Science.gov

Sample records for magnetically deflected dc

  1. DC CICC retrofit magnet

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  2. Analysis of the Deflection of CMEs by Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Liewer, Paulett C.; Panasenco, O.; Vourlidas, A.

    2013-07-01

    Understanding coronal influences on the direction of propagation of CMEs is important for space weather prediction. It is well known that CMEs often propagate non-radially, e.g., they do not move out radially from the location of the solar source (see, e.g., Cremades and Bothmer, A&A, 2004; Panasenco et al., Sol. Phys. 2013). There is evidence that most CMEs exit the corona in the minimum field region surrounding the coronal/heliospheric current sheet (HCS). If this is the case, then the degree of deflection should reflect the distance of the source region from the current sheet region. Here we study the observed deflection in latitude of four CMEs using STEREO/SECCHI’s EUV and white light observations to trace the deflection. A potential-field source surface (PFSS) model (Schrijver & DeRosa, Sol. Phys. 2003) is used to give information on the magnetic forces acting on the CME at different heights in the lower corona. This model, as well as the PFSS model results at the GONG website (http://gong.nso.edu/data/magmap/archive.html) and the coronal observations from STEREO, are used to try to determine the location of the HCS. For the events studied, we find cases when the deflection is gradual (occurring between the surface at several solar radii) and cases where the deflection is immediate (within ~1.5 solar radii). There are many cases in the literature where CMEs originating at high latitude are deflected towards the ecliptic and eventually impact Earth. Several of the CMEs we analyzed were later detected in situ at ~1 AU and we compare the near-Sun trajectory information to the trajectory information determine from the in situ information.

  3. Skew deflection of magnetic vortices in a field gradient

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N.

    1994-07-01

    Magnetic vortices with a nonvanishing winding number, the strictly two-dimensional analogs of realistic magnetic bubbles, are studied within the isotropic Heisenberg model. In particular, we present a numerical simulation of their dynamics under the influence of an applied magnetic field gradient. In addition to verifying some known theoretical results concerning the gross features of skew deflection, in analogy with the Hall motion of an electron, we are able to exhibit some important details of the dynamics of the vortex around its guiding center.

  4. Jet Deflection by Very Weak Guide Fields during Magnetic Reconnection

    SciTech Connect

    Goldman, M. V.; Newman, D. L.; Che, H.; Lapenta, G.; Markidis, S.

    2011-09-23

    Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended ''outer electron diffusion regions.'' New PIC simulations with an ion to electron mass ratio as large as 1836 (an H{sup +} plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.

  5. Theory of using magnetic deflections to combine charged particle beams.

    SciTech Connect

    Doyle, Barney Lee; Steckbeck, Mackenzie K.

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass- energy products (MEP), the low MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equations is given by: , 1 2 c s c s r B B r where and are the magnetic fields in the steering and bending magnet and is s B c B c s r r the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high MEP beam will be directed into the sample. (page intentionally left blank)

  6. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  7. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  8. Optimization criteria for standing wave transverse magnetic deflection cavities

    SciTech Connect

    Haimson, J.

    1995-08-01

    An important linear accelerator requirement, in order to demonstrate narrow energy spectra, is the injection of electron bunches of narrow phase spread and negligible inter-bunch current. This can be achieved by r-f transverse modulation and clipping of the beam by an aperture prior to injection into the accelerator waveguide, i.e., chopper operation. By magnetically biasing the beam to one side of the centerline, it is possible to arrange for transmission into the accelerator at a time during each r-f cycle when the radial momentum imparted to the beam by the chopper cavity is passing through zero. The low efficiency of beam utilization normally associated with this type of operation, because of the high ratio of collected to transmitted current, can be considerably improved by combining the transverse chopping action with a suitably phased longitudinal velocity modulating field as obtained from a simple prebunching cavity. Transverse r-f deflection techniques also enable sub-harmonic bunch selection and injection into linear accelerators which are used as injectors for electron synchrotrons. This is achieved by driving the chopper cavity at the same frequency as the synchrotron r-f system (which is maintained at a precise sub-multiple of the linear accelerator fundamental frequency) and then prebunching the chopped beam at the fundamental frequency prior to injection into the linear accelerator.

  9. ForeCAT - A Model for Magnetic Deflections of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Opher, Merav

    2016-05-01

    Accurate space weather forecasting requires knowledge of the trajectory of CMEs. Decades of observations show that CMEs can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. We developed a model for CME deflection and rotation from magnetic forces, called Forecasting a CME’s Altered Trajectory (ForeCAT). ForeCAT has been designed to run fast enough for large parameter phase space studies, and potentially real-time predictions.ForeCAT reproduces the general trends seen in observed CME deflections. In particular, CMEs deflect toward regions of minimum magnetic energy - frequently the Heliospheric Current Sheet (HCS) on global scales. The background magnetic forces decrease rapidly with distance and quickly become negligible. Most deflections and rotations can be well-described by assuming constant angular momentum beyond 10 Rs.ForeCAT also reproduces individual observed CME deflections - the 2008 December 12, 2008 April 08, and 2010 July 12 CMEs. By determining the reduced chi-squared best fit between the ForeCAT results and the observations we constrain parameters related to the CME and the background solar wind. Additionally, we constrain whether different models for the low corona magnetic backgrounds can produce the observed CME deflection.

  10. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  11. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    SciTech Connect

    Lillaney, Prasheel Caton, Curtis; Martin, Alastair J.; Losey, Aaron D.; Evans, Leland; Saeed, Maythem; Cooke, Daniel L.; Wilson, Mark W.; Hetts, Steven W.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image based methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured

  12. A dc magnetic field distribution transducer (abstract)

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.

    1991-04-01

    A new way of measuring magnetic field distribution is proposed, based on the change of the response of a magnetostrictive delay line (MDL) to varying dc magnetic field. The principal idea runs as follows: an array of wires Ci, transmitting pulsed current Ie, crosses at 45° an array of MDL Lj. The resulting pulsed field at the crossing points Pij excites an acoustic pulses in the lines, detected by short coils placed close to one end, in terms of voltage Voij. If a dc magnetic field Hdc is applied at the point Pij, the acoustic pulse and hence Voij change. Experimental results are given, showing the dependence of V0 on the applied dc field under various values of Ie for the case of a 1 mm wide Metglas 2605SC MDL. The function of Vom vs Hdc under various values of Ie is also given, where Vom is the maximum value of the absolute positive and negative peaks of V0. The first derivative of this function equals zero for two values of Hdc, corresponding to approximately equal positive and negative peaks of V0. So, having divided this function in 4 parts, comparison of these two peaks and experimental data are used to find the orientation and magnitude of the dc field on the MDL axis. It was also found that V0, corresponding to an Hdc applied at an angle v to the MDL equals the response of a dc field having a magnitude Hdc cos(v) and applied along the length of the line. So, by having another array of delay lines L'i identical but orthogonal to the previous MDL array Lj and crossing in 45° the conducting wires array Ci, we can keep the same number of crossing points. Hence, measurements from two delay lines Li and L'i corresponding to Pij, give a 2-d vector of the dc magnetic field applied at this point. The uniformity and the resolution of such a transducer can be improved by using the recently developed FeSiB wires after stress annealing. Future work is to be done to increase the frequency and the range of the measurable dc field.

  13. Deflection of a hyperbaric plasma arc in a transverse magnetic field

    SciTech Connect

    Richardson, I.M.

    1993-12-31

    Results are presented concerning the influence of operating parameters on the susceptibility of the plasma arc to deflection by an externally generated transverse magnetic field. Arc deflection susceptibility is found to increase rapidly with rising ambient pressure and is significantly greater for the free burning TIG arc compared with the weakly constricted (soft) plasma arc. In agreement with previously published work, it has been shown that for small amplitude deflections the arc column behaves in a manner analogous to a solid body. However, above a critical field strength the structure of the column undergoes a significant change characterized by a rapid deterioration in stability; mechanisms for this behavior are discussed.

