Science.gov

Sample records for magnetic x-point oscillatory

  1. Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2D magnetic X-point: oscillatory reconnection

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. A.; De Moortel, I.; Hood, A. W.; Brady, C. S.

    2009-01-01

    Context: This paper extends the models of Craig & McClymont (1991, ApJ, 371, L41) and McLaughlin & Hood (2004, A&A, 420, 1129) to include finite β and nonlinear effects. Aims: We investigate the nature of nonlinear fast magnetoacoustic waves about a 2D magnetic X-point. Methods: We solve the compressible and resistive MHD equations using a Lagrangian remap, shock capturing code (Arber et al. 2001, J. Comp. Phys., 171, 151) and consider an initial condition in {v}×{B} \\cdot {hat{z}} (a natural variable of the system). Results: We observe the formation of both fast and slow oblique magnetic shocks. The nonlinear wave deforms the X-point into a “cusp-like” point which in turn collapses to a current sheet. The system then evolves through a series of horizontal and vertical current sheets, with associated changes in connectivity, i.e. the system exhibits oscillatory reconnection. Our final state is non-potential (but in force balance) due to asymmetric heating from the shocks. Larger amplitudes in our initial condition correspond to larger values of the final current density left in the system. Conclusions: The inclusion of nonlinear terms introduces several new features to the system that were absent from the linear regime. A movie is available in electronic form at http://www.aanda.org

  2. Magnetic X-points, edge localized modes, and stochasticity

    SciTech Connect

    Sugiyama, L. E.; Strauss, H. R.

    2010-06-15

    Edge localized modes (ELMs) near the boundary of a high temperature, magnetically confined toroidal plasma represent a new type of nonlinear magnetohydrodynamic (MHD) plasma instability that grows through a coherent plasma interaction with part of a chaotic magnetic field. Under perturbation, the freely moving magnetic boundary surface with an X-point splits into two different limiting asymptotic surfaces (manifolds), similar to the behavior of a hyperbolic saddle point in Hamiltonian dynamics. Numerical simulation using the extended MHD code M3D shows that field-aligned plasma instabilities, such as ballooning modes, can couple to the ''unstable'' manifold that forms helical, field-following lobes around the original surface. Large type I ELMs proceed in stages. Initially, a rapidly growing ballooning outburst involves the entire outboard side. Large plasma fingers grow well off the midplane, while low density regions penetrate deeply into the plasma. The magnetic field becomes superficially stochastic. A secondary inboard edge instability causes inboard plasma loss. The plasma gradually relaxes back toward axisymmetry, with diminishing cycles of edge instability. Poloidal rotation of the interior and edge plasma may be driven. The magnetic tangle constrains the early nonlinear ballooning, but may encourage the later inward penetration. Equilibrium toroidal rotation and two-fluid diamagnetic drifts have relatively small effects on a strong MHD instability. Intrinsic magnetic stochasticity may help explain the wide range of experimentally observed ELMs and ELM-free behavior in fusion plasmas, as well as properties of the H-mode and plasma edge.

  3. Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points

    SciTech Connect

    Xu, X Q; Cohen, R H; Nevins, W M; Rognlien, T D; Ryutov, D D; Umansky, M V; Pearlstein, L D; Bulmer, R H; Russell, D A; Myra, J R; D'Ippolito, D A; Greewald, M; Snyder, P B; Mahdavi, M A

    2004-10-12

    Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) formation of a density pedestal due to neutral fueling; (4)identification of convective transport by localized plasma 'blobs' in the SOL at high density and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (5) a new divertor-leg instability driven by a radial tilt of the divertor plate.

  4. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that

  5. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  6. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  7. Rotational and vibrational temperatures in a hydrogen discharge with a magnetic X-point

    SciTech Connect

    Tsankov, Tsanko V.; Czarnetzki, Uwe; Toko, Kaoru

    2012-12-15

    A novel plasma source with a magnetic X-point has been developed to probe an alternative for cesium-free negative hydrogen ion production. This study presents first results for the gas and vibrational temperatures in the source at 1 Pa and various RF powers. The temperatures are obtained from analysis of the intensity distribution of the molecular Fulcher-{alpha} bands. The gas temperature increases with the RF power, while the vibrational temperature remains constant in the studied range of RF powers. Both quantities show no appreciable spatial dependence. The obtained high values of the vibrational temperatures indicate a high population of the vibrational levels, favourable for the volume negative ion production. A theoretical concept indicates the presence of an optimum value for the vibrational temperature at which the negative hydrogen ion yield by volume processes has a maximum. Coincidently, the measured value is close to this optimum. This indicates that the novel concept can provide certain advantages compared to other sources based on volume production.

  8. The effect of guide-field and boundary conditions on the features and signatures of collisionless magnetic reconnection in a stressed X-point collapse

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2015-12-01

    Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri

  9. Modulation of cortical oscillatory activity during transcranial magnetic stimulation.

    PubMed

    Brignani, Debora; Manganotti, Paolo; Rossini, Paolo M; Miniussi, Carlo

    2008-05-01

    Transcranial magnetic stimulation (TMS) can transiently modulate cortical excitability, with a net effect depending on the stimulation frequency (< or =1 Hz inhibition vs. > or =5 Hz facilitation, at least for the motor cortex). This possibility has generated interest in experiments aiming to improve deficits in clinical settings, as well as deficits in the cognitive domain. The aim of the present study was to investigate the on-line effects of low frequency (1 Hz) TMS on the EEG oscillatory activity in the healthy human brain, focusing particularly on the outcome of these modulatory effects in relation to the duration of the TMS stimulation. To this end, we used the event-related desynchronization/synchronization (ERD/ERS) approach to determine the patterns of oscillatory activity during two consecutive trains of sham and real TMS. Each train of stimulation was delivered to the left primary motor cortex (MI) of healthy subjects over a period of 10 min, while EEG rhythms were simultaneously recorded. Results indicated that TMS induced an increase in the power of brain rhythms that was related to the period of the stimulation, i.e. the synchronization of the alpha band increased with the duration of the stimulation, and this increase was inversely correlated with motor-evoked potentials (MEPs) amplitude. In conclusion, low frequency TMS over primary motor cortex induces a synchronization of the background oscillatory activity on the stimulated region. This induced modulation in brain oscillations seems to increase coherently with the duration of stimulation, suggesting that TMS effects may involve short-term modification of the neural circuitry sustaining MEPs characteristics. PMID:17557296

  10. A comprehensive study of sensitivity in measuring oscillatory magnetic fields using rotary saturation pulse sequences.

    PubMed

    Sheng, Jingwei; Liu, Yun; Chai, Yuhui; Tang, Weinan; Wu, Bing; Gao, Jia-Hong

    2016-04-01

    Detecting the oscillatory currents with a specific frequency distribution may have the potential to make neuronal current MRI (ncMRI) come true. The phase shift or dephasing induced by both positive and negative episodes of oscillatory neuronal currents is likely to be canceled out over the echo time in typical BOLD-contrast fMRI experiments. Based on the contrast of rotary saturation, both of the recently developed spin-locked oscillatory excitation (SLOE) and stimulus-induced rotary saturation (SIRS) pulse sequences have been demonstrated to be able to detect weak oscillatory magnetic fields in phantoms with 3T MR scanners. In this report, through Bloch equation simulation as well as water phantom and anesthetic rats experiments, we comprehensively evaluate and compare the sensitivities of these two methods (SLOE and SIRS) in detecting the oscillatory magnetic fields for both high (100Hz) and low (10Hz) oscillation frequencies, while using their respective optimal imaging parameters. In agreement with the theoretical predications, both the simulated and experimental results showed that the SLOE method features a much higher detection sensitivity of weak magnetic fields than that of the SIRS method. SLOE was able to detect applied oscillatory magnetic fields as low as 0.1nT in a water phantom and 0.5nT in rat brains and the deteriorated noise levels in rat data may account for the reduced sensitivity in vivo. These promising results form the foundation for direct detection of in vivo neuronal currents using MRI. PMID:26616004

  11. Inverse and oscillatory magnetoresistance in Fe(001)/MgO/Cr/Fe magnetic tunnel junctions

    SciTech Connect

    Zhang, J.; Wang, Y.; Zhang, Xiaoguang; Han, Prof. X. F.

    2010-01-01

    The effect of Cr(001) insertion layers in Fe(001)/MgO/Cr/Fe magnetic tunneling junctions (MTJs) is studied from first-principles. It is shown that with the increase of the Cr(001) layer thickness, the tunneling magnetoresistance (TMR) first decreases rapidly and then oscillates with a two-monolayer period. At some thicknesses, the oscillation leads to a sign reversal of the TMR. The oscillatory interfacial Cr moment at the Cr-MgO interface as a function of the Cr layer thickness, which arises from the layer-anti-ferromagnetic ordering of Cr, is the cause for the oscillatory TMR.

  12. Chemical spots and oscillatory diffusion modes in magnetic stars

    NASA Astrophysics Data System (ADS)

    Urpin, V.

    2016-07-01

    The stars of the middle main sequence often have spot-like chemical structures at their surfaces. We consider diffusion caused by electric currents and argue that such current-driven diffusion can form chemical inhomogeneities in a plasma. The considered mechanism can contribute to a formation of element spots in Hg-Mn and Ap-stars. Due to the Hall effect, diffusion in the presence of electric currents can be accompanied by the propagation of a particular type of magnetohydrodynamic modes in which only the impurity number density oscillates. Such modes exist if the magnetic pressure is much greater than the gas pressure and can be the reason for variations of the abundance peculiarities in stars.

  13. Oscillatory Decay of Magnetization Induced by Domain-Wall Stray Fields

    SciTech Connect

    Thomas, Luc; Luening, Jan; Scholl, Andreas; Nolting, Frithjof; Anders, Simone; Stoehr, Joachim; Parkin, Stuart S. P.

    2000-04-10

    The demagnetization of a hard ferromagnetic layer via the fringing fields of domain walls created by reversing the moment of a neighboring soft ferromagnetic layer is explored experimentally. An unusual oscillatory decay of the magnetic moment of the hard layer is observed using structures in which the demagnetization occurs after a few hundred cycles. This surprising observation is confirmed on a microscopic scale by detailed imaging of the magnetization of the hard layer using high resolution photoemission electron microscopy and by micromagnetic simulations. (c) 2000 The American Physical Society.

  14. An X-point ergodic divertor

    SciTech Connect

    Chu, M.S.; Jensen, T.H.; La Haye, R.J.; Taylor, T.S.; Evans, T.E.

    1991-10-01

    A new ergodic divertor is proposed. It utilizes a system of external (n = 3) coils arranged to generate overlapping magnetic islands in the edge region of a diverted tokamak and connect the randomized field lines to the external (cold) divertor plate. The novel feature in the configuration is the placement of the external coils close to the X-point. A realistic design of the external coil set is studied by using the field line tracing method for a low aspect ratio (A {approx equal} 3) tokamak. Two types of effects are observed. First, by placing the coils close to the X-point, where the poloidal magnetic field is weak and the rational surfaces are closely packed only a moderate amount of current in the external coils is needed to ergodize the edge region. This ergodized edge enhances the edge transport in the X-point region and leads to the potential of edge profile control and the avoidance of edge localized modes (ELMs). Furthermore, the trajectories of the field lines close to the X-point are modified by the external coil set, causing the hit points on the external divertor plates to be randomized and spread out in the major radius direction. A time-dependent modulation of the currents in the external (n = 3) coils can potentially spread the heat flux more uniformly on the divertor plate avoiding high concentration of the heat flux. 10 refs., 9 figs.

  15. X -Point Effect on Plasma Blob Dynamics

    NASA Astrophysics Data System (ADS)

    Avino, F.; Fasoli, A.; Furno, I.; Ricci, P.; Theiler, C.

    2016-03-01

    Plasma blob dynamics on the high-field side in the proximity of a magnetic field null (X point) is investigated in TORPEX. A significant acceleration of the blobs towards the X point is observed. Close to the X point the blobs break apart. The E ×B drifts associated with the blobs are measured, isolating the background drift component from the fluctuating contribution of the blob internal potential dipole. The time evolution of the latter is consistent with the fast blob dynamics. An analytical model based on charge conservation is derived for the potential dipole, including ion polarization, diamagnetic, and parallel currents. In the vicinity of the X point, a crucial role in determining the blob motion is played by the decrease of the poloidal magnetic field intensity. This variation increases the connection length that short circuits the potential dipole of the blob. Good quantitative agreement is found between the model and the experimental data in the initial accelerating phase of the blob dynamics.

  16. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  17. Model calculation of oscillatory magnetic breakdown in metals with multiply degenerate bands

    NASA Astrophysics Data System (ADS)

    Thalmeier, P.; Falicov, L. M.

    1981-03-01

    We present a model calculation of the oscillatory magnetoresistance in a metal with three degenerate bands. We have in mind the example of body-centered cubic iron where, in the neighborhood of the H point of the Brillouin zone, three bands have multiple intersections and contacts. For magnetic fields along the [011] direction, the Fermi surface in the vicinity of H exhibits a complicated three-band interferometer which leads to complex oscillations in the magnetoresistance. A Fourier analysis of this magnetoresistance reveals that frequencies corresponding to split-beam interference, closed-orbit interference, and mixed type are all present with comparable strength. The connection to the experimental situation is discussed.

  18. Time-dependent Suppression of Oscillatory Power in Evolving Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krishna Prasad, S.; Jess, D. B.; Jain, R.; Keys, P. H.

    2016-05-01

    Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and Hα filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.

  19. Oscillatory magnetoconvective instability in a ferrofluid layer placed in an oblique external magnetic field

    NASA Astrophysics Data System (ADS)

    Suslov, Sergey A.; Rahman, Habibur; Bozhko, Aleksandra A.

    2014-11-01

    Magnetite-based ferrofluids are manufactured magneto-polarisable nanofluids that magnetize in an external magnetic field in a similar way to natural paramagnetic fluids(e.g. oxygen), however to a much higher degree. Paramagnetic and ferrofluid flows are described by similar equations and it is expected that they would exhibit a similar behaviour. Indeed we show that in both type of fluids the most prominent instability structures align with the in-layer field component and the onset of magnetoconvection is delayed by the field inclination. However we find that in contrast to paramagnetic fluids the instabilities arising in differentially heated ferrofluids placed in a uniform external oblique magnetic field are oscillatory. This is traced back to the nonlinearity of the magnetic field distribution induced inside the ferrofluid layer that arises whenever the direction of the applied magnetic field is not normal. Given that the magnetic field inclination with respect to the plane of the layer is inevitable near its edges the obtained stability results shed light on the possible reasons for the existnce of unsteady patterns that have been detected in the normal field experiments we reported previously.

  20. Oscillatory states in thermal convection of a paramagnetic fluid in a cubical enclosure subjected to a magnetic field gradient

    NASA Astrophysics Data System (ADS)

    Kenjereš, S.; Pyrda, L.; Wrobel, W.; Fornalik-Wajs, E.; Szmyd, J. S.

    2012-04-01

    We report experimental and numerical studies of combined natural and magnetic convection of a paramagnetic fluid inside a cubical enclosure heated from below and cooled from above and subjected to a magnetic field gradient. Values of the magnetic field gradient are in the range 9≤|grad|b0|2|≤900 T2/m for imposed magnetic field strengths in the center of the superconducting magnet bore of 1≤|b0|max≤10 T. Very good agreement between experiments and simulation is obtained in predicting the integral heat transfer over the entire range of working parameters (i.e., thermal Rayleigh number 1.15×105≤RaT≤8×106, Prandtl number 5≤Pr≤700, and magnetization number 0≤γ≤58.5). We present a stability diagram containing three characteristic states: steady, oscillatory (periodic), and turbulent regimes. The oscillatory states are identified for intermediate values of Pr (40≤Pr≤70) and low magnetic field (|b0|max≤2 T). Turbulent states are generated from initially stable flow and heat transfer regimes in the range of 70≤Pr≤500 for sufficiently strong magnetic field (|b0|max≥4 T).

  1. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    PubMed Central

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  2. Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    NASA Astrophysics Data System (ADS)

    Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin

    2016-04-01

    We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.

  3. Resistive X-point modes in tokamak boundary plasmas

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Xu, X. Q.; Cohen, R. H.

    2000-06-01

    It is shown that the boundary (edge and scrape-off-layer) plasma in a typical low (L) mode diverted tokamak discharge is unstable to a new class of modes called resistive X-point (RX) modes. The RX mode is a type of resistive ballooning mode that exploits a synergism between resistivity and the magnetic geometry of the X-point region. The RX modes are shown to give robust instabilities at moderate mode numbers, and therefore are expected to be the dominant contributors to turbulent diffusion in the boundary plasma of a diverted tokamak. (c) 2000 American Institute of Physics.

  4. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles.

    PubMed

    Herzog, F; Heedt, S; Goerke, S; Ibrahim, A; Rupprecht, B; Heyn, Ch; Hardtdegen, H; Schäpers, Th; Wilde, M A; Grundler, D

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields. PMID:26740509

  5. Magnetorheological fluid based on submicrometric silica-coated magnetite particles under an oscillatory magnetic field

    NASA Astrophysics Data System (ADS)

    Agustín-Serrano, R.; Donado, F.; Rubio-Rosas, E.

    2013-06-01

    An experimental study conducted on the rheological properties of a magnetorheological fluid based on submicrometric silica-coated magnetite particles dispersed in silicone oil is presented. We investigated the rheological behaviour when the system is simultaneously exposed to a static field and a sinusoidal field used as a perturbation. The results show that the perturbation modifies the rheological behaviour of the system and can be used to control its physical properties; however, the changes that are induced are smaller than expected from previous results for the aggregation of particles under magnetic perturbations. We discussed this difference in terms of the ratio between the magnetic energy and the thermal energy. We observed that a threshold magnetic field exists; below it, the yield stress is practically zero, whereas above it, the yield stress grows quickly. We discuss this result in terms of a model based on chain length distribution.

  6. Evidence of electron acceleration around the reconnection X-point in a solar flare

    SciTech Connect

    Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro

    2014-06-01

    Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amounts of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point), with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point. Additionally, the plasma around the X-point was also thermally heated up to 10 MK. The estimated reconnection rate of this event is ∼0.017.

  7. Evidence of Electron Acceleration around the Reconnection X-point in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro

    2016-05-01

    Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amounts of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point), with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point.

  8. Oscillatory flow braking: inner magnetosphere observations

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Baumjohann, W.; Angelopoulos, V.

    2013-12-01

    We search for damped oscillatory flow braking events observed by THEMIS/ARTEMIS in the near-Earth plasma sheet when their counterpart in the inner magnetosphere was observed. By comparing the particle and magnetic field data in the two locations we analyze the feedback of the inner magnetosphere to plasma sheet oscillatory flow braking. We discuss the possible role of the oscillatory flow events for plasma injection into the inner magnetosphere.

  9. Anomalous oscillatory magnetoresistance in superconductors

    NASA Astrophysics Data System (ADS)

    Kunchur, Milind N.; Dean, Charles L.; Ivlev, Boris I.

    2016-08-01

    We report oscillatory magnetoresistance in various superconducting films, with a magnetic-field period Δ B ˜0.1 T that is essentially independent of sample dimensions, temperature, transport current, and the magnitude and orientation of the magnetic field, including magnetic fields oriented parallel to the film plane. The characteristics of these oscillations seem hard to reconcile with previously established mechanisms for oscillations in magnetoresistance, suggesting the possibility of another type of physical origin.

  10. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.

