeck coefficient has been used to investigate QCB in Cr alloys [8,9]. Plots of d S /d T (in the limit T → 2 K) as function of concentration for the (Cr97.8Si2.2)100-yMoy [8] and the (Cr84Re16)100-zVz [9] alloy systems depicted anomalies at the QCP. The possibility of QCB in the (Cr100-xAlx)95Mo5 alloy system is explored by analysing the S(T) data of Fig. 1 by performing a linear-least-squares fit through the 2 K < T < 6.5 K data points. The gradient was taken as dS / dT|T → 2K . Fig. 8 shows dS / dT|T → 2K for concentrations in the range 0.5 ≤ x ≤ 8.6. It increases rapidly to a maximum at x = 1.0, then decreases on further Al addition and displays a minimum just above x = 1.4. This is the concentration where magnetism is seen to disappear on the TN(x) magnetic phase diagram. dS / dT|T → 2K shows a second minimum just above x = 4.4, i.e. corresponding to the concentration where magnetism reappears on the TN(x) magnetic phase diagram (see Fig. 17). Similar minima were also observed at the QCP in the (Cr84Re16)100-zVz [9] and (Cr86Ru14)100-rVr [13] alloy systems. The relatively large error bars in Fig. 8 originate from the large errors in the fitting routine due to a significant scatter in the original Seebeck coefficient data at low temperatures. The solid line through the dS / dT|T → 2K data points is a guide to the eye, while the dotted vertical lines indicate the boundaries between the ISDW, P and CSDW phases. The minima observed in the dS / dT|T → 2K curve correlate to these boundaries.

  6. X-ray Characterization of Oxide-based Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Idzerda, Yves

    2008-05-01

    Although the evidence for magnetic semiconductors (not simply semiconductors which are ferromagnetic) is compelling, there is much uncertainty in the mechanism for the polarization of the carriers, suggesting that it must be quite novel. Recent experimental evidence suggests that this mechanism is similar to the polaron percolation theory proposed by Kaminski and Das Sarma,ootnotetextKaminski and S. Das Sarma, Physical Review Letters 88, 247202 (2002). which was recently applied specifically to doped oxides by Coey et al.ootnotetextJ. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005). where the ferromagnetism is driven by the percolation of polarons generated by defects or dopants. We have used X-ray absorption spectroscopy at the L-edges and K-edges for low concentrations transition metal (TM) doped magnetic oxides (including TiO2, La1-xSrxO3, HfO2, and In2O3). We have found that in most cases, the transition metal assumes a valence consistent with being at a substitutional, and not interstitial site. We have also measured the X-ray Magnetic Circular Dichroism spectra. Although these materials show strong bulk magnetization, we are unable to detect a robust dichroism feature associated with magnetic elements in the host semiconductor. In the cases where a dichroism signal was observed, it was very weak and could be ascribed to a distinct ferromagnetic phase (TM metal cluster, TM oxide particulate, etc.) separate from the host material. This fascinating absence of a dichroic signal and its significant substantiation of important features of the polaron percolation model may help to finally resolve the issue of ferromagnetism in magnetically doped oxides.

  7. Reversal magnetization dependence with the Cr and Fe oxidation states in YFe1-xCrxO3 (0≤x≤1) perovskites

    NASA Astrophysics Data System (ADS)

    Fabian, F. A.; Pedra, P. P.; Moura, K. O.; Duque, J. G. S.; Meneses, C. T.

    2016-06-01

    In this work, we have carried out a detailed study of the magnetic and structural properties of YFe1-xCrxO3 (0≤x≤1) samples with orthorhombic structure obtained by co-precipitation method. Analysis of X-ray diffraction data using Rietveld refinement show that all samples present an orthorhombic crystal system with space group Pnma. Besides, we have observed a reduction of unit cell volume with increasing of the Cr concentration. SEM images show the formation of grains of micrometer order. X-ray Absorption near edge spectroscopy (XANES) measurements show a shift of absorption edge which can be indicate there is (i) different oxidation states to Fe and Cr ions and/or (ii) a changing in the point symmetry of Fe and Cr ions to the compounds. The magnetization measurements indicate a continuous decreasing of the magnetic transition temperature as function of chromium doping. The reversal magnetization effect was observed to concentrations around x=0.5. Besides, the deviation of the Curie-Weiss law and a weak ferromagnetic behavior observed at room temperature in the M vs H curves can be attributed to the strong magnetic interactions between the transition metals with different oxidation states.

  8. Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1 -xLax)3Ir2O7

    NASA Astrophysics Data System (ADS)

    Lu, Xingye; McNally, D. E.; Moretti Sala, M.; Terzic, J.; Upton, M. H.; Casa, D.; Ingold, G.; Cao, G.; Schmitt, T.

    2017-01-01

    We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1 -xLax )3Ir2 O7 (0 ≤x ≤0.065 ). With increasing doping x , the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x =0 to 0.05, followed by a transition to two-dimensional short range order between x =0.05 and 0.065. Because of the interactions between the Jeff=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1 -xLax )3Ir2 O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the Jeff=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.

  9. A magnetically induced quantum critical point in holography

    DOE PAGES

    Gnecchi, A.; Gursoy, U.; Papadoulaki, O.; ...

    2016-09-15

    Here, we investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D N = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic, asymptotically AdS4 black-branes with a nontrivial radial profile for the scalar field. We discover a line of second order fixed points at B = B c(χ) between the dyonic black brane and an extremal “thermal gas” solution with a singularity of good-type, according to the acceptability criteria of Gubser. The dual fieldmore » theory is a strongly coupled nonconformal field theory at finite charge and magnetic field, related to the ABJM theory deformed by a triple trace operator Φ 3. This line of fixed points might be useful in studying the various strongly interacting quantum critical phenomena such as the ones proposed to underlie the cuprate superconductors. We also find curious similarities between the behaviour of the VeV under B and that of the quark condensate in 2+1 dimensional NJL models.« less

  10. Resonant magnetic scattering of polarized soft x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of themore » first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.« less

  11. Exchange coupling and NOL magnetism consideration in Co 1-xFe x specular spin-valves

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Abe, Y.; Fukuzawa, H.; Fuke, H. N.; Iwasaki, H.; Sahashi, M.

    2005-02-01

    To confirm the origin of the exchange coupling through the nano-oxide layer (NOL), the detailed analyses of the magnetization curve and the temperature dependence on magnetization for the Co1-xFex-NOL samples with various oxidation processes are investigated. The field cooling effect is observed for NOL-inserted samples, which suggests the existence of the antiferromagnetic (AFM) component in the NOL. The characteristic temperature (blocking temperature) increases with increase in the Fe content for Co1-xFex(x=0.08,0.17,0.26)-NOL. These results support that NOL pinning appears higher than room temperature. Further, the twisted coupling through the NOL observed for the Co0.50Fe0.50-NOL is discussed from the viewpoint of the magnetic roughness due to the ferrimagnetic nature of the very thin NOL in specular spin valve (SPSV).

  12. Synthesis, characterization and magnetic properties of CoxCu1-x (x ∼ 0.01 - 0.3) granular alloys

    NASA Astrophysics Data System (ADS)

    Dhara, S.; Roy Chowdhury, R.; Lahiri, S.; Ray, P.; Bandyopadhyay, B.

    2015-01-01

    Nanostructured CoCu granular alloys have been prepared by borohydride reduction of CuCl2 and CoCl2 salt solutions using cetyltrimethylammonium bromide (CTAB) as a surfactant. Characterization by inductively coupled plasma optical emission spectroscopy (ICPOES), X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies yields spherical particles of CoxCu1-x (x ∼ 0.01 - 0.3) of average size 8-25 nm formed in a face-centered-cubic (fcc) lattice as in copper. Studies of zero-field-cooled/field-cooled (ZFC/FC) magnetization and thermoremanent magnetization (TRM) have been performed in the temperature range 4-300 K, and the results have been analyzed by independent particle model. At the lowest cobalt concentration (x ∼ 0.01), the alloy is superparamagnetic and there is no blocking of magnetization down to 4 K. For all other samples, the magnetization at low magnetic field is characterized by a blocking temperature distribution which is not influenced by the Co content in samples. Study of hysteresis loops shows that the magnetization at any temperature 4-300 K is a sum of ferromagnetic (FM), superparamagnetic (SPM) and paramagnetic (PM) contributions. The FM part increases and SPM part decreases with increase in Co content. However, the values of coercivity and magnetic anisotropy constant do not depend on Co content. The results suggest that CoxCu1-x alloys are formed in a spherical core-shell type structure with cobalt being concentrated near the core of particles.

  13. Monocyte recruitment to endothelial cells in response to oscillatory shear stress

    PubMed Central

    Hsiai, Tzung K.; Cho, Sung K.; Wong, Pak K.; Ing, Mike; Salazar, Adler; Sevanian, Alex; Navab, Mohamad; Demer, Linda L.; Ho, Chih-Ming

    2014-01-01

    Leukocyte recruitment to endothelial cells is a critical event in inflammatory responses. The spatial, temporal gradients of shear stress, topology, and outcome of cellular interactions that underlie these responses have so far been inferred from static imaging of tissue sections or studies of statically cultured cells. In this report, we developed micro-electromechanical systems (MEMS) sensors, comparable to a single endothelial cell (EC) in size, to link real-time shear stress with monocyte/EC binding kinetics in a complex flow environment, simulating the moving and unsteady separation point at the arterial bifurcation with high spatial and temporal resolution. In response to oscillatory shear stress (τ) at ± 2.6 dyn/cm2 at a time-averaged shear stress (τave) = 0 and 0.5 Hz, individual monocytes displayed unique to-and-fro trajectories undergoing rolling, binding, and dissociation with other monocyte, followed by solid adhesion on EC. Our study quantified individual monocyte/EC binding kinetics in terms of displacement and velocity profiles. Oscillatory flow induces up-regulation of adhesion molecules and cytokines to mediate monocyte/EC interactions over a dynamic range of shear stress ± 2.6 dyn/cm2 (P= 0.50, n= 10).—Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., Ho, C.-M. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 1648–1657 (2003) PMID:12958171

  14. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    PubMed

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V < E < 0.6 V and (b) E(a) ≈ 10 kJ mol(-1) at E = 0.3 V. The former is related to the H(2) adsorption in the vacancies of the surface poisoned by CO and the latter is correlated to the process of proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities. © 2011 American Chemical Society

  15. The influence of magnetic order on the magnetoresistance anisotropy of Fe 1 + δ–xCu xTe

    DOE PAGES

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...

    2017-05-17

    In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less

  16. Quantum critical scaling near the antiferromagnetic quantum critical point in CeCu6-xPdx

    NASA Astrophysics Data System (ADS)

    Wu, Liusuo; Poudel, L.; May, A. F.; Nelson, W. L.; Gallagher, A.; Lai, Y.; Graf, D. E.; Besara, T.; Siegrist, T. M.; Baumbach, R.; Ehlers, G.; Podlesnyak, A. A.; Lumsden, M. D.; Mandrus, D.; Christianson, A. D.

    A remarkable behavior of many quantum critical systems is the scaling of physical properties such as the dynamic susceptibility near a quantum critical point (QCP), where Fermi liquid physics usually break down. The quantum critical behavior in the vicinity of a QCP in metallic systems remains an important open question. In particular, a self-consistent universal scaling of both magnetic susceptibility and the specific heat remains missing for most cases. Recently, we have studied CeCu6-xTx (T =Au, Ag, Pd), which is a prototypical heavy fermion material that hosts an antiferromagnetic (AF) QCP. We have investigated the low temperature thermal properties including the specific heat and magnetic susceptibility. We also investigated the spin fluctuation spectrum at both critical doping and within the magnetically ordered phase. A key finding is the spin excitations exhibit a strong Ising character, resulting in the strong suppression of transverse fluctuations. A detailed scaling analysis of the quantum critical behaviors relating the thermodynamic properties to the dynamic susceptibility will be presented. DOE, ORNL LDRD.

  17. Oxygen-induced excitability of the belousov-zhabotinskii oscillatory system

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovit; Mrákavová, Marta

    1985-12-01

    The modified Belousov-Zhabotinskii ferroin-catalyzed oscillatory system with the ethyl ester of 3-oxobutanoic acid is described. After an induction period of about 120 s its oscillatory state consisting of four or five oscillations of absorbancy at a wavenumber of 22×10 3 cm -1 can be revived three or four times, if the solution is shaken for 25 s after the oscillatory state has finished. This apparently "mechanical" excitability, which can be observed spectrophotometrically and also polarographically using a rotating platinum disc electrode, proved to be oxygen-induced.

  18. Effects of transverse oscillatory waves on turbulent boundary waves

    NASA Technical Reports Server (NTRS)

    Matulevich, Jonathan; Jacobs, Harold R.

    1994-01-01

    Studies of the interaction of unsteady (oscillatory) flows with the growth of a turbulent boundary layer on a flat plate have primarily dealt with an oscillatory component in the primary flow direction. Past studies of the 2-D flow have shown little or no increase in the time averaged heat transfer. The present paper deals with a steady axial and an oscillatory transverse flow. It is shown that for such flows the temporal variation for both the turbulent skin friction and heat transfer are such as to yield increased time averaged values.

  19. Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Steiner, O.; Freytag, B.

    2016-11-01

    Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims: Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods: Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results: The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions: Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them. The movie associated to Fig. 1 is available at http://www.aanda.org

  20. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    PubMed

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  1. X-space MPI: magnetic nanoparticles for safe medical imaging.

    PubMed

    Goodwill, Patrick William; Saritas, Emine Ulku; Croft, Laura Rose; Kim, Tyson N; Krishnan, Kannan M; Schaffer, David V; Conolly, Steven M

    2012-07-24

    One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.

  2. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As films as probed by polarized neutron and x-ray reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  3. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  4. Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory

    2011-03-01

    Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.

  5. The influence of magnetic order on the magnetoresistance anisotropy of Fe1 + δ-x Cu x Te

    NASA Astrophysics Data System (ADS)

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; Analytis, J. G.; Birgeneau, R. J.

    2017-07-01

    We performed resistance measurements on \\text{F}{{\\text{e}}1+δ -x} Cu x Te with {{x}\\text{EDX}}≤slant 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For {{x}\\text{EDX}}=0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.

  6. The Magnetic Evolution of Coronal Hole Bright Points

    NASA Astrophysics Data System (ADS)

    He, Y.; Muglach, K.

    2017-12-01

    Space weather refers to the state of the heliosphere and the geospace environment that are caused primarily by solar activity. Coronal mass ejections and flares originate in active regions and filaments close to the solar surface and can cause geomagnetic storms and solar energetic particles events, which can damage both spacecraft and ground-based systems that are critical for society's well-being. Coronal bright points are small-scale magnetic regions on the sun that seem to be similar to active regions, but are about an order of magnitude smaller. Due to their shorter lifetime, the complete evolutionary cycle of these mini active regions can be studied, from the time they appear in extreme-ultraviolet (EUV) images to the time they fade. We are using data from the Solar Dynamics Observatory (SDO) to study both the coronal EUV flux and the photospheric magnetic field and compare them to activities of the coronal bright point.

  7. Influence of pinches on magnetic reconnection in turbulent space plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  8. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  9. Electronic Structure and Magnetic Phase Transition in Helicoidal Fe1 - x Co x Si Ferromagnets

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-02-01

    LSDA + U + SO calculations of the electronic structure of helicoidal Fe1 - x Co x Si ferromagnets within the virtual crystal approximation have been supplemented with the consideration of the Dzyaloshinski-Moriya interaction and ferromagnetic fluctuations of the spin density of collective d electrons with the Hubbard interactions at Fe and Co atoms randomly distributed over sites. The magnetic-state equation in the developed model describes helicoidal ferromagnetism and its disappearance accompanied by the occurrence of a maximum of uniform magnetic susceptibility at temperature T C and chiral fluctuations of the local magnetization at T > T C . The reasons why the magnetic contribution to the specific heat at the magnetic phase transition changes monotonically and the volume coefficient of thermal expansion (VCTE) at low temperatures is negative and has a wide minimum near T C have been investigated. It is shown that the VCTE changes sign when passing to the paramagnetic state (at temperature T S ).

  10. Observation of a 3D Magnetic Null Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, P.; Falco, M.; Guglielmino, S. L.

    2017-03-10

    We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1)more » a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″–2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.« less

  11. Unusual doping effect of non-magnetic ion on magnetic properties of CuFe1-xGaxO2

    NASA Astrophysics Data System (ADS)

    Shi, Liran; Jin, Zhao; Chen, Borong; Xia, Nianming; Zuo, Huakun; Wang, Yeshuai; Ouyang, Zhongwen; Xia, Zhengcai

    2014-12-01

    The structural and magnetic properties of nonmagnetic Ga3+ ion doped CuFe1-xGaxO2 (x=0, 0.02, 0.03, and 0.05) single crystal samples have been investigated. In pulsed high magnetic fields, the field-induced multi-step transitions were observed in all the samples. Compared with pure CuFeO2, the transition temperatures, critical magnetic fields decrease and the magnetic hysteresis of the doped samples become small, which may result from the partial release of the spin frustration and the changes of the magnetic coupling both inter- and intra-planes due to the Ga3+ dopant. The magnetization measurements show an abnormal dilution behavior, especially in a lower temperature region, the magnetic moment was enhanced due to the nonmagnetic Ga3+ ion doping, the enhancement becomes more obviously in the sample with the Ga3+ doping level of x=0.03. These results may connected with the substitution of nonmagnetic Ga3+ ions destroying the stability of ground state and affecting the stability of the ferroelectricity incommensurate phase. Based on the experimental results, a super-cell model and their magnetic diagram were assumed.

  12. Quiescence near the X-point of MAST measured by high speed visible imaging

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Harrison, J.; Silburn, S. A.; Farley, T.; Henderson, S. S.; Kirk, A.; Militello, F.; Thornton, A.; The MAST Team

    2017-12-01

    Using high speed imaging of the divertor volume, the region close to the X-point in MAST is shown to be quiescent. This is confirmed by three different analysis techniques and the quiescent X-point region (QXR) spans from the separatrix to the \\psiN = 1.02 flux surface. Local reductions to the atomic density and effects associated with the camera viewing geometry are ruled out as causes of the QXR, leaving quiescence in the local plasma conditions as being the most likely cause. The QXR is found to be ubiquitous across a significant operational space in MAST including L-mode and H-mode discharges across maximal ranges of 9.8×1019~m-2 in line integrated density, 0.36 MA in plasma current, 0.11 T in toroidal magnetic field and 3.2 MW in NBI power. When mapped to the divertor target the QXR occupies approximately an e-folding length of the heat-flux profile, containing  ∼60% of the total heat flux to the target, and also shows a tendency towards higher frequency shorter lived fluctuations in the ion-saturation current. This is consistent with short-lived divertor localised filamentary structures observed further down the outer divertor leg in the camera images, and suggests a complex multi-region picture of filamentary transport in the divertor.

  13. Effect of non-magnetic ions substitution on the structure and magnetic properties of Y3-xSrxFe5-xZrxO12 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Soulmaz; Gholizadeh, Ahmad

    2018-06-01

    In this work, Y3-xSrxZrxFe5O12 (0.0 ≤ x ≤ 0.7) were synthesized by citrate precursor method at 1050 °C. The structural and magnetic properties of Y3-xSrxFe5-xZrxO12 were studied by using the X-ray diffraction technique, scanning electron microscopy, transmission electron microscopy, the Fourier transform infrared spectroscopy and vibrating sample magnetometer. XRD analysis using X'Pert package show a pure garnet phase with cubic structure (space group Ia-3d) and the impurity phase SrZrO3 is observed when the range of x value is exceeded from 0.6. Rietveld refinement using Fullprof program shows the lattice volume expansion with increasing the degree of Sr/Zr substitution. The crystallite sizes remain constant in the range of x = 0.0 - 0.5 and then increase. The different morphology observed in SEM micrographs of the samples can be related to different values of the microstrain in the samples. The hysteresis loops of the samples reveal a superparamagnetic behaviour. Also, the drop in coercivity with increasing of the substitution is mainly originated from a reduction in the magneto-elastic anisotropy energy. The values of the saturation magnetization (MS) indicate a non-monotonically variant with increasing the Sr/Zr substitution and reach a maximum 26.14 emu/g for the sample x = 0.1 and a minimum 17.64 emu/g for x = 0.0 and x = 0.2. The variation of MS, in these samples results from a superposition of three factors; reduction of Fe3+ in a-site, change in angle FeT-O-FeO, and magnetic core size.

  14. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.

    1985-07-08

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.

  15. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  16. A magnetic diverter for charged particle background rejection in the SIMBOL-X telescope

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Fioretti, V.; Bulgarelli, A.; Dell'Orto, E.; Foschini, L.; Malaguti, G.; Pareschi, G.; Tagliaferri, G.; Tiengo, A.