  14. ForeCAT - A model for magnetic deflections of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Kay, Christina D.

    2016-01-01

    Frequently, the Sun explosively releases bubbles of magnetized plasma known as coronal mass ejections (CMEs), which can produce adverse space weather effects at Earth. Accurate space weather forecasting requires knowledge of the trajectory of CMEs. Decades of observations show that CMEs can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. We developed a model for CME deflection and rotation from magnetic forces, called Forecasting a CME's Altered Trajectory (ForeCAT). ForeCAT has been designed to run fast enough for large parameter phase space studies, and potentially real-time predictions. ForeCAT reproduces the general trends seen in observed CME deflections. In particular, CMEs deflect toward regions of minimum magnetic energy - frequently the Heliospheric Current Sheet (HCS) on global scales. The background magnetic forces decrease rapidly with distance and quickly become negligible. Most deflections and rotations can be well-described by assuming constant angular momentum beyond 10 Rs. ForeCAT also reproduces individual observed CME deflections - the 2008 December 12, 2008 April 08, and 2010 July 12 CMEs. By determining the reduced chi-squared best fit between the ForeCAT results and the observations we constrain parameters related to the CME and the background solar wind. Additionally, we constrain whether different models for the low corona magnetic backgrounds can produce the observed CME deflection. We explore the space weather of cool M dwarfs (dMs) with surface magnetic field strengths of order kG. dMs have extreme CMEs and flares and close-in habitable zones. We use ForeCAT to explore the deflections corresponding to the range of plausible CME masses and speeds for the dM V374 Peg. The deflection of the dM CMEs exceeds their solar counterparts, and the strong magnetic gradients surrounding the dM's Astrospheric Current Sheet (ACS, analogous to the Sun's HCS) can trap the CMEs that reach it

  15. North-south asymmetry in the magnetic deflection of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Zimbardo, G.; Patsourakos, S.; Bothmer, V.; Nakariakov, V. M.

    2015-11-01

    Context. Measurements of the sunspots area, of the magnetic field in the interplanetary medium, and of the heliospheric current sheet (HCS) position, reveal a possible north-south (N-S) asymmetry in the magnetic field of the Sun. This asymmetry could cause the bending of the HCS of the order of 5-10 deg in the southward direction, and it appears to be a recurrent characteristic of the Sun during the minima of solar activity. Aims: We study the N-S asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Methods: Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure (β ≪ 1), we can assume that the magnetic field controls the dynamics of plasma. On average, jets follow magnetic field lines during their propagation, highlighting their local direction. We measured the position angles at 1 R⊙ and at 2 R⊙ of 79 jets, based on the Solar TErrestrial RElations Observatory (STEREO) ultraviolet and white-light coronagraph observations during the solar minimum period March 2007-April 2008. The average jet deflection is studied both in the plane perpendicular to the line of sight and, for a reduced number of jets, in 3D space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole (g1), quadrupole (g2), and esapole (g3) moments. Results: We found that the propagation of the jets is not radial, which is in agreement with the deflection due to magnetic field lines. Moreover, the amount of the deflection is different between jets over the north and those from the south pole. A comparison of jet deflections and field line tracing shows that a ratio g2/g1 ≃ -0.5 for the quadrupole and a ratio g3/g1 ≃ 1.6-2.0 for the esapole can describe the field. The presence of a non-negligible quadrupole moment confirms the N-S asymmetry of the solar magnetic field for the considered period. Conclusions: We find that the

  16. Magnetically-Assisted Remote Controlled Microcatheter Tip Deflection under Magnetic Resonance Imaging.

    PubMed

    Hetts, Steven W; Saeed, Maythem; Martin, Alastair; Lillaney, Prasheel; Losey, Aaron; Yee, Erin Jeannie; Sincic, Ryan; Do, Loi; Evans, Lee; Malba, Vincent; Bernhardt, Anthony F; Wilson, Mark W; Patel, Anand; Arenson, Ronald L; Caton, Curtis; Cooke, Daniel L

    2013-01-01

    X-ray fluoroscopy-guided endovascular procedures have several significant limitations, including difficult catheter navigation and use of ionizing radiation, which can potentially be overcome using a magnetically steerable catheter under MR guidance. The main goal of this work is to develop a microcatheter whose tip can be remotely controlled using the magnetic field of the MR scanner. This protocol aims to describe the procedures for applying current to the microcoil-tipped microcatheter to produce consistent and controllable deflections. A microcoil was fabricated using laser lathe lithography onto a polyimide-tipped endovascular catheter. In vitro testing was performed in a waterbath and vessel phantom under the guidance of a 1.5-T MR system using steady-state free precession (SSFP) sequencing. Various amounts of current were applied to the coils of the microcatheter to produce measureable tip deflections and navigate in vascular phantoms. The development of this device provides a platform for future testing and opportunity to revolutionize the endovascular interventional MRI environment. PMID:23609143

  17. An analytical solution to proton Bragg peak deflection in a magnetic field.

    PubMed

    Wolf, Russell; Bortfeld, Thomas

    2012-09-01

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1

  18. An analytical solution to proton Bragg peak deflection in a magnetic field

    NASA Astrophysics Data System (ADS)

    Wolf, Russell; Bortfeld, Thomas

    2012-09-01

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1

  19. Transverse deflection and dissipation of small plasma beams and clouds in magnetized media

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1987-01-01

    Propagation of a quasi-neutral plasma beam or cloud across a magnetic field is considered for the case where the transverse dimension of the beam or cloud is sufficiently small compared to ion gyroradii. This situation commonly arises for active experiments in near-earth space. Two mechanisms are presented for transverse deflection of a beam or cloud in the -v0 x B0 direction where v0 is the velocity relative to the ambient medium. In the first, asymmetric escape of ions from an electrically polarized beam or cloud causes transverse deflection by means of a rocket effect. The transverse deflection distance is estimated to be a few times the initial transverse dimension of the beam or cloud. Dissipation occurs within a few times the thermal ion transverse crossing time. In the second mechanism, asymmetric charging results from localized accumulation of incident ions from the ambient medium. This excess positive charge distorts electric equipotentials and drives electron Hall currents that maintain an asymmetric compressed magnetic field region. The asymmetry of the magnetic stress contributes to transverse deflection with the same sign as the rocket effect. The asymmetric magnetic field also focuses incident ions to yield the localized charge accumulation. These ideas are qualitatively consistent with observations of the Active Magnetospheric Particle Tracer Explorers artificial comet releases.

  20. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    NASA Astrophysics Data System (ADS)

    Khatiwada, R.; Dennis, L.; Kendrick, R.; Khosravi, M.; Peters, M.; Smith, E.; Snow, W. M.

    2016-02-01

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium-indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10-9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within experimental error. These results verify the well-known Wiedemann additivity law for the magnetic susceptibility of inert mixtures of materials and thereby realize the ability to produce materials with small but tunable magnetic susceptibility. For our particular scientific application, we are also looking for materials with the largest possible number of neutrons and protons per unit volume. The gallium-indium alloys fabricated and measured in this work possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature liquid, and the tungsten-bismuth pressed powder mixtures possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature solid. This ratio is a figure of merit for a certain class of precision experiments that search for possible exotic spin-dependent forces of Nature.

  1. Ion Velocimetry In Magnetized DC Sheaths

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Lucca Fabris, Andrea; Cappelli, Mark

    2013-09-01

    Particle dynamics near the magnetic cusps in cusped field plasma thrusters are still not well understood; characterizing the ion velocity distribution functions in these regions can help thruster designs maximize electron trapping and minimize erosion of the channel wall. To that end, a robust argon ion velocity sensor is developed using a three-level laser-induced fluorescence (LIF) technique. The 3d4F7 / 2 --> 4p4D5/ 2 0 ArII transition at 668.61 nm is pumped with a 25 mW tunable external cavity diode laser, and fluorescence down to the 4s4P3 / 2 state at 442.72 nm is collected with phase-sensitive detection. The Doppler shift in the acquired signal peak, compared to a stationary reference, gives the ion velocity component parallel to the exciting laser. We demonstrate this LIF scheme by obtaining the argon ion velocity profile through a magnetized DC sheath. The LIF measurement is used to validate a new optogalvanic velocimetry technique in which two lasers (chopped at different frequencies) intersect one another at 90° in the measurement volume. Using a lock-in amplifier, changes observed in the DC discharge current at the sum and difference of the two chopping frequencies may be related back to the mean ion velocity at that point. The authors acknowledge support from the Air Force Office of Scientific Research (AFOSR). CY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  2. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  3. Counterrotating brushless dc permanent magnet motor

    SciTech Connect

    Hawsey, R.A.; Bailey, J.M.

    1990-01-01

    An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

  4. Efficient magnetic guiding and deflection of atomic beams with moderate velocities

    NASA Astrophysics Data System (ADS)

    Goepfert, A.; Lison, F.; Schütze, R.; Wynands, R.; Haubrich, D.; Meschede, D.

    We have studied guidance and deflection of a beam of cesium atoms by a strong toroidal magnetic quadrupole field. The beam guide is made from permanent magnets sustaining a radial field gradient of 2.8 T/cm. Atoms with moderate longitudinal velocities ranging from 30 m/s to 70 m/s were inserted across the 10-mm-diameter aperture of a 24.5° arc with radius 300 mm. We have measured transmission and beam divergence and find good agreement with ray-tracing calculations and analytical estimates. The magnetic beam guide allows for 100% transmission of heavy atoms over large angles.