    PubMed

    Sughimoto, Koichi; Shimamura, Yoshiaki; Tezuka, Chie; Tsubota, Ken'ichi; Liu, Hao; Okumura, Kenichiro; Masuda, Yoshitada; Haneishi, Hideaki

    2016-07-01

    Although abdominal aortic aneurysms (AAAs) occur mostly inferior to the renal artery, the mechanism of the development of AAA in relation to its specific location is not yet clearly understood. The objective of this study was to evaluate the hypothesis that even healthy volunteers may manifest specific flow characteristics of blood flow and alter wall shear or oscillatory shear stress in the areas where AAAs commonly develop. Eight healthy male volunteers were enrolled in this prospective study, aged from 24 to 27. Phase-contrast magnetic resonance imaging (MRI) was performed with electrocardiographic triggering. Flow-sensitive four-dimensional MR imaging of the abdominal aorta, with three-directional velocity encoding, including simple morphological image acquisition, was performed. Information on specific locations on the aortic wall was applied to the flow encodes to calculate wall shear stress (WSS) and oscillatory shear index (OSI). While time-framed WSS showed the highest peak of 1.14 ± 0.25 Pa in the juxtaposition of the renal artery, the WSS plateaued to 0.61 Pa at the anterior wall of the abdominal aorta. The OSI peaked distal to the renal arteries at the posterior wall of the abdominal aorta of 0.249 ± 0.148, and was constantly elevated in the whole abdominal aorta at more than 0.14. All subjects were found to have elevated OSI in regions where AAAs commonly occur. These findings indicate that areas of constant peaked oscillatory shear stress in the infra-renal aorta may be one of the factors that lead to morphological changes over time, even in healthy individuals. PMID:26481791

  11. The flux-coordinate independent approach applied to X-point geometries

    SciTech Connect

    Hariri, F. Hill, P.; Ottaviani, M.; Sarazin, Y.

    2014-08-15

    A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries.

  12. X--Point Neutral Density Determination in DIII-D

    NASA Astrophysics Data System (ADS)

    Colchin, R. J.; Maingi, R.; Isler, R. C.; Owen, L. W.; Fenstermacher, M. E.; Carlstrom, T. N.

    1998-11-01

    A method has been developed to measure neutral densities in the divertor and X-point regions of diverted DIII-D plasmas. The method calibrates D_α light intensities from a tangentially-viewing video camera by means of a vertically-viewing photomultiplier. D_α light viewed by the video camera is reconstructed onto a poloidal plane in the region of the lower divertor. Neutral densities are obtained by dividing the D_α light intensities by the electron density and the electron excitation rate coefficients. These coefficients are steep functions of the electron temperature and density, which are measured by the divertor Thomson scattering diagnostic. Data have been analyzed for L-mode plasmas just below the L--H transition at two X-point heights. The neutral density decreases in the vertical direction from 10^13 atoms/cm^3 just above the divertor floor in the private flux region to 10^11 atoms/cm^3 at the X-point. The neutral density just inside the X-point is in the range 10^10--10^11 atoms/cm^3.

  13. ExB CIRCULATION AT THE TOKAMAK DIVERTOR X-POINT

    SciTech Connect

    M.J. SCHAFFER; B.D. BRAY; J.A.BOEDO; T.N. CARLSTROM; R.J.COLCHIN; J.G. WATKINS

    2000-11-01

    Detailed measurements in two dimensions by probes and Thomson scattering reveal unexpected local electric potential and electron pressure (p{sub e}) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak [J.L. Luxon and L.G. Davis, Fusion Technol. 8, 441 (1985)]. The potential drives E x B circulation about the X-point, thereby exchanging plasma between closed and open magnetic surfaces at rates that can be comparable to the total cross-separatrix transport. The potential is consistent with the classical parallel Ohm's law. A simple model is proposed to explain the pressure and potential hills in low power, nearly detached plasmas. Recent two-dimensional edge transport modeling with plasma drifts also shows X-point pressure and potential hills but by a different mechanism. These experimental and theoretical results demonstrate that low power tokamak plasmas can be far from poloidal uniformity in a boundary layer just inside the separatrix. Additional data, though preliminary and incomplete, suggest that E x B circulation across the separatrix might be a common feature of low confinement behavior.

  14. Oscillatory Magnetogasdynamic Slip Flow in a Microchannel

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    2009-11-01

    The problem of pressure driven Magnetogasdynamic (MGD) slip flow with small rarefaction through a long micro-channel is considered. The flow is driven by steady or oscillatory pressure gradient. The study of MGD flows in microchannels is of great interest since they occur in magnetic thin films and other electromagnetic micro-scale devices. In obtaining the micro-fluidic solutions in the presence of a magnetic field, some additional physical, mathematical and numerical issues need to be considered. These issues deal with the scaling laws for micro-scale MHD flows and the relevant parameters such as Mach number, Reynolds number, Hartmann number, magnetic Reynolds number, and Knudsen number. For planar constant area micro-channel, it is possible to obtain the analytical solutions for both steady and oscillatory pressure driven flows. As physically expected, the higher value of the magnetic field (higher Hartmann number) flattens the velocity profile in the channel.

  15. Oscillatory regimes of the thermomagnetic instability in superconducting films

    NASA Astrophysics Data System (ADS)

    Vestgârden, J. I.; Galperin, Y. M.; Johansen, T. H.

    2016-05-01

    The stability of superconducting films with respect to oscillatory precursor modes for thermomagnetic avalanches is investigated theoretically. The results for the onset threshold show that previous treatments of nonoscillatory modes have predicted much higher thresholds. Thus, in film superconductors, oscillatory modes are far more likely to cause thermomagnetic breakdown. This explains the experimental fact that flux avalanches in film superconductors can occur even at very small ramping rates of the applied magnetic field. Closed expressions for the threshold magnetic field and temperature, as well oscillation frequency, are derived for different regimes of the oscillatory thermomagnetic instability.

  16. Imaging of X-point turbulence in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Ballinger, Sean; Terry, James; White, Anne; Zweben, Stewart

    2015-11-01

    A nearly tangential view of the lower X-point region of Alcator C-Mod has been coupled to a high-speed camera filtered for D-alpha line emission. Recording at ~400,000 frames per second, the system detects filaments propagating in the private flux region that are approximately aligned with the local magnetic field. This behavior appears similar to what has recently been observed in the MAST tokamak. Turbulence and transport into the private flux region is potentially important. It may be a mechanism to spread heat across field lines and reduce peak heat fluxes on divertor targets. It may also explain how transport-driven flows seen in the high-field side scrape-off layer are accommodated, being otherwise too large compared to the particle flux arriving at the inner divertor target plates. The dynamics of these filaments are analyzed, as is the rate at which they are generated. Correlation analysis is used to determine the speed and trajectories of the filaments. Radial speeds of ~1 km/s are found. Clear changes are observed in the X-point-region fluctuations at the L-to-H-mode transition.

  17. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  18. Multiplexing oscillatory biochemical signals.

    PubMed

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  19. A microwave dielectric resonant oscillatory circuit

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Shvartsburg, A. B.

    2016-07-01

    Bias currents in a thin dielectric nonconducting torus are investigated, and the resonant mode of excitation of these currents is established. The similarity of the frequency spectrum of such a dielectric element to the spectra of a classical Thomson oscillatory circuit and a metamaterial with negative permittivity is demonstrated. The resonant frequency of electromagnetic oscillations of the ring dielectric circuit and magnetic and electric fields of such a circuit under resonant excitation are determined.

  20. Generation of X-points and secondary islands in 2D magnetohydrodynamic turbulence

    SciTech Connect

    Wan Minping; Matthaeus, William H.; Servidio, Sergio; Oughton, Sean

    2013-04-15

    We study the time development of the population of X-type critical points in a two-dimensional magnetohydrodynamic model during the early stages of freely decaying turbulence. At sufficiently high magnetic Reynolds number Re{sub m}, we find that the number of neutral points increases as Re{sub m}{sup 3/2}, while the rates of reconnection at the most active sites decrease. The distribution of rates remains approximately exponential. We focus in particular on delicate issues of accuracy, which arise in these numerical experiments, in that the proliferation of X-points is also a feature of under-resolved simulations. The 'splitting' of neutral points at high Reynolds number appears to be a fundamental feature of the cascade that has important implications for understanding the relationship between reconnection and turbulence, an issue of considerable importance for the Magnetospheric Multiscale and Solar Probe missions as well as observation of reconnection in the solar wind.

  1. Oscillatory electrohydrodynamic gas flows

    SciTech Connect

    Lai, F.C.; McKinney, P.J.; Davidson, J.H.

    1995-09-01

    Prior numerical solutions of electrohydrodynamic flows in a positive-corona, wire-plate electrostatic precipitator are extended to reveal steady-periodic electrohydrodynamic flows. Previously, only steady solutions were reported. The present study includes results for flows with Reynolds numbers from 0 to 4,800 and with dimensionless electric number ranging from 0.06 to {infinity}. Results indicate that two regimes of low frequency oscillatory flow occur. The first regime is characterized by a single recirculating vortex that oscillates in strength between one and five Hertz. The second regime is characterized by two counter-rotating vortices that oscillate in strength at a frequency near one Hertz.

  2. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  3. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  4. Physics of collisionless reconnection in a stressed X-point collapse

    SciTech Connect

    Tsiklauri, D.; Haruki, T.

    2008-10-15

    Recently, magnetic reconnection during collisionless, stressed, X-point collapse was studied using kinetic, 2.5-dimensional, fully electromagnetic, relativistic particle-in-cell numerical code [D. Tsiklauri and T. Haruki, Phys. Plasmas 14, 112905 (2007)]. Here we finalize the investigation of this topic by addressing key outstanding physical questions: (i) Which term in the generalized Ohm's law is responsible for the generation of the reconnection electric field? (ii) How does the time evolution of the reconnected flux vary with the ion-electron mass ratio? (iii) What is the exact energy budget of the reconnection process; i.e., in which proportion initial (mostly magnetic) energy is converted into other forms of energy? (iv) Are there any anisotropies in the velocity distribution of the accelerated particles? The following points have been established. (i) A reconnection electric field is generated by the electron pressure tensor off-diagonal terms, resembling to the case of tearing unstable Harris current sheet studied by the GEM reconnection challenge. (ii) For m{sub i}/m{sub e}>>1, the time evolution of the reconnected flux is independent of ion-electron mass ratio. In addition, in the case of m{sub i}/m{sub e}=1, we show that reconnection proceeds slowly as the Hall term is zero; when m{sub i}/m{sub e}>>1 (i.e., the Hall term is nonzero) reconnection is fast and we conjecture that this is due to magnetic field being frozen into electron fluid, which moves significantly faster than ion fluid. (iii) Within one Alfven time, somewhat less than half ({approx}40%) of the initial total (roughly magnetic) energy is converted into the kinetic energy of electrons, and somewhat more than half ({approx}60%) into kinetic energy of ions (similar to solar flare observations). (iv) In the strongly stressed X-point case, in about one Alfven time, a full isotropy in all three spatial directions of the velocity distribution is seen for superthermal electrons (also commensurate

  5. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  6. Observation of heat transfer across x point of the islands during sawtooth crash on the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Sun, Youwen; Wan, Baonian; Hu, Liqun; Chen, Kaiyun; Shen, Biao; Mao, Jianshan

    2009-06-01

    It is observed that a large heat flow abruptly transfers across the x point (which can be located at both the high field side and the low field side) of the 1/1 or 2/2 magnetic islands during a sawtooth crash on the HT-7 tokamak by using tomography of the high-resolution soft-x-ray emission together with the singular value decomposition technique. Although the poloidally asymmetric heat flow contributes an m = 1 component of perturbation in the signals, the heat flow is obviously different from the growth of the m = 1 magnetic island. Furthermore, it is also shown that the large heat flow or the displacement of the hot core occurs only after the crash. Hence, the large displacement of the hot core is just a result of the crash rather than the cause. The heat flow from both the x points of the m = 2 island is also observed. This observation demonstrates that a purely fast reconnection of the m = 1 magnetic island is not responsible for the crash, but that it may be due to the rapid energy and particle diffusion in the stochastic region.

  7. Turbulence simulations of x-point physics on the L-H transitions

    SciTech Connect

    Xu, X Q; Cohen, R H; Nevins, W M; Porter, G D; Rensink, M E; Rognlien, T D; Myra, J R; D'Ippolito, D A; Moyer, R; Snyder, P B; Carlstrom, T N

    2000-09-28

    We show that the resistive X-point mode is dominant mode in boundary plasmas in X-point divertor geometry. The poloidal fluctuation phase velocity from the resistive X-point turbulence shows experimentally measured structure across separatrix. The fluctuation phase velocity is larger than E x B velocity both in L and H mode phases, by at least a factor of two. We also demonstrate that there is a strong poloidal asymmetry of particle flux in the proximity of the separatrix. Turbulence suppression in the L-H transition results when sources of energy and particles drive sufficient gradients as experiments.

  8. X-point position dependence of edge intrinsic toroidal rotation on the Tokamak à Configuration Variable

    SciTech Connect

    Stoltzfus-Dueck, T.; Karpushov, A. N.; Sauter, O.; Duval, B. P.; Labit, B.; Reimerdes, H.; Vijvers, W. A. J.; Camenen, Y.

    2015-05-15

    Recent theoretical work predicts intrinsic toroidal rotation in the tokamak edge to depend strongly on the normalized major radial position of the X-point. With this motivation, we conducted a series of Ohmic L-mode shots on the Tokamak à Configuration Variable, moving the X-point from the inboard to the outboard edge of the last closed flux surface in both lower and upper single null configurations. The edge toroidal rotation evolved from strongly co-current for an inboard X-point to either vanishing or counter-current for an outboard X-point, in agreement with the theoretical expectations. The whole rotation profile shifted roughly rigidly with the edge rotation, resulting in variation of the peak core rotation by more than a factor of two. Core rotation reversals had little effect on the edge rotation. Edge rotation was slightly more counter-current for unfavorable than favorable ∇B drift discharges.

  9. X-point position dependence of edge intrinsic toroidal rotation on the Tokamak à Configuration Variablea)

    NASA Astrophysics Data System (ADS)

    Stoltzfus-Dueck, T.; Karpushov, A. N.; Sauter, O.; Duval, B. P.; Labit, B.; Reimerdes, H.; Vijvers, W. A. J.; Camenen, Y.

    2015-05-01

    Recent theoretical work predicts intrinsic toroidal rotation in the tokamak edge to depend strongly on the normalized major radial position of the X-point. With this motivation, we conducted a series of Ohmic L-mode shots on the Tokamak à Configuration Variable, moving the X-point from the inboard to the outboard edge of the last closed flux surface in both lower and upper single null configurations. The edge toroidal rotation evolved from strongly co-current for an inboard X-point to either vanishing or counter-current for an outboard X-point, in agreement with the theoretical expectations. The whole rotation profile shifted roughly rigidly with the edge rotation, resulting in variation of the peak core rotation by more than a factor of two. Core rotation reversals had little effect on the edge rotation. Edge rotation was slightly more counter-current for unfavorable than favorable ∇B drift discharges.

  10. Scrape-Off Layer Plasmas for ITER with 2nd X-Point and Convective Transport Effects

    SciTech Connect

    Rognlien, T; Bulmer, R; Rensink, M; Brooks, J

    2006-05-19

    Plasma fluxes to the divertor region in ITER near the magnetic separatrix have been modeled extensively in the past. The smaller, but potentially very important fluxes to the main chamber and outer divertor regions are the focus of the present paper. Two main additions to the usual transport modeling are investigated: namely, convective radial transport from intermittent, rapidly propagating ''blob'' events, and inclusion of the magnetic flux-surface region beyond the second X-point that actually contacts the main-chamber wall. The two-dimensional fluid transport code UEDGE is use to model the plasma, while the energy spectrum of charge-exchange neutrals to the main chamber wall is calculated by DEGAS 2 Monte Carlo code. Additionally, the spatial distribution of Be sputtered from the main chamber wall is determined in the fluid limit.

  11. Local Oscillatory Rheology from Echography

    NASA Astrophysics Data System (ADS)

    Saint-Michel, Brice; Gibaud, Thomas; Leocmach, Mathieu; Manneville, Sébastien

    2016-03-01

    Local oscillatory rheology from echography consists of a traditional rheology experiment synchronized with high-frequency ultrasonic imaging which gives access to the local material response to oscillatory shear. Besides classical global rheological quantities, this method provides quantitative time-resolved information on the local displacement across the entire gap of the rheometer. From the local displacement response, we compute and decompose the local strain in its Fourier components and measure the spatially resolved viscoelastic moduli. After benchmarking our method on homogeneous Newtonian fluids and soft solids, we demonstrate that this technique is well suited to characterize spatially heterogeneous samples, wall slip, and the emergence of nonlinearity under large-amplitude oscillatory stress in soft materials.

  12. Oscillatory flow braking in the magnetotail: THEMIS statistics

    NASA Astrophysics Data System (ADS)

    Panov, Evgeny V.; Kubyshkina, Marina V.; Nakamura, Rumi; Baumjohann, Wolfgang; Angelopoulos, Vassilis; Sergeev, Victor A.; Petrukovich, Anatoli A.

    2013-06-01

    Using 25 observations of damped oscillatory flow behavior in the near-Earth plasma sheet by the five THEMIS probes during the 2008-2009 magnetotail seasons, we derive the parameters of an oscillating thin filament, such as its oscillation period, damping factor, and entropy. To facilitate comparison with theory, we use measured pressures and magnetic fields with an empirical model to achieve a quantitative representation of the overall structure of the plasma sheet during each event. Because the observed oscillation period of the filament agrees with the oscillation period predicted by Wolf et al. (2012), the observed damped oscillatory flow behavior in the near-Earth plasma sheet is most likely caused by oscillatory braking of the filament.

  13. Oscillatory Head Movements in Cervical Dystonia: Dystonia, Tremor, or Both?

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Jinnah, H. A.

    2016-01-01

    Cervical dystonia is characterized by abnormal posturing of the head, often combined with tremor-like oscillatory head movements. The nature and source of these oscillatory head movements is controversial, so they were quantified to delineate their characteristics and develop a hypothetical model for their genesis. A magnetic search coil system was used to measure head movements in 14 subjects with cervical dystonia. Two distinct types of oscillatory head movements were detected for most subjects, even when they were not clinically evident. One type had a relatively large amplitude and jerky irregular pattern, and the other had smaller amplitude with a more regular and sinusoidal pattern. The kinematic properties of these two types of oscillatory head movements were distinct, although both were often combined in the same subject. Both had features suggestive of a defect in a central neural integrator. The combination of different types of oscillatory head movements in cervical dystonia helps to clarify some of the current debates regarding whether they should be considered as manifestations of dystonia or tremor and provides novel insights into their potential pathogenesis. PMID:25879911

  14. Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both?

    PubMed

    Shaikh, Aasef G; Zee, David S; Jinnah, H A

    2015-05-01

    Cervical dystonia is characterized by abnormal posturing of the head, often combined with tremor-like oscillatory head movements. The nature and source of these oscillatory head movements is controversial, so they were quantified to delineate their characteristics and develop a hypothetical model for their genesis. A magnetic search coil system was used to measure head movements in 14 subjects with cervical dystonia. Two distinct types of oscillatory head movements were detected for most subjects, even when they were not clinically evident. One type had a relatively large amplitude and jerky irregular pattern, and the other had smaller amplitude with a more regular and sinusoidal pattern. The kinematic properties of these two types of oscillatory head movements were distinct, although both were often combined in the same subject. Both had features suggestive of a defect in a central neural integrator. The combination of different types of oscillatory head movements in cervical dystonia helps to clarify some of the current debates regarding whether they should be considered as manifestations of dystonia or tremor and provides novel insights into their potential pathogenesis. PMID:25879911

  15. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Rice, J. E.; Hubbard, A. E.; Hughes, J. W.; Greenwald, M.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Lipschultz, B.; Marmar, E. S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.

    2005-05-01

    Factor of ˜2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B ×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B ×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  16. Results of JET operation with continuous carbon and beryllium X-point target plates

    NASA Astrophysics Data System (ADS)

    Lowry, C. G.; Ady, W. N.; Campbell, D. J.; Carman, P.; Clement, S.; Deksnis, E. B.; Gondhalekar, A.; Harbour, P. J.; Horton, L.; Janeschitz, G.; Lesourd, M.; Lingertat, J.; Pick, M. A.; Saibene, G.; Summers, D. D. R.; Thomas, P. R.