    2008-07-01

    Minimization of charged particle background in X-ray telescopes is a well known issue. Charged particles (chiefly protons and electrons) naturally present in the cosmic environment constitute an important background source when they collide with the X-ray detector. Even worse, a serious degradation of spectroscopic performances of the X-ray detector was observed in Chandra and Newton-XMM, caused by soft protons with kinetic energies ranging between 100 keV and some MeV being collected by the grazing-incidence mirrors and funneled to the detector. For a focusing telescope like SIMBOL-X, the exposure of the soft X-ray detector to the proton flux can increase significantly the instrumental background, with a consequent loss of sensitivity. In the worst case, it can also seriously compromise the detector duration. A well-known countermeasure that can be adopted is the implementation of a properly-designed magnetic diverter, that should prevent high-energy particles from reaching the focal plane instruments of SIMBOL-X. Although Newton-XMM and Swift-XRT are equipped with magnetic diverters for electrons, the magnetic fields used are insufficient to effectively act on protons. In this paper, we simulate the behavior of a magnetic diverter for SIMBOL-X, consisting of commercially-available permanent magnets. The effects of SIMBOL-X optics is simulated through GEANT4 libraries, whereas the effect of the intense required magnetic fields is simulated along with specifically-written numerical codes in IDL.

  17. Magnetic properties and microstructure of melt-spun Ce17Fe78-xB6Hfx (x = 0-1.0) alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzheng; Zhong, Minglong; Quan, Qichen; Lei, Weikai; Zeng, Qingwen; Hu, Yongfeng; Xu, Yaping; Hu, Xianjun; Zhang, Lili; Liu, Renhui; Ma, Shengcan; Zhong, Zhenchen

    2017-12-01

    Ce17Fe78-xB6Hfx (x = 0-1.0) alloys were fabricated by a melt-spinning technique in order to study their magnetic properties and microstructure. Magnetic investigations of Ce17Fe78-xB6Hfx (x = 0-1.0) alloys show that the room-temperature coercivity increases linearly from 352 kA/m at x = 0 to 420 kA/m at x = 1.0. The Curie temperature (Tc) decreases monotonically from 424.5 K to 409.1 K. The Ce L3-edge X-ray absorption near edge structure (XANES) spectrums reveal that there is more Ce4+ in ribbons under total electron yield (TEY) than fluorescence yield (FY). Hf addition has no effect on the weight of Ce3+ and Ce4+ in CeFeB-based alloys. The grain refinement and microstructure uniformity are essential for improving the magnetic properties of Hf-doped alloys. This paper may shed light on the further development of the Ce-based magnets and offer a feasible way for using the rare earth resources effectively.

  18. Low-temperature magnetic ordering in the perovskites Pr 1-xA xCoO 3 (A=Ca, Sr)

    NASA Astrophysics Data System (ADS)

    Deac, Iosif G.; Tetean, Romulus; Balasz, Istvan; Burzo, Emil

    2010-05-01

    The magnetic and electrical properties of polycrystalline Pr 1-xA xCoO 3 cobaltites with A=Ca, Sr and 0≤ x≤0.5 were studied in the temperature range 4 K≤ T≤1000 K and field up to 7 T. The X-ray analyses show the presence of only one phase having monoclinic or orthorhombic symmetry. The magnetic measurements indicate that the Ca-doped samples have at low temperatures, similar properties to the frustrated magnetic materials. PrCoO 3 is a paramagnetic insulator in the range from 4 to 1000 K. The Sr-doped cobaltites exhibit two phase transitions: a paramagnetic-ferromagnetic (or magnetic phase separated state) phase transition at about 240 K and a second one at about 100 K. The magnetic measurements suggest the presence of magnetic clusters and a change in the nature of magnetic coupling between Co ions at low temperatures. A semiconducting type behavior and high negative magnetoresistance was found for the Ca-doped samples, while the Sr-doped ones were metallic and with negligible magnetoresistance. The results are analyzed in the frame of a phase separation scenario in the presence of the spin-state transitions of Co ions.

  19. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    DOE PAGES

    Soukhanovskii, V. A.

    2017-04-28

    The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less

  20. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A.

    The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less

  1. Enhancement of MS2D Bartington point measurement of soil magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fabijańczyk, Piotr; Zawadzki, Jarosław

    2015-04-01

    Field magnetometry is fast method used to assess the potential soil pollution. The most popular device used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. Typically, in order to calculate the reliable average value of soil magnetic susceptibility, a series of MS2D readings is performed in the sample point. As it was analyzed previously, such methodology makes it possible to significantly reduce the nugget effect of the variograms of soil magnetic susceptibility that is related to the micro-scale variance and measurement errors. The goal of this study was to optimize the process of taking a series of MS2D readings, whose average value constitutes a single measurement, in order to take into account micro-scale variations of soil magnetic susceptibility in proper determination of this parameter. This was done using statistical and geostatistical analyses. The analyses were performed using field MS2D measurements that were carried out in the study area located in the direct vicinity of the Katowice agglomeration. At 150 sample points 10 MS2D readings of soil magnetic susceptibility were taken. Using this data set, series of experimental variograms were calculated and modeled. Firstly, using single random MS2D reading for each sample point, and next using the data set increased by adding one more MS2D reading, until their number reached 10. The parameters of variogram: nugget effect, sill and range of correlation were used to determine the most suitable number of MS2D readings at sample point. The distributions of soil magnetic susceptibility at sample point were also analyzed in order to determine adequate number of readings enabling to calculate reliable average soil magnetic susceptibility. The research leading to these results has

  2. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 < x ≤ 0.6. It is found that the optimum magnetic properties are obtained at x = 0.4: Hci = 4.9 kOe, Br = 10.1 kG, (BH)max = 13.7 MGOe. Specifically, magnetic field heat treatment below the Curie temperature is applied for (Nd0.8Ce0.2)1.6Fe12Co2B (x = 0.4) annealed ribbons. The magnetic properties Br, (BH)max and squareness are all enhanced after the magnetic field heat treatment. The (BH)max shows a substantial increase from 13.7 MGOe to 16.0 MGOe after the heat treatment at 623 K with a magnetic field of 1 T, which gets 17% improvement compared with that of the sample without a magnetic field heat treatment. We demonstrate that the magnetic field heat treatment plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  3. Structural and magnetic properties of Co{sub 2}Ti{sub 1−x}Fe{sub x}Al (0 ≤ x ≤ 0.5) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Lakhan, E-mail: lakhanbainsla@gmail.com; Gupta, Sachin, E-mail: lakhanbainsla@gmail.com; Suresh, K. G., E-mail: lakhanbainsla@gmail.com

    2014-04-24

    In this work we studied the effect of partial Fe substitution for Ti on the structural and magnetic properties of the Co{sub 2}TiAl. X-ray diffraction analysis indicates the presence of B2 type disorder for x > 0, (111) reflections are absent for x > 0 which is the characteristic of B2 type disorder. XRD analysis also shows presence of second phase. Magnetization measurements also confirm the presence of dual phase. Curie temperature of the alloys increases with increase in Fe concentration. Saturation magnetic moments agree very well with those calculated by Slater-Pauling rule.

  4. Spear-anvil point-contact spectroscopy in pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Yager, B.; Kampert, E.; Putzke, C.; Nyéki, J.; Saunders, J.

    2013-11-01

    We describe a new design and experimental technique for point-contact spectroscopy in non-destructive pulsed magnetic fields up to 70 {T}. Point-contact spectroscopy uses a quasi-dc four-point measurement of the current and voltage across a spear-anvil point-contact. The contact resistance could be adjusted over three orders of magnitude by a built-in fine pitch threaded screw. The first measurements using this set-up were performed on both single-crystalline and exfoliated graphite samples in a 150 {ms}, pulse length 70 {T} coil at 4.2 {K} and reproduced the well known point-contact spectrum of graphite and showed evidence for a developing high field excitation above 35 T, the onset field of the charge-density wave instability in graphite.

  5. Transport and magnetic properties of disordered Li xV yO 2 ( x=0.8 and y=0.8)

    NASA Astrophysics Data System (ADS)

    Du, Fei; Li, Ang; Liu, Daliang; Zhan, Shiying; Hu, Fang; Wang, Chunzhong; Chen, Yan; Feng, Shouhua; Chen, Gang

    2009-07-01

    The magnetic and electron transport properties of rhombohedral Li xV yO 2 ( x=0.8 and y=0.8) are studied. The dc susceptibility of Li xV yO 2 can be well fitted to the modified Curie-Weiss law, which verified the paramagnetic ground state. The magnetic hysteresis and ac susceptibility also confirm this paramagnetism. The Li xV yO 2 exhibits semiconducting behavior, which is explained by thermal activated process at high temperature and variable-range hopping mechanism at low temperature. Anderson localization plays an important role in both the electron transport behavior and the magnetic behavior due to the site disorder between the Li + ion and V 4+ ion.

  6. Magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) prepared by various heat treatments

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Katsuyama, Shigeru; Yoshimura, Kazuyoshi; Kosuge, Koji

    1991-02-01

    The magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) specimens was measured following a standard heat treatment and a special heat treament stabilizing the orthorhombic phase to higher Fe concentrations. The values of the effective magnetic moment per Fe in the Cu1 site, estimated from the magnetic susceptibility and Mossbauer effect measurements, were 4.4 and 2.2 muB for the standard and specially treated specimens, respectively. The smaller effective magnetic moment in the case of specially treated specimens is attributed to the antiferromagnetic coupling between Fe spins at high temperatures.

  7. Evolution of competing magnetic order in the J eff=1/2 insulating state of Sr 2Ir 1-xRu xO 4

    DOE PAGES

    Calder, Stuart A.; Kim, Jong-Woo; Cao, Guixin; ...

    2015-10-27

    We investigate the magnetic properties of the series Sr 2Ir 1-xRu xO 4 with neutron, resonant x-ray and magnetization measurements. The results indicate an evolution and coexistence of magnetic structures via a spin flop transition from ab-plane to c-axis collinear order as the 5d Ir4 + ions are replaced with an increasing concentration of 4d Ru4 + ions. The magnetic structures within the ordered regime of the phase diagram (x<0.3) are reported. Despite the changes in magnetic structure no alteration of the J eff=1/2 ground state is observed. This behavior of Sr 2Ir 1-xRu xO 4 is consistent with electronicmore » phase separation and diverges from a standard scenario of hole doping. The role of lattice alterations with doping on the magnetic and insulating behavior is considered. Our results presented here provide insight into the magnetic insulating states in strong spin-orbit coupled materials and the role perturbations play in altering the behavior.« less

  8. Phase diagram of URu 2–xFe xSi 2 in high magnetic fields

    DOE PAGES

    Ran, Sheng; Jeon, Inho; Pouse, Naveen; ...

    2017-08-28

    Here, electrical transport measurements were performed on URu 2-xFe xSi 2 single-crystal specimens in high magnetic fields up to 45 T (DC fields) and 60 T (pulsed fields). We observed a systematic evolution of the critical fields for both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) phases and established the 3D phase diagram of T–H–x. In the HO phase, H/H 0 scales with T/T 0 and collapses onto a single curve. However, in the LMAFM phase, this single scaling relation is not satisfied. Within a certain range of x values, the HO phase reenters after the LMAFM phase is suppressedmore » by the magnetic field, similar to the behavior observed for URu 2Si 2 within a certain range of pressures.« less

  9. Phase diagram of URu 2–xFe xSi 2 in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, Sheng; Jeon, Inho; Pouse, Naveen

    Here, electrical transport measurements were performed on URu 2-xFe xSi 2 single-crystal specimens in high magnetic fields up to 45 T (DC fields) and 60 T (pulsed fields). We observed a systematic evolution of the critical fields for both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) phases and established the 3D phase diagram of T–H–x. In the HO phase, H/H 0 scales with T/T 0 and collapses onto a single curve. However, in the LMAFM phase, this single scaling relation is not satisfied. Within a certain range of x values, the HO phase reenters after the LMAFM phase is suppressedmore » by the magnetic field, similar to the behavior observed for URu 2Si 2 within a certain range of pressures.« less

  10. Evolution of magnetization in epitaxial Zn1‑x Fe x O z thin films (0  ⩽  x  ⩽  0.66) grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Brachwitz, Kerstin; Böntgen, Tammo; Lenzner, Jörg; Ghosh, Kartik; Lorenz, Michael; Grundmann, Marius

    2018-06-01

    We demonstrate the development of phases in Zn1‑xFexOz thin films with 0  ⩽  x  ⩽  0.66, i.e. the end point phases are semiconducting ZnO for x  =  0, and ferrimagnetic zinc ferrite (ZnFe2O4) for x  =  0.66. With increasing x, the x-ray scattering intensity of the structural ZnO wurtzite phase decreases while that of the (1 1 1)-oriented ZnFe2O4 spinel phase increases. For x  >  0.4, single phase spinel layers are obtained. The enhanced formation of the spinel phase is supported by deviations from the usually expected stoichiometric transfer of chemical composition from target to thin film in pulsed laser deposition. We find that all mixed film samples show an excess of iron in relation to the target composition, independent of the growth pressure. The saturation magnetization of the samples increases with x for 0  ⩽  x  ⩽  0.66 and shows a ferrimagnetic behavior. The temperature dependence of magnetization points to Curie temperatures well above 400 K for x  ⩾  0.4. With that, the precise tuning of magnetic performance of the thin layers is possible, yielding a design degree of freedom for application-related requirements.

  11. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe 1-xMn xPt

    DOE PAGES

    Pujari, B. S.; Larson, P.; Antropov, V. P.; ...

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe 1–xMn xPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of themore » magnetic phase diagram is demonstrated.« less

  12. X-ray reflection from cold white dwarfs in magnetic cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Hayashi, Takayuki; Kitaguchi, Takao; Ishida, Manabu

    2018-02-01

    We model X-ray reflection from white dwarfs (WDs) in magnetic cataclysmic variables (mCVs) using a Monte Carlo simulation. A point source with a power-law spectrum or a realistic post-shock accretion column (PSAC) source irradiates a cool and spherical WD. The PSAC source emits thermal spectra of various temperatures stratified along the column according to the PSAC model. In the point-source simulation, we confirm the following: a source harder and nearer to the WD enhances the reflection; higher iron abundance enhances the equivalent widths (EWs) of fluorescent iron Kα1, 2 lines and their Compton shoulder, and increases the cut-off energy of a Compton hump; significant reflection appears from an area that is more than 90° apart from the position right under the point X-ray source because of the WD curvature. The PSAC simulation reveals the following: a more massive WD basically enhances the intensities of the fluorescent iron Kα1, 2 lines and the Compton hump, except for some specific accretion rate, because the more massive WD makes a hotter PSAC from which higher-energy X-rays are preferentially emitted; a larger specific accretion rate monotonically enhances the reflection because it makes a hotter and shorter PSAC; the intrinsic thermal component hardens by occultation of the cool base of the PSAC by the WD. We quantitatively estimate the influences of the parameters on the EWs and the Compton hump with both types of source. We also calculate X-ray modulation profiles brought about by the WD spin. These depend on the angles of the spin axis from the line of sight and from the PSAC, and on whether the two PSACs can be seen. The reflection spectral model and the modulation model involve the fluorescent lines and the Compton hump and can directly be compared to the data, which allows us to estimate these geometrical parameters with unprecedented accuracy.

  13. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  14. The X-point effects on the peeling-ballooning stability conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Linjin

    2017-10-01

    Due to the X-point singularity the safety factor tends to infinity as the last closed flux surface is approached. The usual numerical treatment of X-point singularity is to cut off a small fraction of edge region for system stability evaluation or simply use an up-down symmetric equilibrium without X-point included. This type of treatments have been used to make the peeling-ballooning stability diagram. We found that the mode types, peel or ballooning, can vary depending on how much the edge portion is cut off. When the cutting-off leads the edge safety factor (qa) to become close to a mode rational number, the peeling modes dominate; otherwise the ballooning type of modes prevail. The stability condition for peeling modes with qa being close to a rational number is much stringent than that for ballooning type of modes. Because qa tends to infinite near the separatrix, the mode rational surfaces are concentrated in the plasma region and thus the peeling modes are basically excluded. This extrapolation indicates that the stability boundary for high edge current, which is related to the peeling modes, need to be reexamined to take into account the X-point effects. Supported by U. S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  15. Effects of the second X-point on hot VDE in HL-2M

    NASA Astrophysics Data System (ADS)

    Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.

    2017-05-01

    Study of the hot-plasma vertical displacement event (VDE) in advanced divertor configurations is of significant importance for ITER and for future fusion reactors. The newly designed, medium-sized copper-conductor machine HL-2M has the capability of generating the second X-point for various advanced divertor configurations. In this paper, effects of the second X-point on the hot VDE in HL-2M are numerically investigated by utilizing the non-linear time-dependent DINA code. The simulation results show that the existence of the second X-point at certain special locations appears to have a better stability in the vertical direction, compared to the standard configuration with the same main plasma parameters. Meanwhile, the peak halo current during the current quench tends to increase as the second X-point changes in the horizontal direction. The same quantity decreases as the second X-point changes in the vertical direction away from the dominant X-point. From the view point of minimizing the halo current, the tripod is better than the standard configuration, followed by the snowflake-plus and the exact snowflake (SF) configuration. The SF-minus is the worst scenario. On the other hand, the tripod configuration, as well as the SF minus configurations, results in relatively higher peak electromagnetic force acting on the vacuum vessel, when compared to other aforementioned configurations.

  16. Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system

    NASA Astrophysics Data System (ADS)

    Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei

    2004-09-01

    The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.

  17. Spin and orbital ordering in Y 1-xLa xVO₃

    DOE PAGES

    Yan, J.-Q.; Zhou, J.-S.; Cheng, J. G.; ...

    2011-12-02

    The spin and orbital ordering in Y 1-xLa xVO₃ (0.30 ≤ x ≤ 1.0) has been studied to map out the phase diagram over the whole doping range 0 ≤ x ≤ 1. The phase diagram is compared with that for RVO₃ (R = rare earth or Y) perovskites without A-site variance. For x > 0.20, no long-range orbital ordering was observed above the magnetic ordering temperature T N; the magnetic order is accompanied by a lattice anomaly at a Tt ≤ T N as in LaVO₃. The magnetic ordering below Tt ≤ T N is G type in themore » compositional range 0.20 ≤ x ≤ 0.40 and C type in the range 0.738 ≤ x ≤ 1.0. Magnetization and neutron powder diffraction measurements point to the coexistence below T N of the two magnetic phases in the compositional range 0.4 < x < 0.738. Samples in the compositional range 0.20 < x ≤ 1.0 are characterized by an additional suppression of a glasslike thermal conductivity in the temperature interval T N < T < T* and a change in the slope of 1/χ(T). We argue that T* represents a temperature below which spin and orbital fluctuations couple together via λL∙S.« less

  18. LaCu 6-xAg x: A promising host of an elastic quantum critical point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekh; Dela Cruz, Clarina R.; Koehler, Michael R.

    Structural properties of LaCu 6-xAg x have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu 6-xAg x decrease with Ag composition until the monoclinic phase is completely suppressed at x c=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu 6-xAg x.

  19. Coexistence of static magnetism and superconductivity in SmFeAsO(1-x)F(x) as revealed by muon spin rotation.

    PubMed

    Drew, A J; Niedermayer, Ch; Baker, P J; Pratt, F L; Blundell, S J; Lancaster, T; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Rössle, M; Kim, K W; Baines, C; Bernhard, C

    2009-04-01

    The recent observation of superconductivity with critical temperatures (Tc) up to 55 K in the pnictide RFeAsO(1-x)F(x), where R is a lanthanide, marks the first discovery of a non-copper-oxide-based layered high-Tc superconductor. It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprate superconductors, as both families exhibit superconductivity following charge doping of a magnetic parent material. In this context, it is important to follow the evolution of the microscopic magnetic properties of the pnictides with doping and hence to determine whether magnetic correlations coexist with superconductivity. Here, we present a muon spin rotation study on SmFeAsO(1-x)F(x), with x=0-0.30 that shows that, as in the cuprates, static magnetism persists well into the superconducting regime. This analogy is quite surprising as the parent compounds of the two families have rather different magnetic ground states: itinerant spin density wave for the pnictides contrasted with the Mott-Hubbard insulator in the cuprates. Our findings therefore suggest that the proximity to magnetic order and associated soft magnetic fluctuations, rather than strong electronic correlations in the vicinity of a Mott-Hubbard transition, may be the key ingredients of high-Tc superconductors.

  20. Magnetic actuation of hair cells

    NASA Astrophysics Data System (ADS)

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state.

  1. Distinct magnetic spectra in the hidden order and antiferromagnetic phases in URu 2 - x Fe x Si 2

    DOE PAGES

    Butch, Nicholas P.; Ran, Sheng; Jeon, Inho; ...