  5. Study Of Dc Modulation Noise In Magnetic Recording Disks

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1992-01-01

    Report discusses dc modulation noise in thin-film magnetic medium on magnetic recording disk. Presents study of statistical and spectral characteristics of noise and describes study of dependence of noise upon applied magnetic field, thickness of magnetic layer, and roughness of surface of layer. DC modulation noise attributed to nucleation of isolated regions of reversal of magnetization in recording medium, and to growth and coalescence of regions with increasing reverse applied magnetic field. Inhomogeneities in magnetic recording media, not roughnesses of surfaces, are dominant sources of noise.

  6. Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2012-02-29

    We study the electron transport in three terminal junctions and quantum rings looking for the classical deflection of electron trajectories in the presence of intersubband scattering. We indicate that although the Aharonov-Bohm oscillations and the Lorentz force effects co-exist in the low subband transport, for higher Fermi energies a simultaneous observation of both effects is difficult and calls for carefully formed structures. In particular, in quantum rings with channels wider than the input lead the Lorentz force is well resolved but the Aharonov-Bohm periodicity is lost in chaotic scattering events. In quantum rings with equal lengths of the channels and T-shaped junctions the Aharonov-Bohm oscillations are distinctly periodic but the Lorentz force effects are not well pronounced. We find that systems with wedge-shaped junctions allow for observation of both the periodic Aharonov-Bohm oscillations and the magnetic deflection. PMID:22277600

  7. Magnetic deflections of ultra-high energy cosmic rays from Centaurus A

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh; Farrar, Glennys R.; Sutherland, Michael

    2015-02-01

    We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth, for particle rigidities from E / Z = 2 EV to 100 EV, i.e., covering the possibility of primary particles as heavy as Fe nuclei with energies exceeding 50 EeV. The Galactic magnetic field is modeled using the recent work of Jansson and Farrar (JF12) which fitted its parameters to match extragalactic Faraday rotation measures and WMAP7 synchrotron emission maps. We include the random component of the GMF using the JF12 3D model for Brand (r →) and explore the impact of different random realizations, coherence length and other features on cosmic ray deflections. Gross aspects of the arrival direction distribution such as mean deflection and the RMS dispersion depend mainly on rigidity and differ relatively little from one realization to another. However different realizations exhibit non-trivial substructure whose specific features vary considerably from one realization to another, especially for lower rigidities. At the lowest rigidity of 2 EV, the distribution is broad enough that it might be compatible with a scenario in which Cen A is the principle source of all UHECRs. No attempt is made here to formulate a robust test of this possibility, although some challenges to such a scenario are noted.

  8. Hot flow anomaly formation by magnetic deflection. [regions of hot plasma in earth magnetosphere

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Winske, D.

    1990-01-01

    Hot flow anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the earth's quasi-parallel bow shock. This paper presents one-dimensional hybrid computer simulations illustrating a formation mechanism for HFAs in which the single hot ion population results from a spatial separation of two counterstreaming ion beams. The higher-density cooler regions are dominated by the background (solar wind) ions, and the lower-density hotter internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large-amplitude magnetic fields which are generated by ion/ion streaming instabilities.

  9. DC Magnetic Field Generation by Nonlinear Whis-tlers

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Griskey, M. C.

    1998-11-01

    A magnetic loop antenna is immersed into a large laboratory plasma (1 m diam, 2.5 m length, 10^12 cm-3, 3 eV, 5 G). It excites whistlers whose wave magnetic field exceeds the ambient dc field.(R. L. Stenzel and J. M. Urrutia, Phys. Rev. Lett. (1998).) The periodic reversal of both the electric and magnetic field produces a time-average electron Hall currents which results in the generation of a dc magnetic field. Copious harmonics of the fundamental frequency are produced. The propagation of nonlinear whistlers depends on amplitude and field direction. These phenomena are important for the excitation of large amplitude whistler with antennas in space.

  10. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  11. Deflecting Shearpin

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.

    1993-01-01

    Spring loading helps prevent permanent deformation of adjacent bearing surfaces. Shearpin deflects as load compresses inner spring. Maximum deflection determined by gap between halves of capture ring. Beyond deflection, pin acts as standard shearpin.

  12. Comparisons of the deflections of magnetically smart films on alloy of NiCo and glass substrates

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.; Wang, Xiaoli; Knapp, Peter; Cao, Jian; Cao, Yifang; Karian, Tyler; Grogans, Shannon; Graham, Michael E.; Vaynman, Semyon; Yao, Youwei

    2014-09-01

    This report begins with a review of the basic concept of deformable X-ray optics, and the need for this approach for future X-ray astronomy missions that have ~1" resolution. We then report on our advances made on using magnetic smart materials (MSMs) to adjust the shape of thin (~100-200 µm thickness) electroformed replicated optics or glass optics. We show that we can well model deflections in 5 mm x 20 mm glass pieces and we provide preliminary evidence that the concept will work that involves imposing a magnetic field on the hard magnetic substrate (NiCo) to maintain the change in mirror shape.

  13. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    PubMed

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values. PMID:11082591

  14. A flux-coupled ac/dc magnetizing device

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Liu, H.; Kent, A. D.

    2013-06-01

    We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

  15. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  16. Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interactions.

    PubMed

    Pérez, F; Kemp, A J; Divol, L; Chen, C D; Patel, P K

    2013-12-13

    We show that the interaction of relativistic-intensity, picosecond laser pulses with solid targets is affected by the reflected light through the strong currents and 10(4)  T magnetic fields it produces. Three-dimensional particle-in-cell simulations, with the axisymmetry broken by a small angle of incidence, show that these magnetic fields deflect the laser-accelerated electrons away from the incident laser axis. This directly impacts the interpretation of electron divergence and directionality in applications such as laser-driven ion acceleration or fast-ignition inertial fusion. PMID:24483668

  17. PWM rectifier with low dc voltage ripple for magnet supply

    SciTech Connect

    Ciscato, D. ); Malesani, L.; Rosetto, L.; Tenti, P. ); Basile, G.L.; Pasti, M. ); Voelker, F. )

    1992-04-01

    PWM bridge rectifiers with GTO switches are considered for application to particle accelerator magnet power supplies, where two-quadrant operation and extremely low dc current ripple are required. Different control strategies, with both preprogrammed and variable switching patterns, are examined and compared in view of optimization of the system performance. In particular, optimum digital PWM, multilevel delta modulation, and hybrid PWM/delta techniques are analyzed. In this paper the validity of the control methods is verified by simulation and experimental tests on a 60-kW prototype.

  18. Analysis of splitting patterns from Stern-Gerlach magnetic deflection of supersonic molecular beams: application to M J -state-resolved deflection of J=2 atoms

    NASA Astrophysics Data System (ADS)

    Weiser, C.; Siska, P. E.

    1988-06-01

    Measurements of M J -state resolved Stern-Gerlach deflection patterns for the3 P 2 states of noble gas metastable atoms in supersonic beams are analyzed using a modification of the method originally worked out by Otto Stern. Velocity distribution breadth and beam collimation required to resolve the M J states are explored, and the modeling is improved by including variation in the field gradient along the deflected atomic trajectories.

  19. Disc rotors with permanent magnets for brushless DC motor

    DOEpatents

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  20. Re-direction of dc magnetic flux in magnetically isotropic multilayered structures

    NASA Astrophysics Data System (ADS)

    Tarkhanyan, Roland H.; Niarchos, Dimitris G.

    2016-07-01

    Analytical design of a periodic composite structure allowing re-direction (bending) of dc magnetic flux with respect to applied external field is presented using methods of transformation optics. The composite structure is made of micrometer scale alternating layers of two different homogeneous and magnetically isotropic materials. Dependence of the magnetic flux bending angle on geometrical orientation of the layers as well as on the magnetic permeability ratio is examined. Such structures can find use in various devices based on the control and manipulations of the magnetic flux.

  1. SPEAR3 DC MAGNET POWER SUPPLIES - AN OVERVIEW

    SciTech Connect

    de Lira, A

    2004-03-25

    The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR 3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003. This paper presents an overview and descriptions of the DC magnet power supplies. These consist of tightly-regulated ({le} 10 ppm) current sources ranging in output from 30 A to 800 A and output power ranging from a few watts to almost 1.0 MW. A total of 226 magnet power supplies are in successful operation. The SPEAR 3 upgrade performance and reliability requirements mandated new power supplies for both the SPEAR 3 storage ring, and for the booster-to-SPEAR 3 (BTS) transport line. A large variety of precise, highly stable current power supplies were needed to fill the diverse magnet needs. Also described are outside procurement aspects, in-house construction, installation, testing, performance and operation of the power supplies. During field testing, special emphasis was made to ensure a critically damped response on the current loop. Frequency spectra measurements were made for reference and future diagnostics.

  2. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S.; Harvey-Thompson, A. J.; Rozmus, W.; Yuan, J.; Sheng, L.