    1992-12-01

    The 1991/92 JET experimental campaign assessed the performance of three different toroidally continuous X-point target plates. The main differences were in the tile material, beryllium and carbon, and the presence of exposed edges. These three configurations have been tested up to power levels in excess of 22 MW and with gas fuelling at the X-point and in the midplane. With the beryllium a radiating divertor was achieved by puffing deuterium into the X-point region, while rapid ELMs resulted from deuterium puffing on the carbon target. The investigation into the importance of small edges, up to 1.5 mm, yielded some interesting results. Although the surface temperature rise was substantially reduced by eliminating exposed tile edges, the onset of the carbon bloom was not delayed by a similar amount. In this paper a model is presented which can explain this and other features of the bloom.

  17. X-Point-Position-Dependent Intrinsic Toroidal Rotation in the Edge of the TCV Tokamak.

    PubMed

    Stoltzfus-Dueck, T; Karpushov, A N; Sauter, O; Duval, B P; Labit, B; Reimerdes, H; Vijvers, W A J; Camenen, Y

    2015-06-19

    Edge intrinsic rotation was investigated in Ohmic L-mode discharges on the Tokamak à Configuration Variable, scanning the major radial position of the X point, R(X). Edge rotation decreased linearly with increasing R(X), vanishing or becoming countercurrent for an outboard X point, in agreement with theoretical expectations. The core rotation profile shifted fairly rigidly with the edge rotation, changing the central rotation speed by more than a factor of two. Core rotation reversals had little effect on the edge rotation velocity. Edge rotation was modestly more countercurrent in unfavorable than favorable ∇B shots. PMID:26196980

  18. Oscillatory phase shapes syllable perception.

    PubMed

    Ten Oever, Sanne; Sack, Alexander T

    2015-12-29

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  19. Ignitor Structural Analysis for Double X-points Configurations and Machine Cooling System

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Frosi, P.; Coppi, B.

    2009-11-01

    Recent activities carried out by ANSALDO for the Ignitor program include the structural analysis of the machine Load Assembly for two new scenarios that extend the operation of the machine to H- regimes, where the plasma equilibrium configuration is of the double X- point type and the out-of-plane forces increase. A complete structural analysis was carried out for three scenarios with BT= 13 T and Ip= 9 and 10 MA and double X points just outside the plasma chamber, and Ip= 9 MA and double X points just inside the plasma chamber. The lowered values of the plasma current can offset the increase of stress due to the less favorable X-point configuration relative to the ``extended limiter'' configuration. With the cryogenic plant involving gaseous helium and studied by LINDE KRYOTECHNIK AG, the toroidal field coils reach temperatures up to 230 K and the central solenoid coils approach 220 K after a pulse at the most extreme machine parameters, while the vertical field coils remain under 100 K. Several hours are needed to re-cool the machine down to 30 K before each pulse. New calculations are underway to verify the plant cooling performance at reduced parameters but with more stringent cooling times between shots.

  20. Dynamics of an Isolated Blob in the Presence of the X-Point

    SciTech Connect

    Cohen, R H; Ryutov, D D

    2005-10-10

    The interplay of X-point shearing and axial plasma redistribution along a moving flux tube is discussed. Blobs limited to the main scrape-off-layer and the blobs entirely confined in the divertor region are identified. A strong effect of the radial tilt of the divertor plate on ''divertor'' blobs is found.

  1. Plasma sheet flow damping by oscillatory flow braking

    NASA Astrophysics Data System (ADS)

    Panov, Evgeny V.; Leontyeva, Olga S.; Baumjohann, Wolfgang; Nakamura, Rumi; Amm, Olaf; Angelopoulos, Vassilis; Glassmeier, Karl-Heinz; Kubyshkina, Marina V.; Petrukovich, Anatoli A.; Sergeev, Victor A.; Weygand, James M.

    2015-04-01

    Using simultaneous observations in the near-Earth plasma sheet by five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes, conjugate ground all-sky camera observations from Canada, and magnetometer networks over North America, we show that auroral bulge dynamics is modulated by a recently discovered process known as oscillatory flow braking, which occurs at about 10 Earth radii down the Earth's magnetotail. In oscillatory flow breaking, plasma sheet flows oscillating with different periods at various distances collide, producing pressure forces that exert shear stresses on the magnetic field, transiently amplifying the vertical magnetic field component. Sporadic fast relief of these stresses through significant particle precipitations causes damping of plasma sheet fast flows.

  2. Small-amplitude oscillatory shear magnetorheology of inverse ferrofluids.

    PubMed

    Ramos, Jose; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2010-06-15

    A comprehensive investigation is performed on highly monodisperse silica-based inverse ferrofluids under small-amplitude oscillatory shear in the presence of external magnetic fields up to 1 T. The effect of particle volume fraction and continuous medium Newtonian viscosity is thoroughly investigated. Experimental results for storage modulus are used to validate existing micromechanical magnetorheological models assuming different particle-level field-induced structures. PMID:20345105

  3. Behavior of perturbed plasma displacement near regular and singular X-points for compressible ideal magnetohydrodynamic stability analysis

    SciTech Connect

    Alladio, F.; Mancuso, A.; Micozzi, P.; Rogier, F.

    2006-08-15

    The ideal magnetohydrodynamic (MHD) stability analysis of axisymmetric plasma equilibria is simplified if magnetic coordinates, such as Boozer coordinates ({psi}{sub T} radial, i.e., toroidal flux divided by 2{pi}, {theta} poloidal angle, {phi} toroidal angle, with Jacobian {radical}(g){proportional_to}1/B{sup 2}), are used. The perturbed plasma displacement {xi}-vector is Fourier expanded in the poloidal angle, and the normal-mode equation {delta}W{sub p}({xi}-vector*,{xi}-vector)={omega}{sup 2}{delta}W{sub k}({xi}-vector*,{xi}-vector) (where {delta}W{sub p} and {delta}W{sub k} are the perturbed potential and kinetic plasma energies and {omega}{sup 2} is the eigenvalue) is solved through a 1D radial finite-element method. All magnetic coordinates are however plagued by divergent metric coefficients, if magnetic separatrices exist within (or at the boundary of) the plasma. The ideal MHD stability of plasma equilibria in the presence of magnetic separatrices is therefore a disputed problem. We consider the most general case of a simply connected axisymmetric plasma, which embeds an internal magnetic separatrix--{psi}{sub T}={psi}{sub T}{sup X}, with rotational transform {iota}slantslash({psi}{sub T}{sup X})=0 and regular X-points (B-vector{ne}0)--and is bounded by a second magnetic separatrix at the edge--{psi}{sub T}={psi}{sub T}{sup max}, with {iota}slantslash({psi}{sub T}{sup max}){ne}0--that includes a part of the symmetry axis (R=0) and is limited by two singular X-points (B-vector=0). At the embedded separatrix, the ideal MHD stability analysis requires the continuity of the normal plasma perturbed displacement variable, {xi}{sup {psi}}={xi}-vector{center_dot}{nabla}-vector{psi}{sub T}; the other displacement variables, the binormal {eta}{sup {psi}}={xi}-vector{center_dot}({nabla}-vector{theta}-{iota}slantslash{nabla}-vector{phi}) and the parallel {mu}=-{radical}(g){xi}-vector{center_dot}{nabla}-vector{phi}, can instead be discontinuous everywhere. The

  4. Collective phase description of oscillatory convection

    SciTech Connect

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-15

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  5. X-point Shallow Donors in GaAs under pressure

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Haller, E. E.

    1996-03-01

    Transitions from the ground to bound excited states associated with shallow donors in GaAs under large hydrostatic pressure are studied with IR absorption spectroscopy. A modified Merrill-Basset diamond anvil cell was used to apply hydrostatic pressures of several GPa to lightly doped ( 10^15 cm-3) n-type GaAs samples. At such pressures, the energy of the conduction band at the X point falls below that at the Γ point and the wavefunctions of donor impurities take on X-band character. The deep DX centers which exist at these pressures were converted to shallow donors by illumination at low temperature with a red LED. The X-band absorption spectra for Sn and Si show one line each at 50 and 61 meV, respectively. The spectrum for S shows a broad absorption starting at 90 meV, which shifts to lower energies with increasing pressure. The presence of only one line in the Si and Sn spectra can be explained by the non-parabolicity of the X-point conduction band minimum. The binding energies of these donors are estimated to be 74, 85, and 117 meV for Sn, Si, and S respectively. This work supported by USNSF DMR-94 17763.

  6. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures

    PubMed Central

    Thut, Gregor; Veniero, Domenica; Romei, Vincenzo; Miniussi, Carlo; Schyns, Philippe; Gross, Joachim

    2011-01-01

    Summary Background Neuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG. Results We used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator. Conclusions The periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms. PMID:21723129

  7. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  8. Surface-Step-Induced Oscillatory Oxide Growth

    NASA Astrophysics Data System (ADS)

    Li, Liang; Luo, Langli; Ciston, Jim; Saidi, Wissam A.; Stach, Eric A.; Yang, Judith C.; Zhou, Guangwen

    2014-09-01

    We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

  9. Intrinsic instabilities in X-point geometry: A tool to understand and predict the Scrape Off Layer transport in standard and advanced divertors

    NASA Astrophysics Data System (ADS)

    Militello, F.; Liu, Y.

    2015-08-01

    Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and incorporating the appropriate sheath boundary conditions at the target. The linear growth rate and the structure of the modes are obtained. The associated diffusion is estimated using a γ / k⊥2 approach for the fastest growing modes. The model used includes curvature and sheath drives, finite Larmor radius effects and partial line tying at the target. The magnetic geometry is obtained using current carrying wires, representing the plasma current and the divertor coils, and naturally generates X-point geometry and magnetic shear effects. The calculation is performed for ITER relevant parameters and scans in SOL width and distance from the separatrix are presented. In addition to a standard Lower Single Null, Super-X and Snowflake configurations are examined in order to assess the importance of the geometry on the stability of the boundary plasma.

  10. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  11. Oscillatory-like relaxation behavior of light transmitted through ferrofluids.

    PubMed

    Li, Jian; Qiu, Xiaoyan; Lin, Yueqiang; Liu, Xiaodong; Fu, Jun; Miao, Hua; Zhang, Qingmei; Zhang, Tingzhen

    2011-10-20

    An oscillatory-like relaxation process in which there are two valleys in the T-t curve is observed when light is transmitted through binary ferrofluids composed of both ferrimagnetic CoFe(2)O(4) nanoparticles and paramagnetic p-MgFe(2)O(4) nanoparticles in the presence of a high magnetic field and through pure (single) CoFe(2)O(4) ferrofluids in a low magnetic field. This relaxation behavior is explained using a model of a bidispersed system based on both chained and unchained particles. In such a bidispersed system, the variation of the transmitted light results mainly from the motion of the chains, with the polarized unchained particles' gas producing the modulation effect. The oscillatory-like relaxation phenomenon depends on the features of both the chained and unchained particle systems. If either the particle volume fraction of chained particles or of unchained particles is very low, or the degree of polarization of the unchained particles gas is very weak, a simple nonlinear relaxation process, giving only a valley in the T-t curve, will appear for the transmitted light. For pure CoFe(2)O(4) ferrofluids, the number of chained and unchained particles does not remain constant under different values of the magnetic field. According to the analysis of the relaxation behavior of transmitted light, it is known that binary ferrofluids based on strong magnetic CoFe(2)O(4) particles and weak magnetic p-MgFe(2)O(4) particles can be much closer to the theoretical bidispersed system than single ferrofluids containing only strong magnetic particles. PMID:22015404

  12. Oscillatory phenomena in solar and stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Bloomfield, David Shaun

    This thesis presents varying studies into the nature of intensity oscillations observed both on the Sun and two active cool stars. The first part concentrates on the detection of correlated oscillations occuring between differing heights in the solar atmosphere above quiet-Sun magnetic network bright points (NBPs), interpreted as signatures of energy propagation. This is achieved through correlating in time the wavelet power spectra of lightcurves from images obtained in several optical wavelengths. In four of the eleven NBPs studied, evidence is found for upwardly-propagating, low-frequency waves (1.4 mHz, 2.1 mHz) in the lower chromosphere, decreasing in oscillatory power with the onset, or increase in power, of higher-frequency waves (2.9 mHz, 4.0 mHz) within the upper chromosphere. Moving higher into the atmosphere two of the four cases of higher frequency waves also show a decrease in power. These observational detections are interpreted as transverse-mode magnetohydrodynamic (MHD) waves undergoing non-linear mode coupling to longitudinal-modes at double the frequency, which shock or otherwise dissipate in the high chromosphere. Evidence is also found for additional upward- and downward- directed waves within all the NBPs studied. The extension of wavelet power techniques into the analysis of phase difference and phase coherence is also presented, utilising UV intensities obtained from above a weak solar network element. The problems associated with the quantification of phase coherence values are outlined and a comparison of two differing methods is carried out. Changes observed in the evolution of phase difference between oscillations detected in the UV emission of the temperature minimum and low transition region are shown to be due to the alteration of the underlying magnetic topology, occuring when same polarity flux emerges nearby. The final part of this thesis concerns the differing situation of intensity variations during energetic flare phenomena on

  13. Normal forces of magnetorheological fluids under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Zong, Luhang; Peng, Chao

    2012-03-01

    The normal forces of magnetorheological fluids under oscillatory shear are investigated by a commercial magneto-rheometer with plate-plate geometry. At the constant strain amplitude and frequency, the normal forces almost keep a steady value with the testing time if the strain amplitude is smaller than the critical value. When a larger strain is applied, they will fluctuate periodically. Under the strain sweep mode, the relationships between normal forces and strain amplitude can be divided into three regions: linear viscoelastic region, nonlinear viscoelastic region and the viscoplastic region. Under the frequency sweep method, it is found that the angular frequency show little influence on the normal forces. At last, the normal forces increase with increasing of the temperature under a low magnetic field, while they decrease under a high magnetic field.

  14. Frequency-offset separated oscillatory fields

    NASA Astrophysics Data System (ADS)

    Vutha, A. C.; Hessels, E. A.

    2015-11-01

    A frequency-offset separated-oscillatory-field technique is presented. The technique is a modification of the Ramsey method of separated oscillatory fields [Phys. Rev. 76, 996 (1949), 10.1103/PhysRev.76.996], in which the frequencies of the two separated oscillatory fields are slightly offset from each other, so that the relative phase of the two fields varies continuously with time. With this technique, the detection signal oscillates in time at the offset frequency, and the resonance frequency is obtained by using a simple straight-line fit of the phase of this signal. The technique has the advantages of being insensitive to the frequency response of the experimental system, of being sensitive only to noise at the offset frequency, and of allowing systematic effects to be more cleanly resolved due to the simple lineshape.

  15. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    NASA Astrophysics Data System (ADS)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  16. [Synchronized, oscillatory brain activity in visual perception].

    PubMed

    Braunitzer, Gábor

    2008-09-30

    The present study investigates one of the most promising developments of the brain-mind question, namely the possible links between synchronized oscillatory brain activity and certain (visual) perceptual processes. Through a review of the relevant literature, the author introduces the reader to the most important theories of coherent perception ('binding'), and makes an attempt to show how synchronization of EEG-registrable oscillatory activities from various frequency bands might explain binding. Finally, a number of clinical problems are also mentioned, regarding which the presented theoretical framework might deserve further consideration. PMID:18841649

  17. Cortico-pallidal oscillatory connectivity in patients with dystonia.

    PubMed

    Neumann, Wolf-Julian; Jha, Ashwani; Bock, Antje; Huebl, Julius; Horn, Andreas; Schneider, Gerd-Helge; Sander, Tillmann H; Litvak, Vladimir; Kühn, Andrea A

    2015-07-01

    Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement

  18. Mechanisms for oscillatory true polar wander.

    PubMed

    Creveling, J R; Mitrovica, J X; Chan, N-H; Latychev, K; Matsuyama, I

    2012-11-01

    Palaeomagnetic studies of Palaeoproterozoic to Cretaceous rocks propose a suite of large and relatively rapid (tens of degrees over 10 to 100 million years) excursions of the rotation pole relative to the surface geography, or true polar wander (TPW). These excursions may be linked in an oscillatory, approximately coaxial succession about the centre of the contemporaneous supercontinent. Within the framework of a standard rotational theory, in which a delayed viscous adjustment of the rotational bulge acts to stabilize the rotation axis, geodynamic models for oscillatory TPW generally appeal to consecutive, opposite loading phases of comparable magnitude. Here we extend a nonlinear rotational stability theory to incorporate the stabilizing effect of TPW-induced elastic stresses in the lithosphere. We demonstrate that convectively driven inertia perturbations acting on a nearly prolate, non-hydrostatic Earth with an effective elastic lithospheric thickness of about 10 kilometres yield oscillatory TPW paths consistent with palaeomagnetic inferences. This estimate of elastic thickness can be reduced, even to zero, if the rotation axis is stabilized by long-term excess ellipticity in the plane of the TPW. We speculate that these sources of stabilization, acting on TPW driven by a time-varying mantle flow field, provide a mechanism for linking the distinct, oscillatory TPW events of the past few billion years. PMID:23135471

  19. Computer-Assisted Experiments with Oscillatory Circuits

    ERIC Educational Resources Information Center

    Fernandes, J. C.; Ferraz, A.; Rogalski, M. S.

    2010-01-01

    A basic setup for data acquisition and analysis from an oscillatory circuit is described, with focus on its application as either low-pass, high-pass, band-pass or band-reject frequency filter. A homemade board containing the "RLC" elements allows for the interchange of some of them, in particular, for the easy change of the "R" value, and this…

  20. Suppression of the Oscillatory Modes of a Space Charge in the Magnetron Injection Guns of Technological Gyrotrons

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Kuntsevich, A. D.; Manuilov, V. N.

    2015-01-01

    We present the results of based on the PIC method numerical simulation of the dynamic processes of trapping of electrons into the adiabatic trap of a technological gyrotron for different configurations of the electric and magnetic fields in the electron beam formation region. The electrode geometry providing a low reflection coefficient of the magnetic mirror to suppress oscillatory modes in the space-charge cloud and ensure the stability of the electron beam with a high fraction of oscillatory energy in such a system has been found.

  1. Oscillatory correlates of autobiographical memory.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2015-03-01

    Recollection of events from one's own life is referred to as autobiographical memory. Autobiographical memory is an important part of our self. Neuroimaging findings link self-referential processes with the default mode network (DMN). Much evidence coming primarily from functional magnetic resonance imaging studies shows that autobiographical memory and DMN have a common neural base. In this study, electroencephalographic data collected in 47 participants during recollection of autobiographical episodes were analyzed using temporal and spatial independent component analyses in combination with source localization. Autobiographical remembering was associated with an increase of spectral power in alpha and beta and a decrease in delta band. The increase of alpha power, as estimated by sLORETA, was most prominent in the posterior DMN, but was also observed in visual and motor cortices, prompting an assumption that it is associated with activation of DMN and inhibition of irrelevant sensory and motor areas. In line with data linking delta oscillations with aversive states, decrease of delta power was more pronounced in episodes associated with positive emotions, whereas episodes associated with negative emotions were accompanied by an increase of delta power. Vividness of recollection correlated positively with theta oscillations. These results highlight the leading role of alpha oscillations and the DMN in the processes accompanying autobiographical remembering. PMID:25523347

  2. Stepwise oscillatory circuits of a DNA molecule.

    PubMed

    Xu, Kunming

    2009-08-01

    A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications. PMID:19669574

  3. [Molecular oscillatory machinery of circadian rhythms].

    PubMed

    Yamaguchi, Yoshiaki; Okamura, Hitoshi

    2012-07-01

    Many metabolic and physiological processes display daily rhythms oscillated by the internal circadian clock system. This rhythm is generated by interlocked transcription-(post) translation feedback loops of clock genes: the core oscillatory loop, being composed of CLOCK/BMAL1 heterodimer activating the expressions of PER and CRY that directly repress CLOCK/BMAL1, is accompanied by accessory loops consisted with REV-ERB nuclear receptor repressing Bmal1 or with DBP competing with E4BP4 on D-box site. These clock proteins are regulated by phosphorylation and ubiquitination (PER/CRY), and acetylation (CLOCK/BMAL1). Recently, a deacetylating protein SIRT1 mediated metabolic pathway is discovered to be interlocked with core oscillatory loop via Nampt expression, a late-limiting enzyme in NAD+ salvage pathway. Since many key-step enzymes of metabolisms are regulated by the circadian clock, circadian clock system may intimately link to cellular metabolism. PMID:22844791

  4. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period. PMID:12199947

  5. An oscillatory neural network unit model

    SciTech Connect

    Bazhenov, M.; Rabinovich, M.; Rubchinsky, L.