    2016-11-07

    We use neutron scattering to compare the magnetic excitations in the hidden order (HO) and antiferromagnetic (AFM) phases in URu 2-xFe xSi 2 as a function of Fe concentration. The magnetic excitation spectra change significantly between x = 0.05 and x = 0.10, following the enhancement of the AFM ordered moment, in good analogy to the behavior of the parent compound under applied pressure. Prominent lattice-commensurate low-energy excitations characteristic of the HO phase vanish in the AFM phase. The magnetic scattering is dominated by strong excitations along the Brillouin zone edges, underscoring the important role of electron hybridization to bothmore » HO and AFM phases, and the similarity of the underlying electronic structure. The stability of the AFM phase is correlated with enhanced local-itinerant electron hybridization.« less

  2. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    PubMed

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  3. On the Relation Between Facular Bright Points and the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Shine, Richard; Tarbell, Theodore; Title, Alan; Scharmer, Goran

    1994-12-01

    Multi-spectral images of magnetic structures in the solar photosphere are presented. The images were obtained in the summers of 1993 and 1994 at the Swedish Solar Telescope on La Palma using the tunable birefringent Solar Optical Universal Polarimeter (SOUP filter), a 10 Angstroms wide interference filter tuned to 4304 Angstroms in the band head of the CH radical (the Fraunhofer G-band), and a 3 Angstroms wide interference filter centered on the Ca II--K absorption line. Three large format CCD cameras with shuttered exposures on the order of 10 msec and frame rates of up to 7 frames per second were used to create time series of both quiet and active region evolution. The full field--of--view is 60times 80 arcseconds (44times 58 Mm). With the best seeing, structures as small as 0.22 arcseconds (160 km) in diameter are clearly resolved. Post--processing of the images results in rigid coalignment of the image sets to an accuracy comparable to the spatial resolution. Facular bright points with mean diameters of 0.35 arcseconds (250 km) and elongated filaments with lengths on the order of arcseconds (10(3) km) are imaged with contrast values of up to 60 % by the G--band filter. Overlay of these images on contemporal Fe I 6302 Angstroms magnetograms and Ca II K images reveals that the bright points occur, without exception, on sites of magnetic flux through the photosphere. However, instances of concentrated and diffuse magnetic flux and Ca II K emission without associated bright points are common, leading to the conclusion that the presence of magnetic flux is a necessary but not sufficient condition for the occurence of resolvable facular bright points. Comparison of the G--band and continuum images shows a complex relation between structures in the two bandwidths: bright points exceeding 350 km in extent correspond to distinct bright structures in the continuum; smaller bright points show no clear relation to continuum structures. Size and contrast statistical cross

  4. Magnetic and magnetocaloric properties of Gd2In0.8X0.2 compounds (X=Al, Ga, Sn, Pb)

    NASA Astrophysics Data System (ADS)

    Tencé, Sophie; Chevalier, Bernard

    2016-02-01

    We show that it is possible to replace in Gd2In some amount of In by X=Al, Ga, Sn and Pb to obtain Gd2In1-xXx samples after melting. The magnetic and magnetocaloric properties of the Gd2In0.8X0.2 intermetallic compounds have been investigated through dc magnetization measurements. We evidence that the substitution of Al and Ga for In barely changes the Curie temperature TC but decreases the second magnetic transition temperature T‧ which corresponds to the transition from a ferromagnetic to an antiferromagnetic state. On the other hand, the substitution of Sn and Pb for In strongly increases TC and changes the nature or even suppresses the transition at lower temperature. This magnetic behavior gives rise to an interesting way to tune the Curie temperature near room temperature without diluting the Gd network and thus to modify the magnetocaloric effect in Gd2In1-xXx compounds.

  5. Resonant magnetic X-ray scattering studies of heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Isaacs, E. D.; Lussier, J. G.; Reimers, J. N.; Gibbs, D.; Zschack, P.; Schröder, A.; Taillefer, L.; Garrett, J. D.

    1994-04-01

    The uranium-based heavy fermion superconductors which are known to display weak antiferromagnetism at low temperatures are well suited to study by the newly developed resonant magnetic X-ray scattering technique. We review recent synchrotron X-ray scattering studies of the magnetic behavior of UPd 2Al 3 and URu 2Si 2 and the interaction between magnetism and superconductivity in these materials. These measurements show resolution-limited magnetic Bragg peaks in UPd 2Al 3 in contrast to those in URu 2Si 2. The order parameter as measured at the (0 0 {1}/{2}) magnetic reciprocal lattice position in UPd 2Al 3 is different from that at (0, 0, {3}/{2}), the latter of which indicates a strong anomaly at TNI ∼ 11.8 K below the sharp onset of the antiferromagnetic phase at TN ∼ 14.5 K. Finally, the behavior of the (0 0 {1}/{2}) order parameter is smooth for T ≤ Tc = 2.00 ± 0.04 K.

  6. November 15, 1991 X Flare -- The Movie: Hα , Soft X-rays, and Hard X-rays and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wulser, J.-P.; Acton, L.; Sakao, T.; Canfield, R.; Kosugi, T.; Slater, G.; Strong, K.; Tsuneta, S.

    1992-05-01

    The X1.5/3B flare on 1991 November 15, 22:33 UT was well observed by the Hα Imaging Spectrograph and the Vector Magnetograph (Stokes Polarimeter) at Mees Solar Observatory, and by the Soft- and Hard X-ray Telescopes (SXT and HXT) aboard YOHKOH. We have combined this multispectral dataset into a series of temporally and spatially co-aligned video movies and analyzed the morphological and temporal relationships of the various flare emissions. The earliest manifestations of this flare include unresolved preflare SXR brightenings very close to the magnetic neutral line and preflare motions of filaments seen in Hα . In the flare core, SXR and Hα emission show moving and rotating coronal structures which we interpret as a successive brightening of adjacent loops during the main phase of the flare. The HXR source shows much more dramatic variability than the SXR source, and they are clearly not cospatial. On the other hand, there is a close spatial relationship between the HXR and Hα blue wing emission sites. The Hα , HXR, and SXR images all point to acceleration and heating in a region that starts close to the neutral line and moves outward during each HXR burst and during the gradual phase. Spectacular mass ejections are seen in both SXR and Hα , with clear unwinding of tightly coiled structures, acceleration of X-ray and Hα material to velocities of order 1000 km/s, and a striking thermal bifurcation between hot and cold plasma.

  7. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    NASA Astrophysics Data System (ADS)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  8. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  9. Magnetic properties of CexY1-xPt compared to CexLa1-xPt ones

    NASA Astrophysics Data System (ADS)

    Očko, M.; Zadro, K.; Drobac, Đ.; Aviani, I.; Salamon, K.; Mixon, D.; Bauer, E. D.; Sarrao, J. L.

    2018-04-01

    We have investigated the magnetic properties of the CexY1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θp, is negative and at low temperature θC is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost the theoretical value of the isolated Ce3+ ion, μ = 2.54 μB, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θC differs within 1 K from the Curie temperature, TC, which is determined by the resistivity measurements. The most intriguing result of the investigation of CexY1-xPt is the linear concentration dependence of TC vs. x and, moreover, it is the same as in CexLa1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. We offer the explanations of these intriguing experimental results.

  10. Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu, E-mail: jfzhang@xtu.edu.cn, E-mail: fyxiang@xtu.edu.cn, E-mail: lujf@xmu.edu.cn

    2017-02-10

    We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magneticmore » field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ -ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ -ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ -ray bands.« less

  11. Bright X-ray arcs and the emergence of solar magnetic flux

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Broussard, R. M.

    1977-01-01

    The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.

  12. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  13. Origin of doping-induced suppression and reemergence of magnetism in LaFeAsO 1 - x H x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chang-Youn; Park, Hyowon; Haule, Kristjan

    We investigate the evolution of magnetic properties as a function of hydrogen doping in the iron-based superconductor LaFeAsO 1-xH x using dynamical mean-field theory combined with density-functional theory. We find that two independent consequences of doping, namely the increase of the electron occupation and the structural modification, have the opposite effects on the strength of electron correlation and magnetism, resulting in the minimum of the calculated magnetic moment around the intermediate doping level as a function of x. Our result provides a natural explanation for the recent, puzzling experimental discovery of two separated antiferromagnetic phases at low and high dopingmore » limits. Furthermore, the increase of the orbital occupation and correlation strength with doping results in reduced orbital polarization of d(xz/yz) orbitals and an enhanced role of the d(xy) orbital in the magnetism at high doping levels, and their possible implications on the superconductivity are discussed in line with the essential role of the magnetism.« less

  14. Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors

    PubMed Central

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin

    2012-01-01

    Coherent short-wavelength radiation from laser–plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors—a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631

  15. Magnetic relaxation phenomena in the chiral magnet Fe1 -xCoxSi : An ac susceptibility study

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Lefering, A. J. E.; Kakurai, K.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2016-10-01

    We present a systematic study of the ac susceptibility of the chiral magnet Fe1 -xCoxSi with x =0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Characteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A phase, the helical-to-conical transition and in a region above TC. The distribution of relaxation frequencies around the A phase is broad, asymmetric, and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe0.7Co0.3Si than in other chiral magnets.

  16. Evolution of the magnetic and structural properties of Fe 1 - x Co x V 2 O 4

    DOE PAGES

    Sinclair, R.; Ma, Jie; Cao, H. B.; ...

    2015-10-12

    The magnetic and structural properties of single-crystal Fe 1-xCo xV 2O 4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe 2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co 2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe 2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V 3+ ions on the B sites compete withmore » each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe 1-xMn xV 2O 4 and Mn 1-xCo xV 2O 4 to emphasize several distinct features.« less

  17. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  18. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  19. Crystal structures and magnetic properties of two-dimensional antiferromagnets Co{sub 1-x}Zn{sub x}TeMoO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Yoshihiro, E-mail: doi@sci.hokudai.ac.j; Suzuki, Ryo; Hinatsu, Yukio

    2009-12-15

    Crystal structures and magnetic properties of metal telluromolybdates Co{sub 1-x}Zn{sub x}TeMoO{sub 6} (x=0.0, 0.1,...,0.9) are reported. All the compounds have an orthorhombic structure with space group P2{sub 1}2{sub 1}2 and a charge configuration of M{sup 2+}Te{sup 4+}Mo{sup 6+}O{sub 6}. In this structure, M ions form a pseudo-two-dimensional lattice in the ab plane. Their magnetic susceptibility measurements have been performed in the temperature range between 1.8 and 300 K. The end member CoTeMoO{sub 6} shows a magnetic transition at 24.4 K. The transition temperature for solid solutions rapidly decreases with increasing x and this transition disappears between x=0.4 and 0.5, whichmore » is corresponding to the percolation limit for the square-planer lattice. From the magnetization, specific heat, and powder neutron diffraction measurements, it is found that the magnetic transition observed in the CoTeMoO{sub 6} is a canted antiferromagnetic ordering of Co{sup 2+} ions. The antiferromagnetic component of the ordered magnetic moment (3.12(3)mu{sub B} at 10 K) is along the b-axis. In addition, there exists a small ferromagnetic component (0.28(3)mu{sub B}) along the a-axis. - Graphical abstract: The metal telluromolybdates Co{sub 1-x}Zn{sub x}TeMoO{sub 6} have an orthorhombic structure with space group P2{sub 1}2{sub 1}2. In this structure, M ions form a pseudo-square-planer lattice in the ab plane. These compounds show a low-dimensional magnetism reflecting this structural feature. The magnetic transition observed in the CoTeMoO{sub 6} is a canted antiferromagnetic ordering of Co{sup 2+} ions, and the figure is the magnetic structure.« less

  20. Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2017-10-01

    The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

  1. Magnetic properties of x(Fe2O3).(100-x)[P2O5.Li2O] and x(Fe2O3).(100-x)[P2O5.CaO] glass systems

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin; Racolta, Dania; Ardelean, Gheorghe

    2017-12-01

    Magnetic properties of x(Fe2O3).(100-x)[P2O5 .Li2O] and x(Fe2O3).(100-x)[P2O5 .CaO] with 0 < x ≤ 50 mol % were investigated using magnetic susceptibility measurements. The both glass systems were prepared in the same condition. The valence states and the distribution of iron ions in the glass matrix depend on the Fe2O3 content. For the P2O5.CaO glass matrix with x≤35mol%, the data revealed iron ions as isolated or participating in dipole-dipole interaction. For x > 35 mol% an antiferromagnetic coupling is observed. For the P2O5.Li2O glass matrix, the iron ions behave magnetically similarly as in other oxide glasses, but concentration of Fe2O3 over which magnetic superexchange interactions occur is lower. The absolute magnitude of θp values increases when content of Fe2O3 are increased. If the content of the magnetic ions is increased in the glass, the exchange integral increased and as a result the magnitude of the θP increases.

  2. Suppression of magnetic order in CaCo 1.86 As 2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca ( Co 1 – x Fe x ) y As 2

    DOE PAGES

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; ...

    2017-02-23

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less

  3. Suppression of magnetic order in CaCo 1.86 As 2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca ( Co 1 – x Fe x ) y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less

  4. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology andmore » is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.« less

  5. Magnetisation studies of phase co-existence in Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumurugan, N.; Bharathi, A., E-mail: bharathi@igcar.gov.in; Arulraj, A.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The series Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5} was synthesised by solid state reaction. Black-Right-Pointing-Pointer Magnetisation studies were carried out in the 4-300 K temperature range in magnetic fields upto 16 Tesla. Black-Right-Pointing-Pointer Results were used to formulate the T versus Ca fraction, phase diagram. Black-Right-Pointing-Pointer Evidence for Magnet-electronic phase separation is shown for the first time in the compound. -- Abstract: Magnetic properties of hole doped, oxygen deficient double perovskite compounds, Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5}, have been investigated. Ferromagnetic transition temperatures increase and the anti-ferromagnetic transition temperatures decrease with Ca substitution leading to stabilisation of ferromagnetisim formore » x {>=} 0.05. A detailed study of the ferromagnetic phase indicates the presence of double hysterisis loops for Ca fractions, 0.05 {<=} x {<=} 0.2 in the 50-200 K temperature range, suggestive of the co-existence of two ferromagnetic phases with different co-ercivities. Based on the magnetisation and transport measurements a phase diagram is proposed for Ca doped GdBaCo{sub 2}O{sub 5.5}.« less

  6. Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuglsby, R.; Kharel, P., E-mail: parashu.kharel@sdstate.edu; Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588

    2015-05-07

    Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved theirmore » magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.« less

  7. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays.

    PubMed

    Liu, Yaohua; Ke, Xianglin

    2015-09-23

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  8. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    NASA Astrophysics Data System (ADS)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  9. Enhanced ferroelectric polarization and magnetization in BiFe{sub 1−x}Sc{sub x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.A.; Pang, H.Z.; Zhang, A.H.

    2015-10-15

    Highlights: • Single phase Sc doped BFO ceramics were successfully fabricated. • Dielectric constant and magnetization are enhanced in doped BFO system. • Polarization first increases and then decreases in doped BFO system. • M{sub r} of 0.0105 emu/g and P{sub r} of 16.1 μC/cm{sup 2} were revealed simultaneously at x = 0.01. - Abstract: Multiferroic BiFe{sub 1−x}Sc{sub x}O{sub 3} ceramics with x = 0.00–0.10 were synthesized by rapid liquid phase sintering. The influences of Sc doping on the crystalline structures, dielectric, ferroelectric, and magnetic behaviors of BiFeO{sub 3} ceramics were explored. The X-ray diffraction and the Raman spectrometric analysismore » revealed that all the samples are nearly single phase of rhombohedral structure with the incorporation of Sc ions into BiFeO{sub 3}. With increase doping concentration of x, the dielectric constant, dielectric loss, and remnant polarization for the doped BiFeO{sub 3} increase first and then drop down with further rise of x. A saturated ferroelectric polarization can be achieved at a small amount of Sc doping concentration (x < 0.03), with a optimized remnant polarization of 17.6 μC/cm{sup 2} at x = 0.03. Meanwhile, the magnetization is also slightly increased by introducing Sc dopant, with a maximum remnant magnetization of 0.0105 emu/g at x = 0.01. These results indicate that BiFeO{sub 3} ceramics with small amounts of Sc-doping may be promising for applications in magnetoelectric devices.« less

  10. Dy-V magnetic interaction and local structure bias on the complex spin and orbital ordering in Dy₁₋ xTb xVO₃ (x=0 and 0.2)

    DOE PAGES

    Yan, J.-Q.; Cao, H. B.; McGuire, M. A.; ...

    2013-06-10

    The spin and orbital ordering in Dy₁₋ xTb xVO₃ (x=0 and 0.2) was studied by measuring x-ray powder diffraction, magnetization, specific heat, and neutron single-crystal diffraction. The results show that G-OO/C-AF and C-OO/G-AF phases coexist in Dy 0.8Tb 0.20VO 3 in the temperature range 2–60 K, and the volume fraction of each phase is temperature and field dependent. The ordering of Dy moments at T* = 12 K induces a transition from G-OO/C-AF to a C-OO/G-AF phase. Magnetic fields suppress the long-range order of Dy moments and thus the C-OO/G-AF phase below T*. The polarized moments induced at the Dymore » sublattice by external magnetic fields couple to the V 3d moments, and this coupling favors the G-OO/C-AF state. Also discussed is the effect of the Dy-V magnetic interaction and local structure distortion on the spin and orbital ordering in Dy₁₋ xTb xVO₃.« less

  11. Long-time variation in magnetic structure of Ce(Ir xRh 1– x) 3Si 2: A new interpretation of time variation

    DOE PAGES

    Motoya, Kiyoichiro; Hagihala, Masato; Univ. of Tokyo, Chiba; ...

    2017-02-03

    Here, to clarify the key factor for the slow magnetic transitions in CeIr 3Si 2 and other materials, magnetization and neutron scattering measurements have been carried out on the system Ce(Ir xRh 1–x) 3Si 2. In this system, a magnetic phase transition is accomplished through slow and fast processes. The fractions of these processes vary with the chemical composition x. A new interpretation of magnetic phase transitions, which includes the coexistence of two processes, is presented.

  12. Magnetic properties and magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Mai, Nguyen Thi; Dan, Nguyen Huy; Phan, The-Long; Yu, Seong-Cho

    2014-11-01

    In this work, we present a detailed study of the magnetic properties and the magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys with x = 1, 2, and 4, which were prepared by using an arc-melting method. Experimental results reveal that a partial replacement of Ag for Ni leads to a decrease in the anti-FM phase in the alloys. In addition, the martensitic-austenitic phase transition shifts towards lower temperature and is broaded. The Curie temperature ( T C A ) for the austenitic phase also shifts toward to lower temperature, but not by much. The Curie temperature was found to be 308, 305, and 298 K for x = 1, 2, and 4, respectively. The magnetic entropy change (Δ S m ) of the samples was calculated by using isothermal magnetization data. Under an applied magnetic field change of 10 kOe, the maximum value of Δ S m (|Δ S max |) was achieved at around room temperature and did not change much (~0.8 J·kg-1·K-1) with increasing Ag-doping concentration. Particularly, the M 2 vs. H/ M curves prove that all the samples exhibited a second-order magnetic phase transition. Based on Landau's phase-transition theory and careful analyses of the magnetic data around the T C A , we have determined the critical parameters β, γ, δ, and T C . The results show that the β values are located between those expected for the 3D-Heisenberg model ( β = 0.365) and mean-field theory ( β = 0.5). Such a result proves the coexistence of short-range and long-range ferromagnetic interactions in Ni50- x Ag x Mn37Sn13 alloys. The nature of the changes in the critical parameters and the |Δ S max | is thoroughly discussed by means of structural analyses.

  13. Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.

    2017-10-01

    Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.

  14. Evolution of structural and magnetic properties in La xCe 2-xCo 16 Ti for $$0 \\leq x \\leq 2$$

    DOE PAGES

    Conner, Benjamin S.; McGuire, Michael A.; Veedu, Shanavas Kavungal; ...

    2016-11-11

    Here we examine the intrinsic magnetic and structural properties of the title alloys, permanent magnet materials based on the abundant rare-earth elements lanthanum and cerium, since these properties (T C, M sH a(K 1, K 2)) will set the upper limits on the quality of permanent magnet that can be fabricated from said alloys. Ce 2Co 16Ti has a high magnetic anisotropy (H a = 65 kOe) but a relatively low saturation magnetization (M s = 7.3 kG), and La 2Co 16Ti has a high Ms(9.5 kG) but Ha too low for most applications (16 kOe). Though these two end-membersmore » have previously well-known properties, changing economic conditions have made re-examination of systems containing cerium and lanthanum necessary as the economic viability of rare earth mining becomes dependent on extraction of products beyond what is currently considered useful and profitable within the rare earth elements. We find that replacing some lanthanum with cerium in La 2Co 16Ti increases H a by a factor of more than two, while decreasing M s by less than 5%. The measured Ms indicate maximum possible energy products in excess of 20 MG·Oe in these materials, which have Curie temperatures near 600 °C. Real energy products are expected to be greatest near x = 1. In conclusion, these findings identify La xCe 2-xCo 16Ti as a promising system for development of so-called gap magnets that fill the energy product gap between expensive rare-earth magnets and current non-rare earth alternatives.« less

  15. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    PubMed

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  16. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds

    DOE PAGES

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; ...