    2016-05-01

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  3. Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields

    NASA Astrophysics Data System (ADS)

    Titov, Serguey V.; Déjardin, Pierre-Michel; El Mrabti, Halim; Kalmykov, Yuri P.

    2010-09-01

    The nonlinear ac response of the magnetization M(t) of a uniaxially anisotropic superparamagnetic nanoparticle subjected to both ac and dc bias magnetic fields of arbitrary strengths and orientations is determined by averaging Gilbert’s equation augmented by a random field with Gaussian white-noise properties in order to calculate exactly the relevant statistical averages. It is shown that the magnetization dynamics of the uniaxial particle driven by a strong ac field applied at an angle to the easy axis of the particle (so that the axial symmetry is broken) alters drastically leading to different nonlinear effects due to coupling of the thermally activated magnetization reversal mode with the precessional modes of M(t) via the driving ac field.

  4. SCHEME FOR INCORPORATING DC MAGNETIC FIELDS INTO EPIDEMIOLOGICAL STUDIES OF EMF EXPOSURE

    EPA Science Inventory

    Experimental data on calcium-ion release in chicken brain tissue suggest that biological effects of electric and magnetic fields (EMFs) are concentrated at certain combinations of DC magnetic field strength and "critical" AC magnetic field frequencies. e hypothesize that "active"...

  5. Micro-Fabrication and Circuit Optimization for Magnetic Components of High-Efficiency DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Tian, Rui

    Magnetic components are essential parts of power converters. Inductors with magnetic cores are investigated. An eddy current loss model for pot-core inductors is developed with finite elemental analysis (FEA). The reliability of inductors using magnetic cores in a high-temperature environment is investigated. Working in up to 150°C circumstance for a short periods is not destructive for the inductors. Optimization of toroidal inductors in a DC-DC converter is investigated. Parasitic capacitance and the capacitive loss in toroidal inductors are modeled. Standard circuit optimization is performed to explore the energy conversion efficiency of the toroidal inductors. Thermal analysis, light-load efficiency and relative permeability of the toroidal inductor design are also investigated. The toroidal inductor can achieve about 85% efficiency for 3 A DC current and 1 W/mm2 power density. Inductor-only efficiency of toroidal inductors is investigated with revised model. At 100 MHz operating frequency, toroidal inductors can achieve more than 97% inductor efficiency with power density range of 0.7 W/mm2 to 6 W/mm2. The performance of our nanograngular magnetic core is dependent on the angle of the poling magnetic field compared to the field during operation. Experiments on a serious of samples show that the poling angle can deviate by up to 15 degrees from ideal with only a small penalty in performance. The field-angle experiment is intended to prove integrated toroidal inductor process possible. A magnetic fixture model is proposed for large-scale toroidal inductor processing.

  6. Performance analysis of a brushless dc motor due to magnetization distribution in a continuous ring magnet

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup

    2003-05-01

    This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.

  7. Interpenetration, deflection, and stagnation of cylindrically convergent magnetized supersonic tungsten plasma flows.

    PubMed

    Swadling, G F; Lebedev, S V; Harvey-Thompson, A J; Rozmus, W; Burdiak, G C; Suttle, L; Patankar, S; Smith, R A; Bennett, M; Hall, G N; Suzuki-Vidal, F; Yuan, J

    2014-07-18

    The interpenetration and interaction of supersonic, magnetized tungsten plasma flows has been directly observed via spatially and temporally resolved measurements of the Thomson scattering ion feature. A novel scattering geometry allows independent measurements of the axial and radial velocity components of the ions. The plasma flows are produced via the pulsed power driven ablation of fine tungsten wires in a cylindrical wire array z pinch. Fits of the data reveal the variations in radial velocity, axial velocity, and temperature of the ion streams as they interpenetrate and interact. A previously unobserved increase in axial velocity is measured near the array axis. This may be the result of v[over →]×B[over →] bending of the ion streams by a toroidal magnetic field, advected to and accumulated about the axis by the streams. PMID:25083650

  8. Transmission of terahertz waves through layered superconductors controlled by a dc magnetic field

    NASA Astrophysics Data System (ADS)

    Apostolov, S. S.; Maizelis, Z. A.; Makarov, N. M.; Pérez-Rodríguez, F.; Rokhmanova, T. N.; Yampol'skii, V. A.

    2016-07-01

    The transmission of THz electromagnetic waves via a slab of layered superconductor in the presence of dc magnetic field H0 is theoretically studied. We demonstrate that the external dc field turns the layered superconductor into nonuniform medium with spatially and frequency-dependent dielectric permittivity. Even a relatively weak dc magnetic field, when the superconductor is in the Meissner state, significantly affects the transmittance of the layered superconductor. Moreover, the proper choice of H0 can provide the perfect transparency of the slab. In addition, the dc magnetic field changes the dependence of the transmittance on the slab thickness, the frequency, and the incident angle of the wave. Thus, it can serve as an effective tool to control the transmissivity of layered superconductors.

  9. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    SciTech Connect

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  10. Potential damage to dc superconducting magnets due to high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.; Burkhart, J. A.

    1977-01-01

    Studies of a d.c. superconducting magnet coil indicate that the large coil behaves as a straight waveguide structure. Voltages between layers within the coil sometimes exceeded those recorded at terminals where protective resistors are located. Protection of magnet coils against these excessive voltages could be accomplished by impedance matching throughout the coil system. The wave phenomenon associated with superconducting magnetic coils may create an instability capable of converting the energy of a quiescent d.c. superconducting coil into dissipative a.c. energy, even in cases when dielectric breakdown does not take place.

  11. APES: Acute Precipitating Electron Spectrometer -- A high time resolution monodirectional magnetic deflection electron spectrometer

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.; Grubbs, G.; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-06-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm × 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm × 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  12. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-01-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.

  13. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    SciTech Connect

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-10-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasilinear code based on the Ritz--Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the C-hacekerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.

  14. A highly stable DC power supply for precision magnetic field measurements and other purposes

    SciTech Connect

    Ino, Takashi

    2012-04-15

    A homogeneous magnetic field is essential for the {sup 3}He neutron spin filter used to polarize neutron beams and analyze neutron spins in neutron scattering. The required spatial uniformity of the magnetic field is on the order of 10{sup -4}/cm or less. To measure such uniformity, one needs a DC current source with a current stability much better than 10{sup -4}. However, laboratory DC power supplies, which are commonly used in many {sup 3}He neutron spin filters, do not have such stabilities. To attain a highly stable current with a common laboratory DC power supply for every {sup 3}He neutron spin filter, a simple feedback circuit has been developed to keep the output current stable up to 10{sup -6}. Such a highly stable current or voltage from a common laboratory DC power supply can also be used for various other research applications.

  15. Dynamic of the Dust Structures under Magnetic Field Effect in DC Glow Discharges

    SciTech Connect

    Vasiliev, M. M.; D'yachkov, L. G.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    In this work, we investigate dust structures in the striation of DC glow discharges under magnetic field actions. The dependence of rotation frequency of dusty plasma structures as a function of the magnetic field was investigated. For various magnetic fields kinetic temperatures of the dust particles, diffusion coefficients, and effective coupling coefficient {gamma}* have been determined. Obtained results are analyzed and compared with theoretical predictions.

  16. Features of influence of dc magnetic field pulses on a nuclear spin echo in magnets

    NASA Astrophysics Data System (ADS)

    Mamniashvili, G. I.; Gegechkori, T. O.; Akhalkatsi, A. M.; Gavasheli, C. A.

    2012-06-01

    Signal intensities of a two-pulse nuclear spin echo as a function of parameters of dc magnetic field pulses are measured in the series of materials: Li0.5Fe2.5-xZnxO4 (x < 0.25) (enriched in 57Fe isotope to 96.8%), NiMnSb, Co2MnSi, La1-хСахMnO3 (x = 0.2; 0.25) and polycrystalline Co. Two types of dependences of these signals on a supplying time of such pulses with respect to the times of the exciting RF pulses are found. The mechanisms of influence of a domain structure and a dynamic frequency shift on the observed features of the investigated signals are discussed.

  17. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection.