    1996-06-01

    A mathematical model of a neuron describing its oscillatory activity is constructed and investigated. The model in the form of a system of three ordinary differential equations demonstrates both regular behavior of the time dependence of electric membrane potential and its chaotic dynamics. The absence of rigorous heteroclinic trajectories in the phase space of the system is proved and the transition to chaos is investigated. The processes of synchronization of the oscillators are discussed. {copyright} {ital 1996 American Institute of Physics.}

  6. Oscillatory traveling waves in excitable media

    SciTech Connect

    Zemskov, E. P. Loskutov, A. Yu.

    2008-08-15

    A new type of waves in an excitable medium, characterized by oscillatory profile, is described. The excitable medium is modeled by a two-component activator-inhibitor system. Reaction-diffusion systems with diagonal and cross diffusion are examined. As an example, a front (kink) represented by a heteroclinic orbit in the phase space is considered. The wave shape and velocity are analyzed with the use of exact analytical solutions for wave profiles.

  7. Modeling Stromatolite Growth Under Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Patel, H. J.; Gong, J.; Tice, M. M.

    2014-12-01

    Stromatolite growth models based on diffusion limited aggregation (DLA) has been fairly successful at producing features commonly recognized in stromatolitic structures in the rock record. These models generally require slow mixing of solutes at time scales comparable to the growth of organisms and largely ignore fluid erosions. Recent research on microbial mats suggests that fluid flow might have a dominant control on the formation, deformation and erosion of surface microbial structures, raising the possibility that different styles of fluid flow may influence the morphology of stromatolites. Many stromatolites formed in relatively high energy, shallow water environments under oscillatory currents driven by wind-induced waves. In order to investigate the potential role of oscillatory flows in shaping stromatolites, we are constructing a numerical model of stromatolite growth parameterized by flume experiments with cyanobacterial biofilms. The model explicitly incorporates reaction-diffusion processes, surface deformation and erosion, biomass growth, sedimentation and mineral precipitation. A Lattice-Boltzmann numerical scheme was applied to the reaction-diffusion equations in order to boost computational efficiency. A basic finite element method was employed to compute surface deformation and erosion. Growth of biomass, sedimentation and carbonate precipitation was based on a modified discrete cellular automata scheme. This model will be used to test an alternative hypothesis for the formation of stromatolites in higher energy, shallow and oscillatory flow environments.

  8. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.

    PubMed

    Soto-Aquino, D; Rosso, D; Rinaldi, C

    2011-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe<2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear

  9. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments

    PubMed Central

    Leuchter, Andrew F.; Hunter, Aimee M.; Krantz, David E.; Cook, Ian A.

    2015-01-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD. PMID:25809789

  10. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  11. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  12. Dynamics of macroautophagy: Modeling and oscillatory behavior

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kwon, Hyun Woong; Kang, Hyuk; Kim, Jinwoong; Lee, Myung-Shik; Choi, M. Y.

    2012-02-01

    We propose a model for macroautophagy and study the resulting dynamics of autophagy in a system isolated from its extra-cellular environment. It is found that the intracellular concentrations of autophagosomes and autolysosomes display oscillations with their own natural frequencies. Such oscillatory behaviors, which are interrelated to the dynamics of intracellular ATP, amino acids, and proteins, are consistent with the very recent biological observations. Implications of this theoretical study of autophagy are discussed, with regard to the possibility of guiding molecular studies of autophagy.

  13. Enhancing Rotational Diffusion Using Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  14. Frequency-offset separated oscillatory fields technique

    NASA Astrophysics Data System (ADS)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  15. Oscillatory patterns in three-dimensional kinetic simulations of space plasma

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Markidis, Stefano

    2015-04-01

    We analyse kinetic simulations of the relaxation of a magnetic field configuration with multiple null-points. The power spectral density of the magnetic field is dissipative and exhibits two breaks: at ion-inertial and at electron-gyration scales; the slopes are steeper than observed in solar wind. Although different simulations in the same configuration show similar energetics, the local evolution pattern is rather chaotic. Most of the null-points in the simulations are of the spiral type, they are surrounded by twisted field lines, and powerful currents establish through them forming Z-pinches. Various instabilities are associated with the current channels, especially prominent is the kinking which drives secondary magnetic reconnection that dissipates the magnetic energy. In some regions the current channels produce thin secondary threads that show lower hybrid drift-like oscillatory characteristics. Oscillatory patterns are also detected at the halo boundary above dipolar lunar anomalies in 3-D kinetic simulations. It is found that they are (at least partially) in relation to the position of the B=0 line across the halo formed due to the opposing directions of the dipolar and interplanetary magnetic field in the simulation set-up, as well is to the strength of both fields and the solar wind parameters. We investigate and compare the detailed characteristics of small-scale wave patterns in both 3D simulations of null points and lunar magnetic anomalies.

  16. Absence of X-point band overlap in divalent hexaborides and variability of the surface chemical potential

    SciTech Connect

    Denlinger, Jonathan D.; Gweon, Gey-Hong; Mo, Sung-Kwan; Allen, James W.; Sarrao, John L.; Bianchi, Adrian D.; Fisk, Zachary

    2001-11-04

    Angle-resolved photoemission measurements of divalent hexaborides reveals a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. While the global ARPES band structure and gap size observed are consistent with the results of bulk-sensitive soft x-ray absorption and emission boron K-edge spectroscopy, the surface-sensitive photoemission measurements also show a variation with cation, surface and time of the position of the surface chemical potential in the band structure.

  17. Resistive reduced MHD modeling of multi-edge-localized-mode cycles in Tokamak X-point plasmas.

    PubMed

    Orain, F; Bécoulet, M; Huijsmans, G T A; Dif-Pradalier, G; Hoelzl, M; Morales, J; Garbet, X; Nardon, E; Pamela, S; Passeron, C; Latu, G; Fil, A; Cahyna, P

    2015-01-23

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements. PMID:25659004

  18. Information transmission in oscillatory neural activity.

    PubMed

    Koepsell, Kilian; Sommer, Friedrich T

    2008-11-01

    Periodic neural activity not locked to the stimulus or to motor responses is usually ignored. Here, we present new tools for modeling and quantifying the information transmission based on periodic neural activity that occurs with quasi-random phase relative to the stimulus. We propose a model to reproduce characteristic features of oscillatory spike trains, such as histograms of inter-spike intervals and phase locking of spikes to an oscillatory influence. The proposed model is based on an inhomogeneous Gamma process governed by a density function that is a product of the usual stimulus-dependent rate and a quasi-periodic function. Further, we present an analysis method generalizing the direct method (Rieke et al. in Spikes: exploring the neural code. MIT Press, Cambridge, 1999; Brenner et al. in Neural Comput 12(7):1531-1552, 2000) to assess the information content in such data. We demonstrate these tools on recordings from relay cells in the lateral geniculate nucleus of the cat. PMID:18985377

  19. Ketamine alters oscillatory coupling in the hippocampus

    PubMed Central

    Caixeta, Fábio V.; Cornélio, Alianda M.; Scheffer-Teixeira, Robson; Ribeiro, Sidarta; Tort, Adriano B. L.

    2013-01-01

    Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling. PMID:23907109

  20. Nonlinear oscillatory and monotonic shocks in dense plasmas with ultra-relativistic degenerate electrons

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Rehman, Aman-ur; Hasnain, H.; Mustafa, N.

    2015-09-01

    In this paper we study the ion acoustic oscillatory and monotonic shocks in dissipative homogeneous magnetized plasmas. The dissipation in the plasma system is considered via kinematic viscosity of ions and quantum effects are included through degeneracy pressure of ultra-relativistic electrons. Korteweg de Vries Burgers (KdVB) equation is derived by using reductive perturbation method. Numerical and analytical solutions of KdVB equation are presented. The transition from oscillatory profile to monotonic shock are studied numerically at different values of kinematic viscosity. We also analyzed the effects of variations of different plasma parameters on the strength of the shock structure in dense plasmas. The relevance of the work to astrophysical plasma conditions such as in compact stars is also pointed out.

  1. Probing of field-induced structures and their dynamics in ferrofluids using oscillatory rheology.

    PubMed

    Felicia, Leona J; Philip, John

    2014-10-21

    We probe field-induced structures and their dynamics in ferrofluids using oscillatory rheology. The magnetic field dependence of the relaxation time and crossover modulus showed two distinct regions, indicating the different microstructures in those regions. The observed relaxation at various magnetic field strengths indicates that side chains are attached to the pinned single-sphere-width chains between the rheometer plates. Our results suggest that the ferrofluid under a magnetic field exhibits a soft solidlike behavior whose relaxation is governed by the imposed strain rate and the magnetic field. Using the scaling factors obtained from the frequency and modulus at the crossover point in the oscillatory rheological measurements, the constant strain-rate frequency sweep data is superimposed onto a single master curve. The frequency scaling factor increases with the strain rate as a power law with an exponent close to unity, whereas the amplitude scaling factor is almost strain-rate-independent at high magnetic field strengths. These findings are useful for a better understanding of field-induced ordering of nanoparticles in fluids and their optimization for practical applications. PMID:25268053

  2. Control of Cavity Resonance Using Steady and Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Lamp, Alison M.; Chokani, Ndaona

    1999-01-01

    An experimental study to investigate the effect of steady and oscillatory (with zero net mass flux) blowing on cavity resonance is undertaken. The objective is to study the basic mechanisms of the control of cavity resonance. An actuator is designed and calibrated to generate either steady blowing or oscillatory blowing with A zero net mass flux. The results of the experiment show that both steady and oscillatory blowing are effective, and reduce the amplitude of the dominant resonant mode by 1OdB. The oscillatory blowing is however found to be more superior in that the same effectiveness could be accomplished with a momentum coefficient an order of magnitude smaller than for steady blowing. The experiment also confirms the results of previous computations that suggest the forcing frequency for oscillatory blowing must not be at harmonic frequencies of the cavity resonant modes.

  3. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  4. Phase Slips in Oscillatory Hair Bundles

    PubMed Central

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  5. Phase slips in oscillatory hair bundles.

    PubMed

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  6. Spiking dynamics of interacting oscillatory neurons

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.; Nekorkin, V. I.; Binczak, S.; Jacquir, S.; Bilbault, J. M.

    2005-06-01

    Spiking sequences emerging from dynamical interaction in a pair of oscillatory neurons are investigated theoretically and experimentally. The model comprises two unidirectionally coupled FitzHugh-Nagumo units with modified excitability (MFHN). The first (master) unit exhibits a periodic spike sequence with a certain frequency. The second (slave) unit is in its excitable mode and responds on the input signal with a complex (chaotic) spike trains. We analyze the dynamic mechanisms underlying different response behavior depending on interaction strength. Spiking phase maps describing the response dynamics are obtained. Complex phase locking and chaotic sequences are investigated. We show how the response spike trains can be effectively controlled by the interaction parameter and discuss the problem of neuronal information encoding.

  7. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  8. Production of oscillatory flow in wind tunnels

    NASA Astrophysics Data System (ADS)

    Al-Asmi, K.; Castro, I. P.

    1993-06-01

    A method for producing oscillatory flow in open-circuit wind tunnels driven by centrifugal fans is described. Performance characteristics of a new device installed on two such tunnels of greatly differing size are presented. It is shown that sinusoidal variations of the working section flow, having peak-to-peak amplitudes up to at least 30 percent of the mean flow speed and frequencies up to, typically, that corresponding to the acoustic quarter-wave-length frequency determined by the tunnel size, can be obtained with negligible harmonic distortion or acoustic noise difficulties. A brief review of the various methods that have been used previously is included, and the advantages and disadvantages of these different techniques are highlighted. The present technique seems to represent a significant improvement over many of them.

  9. Exercise oscillatory ventilation in heart failure.

    PubMed

    Corrà, Ugo

    2016-03-01

    Ventilation inefficiency has become a matter of interest for heart failure (HF) specialists, the most remarkable being exertional oscillatory ventilation (EOV). EOV is an abnormal ventilatory phenomenon, originally described as anecdotal, but now considered a marker of disease severity and worst prognosis in HF. EOV is a cyclic fluctuation of minute ventilation (VE) and expired gas kinetics occurring during exercise: it is a slow, prominent, consistent rather than random, fluctuation in VE that may be evanescent or transient and can follow several distinct patterns. In contrast to the periodic breathing observed in Cheyne-Stokes respiration and central sleep apnea, the gradual increase and decrease in minute ventilation (VE) are not spaced by periods of apnea. This review will discuss EOV in HF and the overlap with Cheyne-Stokes respiration. PMID:26935880

  10. Phase Slips in Oscillatory Hair Bundles

    NASA Astrophysics Data System (ADS)

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production.

  11. Vortex generation in oscillatory canopy flow

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Schlosser, Tamara

    2013-03-01

    In this paper, we demonstrate for the first time the generation of coherent vortices at the top of a canopy in oscillatory (i.e., wave-dominated) flow. Through a series of flow visualization experiments, vortex formation is shown to occur when two conditions described by the Keulegan-Carpenter (KC) and Reynolds (Re) numbers are met. First, the wave period must be sufficiently long to allow the generation of the shear-driven instability at the top of the canopy; this occurs when KC ≳ 5. Second, the vortex instability must be able to overcome the stabilizing effects of viscosity; this occurs when Re ≳ 1000. The vortices greatly increase the rate of vertical mixing within the canopy, such that any prediction of residence time in a coastal canopy requires an understanding of whether vortex generation is occurring.

  12. Droplet migration characteristics in confined oscillatory microflows

    NASA Astrophysics Data System (ADS)

    Chaudhury, Kaustav; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-01

    We analyze the migration characteristics of a droplet in an oscillatory flow field in a parallel plate microconfinement. Using phase field formalism, we capture the dynamical evolution of the droplet over a wide range of the frequency of the imposed oscillation in the flow field, drop size relative to the channel gap, and the capillary number. The latter two factors imply the contribution of droplet deformability, commonly considered in the study of droplet migration under steady shear flow conditions. We show that the imposed oscillation brings an additional time complexity in the droplet movement, realized through temporally varying drop shape, flow direction, and the inertial response of the droplet. As a consequence, we observe a spatially complicated pathway of the droplet along the transverse direction, in sharp contrast to the smooth migration under a similar yet steady shear flow condition. Intuitively, the longitudinal component of the droplet movement is in tandem with the flow continuity and evolves with time at the same frequency as that of the imposed oscillation, although with an amplitude decreasing with the frequency. The time complexity of the transverse component of the movement pattern, however, cannot be rationalized through such intuitive arguments. Towards bringing out the underlying physics, we further endeavor in a reciprocal identity based analysis. Following this approach, we unveil the time complexities of the droplet movement, which appear to be sufficient to rationalize the complex movement patterns observed through the comprehensive simulation studies. These results can be of profound importance in designing droplet based microfluidic systems in an oscillatory flow environment.

  13. Newly developed ventricular assist device with linear oscillatory actuator.

    PubMed

    Fukunaga, Kazuyoshi; Funakubo, Akio; Fukui, Yasuhiro

    2003-01-01

    The goal of this study was to develop a new direct electromagnetic left ventricular assist device (DEM-LVAD) with a linear oscillatory actuator (LOA). The DEM-LVAD is a pulsatile pump with a pusher plate. The pusher plate is driven directly by the mover of the LOA. The LOA provides reciprocating motion without using any movement converter such as a roller screw or a hydraulic system. It consists of a stator with a single winding excitation coil and a mover with two permanent magnets. The simple structure of the LOA is based on fewer parts to bring about high reliability and smaller size. The mover moves back and forth when forward and backward electric current is supplied to the excitation coil. The pump housings have been designed using three-dimensional computer aided design software and fabricated with the aid of computer aided manufacturing technology. Monostrut valves (Bjork-Shiley #21) were used for the prototype. The DEM-LVAD dimension is 96 mm in diameter and 50 mm thick with a mass of 0.62 kg and a volume of 280 ml. An in vitro test (afterload 100 mm Hg; preload 10 mm Hg; input power 10 W) demonstrated more than 6 L/minute maximum output and 15% maximum efficiency at 130 beats per minute (bpm). Dynamic stroke volume ranged between 40 and 60 ml. The feasibility of the DEM-LVAD was confirmed. PMID:12790386

  14. Control of Oscillatory Thermocapillary Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Skarda, Ray

    1998-01-01

    This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.

  15. Autocatalytic Reaction Front Propagation in Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Leconte, Marc; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    Laboratoire Fluides Automatique et Systèmes Thermiques, Universités P. et M. Curie and Paris Sud, C.N.R.S. (UMR 7608) Bâtiment 502, Campus Universitaire, 91405 Orsay Cedex, France. Autocatalytic reaction front between two reacting species is able to propagate as a solitary wave that is at a constant velocity and with a stationary concentration profile resulting from a balance between molecular diffusion and chemical reaction. On the other hand, in laminar flow the association of molecular diffusion and convection leads to an overall diffusion effect, the so-called Taylor dispersion, with a flow dependent enhanced dispersion coefficient. Previous experiments have demonstrated the dissymmetry between supportive and adverse advection flows compared to the reaction front propagation without flow. We analyze experimentally the effect of laminar oscillatory flow on the propagation and on the shape of the fronts in the Iodate-Arsenous Acid autocatalytic reaction in micro Hele-Shaw cells. We observe new solitary waves whose velocity and shape depend on the relative importance of advection, diffusion and reaction. The results are in reasonable with our lattice 3D BGK simulations.

  16. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    PubMed

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175

  17. Turbulent shear control with oscillatory bubble injection

    NASA Astrophysics Data System (ADS)

    Park, Hyun Jin; Oishi, Yoshihiko; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi

    2009-02-01

    It is known that injecting bubbles into shear flow can reduce the frictional drag. This method has advantages in comparison to others in simplicity of installation and also in environment. The amount of drag reduction by bubbles depends on the void fraction provided in the boundary layer. It means, however, that certain power must be consumed to generate bubbles in water, worsening the total power-saving performance. We propose oscillatory bubble injection technique to improve the performance in this study. In order to prove this idea of new type of drag reduction, velocity vector field and shear stress profile in a horizontal channel flow are measured by ultrasonic velocity profiler (UVP) and shear stress transducer, respectively. We measure the gas-liquid interface from the UVP signal, as well. This compound measurement with different principles leads to deeper understanding of bubble-originated drag reduction phenomena, in particular for unsteady process of boundary layer alternation. At these experiments, the results have demonstrated that the intermittency promotes the drag reduction more than normal continuous injection for the same void fraction supplied.

  18. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  19. Parameters Determination of Oscillatory Impulse Current Waveform

    NASA Astrophysics Data System (ADS)

    Sato, Shuji; Nishimura, Seisuke; Seki, Shingo

    This paper proposes numerical techniques to distil waveform parameters out of digitally measured data of oscillatory impulse current. The first method, to be used for liner circuit, based on a curve-fitting technique in which a smooth analytical curve is defined to fit the noise-superposed measured data. The waveform parameters are derived from the curve. The algorithm is examined its performance using a measured waveform data which is obtained from a circuit composed of linear elements only. It is not rare when impulse current is measured in a circuit with non-linear element, namely an arrester. After carefully observed behaviours of the circuit current when the non-linear element turns on and off, authors developed two algorithms capable to determine the parameters from the recorded data obtained from a circuit having a ZnO arrester. The developed algorithm processed the waveform data generated by TDG which is to be issued in 2009 as a part of IEC 61083-2. The details of the algorithm are to be demonstrated in the paper.