    2017-11-09

    Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less

  17. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.

    Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less

  18. Magnetic and Superconducting Properties in Single Crystalline Fe1+δTe1-xSex (x<0.50) System

    NASA Astrophysics Data System (ADS)

    Jinhu Yang,; Mami Matsui,; Masatomo Kawa,; Hiroto Ohta,; Chishiro Michioka,; Chiheng Dong,; Hangdong Wang,; Huiqiu Yuan,; Minghu Fang,; Kazuyoshi Yoshimura,

    2010-07-01

    The spin-fluctuation effect in the Se-substituted single crystalline Fe1+δTe1-xSex (x = 0, 0.05, 0.12, 0.20, 0.30, 0.33, 0.45, and 0.48; 0≤δ≤ 0.12) and the polycrystalline Fe1.11Se has been studied by the measurements of the X-ray diffraction, the magnetic susceptibility under high magnetic fields and the electrical resistivity under magnetic fields up to 14 T. The samples with x = 0.05, 0.12, 0.20, 0.30, 0.33, 0.45, and 0.48 show superconducting transition temperatures in the ranger of 10-14 K. We obtained their intrinsic susceptibilities by the Honda-Owen method. A nearly linear-in-T behavior in magnetic susceptibility of Se-rich superconducting samples was observed, indicating the antiferromagnetic spin fluctuations have a strong link with the superconductivity in this series. The upper critical field μ0Hc2orb for T\\to 0 was estimated to exceed the Pauli paramagnetic limit. The Kadowaki-Woods and Wilson ratios indicate that electrons are strongly correlated in this system. Furthermore, the superconducting coherence length and the electron mean free path were also discussed. These superconducting parameters indicate that the superconductivity in the Fe1+δTe1-xSex system is unconventional.

  19. Magnetic polarons in antiferromagnetic CaMnO3-x (x<0.01) probed by O17 NMR

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Verkhovskii, S.; Yakubovskii, A.; Gerashenko, A.; Monod, P.; Kumagai, K.; Mikhalev, K.; Buzlukov, A.; Litvinova, Z.; Gorbenko, O.; Kaul, A.; Kartavtzeva, M.

    2009-06-01

    We study with O17 NMR and bulk magnetization a lightly electron doped CaMnO3-x (x<0.01) polycrystalline sample in the G -type antiferromagnetic state. The O17 NMR spectra show two lines with very different intensities corresponding to oxygen sites with very different local magnetic environments. The more intense unshifted line is due to the antiferromagnetic (AF) matrix. The thermal dependence of the magnetic moment of the AF sublattice deduced from the O17 linewidth is typical of insulating three-dimensional Heisenberg antiferromagnets. The less intense, strongly shifted line directly evidences the existence of ferromagnetic (FM) domains embedded in the AF spin lattice. The extremely narrow line in zero magnetic field indicates a nearly perfect alignment of the manganese spins in the FM domains which also display an unusually weak temperature dependence of their magnetic moment. We show that these FM entities start to move above 40 K in a slow-diffusion regime. These static and dynamic properties bear a strong similarity with those of a small size self-trapped magnetic polaron.

  20. Magnetic ordering in intermetallic La1-xTbxMn2Si2 compounds

    NASA Astrophysics Data System (ADS)

    Korotin, Dm. M.; Streltsov, S. V.; Gerasimov, E. G.; Mushnikov, N. V.; Zhidkov, I. S.; Kukharenko, A. I.; Finkelstein, L. D.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    The magnetic structures and magnetic phase transitions in intermetallic layered La1-xTbxMn2Si2 compounds (the ThCr2Si2-type structure) are investigated using the first-principles method and XPS measurements. The experimentally observed transition from ferromagnetic (FM) to antiferromagnetic (AFM) ordering of Mn sublattice with increase of terbium concentration is successfully reproduced in calculations for collinear magnetic moments model. The FM →AFM change of interplane magnetic ordering at small x is irrelevant to the number of f-electrons of the rare-earth ion. In contrast it was shown to be related to the Mn-Mn in-plane distance. Calculated Tb critical concentration for this transition x ≈ 0.14 corresponds to the Mn-Mn in-plane distance 0.289 nm, very close to the experimentally observed transition distance 0.287 nm. The crystal cell compression due to substitution increases an overlap between Mndxz,yz and the rare-earth ion d orbitals. Resulting hybridized states manifest themselves as an additional peak in the density of states. We suggest that a corresponding interlayer Mn-R-Mn superexchange interaction stabilizes AFM magnetic ordering in these compounds with Tb doping level x > 0.2 . The results of DFT calculations are in agreement with X-ray photoemission spectra for La1-xTbxMn2Si2 .

  1. Structural and magnetic properties of (Co1-xNix)Cr2O4 (x = 0.5, 0.25) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Prinsloo, A. R. E.; Doyle, B. P.; Carleschi, E.; Sheppard, C. J.

    2018-05-01

    Nanoparticles of (Co1-xNix)Cr2O4, with x = 0.5 and 0.25, were prepared utilizing the sol-gel technique, in order to investigate the effect of Ni substitution at the Co site. The crystal structure of the prepared samples was identified using X-ray diffraction. Transmission electron microscopy images indicate a non-uniform distribution in particle sizes. Temperature dependent magnetization measurements as a function of probing field demonstrate different magnetic transition temperatures to that of both the parent compounds. The magnetization as a function of applied magnetic field shows a wasp-waist like feature for (Co0.5Ni0.5)Cr2O4 nanoparticles measured at 10 K, which is absent in both NiCr2O4 and CoCr2O4. This feature diminished for other measurement temperatures below the Curie temperature and was also absent at all temperatures for the (Co0.75Ni0.25)Cr2O4 nanoparticles. X-ray photoemission spectroscopy results show that the Ni cations prefers the 3+ and Co the 2+ oxidation states, while that of Cr was found to be 3+. However, mixed oxidation states were observed for Ni and Co in both samples, which can influence the magnetic properties.

  2. Investigations on the electronic, structural, magnetic properties related to shape-memory behavior in Ti{sub 2}CoX (X=Al, Ga, In)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiao-Ping, E-mail: weixp2008@gmail.com; Chu, Yan-Dong; Sun, Xiao-Wei

    2015-02-15

    Highlights: • The analysis of phase stability trend is studied for Ti{sub 2}CoX(X = Al, Ga, In). • Ti{sub 2}CoGa is more suitable as shape memory alloy. • Total magnetic moments disappear with a increase of c/a ratio for all systems. • Density of states at the Fermi level are also shown. - Abstract: Using the full-potential local orbital minimum-basis method, we have performed a systematic investigations on the electronic, structural, and magnetic properties related to shape memory applications for Ti{sub 2}CoX (X=Al, Ga, In) alloys. Our results confirm that these alloys are half-metallic ferromagnets with total magnetic moment ofmore » 2μ{sub B} per formula unit in austenite phase, and undergo a martensitic transformation at low temperatures. The relative stabilities of the martensitic phases differ considerably between Ti{sub 2}CoX (X=Al, Ga, In). Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for trends of phase. Quantitative estimates for the energetics and the magnetizations indicate that Ti{sub 2}CoGa is a promising candidate for shape memory applications.« less

  3. Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.

    1997-09-01

    We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.

  4. Quantum phase transition and non-Fermi liquid behavior in Fe1-x Co x Si (x ⩾ 0.7)

    NASA Astrophysics Data System (ADS)

    Shanmukharao Samatham, S.; Suresh, K. G.; Ganesan, V.

    2018-04-01

    We report on the nature of electron correlations in Fe1-x Co x Si (0.7 ≤slant x < 1 ) using combined results of magnetization, specific heat and transport properties. Doping driven quantum critical point is observed to occur at x˜ 0.75 . The magnetically unstable regime is identified to be centered around x\\in [0.75, 0.95 ]. The emergence of non-Fermi liquid behaviors in x  =  0.8 (near to ferromagnetic quantum critical point) and x  =  0.9 (disorder-induced) compositions are discussed on the basis of the power-law dependence of susceptibility χ ˜ T-g (g ˜ 1.07 for x  =  0.8 and 0.55 for x  =  0.9), specific heat C/T ˜ T-1+λ (λ ˜ 1.52 for x  =  0.8 and 0.9) and resistivity Δρ ˜ Td (d ˜ 1.56 for x  =  0.8 and 1.38 for x  =  0.9). Further, a comprehensive classification of doping dependent physical properties of Fe1-x Co x Si is presented in the revisited temperature-composition (T-x) phase diagram.

  5. Structural and magnetic phase transitions in EuTi 1-xNb xO 3

    DOE PAGES

    Li, Ling; Morris, James R.; Koehler, Michael R.; ...

    2015-07-30

    Here, we investigate the structural and magnetic phase transitions in EuTi 1-xNb xO 3 (0≤x≤0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pmmore » $$\\bar{3}$$m ↔ I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x≥0.1. Moreover, the structural transition in pure and doped compounds is marked by a dramatic step-like softening of the elastic moduli near T S, which resembles that of SrTiO 3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO 3.« less

  6. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGES

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  7. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    NASA Astrophysics Data System (ADS)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x < 0.65 lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, x ≈ 0.7 , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for x = 0.75 indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  8. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  9. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  10. Structure, magnetism and electronic properties in 3d-5d based double perovskite ({Sr_{1-x}} Y x )2FeIrO6

    NASA Astrophysics Data System (ADS)

    Kharkwal, K. C.; Pramanik, A. K.

    2017-12-01

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr1-x Y x )2FeIrO6 with x ≤slant 0.2 . With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr2FeIrO6 show antiferromagnetic type magnetic transition around 45 K however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr2FeIrO6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott’s variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr1-x Y x )2FeIrO6 is observed to reverse with x > 0.1 , which is believed to arise due to a change in the transition metal ionic state.

  11. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  12. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Fischer, Peter; ...

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  13. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Fischer, Peter

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  14. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  15. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE PAGES

    Rice, W. D.; Liu, W.; Pinchetti, V.; ...

    2017-04-07

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  17. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, W. D.; Liu, W.; Pinchetti, V.

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  18. Magnetism in La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.

    2016-05-23

    We study the structural and magnetic properties of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 1). Rietveld refinement of X-ray Diffraction (XRD) pattern suggests phase purity of the polycrystalline samples with R-3c space group. Interplay of Ferromagnetic (FM) and Antiferromagnetic (AFM) interaction upon Co substitution at Mn site in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} is evident from magnetic measurements. There is an optimal cobalt substitution at which the coercive field is maximum.

  19. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  20. Assessment of off-stoichiometric Zr33-xFe52+xSi15 C14 Laves phase compounds as permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Hadjipanayis, G. C.

    2018-05-01

    Recently, Fe-based rare-earth-free compounds with non-cubic crystal structures were proposed as a base for permanent magnets which would not rely on critical elements. In this work, two series of alloys, Zr27Fe73-wSiw (0 ≤ w ≤ 15) and Zr33-xFe52+xSi15 (0 ≤ x ≤ 11), were prepared and characterized after annealing at 1538 K in order to determine the fundamental magnetic properties of the C36 and C14 hexagonal Laves phase compounds. A mixture of the cubic C15 and Zr6Fe23 structures was observed instead of the expected C36 structure. The hexagonal C14 was found in all Zr33-xFe52+xSi15 alloys with its lattice parameters linearly decreasing as the Fe(Si) atoms occupy the Zr sites in the Laves phase crystal structure. The solubility limit of Fe in the C14 structure at 1538 K corresponds to x = 9.5. The Curie temperature of the C14 compounds increases with deviation from the Laves phase stoichiometry from 290 K to 530 K. The room-temperature spontaneous magnetization also increases reaching, after correcting for the non-magnetic impurities, a value of 6.7 kG. The magnetocrystalline anisotropy of the off-stoichiometric C14 Laves phase was found to be uniaxial with the easy magnetization direction parallel to the hexagonal axis. Unfortunately, the anisotropy field, which does not exceed 10 kOe, is not sufficiently high to make the compounds interesting as permanent magnet materials.

  1. Magnetic domain tuning and the emergence of bubble domains in the bilayer manganite La 2 - 2 x Sr 1 + 2 x Mn 2 O 7 ( x = 0.32 )

    DOE PAGES

    Jeong, Juyoung; Yang, Ilkyu; Yang, Jinho; ...

    2015-08-17

    Here, we report a magnetic force microscopy study of the magnetic domain evolution in the layered manganite La 2–2xSr 1+2xMn 2O 7 (with x = 0.32). This strongly correlated electron compound is known to exhibit a wide range of magnetic phases, including a recently uncovered biskyrmion phase. We observe a continuous transition from dendritic to stripelike domains, followed by the formation of magnetic bubbles due to a field- and temperature-dependent competition between in-plane and out-of-plane spin alignments. The magnetic bubble phase appears at comparable field and temperature ranges as the biskyrmion phase, suggesting a close relation between both phases. Basedmore » on our real-space images we construct a temperature-field phase diagram for this composition.« less

  2. First-principles investigations into the thermodynamics of cation disorder and its impact on electronic structure and magnetic properties of spinel Co(Cr1-x Mn x )2O4

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Ghosh, Subhradip

    2017-02-01

    Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in \\text{Co}{{≤ft(\\text{C}{{\\text{r}}1-x}\\text{M}{{\\text{n}}x}\\right)}2}{{\\text{O}}4} system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides A{{≤ft({{B}1-x}{{C}x}\\right)}2}{{\\text{O}}4} in presence of

  3. Vector magnetic field changes associated with X-class flares

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang

    1994-01-01

    We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.

  4. Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence

    NASA Astrophysics Data System (ADS)

    Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.

    2017-10-01

    Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.

  5. Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.

    2007-01-01

    The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.

  6. Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3

    DOE PAGES

    Chi, Songxue; Ye, Feng; Zhou, H. D.; ...

    2014-10-24

    A flop of electric polarization from Pmore » $$\\|$$c (P c) to P$$\\|$$ a (P a) is observed in MnTiO 3 as a spin flop transtion is triggered by a c-axis magnetic field, H $$\\|$$c=7 T. The critical magnetic field for P a is significantly reduced in Mn 1-xNi xTiO 3 (x=0.33). Neutron diffraction measurements revealed similar magnetic arrangements for the two compositions where the ordered spins couple antiferromagnetically with their nearest intra- and inter-planar neighbors. In the x=0.33 system, the single ion anisotropies of Mn 2+ and Ni 2+ compete and give rise to an additional spin reorientation transition at TR. A magnetic field, H c, aligns the spins along c for T RN. The rotation of the collinear spins away from the c-axis for TR alters the magnetic point symmetry and gives rise to new ME susceptibility tensor form. Such linear ME response provides satisfactory explanation for behavior of field-induced electric polarization in both compositions. As the Ni content increases to x=0.5 and 0.68, the ME effect disappears as a new magnetic phase emerges.« less

  7. Implications of Weak-Link Behavior on the Performance of Mo/Au Bilayer Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2011-01-01

    Understanding the physical properties of the superconducting-to-normal transition is fundamental for optimizing the design and performance of transition-edge sensors (TESs). Recent critical current measurements of Mol Au bilayer test structures show that they act as weak superconducting links, exhibiting oscillatory, Fraunhofer-like behavior with applied magnetic field. In this paper we investigate the implications of this behavior for TES X-ray detectors, under operational bias conditions. These devices include normal metal features used for absorber attachment and unexplained noise suppression, which result in modifications to the previously reported critical current behavior. We present measurements of the logarithmic resistance sensitivity with temperature, a, and current, b, as a function of applied magnetic field and bias point within the resistive transition. Results show that these important device parameters exhibit similar oscillatory behavior with applied magnetic field, which in turn affects the signal responsivity and noise, and hence the energy resolution. These results show the significance of the critical current in determining the performance of TESs and hold promise to improve future.

  8. Monoclinic distortion and magnetic coupling in the double perovskite Sr{sub 2−x}Ca{sub x}YRuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, P.L.; Ghivelder, L.; Eslava, G.G.

    2014-12-15

    Abstracts: This work investigates in the insulating double perovskites Sr{sub 2−x}Ca{sub x}YRuO{sub 6}. We address the angular dependence of the strength of the magnetic coupling due to the deviation from planarity of the basal layers of the monoclinic structure, characterized by the in-plane angle α<180°, in order to probe the impact of the structural distortions in the magnetic properties of the compounds. High resolution x-ray powder diffraction, susceptibility, and specific heat measurements were performed. The deviation from planarity significantly increases (α=144° for x=1) while the bond distances vary in a complex way as a consequence of the strong monoclinic distortion.more » We found that the magnetic transition temperature, T{sub M}, shows a linear dependence on cos [(π−α)/2]. This result is discussed in terms of t{sub 2g}(π)–e{sub g}(σ) mixing of the magnetic orbitals of the Ru{sup 5+} ions and unbalanced competitive super-exchange interactions. The deleterious effect of Ca doping for the magnetic coupling is confirmed by the reduction in the short-range antiferromagnetic correlations characteristic of the parent compound at T>>T{sub M} and the enhancement of magnetic frustration for T« less

  9. Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2015-03-01

    The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.

  10. Thermoelectric and magnetic properties of CeRh 1- xM xSn (M=Co, Ni, Ru)

    NASA Astrophysics Data System (ADS)

    Echizen, Yuji; Yamane, Kyotaro; Takabatake, Toshiro

    2003-05-01

    The thermopower S, electrical resistivity ρ, and magnetic susceptibility χ are reported on CeRh 1- xM xSn (M=Co, Ni, Ru; x⩽0.25). The Ni doping changes the valence-fluctuating behavior of χ( T) for x=0 to the Currie-Weiss type, whereas the Ru one to the Pauli-type. Nevertheless, all the substitutions result in a decrease of the rather large maximum of S=60 μV/ K for x = 0.

  11. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments Database

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  12. Crystal structure and magnetism of the FexNi8-xSi3 materials, 0 ≤ x ≤ 8

    NASA Astrophysics Data System (ADS)

    Gallus, Simone; Haddouch, Mohammed Ait; Chikovani, Mamuka; Perßon, Jörg; Voigt, Jörg; Friese, Karen; Senyshyn, Anatoliy; Grzechnik, Andrzej

    2018-02-01

    The crystal structure and magnetic properties of the materials FexNi8-xSi3 with 0 ≤ x ≤ 8 have been investigated to estimate any possible magnetocaloric effect and compare it to that in known magnetocalorics. Two structural ranges could be identified in this system by X-ray and neutron diffraction. The structure of the samples with 0 ≤ x ≤ 4 is related to the trigonal structure of Ni31Si12. Doubled c lattice parameters compared to the one in Ni31Si12 are observed in the samples with x = 2 and x = 3. The average structure of Fe2Ni6Si3 has been determined by X-ray single-crystal diffraction. The compounds with the compositions 5 ≤ x ≤ 8 crystallize in cubic Fe3Si-type structure. Magnetic measurements have shown that the compound Fe3Ni5Si3 displays a phase transition close to room temperature. However, its magnetocaloric effect is much smaller than the one in the promising magnetocaloric materials.

  13. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    NASA Astrophysics Data System (ADS)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  14. The effect of A-site substitution on the structure and magnetism of Sr2-xPrxFeCoO6 (x = 0, 1, 2)

    NASA Astrophysics Data System (ADS)

    Haripriya, G. R.; Chakraborty, Debamitra; Pradheesh, R.; Sankaranarayanan, V.; Sethupathi, K.

    2018-05-01

    The paper presents the variation of structure and magnetism observed with the A-site composition of the double perovskite oxide Sr2-xPrxFeCoO6 (x = 0, 1, 2). The lattice symmetry was found to be lowered from tetragonal (x = 0) to orthorhombic (x = 2). With a ratio 1:1 of Sr and Pr, a highly asymmetric monoclinic structure is observed. The magnetic behavior of the middle member (x = 1) shows resemblance with that of Sr2FeCoO6, indicating the effect of Sr in the dilution of rare earth magnetism.

  15. Oscillatory brain responses in spoken word production reflect lexical frequency and sentential constraint.

    PubMed

    Piai, Vitória; Roelofs, Ardi; Maris, Eric

    2014-01-01

    Two fundamental factors affecting the speed of spoken word production are lexical frequency and sentential constraint, but little is known about their timing and electrophysiological basis. In the present study, we investigated event-related potentials (ERPs) and oscillatory brain responses induced by these factors, using a task in which participants named pictures after reading sentences. Sentence contexts were either constraining or nonconstraining towards the final word, which was presented as a picture. Picture names varied in their frequency of occurrence in the language. Naming latencies and electrophysiological responses were examined as a function of context and lexical frequency. Lexical frequency is an index of our cumulative learning experience with words, so lexical-frequency effects most likely reflect access to memory representations for words. Pictures were named faster with constraining than nonconstraining contexts. Associated with this effect, starting around 400 ms pre-picture presentation, oscillatory power between 8 and 30 Hz was lower for constraining relative to nonconstraining contexts. Furthermore, pictures were named faster with high-frequency than low-frequency names, but only for nonconstraining contexts, suggesting differential ease of memory access as a function of sentential context. Associated with the lexical-frequency effect, starting around 500 ms pre-picture presentation, oscillatory power between 4 and 10 Hz was higher for high-frequency than for low-frequency names, but only for constraining contexts. Our results characterise electrophysiological responses associated with lexical frequency and sentential constraint in spoken word production, and point to new avenues for studying these fundamental factors in language production. © 2013 Published by Elsevier Ltd.