    PubMed

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X

    2013-01-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields. PMID:23760520

  18. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    PubMed Central

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-01-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields. PMID:23760520

  19. Study of effect of AC and DC magnetic fields on growth of Pisum sativum seeds

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Yasaie Mehrjardi, Yasaman; Sojoodi, Jaleh; Bayani, Hosien; Kazem Salem, Mohammad

    2013-08-01

    This paper concentrates on the effect of the AC and DC magnetic fields on plant growth. The effect of AC magnetic field with intensities of 2.25, 1.66 and 1.49 mT and DC magnetic field with intensities of 3.6, 2.41 and 2.05 mT in exposure durations of 2, 4, 6, 8, 10 and 12 min on two groups of dry and wet Pisum sativum seedlings was studied. In each experiment 10 seeds were used; the experiments were repeated three times for each group and there was a sham exposed group for comparison purposes. The light cycle was 12 h light/12 h darkness and the temperature was 25 ± 1° C. The index of growth is considered to be the root and stem elongation on the sixth day. It was observed that AC magnetic field has a positive effect on the growth in all durations and intensities. Moreover, it is highlighted that during the experiments, the mean growth of dry seedlings significantly increased by a factor of 11 in AC magnetic field with the lowest intensity of 1.49 mT (p < 0.05). It was also shown that AC magnetic fields had a more positive effect on the growth of plants in comparison to DC magnetic fields.

  20. DC CICC retrofit magnet. Quarterly progress report, July 1992

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  1. Permanent Magnet DC Motor Sliding Mode Control System

    NASA Astrophysics Data System (ADS)

    Vaez-Zadeh, S.; Zamanian, M.

    2000-09-01

    In this paper a sliding mode controller (SMC) is designed for a permanent magnet, direct current (PMDC) motor to enhance the motor performance in the presence of unwanted uncertainties. Both the electrical and mechanical signals are used as the inputs to the SMC. The complete motor control system is simulated on a personal computer with different design parameters and desirable system performance is obtained. The experimental implementation of the motor control system is also presented. The test results confirm the simulation results and validate the proposed control system.

  2. Experimental Study of Magnetic Field Effect on dc Corona Discharge in Low Vacuum

    NASA Astrophysics Data System (ADS)

    Elabbas, K.

    2014-09-01

    In the present paper, an attempt was made to investigate the effect of applying a transverse magnetic field on the dc corona discharge behavior in low vacuum. In general, two experiments were carried out in this work: the first is the ionization-region magnetic field experiment, and the second was the drift region magnetic field experiment. In these experiments, permanent magnets were used to produce magnetic field. The degree of vacuum used in this test was 0.4×105 Pa. It is found that the effect of the magnetic field increases as the degree of vacuum increases. It is also seen from this study that the corona current values are higher with magnetic fields than without magnetic fields. The experimental results indicate that the enhancement of the magnetic field near the wire discharge electrode has a significant influence on the increment of the discharge current. The effect of the magnetic field on the discharge current is the most significant with the negative corona discharges rather than with positive corona discharge. In contrast to, the curves were demonstrated that the application of magnetic fields in drift region magnetic field does not significantly change the corona discharge current. Discharge characteristics of magnetically enhanced corona discharges, extracted from this study, can be applied to various industrial applications, such as, in an electrostatic enhancement filter for the purpose of capturing fine particles, and as effective method for production of high ozone concentrations in a generator as compared to the ultraviolet (UV) radiation method.

  3. Performance of high-TC dc SQUID magnetometers for use in a magnetically disturbed environment

    NASA Astrophysics Data System (ADS)

    Kim, I. S.; Yu, K. K.; Lee, Y. H.; Kim, K. W.; Park, Y. K.

    2004-06-01

    YBCO dc SQUID magnetometers based on bicrystal Josephson junctions on 10 mm × 10 mm STO substrates have been fabricated. We have designed three different types of pickup coils for the SQUID magnetometers, i.e., solid-type, 12 and 16 parallel loops with 50 m line width to test performances of the SQUIDs for use in a magnetically disturbed environment. Magnetometer with 16-parallel-loop pickup coil exhibit most stable FLL operation under external dc magnetic field. Finally, we could obtain optimised direct coupled YBCO SQUID magnetometer design having flux transfer coefficient B of 4.5 nT/0 and magnetic field noise BN of 30 fT/Hz1/2 measured at 100 Hz.

  4. Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun

    NASA Astrophysics Data System (ADS)

    Suleiman, Riad; Poelker, Matthew; Benesch, Jay; Hannon, Fay; Hernandez-Garcia, Carlos; Wang, Yan

    2016-03-01

    To maintain ion beam emittance and extend luminosity lifetime, the Jefferson Lab design of the Electron Ion Collider includes a bunched magnetized electron beam cooler as part of the Collider Ring. We are building a prototype magnetized gun using our newly commissioned 325 kV inverted-insulator DC high voltage photogun. This contribution describes planned measurements of beam magnetization as a function of bunch charge and average current, and laser beam size and magnetic field strength at the photocathode. Results will be compared to particle tracking code simulations. Photocathode lifetime at milli-ampere current will be compared to beam lifetime with no magnetization, to explore the impact of the magnetic field on photogun operation. Combined, these measurements and simulations will benchmark our design tools and provide insights on ways to optimize the electron cooler. This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177.

  5. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments. PMID:26193403

  6. Low current linearization of magnetic amplifier for dc transducer

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1981-01-01

    A magnetic amplifier having two saturable reactor cores with a separate excitation winding on each connected in series opposition, a common control winding, and a common output winding, is adapted for use as a low level signal transducer. The separate excitation windings are excited in push-pull mode through a center tapped transformer, and at least one diode is included in series with a load resistor connected to the output winding. A resistor in series with the output winding and load resistor is connected between the center tap of the excitation transformer and the connection between the two excitation windings of the saturable cores. This series resistor provides a return current path for the output winding and allows the excitation windings of the saturable cores to operate as primary windings of transformers.

  7. Magnetic, DC Transport, and Microwave Properties of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Paul Phong

    This thesis involves three major projects: (1) Effects of bromination on YBa_2Cu _3O_{7-x} (YBCO) single crystals, (2) Power dependence of the microwave surface impedance of YBCO thin films, and (3) Microwave properties of YBCO Josephson junctions. In the first project, de-oxygenated non-superconducting YBa_2Cu_3O _{6.2} single crystals are doped with Br. The resulting crystals (YBCOBr) become superconducting with T_{c} {~}.92 K, Delta T_{c} {~} 1.0 K. The normal resistivity in the best sample is linear in temperature. The large ratio in resistivity of the brominated to the pristine YBCO single crystals suggests that bromination greatly increases the scattering rate. The upper critical fields are measured resistively and the corresponding coherence lengths xi_ {ab}(0) and xi_{c }(0) are estimated. A comparison with the fully oxygenated YBCO single crystals shows that xi_{ab}(0) remains approximately the same, whereas xi_{c} (0) decreases by a factor of {~ }3, suggesting that Br never enters the CuO _2 planes. The pinning energy for vortex motion in the ab plane decreases after bromination and this decrease can be attributed to the increased anisotropy. Compared with the fully oxygenated YBCO single crystals, the critical current density is suppressed by bromination and is strongly dependent on the applied magnetic field. The reduced lower critical field H_{c1} in YBCOBr indicates a reduction in the carrier density. The second project involves measurements of the surface impedance Z_{s} for the first time as a function of frequency (1-20 GHz), temperature (4.2-91 K), and peak rf magnetic field (0 < H_{rf} < 500 Oe) for high-quality epitaxial YBa_2Cu _3O_{7-x} thin films, using a stripline-resonator technique. The results for Z_{s} in the low- and intermediate-rf-field regime (H_ {rm rf} < 50 Oe at 77 K) are explained quantitatively by a power-dependent coupled-grain model, which treats the film as a network of superconducting grains connected by grain boundaries

  8. Effect of design variables on irreversible magnet demagnetization in brushless dc motor

    NASA Astrophysics Data System (ADS)

    Kim, Tae Heoung; Lee, Ju

    2005-05-01

    The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.

  9. Magnet design and beam dynamics in computed fields for the DC-350 cyclotron

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. Yu.; Sazonov, M. N.

    2008-12-01

    The DC-350 is an isochronous cyclotron designed in the Flerov Laboratory of Nuclear Reaction (FLNR). It is intended for accelerating ions with a mass-to-charge ratio A/Z within an interval of 5-10 and with an energy of 3-12 MeV/u at the extraction radius. These ion beams will be used in nuclear and applied physics experiments. The paper describes the results of a 3D magnet simulation. The cyclotron magnet and IM90 analiziting-bend magnet of the axial injection channel are studied here. The influence of correction coils on the cyclotron magnet is calculated. All magnet fields were calculated by MERMAID 3D code [1].

  10. DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.

    2012-11-01

    A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.

  11. Enhancement of magnetic flux distribution in a DC superconducting electric motor

    NASA Astrophysics Data System (ADS)

    Hamid, N. A.; Ewe, L. S.; Chin, K. M.