  20. Exercise oscillatory ventilation: Mechanisms and prognostic significance

    PubMed Central

    Dhakal, Bishnu P; Lewis, Gregory D

    2016-01-01

    Alteration in breathing patterns characterized by cyclic variation of ventilation during rest and during exercise has been recognized in patients with advanced heart failure (HF) for nearly two centuries. Periodic breathing (PB) during exercise is known as exercise oscillatory ventilation (EOV) and is characterized by the periods of hyperpnea and hypopnea without interposed apnea. EOV is a non-invasive parameter detected during submaximal cardiopulmonary exercise testing. Presence of EOV during exercise in HF patients indicates significant impairment in resting and exercise hemodynamic parameters. EOV is also an independent risk factor for poor prognosis in HF patients both with reduced and preserved ejection fraction irrespective of other gas exchange variables. Circulatory delay, increased chemosensitivity, pulmonary congestion and increased ergoreflex signaling have been proposed as the mechanisms underlying the generation of EOV in HF patients. There is no proven treatment of EOV but its reversal has been noted with phosphodiesterase inhibitors, exercise training and acetazolamide in relatively small studies. In this review, we discuss the mechanistic basis of PB during exercise and the clinical implications of recognizing PB patterns in patients with HF. PMID:27022457

  1. Oscillatory flow through submerged canopies: 1. Velocity structure

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Koseff, Jeffrey R.; Monismith, Stephen G.

    2005-10-01

    Many benthic organisms form very rough surfaces on the seafloor that can be described as submerged canopies. Recent evidence has shown that, compared with a unidirectional current, an oscillatory flow driven by surface waves can significantly enhance biological processes such as nutrient uptake. However, to date, the physical mechanisms responsible for this enhancement have not been established. This paper presents a theoretical model to estimate flow inside a submerged canopy driven by oscillatory flow. To reduce the complexity of natural canopies, an idealized canopy consisting of an array of vertical cylinders is used. The attenuation of the in-canopy oscillatory flow is shown to be governed by three dimensionless parameters defined on the basis of canopy geometry and flow parameters. The model predicts that an oscillatory flow will always generate a higher in-canopy flow when compared to a unidirectional current of the same magnitude, and specifically that the attenuation will monotonically increase as the wave orbital excursion length is increased. A series of laboratory experiments are conducted for a range of different unidirectional and oscillatory flow conditions, and the results confirm that oscillatory flow increases water motion inside a canopy. It is hypothesized that this higher in-canopy flow will enhance rates of mass transfer from the canopy elements, a problem formally investigated in a companion paper (Lowe et al., 2005b).

  2. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    NASA Astrophysics Data System (ADS)

    Yao, Xingan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates.

  3. Robust Concentration and Frequency Control in Oscillatory Homeostats

    PubMed Central

    Thorsen, Kristian; Agafonov, Oleg; Selstø, Christina H.; Jolma, Ingunn W.; Ni, Xiao Y.; Drengstig, Tormod; Ruoff, Peter

    2014-01-01

    Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable robustly (i.e. perturbation-independent) at a given set-point by feeding the integrated error back into the process that generates . The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (“oscillatory homeostats”) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation. PMID:25238410

  4. Oscillatory multiband dynamics of free particles: The ubiquity of zitterbewegung effects

    SciTech Connect

    Winkler, R.; Zuelicke, U.; Bolte, Jens

    2007-05-15

    In the Dirac theory for the motion of free relativistic electrons, highly oscillatory components appear in the time evolution of physical observables such as position, velocity, and spin angular momentum. This effect is known as zitterbewegung. We present a theoretical analysis of rather different Hamiltonians with gapped and/or spin-split energy spectrum (including the Rashba, Luttinger, and Kane Hamiltonians) that exhibit analogs of zitterbewegung as a common feature. We find that the amplitude of oscillations of the Heisenberg velocity operator v(t) generally equals the uncertainty for a simultaneous measurement of two linearly independent components of v. It is also shown that many features of zitterbewegung are shared by the simple and well-known Landau Hamiltonian, describing the dynamics of two-dimensional (2D) electron systems in the presence of a magnetic field perpendicular to the plane. Finally, we also discuss the oscillatory dynamics of 2D electrons arising from the interplay of Rashba spin splitting and a perpendicular magnetic field.

  5. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  6. Possibility of oscillatory tidal heating of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.; Sohl, F.; Kurita, K.

    2012-12-01

    Enceladus radiates ~16 GW of heat from its surface [1]. One efficient heat source of Enceladus is tidal heating which is maintained by the orbital resonance with Dione. However, assuming that the current eccentricity of Enceladus is in equilibrium with the resonance, tidal heating can generate only 1.1 GW of heat [2]. In the case of a non-equilibrium state, tidal heating rate and eccentricity evolve by interacting with each other. For homogeneous model of Enceladus, corresponding coupling calculations have been conducted by Meyer and Wisdom [3]. In their calculations, generated heat and eccentricity reach equilibrium state soon. In this work, we have performed coupling calculation among tidal heating rate, eccentricity and the interior structure of Enceladus. We constructed spherical shell Maxwell model for simplicity. Conventionally, dissipation factor (Q-value) of Saturn is estimated to more than 18,000 [2]. However, the latest observation implies a Q-value of Saturn that is one of order of magnitude less than conventional values [4]. We performed the calculation with different values of the Saturnian dissipation factor. In addition to the tidal heat, we took 7 GW of shear heat into consideration as an additional heat source[5]. In our calculation, if water-ice mixture (~10^9 Pa s in viscosity) exists between convective ice and silicate core instead of liquid ocean, eccentricity and heating rate oscillate with an 50-million-years cycle when the Q-value of Saturn is assumed around 3800. Minimum value of eccentricity is 0.005, which is comparable to the current value (0.0047). Generated tidal heat oscillates between 3 GW and 10 GW. Combined with shear heat, 17 GW of heat is generated at maximum. Although conditions for oscillatory heating are hard to fulfill and more consideration is needed, current large heat radiation of Enceladus may be remnant of episodically large tidal heating. Enceladus has divergent surface conditions, which might be related to episodic

  7. Oscillatory flow through submerged canopies: 2. Canopy mass transfer

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Koseff, Jeffrey R.; Monismith, Stephen G.; Falter, James L.

    2005-10-01

    Mass transfer rates from submerged canopies constructed from arrays of vertical cylinders were investigated for a range of different cylinder spacings under both unidirectional and oscillatory flow. Individual canopy elements made from gypsum were dissolved in fresh water to simulate the mass transfer of dissolved metabolites to and from canopies of living benthic organisms. Mass transfer rates under oscillatory flow were up to three times higher than values measured for a comparable unidirectional current. This enhancement was shown to be a strong function of the canopy element spacing. A model was developed to predict canopy mass transfer rates on the basis of the in-canopy flow speed and was generalized to incorporate either unidirectional or oscillatory flow. Agreement between the modeled and experimentally measured mass transfer rates indicate that enhanced mass transfer to/from living benthic canopies under oscillatory flow is driven primarily by the higher in-canopy water motion generated by the oscillatory flow, as detailed in the companion paper (Lowe et al., 2005).

  8. Linked and knotted chimera filaments in oscillatory systems

    NASA Astrophysics Data System (ADS)

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  9. Reciprocal relationships between the oscillatory systems of the brain.

    PubMed

    Knyazev, G G; Slobodskoi-Plyusnin, Ya Yu; Savost'yanov, A N; Levin, E A; Bocharov, A V

    2010-01-01

    Resting EEG recordings were made from cohorts of 146 children aged 7-17 years and 132 adults aged 18-32 years and the levels of personality features and psychopathology were assessed using the Eysenck, Spilberger, Gray-Wilson, and Goodman questionnaires. Factor analysis was used to discriminate covariance of measures of the spectral power of EEG rhythms into positive and negative components. The latter were interpreted as a measure of inhibitory interactions between oscillatory systems. In children, positive covariance of rhythms was stronger than in adults, while reciprocal relationships between oscillatory systems were weaker. In adults, trait anxiety correlated positively with the strength of the reciprocal relationship between the alpha and delta oscillatory systems. In children, an analogous relationship was seen between anxiety and the strength of the reciprocal relationship between the theta and delta systems. The data are discussed in the light of the evolutionary interpretation of EEG rhythms. PMID:20012491

  10. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation.

    PubMed

    Vendelbo, S B; Elkjær, C F; Falsig, H; Puspitasari, I; Dona, P; Mele, L; Morana, B; Nelissen, B J; van Rijn, R; Creemer, J F; Kooyman, P J; Helveg, S

    2014-09-01

    Many catalytic reactions under fixed conditions exhibit oscillatory behaviour. The oscillations are often attributed to dynamic changes in the catalyst surface. So far, however, such relationships were difficult to determine for catalysts consisting of supported nanoparticles. Here, we employ a nanoreactor to study the oscillatory CO oxidation catalysed by Pt nanoparticles using time-resolved high-resolution transmission electron microscopy, mass spectrometry and calorimetry. The observations reveal that periodic changes in the CO oxidation are synchronous with a periodic refacetting of the Pt nanoparticles. The oscillatory reaction is modelled using density functional theory and mass transport calculations, considering the CO adsorption energy and the oxidation rate as site-dependent. We find that to successfully explain the oscillations, the model must contain the phenomenon of refacetting. The nanoreactor approach can thus provide atomic-scale information that is specific to surface sites. This will improve the understanding of dynamic properties in catalysis and related fields. PMID:25038730

  11. Asymptotic expansions of Mellin convolution integrals: An oscillatory case

    NASA Astrophysics Data System (ADS)

    López, José L.; Pagola, Pedro

    2010-01-01

    In a recent paper [J.L. López, Asymptotic expansions of Mellin convolution integrals, SIAM Rev. 50 (2) (2008) 275-293], we have presented a new, very general and simple method for deriving asymptotic expansions of for small x. It contains Watson's Lemma and other classical methods, Mellin transform techniques, McClure and Wong's distributional approach and the method of analytic continuation used in this approach as particular cases. In this paper we generalize that idea to the case of oscillatory kernels, that is, to integrals of the form , with c[set membership, variant]R, and we give a method as simple as the one given in the above cited reference for the case c=0. We show that McClure and Wong's distributional approach for oscillatory kernels and the summability method for oscillatory integrals are particular cases of this method. Some examples are given as illustration.

  12. Linked and knotted chimera filaments in oscillatory systems.

    PubMed

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets. PMID:27575065

  13. Oscillatory contractions in tail arteries from genetically hypertensive rats.

    PubMed

    Lamb, F S; Myers, J H; Hamlin, M N; Webb, R C

    1985-01-01

    This study characterizes a cellular mechanism for oscillatory contractions induced by norepinephrine in vascular smooth muscle from spontaneously hypertensive stroke prone rats (SHRSP). Helically cut strips of tail arteries from SHRSP and normotensive Wistar-Kyoto rats (WKY) were mounted in a muscle bath for measurement of isometric force generation. Norepinephrine-induced responses of arteries from SHRSP were characterized by fluctuations in contractile activity, whereas those in arteries from WKY remained constant with time. The magnitude of the oscillatory contractile activity (frequency X mean amplitude) varied directly with norepinephrine concentration (5.9 X 10(-9) to 1.8 X 10(-7) M). The oscillatory contractile activity varied inversely with the potassium concentration (3-20 mM) of the buffer solution and directly with the calcium concentration (0.1-5.0 mM) of the buffer solution. The oscillatory activity was converted to maintained contraction by barium (10(-4) M), quinidine (3 X 10(-6) M), sparteine (10(-3) M), D-600 (10(-7) M), and nifedipine (10(-8) M). Tetraethylammonium and 3,4-diaminopyridine, inhibitors of voltage-dependent potassium channels, did not alter the oscillatory contractile activity induced by norepinephrine. These observations suggest that oscillatory contractile activity in tail arteries from SHRSP is caused by an abnormal variation in potassium efflux during stimulation with norepinephrine. The altered potassium efflux appears to be related to calcium entry, which is sensitive to inhibition by channel blockers. This altered membrane property may contribute to changes in vascular sensitivity in hypertension. PMID:3997233

  14. Self-organized alternating chimera states in oscillatory media

    PubMed Central

    Haugland, Sindre W.; Schmidt, Lennart; Krischer, Katharina

    2015-01-01

    Oscillatory media can exhibit the coexistence of synchronized and desynchronized regions, so-called chimera states, for uniform parameters and symmetrical coupling. In a phase-balanced chimera state, where the totals of synchronized and desynchronized regions, respectively, are of the same size, the symmetry of the system predicts that interchanging both phases still gives a solution to the underlying equations. We observe this kind of interchange as a self-emerging phenomenon in an oscillatory medium with nonlinear global coupling. An interplay between local and global couplings renders the formation of these alternating chimeras possible. PMID:25928860

  15. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  16. Strobes: pyrotechnic compositions that show a curious oscillatory combustion.

    PubMed

    Corbel, Justine M L; van Lingen, Joost N J; Zevenbergen, John F; Gijzeman, Onno L J; Meijerink, Andries

    2013-01-01

    Strobes are pyrotechnic compositions which show an oscillatory combustion; a dark phase and a flash phase alternate periodically. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area. All strobe compositions mentioned in the literature were discovered by trial and error methods and the mechanisms involved remain unclear. Many oscillatory systems such as Belousov-Zhabotinsky reactions, cool flames, self-propagating high-temperature synthesis have been observed and theories developed to elucidate their unstable behavior based on chemical interactions or based on physical processes. These systems are compared to experimental observations made on strobe mixtures. PMID:23255499

  17. Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity.

    PubMed

    Quentin, Romain; Chanes, Lorena; Vernet, Marine; Valero-Cabré, Antoni

    2015-08-01

    May white matter connectivity influence rhythmic brain activity underlying visual cognition? We here employed diffusion imaging to reconstruct the fronto-parietal white matter pathways in a group of healthy participants who displayed frequency-specific ameliorations of visual sensitivity during the entrainment of high-beta oscillatory activity by rhythmic transcranial magnetic stimulation over their right frontal eye field. Our analyses reveal a strong tract-specific association between the volume of the first branch of the superior longitudinal fasciculus and improvements of conscious visual detection driven by frontal beta oscillation patterns. These data indicate that the architecture of specific white matter pathways has the ability to influence the distributed effects of rhythmic spatio-temporal activity, and suggest a potentially relevant role for long-range connectivity in the synchronization of oscillatory patterns across fronto-parietal networks subtending the modulation of conscious visual perception. PMID:24554730

  18. Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Rossmanith, James A.; Tang, Qi

    2014-07-01

    In this work we develop a class of high-order finite difference weighted essentially non-oscillatory (FD-WENO) schemes for solving the ideal magnetohydrodynamic (MHD) equations in 2D and 3D. The philosophy of this work is to use efficient high-order WENO spatial discretizations with high-order strong stability-preserving Runge-Kutta (SSP-RK) time-stepping schemes. Numerical results have shown that with such methods we are able to resolve solution structures that are only visible at much higher grid resolutions with lower-order schemes. The key challenge in applying such methods to ideal MHD is to control divergence errors in the magnetic field. We achieve this by augmenting the base scheme with a novel high-order constrained transport approach that updates the magnetic vector potential. The predicted magnetic field from the base scheme is replaced by a divergence-free magnetic field that is obtained from the curl of this magnetic potential. The non-conservative weakly hyperbolic system that the magnetic vector potential satisfies is solved using a version of FD-WENO developed for Hamilton-Jacobi equations. The resulting numerical method is endowed with several important properties: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as point values on the same mesh (i.e., there is no mesh staggering); (2) both the spatial and temporal orders of accuracy are fourth-order; (3) no spatial integration or multidimensional reconstructions are needed in any step; and (4) special limiters in the magnetic vector potential update are used to control unphysical oscillations in the magnetic field. Several 2D and 3D numerical examples are presented to verify the order of accuracy on smooth test problems and to show high-resolution on test problems that involve shocks.

  19. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  20. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  1. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  2. Bed Morphology and Sediment Transport under Oscillatory Flow

    ERIC Educational Resources Information Center

    Pedocchi Miljan, Francisco

    2009-01-01

    Recent laboratory and field experiments have shown the inability of existing oscillatory flow ripple predictors to accurately predict both ripple size and planform geometry. However, at this time, only partial adaptations of these predictors have been proposed in the literature to account for the observed discrepancies with experimental data…

  3. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  4. Oscillatory Correlates of Retrieval-Induced Forgetting in Recognition Memory

    ERIC Educational Resources Information Center

    Spitzer, Bernhard; Hanslmayr, Simon; Opitz, Bertram; Mecklinger, Axel; Bauml, Karl-Heinz

    2009-01-01

    Retrieval practice on a subset of previously studied material enhances later memory for practiced material but can inhibit memory for related unpracticed material. The present study examines the effects of prior retrieval practice on evoked (ERPs) and induced (oscillatory power) measures of electrophysiological activity underlying recognition of…

  5. Temperature (over)compensation in an oscillatory surface reaction.

    PubMed

    Nagao, Raphael; Epstein, Irving R; Gonzalez, Ernesto R; Varela, Hamilton

    2008-05-22

    Biological rhythms are regulated by homeostatic mechanisms that assure that physiological clocks function reliably independent of temperature changes in the environment. Temperature compensation, the independence of the oscillatory period on temperature, is known to play a central role in many biological rhythms, but it is rather rare in chemical oscillators. We study the influence of temperature on the oscillatory dynamics during the catalytic oxidation of formic acid on a polycrystalline platinum electrode. The experiments are performed at five temperatures from 5 to 25 °C, and the oscillations are studied under galvanostatic control. Under oscillatory conditions, only non-Arrhenius behavior is observed. Overcompensation with temperature coefficient (q(10), defined as the ratio between the rate constants at temperature T + 10 °C and at T) < 1 is found in most cases, except that temperature compensation with q(10) ≈ 1 predominates at high applied currents. The behavior of the period and the amplitude result from a complex interplay between temperature and applied current or, equivalently, the distance from thermodynamic equilibrium. High, positive apparent activation energies were obtained under voltammetric, nonoscillatory conditions, which implies that the non-Arrhenius behavior observed under oscillatory conditions results from the interplay among reaction steps rather than from a weak temperature dependence of the individual steps. PMID:18433166

  6. Non-oscillatory behaviour in vacuum Kaluza-Klein cosmologies

    NASA Astrophysics Data System (ADS)

    Demaret, J.; Henneaux, M.; Spindel, P.; Taormina, A.; Hanquin, J.-L.

    The generic behavior of vacuum inhomogeneous Kaluza-Klein cosmologies is studied in the vicinity of the cosmological singularity. It is argued that, in spacetime dimensions equal to or greater than 11, the generalized Kasner solution, with monotonic power-law behavior of the spatial distances, becomes a general solution of the Einstein vacuum field equations and, moreover, the chaotic oscillatory behavior disappears.

  7. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    ERIC Educational Resources Information Center

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  8. Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun

    2016-03-01

    This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

  9. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response. PMID:20850237

  10. Spatial structure of scrape-off-layer filaments near the midplane and X-point regions of Alcator C-Mod

    SciTech Connect

    Terry, J L; Zweben, S J; Umansky, M V; Cziegler, I; Grulke, O; LaBombard, B; Stotler, D P

    2008-05-22

    Movies of edge turbulence at both the outboard midplane and the region outboard of the typical lower X-point location in C-Mod have been obtained using Gas-Puff-Imaging together with fast-framing cameras. Intermittent turbulent structures, typically referred to as blobs or filaments, are observed in both locations. Near the midplane the filaments are roughly circular in cross-section, while in the X-point region they are highly elongated. Filament velocities in this region are {approx}3x faster than the radial velocities at the midplane, in a direction roughly normal to the local flux surfaces. The observations are consistent with the picture that the filaments arise in outboard region and, as a consequence of the rapid parallel diffusion of the potential perturbations, map along field lines. A simulation using the 3D BOUT turbulence code has been made, with the result that reproduces many of the spatial features observed in the experiment.

  11. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity.

    PubMed

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity ("frequency-tuning"). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  12. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  13. Low frequency entrainment of oscillatory bursts in hair cells.

    PubMed

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W F; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-16

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  14. Low Frequency Entrainment of Oscillatory Bursts in Hair Cells

    PubMed Central

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W.F.; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  15. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    NASA Astrophysics Data System (ADS)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  16. Oscillatory motion of sheared nanorods beyond the nematic phase

    NASA Astrophysics Data System (ADS)

    Strehober, David A.; Engel, Harald; Klapp, Sabine H. L.