  16. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K.

    2018-05-01

    We follow up on the Sterling et al. discovery that nearly all polar coronal X-ray jets are made by an explosive eruption of a closed magnetic field carrying a miniature filament in its core. In the same X-ray and EUV movies used by Sterling et al., we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that (1) in a large majority of polar X-ray jets, the runaway internal/tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament’s rise and the spire-producing external/breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts, there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The variety of event sequences in the eruptions supports the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea and recent observations indicating that magnetic flux cancellation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field’s jet-driving explosion together suggest that flux cancellation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field’s explosion.

  17. Evaluation of null-point detection methods on simulation data

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Fu, Huishan; Vaivads, Andris; Khotyaintsev, Yuri; Lapenta, Giovanni; Markidis, Stefano

    2014-05-01

    We model the measurements of artificial spacecraft that resemble the configuration of CLUSTER propagating in the particle-in-cell simulation of turbulent magnetic reconnection. The simulation domain contains multiple isolated X-type null-points, but the majority are O-type null-points. Simulations show that current pinches surrounded by twisted fields, analogous to laboratory pinches, are formed along the sequences of O-type nulls. In the simulation, the magnetic reconnection is mainly driven by the kinking of the pinches, at spatial scales of several ion inertial lentghs. We compute the locations of magnetic null-points and detect their type. When the satellites are separated by the fractions of ion inertial length, as it is for CLUSTER, they are able to locate both the isolated null-points, and the pinches. We apply the method to the real CLUSTER data and speculate how common are pinches in the magnetosphere, and whether they play a dominant role in the dissipation of magnetic energy.

  18. Characterization of magnetic and dielectric properties of Bi(1-x)Gd(x)FeO3 nanoparticles by local structure analyses.

    PubMed

    Yanoh, Takuya; Kurokawa, Akinobu; Takeuchi, Hiromasa; Yano, Shinya; Onuma, Kazuki; Kondo, Takaya; Miike, Kazunari; Miyasaka, Toshiki; Mibu, Ko; Ichiyanagi, Yuko

    2014-03-01

    Bi(1-x)Gd(x)FeO3 (0 < or = x < or = 1.0) nanoparticles were synthesized by a wet chemical method. The annealing temperatures were controlled to obtain single-phase Bi(1-x)Gd(x)FeO3 nanoparticles. The crystal diameters decreased as the number of doped Gd ions increased. The crystal structure changed, as the number of Gd ions increased, from rhombohedral to orthorhombic perovskite, at x = 0.2. The behavior of the magnetization curves observed at various values of x (x = 0.05, 0.1, 0.15) of the rhombohedral structure suggested that the canted antiferromagnetism and remanent magnetization (M(r)) drastically increased, compared with those at x = 0 (BiFeO3). It is suggested that the spin-canting angle of the Fe ions increased with the increase in the number of Gd ions. The dielectric properties at x = 0.1 showed that the dielectric loss (tan delta) was improved, compared with that at x = 0 (BiFeO3), by approximately 90%, while the real part of the dielectric constant epsilon' was reduced by approximately 15%. The reason is that the doping impurities restrained the reduction in the leakage current. It was found, from the X-ray absorption fine structure (XAFS) spectra, that Gd ions were doped accurately and that the symmetry of the B site was improved. The Mössbauer analysis suggested the existence of magnetic cycloid spiral ordering.

  19. Coupling of electronic and magnetic properties in Fe1+y(Te1-xSex)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, T. J.; Qian, B.; Mao, Z. Q.

    2013-09-01

    We have studied the coupling of electronic and magnetic properties in Fe1+y(Te1-xSex) via systematic specific heat, magnetoresistivity (MR), and Hall coefficient measurements on two groups of samples with y=0.02 and 0.1. In the y=0.02 series, we find that the 0.09<x<0.3 composition region, where superconductivity is suppressed, has a large Sommerfeld coefficient γ (˜55-65 mJ/mol K2), positive Hall coefficient RH, and negative MR at low temperature, in sharp contrast with the x = 0.4-0.5 region, where γ drops to ˜26 mJ/mol K2 and RH and MR become negative and positive, respectively, at low temperature. Dramatic changes of γ, as well as sign reversal in low-temperature RH and MR, are also observed across the x˜0.1 boundary, where the long-range antiferromagnetic order is suppressed. However, for the system with rich interstitial excess Fe (y=0.1), where bulk superconductivity is suppressed even for x = 0.4-0.5, the variations of γ, RH, and MR with x are distinct from those seen in y=0.02 system: γ is ˜40 mJ/mol K2 for 0.1<x<0.3 and drops to ˜34 mJ/mol K2 for x = 0.4-0.5; RH and MR do not show any sign reversal as x is increased above 0.3. We will show that all these results can be understood in light of the evolution of the incoherent magnetic scattering by (π,0) magnetic fluctuations with Se concentration. In addition, with the suppression of magnetic scattering by the magnetic field, we observed the surprising effect of a remarkable increase in the superconducting volume fraction under moderate magnetic fields for x = 0.3-0.4 samples in the y=0.02 system.

  20. Rheological behavior of magnetic powder mixtures for magnetic PIM

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hun; Kim, See Jo; Park, Seong Jin; Mun, Jun Ho; Kang, Tae Gon; Park, Jang Min

    2012-06-01

    Powder injection molding (PIM) is a promising manufacturing technology for the net-shape production of small, complex, and precise metal or ceramic components. In order to manufacture high quality magnets using PIM, the magneto-rheological (MR) properties of the PIM feedstock, i.e. magnetic powder-binder mixture, should be investigated experimentally and theoretically. The current research aims at comprehensive understanding of the rheological characteristics of the PIM feedstock. The feedstock used in the experiment consists of strontium ferrite powder and paraffin wax. Steady and oscillatory shear tests have been carried out using a plate-and-plate rheometer, under the influence of a uniform magnetic field applied externally. Rheological properties of the PIM feedstock have been measured and characterized for various conditions by changing the temperature, the powder fraction and the magnetic flux density.

  1. Synthesization and magnetic properties of Ba1-xYxFe12O19 hexaferrites prepared by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Rehman, Khalid Mehmood Ur; Liu, Xiansong; Li, Mingling; Jiang, Shuai; Wu, Yingchun; Zhang, Cong; Liu, Chaocheng; Meng, Xiangyu; Li, Haohao

    2017-03-01

    M-type hexaferrite Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powder and magnets existed to ready according to the conventional ceramic reaction method. X-ray difractometer was used to study the phase compositions of the calcites powder samples. There was a single magnetoplumbite segment in the calcanei magnetic powder with the intensification of x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13. The influence of yttrium aggregation on attractive possessions of the magnets was studied scientifically. The magnetic properties of the magnets were measured by a magnetic properties test instrument (VSM). The saturation magnetization (σs) and coercivity (Hcj) of the Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powders with different Yttrium aggregation (x) were determined. The saturation magnetization (σs) was decreased whereas coercivity (Hcj) was increased. The magnetic properties of the magnet at x=0.13 reached the maximum values.

  2. Effects of Si-doping on magnetic properties of Ga1-xCrxN

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongpo; Yang, Zongxian; Liu, Chang

    2015-01-01

    Ga1-xCrxN thin films with and without the Si doping have been prepared by molecular beam epitaxy. The samples have been investigated by X-ray diffraction, X-ray photoemission spectroscopy, photoluminescence, optical absorption spectra and magnetic measurements. It has been confirmed that for the undoped samples Cr in GaN is predominantly trivalent when substituting for Ga and that the Cr 3d state appears within the band gap of GaN. In Si doped specimens the upward shifts of the chemical potential are observed, and the electrons supplied by the Si doping are trapped at Cr sites forming Cr2+. As a result, the Si doping effects show an increase of the Curie temperature, and a reduction of the saturation magnetization in the Ga1-xCrxN:Si samples. The significant effect on the ferromagnetism with Si doping in Ga1-xCrxN is explained by the percolation theory of bound magnetic polarons.

  3. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms.

    PubMed

    Zhang, Xin; Fu, Lingdi; Geng, Yuehua; Zhai, Xiang; Liu, Yanhua

    2014-03-01

    Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus

  4. Synthesis, structure and magnetic properties of Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) double perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.

    2009-12-15

    Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less

  5. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  6. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  7. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  8. Oscillatory supersonic kernel function method for interfering surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    In the method presented in this paper, a collocation technique is used with the nonplanar supersonic kernel function to solve multiple lifting surface problems with interference in steady or oscillatory flow. The pressure functions used are based on conical flow theory solutions and provide faster solution convergence than is possible with conventional functions. In the application of the nonplanar supersonic kernel function, an improper integral of a 3/2 power singularity along the Mach hyperbola is described and treated. The method is compared with other theories and experiment for two wing-tail configurations in steady and oscillatory flow.

  9. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  10. A Search for X-ray Emission from the First Magnetically Active T Dwarf

    NASA Astrophysics Data System (ADS)

    Williams, Peter

    2015-09-01

    Ultracool dwarfs (spectral types >M7) were long expected to be magnetically inactive, but concerted X-ray and radio observations (mostly by our group) have led to the discovery of magnetic activity and a characterization of its basic properties. We have recently discovered periodic radio bursts from the T6.5 dwarf 2MASS 1047+21, by far the coolest (900 K) substellar object detected in the radio, implying high levels of magnetic activity well into the brown dwarf regime and making it a uniquely compelling target in the challenging search for ultracool X-ray emission. We propose a 40 ks observation with ACIS-S and the VLA that will cover 6 full rotations, place the deepest constraints on X-ray luminosity to date, and may lead to the first detection of X-ray emission from a T dwarf.

  11. Structure, magnetic, and electrical properties of Zn1-xMnxO material

    NASA Astrophysics Data System (ADS)

    Sebayang, P.; Hulu, S. F.; Nasruddin, Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Ginting, M.

    2017-07-01

    ZnO and MnO2 powder were synthesized using solid state reaction method to produce Zn1-xMnxO materials. Effect of dopant concentrations at the material of Zn1-xMnxO (x = 0.015, 0.02, 0.025) to the change of crystal structure, electrical and magnetic properties was studied. The X-ray diffraction (XRD) result of the samples that were doped with Mn showed a hexagonal wurtzite polycrystalline structure. The addition of Mn dopant resulting the decrease of lattice parameters and peaks intensity. The significant increase of the peak intensity occurred at x = 0.02, which also indicated an increase in the crystal quality of ZnO. The change of the ZnO structure affected the electrical and magnetic properties of the samples.

  12. Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators

    NASA Astrophysics Data System (ADS)

    Stephey, L.; Bader, A.; Effenberg, F.; Schmitz, O.; Wurden, G. A.; Anderson, D. T.; Anderson, F. S. B.; Biedermann, C.; Dinklage, A.; Feng, Y.; Frerichs, H.; Fuchert, G.; Geiger, J.; Harris, J. H.; König, R.; Kornejew, P.; Krychowiak, M.; Lore, J. D.; Unterberg, E. A.; Waters, I.; W7-X Team

    2018-06-01

    The edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τp * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. The fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. The X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τp * and τp decrease by 10 % - 25 % depending on plasma density. The τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. These findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. This process is also effective for the control of effective helium exhaust times, as τp , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τp , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. However, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.

  13. Interplay between Superconductivity and Magnetism in Fe1-xPdxTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, A B; Garlea, Vasile O; Custelcean, Radu

    The love/hate relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions and Fe pnictides, show superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. On the other hand, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds (RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho,more » and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1-xPx)2 etc.), providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1-xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range (SR) AFM correlation with a characteristic peak in magnetic susceptibility at T'N. Superconductivity sets in when T'N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (SR) crossover regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic interactions (FM and AFM).« less

  14. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Masumi; Hudson, Hugh S.; White, Stephen M.

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, atmore » EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.« less

  15. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE PAGES

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...

    2017-12-20

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  16. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  17. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  18. Structural, magnetic, and dielectric properties of multiferroic Co1-xMgxCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Ullah, A.; Rahman, S.; Tahir, A.; Nadeem, K.; Anis ur Rehman, M.; Hussain, S.

    2017-07-01

    We examined the structural, magnetic, and dielectric properties of Co1-xMgxCr2O4 nanoparticles with composition x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 in detail. X-ray diffraction (XRD) revealed normal spinel structure for all the samples. Rietveld refinement fitting results of the XRD showed no impurity phases which signifies the formation of single phase Co1-xMgxCr2O4 nanoparticles. The average crystallite size showed a peak behaviour with maxima at x = 0.6. Raman and Fourier transform infrared (FTIR) spectroscopy also confirmed the formation of single phase normal spinel for all the samples and exhibited dominant vibrational changes for x ≥ 0.6. For x = 0 (CoCr2O4), zero field cooled/field cooled (ZFC/FC) magnetization curves showed paramagnetic (PM) to ferrimagnetic (FiM) transition at Tc = 97 K and a conical spiral magnetic order at Ts = 30 K. The end members CoCr2O4 (x = 0) and MgCr2O4 (x = 1) are FiM and antiferromagnetic (AFM), respectively. Tc and Ts showed decreasing trend with increasing x, followed by an additional AFM transition at TN = 15 K for x = 0.6. The system finally stabilized and changed to highly frustrated AFM structure at x = 1 due to formation of pure MgCr2O4. High field FC curves (5T) depicted nearly no effect on spiral magnetic state, which is attributed to strong exchange B-B magnetic interactions at low temperatures. Dielectric parameters showed a non-monotonous behaviour with Mg concentration and were explained with the help of Maxwell-Wagner model and Koop's theory. Dielectric properties were improved for nanoparticles with x = 0.6 and is attributed to their larger average crystallite size. In summary, Mg doping has significantly affects the structural, magnetic, and dielectric properties of CoCr2O4 nanoparticles, which can be attributed to variations in local magnetic exchange interactions and variation in average crystallite size of these chromite nanoparticles.

  19. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  20. Composition-driven magnetic and structural phase transitions in Bi1-xPrxFe1-xMnxO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Khomchenko, V. A.; Ivanov, M. S.; Karpinsky, D. V.; Paixão, J. A.

    2017-09-01

    Magnetic ferroelectrics continue to attract much attention as promising multifunctional materials. Among them, BiFeO3 is distinguished by exceptionally high transition temperatures and, thus, is considered as a prototype room-temperature multiferroic. Since its properties are known to be strongly affected by chemical substitution, recognition of the doping-related factors determining the multiferroic behavior of the material would pave the way towards designing the structures with enhanced magnetoelectric functionality. In this paper, we report on the crystal structure and magnetic and local ferroelectric properties of the Bi1-xPrxFe1-xMnxO3 (x ≤ 0.3) compounds prepared by a solid state reaction method. The polar R3c structure specific to the parent BiFeO3 has been found to be unstable with respect to doping for x ≳ 0.1. Depending on the Pr/Mn concentration, either the antipolar PbZrO3-like or nonpolar PrMnO3-type structure can be observed. It has been shown that the non-ferroelectric compounds are weak ferromagnetic with the remanent/spontaneous magnetization linearly decreasing with an increase in x. The samples containing the polar R3c phase exhibit a mixed antiferromagnetic/weak ferromagnetic behavior. The origin of the magnetic phase separation taking place in the ferroelectric phase is discussed as related to the local, doping-introduced structural heterogeneity contributing to the suppression of the cycloidal antiferromagnetic ordering characteristic of the pure BiFeO3.

  1. Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx

    NASA Astrophysics Data System (ADS)

    Conta, Gianluca; Amato, Giampiero; Coïsson, Marco; Tiberto, Paola

    2017-12-01

    We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons.

  2. Disentangling superconducting and magnetic orders in NaFe1 -xNixAs using muon spin rotation

    NASA Astrophysics Data System (ADS)

    Cheung, Sky C.; Guguchia, Zurab; Frandsen, Benjamin A.; Gong, Zizhou; Yamakawa, Kohtaro; Almeida, Dalson E.; Onuorah, Ifeanyi J.; Bonfá, Pietro; Miranda, Eduardo; Wang, Weiyi; Tam, David W.; Song, Yu; Cao, Chongde; Cai, Yipeng; Hallas, Alannah M.; Wilson, Murray N.; Munsie, Timothy J. S.; Luke, Graeme; Chen, Bijuan; Dai, Guangyang; Jin, Changqing; Guo, Shengli; Ning, Fanlong; Fernandes, Rafael M.; De Renzi, Roberto; Dai, Pengcheng; Uemura, Yasutomo J.

    2018-06-01

    Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors, NaFe1 -xNixAs , using single crystalline samples with Ni concentrations x =0 , 0.4, 0.6, 1.0, 1.3, and 1.5%. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x =0 and 0.4%, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for x ≳0.4 % magnetic order becomes more disordered and is completely suppressed for x =1.5 % . The magnetic volume fraction continuously decreases with increasing x . Development of superconductivity in the full volume is inferred from Meissner shielding results for x ≳0.4 % . The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T -x phase diagram for NaFe1 -xNixAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting TC for x =0.6 , 1.0, and 1.3%, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant nonmagnetic state below TC for x =1.3 % . The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s± superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an

  3. Effect of magnetic field annealing on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys with low permeability

    NASA Astrophysics Data System (ADS)

    Fan, Xingdu; Li, Meng; Zhang, Tao; Yuan, Chenchen; Shen, Baolong

    2018-05-01

    The effect of transverse magnetic field annealing (TFA) on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys was investigated with the aim of reducing effective permeability (μe). It was revealed that the increasing B content improved thermal stability, increased saturation magnetic flux density (Bs) of as-quenched alloys, while the samples exhibited a slightly larger coercivity (Hc) when the atom percentages of Si and B were similar. Permeability decreased dramatically after TFA. The decrease of permeability mainly depended on annealing temperature and magnetic field intensity. Besides, flat hysteresis loops were obtained after TFA, Lorentz micrograph observation revealed the TFA sample exhibited denser magnetic domain walls, which confirmed it was more difficult to be saturated. The Co71Fe2Si9B14Mn4 alloy was successful prepared with low μe of 3020, low Hc of 1.7 A/m and high resistance to DC bias 6 times that of as-quenched alloy at the DC field of 300 A/m.

  4. Influence of Mn concentration on magnetic topological insulator Mn xBi 2−xTe 3 thin-film Hall-effect sensor

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  5. Doping evolution of the second magnetization peak and magnetic relaxation in ( B a 1 - x K x ) F e 2 A s 2 single crystals

    DOE PAGES

    Liu, Yong; Zhou, Lin; Sun, Kewei; ...

    2018-02-16

    Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less

  6. Doping evolution of the second magnetization peak and magnetic relaxation in ( B a 1 - x K x ) F e 2 A s 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Zhou, Lin; Sun, Kewei

    Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less

  7. Reconstruction of magnetic configurations in W7-X using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Böckenhoff, Daniel; Blatzheim, Marko; Hölbe, Hauke; Niemann, Holger; Pisano, Fabio; Labahn, Roger; Pedersen, Thomas Sunn; The W7-X Team

    2018-05-01

    It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.

  8. High-energy magnetic excitations in overdoped La 2-xSr xCuO 4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; ...

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L 3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La 2₋xSr xCuO 4 with x=0.25 (T c=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La 2CuOmore » 4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L 3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  9. A doping dependent study of interplay between magnetic and superconducting properties in BaFe2-x Co x As2 single crystals

    NASA Astrophysics Data System (ADS)

    Bag, Biplab; Shaw, Gorky; Banerjee, S. S.; Vinod, K.; Bharathi, A.

    2018-03-01

    We show strong interplay between magnetic and superconducting order in three BaFe2-xCoxAs2 single crystals with different x. Our study reveals the presence of magnetic fluctuations with superconducting order in our samples and the strength of the magnetic fluctuations as well as the pinning properties are found to be the strongest for the optimally doped sample and weakest for the overdoped sample. Using local magnetization measurements, we show that application of an external magnetic field in our samples suppresses the magnetic fluctuations and enhances the diamagnetic response. Further, we show presence of unusual superconducting fluctuations above T c in our samples which we find strongly depends on the strength of the magnetic fluctuations. We believe that our data suggest the possible role of magnetic fluctuations in mediating superconducting fluctuations above Tc in our samples.

  10. On oscillatory convection with the Cattaneo–Christov hyperbolic heat-flow model

    PubMed Central

    Bissell, J. J.

    2015-01-01

    Adoption of the hyperbolic Cattaneo–Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π2≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number P1, which—in contrast to the classical stationary scenario—can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of P1∈[10−2,10+2] for both boundary regimes. PMID:25792960

  11. Magnetic properties of spinels GeNi2-xCoxO4 systems: Green's function and high-temperature series expansions

    NASA Astrophysics Data System (ADS)

    El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.