    2013-06-01

    Most motor designs require an air gap between the rotor and stator to enable the armature to rotate freely. The interaction of magnetic flux from rotor and stator within the air gap will provide the thrust for rotational motion. Thus, the understanding of magnetic flux in the vicinity of the air gap is very important to mathematically calculate the magnetic flux generated in the area. In this work, a finite element analysis was employed to study the behavior of the magnetic flux in view of designing a synchronous DC superconducting electric motor. The analysis provides an ideal magnetic flux distribution within the components of the motor. From the flux plot analysis, it indicates that flux losses are mainly in the forms of leakage and fringe effect. The analysis also shows that the flux density is high at the area around the air gap and the rotor. The high flux density will provide a high force area that enables the rotor to rotate. In contrast, the other parts of the motor body do not show high flux density indicating low distribution of flux. Consequently, a bench top model of a DC superconducting motor was developed where by motor with a 2-pole type winding was chosen. Each field coil was designed with a racetrack-shaped double pancake wound using DI-BSCCO Bi-2223 superconducting tapes. The performance and energy efficiency of the superconducting motor was superior when compared to the conventional motor with similar capacity.

  12. DC bias immune nanocrystalline magnetic cores made of Fe73Nb3Cu1B7Si16 ribbon with induced transverse magnetic anisotropy.

    PubMed

    Nosenko, Anton; Rudenko, Olexandr; Mika, Taras; Yevlash, Igor; Semyrga, Olexandr; Nosenko, Viktor

    2016-12-01

    The comparative analysis of magnetic properties of cut cores made of nanocrystalline Fe73Nb3Cu1B7Si16 alloy ribbon and cores made of the same ribbon with preliminary tension-induced transverse magnetic anisotropy was carried out. The possibility of improving magnetic properties of cut cores, decreasing loss, and increasing DC bias immunity of reversible magnetic permeability is presented. The influence of induced magnetic anisotropy on DC bias immunity of reversible magnetic permeability was investigated. The advantages and disadvantages of new cores (made of ribbon heated under tensile stress) over cut ones were determined. PMID:26847696

  13. DC bias immune nanocrystalline magnetic cores made of Fe73Nb3Cu1B7Si16 ribbon with induced transverse magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Nosenko, Anton; Rudenko, Olexandr; Mika, Taras; Yevlash, Igor; Semyrga, Olexandr; Nosenko, Viktor

    2016-02-01

    The comparative analysis of magnetic properties of cut cores made of nanocrystalline Fe73Nb3Cu1B7Si16 alloy ribbon and cores made of the same ribbon with preliminary tension-induced transverse magnetic anisotropy was carried out. The possibility of improving magnetic properties of cut cores, decreasing loss, and increasing DC bias immunity of reversible magnetic permeability is presented. The influence of induced magnetic anisotropy on DC bias immunity of reversible magnetic permeability was investigated. The advantages and disadvantages of new cores (made of ribbon heated under tensile stress) over cut ones were determined.

  14. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  15. New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zeng, Wubing; Ding, Yonghua; Yi, Bin; Xu, Hangyu; Rao, Bo; Zhang, Ming; Liu, Minghai

    2014-11-01

    In order to advance the research on suppressing tearing modes and driving plasma rotation, a DC power supply (PS) system has been developed for dynamic resonant magnetic perturbation (DRMP) coils and applied in the J-TEXT experiment. To enrich experimental phenomena in the J-TEXT tokamak, applying the circulating current four-quadrant operation mode in the DRMP DC PS system is proposed. By using the circulating current four-quadrant operation, DRMP coils can be smoothly controlled without the dead-time when the current polarity reverses. Essential circuit analysis, control optimization and simulation of desired scenarios have been performed for normal current. Relevant simulation and test results are also presented.

  16. DC CICC retrofit magnet preliminary design, software development and analysis report

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-02-10

    The proposed retrofit coil is made of superconducting Cable-in-Conduit Conductor (CICC). The coils are designed to produce a nominal vertical field of 4.5 tesla within the MHD channel based on a nominal current density of 13.05 MA/m{sup 2}. The coils are supported within a case, or so-called constant tension strap. When the magnet is energized, the electromagnetic J {times} B body forces push the winding pack laterally outward and vertically towards the machine's midplane, thus putting the strap in tension. The end turns add axial tension to the conductor (a condition which is not simulated by this 2-D model of the midlength cross section). A sketch of the magnet system and structure is shown in Fig. 1.0-1. The purpose of this report is to describe the progress made in the design and analysis of the DC CICC retrofit magnet, and to outline the proposed next step.

  17. DC CICC retrofit magnet preliminary design, software development and analysis report. Quarterly progress report

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-01-01

    The proposed retrofit coil is made of superconducting Cable-in-Conduit Conductor (CICC). The coils are designed to produce a nominal vertical field of 4.5 tesla within the MHD channel based on a nominal current density of 13.05 MA/m{sup 2}. The coils are supported within a case, or so-called constant tension strap. When the magnet is energized, the electromagnetic J x B body forces push the winding pack laterally outward and vertically towards the machine`s midplane, thus putting the strap in tension. The end turns add axial tension to the conductor (a condition which is not simulated by this 2-D model of the midlength cross section). A sketch of the magnet system and structure is shown in Fig. 1.0--1. The purpose of this report is to describe the progress made in the design and analysis of the DC CICC retrofit magnet.

  18. Development of Ni-Zn nanoferrite core material with improved saturation magnetization and DC resistivity

    NASA Astrophysics Data System (ADS)

    Kumar, A. Mahesh; Varma, M. Chaitanya; Dube, Charu Lata; Rao, K. H.; Kashyap, Subhash C.

    Nanostructured Nickel-Zinc ferrite of composition Ni 0.65Zn 0.35Fe 2O 4 was prepared by sol-gel, co-precipitation, citrate-gel and oxalate precursor methods. X-ray diffraction (XRD) patterns of all the samples showed the spinel structure. A comparison of average crystallite size clearly indicated that the sol-gel method was the effective one in producing small crystallite sized samples having insignificant variation with annealing or sintering temperatures. Also, sol-gel method was observed to provide high saturation magnetization values in samples sintered even at lower temperatures. The high magnetization values are, in general, reported in bulk samples prepared at higher sintering temperatures by conventional ceramic method. Direct-current (DC) resistivity of these samples was also considerably improved as compared to that of the bulk materials. Discussion has been made on the basis of observed higher values of saturation magnetization and dc resistivity towards the development of a high-quality core material useful for high-frequency applications.

  19. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  20. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  1. DC CIRCUIT POWERED BY ORBITAL MOTION: MAGNETIC INTERACTIONS IN COMPACT OBJECT BINARIES AND EXOPLANETARY SYSTEMS

    SciTech Connect

    Lai Dong

    2012-09-20

    The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.

  2. Genetic algorithm based design optimization of a permanent magnet brushless dc motor

    NASA Astrophysics Data System (ADS)

    Upadhyay, P. R.; Rajagopal, K. R.

    2005-05-01

    Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.

  3. Orbit bump by DC magnets and halo collimation for the RCS extraction

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.

    2007-06-01

    The beam loss during the single turn extraction from a Rapid Cycling Synchrotron (RCS) with high beam power is of important concern. The extraction kickers are usually designed to have exigent total strength to avoid the beam loss. This will increase the construction cost or reduce the kickers' availability during operation. This paper introduces a method employing DC bump magnets and beam collimation during the early acceleration stage in order to reduce the requirement to the extraction kickers and the beam loss at the extraction. The orbit bump at the extraction septum produced by small DC magnets will collapse during the acceleration, and this will lower the requirement of the orbit separation by the kickers. At the same time, the similar orbit bump at the transverse collimators will allow the beam cleaning in the early acceleration stage and result in much smaller beam emittance at the extraction. The combined effect gives the low beam loss extraction with significantly lower kicker strength. The different ways of applying the method in the China Spallation Neutron Source are also presented.

  4. Development of Magnetization Measurement Devices Using Micro-dc-SQUIDs and a Sr_2RuO_4 Microplate

    NASA Astrophysics Data System (ADS)

    Nago, Y.; Shinozaki, T.; Tsuchiya, S.; Ishiguro, R.; Kashiwaya, H.; Kashiwaya, S.; Nomura, S.; Kono, K.; Takayanagi, H.; Maeno, Y.

    2016-05-01

    We developed high-sensitivity magnetization measurement devices composed of micro-dc-SQUIDs and a superconducting Sr_2RuO_4 microplate, aiming to investigate novel magnetic properties related to a spin-triplet chiral p-wave superconductor with a mesoscopic size. Micron-sized dc-SQUID was fabricated by thin Al electrodes, and the SQUID structure was improved to prevent magnetic fluxes from intruding into SQUID electrodes. A Sr_2RuO_4 superconducting microplate was fabricated into the size as small as the SQUID loop using a focused ion beam and directly mounted on the SQUID with precise positioning for high-sensitivity magnetization measurements. In the preliminary magnetization measurements of this device, we observed vortices trapped into the plate and thus the lower critical field. The improved magnetization measurement device developed to exclude undesirable flux intrusion successfully enabled high-sensitivity detection of quantized vortex.