    2013-07-01

    We study the role of the control parameter triggering nematic order (temperature or concentration) on the dynamical behavior of a system of nanorods under shear. Our study is based on a set of mesoscopic equations of motion for the components of the tensorial orientational order parameter. We investigate these equations via a systematic bifurcation analysis based on a numerical continuation technique, focusing on spatially homogeneous states. Exploring a wide range of parameters we find, unexpectedly, that states with oscillatory motion can exist even under conditions where the equilibrium system is isotropic. These oscillatory states are characterized by a wagging motion of the paranematic director, and they occur if the tumbling parameter is sufficiently small. We also present full nonequilibrium phase diagrams in the plane spanned by the concentration and the shear rate.

  17. Oscillatory motion of a viscous fluid in a porous medium

    SciTech Connect

    Siraev, R. R.

    2015-08-15

    An oscillatory flow of an incompressible fluid in a saturated porous medium in the presence of a solid inclusion has been theoretically studied. Unsteady filtration has been described by the Brinkman–Forchheimer equation, where inertial effects and terms with acceleration characteristic of high filtration rates and the presence of pulsations are taken into account. The convective part of the acceleration is responsible for nonlinear effects near macroinhomogeneities. These effects can play a noticeable role in unsteady flows in the porous medium, as is shown for the problem of a solid ball streamed by an oscillatory flow having a given velocity at infinity. The results indicate that a secondary averaged flow appears in the case of high frequencies and cannot be described by Darcy’s or Forchheimer’s filtration laws.

  18. Flow Loading Induces Oscillatory Trajectories in a Bloodstream Parasite

    PubMed Central

    Uppaluri, Sravanti; Heddergott, Niko; Stellamanns, Eric; Herminghaus, Stephan; Zöttl, Andreas; Stark, Holger; Engstler, Markus; Pfohl, Thomas

    2012-01-01

    The dynamics of isolated microswimmers are studied in bounded flow using the African trypanosome, a unicellular parasite, as the model organism. With the help of a microfluidics platform, cells are subjected to flow and found to follow an oscillatory path that is well fit by a sine wave. The frequency and amplitudes of the oscillatory trajectories are dependent on the flow velocity and cell orientation. When traveling in such a manner, trypanosomes orient upstream while downstream-facing cells tumble within the same streamline. A comparison with immotile trypanosomes demonstrates that self-propulsion is essential to the trajectories of trypanosomes even at flow velocities up to ∼40 times higher than their own swimming speed. These studies reveal important swimming dynamics that may be generally pertinent to the transport of microswimmers in flow and may be relevant to microbial pathogenesis. PMID:22995488

  19. Oscillatory Enzyme Dynamics Revealed by Two-Dimensional Infrared Spectroscopy.

    PubMed

    Pagano, Philip; Guo, Qi; Kohen, Amnon; Cheatum, Christopher M

    2016-07-01

    Enzymes move on a variety of length and time scales. While much is known about large structural fluctuations that impact binding of the substrates and release of products, little is known about faster motions of enzymes and how these motions may influence enzyme-catalyzed reactions. This Letter reports frequency fluctuations of the azide anion bound to the active site of formate dehydrogenase measured via 2D IR spectroscopy. These measurements reveal an underdamped oscillatory component to the frequency-frequency correlation function when the azide is bound to the NAD(+) ternary complex. This oscillation disappears when the reduced cofactor is added, indicating that the oscillating contributions most likely come from the charged nicotinamide ring. These oscillatory motions may be relevant to donor-acceptor distance sampling of the catalyzed hydride transfer and therefore may give future insights into the dynamic behavior involved in enzyme catalysis. PMID:27305279

  20. Oscillatory Thermocapillary Flow Experiment-2 (OTFE-2). Experiment 31

    NASA Technical Reports Server (NTRS)

    Kamotani, Yasuhiro; Ostrach, Simon; Pline, Alexander D.

    1998-01-01

    Oscillatory thermocapillary flow experiments were performed in the Glovebox aboard the USML-2 Spacelab which was launched on October 20, 1995. Open cylindrical containers of 1.2 and 2.0 cm in diameter were used. The ratio of container depth to radius (aspect ratio) was set at 0.5 and 2. Silicone oil of 2 centistokes kinematic viscosity was the test fluid. The fluid was heated by a cylindrical heater placed along the center axis of the container. The fluid motion was studied by flow visualization. The effect of aspect ratio on the onset of oscillations and on the oscillatory flow was investigated. It was found that the onset of oscillations was delayed when the container was made more shallow.

  1. Oscillatory multiphase flow strategy for chemistry and biology.

    PubMed

    Abolhasani, Milad; Jensen, Klavs F

    2016-07-19

    Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities. PMID:27397146

  2. An experimental study of oscillatory thermocapillary convection in cylindrical containers

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Lee, J. H.; Ostrach, S.; Pline, A.

    1992-01-01

    An experimental study of oscillatory thermocapillary in small cylindrical containers with a heating wire placed along the center axis is performed by investigating the flow structures and temperature distributions under various conditions. To supplement the flow visualization the surface is scanned using an infrared imager. Here, 2 cS viscosity (Pr = 27) silicone oil is used as the test fluid. It is observed that beyond a certain temperature difference between the container wall and the heating wire, a distinctive unsteady flow pattern appears. This unsteady phenomenon is identified as oscillatory thermocapillary. After the onset of oscillations the flow structure becomes nonaxisymmetric and wave motion is observed at the free surface. It is shown that the critical temperature difference is independent of container dimensions if the aspect ratio is fixed.

  3. Understanding the onset of oscillatory swimming in microchannels.

    PubMed

    de Graaf, Joost; Mathijssen, Arnold J T M; Fabritius, Marc; Menke, Henri; Holm, Christian; Shendruk, Tyler N

    2016-05-25

    Self-propelled colloids (swimmers) in confining geometries follow trajectories determined by hydrodynamic interactions with the bounding surfaces. However, typically these interactions are ignored or truncated to the lowest order. We demonstrate that higher-order hydrodynamic moments cause rod-like swimmers to follow oscillatory trajectories in quiescent fluid between two parallel plates, using a combination of lattice-Boltzmann simulations and far-field calculations. This behavior occurs even far from the confining walls and does not require lubrication results. We show that a swimmer's hydrodynamic quadrupole moment is crucial to the onset of the oscillatory trajectories. This insight allows us to develop a simple model for the dynamics near the channel center based on these higher hydrodynamic moments, and suggests opportunities for trajectory-based experimental characterization of swimmers' hydrodynamic properties. PMID:27184912

  4. Oscillatory flow in jet pumps: nonlinear effects and minor losses.

    PubMed

    Petculescu, A; Wilen, L A

    2003-03-01

    A nonresonant, lumped-element technique is used to investigate the behavior of tapered cylindrical flow constrictions (jet pumps) in the nonlinear oscillatory flow regime. The array of samples studied spans a wide range of inlet curvature radii and taper angles. By measuring the rectified steady pressure component developed across a jet pump as well as the acoustic impedance, the minor loss coefficients for flow into and out of the narrow end of the jet pump are determined. These coefficients are found to be relatively insensitive to all but the smallest curvature radii (i.e., sharp edges). For fixed radius of curvature, the inflow minor loss coefficient increases with increasing taper angle while the outflow coefficient remains relatively constant. For all of the samples, the steady flow minor loss coefficients are also measured and compared to their oscillatory flow counterparts. The agreement is good, confirming the so-called Iguchi hypothesis. PMID:12656363

  5. Understanding the onset of oscillatory swimming in microchannels

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Mathijssen, Arnold J. T. M.; Fabritius, Marc; Menke, Henri; Holm, Christian; Shendruk, Tyler N.

    Self-propelled colloids (swimmers) in confining geometries follow trajectories determined by hydrodynamic interactions with the bounding surfaces. However, typically these interactions are ignored or truncated to lowest order. We demonstrate that higher-order hydrodynamic moments cause rod-like swimmers to follow oscillatory trajectories in quiescent fluid between two parallel plates, using a combination of lattice-Boltzmann simulations and far-field calculations. This behavior occurs even far from the confining walls and does not require lubrication results. We show that a swimmer's hydrodynamic quadrupole moment is crucial to the onset of the oscillatory trajectories. This insight allows us to develop a simple model for the dynamics near the channel center based on these higher hydrodynamic moments, and suggests opportunities for trajectory-based experimental characterization of swimmers' hydrodynamic properties.

  6. Properties of carbachol-induced oscillatory activity in rat hippocampus.

    PubMed

    Williams, J H; Kauer, J A

    1997-11-01

    Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol. 78: 2631-2640, 1997. The recent resurgence of interest in carbachol oscillations as an in vitro model of theta rhythm in the hippocampus prompted us to evaluate the circuit mechanisms involved. In extracellular recordings, a regularly spaced bursting pattern of field potentials was observed in both CA3 and CA1 subfields in the presence of carbachol. Removal of the CA3 region abolished oscillatory activity observed in CA1, suggesting that the oscillatory generator is located in CA3. An alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), blocked carbachol oscillations, indicating that AMPA receptor-mediated synaptic currents are necessary for the population oscillation. Moreover, the spread of oscillatory activity into CA1 required intact N-methyl--aspartate receptors. These data are more consistent with epileptiform bursting than with theta rhythm described in vivo. In the presence of carbachol, individual CA3 pyramidal cells exhibited a slow, rhythmic intrinsic oscillation that was not blocked by DNQX and that was enhanced by membrane hyperpolarization. We hypothesize that this slower oscillation is the fundamental oscillator that participates in triggering the population oscillation by exciting multiple synaptically connected CA3 neurons. gamma-aminobutyric acid-A (GABAA) receptors are not necessary for carbachol to elicit synchronous CA3 field events but are essential to the bursting pattern observed. Neither GABAB nor metabotropic glutamate receptors appear to be necessary for carbachol oscillations. However, both nicotinic and M1 and M3 muscarinic cholinergic receptors contribute to the generation of this activity. These results establish the local circuit elements and neurotransmitter receptors that contribute to carbachol-induced oscillations and indicate that carbachol-induced oscillations are

  7. Hybrid weighted essentially non-oscillatory schemes with different indicators

    NASA Astrophysics Data System (ADS)

    Li, Gang; Qiu, Jianxian

    2010-10-01

    A key idea in finite difference weighted essentially non-oscillatory (WENO) schemes is a combination of lower order fluxes to obtain a higher order approximation. The choice of the weight to each candidate stencil, which is a nonlinear function of the grid values, is crucial to the success of WENO schemes. For the system case, WENO schemes are based on local characteristic decompositions and flux splitting to avoid spurious oscillation. But the cost of computation of nonlinear weights and local characteristic decompositions is very high. In this paper, we investigate hybrid schemes of WENO schemes with high order up-wind linear schemes using different discontinuity indicators and explore the possibility in avoiding the local characteristic decompositions and the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong shocks. The idea is to identify discontinuity by an discontinuity indicator, then reconstruct numerical flux by WENO approximation in discontinuous regions and up-wind linear approximation in smooth regions. These indicators are mainly based on the troubled-cell indicators for discontinuous Galerkin (DG) method which are listed in the paper by Qiu and Shu (J. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially non-oscillatory limiters, SIAM Journal of Scientific Computing 27 (2005) 995-1013). The emphasis of the paper is on comparison of the performance of hybrid scheme using different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance of hybrid scheme to save computational cost. Detail numerical studies in one- and two-dimensional cases are performed, addressing the issues of efficiency (less CPU time and more accurate numerical solution), non-oscillatory property.

  8. Voltage oscillatory instability caused by induction motor loads

    SciTech Connect

    Mello, F.P. de; Feltes, J.W.

    1996-08-01

    Isolated power systems which fit the structure of a single equivalent generator supplying an equivalent composite load can experience a voltage oscillatory instability entirely traceable to effects of induction motor loads interacting with automatic voltage regulators. This scenario is one where an AVR properly tuned for open circuit conditions is not necessarily well tuned for the on load condition. The phenomenon is explained and a simple solution through AVR compensation is suggested.

  9. Viscoelastic response of diblock copolymers to oscillatory shear.

    PubMed

    Rüdiger, S

    2005-05-01

    A mesoscopic model for diblock copolymers is combined with a simple rheological description of the viscoelastic contrast of its two phases. Under oscillatory shear the contrast generates secondary velocity fields and substantial deviations of volume-averaged flow parameters. The validity of our analytical findings is tested with three-dimensional numerical simulations. Furthermore, we consider the effect of advection by the generated flows on the stability of ordered lamellar states and propose a new criterion for the selection of orientations. PMID:15864726

  10. Steady and oscillatory fluid flows produce a similar osteogenic phenotype.

    PubMed

    Case, N; Sen, B; Thomas, J A; Styner, M; Xie, Z; Jacobs, C R; Rubin, J

    2011-03-01

    Mechanical loading induces positive changes in the skeleton due to direct effects on bone cells, which may include regulation of transcription factors that support osteoblast differentiation and function. Flow effects on osteoblast transcription factors have generally been evaluated after short exposures. In this work, we assayed flow effects on osteogenic genes at early and late time points in a preosteoblast (CIMC-4) cell line and evaluated both steady and oscillatory flows. Four hours of steady unidirectional flow decreased the level of RANKL mRNA 53 ± 7% below that of nonflowed cells, but increases in Runx2 and osterix mRNA (44 ± 22% and 129 ± 12%, respectively) were significant only after 12-19 h of continuous flow. Late flow effects on RANKL and osterix were also induced by an intermittent flow-rest protocol (four cycles of 1 h on/1 h off + overnight rest). Four hours of oscillatory flow decreased RANKL mRNA at this early time point (63 ± 2%) but did not alter either osterix or Runx2. When oscillatory flow was delivered using the intermittent flow-rest protocol, Runx2 and osterix mRNA increased significantly (85 ± 19% and 161 ± 22%, respectively). Both β-catenin and ERK1/2, known to be involved in RANKL regulation, were rapidly activated by steady flow. Inhibition of flow-activated ERK1/2 prevented the increase in osterix mRNA but not Runx2; Runx2 phosphorylation was increased by flow, an effect which likely contributes to osterix induction. This work shows that both steady and oscillatory fluid flows can support enhancement of an osteogenic phenotype. PMID:21165611

  11. Light scattering studies of an electrorheological fluid in oscillatory shear

    SciTech Connect

    Martin, J.E.; Odinek, J.

    1995-12-31

    We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

  12. An oscillatory neuronal circuit generating a locomotory rhythm.

    PubMed Central

    Friesen,, W O; Poon, M; Stent, G S

    1976-01-01

    A quartet of interconnected interneurons whose periodic activity appears to generate the traveling body wave of the swimming leech has been identified on each side of segmental ganglia of the ventral nerve cord of Hirudo medicinalis. Theoretical analysis and electronic analog models of the identified intra- and interganglionic synaptic connections of the segmentally iterated interneurons showed that they form an oscillatory network with cycle period and intra-and intersegmental phase relations appropriate for the swimming movement. Images PMID:1068483

  13. Changes of spontaneous oscillatory activity to tonic heat pain.

    PubMed

    Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes. PMID:24603703

  14. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  15. Measuring Response Of Propellant To Oscillatory Heat Flux

    NASA Technical Reports Server (NTRS)

    Strand, Leon D.; Schwartz, Ken; Burns, Shawn P.

    1990-01-01

    Apparatus for research in combustion of solid propellants measures oscillatory response of rate of burning to oscillating thermal radiation from modulated CO2 laser. Determines response to rate of burning to equivalent oscillation in pressure. Rod of propellant mounted in burner assembly including waveguide at one end and infrared window at other end. Microwave Doppler velocimeter measures motion of combustion front. Microwave, laser-current, and heat-flux signals processed into and recorded in forms useful in determining desired response of propellent.

  16. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area. PMID:12836031

  17. Mechanism of the Ferrocyanide-Iodate-Sulfite Oscillatory Chemical Reaction.

    PubMed

    Horváth, Viktor; Epstein, Irving R; Kustin, Kenneth

    2016-03-31

    Existing models of the ferrocyanide-iodate-sulfite (FIS) reaction seek to replicate the oscillatory pH behavior that occurs in open systems. These models exhibit significant differences in the amplitudes and waveforms of the concentration oscillations of such intermediates as I(-), I3(-), and Fe(CN)6(3-) under identical conditions and do not include several experimentally found intermediates. Here we report measurements of sulfite concentrations during an oscillatory cycle. Knowing the correct concentration of sulfite over the course of a period is important because sulfite is the main component that determines the buffer capacity, the pH extrema, and the amount of oxidizer (iodate) required for the transition to low pH. On the basis of this new result and recent experimental findings on the rate laws and intermediates of component processes taken from the literature, we propose a mass action kinetics model that attempts to faithfully represent the chemistry of the FIS reaction. This new comprehensive mechanism reproduces the pH oscillations and the periodic behavior in [Fe(CN)6(3-)], [I3(-)], [I(-)], and [SO3(2-)]T with characteristics similar to those seen in experiments in both CSTR and semibatch arrangements. The parameter ranges at which stationary and oscillatory behavior is exhibited also show good agreement with those of the experiments. PMID:26949219

  18. Dynamical weakening by fluidization under oscillatory viscous flows

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-11-01

    Dynamical weakening of granular materials plays a critical role on diverse geological events such as seismic faulting and landslides. A common feature in the dynamics of these processes is the development of fluid-solid relative flows, which could lead to fluidization by hydrodynamic viscous stresses. This work is focused on analyzing hydrodynamic fluidization under oscillatory viscous flows as a possible driving mechanism for dynamical weakening. The theoretical estimations and experimental observations presented and reviewed suggest that fluidization can be greatly promoted by oscillatory viscous flows, which are usually expected in geological events involving vibration of granular materials in viscous fluids. Fluidization under oscillatory viscous flows may occur at not excessively large vibration velocities of fine particles in gases or relatively larger particles in liquids or supercritical fluids. In particular, the enhancement of fluidization by high-frequency vibrations would be a powerful mechanism to promote dynamical weakening of fine powders in dry fault gouges, failure of liquid- (or supercritical fluid-) saturated beds, and sustained fluidization of pyroclastic flows and lahars.

  19. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  20. [Recent results in research on oscillatory chemical reactions].

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out. PMID:25872277

  1. Wavelet-based localization of oscillatory sources from magnetoencephalography data.

    PubMed

    Lina, J M; Chowdhury, R; Lemay, E; Kobayashi, E; Grova, C

    2014-08-01

    Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy. PMID:22410322

  2. Targeted training modifies oscillatory brain activity in schizophrenia patients

    PubMed Central

    Popov, Tzvetan G.; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A.; Rockstroh, Brigitte S.

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects. PMID:26082889

  3. Cerebral oscillatory activity during simulated driving using MEG

    PubMed Central

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between “passive viewing” and “active driving.” “Passive viewing” was the baseline, and oscillatory differences during “active driving” showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition. PMID:25566017

  4. Direct observations of L-I-H and H-I-L transitions with the X-point reciprocating probe in ASDEX Upgrade

    SciTech Connect

    Müller, S. H.; Manz, P.; Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching ; Stroth, U.; Physics Department E28, Technical University of Munich, 85747 Garching ; Tsalas, M.; Tynan, G. R.

    2014-04-15

    A reciprocating Langmuir probe was used to directly measure the behavior of turbulence and flows in the X-point region during transitions between low-(L) and high-confinement (H) mode in ASDEX Upgrade. The probe traverses the divertor horizontally in 140 ms, typically 2–5 cm below the X-point. Toroidal Mach number, density, floating potential (ϕ{sub f}), and electron temperature (T{sub e}) are measured. In the regime accessible to the probe (P{sub inj}<1.5 MW, line-integrated core density <4×10{sup 19} m{sup −2}), the L-H transition features an intermediate phase (I-phase), characterized by limit-cycle oscillations at 0.5–3 kHz [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)]. The probe measurements reveal that this pulsing affects both the density and the toroidal Mach number. It is present in both the low-(LFS) and high-field sides (HFS) of the scrape-off layer, while high-amplitude broadband turbulence usually dominates the private-flux region. Profile comparisons between L-mode and I-phase show lower density in pulsing regions and small shifts in T{sub e}, directed oppositely on LFS and HFS, which are compensated by shifts in ϕ{sub f} to yield a surprisingly unchanged plasma potential profile. Directly observed L-I-phase transitions reveal that the onset of the pulsing is preceded by a fast 50% density drop in the HFS X-point region. Back transitions to L-mode occur essentially symmetrically, with the pulsing stopping first, followed by a fast recovery to L-mode density levels in the divertor.