    2018-06-01

    The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.

  12. Microstrain engineered magnetic properties in Bi1-x Ca x Fe1-y Ti y O3-δ nanoparticles: deviation from Néel’s 1/d size-dependent magnetization behaviour

    NASA Astrophysics Data System (ADS)

    Mocherla, Pavana S. V.; Sahana, M. B.; Gopalan, R.; Ramachandra Rao, M. S.; Nanda, B. R. K.; Sudakar, C.

    2017-10-01

    Magnetization of antiferromagnetic nanoparticles is known to generally scale up inversely to their diameter (d) according to Néel’s model. Here we report a deviation from this conventional linear 1/d dependence, altered significantly by the microstrain, in Ca and Ti substituted BiFeO3 nanoparticles. Magnetic properties of microstrain-controlled Bi1-x Ca x Fe1-y Ti y O3-δ (y  =  0 and x  =  y) nanoparticles are analyzed as a function of their size ranging from 18 nm to 200 nm. A complex interdependence of doping concentration (x or y), annealing temperature (T), microstrain (ɛ) and particle size (d) is established. X-ray diffraction studies reveal a linear variation of microstrain with inverse particle size, 1/d nm-1 (i.e. ɛ · d  =  16.5 nm·%). A rapid increase in the saturation magnetization below a critical size d c ~ 35 nm, exhibiting a (1/d) α (α  ≈  2.6) dependence, is attributed to the influence of microstrain. We propose an empirical formula M \\propto (1/d)ɛ β (β  ≈  1.6) to highlight the contributions from both the size and microstrain towards the total magnetization in the doped systems. The magnetization observed in nanoparticles is thus, a result of the competing magnetic contribution from the terminated spin cycloid on the surface and counteracting microstrain present at a given size.

  13. Magnetic relaxation of 1D coordination polymers (X)₂[Mn(acacen)Fe(CN)₆], X = Ph₄P⁺, Et₄N⁺.

    PubMed

    Rams, Michał; Peresypkina, Eugenia V; Mironov, Vladimir S; Wernsdorfer, Wolfgang; Vostrikova, Kira E

    2014-10-06

    Substitution of the organic cation X in the 1D polymer, (X)2[Mn(acacen)Fe(CN)6], leads to an essential change in magnetic behavior. Due to the presence of more voluminous Ph4P(+) cations, the polyanion has a more geometrically distorted chain skeleton and, as a consequence, enhanced single chain magnet (SCM) characteristics compared to those for Et4N(+). The Arrhenius relaxation energy barriers, the exchange interaction constant and the zero-field splitting anisotropy of Mn(III) are determined from the analysis of magnetic measurements. The discussion is supported with ligand field calculations for [Fe(CN)6](3-) that unveils the significant anisotropy of Fe magnetic moments.

  14. Gravity Duals of Lifshitz-Like Fixed Points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao

    2008-11-05

    We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less

  15. Electronic and magnetic properties of Zn1-xFexSe alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-12-01

    The spin polarized density functional theory along with self consistent plane wave pseudopotential method is used to investigate electronic and magnetic properties of ternary Zn1-xFexSe alloys with x = 0.125, 0.25, 0.5 and 0.75. The exchange-correlation potential treated within generalized gradient approximation is used. The calculated spin-polarized band structures, partial and total density of states reveal that Zn0.875Fe0.125Se and Zn0.75Fe0.25Se exhibit half metallic ferromagnetic characteristics and Zn0.50Fe0.50Se is nearly half metallic in nature. The half metallic band gaps for x = 0.125 and 0.25 are 0.69 and 0.39 eV respectively, while the corresponding band gaps are 0.86 and 0.81 eV. The p-d hybridization reduces the magnetic moment of Fe atoms from its free space charge value of 4 μB and induces the small magnetic moments on Zn and Se sites. The results are compared with available experimental data.

  16. A deeper look at the X-ray point source population of NGC 4472

    NASA Astrophysics Data System (ADS)

    Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.

    2017-10-01

    In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.

  17. Theory of the magnetic susceptibility including zero-point spin fluctuations of itinerant nearly ferromagnetic compounds

    NASA Astrophysics Data System (ADS)

    Konno, Rikio; Hatayama, Nobukuni; Takahashi, Yoshinori

    2018-05-01

    We have investigated the temperature dependence of the magnetic susceptibility of itinerant nearly ferromagnetic compounds based on the spin fluctuation theory. It is based on the conservation of the local spin amplitude that consists of both the thermal and the zero-point components. The linear dependence of the zero-point spin fluctuation amplitude on the inverse of magnetic susceptibility is usually assumed. The purpose of our present study is to include its higher order terms and to see their effects on the magnetic susceptibility. For the thermal amplitude, it shows T2-linear temperature dependence at low temperatures.

  18. Observation of spatial and temporal variations in X-ray bright point emergence patterns. [at solar surface

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.

  19. Magnetic and absorbing properties of M-type substituted hexaferrites BaFe{sub 12–x}Ga{sub x}O{sub 19} (0.1 < x < 1.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhanov, S. V., E-mail: trukhanov@ifttp.bas-net.by; Trukhanov, A. V.; Kostishin, V. G.

    2016-09-15

    X-ray powder diffraction is used to determine the unit cell parameters and to refine the crystal structure of the solid solutions of M-type hexagonal barium ferrite BaFe{sub 12–x}Ga{sub x}O{sub 19} (x = 0.1–1.2) with isostructural diamagnetic cation Ga{sup 3+} substitution at T = 300 K. As the level of substitution increases, the unit cell parameters are shown to decrease monotonically. The temperature (300 K ≤ T ≤ 750 K, H = 8.6 kOe) and field (T = 300 K,–20 kOe ≤ H ≤ 20 kOe) dependences of the saturation magnetization of these solid solutions are studied with a vibrating-sample magnetometer.more » The concentration dependences of the Curie temperature T{sub C}, the specific spontaneous magnetization, and the coercive force are plotted. The magnetic parameters are found to decrease with increasing substitution. The microwave properties of the solid solutions are analyzed in an external magnetic field (0 ≤ H ≤ 4 kOe). As the cation Ga{sup 3+} concentration increases from x = 0.1 to 0.6, the natural ferromagnetic resonance (NFMR) frequency decreases; as the concentration increases further to x = 1.2, this frequency again increases. As the cation Ga{sup 3+} concentration increases, the NFMR line width increases, which indicates a widening of the frequency range where electromagnetic radiation is intensely absorbed. Here, the resonance curve peak amplitude changes insignificantly. The shift of the NFMR frequency in an applied magnetic field is more pronounced for samples with low cation Ga{sup 3+} concentrations. The role of diamagnetic substitution is revealed, and the prospects and advantages of Ga-substituted beryllium hexaferrite as the material absorbing high-frequency electromagnetic radiation are demonstrated.« less

  20. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Vergara, F., E-mail: fer_martina@u.uchile.cl; Galdamez, A., E-mail: agaldamez@uchile.cl; Manriquez, V.

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4}more » were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.« less

  1. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; ...

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  2. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    DOE PAGES

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...

    2015-11-03

    Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less

  3. A magnetic isolation and pointing system for the astrometric telescope facility

    NASA Technical Reports Server (NTRS)

    Smith, Marcie; Hibble, William; Wolke, Patrick J.

    1993-01-01

    The astrometric telescope facility (ATF), a 20-meter telescope designed for long-term detection and observation of planetary systems outside of the solar system, is scheduled to be a major user of the Space Station's payload pointing system (PPS) capabilities. However, because the ATF has such a stringent pointing stability specification (as low as 0.01 arcsec error over the frequency range from 5 to 200 hertz) and requires +/- 180-degree roll rotation around the telescope's line of sight, the ATF's utilization of the PPS requires the addition of a mechanism or mechanisms to enhance the basic PPS capabilities. The results of a study conducted to investigate the ATF pointing performance achievable by the addition of a magnetic isolation and pointing (MIPS) system between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base are presented. In addition, the study produced requirements on magnetic force and gap motion as a function of the level of Space Station disturbance. These results were used to support the definition of a candidate MIPS. Pointing performance results from the study indicate that a MIPS can meet the ATF pointing requirements in the presence of a PPS base transitional acceleration of up to 0.018g, with reasonable restrictions placed on the isolation and pointing bandwidths. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes (less than 0.1 hertz) to meet ATF pointing requirements. The candidate MIPS is based on an assumed base translational disturbance of 0.01g. The system fits within the available annular region between the PPS and ATF while meeting power and weight limitations and providing the required payload roll motion. Payload data and power services are provided by noncontacting transfer devices.

  4. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  5. MULTI-FREQUENCY OSCILLATORY VENTILATION IN THE PREMATURE LUNG: EFFECTS ON GAS EXCHANGE, MECHANICS, AND VENTILATION DISTRIBUTION

    PubMed Central

    Kaczka, David W.; Herrmann, Jacob; Zonneveld, C. Elroy; Tingay, David G.; Lavizzari, Anna; Noble, Peter B.; Pillow, J. Jane

    2015-01-01

    Background Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. We hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared to traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed ‘multi-frequency oscillatory ventilation’ (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Methods Thirteen intubated preterm lambs were randomized to either SFOV or MFOV for 1 hour, followed by crossover to the alternative regimen for 1 hour. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, while the customized MFOV waveform consisted of a 5 Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening (P̅ao) and inspired O2 fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted 15-minute intervals. A ventilatory cost function for SFOV and MFOV was defined as VC=(Vrms2PaCO2)Wt−1, where Wt denotes body weight. Results Averaged over all time points, MFOV resulted in significantly lower VC (246.9±6.0 vs. 363.5±15.9 mL2 mmHg kg−1) and P̅ao (12.8±0.3 vs. 14.1±0.5 cmH2O) compared to SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Conclusions Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared to traditional single-frequency HFOV. PMID:26495977

  6. Electrolytic hydriding of LaFe(13-x)Si(x) alloys for energy efficient magnetic cooling.

    PubMed

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P; Cohen, Lesley F

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe(13-x)Si(x)-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic resonance studies of mixed chalcospinel CuCr2SxSe4-x (x = 0; 2) and CoxCu1-xCr2S4 (x = 0.1; 0.2) nanocrystals with strong interparticle interactions

    NASA Astrophysics Data System (ADS)

    Pankrats, A. I.; Vorotynov, A. M.; Tugarinov, V. I.; Zharkov, S. M.; Zeer, G. M.; Ramasamy, K.; Gupta, A.

    2018-04-01

    Magnetic resonance characteristics of mixed chalcospinel nanocrystals CuCr2SxSe4-x (x = 0 and 2) and CoxCu1-xCr2S4 (x = 0.1 and 0.2) have been investigated. It has been established based on TEM, SEM and resonance data that all the samples contain both blocks with sizes from 1 to 50 m of compacted nanosized crystallites and individual nanoparticles with sizes from 10 to 30 nm. The studies provide evidence of strong interparticle interaction in all the samples leading to high values of the blocking temperature. Magnetic dipolar field arise in the boundary regions of interacting adjacent nanocrystals below the blocking temperature. This results in inhomogeneous broadening of the magnetic resonance spectrum along with appearance of additional absorption lines. With increase in magnetic anisotropy at low temperatures, a shift of the resonance field along with line broadening are observed for all the studied compounds due to freezing of the moments in the nanoparticles, both in the individual and compacted ones. A gapped characteristic of the resonance spectrum is established below the freezing temperature Tfr, with the energy gap defined by the averaged magnetic anisotropy . Anionic substitution of sulfur by selenium results in a decrease in the magnetic anisotropy. In contrast, cationic substitution of copper by cobalt increases the magnetic anisotropy due to a strong contribution from the latter ion.

  8. Impact of magnetic isolation on pointing system performance in the presence of structural flexibility

    NASA Technical Reports Server (NTRS)

    Seller, J.

    1985-01-01

    The inertial pointing stability of a gimbal pointing system (AGS) was compared with a magnetic pointing/gimbal followup system (ASPS), under certain conditions of system structural flexibility and disturbance inputs from the gimbal support structure. Separate 3 degree-of-freedom (3DOF) linear models based on NASTRAN modal flexibility data for the gimbal and support structures were generated for the ASPS configurations. Using the models inertial pointing control loops providing 6dB of gain margin and 45 deg of phase margin were defined for each configuration. The pointing loop bandwidth obtained for the ASPS is more than twice the level achieved for the AGS configuration. The AGS limit is attributed to the gimbal and support structure flexibility. As a result of the higher ASPS pointing loop bandwidth and the disturbance rejection provided by the magnetic isolation ASPS pointing performane is significantly better than that of the AGS system. The low frequency peak of the ASPS transfer function from base disturbance to payload angular motion is almost 60dB lower than AGS low frequency peak.

  9. Ce3 - xMgxCo9 : Transformation of a Pauli Paramagnet into a Strong Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Lamichhane, Tej N.; Taufour, Valentin; Palasyuk, Andriy; Lin, Qisheng; Bud'ko, Sergey L.; Canfield, Paul C.

    2018-02-01

    We report on the synthesis of single-crystal and polycrystalline samples of Ce3 -xMgxCo9 solid solution (0 ≤x ≲1.4 ) and characterization of their structural and magnetic properties. The crystal structure remains rhombohedral in the whole composition range and Mg partially replaces Ce in the 6 c site of the CeCo3 structure. Ferromagnetism is induced by Mg substitutions starting as low as x =0.18 and reaching a Curie temperature as high as 450 K for x =1.35 . Measurements on single crystals with x =1.34 and TC=440 K indicate an axial magnetic anisotropy with an anisotropy field of 6 T and a magnetization of 6 μB/f .u . at 300 K. Coercicity is observed in the polycrystalline samples consistent with the observed axial magnetic anisotropy. Our discovery of ferromagnetism with large axial magnetic anisotropy induced by substituting a rare-earth element by Mg is a very promising result in the search of inexpensive permanent-magnet materials and suggests that other nonmagnetic phases, similar to CeCo3 , may also conceal nearby ferromagnetic phases.

  10. SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Tsygankov, S. S.; Doroshenko, V.; Lutovinov, A. A.; Mushtukov, A. A.; Poutanen, J.

    2017-09-01

    Aims: The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (≳1013 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached 2.5 × 1039 erg s-1 comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMC X-3 is the main goal of this paper. Methods: SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Results: Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) × 1035 erg s-1 imply a relatively weak dipole field of (1-5) × 1012 G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMC X-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.

  11. Studies on the effect of the axial magnetic field on the x-ray bremsstrahlung in a 2.45 GHz permanent magnet microwave ion source.

    PubMed

    Kumar, Narender; Rodrigues, G; Lakshmy, P S; Baskaran, R; Mathur, Y; Ahuja, R; Kanjilal, D

    2014-02-01

    A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the "off-resonance" mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.

  12. Persistence of magnetic excitations in La(2-x)Sr(x)CuO4 from the undoped insulator to the heavily overdoped non-superconducting metal.

    PubMed

    Dean, M P M; Dellea, G; Springell, R S; Yakhou-Harris, F; Kummer, K; Brookes, N B; Liu, X; Sun, Y-J; Strle, J; Schmitt, T; Braicovich, L; Ghiringhelli, G; Božović, I; Hill, J P

    2013-11-01

    One of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations. Indeed, such excitations have been observed up to optimal doping in the cuprates. In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared, and this has been argued to cause the demise of HTS with overdoping. Here we use resonant inelastic X-ray scattering, which is sensitive to complementary parts of reciprocal space, to measure the evolution of the magnetic excitations in La(2-x)Sr(x)CuO4 across the entire phase diagram, from a strongly correlated insulator (x = 0) to a non-superconducting metal (x = 0.40). For x = 0, well-defined magnon excitations are observed. These magnons broaden with doping, but they persist with a similar dispersion and comparable intensity all the way to the non-superconducting, heavily overdoped metallic phase. The destruction of HTS with overdoping is therefore caused neither by the general disappearance nor by the overall softening of magnetic excitations. Other factors, such as the redistribution of spectral weight, must be considered.

  13. Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, S.A.; Watson, J.M.; Spencer, J.A.

    1996-07-01

    Previous comparisons of gene location in the three major groups of mammals (eutherians, marsupials, and monotremes) have suggested that the long arm of the human X represents the ancestral mammalian X chromosome, whereas the short arm represents an autosomal region(s) recently added to the eutherian X chromosome. To identify the fusion point of this ancient X-autosome rearrangement, we have mapped four genes, three of which map near the centromere of the human Xp, in marsupials and in a monotreme. We found that ARAF1, and GATA1 are located on the X chromosome in marsupials, and ALA2 and GATA1 are also locatedmore » on the X in the platypus. This implies that the proximal short arm of the human X chromosome, including the centromere, was part of the ancestral mammalian X chromosome. The fusion point between the conserved region and the recently added regions therefore maps to human Xp11.23, although gene order on the human X indicates that there has been some rearrangement of this region. 26 refs., 3 figs., 1 tab.« less

  14. Large amplitude oscillatory motion along a solar filament

    NASA Astrophysics Data System (ADS)

    Vršnak, B.; Veronig, A. M.; Thalmann, J. K.; Žic, T.

    2007-08-01

    Context: Large amplitude oscillations of solar filaments is a phenomenon that has been known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. Aims: We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα filtergrams, to infer the triggering mechanism and the nature of the restoring force. Methods: Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function to estimate the basic parameters of the oscillations. To identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. Results: The observed oscillations of the plasma along the filament were characterized by an initial displacement of 24 Mm, an initial velocity amplitude of 51 km s-1, a period of 50 min, and a damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π√{2}L/v_Aϕ≈4.4L/v_Aϕ, where v_Aϕ =Bϕ0/√μ_0ρ represents the Alfvén speed based on the equilibrium poloidal field Bϕ0. Conclusions: Combination of our measurements with some previous observations of the same kind of oscillations shows good agreement with the proposed interpretation. Movie to Fig. 1 is only available in electronic form at http://www.aanda.org

  15. Magnetic and magnetocaloric properties of Co2-xFexVGa Heusler alloys

    NASA Astrophysics Data System (ADS)

    Schroeder, K.; Waybright, J.; Kharel, P.; Zhang, W.; Valloppilly, S.; Herran, J.; Lukashev, P.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2018-05-01

    The magnetic and magnetocaloric properties of iron-substituted Co2VGa alloys, Co2-xFexVGa (x = 0, 0.1, 0.15, 0.2, 0.3), were investigated. The Fe-substituted samples, prepared by arc melting, melt spinning, and annealing, crystallized in the L21 Heusler structure, without any secondary phases. The Curie temperature and high-field magnetization at 50 K decreased from 345 K and 44 emu/g (1.90 μB/f.u.) for Co2VGa to 275 K and 39 emu/g (1.66 μB/f.u.) for Co1.7Fe0.3VGa, respectively, but the maximum entropy change remained almost insensitive to Fe concentration for x ≤ 0.2, the highest value being 3.3 J/kgK at 7 T for Co1.85Fe0.15VGa. First-principle calculations show that Co2VGa retains its half-metallic band structure until at least 30% of the cobalt atoms are replaced by Fe atoms. The wide operating temperature window near room temperature and the lack of thermal and magnetic hysteresis are the interesting features of these materials for application in room-temperature magnetic refrigeration.

  16. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.

    2012-01-01

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  17. Dynamics of magnetic single domain particles embedded in a viscous liquid

    NASA Astrophysics Data System (ADS)

    Usadel, K. D.; Usadel, C.

    2015-12-01

    Kinetic equations for magnetic nano particles dispersed in a viscous liquid are developed and analyzed numerically. Depending on the amplitude of an applied oscillatory magnetic field, the particles orient their time averaged anisotropy axis perpendicular to the applied field for low magnetic field amplitudes and nearly parallel to the direction of the field for high amplitudes. The transition between these regions takes place in a narrow field interval. In the low field region, the magnetic moment is locked to some crystal axis and the energy absorption in an oscillatory driving field is dominated by viscous losses associated with particle rotation in the liquid. In the opposite limit, the magnetic moment rotates within the particle while its easy axis being nearly parallel to the external field direction oscillates. The kinetic equations are generalized to include thermal fluctuations. This leads to a significant increase of the power absorption in the low and intermediate field regions with a pronounced absorption peak as function of particle size. In the high field region, on the other hand, the inclusion of thermal fluctuations reduces the power absorption. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.

  18. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  19. Oscillatory magnetic brain activity is related to dissociative symptoms and childhood adversities - A study in women with multiple trauma.