  5. Mass spectrometers with energy focusing: Combinations of magnetic and electric sector fields whose mean planes of deflection are tilted with respect to each other

    NASA Astrophysics Data System (ADS)

    Waldrich, H.; Ewald, H.

    1988-01-01

    First a combination of two sector fields is considered, for instance a homogeneous magnetic field followed by an electric cylinder condenser. The mean planes of deflection of the fields are tilted with respect to each other by an oblique angle. Such a combination has astigmatic focusing properties for paraxial rays of ions of certain mass and energy coming from an object point assumed at a certain distance before the first field on the incoming central ray. At different distances from the field combination are formed. calculated in first order, two real or virtual straight astigmatic focusing lines which are perpendicular to each other and to the outgoing central ray. By proper assumptions of the dimensions of the combination it can be arranged that its first order energy dispersion and one real of its astigmatic focusing lines have exactly the same direction. Then by addition of a third sector field (again a homogeneous magnetic field) it can be achieved that the astigmatic focusing will be changed into a stigmatic one while at the same time the energy dispersion can be reduced to small values. The mass dispersion of this three field combination in the given numerical example is about perpendicular to the direction of the energy dispersion.

  6. Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, J. T.; Jabbar, M. A.

    2006-04-01

    In design of permanent magnet motors for high-precision applications, it is sometimes necessary, early in the design stage, to have a detailed analysis of the effect of rotor eccentricity that may result from manufacturing imperfectness or use of fluid dynamic or aerodynamic bearings. This paper presents an analytical model for electromagnetic torque and forces in permanent magnet motors with rotor eccentricity. The model gives an insight to the relationship between the effect of the eccentricity and the other motor design parameters on the electromagnetic forces. It is shown that the calculated magnetic forces obtained from this model agree well with those obtained from numerical simulations that are very computationally demanding.

  7. DC Magnetization and FMR results of Fibonacci Distortions on the Honeycomb Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Woods, Justin; Farmer, Barry; Hastings, Todd; Visak, Justin; de Long, Lance

    Nanofabrication techniques allow magnetic thin films to be lithographically-patterned into arrays of interacting macro-spins that can be designed to study emergent physical properties. Here we discuss the effects of continuous symmetry breaking on the equilibrium and dynamic magnetic properties of frustrated magnetic metamaterials. We have pattered five Permalloy (Ni0.80Fe0.20) samples of distorted Kagome ASI arrays that are generated by repeated application of a substitution algorithm. This algorithm employs an aperiodic Fibonacci sequence of binary digits that can be mapped into short (d1) and long (d2) distances. This distorts film segment lengths while the width (nominally 70 nm) and thickness (25 nm) remain constant. Additionally, the coordination of each three-fold Kagome vertex is continuously modified via these distortions. Micromagnetic simulations predict the Fibonacci distortions causes jamming of Dirac String propagation. We report DC magnetization and FMR dispersion for different magnitudes of distortion, and compare these results to simulation. Research at University of Kentucky supported by U.S. Nationsal Science Foundation Grant No. DMR-1506979.

  8. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  9. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    2002-07-01

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  10. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    SciTech Connect

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S.; Harvey-Thompson, A. J.; Rozmus, W.; Yuan, J.

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  11. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Lebedev, S. V.; Harvey-Thompson, A. J.; Rozmus, W.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S.; Yuan, J.

    2015-07-01

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the "precursor" plasma near the axis of the array over the period 100-140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  12. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  13. Mapping of Ambient Magnetic Fields within Liquid Helium Dewar for Testing of a DC SQUID Magnetometer

    SciTech Connect

    Newhouse, Randal

    2003-09-05

    In an effort to explore the cavity lights phenomenon, Experimental Facilities Department at SLAC is testing a DC SQUID magnetometer. Due to the nature of the SQUID magnetometer and the intended tests, the earth's magnetic field must be negated. It is proposed to reduce ambient fields using bucking coils. First, however, an accurate map of the magnetic field inside the liquid helium Dewar where the experiment is going to take place needed to be made. This map was made using a three-axis fluxgate magnetometer mounted on a 3D positioning device made for this purpose. A ten inch tall volume within the Dewar was measured at data points approximately an inch from each other in all three axes. A LabVEIW program took readings from the magnetometer at 2 ms intervals for 1000 readings in such a way as to eliminate any ambient 60 Hz signals that may be present in the data. This data was stored in spreadsheet format and was analyzed to determine how the magnetic field within the Dewar was changing as a function of position.

  14. DC CICC retrofit magnet preliminary design, software development and analysis report. Quarterly progress report, January 1992

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-02-10

    The proposed retrofit coil is made of superconducting Cable-in-Conduit Conductor (CICC). The coils are designed to produce a nominal vertical field of 4.5 tesla within the MHD channel based on a nominal current density of 13.05 MA/m{sup 2}. The coils are supported within a case, or so-called constant tension strap. When the magnet is energized, the electromagnetic J {times} B body forces push the winding pack laterally outward and vertically towards the machine`s midplane, thus putting the strap in tension. The end turns add axial tension to the conductor (a condition which is not simulated by this 2-D model of the midlength cross section). A sketch of the magnet system and structure is shown in Fig. 1.0-1. The purpose of this report is to describe the progress made in the design and analysis of the DC CICC retrofit magnet, and to outline the proposed next step.

  15. Metallic Magnetic Calorimeters with On-Chip dc-SQUID Readout

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Ferring, A.; Fleischmann, A.; Wegner, M.; Enss, C.

    2016-07-01

    Metallic magnetic calorimeters (MMCs) are low-temperature particle detectors that are typically read out by using superconducting quantum interference devices (SQUIDs). But since MMCs are sensitive to the input circuitry and the noise performance of the SQUID, the energy resolution of MMCs have not yet reached their fundamental limit. A possible solution to overcome present limits is to maximize the flux coupling by minimizing parasitic inductance in the input circuit. To show the suitability of this approach, we realized a 64 pixel MMC detector array with integrated dc-SQUID readout, i.e., detector and SQUID are on the same chip. We observed an influence of the power dissipation of the SQUID on the detector temperature. We achieved a baseline energy resolution of Δ E_mathrm {FWHM} = 25 mathrm {eV} and Δ E_mathrm {FWHM} = 30 mathrm {eV} for X-rays with energies up to 6 mathrm {keV}.

  16. Metallic Magnetic Calorimeters with On-Chip dc-SQUID Readout

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Ferring, A.; Fleischmann, A.; Wegner, M.; Enss, C.

    2016-07-01

    Metallic magnetic calorimeters (MMCs) are low-temperature particle detectors that are typically read out by using superconducting quantum interference devices (SQUIDs). But since MMCs are sensitive to the input circuitry and the noise performance of the SQUID, the energy resolution of MMCs have not yet reached their fundamental limit. A possible solution to overcome present limits is to maximize the flux coupling by minimizing parasitic inductance in the input circuit. To show the suitability of this approach, we realized a 64 pixel MMC detector array with integrated dc-SQUID readout, i.e., detector and SQUID are on the same chip. We observed an influence of the power dissipation of the SQUID on the detector temperature. We achieved a baseline energy resolution of Δ E_{FWHM} = 25 {eV} and Δ E_{FWHM} = 30 {eV} for X-rays with energies up to 6 {keV}.

  17. A low-cost viscometer based on a permanent magnet dc motor

    NASA Astrophysics Data System (ADS)

    Rabani, Amir; Challis, Richard

    2013-03-01

    This paper proposes a pragmatic approach to, and a feasibility study of, a very low cost instrument for on-line and in situ viscosity measurement for engineering applications. It is a simple rotational instrument based on the mixer technique. It utilizes a permanent magnet dc (PMDC) motor which drives a propeller immersed in the test fluid. The viscosity is derived from the motor current when the motor is connected to a fixed supply voltage. The theory which relates PMDC motor current to the resistance to the rotational movement of a body due to the viscosity of the liquid under the test is developed. It is believed that the system provides the basis for a new generation of inexpensive viscometers for process and storage environments.

  18. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  19. Pressure Dependence of Superconductivity in FeSe studied by DC Magnetic Measurements

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kiyotaka; Mutou, Eriko; Morishita, Koh; Fujiwara, Kenji; Takeuchi, Jun

    2012-12-01

    Pressure dependence of superconductivity in FeSe has been investigated by DC magnetic measurements under high pressure up to 5 GPa using miniature diamond anvil cell combined with commercial SQUID magnetometer. The specimens with nominal composition FeSex (x = 0.80-1.00) were prepared from iron pieces and selenium shot firing at 1075 °C. The specimens containing no impurity phase of hexagonal FeSe were obtained for 0.80<=x<=0.96. For all of the specimens, it has been found that Tc increases in two steps by the application of pressure P, showing a local maximum of Tc~12 K at P~1 GPa, and Tc is nearly pressure independent above ~3 GPa. The maximum value Tcmax above 3 GPa is 15-20 K for 0.80<=x<=0.98 but ~25 K for x>=0.99.