  5. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  6. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  7. Point spread function of the optical needle super-oscillatory lens

    SciTech Connect

    Roy, Tapashree; Rogers, Edward T. F.; Yuan, Guanghui; Zheludev, Nikolay I.

    2014-06-09

    Super-oscillatory optical lenses are known to achieve sub-wavelength focusing. In this paper, we analyse the imaging capabilities of a super-oscillatory lens by studying its point spread function. We experimentally demonstrate that a super-oscillatory lens can generate a point spread function 24% smaller than that dictated by the diffraction limit and has an effective numerical aperture of 1.31 in air. The object-image linear displacement property of these lenses is also investigated.

  8. Oscillatory synchrony as a mechanism of attentional processing.

    PubMed

    Gregoriou, Georgia G; Paneri, Sofia; Sapountzis, Panagiotis

    2015-11-11

    The question of how the brain selects which stimuli in our visual field will be given priority to enter into perception, to guide our actions and to form our memories has been a matter of intense research in studies of visual attention. Work in humans and animal models has revealed an extended network of areas involved in the control and maintenance of attention. For many years, imaging studies in humans constituted the main source of a systems level approach, while electrophysiological recordings in non-human primates provided insight into the cellular mechanisms of visual attention. Recent technological advances and the development of sophisticated analytical tools have allowed us to bridge the gap between the two approaches and assess how neuronal ensembles across a distributed network of areas interact in visual attention tasks. A growing body of evidence suggests that oscillatory synchrony plays a crucial role in the selective communication of neuronal populations that encode the attended stimuli. Here, we discuss data from theoretical and electrophysiological studies, with more emphasis on findings from humans and non-human primates that point to the relevance of oscillatory activity and synchrony for attentional processing and behavior. These findings suggest that oscillatory synchrony in specific frequencies reflects the biophysical properties of specific cell types and local circuits and allows the brain to dynamically switch between different spatio-temporal patterns of activity to achieve flexible integration and selective routing of information along selected neuronal populations according to behavioral demands. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25712615

  9. Single Polymer Dynamics under Large Amplitude Oscillatory Extensional (LAOE) Flow

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    Over the past two decades, advances in fluorescence imaging and particle manipulation have enabled the direct observation of single polymer dynamics in model flows such as shear flow and planar extensional flow. The vast majority of single polymer studies, however, has focused on chain dynamics using simple transient step forcing functions. In order to study single polymer dynamics in non-idealized model flows, there is a clear need to implement more complicated transient flow forcing functions. In bulk rheology, large amplitude oscillatory shear (LAOS) was widely used to study the linear and nonlinear viscoelasticity of materials, but not yet been applied to molecular rheology. In this work, we directly probe single polymer dynamics using oscillatory extensional flow in precisely controlled microfluidic devices. We are able to generate large and small amplitude sinusoidal oscillatory extensional flow in a cross-slot microfluidic device while imaging the conformational dynamics of a single polymer trapped at the stagnation point. In this flow, polymer chains are stretched, squeezed, and rotated between extensional/compressional axes in a highly dynamic and transient manner. Using this technique, we studied the dynamics and coil-stretch transition of a single λ-DNA as a function of the Weissenberg number (Wi) and Deborah number (De). Moreover, we use Brownian dynamics simulation to map a wide range of Pipkin space for polymers from linear steady-state conditions to non-linear unsteady-states. Our results reveal a critical Wi at the coil-stretch transition that is function of the De in LAOE flow. Department of Materials Science and Engineering.

  10. A self-regulating biomolecular comparator for processing oscillatory signals.

    PubMed

    Agrawal, Deepak K; Franco, Elisa; Schulman, Rebecca

    2015-10-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  11. Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms

    NASA Astrophysics Data System (ADS)

    Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.

    2013-02-01

    The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.

  12. Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Stanisavljev, Dragomir R.; Velikić, Zoran; Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C.

    2014-09-01

    Oscillatory Bray-Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60-110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  13. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  14. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  15. Oscillatory cellular patterns in three-dimensional directional solidification

    DOE PAGESBeta

    Tourret, D.; Debierre, J. -M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guerin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelatedmore » at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global

  16. Regulation of oscillatory contraction in insect flight muscle by troponin.

    PubMed

    Krzic, Uros; Rybin, Vladimir; Leonard, Kevin R; Linke, Wolfgang A; Bullard, Belinda

    2010-03-19

    Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca(2+). Indirect flight muscle has two TnC isoforms: F1 binding a single Ca(2+) in the C-domain, and F2 binding Ca(2+) in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca(2+). We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca(2+) concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca(2+) was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The K(d) was 1.01 muM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle. PMID:20100491

  17. Oscillatory flow in a cone-and-plate bioreactor.

    PubMed

    Chung, C A; Tzou, M R; Ho, R W

    2005-08-01

    Motivated by biometric applications, we analyze oscillatory flow in a cone-and-plate geometry. The cone is rotated in a simple harmonic way on a stationary plate. Based on assuming that the angle between the cone and plate is small, we describe the flow analytically by a perturbation method in terms of two small parameters, the Womersley number and the Reynolds number, which account for the influences of the local acceleration and centripetal force, respectively. Working equations for the shear stresses induced both by laminar primary and secondary flows on the plate surface are presented. PMID:16121530

  18. Oscillatory cellular patterns in three-dimensional directional solidification

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Debierre, J.-M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guérin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  19. Oscillatory tank-treading motion of erythrocytes in shear flows.

    PubMed

    Dodson, W R; Dimitrakopoulos, P

    2011-07-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 m Pa s) and shear flow rates (2-560 s(-1)), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its length oscillations (which show relative variations of about 5-8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e., the cell becomes less deformed) with a small decrease in the length variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number, and viscosity ratio, and corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent

  20. Oscillatory cellular patterns in three-dimensional directional solidification.

    PubMed

    Tourret, D; Debierre, J-M; Song, Y; Mota, F L; Bergeon, N; Guérin, R; Trivedi, R; Billia, B; Karma, A

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  1. Oscillatory behaviour in Type IA FBG: ruling out chemical complexity

    NASA Astrophysics Data System (ADS)

    Simpson, George; Kalli, Kyriacos; Canning, John; Lacraz, Amedee

    2015-09-01

    Type IA FBG are regenerated gratings that appear in hydrogenated germanosilicate fibre of all types during prolonged UV exposure. The gratings are characterised by a large Bragg wavelength shift and a concomitant increase in the mean fibre core index. Modulated index changes are complex by comparison and significantly weaker, often characterised by oscillatory growth behaviour. Low thermal stability of Type IA gratings suggests a possible chemical role similar to thermally processed optical fibres where autocatalysis has been observed. We show that GeOH and SiOH formation are not out-of-phase and follow each other, with no evidence of autocatalysis, ruling out a chemical origin.

  2. Oscillatory cellular patterns in three-dimensional directional solidification

    SciTech Connect

    Tourret, D.; Debierre, J. -M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guerin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is

  3. About the oscillatory possibilities of the dynamical systems

    NASA Astrophysics Data System (ADS)

    Herrero, R.; Pi, F.; Rius, J.; Orriols, G.

    2012-08-01

    This paper may be ultimately described as an attempt to make feasible the evolutionary emergence of novelty in a supposedly deterministic world whose behavior is associated with that of the mathematical dynamical systems. It means philosophical implications that the paper needs to address, subsidiarily at least. The work was motivated by the observation of complex oscillatory behaviors in a family of physical devices and related mathematical models, for which there is no known explanation in the mainstream of nonlinear dynamics. The paper begins by describing a nonlinear mechanism of oscillatory mode mixing explaining such behaviors and, through its generalization to richer nonlinear vector fields, establishes a generic dynamical scenario with extraordinary oscillatory possibilities, including expansive growing scalability toward high dimensionalities and through nonlinear multiplicities. The scenario is then used to tentatively explain complex oscillatory behaviors observed in nature like those of turbulent fluids and living brains. Finally, by considering the scenario as a dynamic substrate underlying generic aspects of both the functioning and the genesis of complex behaviors in a supposedly deterministic world, a theoretical framework covering the evolutionary development of structural transformations in the time evolution of that world is built up. The analysis includes attempts to clarify the roles of items often invoked apropos of pathways to complexity like chaos, pattern formation, externally-driven bifurcations, hysteresis, irreversibility, and order through random fluctuations. Thermodynamics, as the exclusive field of physics in providing generic evolutionary criteria, is briefly and synthetically considered from the dynamical systems point of view by trying to elucidate its explanatory possibilities concerning the emergence of complexity. Quantum mechanics gets involved in two different ways: the lack of a dynamical systems perspective in the currently

  4. Dynamics of a population of oscillatory and excitable elements

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin P.; Strogatz, Steven H.

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  5. Spiral waves in oscillatory media with an applied electric field

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Ott, Edward; Guzdar, Parvez N.

    1999-02-01

    Spiral waves in oscillatory reaction-diffusion systems under the influence of a uniform, time-independent electric field are modeled by the complex Ginzburg-Landau equation extended to include a convective term with complex coefficient. Results for the spiral drift, deformation, and frequency shift due to the electric field are obtained. The coefficient of the additional convective term is derived from the original reaction-diffusion system. The equation provides a good qualitative model of experimentally seen distortion of spiral waves in the presence of an applied electric field.

  6. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  7. Cassini nightside observations of the oscillatory motion of Saturn's northern auroral oval

    NASA Astrophysics Data System (ADS)

    Bunce, E. J.; Grodent, D. C.; Jinks, S. L.; Andrews, D. J.; Badman, S. V.; Coates, A. J.; Cowley, S. W. H.; Dougherty, M. K.; Kurth, W. S.; Mitchell, D. G.; Provan, G.

    2014-05-01

    In recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet Imaging Spectrograph (UVIS) provide an excellent view of the planet's auroral emissions, which in turn give an account of the large-scale magnetosphere-ionosphere coupling and dynamics within the system. However, obtaining near-simultaneous views of the auroral regions with in situ measurements of magnetic field and plasma populations at high latitudes is more difficult to routinely achieve. Here we present an unusual case, during Revolution 99 in January 2009, where UVIS observes the entire northern UV auroral oval during a 2 h interval while Cassini traverses the magnetic flux tubes connecting to the auroral regions near 21 LT, sampling the related magnetic field, particle, and radio and plasma wave signatures. The motion of the auroral oval evident from the UVIS images requires a careful interpretation of the associated latitudinally "oscillating" magnetic field and auroral field-aligned current signatures, whereas previous interpretations have assumed a static current system. Concurrent observations of the auroral hiss (typically generated in regions of downward directed field-aligned current) support this revised interpretation of an oscillating current system. The nature of the motion of the auroral oval evident in the UVIS image sequence, and the simultaneous measured motion of the field-aligned currents (and related plasma boundary) in this interval, is shown to be related to the northern hemisphere magnetosphere oscillation phase. This is in agreement with previous observations of the auroral oval oscillatory motion.

  8. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits

    NASA Astrophysics Data System (ADS)

    Gérard, Claude; Goldbeter, Albert

    2010-12-01

    We previously proposed an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle [C. Gérard and A. Goldbeter, "Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle," Proc. Natl. Acad. Sci. U.S.A. 106, 21643 (2009)]. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, protein synthesis or degradation, and the balance between antagonistic effects of the tumor suppressor pRB and the transcription factor E2F. Increasing the level of a growth factor above a critical threshold triggers the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4-6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. This periodic, ordered activation of the various cyclin/Cdk complexes can be associated with cell proliferation. The multiplicity of feedback loops within the Cdk network is such that it contains at least four distinct circuits capable of producing oscillations. The tight coupling of these oscillatory circuits generally results in simple periodic behavior associated with repetitive cycles of mitosis or with endoreplication. The latter corresponds to multiple passages through the phase of DNA replication without mitosis. We show here that, as a result of the interaction between the multiple oscillatory circuits, particularly when attenuating the strength of the oscillatory module involving cyclin B/Cdk1, the model for the Cdk network can also produce complex periodic oscillations, quasiperiodic oscillations, and chaos. Numerical simulations based on limited explorations in parameter space nevertheless suggest that these complex modes of oscillatory behavior remain less common than the evolution to simple periodic

  9. Propulsion of micro-structures in Oscillatory Stokes Flow

    NASA Astrophysics Data System (ADS)

    Jo, Ikhee; Huang, Yangyang; Zimmerman, Walter; Kanso, Eva

    2015-11-01

    Drug delivery often necessitates specific site-targeting within the human body. The use of micro and/or nano devices swimming through the bloodstream provides an attractive mechanism for targeted drug targeting, however the design and practical implementation of such devices remain very challenging. Inspired by flapping wings, we construct a two-dimensional wedge-like device, consisting of two links connected by a linear torsional spring and released in an oscillatory Stokes flow. We vary the stiffness and rest angle of the linear spring and the oscillation amplitude and frequency of the background flow to explore the behavior of the device. We find that the device achieves a net displacement, or propulsion, in oscillatory flows even when no elastic energy is stored initially, thus breaking Purcell's scallop's theorem. More importantly, the vehicle tends to align with the background flow under perturbations. We conclude by commenting on how to control the parameters of the device and the fluid to achieve desired behavior of the device. These findings may have significant implications on the design of micro devices in viscous fluids.

  10. Anxiety, depression, and oscillatory dynamics in a social interaction model.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Rimareva, Julia M

    2016-08-01

    Although anxiety and depression frequently co-occur and share a substantial part of genetic vulnerability and other risk factors, they are distinct disorders and their effect on social functioning and accompanying cognitive and emotional processing could be different. In this study, in a nonclinical sample, we compared effects of trait anxiety and depressive symptoms on oscillatory dynamics accompanying perception of emotional facial expressions in the context of social interactions. Anxiety was associated with a longer reaction time, with preference of avoidance behavior, and with enhanced event-related alpha desynchronization and diminished theta synchronization. Depression did not show significant behavioral effects and was associated with diminished alpha desynchronization and augmented delta and theta synchronization in prefrontal cortical regions. Thus, in spite of frequent comorbidity, anxiety and depression show opposite patterns of associations with oscillatory dynamics accompanying social interactions. These patterns imply that anxiety is associated with hyper-reactive attentional system, whereas depression show signs of diminished cognitive reactivity. Depression-related enhancement of low-frequency synchronization in prefrontal cortex may reflect a compensatory mechanism of cognitive and emotional upregulation, which depression-prone individuals engage in the process of social interactions. PMID:27173999

  11. Theory of turbulence regulation by oscillatory zonal flows

    SciTech Connect

    Kim, Eun-jin

    2006-02-15

    The theory of turbulence regulation by oscillatory zonal flows is presented for passive scalar field models. Zonal flows are assumed to have linear spatial variation of the form U=-x{omega}(t)y, where {omega}(t) has amplitude {omega}{sub m} and frequency {omega}{sub z}. The flux and fluctuation levels are found to scale as 1/|k{sub y}U{sub m}| and {tau}{sub *}/|k{sub y}U{sub m}|, respectively, for {omega}{sub m}>{omega}{sub z}. Here, {tau}{sub *}={tau}{sub {eta}}({omega}{sub z}/{omega}{sub m}){sup 2} is the effective decorrelation time, {tau}{sub {eta}}={tau}{sub *}({omega}=0), U{sub m}=x{omega}{sub m}, and k{sub y} is the typical poloidal wave number of the turbulence. The effect of stochasticity of oscillatory zonal flows on shear decorrelation is discussed. The results complement the theory of turbulence regulation by low-frequency random zonal flows [E. Kim and P. H. Diamond, Phys. Rev. Lett 91, 075001 (2003)].

  12. Propulsion of a microsubmarine using a thermally oscillatory approach

    NASA Astrophysics Data System (ADS)

    Qiao, Lei; Luo, Cheng

    2013-10-01

    In this paper, motivated by the driving mechanism of a putt-putt toy boat, we explore the feasibility to propel a microsubmarine using a thermally oscillatory approach, which only requires a simple design and does not involve any complicated propulsive systems. We investigate the design, fabrication, actuation and horizontal motions of the corresponding microsubmarines. Based on the understanding gained through preliminary tests on two manually fabricated putt-putt boats, we designed and fabricated the prototype of a microsubmarine. Similar to a putt-putt boat, the prototype also uses a thermally oscillatory process for propulsion. In a cyclic period of this process, due to the expansion and shrinkage of a vapor bubble inside the reservoir of the submarine, liquid is first ejected outside and then sucked into the reservoir. Due to the difference in liquid flow directions between ejection and suction stages, a thrust is produced to propel the submarine. At an applied voltage of 16 V and pulse frequency of 100 Hz, the submarine was found to have the highest speed of 1.8 mm s-1 and longest travel distance of 12.6 mm. The corresponding thrust was estimated to be 67.6 nN.

  13. Exponential estimates for oscillatory integrals with degenerate phase functions

    NASA Astrophysics Data System (ADS)

    Cardin, F.; Gramchev, T.; Lovison, A.

    2008-03-01

    In this paper we give precise asymptotic expansions and estimates of the remainder R(λ) for oscillatory integrals with non Morse phase functions, having degeneracies of any order k >= 2. We provide an algorithm for writing down explicitly the coefficients of the asymptotic expansion analysing precisely the combinatorial behaviour of the coefficients (Gevrey type) and deriving optimal exponential decay estimates for the remainder when λ → ∞. We recapture the fundamental asymptotic expansions by Erdélyi (1956 Asymptotic Expansions (New York: Dover)). As it concerns the remainder estimates, it seems they are novel even for the classical cases. The main application of this machinery is a derivation of uniform estimates with respect to control parameters of celebrated oscillatory integrals in optics appearing in the calculations of the intensity of the light along the caustics (umbilics), see e.g. Arnold (1988 Singularities of Differentiable Maps vol II (Boston: Birkhäuser Boston Inc.)), (1974 USP. Mat. Nauk. 29 11-49) and Berry and Upstill (1980 Prog. Opt. 18 257-346). Finally, we mention that as an outcome of our abstract approach we obtain refinements for Morse phase functions provided suitable symmetry and Gevrey type regularity conditions on the phase functions and amplitudes hold. As far as we know, even this asymptotic expansion for the elliptic umbilic is a novelty.

  14. Cortical oscillatory dynamics in a social interaction model.

    PubMed

    Knyazev, Gennady G; Slobodskoj-Plusnin, Jaroslav Y; Bocharov, Andrey V; Pylkova, Liudmila V

    2013-03-15

    In this study we sought to investigate cortical oscillatory dynamics accompanying three major kinds of social behavior: aggressive, friendly, and avoidant. Behavioral and EEG data were collected in 48 participants during a computer game modeling social interactions with virtual 'persons'. 3D source reconstruction and independent component analysis were applied to EEG data. Results showed that social behavior was partly reactive and partly proactive with subject's personality playing an important role in shaping this behavior. Most salient differences were found between avoidance and approach behaviors, whereas the two kinds of approach behavior (i.e., aggression and friendship) did not differ from each other. Comparative to avoidance, approach behaviors were associated with higher induced responses in most frequency bands which were mostly observed in cortical areas overlapping with the default mode network. The difference between approach- and avoidance-related oscillatory dynamics was more salient in subjects predisposed to approach behaviors (i.e., in aggressive or sociable subjects) and was less pronounced in subjects predisposed to avoidance behavior (i.e., in high trait anxiety scorers). There was a trend to higher low frequency phase-locking in motor area in approach than in avoid condition. Results are discussed in light of the concept linking induced responses with top-down and evoked responses with bottom-up processes. PMID:23254174

  15. Oscillatory correlates of moral decision-making: Effect of personality.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2016-06-01

    The role of emotion in moral decision-making is still a matter of debate. Greene, Sommerville, Nystrom, Darley, and Cohen (2001) argue that 'personal' moral judgments are driven by emotional responses, while 'impersonal' judgments are largely driven by cognitive processes. In this study, oscillatory correlates of decision-making were compared in moral personal, moral impersonal, and nonmoral conditions, as well as in trials associated with utilitarian (i.e., favoring the 'greater good' over individual rights) and non-utilitarian choices. Event-related synchronization in delta and theta bands was greater in the right temporal lobe in personal than in both nonmoral and impersonal moral condition. Graph-theoretical analysis of connectivity patterns showed the prominent role of the orbitofrontal and cingulate cortices in personal moral decision-making, implying greater emotional and self-processing. Higher conscientiousness and intellect and lower behavioral activation were associated with greater difference in oscillatory responses between utilitarian and non-utilitarian choices in personal than in impersonal condition, indicating that sensitivity to moral issues and the ability to grasp the nuances of moral situation are essential for understanding the implications of utilitarian choices in personal and impersonal conditions. PMID:26167937

  16. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  17. Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs

    SciTech Connect

    Arnold, Anton; Geier, Jens

    2010-09-30

    We are concerned with the numerical integration of ODE-initial value problems of the form {epsilon}{sup 2{phi}}{sub xx}+a(x){phi} = 0 with given a(x){>=}a{sub 0}>0 in the highly oscillatory regime 0<{epsilon}(appearing as a stationary Schroedinger equation, e.g.). In two steps we derive an accurate finite difference scheme that does not need to resolve each oscillation: With a WKB-ansatz the dominant oscillations are ''transformed out'', yielding a much smoother ODE. For the resulting oscillatory integrals we devise an asymptotic expansion both in {epsilon} and h. The resulting scheme typically has a step size restriction of h = o({radical}({epsilon})). If the phase of the WKB-transformation can be computed explicitly, then the scheme is asymptotically correct with an error bound of the order o({epsilon}{sup 3}h{sup 2}). As an application we present simulations of a 1D-model for ballistic quantum transport in a MOSFET (metal oxide semiconductor field-effect transistor).