    PubMed

    Schalinski, I; Moran, J K; Elbert, T; Reindl, V; Wienbruch, C

    2017-08-15

    Individuals with trauma-related disorders are complex and heterogeneous; part of this complexity derives from additional psychopathology like dissociation as well as environmental adversities such as traumatic stress, experienced throughout the lifespan. Understanding the neurophysiological abnormalities in Post-traumatic stress disorder (PTSD) requires a simultaneous consideration of these factors. Resting state magnetoencephalography (MEG) recordings were obtained from 41 women with PTSD and comorbid depressive symptoms, and 16 healthy women. Oscillatory brain activity was extracted for five frequency bands and 11 source locations, and analyzed in relation to shutdown dissociation and adversity-related measures. Dissociative symptoms were related to increased delta and lowered beta power. Adversity-related measures modulated theta and alpha oscillatory power (in particular childhood sexual abuse) and differed between patients and controls. Findings are based on women with comorbid depressive symptoms and therefore may not be applicable for men or groups with other clinical profiles. In respect to childhood adversities, we had no reliable source for the early infancy. Trauma-related abnormalities in neural organization vary with both exposure to adversities as well as their potential to evoke ongoing shutdown responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A symplectic map for trajectories of magnetic field lines in double-null divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Crank, Willie; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in tokamaks can be any coordinates for which a transformation to (ψ,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψ is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct a map that represents the magnetic topology of double-null divertor tokamaks. For this purpose, the generating function of the simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is slightly modified. The resulting map equations for the double-null divertor tokamaks are: x1=x0-ky0(1-y0^2 ), y1=y0+kx1. k is the map parameter. It represents the generic topological effects of toroidal asymmetries. The O-point is at (0.0). The X-points are at (0,±1). The equilibrium magnetic surfaces are calculated. These surfaces are symmetric about the x- and y- axes. The widths of stochastic layer near the X-points in the principal plane, and the fractal dimensions of the magnetic footprints on the inboard and outboard side of upper and lower X-points are calculated from the map. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  1. Magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes prepared by surfactant-assisted ball milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M. L.; Yue, M., E-mail: yueming@bjut.edu.cn; Wu, Q.

    2016-05-15

    Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes with CaCu{sub 5} structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu{sub 5}-type (Sm, Pr){sub 1}Co{sub 5} main phase and the (Sm, Pr){sub 2}Co{sub 7} impurity phase, and all of the samples exhibit a strong (00l) texture after magneticmore » alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (H{sub A}) and H{sub ci} of decrease monotonically. Maximum energy product [(BH){sub max}] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of H{sub A} on the coercivity of flakes.« less

  2. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelínek, P.; Karlický, M.; Murawski, K., E-mail: pjelinek@prf.jcu.cz

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with amore » plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.« less

  3. A comparison of coronal X-ray structures of active regions with magnetic fields computed from photospheric observations

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Vaiana, G. S.; Zombeck, M. V.; Krieger, A. S.; Timothy, A. F.

    1975-01-01

    The appearances of several X-ray active regions observed on March 7, 1970 and June 15, 1973 are compared with the corresponding coronal magnetic-field topology. Coronal fields have been computed from measurements of the longitudinal component of the underlying magnetic fields, based on the current-free hypothesis. An overall correspondence between X-ray structures and calculated field lines is established, and the magnetic counterparts of different X-ray features are also examined. A correspondence between enhanced X-ray emission and the location of compact closed field lines is suggested. Representative magnetic-field values calculated under the assumption of current-free fields are given for heights up to 200 sec.

  4. Structural and magnetic properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si Heusler alloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.

    2011-09-01

    We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less

  5. Magnetization and heat-capacity measurements on Zn1-xCrxTe

    NASA Astrophysics Data System (ADS)

    Pekarek, T. M.; Luning, J. E.; Miotkowski, I.; Crooker, B. C.

    1994-12-01

    We have taken magnetization and calorimetric measurements on Zn1-xCrxTe (x=0.003). The heat-capacity measurements show a Schottky peak indicating an energy-level splitting of 3.1 K between the ground and first excited states. Above 1.5 K we observe additional heat capacity, which indicates the presence of additional low-energy vibronic excitations. The magnetization data reveal a small anisotropy (~7%) with the (111) direction giving the largest value. The magnetization data were fit with a model including a static Jahn-Teller distortion proposed previously in these materials [J. T. Vallin, G. A. Slack, S. Roberts, and A. E. Hughes, Phys. Rev. B 2, 4313 (1970)]. Reasonable agreement was found with the data for a spin-orbit parameter of -59 cm-1 and a Jahn-Teller energy of 320 cm-1.

  6. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew

    2012-02-01

    We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.

  7. Effects of Oscillatory Flow on Fertilization in the Green Sea Urchin Strongylocentrotus droebachiensis

    PubMed Central

    Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.

    2013-01-01

    Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(u w)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(u w) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(u w). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(u w) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766

  8. Optimization of permanent magnetic properties in melt spun Co{sub 82−x}Hf{sub 12+x}B{sub 6} (x = 0–4) nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, H. W.; Liao, M. C.; Shih, C. W.

    2015-05-07

    Magnetic properties of melt spun Co{sub 82−x}Hf{sub 12+x}B{sub 6} ribbons made with various wheel speeds have been studied. The ribbons with x = 0–1 are not easy to crystallize and thus display soft magnetic behavior even at wheel speed of 10 m/s. In contrast, the ribbons with x = 1.5–4 at optimized wheel speed exhibit good permanent magnetic properties of B{sub r} = 0.41–0.59 T, {sub i}H{sub c} = 120–400 kA/m, and (BH){sub max} = 10.6–48.1 kJ/m{sup 3}. The optimal magnetic properties of B{sub r} = 0.59 T, {sub i}H{sub c} = 384 kA/m, and (BH){sub max} = 48.1 kJ/m{sup 3} are achieved for Co{sub 80}Hf{sub 14}B{sub 6} ribbons at wheel speed of 30 m/s. X-ray diffraction, thermo-magnetic analysis, and transmission electron microscopy resultsmore » show that good hard magnetic properties of Co{sub 82−x}Hf{sub 12+x}B{sub 6} ribbons (x = 2–4) are originated from the Co{sub 11}Hf{sub 2} phase well coupled with the Co phase. The change of magnetic properties for Co{sub 82−x}Hf{sub 12+x}B{sub 6} ribbons spun at various wheel speeds is correlated to microstructure and phase constitution. The strong exchange-coupling effect between magnetic grains for the ribbons with x = 2–3 at wheel speed = 30 m/s leads to remarkable permanent magnetic properties. The presented results suggest that the optimized Co{sub 82−x}Hf{sub 12+x}B{sub 6} (x = 2–3) ribbons are much suitable than others (x = 0–1.5 and 4) for making rare earth and Pt-free magnets.« less

  9. Suppression of magnetic order in CaCo1.86As2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca (Co1-xFex) yAs2

    NASA Astrophysics Data System (ADS)

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.

    2017-02-01

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x ≤1 , 1.86 ≤y ≤2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.

  10. Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn{sub 3+x}Ni{sub 1−x}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Sihao; Sun, Ying; Wang, Lei

    2016-01-25

    The near-zero temperature coefficient of resistivity (NZ-TCR) behavior is reported in the antiperovskite compounds Mn{sub 3+x}Ni{sub 1−x}N (0 ≤ x ≤ 0.333). Our results indicate that the broad temperature range (above 275 K extending to above 220 K) of NZ-TCR is obtained by Mn doping at the Ni site. The short-range magnetic ordering is revealed by both neutron powder diffraction and inverse magnetic susceptibility. Further, we find a strong correlation between the anomalous resistivity change of Mn{sub 3+x}Ni{sub 1−x}N from the metal-like to the NZ-TCR behavior and the lack of the long-range magnetic ordering. The possible mechanism of NZ-TCR behavior is discussed using the spin-disorder scatteringmore » model.« less

  11. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  12. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Morrison, K.; Dupas, A.; Mudryk, Y.; Pecharsky, V. K.; Gschneidner, K. A.; Caplin, A. D.; Cohen, L. F.

    2013-04-01

    We examine the character of the itinerant magnetic transition of DyCo2 by different calorimetric methods, thereby separating the heat capacity and latent heat contributions to the entropy—allowing direct comparison to other itinerant electron metamagnetic systems. The heat capacity exhibits a large λ-like peak at the ferrimagnetic ordering phase transition, a signature that is remarkably similar to La(Fe,Si)13, where it is attributed to giant spin fluctuations. Using calorimetric measurements, we also determine the point at which the phase transition ceases to be first order: the critical magnetic field, μ0Hcrit = 0.4 ± 0.1 T and temperature Tcrit = 138.5 ± 0.5 K, and we compare these values to those obtained from analysis of magnetization by application of the Shimizu inequality for itinerant electron metamagnetism. Good agreement is found between these independent measurements, thus establishing the phase diagram and critical point with some confidence. In addition, we find that the often-used Banerjee criterion may not be suitable for determination of first order behavior in itinerant magnet systems.

  13. D Haas-Van Alphen Oscillations in the Diluted Magnetic Semiconductor MERCURY(1-X)IRON(X)SELENIUM.

    NASA Astrophysics Data System (ADS)

    Miller, Michael Montgomery

    de Haas-van Alphen measurements are performed in oriented single crystals of Hg_{ rm 1-x}Fe_{rm x}Se in the range 0.0 <=q x <=q 0.05 for 0.5 < T < 4.2K for the magnetic field range 0.2 T < H < 1.0 T. These data can be interpreted in terms of a closed orbit magnetic breakdown model. The effect of Fe on the conduction band is explored in some detail. It is found that the presence of Fe lowers the Dingle temperature in a non-monotonic fashion, i.e., there is a minimum in the Dingle temperature for x ~ 0.001. This effect cannot be attributed to a gross modification of the band structure. Effective mass measurements are in good agreement with those expected for HgSe. However, the presence of Fe is seen to have a subtle effect on the band structure. The overall symmetry of the band structure may be modified by the addition of Fe. Furthermore, the presence of Fe tends to decrease the inversion asymmetry splitting of the conduction band as evidenced in the low-field beating.

  14. Local structure and X-ray magnetic circular dichroism of Au in Au-Co nanoalloys

    NASA Astrophysics Data System (ADS)

    Maurizio, C.; Michieli, N.; Kalinic, B.; Mattarello, V.; Bello, V.; Wilhelm, F.; Ollefs, K.; Mattei, G.

    2018-03-01

    Coupling a plasmonic metal with a magnetic one in thin films and nanostructures is very interesting for the emerging field of magnetoplasmonics. In particular, coupling through alloying is a promising strategy to induce a magnetic moment on the plasmonic metal atoms, in a way that is intimately related to the local structure of the (metastable) alloy material. In this framework, Au:Co bimetallic films have been produced via magnetron co-sputtering deposition. X-ray absorption spectroscopy (XAS) at both Au- and Co-edges clearly indicates the formation of a full-metallic layer composed for the major part of a binary AuxCo1-x alloy, with x = 0.7-0.8. XAS and transmission electron microscopy analyses suggest the presence of a minor fraction of segregated metals. X-ray magnetic circular dichroism (XMCD) analysis at Au L2,3 edges detected a net magnetic moment of Au atoms (μ = 0.06 μB), significantly larger (≈3.5 times) that the one for Au-capped Co nanoclusters and comparable to the one for a Co-rich Au/Co multilayer, despite the 4 times larger concentration of Co with respect to the present case. This Au-Co magnetic coupling is favored by a high degree of mixing of the two metals in the alloy.

  15. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  16. Changes of spontaneous oscillatory activity to tonic heat pain.

    PubMed

    Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  17. Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain

    PubMed Central

    Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes. PMID:24603703

  18. On singular and highly oscillatory properties of the Green function for ship motions

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Bo; Xiong Wu, Guo

    2001-10-01

    The Green function used for analysing ship motions in waves is the velocity potential due to a point source pulsating and advancing at a uniform forward speed. The behaviour of this function is investigated, in particular for the case when the source is located at or close to the free surface. In the far field, the Green function is represented by a single integral along one closed dispersion curve and two open dispersion curves. The single integral along the open dispersion curves is analysed based on the asymptotic expansion of a complex error function. The singular and highly oscillatory behaviour of the Green function is captured, which shows that the Green function oscillates with indefinitely increasing amplitude and indefinitely decreasing wavelength, when a field point approaches the track of the source point at the free surface. This sheds some light on the nature of the difficulties in the numerical methods used for predicting the motion of a ship advancing in waves.

  19. STRUCTURAL, SURFACE MORPHOLOGICAL AND MAGNETIC STUDIES OF Zn1-xFexS (x=0.00-0.10) DILUTED MAGNETIC SEMICONDUCTORS GROWN BY CO-PRECIPITATION METHOD

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Ghazanfar, M.; Arooj, N.; Riaz, S.; Hussain, S. Sajjad; Naseem, S.

    We have fabricated Zn1-xFexS (x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) diluted magnetic semiconductors using co-precipitation method. X-ray diffraction patterns depict that Zn1-xFexS appears as a dominant phase with cubic zinc blende structure and nanoscale crystallite size. In addition, a secondary phase of rhombohedral ZnS also appears; however, no additional phase arises that primarily belongs to Fe dopant. Using Debye-Scherrer relation, the crystallite size is found to be in the range of 20-27nm, which is in good agreement with the crystallite size calculated using the Williamson-Hall (WH) plot method. The appearance of secondary phase provoked to study the residual strain using Stokes-Wilson equation, which is nearly consistent to that observed using WH plot method. The surface morphology, revealed using scanning electron microscopy, depicts non-uniform surface structure with a variety of grains and void dimensions. Hysteresis loops measured for Zn1-xFexS at room temperature (RT) illustrate a paramagnetic behavior at higher fields; however, small ferromagnetic behavior is evident due to the small openings of the measured hysteresis loops around the origin. The measured RT ferromagnetism reveals the potential spintronic device applications of the studied diluted magnetic semiconductors.

  20. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  1. Cerebral oscillatory activity during simulated driving using MEG.

    PubMed

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between "passive viewing" and "active driving." "Passive viewing" was the baseline, and oscillatory differences during "active driving" showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition.

  2. Cerebral oscillatory activity during simulated driving using MEG

    PubMed Central

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between “passive viewing” and “active driving.” “Passive viewing” was the baseline, and oscillatory differences during “active driving” showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition. PMID:25566017

  3. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  4. The oscillatory entrainment of virtual pitch perception

    PubMed Central

    Aksentijevic, Aleksandar; Northeast, Anthony; Canty, Daniel; Elliott, Mark A.

    2013-01-01

    Evidence suggests that synchronized brain oscillations in the low gamma range (around 33 Hz) are involved in the perceptual integration of harmonic complex tones. This process involves the binding of harmonic components into “harmonic templates” – neural structures responsible for pitch coding in the brain. We investigated the hypothesis that oscillatory harmonic binding promotes a change in pitch perception style from spectral (frequency) to virtual (relational). Using oscillatory priming we asked 24 participants to judge as rapidly as possible, the direction of an ambiguous target with ascending spectral and descending virtual contour. They made significantly more virtual responses when primed at 29, 31, and 33 Hz and when the first target tone was harmonically related to the prime, suggesting that neural synchronization in the low gamma range could facilitate a shift toward virtual pitch processing. PMID:23630515

  5. Octet baryon magnetic moments from lattice QCD: Approaching experiment from a three-flavor symmetric point

    DOE PAGES

    Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; ...

    2017-06-23

    We used lattice QCD calculations with background magnetic fields to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is m π ~ 800 MeV, and the other corresponding to a pion mass m π ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determinemore » magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-N c limit of QCD are studied; and, in one case, the quark model prediction is significantly closer to the extracted values than the large-N c prediction. The magnetically coupled Λ-Σ 0 system is treated in detail at the SU(3) F point, with the lattice QCD results comparing favorably with predictions based on SU(3) F symmetry. Our analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely.« less

  6. Structural and magnetic properties of non-stoichiometric Fe1-xO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-04-01

    The Fe1-xO thin films of various iron deficiencies (x) have been grown at ambient temperature by reactive dc magnetron sputtering technique and their structural and magnetic properties are studied. The structural study shows that the films are polycrystalline. As the iron content (1-x) varies from 0.924 to 0.855 a clear consistent change in the preferential orientation of the grains from [111] to the [200] direction is observed. The magnetization measurements show the possible existence of small superparamagnetic defect clusters at 300 K and large spinel-type defect clusters below the Neel temperature.

  7. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology

    NASA Astrophysics Data System (ADS)

    M, RACK; D, HÖSCHEN; D, REITER; B, UNTERBERG; J, W. COENEN; S, BREZINSEK; O, NEUBAUER; S, BOZHENKOV; G, CZYMEK; Y, LIANG; M, HUBENY; Ch, LINSMEIER; the Wendelstein 7-X Team

    2018-05-01

    Probe manipulators are a versatile addition to typical plasma edge diagnostics. Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes, such as material erosion, deposition or impurity transport pathways. When combined with electrical probes, a study of scrape-off layer and plasma edge density, temperature and flow profiles as well as magnetic topologies is possible. A mid-plane manipulator is already in operation on Wendelstein 7-X. A system in the divertor region is currently under development. In the present paper we discuss the critical issue of heat and power loads, power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X. All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein 7-X. A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations. Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.

  8. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewald, J.; Nisius, T.; Abbati, G.

    Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in themore » storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.« less

  9. Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line

    NASA Technical Reports Server (NTRS)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; DeVore, C. R.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona.

  10. Electrospinning preparation, characterization and magnetic properties of cobalt-nickel ferrite (Co(1-x)Ni(x)Fe2)O4) nanofibers.

    PubMed

    Xiang, Jun; Chu, Yanqiu; Shen, Xiangqian; Zhou, Guangzhen; Guo, Yintao

    2012-06-15

    Uniform Co(1-)(x)Ni(x)Fe(2)O(4) (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanofibers with average diameter of 110 nm and length up to several millimeters were prepared by calcination of electrospun precursor nanofibers containing polymer and inorganic salts. The as-spun and calcined nanofibers were characterized in detail by TG-DTA, XRD, FE-SEM, TEM, SAED and VSM, respectively. The effect of composition of the nanofibers on the structure and magnetic properties were investigated. The nanofibers are formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) as the structure-directing template. The structural characteristics and magnetic properties of the resultant nanofibers vary with chemical composition and can be tuned by adjusting the Co/Ni ratio. Both lattice parameter and particle size decrease gradually with increasing nickel concentration. The saturation magnetization and coercivity lie in the range 29.3-56.4 emu/g and 210-1255 Oe, respectively, and both show a monotonously decreasing behavior with the increase in nickel concentration. Such changes in magnetic properties can mainly be attributed to the lower magnetocrystalline anisotropy and the smaller magnetic moment of Ni(2+) ions compared to Co(2+) ions. Furthermore, the coercivity of Co-Ni ferrite nanofibers is found to be superior to that of the corresponding nanoparticle counterparts, presumably due to their large shape anisotropy. These novel one-dimensional Co-Ni ferrite magnetic nanofibers can potentially be used in micro-/nanoelectronic devices, microwave absorbers and sensing devices. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Interplay between superconductivity and magnetism in Fe1−xPdxTe

    PubMed Central

    Karki, Amar B.; Garlea, V. Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E. W.; Jin, Rongying

    2013-01-01

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R′Mo6X8 (R′ = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1−xPx)2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1−xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T′N. Superconductivity sets in when T′N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions. PMID:23690601

  12. Experimental and ab initio studies on sub-lattice ordering and magnetism in Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip

    2015-10-07

    Crystallographic and magnetic properties of bulk Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co{sub 2}FeSi alloy has been found to crystallize with L2{sub 1} structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å{sup 3} as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (T{sub C}). T{sub C} showed a systematic variation with x. A comparison between the valuesmore » of saturation magnetization (M{sub s}) and effective moment per magnetic atom p{sub c} estimated from the temperature dependent susceptibility data above T{sub C}, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with M{sub s} of 5.99μ{sub B}. However, M{sub s} for the alloy with x = 1.00 was found to be 5.42μ{sub B}, which is lower than the value of 6.0μ{sub B} predicted by S-P rule. Since atomic disorder is known to affect the M{sub s} and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed M{sub s} from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L2{sub 1} structure have M{sub s} value as predicted by S-P rule. However, introduction of 12.5% DO{sub 3} disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases M{sub s} of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.« less

  13. General structure of fermion two-point function and its spectral representation in a hot magnetized medium

    NASA Astrophysics Data System (ADS)

    Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.

    2018-02-01

    We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.