  18. Model for calcium dependent oscillatory growth in pollen tubes.

    PubMed

    Kroeger, Jens H; Geitmann, Anja; Grant, Martin

    2008-07-21

    Experiments have shown that pollen tubes grow in an oscillatory mode, the mechanism of which is poorly understood. We propose a theoretical growth model of pollen tubes exhibiting such oscillatory behaviour. The pollen tube and the surrounding medium are represented by two immiscible fluids separated by an interface. The physical variables are pressure, surface tension, density and viscosity, which depend on relevant biological quantities, namely calcium concentration and thickness of the cell wall. The essential features generally believed to control oscillating growth are included in the model, namely a turgor pressure, a viscous cell wall which yields under pressure, stretch-activated calcium channels which transport calcium ions into the cytoplasm and an exocytosis rate dependent on the cytosolic calcium concentration in the apex of the cell. We find that a calcium dependent vesicle recycling mechanism is necessary to obtain an oscillating growth rate in our model. We study the variation in the frequency of the growth rate by changing the extracellular calcium concentration and the density of ion channels in the membrane. We compare the predictions of our model with experimental data on the frequency of oscillation versus growth speed, calcium concentration and density of calcium channels. PMID:18471831

  19. Oscillatory shearing behavior of rocket leaves powder incorporated dough

    NASA Astrophysics Data System (ADS)

    Almusallam, Abdulwahab Salem; Ahmed, Jasim; Nahar, Shamsun; Chacko, Siby

    2016-05-01

    Dough blended with rocket leaves powder was subjected to small and large amplitude oscillatory shears. Small amplitude oscillatory shear data were fitted to a discrete relaxation model of elastic solids and to a critical gel model. The small amplitude relaxation spectrum was thereafter used to calculate the LAOS predictions of various large deformation models. The LAOS theoretical calculations using the Phan-Thien model showed good agreement with the first harmonic stress data, and only qualitative agreement with the third and the fifth harmonic stress values. Lissajous curves showed dissimilarity in shape between the experimental data and Phan-Thien model. The network model of Sim et al. (2003). Did not have the butterfly shape displayed in the Phan-Thien model, but it provided a worse fit to stress harmonics than the Phan-Thien model. An improved damage function was proposed, where time effect on network damage was taken into consideration, and fits to stress harmonics and to Lissajous stress-strain curves were significantly improved.

  20. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, Fatemeh; Ansari, Reza; Darvizeh, Mansour

    2015-12-01

    This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

  1. 3- and 5- Minute Oscillatory Behavior in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Calabro, Brandon; McAteer, James; Pevtsov, Alexander

    2011-10-01

    We study the spatially- and temporally-localized oscillatory behavior of the solar corona using a 6-hour sequence of narrowband 171A (extreme ultraviolet) image from the SWAP instrument onboard Proba2. We use a Morlet wavelet transform to extract oscillation parameters from the temporal evolution of emission in each pixel and study the variation in space and time of oscillatory power in the 3- and 5-minute band. We extract and compare these parameters between active Sun, quiet Sun and coronal hole regions. In each region of the corona studied the 5-minute periodicity is more prevalent than the 3-minute periodicity by a factor of 2--3. All areas of the corona exhibit a similar temporal behavior in the 5-minute band, suggesting a global driving mechanism. However, the dominance of the 5-minute periodicity is stronger in active regions than in other areas of the Sun. The 3-minute periodicity in active regions tends to be localized in the sunspot umbra, whereas the 5-minute is more prevalent in the penumbra.

  2. Yielding of colloidal gels under steady and oscillatory shear

    NASA Astrophysics Data System (ADS)

    Petekidis, George; Moghimi, Esmaeel; Koumakis, Nick; Forth Team

    2015-03-01

    The structural and rheological properties of intermediate volume fraction colloid polymer gels are examined during and after steady and oscillatory shear flow using rheometry, confocal microscopy, light scattering and Brownian Dynamics simulations. Our main objective is to rationalize the microscopic mechanisms through which one can tune the mechanical properties of such metastable colloidal gels by imposing different types of external shear and flow. Experimentally, the gels consist of model hard sphere particle dispersions of φ = 0.44 with the addition of non-adsorbing linear chains, while BD simulations are conducted for hard spheres with the superposition of an AO potential for depletion attractions. Structural analysis shows that variation of the applied shear rate produces strong changes in the structure of the gels both when under shear and during gel reformation at cessation. Larger rates are characterized by disperse particles and the total breakage of structures at rest, which after cessation evolve with time into strong solids with relatively homogeneous structures. However, smaller rates show large inhomogeneous structures under flow, which do not evolve after cessation and additionally exhibit reduced elasticity and as such are weaker solids. Furthermore oscillatory shear is far more efficient than steady shear creating gels with stronger differences in their elastic modulus. Thus by tuning the way a gel is sheared, one may vary the final strength and structure of the resulting gel. Work in collaboration with R. Besseling, W. C. K. Poon and J. F. Brady

  3. In silico evolution of oscillatory dynamics in biochemical networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2015-03-01

    We are studying in silico evolution of complex, oscillatory network dynamics within the framework of a minimal mutational model of protein-protein interactions. In our model we consider two different types of proteins, kinase (activator) and phosphatase(inhibitor). In our model. each protein can either be phosphorylated(active) or unphospphorylated (inactive), represented by binary strings. Active proteins can modify their target based on the Michaelis-Menten kinetics of chemical equation. Reaction rate constants are directly related to sequence dependent protein-protein interaction energies. This model can be stuided for non-trivial behavior e.g. oscillations, chaos, multiple stable states. We focus here on biochemical oscillators; some questions we will address within our framework include how the oscillatory dynamics depends on number of protein species, connectivity of the network, whether evolution can readily converge on a stable oscillator if we start with random intitial parameters, neutral evolution with additional protein components and general questions of robustness and evolavability.

  4. Unconscious errors enhance prefrontal-occipital oscillatory synchrony.

    PubMed

    Cohen, Michael X; van Gaal, Simon; Ridderinkhof, K Richard; Lamme, Victor A F

    2009-01-01

    The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signaled Go/No-Go task in which half of the No-Go cues were masked and thus not consciously perceived, response errors enhanced tonic (i.e., over 1-2 s) oscillatory synchrony between MFC and occipital cortex (OCC) leading up to and during the subsequent trial. Spectral Granger causality analyses demonstrated that MFC --> OCC directional synchrony was enhanced during trials following both conscious and unconscious errors, whereas transient stimulus-induced occipital --> MFC directional synchrony was independent of errors in the previous trial. Further, the strength of pre-trial MFC-occipital synchrony predicted individual differences in task performance. Together, these findings suggest that synchronous neurophysiological oscillations are a plausible mechanism of MFC-driven cognitive control that is independent of conscious awareness. PMID:19956401

  5. Inhomogeneity-induced bifurcation of stationary and oscillatory pulses

    NASA Astrophysics Data System (ADS)

    Prat, Alain; Li, Yue-Xian; Bressloff, Paul

    2005-03-01

    An excitable medium generally refers to a medium that is capable of generating traveling waves. It has been widely encountered in biology, chemistry and physics. Many excitable media have been modeled by systems of PDEs of the reaction-diffusion type. Excitable neural media are often modeled by integro-differential equations (IDEs). In both PDE and IDE models of excitable media, stationary spatial patterns of Turing’s type can occur under certain conditions. Such patterns have been used to explain a variety of biological pattern formation processes including morphogenesis and hallucination. Here we study a pattern formation mechanism that is different from Turing’s, called inhomogeneity-induced pattern formation. Such patterns can occur in an excitable medium either with an inhomogeneous but stationary forcing or a spatial variation in a model parameter. The interesting thing we found is: introducing a stationary bump into such a medium does not always produce just a simple bump-shaped output pattern. A complex bifurcation scenario can occur giving rise to the co-existence of multiple patterns. A stability analysis shows that the instability of such patterns often occurs through a Hopf bifurcation, giving rise to oscillatory pulse solutions. Such oscillatory pulses can behave like a pulse generator that emits traveling pulses periodically into the medium. Possible areas in biology where this theory can be applied will be discussed.

  6. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  7. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  8. Circadian modulation of motor-related beta oscillatory responses

    PubMed Central

    Wilson, Tony W.; Heinrichs-Graham, Elizabeth; Becker, Katherine M.

    2014-01-01

    Previous electrophysiological investigations have evaluated movement-related beta (14–28 Hz) oscillatory activity in healthy participants. These studies have described an abrupt decrease in beta activity that starts before movement onset, and a sharp increase in beta power that peaks after movement termination. These neural responses have been respectively termed the event-related beta desynchronization or pre-movement beta ERD, and the post-movement beta rebound (PMBR). Previous studies have shown that a variety of movement parameters and demographic factors (e.g., age) modulate the amplitude of these oscillatory responses, and in the current study we evaluated whether the amplitudes follow a biological temporal rhythm (e.g., circadian), as it is known that spontaneous beta levels increase from morning to afternoon in some brain areas. To this end, we used magnetoencephalography (MEG) to evaluate oscillatory activity during a right hand finger-tapping task in four participants who were recorded at three different times (09:00, 12:00, 16:00) on three consecutive days (i.e., 36 total MEG sessions). All MEG data were corrected for head motion and examined in the time-frequency domain using beamforming methods. We found a significant linear increase in beta ERD amplitude from 09:00 to 16:00 hours in the left precentral gyrus, left premotor cortices, left supplementary motor area (SMA), and the right precentral and postcentral gyri. In contrast, the amplitude of the PMBR was very steady across the day in all brain regions except the left SMA, which exhibited a linear increase from morning to afternoon. Finally, beta levels during the baseline period also increased from 09:00 to 16:00 in most regions of the cortical sensorimotor network. These data show that both the pre-movement beta ERD and spontaneous beta levels strongly increase from morning to afternoon in the motor cortices, which may indicate that the amplitude of the beta ERD response is determined by the

  9. VINETA II: a linear magnetic reconnection experiment.

    PubMed

    Bohlin, H; Von Stechow, A; Rahbarnia, K; Grulke, O; Klinger, T

    2014-02-01

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors. PMID:24593355

  10. VINETA II: A linear magnetic reconnection experiment

    SciTech Connect

    Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2014-02-15

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  11. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.

    PubMed

    Ashwin, Peter; Coombes, Stephen; Nicks, Rachel

    2016-12-01

    The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear-for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience. PMID:26739133

  12. Resonances and oscillatory behavior near multi-species plasma equilibria

    SciTech Connect

    Núñez, Manuel

    2014-03-15

    We consider dynamic multi-species plasma equilibria whose variables depend on a single spatial coordinate and linear perturbations of these. The linearized system may be reduced to a second-order one satisfied by the respective fluid streamfunctions. For the two-species case, the electron mass is a parameter small enough for a WKB asymptotic analysis to be justified. It turns out that the points where either the ion or electron equilibrium velocity equals the ratio between the temporal and transversal frequencies of the perturbation are turning or singular points of the system, connecting exponentially increasing or decreasing solutions to oscillatory ones. The crucial role of singular points in the balance between the different contributions to the electron kinetic energy is explored.

  13. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  14. Waves spontaneously generated by heterogeneity in oscillatory media

    NASA Astrophysics Data System (ADS)

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  15. Some observations on the oscillatory behavior of carbon monoxide oxidation

    NASA Technical Reports Server (NTRS)

    Mccaffrey, B. J.; Berlad, A. L.

    1976-01-01

    The oscillatory behavior of the oxidation of carbon monoxide was experimentally studied in an attempt to further elucidate the reaction at low pressure. The phenomenon is observed as multiple explosions and involves successive flashes of light accompanying the slow reaction in a static system, including over 450 flashes in one case. Electronically excited hydroxyl radicals (water impurity) and carbon dioxide have been identified as components of the emission. The phase difference between the two was seen to be negligible. The nature of the temperature and pressure changes during a cycle indicates that the oscillation is purely kinetic rather than thermokinetic. A procedure is presented whereby sustained oscillations can be obtained for particular regions in the pressure-temperature plane, vessel surface pretreatments, and H2O-containing reactants.

  16. [Vulnerability to Depression and Oscillatory Resting-State Networks].

    PubMed

    Knyazev, G G; Savostyanov, A N; Bocharov, A V; Saprygin, A E; Tamozhnikov, S S

    2015-01-01

    Depression is the most commonly observed mood disorder, which is accompanied by changes in emotional processes and the default mode network (DMN) activity. In this study, we aimed to investigate how predisposition to depression shows up in the emotional coloring of spontaneous thoughts and the activity of oscillatory resting-state networks, as revealed by source localization and independent component analysis techniques. Depressive symptoms correlated positively with the prevalence of negative emotion during EEG registration and with delta and theta activity in the orbitofrontal cortex and negatively with theta activity in the DMN. Since an increase of low-frequency oscillations in the orbitofrontal cortex is observed in aversive states, whereas their decrease in the DMN reflects an activation of this network, which is related to self-referenced processing, our results are consistent with the notion that vulnerability to depression is associated with general negative emotional disposition and excessive focus on the self. PMID:26281232

  17. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  18. Waves spontaneously generated by heterogeneity in oscillatory media

    PubMed Central

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-01-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated. PMID:27142730

  19. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material. PMID:26871146

  20. Collective Decision-Making and Oscillatory Behaviors in Cell Populations

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koichi; Sawai, Satoshi

    2013-12-01

    Many examples of oscillations are known in multicellular dynamics, however how properties of individual cells can account for the collective rhythmic behaviors at the tissue level remain elusive. Recently, studies in chemical reactions, synthetic gene circuits, yeast and social amoeba Dictyostelium have greatly enhanced our understanding of collective oscillations in cell populations. From these relatively simple systems, a unified view of how excitable and oscillatory regulations could be tuned and coupled to give rise to tissue-level oscillations is emerging. This chapter reviews recent progress in these and other experimental systems and highlight similarities and differences. We will show how group-level information can be encoded in the oscillations depending on degree of autonomy of single cells and discuss some of their possible biological roles.

  1. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  2. Oscillatory Flows Induced by Swimming Microorganisms in Two-dimensions

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey S.; Johnson, Karl A.; Gollub, J. P.

    2010-11-01

    We present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga Chlamydomonas reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The phase-resolved velocity field reveals complex time-dependent flow structures, which evolve throughout the beat cycle of the organism, and the fluid velocity scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields via the viscous dissipation and scales with the square of the swimmer speed. The peak power is about 15 fW, and the dissipation per cycle is more than four times what steady swimming would require. These observations carry important implications for the interpretation and modeling of transport processes, locomotion, and flagellar mechanics.

  3. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  4. Quantum oscillatory exciton migration in photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Abramavicius, Darius; Mukamel, Shaul

    2010-08-01

    The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

  5. Minimum energy paths for optimal oscillatory movements of PUMA arm

    SciTech Connect

    Olgac, N.; Zhou, S.

    1988-08-01

    This paper employs a geometric approach in reducing the number of time-consuming iterations necessary for the numerical solution of an optimal energy consumption problem for small amplitude oscillatory motions of robot manipulators. A general objective function in joint space is given for the energy needs in the drives, and specific applications for a commercially available manipulator, Unimation-PUMA 560, are carried out by separating the manipulator motions into two parallel segments: arm and wrist. This process, in general, leads to a highly nonlinear and transcendental optimization problem. The geometric study is presented, and the shortened numerical optimization is carried out. For any given point in the workspace, optimal directions of oscillations and their corresponding energy levels are found. This information is translated into a map of minimum energy levels across the workspace. The map will comprise a section of an intelligent control mechanism of larger scope which is conceived for ultimate use in space and subsea robotic operations. 6 references.

  6. Nonequilibrium structure of colloidal dumbbells under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Heptner, Nils; Chu, Fangfang; Lu, Yan; Lindner, Peter; Ballauff, Matthias; Dzubiella, Joachim

    2015-11-01

    We investigate the nonequilibrium behavior of dense, plastic-crystalline suspensions of mildly anisotropic colloidal hard dumbbells under the action of an oscillatory shear field by employing Brownian dynamics computer simulations. In particular, we extend previous investigations, where we uncovered nonequilibrium phase transitions, to other aspect ratios and to a larger nonequilibrium parameter space, that is, a wider range of strains and shear frequencies. We compare and discuss selected results in the context of scattering and rheological experiments. Both simulations and experiments demonstrate that the previously found transitions from the plastic crystal phase with increasing shear strain also occur at other aspect ratios. We explore the transition behavior in the strain-frequency phase and summarize it in a nonequilibrium phase diagram. Additionally, the experimental rheology results hint at a slowing down of the colloidal dynamics with higher aspect ratio.

  7. Effectiveness of oscillatory gutter brushes in removing street sweeping waste.

    PubMed

    Vanegas-Useche, Libardo V; Abdel-Wahab, Magd M; Parker, Graham A

    2015-09-01

    In this paper, the novel concept of oscillatory gutter brushes of road sweepers is studied experimentally. Their effectiveness in removing different debris types is studied by means of a brushing test rig. The debris types dealt with are medium-size gravel, small and fine particles, wet thin debris, and compacted debris. The performance of two types of brushes, cutting and F128, under diverse operating conditions is investigated. The purpose of the tests is to ascertain whether brush oscillations superimposed onto brush rotation improve sweeping effectiveness. According to the results, brush oscillations seem to be useful for increasing brushing effectiveness in the case of bonded particles and wet thin debris, especially for bonded debris, but they seem to be of no value for other loosed debris. Also, appropriate values of brush penetration, sweeper speed, brush angle of attack, rotational speed, and frequency of brush speed oscillations, for the debris types studied are provided. PMID:26026947

  8. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  9. Waves spontaneously generated by heterogeneity in oscillatory media.

    PubMed

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-01-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated. PMID:27142730

  10. Oscillatory motion: quantum whistling in superfluid helium-4.

    PubMed

    Hoskinson, E; Packard, R E; Haard, Thomas M

    2005-01-27

    Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will undergo oscillatory motion when forced through a small constriction. Here we induce these oscillations in superfluid helium-4 (4He) by pushing it through an array of nanometre-sized apertures. The oscillations, which are detected as an audible whistling sound, obey the so-called Josephson frequency relation and occur coherently among all the apertures. The discovery of this property in 4He at the relatively high temperature of 2 K (2,000 times higher than the temperature at which a related but different phenomenon occurs in 3He) may pave the way for a new class of practical rotation sensors of unprecedented precision. PMID:15674281