  14. Tuning the Magnetic and Electronic Properties of Iron(x )Silicon(1-x) Thin Films for Spintronics

    NASA Astrophysics Data System (ADS)

    Karel, Julie Elizabeth

    This dissertation investigated the magnetic and electronic properties of a potentially better alternative: off-stoichimetry, bcc-like FexSi 1-x thin films (0.43<x<0.77). Stoichiometric Fe3Si, a Heusler alloy, has already been studied as a potential spin-injector due to a high Curie temperature, well above room temperature (>800 K) and theoretically predicted high spin polarization (100%). However, little work has been done on off-stoichiometry FexSi1-x thin films (0.43<x<0.77), where it may be possible to further enhance the properties, including the spin-polarization. In addition to being a potential spin-injector, the FE xSi1-x system is unique in that thin film growth techniques allow access to varying degrees of both chemical and structural order over a wide composition range. In the crystalline system, three different bcc-like structures (D03, B2, A2), each with a different degree of chemical order, are possible. The A2 structure is a chemically disordered random bcc solid solution, and the B2 structure is a partially ordered CsCl structure with Fe on the cube corner sites and Fe/Si randomly arranged on the body center sites. Finally, the D03 structure is chemically ordered with Fe on the cube corners and Fe and Si alternating in the body centers. Amorphous FexSi1-x thin films can also be fabricated, allowing for a comprehensive and direct comparison of the magnetic properties. This work probed the effects of chemical and structural disorder on the magnetic and electronic properties of FexSi1-x thin films. The magnetism was found to strongly depend on the chemical order for both the crystalline and amorphous structures. The chemically disordered A2 structure has more Fe-Fe pairs than the chemically ordered B2 or D0 3 structures, leading to a larger predicted moment. The magnetic moments for the B2 and D03 structures are not significantly different. They should, in fact, be essentially the same since the first nearest neighbor environments are the same; on

  15. Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics

    NASA Astrophysics Data System (ADS)

    Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.

    2018-05-01

    In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies

  16. Lattice and magnetic dynamics in perovskite Y1 -xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Li, Bing; Louca, Despina; Niedziela, Jennifer; Li, Zongyao; Zhang, Libin; Zhou, Jianshi; Goodenough, John B.

    2016-12-01

    Inelastic neutron scattering combined with the dynamic pair density function (DPDF) analysis were used to investigate the magnetic and lattice dynamics in the orbitally active Y1 -xLaxTiO3 as it crosses the antiferromagnetic (AFM) to ferromagnetic (FM) phase boundary. Upon doping, the FM state present in YTiO3 is suppressed on approaching a critical concentration of xc˜0.3 in which TC≃0 , and is replaced by the AFM phase of LaTiO3. Below xc, magnetic scattering from spin waves is dominant at low energies. At xc with a TC≃0 , magnetic scattering is also observed and is most likely due to AFM fluctuations. At the same time, local atomic fluctuations extending to 50 meV are observed above and below the magnetic transitions from 0 ≤x ≤1 that show distinct characteristics with x . From Y to La, a clear difference is observed in the phonon density of states as a function of doping as well. At x =0.15 and 0.3, low-energy modes involving predominantly the rare-earth ion become suppressed with increasing temperature, while in x =1 , strong suppression of phonon modes across a wide range in energy is observed above TN. It is likely that in the Y heavy samples, phonon modes below 20 meV have a stronger influence on the orbital excitations, while in LaTiO3, a strong phonon dependence is observed upon cooling up to TN.

  17. Spin canting and magnetic transition in NixZn1-xFe2O4 (x=0.0, 0.5 and 1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Stuti; Raghav, Dharmendra Singh; Yadav, Prashant; Varma, G. D.

    2018-04-01

    Nanoparticles of NixZn1-xFe2O4(x=0.0, 0.5 and 1.0) have been synthesized via co-precipitation method and studied thestructural and magnetic properties. Rietveld refinement of X ray diffraction data of as synthesized samples revealthat the samples have mixed spinel structure with space group Fd-3m. The lattice parameter of the samples decreases as doping concentration of Ni ions increases. Magnetic measurements show paramagnetic to ferrimagnetic transition at room temperature on Ni doping in ZnFe2O4 nanoparticles. The magnetic measurements also show spin canting in samples possibly due to their nanocrystalline nature. The spin canting angles have been calculated with the help of Yafet-Kittel (Y-K) model. Furthermore, the Law of approach (LA) fitting of M-H curves indicates that the samples are highly anisotropicin nature. The Arrot plots of as synthesized samples also indicate the paramagnetic to ferrimagnetic transition. The correlation between the structural and observed magnetic properties of NixZn1-xFe2O4(x=0.0, 0.5 and 1.0) nanocrystals will be described and discussed in this paper.

  18. Imaging a Magnetic-breakout Solar Eruption

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Liu, Wei; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang

    2016-04-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ˜100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions.

  19. Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Erchidi Elyacoubi, A. S.; Masrour, R.; Jabar, A.

    2018-03-01

    We have used Monte Carlo simulation to study the magnetocaloric effect on SmFe1-xMnxO3 perovskite. The temperature-dependent magnetization shows that the Néel temperature of the weak-ferromagnetic SmFeO3 decreases as Fe ions are substituted by Mn ions. A paramagnetic-to-weak-antiferromagnetic transition with decreasing the temperature is observed and the corresponding Néel temperature essentially decreases as the Mn content increases. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at paramagnetic-like behavior TK(K) and at Néel temperature TN(K) of SmFe1-xMnxO3. The second phase transition is established. The magnetic entropy change is given for a several magnetic fields. We have also determined the relative cooling power for dilution x = 0.5 and for a several external magnetic fields. Finally, the magnetic hysteresis cycles have been obtained with different dilutions x and temperatures values.

  20. New developments in ALFT's soft x-ray point sources

    NASA Astrophysics Data System (ADS)

    Cintron, Dario F.; Guo, Xiaoming; Xu, Meisheng; Ye, Rubin; Antoshko, Yuriy; Antoshko, Yuriy; Drew, Steve; Philippe, Albert; Panarella, Emilio

    2002-07-01

    The new development in ALFT soft X-ray point source VSX-400 consists mainly of an improvement of the nozzle design to reduce the source size, as well as the introduction of a novel trigger system, capable of triggering the discharge hundreds of million of times without failure, and a debris removal system. Continuous operation for 8 hours at 20 kHz allows us to achieve 400 mW of useful soft X-ray radiation around 1 nm wavelength. In another regime of operation with a high energy machine, the VSX-Z, we have been able to achieve consistently 10 J of X-rays per pulse at a repetition rate that can reach 1 Hz with an input electrical energy of approximately 3 kJ and an efficiency in excess of 10-3.

  1. Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2017-11-01

    BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.

  2. X-ray Spectroscopy and Magnetism in Mineralogy

    NASA Astrophysics Data System (ADS)

    Sainctavit, Philippe; Brice-Profeta, Sandrine; Gaudry, Emilie; Letard, Isabelle; Arrio, Marie-Anne

    The objective of this paper is to present the kind of information that can be gained in the field of mineralogy from the use of x-ray magnetic spectroscopies. We review some of the questions that are unsettled and that could benefit from an interdisciplinary approach where magnetism, spectroscopy and mineralogy could be mixed. Most of the attention is focused on iron and some other 3d transition elements. The mineralogy of planetary cores and its relation with known meteorites are exemplified. The various oxide phases in the mantle and the nature of iron in these phases is also underlined. The presence of transition elements in insulating minerals and its relation with macroscopic properties such as the color of gemstones are reviewed. Finally an introduction to paleomagnetism is given with a special attention to nanomaghemites.

  3. Magnetic properties of bulk, and rapidly solidified nanostructured (Nd 1-xCe x) 2Fe 14-yCo yB ribbons

    DOE PAGES

    Pathak, Arjun K.; Khan, M.; Gschneidner, Jr., K. A.; ...

    2015-11-06

    Magnetic properties of Ce and Co co-doped (Nd 1-xCe x) 2Fe 14-yCo yB compounds have been investigated both in bulk polycrystalline and rapidly solidified nanostructured ribbon forms. For certain Ce concentrations the materials exhibit spin re-orientation transitions below 140 K. The Curie temperatures, saturation magnetizations, and other magnetic properties relevant for applications as permanent magnets are controlled by Ce and Co substitutions for Nd and Fe, respectively. Most importantly, the results show that Ce, Co co-doped compounds are excellent replacements for several Dy-based high performance permanent magnets (dysprosium is one of the critical elements and is, therefore, in short supply).more » As a result, the high temperature (>375 K) magnetic properties for Nd–Ce–Fe–Co–B based alloys show promise not only as a replacement for Dy-doped Nd 2Fe 14B permanent magnets, but the new alloys also require significantly lower amounts of Nd, which too is the critical element that can be replaced by a more abundant Ce.« less

  4. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    PubMed

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well

  5. An Ultradeep Chandra Catalog of X-Ray Point Sources in the Galactic Center Star Cluster

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenlin; Li, Zhiyuan; Morris, Mark R.

    2018-04-01

    We present an updated catalog of X-ray point sources in the inner 500″ (∼20 pc) of the Galactic center (GC), where the nuclear star cluster (NSC) stands, based on a total of ∼4.5 Ms of Chandra observations taken from 1999 September to 2013 April. This ultradeep data set offers unprecedented sensitivity for detecting X-ray sources in the GC, down to an intrinsic 2–10 keV luminosity of 1.0 × 1031 erg s‑1. A total of 3619 sources are detected in the 2–8 keV band, among which ∼3500 are probable GC sources and ∼1300 are new identifications. The GC sources collectively account for ∼20% of the total 2–8 keV flux from the inner 250″ region where detection sensitivity is the greatest. Taking advantage of this unprecedented sample of faint X-ray sources that primarily traces the old stellar populations in the NSC, we revisit global source properties, including long-term variability, cumulative spectra, luminosity function, and spatial distribution. Based on the equivalent width and relative strength of the iron lines, we suggest that in addition to the arguably predominant population of magnetic cataclysmic variables (CVs), nonmagnetic CVs contribute substantially to the detected sources, especially in the lower-luminosity group. On the other hand, the X-ray sources have a radial distribution closely following the stellar mass distribution in the NSC, but much flatter than that of the known X-ray transients, which are presumably low-mass X-ray binaries (LMXBs) caught in outburst. This, together with the very modest long-term variability of the detected sources, strongly suggests that quiescent LMXBs are a minor (less than a few percent) population.

  6. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-01-01

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm2. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm2, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately

  7. Tracking of the magnet system geometry during Wendelstein 7-X construction to achieve the designed magnetic field

    NASA Astrophysics Data System (ADS)

    Andreeva, T.; Bräuer, T.; Bykov, V.; Egorov, K.; Endler, M.; Fellinger, J.; Kißlinger, J.; Köppen, M.; Schauer, F.

    2015-06-01

    Wendelstein 7-X, currently under commissioning at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimized properties of the plasma. Most of the envisaged magnetic configurations of the machine are rather sensitive to symmetry breaking perturbations which are the consequence of unavoidable manufacturing and assembly tolerances. This overview describes the successive tracking of the Wendelstein 7-X magnet system geometry starting from the manufacturing of the winding packs up to the modelling of the influence of operation loads. The deviations found were used to calculate the resulting error fields and to compare them with the compensation capacity of the trim coils.

  8. Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephey, L.; Bader, A.; Effenberg, F.

    Tmore » he edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τ p * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. he fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. he X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τ p * and τ p decrease by 10 % – 25 % depending on plasma density. he τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. hese findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. his process is also effective for the control of effective helium exhaust times, as τ p , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τ p , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. Finally, however, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.« less

  9. Impact of magnetic islands in the plasma edge on particle fueling and exhaust in the HSX and W7-X stellarators

    DOE PAGES

    Stephey, L.; Bader, A.; Effenberg, F.; ...

    2018-05-29

    Tmore » he edge magnetic structure in the Helically Symmetric eXperiment (HSX) and Wendelstein 7X (W7-X) stellarators has been shown to have a significant impact on the particle fueling and exhaust of the plasma main species (hydrogen) as well as impurity helium. For HSX, the plasma sourcing to exhaust ratio, quantified by the effective and global particle confinement times τ p * and τ p , H , respectively, increases when a magnetic island chain is located in the plasma edge. he fueling efficiency is reduced by 25% when the plasma boundary is deformed by the magnetic islands. he X-point geometry also yields higher plasma temperatures in front of the main recycling region. When the island is moved radially inward, both τ p * and τ p decrease by 10 % – 25 % depending on plasma density. he τ p , H results rely heavily on EMC3-EIRENE modeling which confirms reduced fueling efficiency due to more rapid ionization in the outward shifted island position. hese findings suggest that for a helically optimized system like HSX, the plasma fueling from the recycling source, as well as from active gas injection, can be controlled by the magnetic island chain in the plasma edge—which is a basic requirement for a divertor system. his process is also effective for the control of effective helium exhaust times, as τ p , H e * measured by perturbative gas puff experiments is reduced by up to 40% when the islands are shifted inwards. For Wendelstein 7-X, a similar reduction of τ p , H e * was inferred when magnetic islands were moved from the far plasma edge into the confined plasma region. Finally, however, the effective confinement features of H as the main plasma species were not affected due to the non-optimal position of the magnetic islands with respect to the highly localized ionization domain during the limiter startup campaign.« less

  10. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  11. Influence of the properties of soft collective spin wave modes on the magnetization reversal in finite arrays of dipolarly coupled magnetic dots

    NASA Astrophysics Data System (ADS)

    Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei

    2015-06-01

    Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.

  12. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  13. Effect of reducing atmosphere on the magnetism of Zn(1-x)Co(x)O (0≤x≤0.10) nanoparticles.

    PubMed

    Naeem, M; Hasanain, S K; Kobayashi, M; Ishida, Y; Fujimori, A; Buzby, Scott; Shah, S Ismat

    2006-05-28

    We report the crystal structure and magnetic properties of Zn(1-x)Co(x)O (0≤x≤0.10) nanoparticles synthesized by heating metal acetates in organic solvent. The nanoparticles were crystallized in the wurtzite ZnO structure after annealing in air and in a forming gas (Ar95% + H5%). The x-ray diffraction and x-ray photoemission spectroscopy (XPS) data for different Co content show clear evidence for the Co(2+) ions in tetrahedral symmetry, indicating the substitution of Co(2+) in the ZnO lattice. However, samples with x = 0.08 and higher cobalt content also indicate the presence of Co metal clusters. Only those samples annealed in the reducing atmosphere of the forming gas, that showed the presence of oxygen vacancies, exhibited ferromagnetism at room temperature. The air annealed samples remained non-magnetic down to 77 K. The essential ingredient in achieving room temperature ferromagnetism in these Zn(1-x)Co(x)O nanoparticles was found to be the presence of additional carriers generated by the presence of the oxygen vacancies.

  14. Chemical substitution study on magnetism and superconductivity in Ce1-xSmxCoIn5

    NASA Astrophysics Data System (ADS)

    Jang, Sooyoung; White, B. D.; Yazici, D.; Wong, A. S.; Maple, M. B.

    2015-03-01

    We have investigated the system Ce1-xSmxCoIn5 (0 < x < 1) by means of x-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. We observe a crossover from a coherent Kondo lattice exhibiting superconductivity to a single-ion impurity Kondo effect coexisting with magnetic order on the Sm-rich side of the phase diagram. The superconducting transition temperature, Tc, and Kondo lattice coherence temperature, Tcoh, are suppressed near x ~ 0.2 and x ~ 0.5, respectively, which is consistent with the effect of substitution with other rare-earth (RE) ions on CeCoIn5. After Tcoh is suppressed to 0 K, a single-ion impurity Kondo effect is observed for 0.5 < x <= 0.85. The compound SmCoIn5 exhibits three distinct magnetic phase transitions at roughly 8, 10, and 12 K, which are presumably associated with magnetic order; similar features are observed in the related compound SmIn3. These transition temperatures are gradually suppressed by Ce substitution and completely vanish near x ~ 0.2. We establish the phase diagram of the system Ce1-xSmxCoIn5 and compare our results with those obtained from chemical substitution studies of CeCoIn5 involving other RE ions. Research at UCSD was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Material Science and Engineering under Grant No. DE-FG02-04-ER46105.

  15. Development of a magnetic lab-on-a-chip for point-of-care sepsis diagnosis

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Shoshi, Astrit; Brueckl, Hubert

    2009-05-01

    We present design criteria, operation principles and experimental examples of magnetic marker manipulation for our magnetic lab-on-a-chip prototype. It incorporates both magnetic sample preparation and detection by embedded GMR-type magnetoresistive sensors and is optimized for the automated point-of-care detection of four different sepsis-indicative cytokines directly from about 5 μl of whole blood. The sample volume, magnetic particle size and cytokine concentration determine the microfluidic volume, sensor size and dimensioning of the magnetic gradient field generators. By optimizing these parameters to the specific diagnostic task, best performance is expected with respect to sensitivity, analysis time and reproducibility.

  16. Pressure tuning of structure, superconductivity, and novel magnetic order in the Ce-underdoped electron-doped cuprate T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guguchia, Z.; Adachi, T.; Shermadini, Z.

    High-pressure neutron powder diffraction, muon-spin rotation, and magnetization studies of the structural, magnetic, and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system with the Nd 2 CuO 4 (the so-called T ' ) structure T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 with x = 0.1 are reported. A strong reduction of the in-plane and out-of-plane lattice constants is observed under pressure. However, no indication of any pressure-induced phase transition from T ' to the K 2 NiF 4 (the so-called T) structure is observed up to the maximum applied pressure ofmore » p = 11 GPa. Large and nonlinear increase of the short-range magnetic order temperature T so in T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ) was observed under pressure. Simultaneous pressure causes a nonlinear decrease of the SC transition temperature T c . All these experiments establish the short-range magnetic order as an intrinsic and competing phase in SC T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ). The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.« less

  17. Beyond the Tipping Point: Issues of Racial Diversity in Magnet Schools Following Unitary Status

    ERIC Educational Resources Information Center

    Smrekar, Claire

    2009-01-01

    This article uses qualitative case study methodology to examine why the racial composition of magnet schools in Nashville, Tennessee, has shifted to predominantly African American in the aftermath of unitary status. The article compares the policy contexts and parents' reasons for choosing magnet schools at two points in time--under court order…

  18. Interplay of 3 d - and 5 d -sublattice magnetism in the double perovskite substitution series La2Zn1 -xCoxIrO6

    NASA Astrophysics Data System (ADS)

    Vogl, M.; Corredor, L. T.; Dey, T.; Morrow, R.; Scaravaggi, F.; Wolter, A. U. B.; Aswartham, S.; Wurmehl, S.; Büchner, B.

    2018-01-01

    We report on the interplay of 3 d - and 5 d -sublattice magnetism in polycrystalline samples of the double perovskite substitution series La2Zn1 -xCoxIrO6 . Powder x-ray diffraction reveals no major structural changes within the series. In magnetization measurements, a gradual shift of the transition temperature from TN ≈91 K for the Co parent compound to TN ≈8.7 K for the Zn parent compound is observed. The data on the Zn-rich members of the substitution series indicate that this is accompanied by changing roles of the 3 d sublattice of Co2 + and the strongly spin-orbit coupled 5 d -sublattice of Ir4 + with its jeff=1 /2 ground state, as a function of the Co/Zn ratio. Temperature-dependent specific-heat studies revealed a reduced magnetic entropy, pointing towards a large spin-orbit coupling and orbital contribution in the system.

  19. Inflection-point inflation in a hyper-charge oriented U ( 1 ) X model

    DOE PAGES

    Okada, Nobuchika; Okada, Satomi; Raut, Digesh

    2017-03-31

    Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its value during inflation below the Planck mass (ΦI≲M Pl). In order for a renormalization group (RG) improved effective λΦ 4 potential to develop an inflection-point, the running quartic coupling λ(Φ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ(Φ I)≃0 and β λ(ΦI)≃0, where β λ is the beta-function of the quartic coupling. Here in this paper, we consider the inflection-point inflation in the context of the minimal gauged U(1) Xmore » extended Standard Model (SM), which is a generalization of the minimal U(1) B$-$L model, and is constructed as a linear combination of the SM U(1) Y and U(1) B$-$L gauge symmetries. We identify the U(1) X Higgs field with the inflaton field. For a successful inflection-point inflation to be consistent with the current cosmological observations, the mass ratios among the U(1) X gauge boson, the right-handed neutrinos and the U(1) X Higgs boson are fixed. Focusing on the case that the extra U(1) X gauge symmetry is mostly aligned along the SM U(1) Y direction, we investigate a consistency between the inflationary predictions and the latest LHC Run-2 results on the search for a narrow resonance with the di-lepton final state.« less

  20. Inflection-point inflation in a hyper-charge oriented U ( 1 ) X model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika; Okada, Satomi; Raut, Digesh

    Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its value during inflation below the Planck mass (ΦI≲M Pl). In order for a renormalization group (RG) improved effective λΦ 4 potential to develop an inflection-point, the running quartic coupling λ(Φ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ(Φ I)≃0 and β λ(ΦI)≃0, where β λ is the beta-function of the quartic coupling. Here in this paper, we consider the inflection-point inflation in the context of the minimal gauged U(1) Xmore » extended Standard Model (SM), which is a generalization of the minimal U(1) B$-$L model, and is constructed as a linear combination of the SM U(1) Y and U(1) B$-$L gauge symmetries. We identify the U(1) X Higgs field with the inflaton field. For a successful inflection-point inflation to be consistent with the current cosmological observations, the mass ratios among the U(1) X gauge boson, the right-handed neutrinos and the U(1) X Higgs boson are fixed. Focusing on the case that the extra U(1) X gauge symmetry is mostly aligned along the SM U(1) Y direction, we investigate a consistency between the inflationary predictions and the latest LHC Run-2 results on the search for a narrow resonance with the di-lepton final state.« less