  20. Microwave Deflection Sensor

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Kobayashi, Herb; Ngo, Phong; Lichtenberg, C. L.

    1988-01-01

    Doppler-radar instrument measures small deflections or vibrations of reflecting surface. Acting as interferometric micrometer, instrument includes combination of analog and digital circuits measuring change in phase of radar return due to movement of reflecting surface along signal-propagation path. Includes homodyne Doppler-radar transceiver and digital signal-processing circuitry to measure change in phase shift as target deflects.

  1. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  2. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.

    PubMed

    Tsindlekht, M I; Genkin, V M; Felner, I; Zeides, F; Katz, N; Gazi, Š; Chromik, Š; Dobrovolskiy, O V; Sachser, R; Huth, M

    2016-06-01

    dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above [Formula: see text] and [Formula: see text] the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode. PMID:27143621

  3. Changes in the flow stress of copper and duralumin under the action of a dc magnetic field

    NASA Astrophysics Data System (ADS)

    Kraiev, M. V.

    2016-05-01

    Results of tensile and compressive tests of copper (grade M3) and duralumin (grade D16) in a dc magnetic field with an induction to 1.1 T are given. Variations of the flow stress upon deformation under conditions of different stress states are described. The dependence of the flow stress on the induction of the magnetic field and stress state has been established.

  4. Development of integrated AC-DC magnetometer using high-Tc SQUID for magnetic properties evaluation of magnetic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Takagi, Ryuki; Kusaka, Toki; Ishihara, Yuichi; Tsukamoto, Yuya; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-05-01

    We developed an integrated AC-DC magnetometer using a high critical temperature superconducting quantum interference device (high-Tc SQUID) to evaluate the static and dynamic magnetic properties of magnetic nanoparticles (MNPs) in solution. The flux-transformer method consisted of first-order planar and axial differential coils that were constructed for static and dynamic magnetization measurements, respectively. Vibrating-sample and harmonic detection techniques were used to reduce interference from excitation magnetic fields in the static and dynamic magnetization measurements, respectively. Static and dynamic magnetization measurements were performed on commercially available iron oxide nanoparticles in diluted solutions. The magnetic responses increased with the increase in concentration of the solutions in both measurement results. The magnetization curves showed that the diamagnetic signal due to the carrier liquid of the iron oxide nanoparticles existed in a dilute solution. Biasing with a proper DC magnetic field in the dynamic magnetization measurement resulted in improved signals of the second and third harmonics. Therefore, highly sensitive magnetic characterizations of MNPs utilizing the static and dynamic magnetization measurement are possible via the developed system.

  5. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties

    NASA Astrophysics Data System (ADS)

    Guo, Junjiang; Dong, Yaqiang; Man, Qikui; Li, Qiang; Chang, Chuntao; Wang, Xin-Min; Li, Run-Wei

    2016-03-01

    Fe-based amorphous magnetic alloy powders with a composition of (Fe0.76Si0.09B0.1P0.05)99Nb1 were first prepared by water atomization, and then amorphous magnetic powder cores were produced from a mixture of the amorphous alloy powders with diameters of below 75 μm and different volume of insulation and bonding materials by mold compacting with a compact pressure of 2200 MPa at room temperature. The amorphous magnetic cores exhibit superior DC-bias properties and excellent soft magnetic properties after appropriate heating treatment. The DC-bias properties of the present amorphous magnetic cores just decrease 15% as the external field increases to 100 Oe. Meanwhile, it also exhibits a high permeability of 56 at 1 MHz and a low core loss of 451 W/kg at Bm=0.1 T and f=100 kHz. The present Fe-based amorphous magnetic powder cores with superior DC-bias properties are a potential candidate for a variety of industrial applications.

  6. Current deflection NDE for pipeline inspection and monitoring

    NASA Astrophysics Data System (ADS)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  7. Analysis and comparison for rotor eddy current losses of permanent magnet synchronous generator according to dc and ac load conditions

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Hyun-Kyu; Choi, Jang-Young; Ko, Kyoung-Jin

    2009-04-01

    This paper presents an analytical procedure for the calculation of the eddy current losses of permanent magnet synchronous generator (PMSG). The dc and ac loading effects on the eddy current is examined through the suggested analytical procedure that considers the radial and tangential flux density waveform through a phase current harmonic analysis. The corresponding test results are also presented to quantify and compare those loading effects on the eddy current. The results verified the suggested analytical procedures and show that the rotor eddy current losses for PMSG with the dc loads turned out to be more significant than those with the ac loads.

  8. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K.

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  9. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  10. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots

    NASA Astrophysics Data System (ADS)

    Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.

    2016-06-01

    dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above 0.66{{T}\\text{c}} and 0.78{{T}\\text{c}} the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode.

  11. Patterns formed by paramagnetic particles in a horizontal layer of a magnetorheological fluid subjected to a dc magnetic field.

    PubMed

    Ukai, Tomofumi; Maekawa, Toru

    2004-03-01

    We investigate the patterns formed by paramagnetic particles, which are dispersed in a liquid solvent subjected to a dc magnetic field. We calculate the dynamics of paramagnetic particles by the Brownian dynamics method based on the Langevin equation. We, in particular, focus on the effect of the system height on the pattern formations. We also discuss the mechanism of the pattern formations and the dynamics of the structure creation processes. PMID:15089337

  12. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  13. Dynamic pavement deflection

    NASA Astrophysics Data System (ADS)

    Rand, D. W.; Jacobs, K. M.

    1981-06-01

    Dynamic pavement deflection measurements for bituminous concrete pavements of two and three-quarter, five and seven-eights, and seven and one-half inches in thickness under moving axle loads of 15,000, 18,000, and 22,000 pounds were obtained at speeds of 10, 25 and 45 miles per hour. The results were analyzed and compared to Benkelman beam measurements. The data indicate that slow moving loads have greater adverse effect (larger deflections) on the pavement than the high speed loads. The results also show that the bituminous pavement undergoes numerous vertical fluctuations and bending as the front and rear axles approached the point of measurement. The magnitude of the vertical displacement was measured via the means of an accelerometer and double integrator. When values of the dynamic deflections were in the magnitude of 0.07 through 0.10 inches, there was evidence of pavement failure. When the deflection values were above 0.10 inches pavement failures were distinct.

  14. Simultaneous ac and dc magnetic field measurements in residential areas: Implications for resonance theories of biological effects

    SciTech Connect

    Wong, P.S.; Sastre, A.

    1995-10-01

    The goal of this study was to obtain data that could be used to evaluate the applicability of ``resonance`` theories of biological effects in residential settings. The authors first describe a measurement system which allows the study of ac and dc magnetic fields simultaneously in space and in time. Sample measurements were taken near two power lines, two objects and in two residential homes. The results show that the earth`s (dc) magnetic field was unaffected near power lines. The compass orientation of the power line influenced the relative values of the ac components parallel and perpendicular to the dc field. The electric heating system greatly affected the ac field levels in the home, causing the levels to increase from less than 1 mG to a maximum of 7.5 mG during heating. The magnitudes of the dc field in the two homes varied from about 380 to 650 mG, with the larger variations near metallic or magnetic objects such as the refrigerator or a metallic air duct. The earth`s field was elevated above its natural level within a distance of 8 feet from a subcompact passenger car, e.g., the level changed from about 540 to 1,100 mG beside the headlight. A steel chair changed the earth`s field by up to 60 mG within a distance of one foot. These results suggest that some of the narrow ``resonances`` described in laboratory studies may be difficult to observe against the variations in do field amplitude and direction resulting from the presence of everyday metallic objects.

  15. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  16. OTV bearing deflection investigation

    NASA Astrophysics Data System (ADS)

    Reimer, B. L.; Diepenbrock, R. T.; Millis, M. G.

    1993-04-01

    The primary goal of the Bearing Deflectometer Investigation was to gain experience in the use of fiber optic displacement probe technology for bearing health monitoring in a liquid hydrogen turbo pump. The work specified in this Task Order was conducted in conjunction with Air Force Rocket Propulsion Laboratory Contract F04611-86-C-0010. APD conducted the analysis and design coordination to provide a displacement probe design compatible with the XLR-134 liquid hydrogen turbo pump assembly (TPA). Specifications and requirements of the bearing deflectometer were established working with Mechanical Technology Instruments, Inc. (MTI). The TPA design accommodated positioning of the probe to measure outer race cyclic deflections of the pump inlet bearing. The fiber optic sensor was installed as required in the TPA and sensor output was recorded during the TPA testing. Data review indicated that no bearing deflection signature could be differentiated from the inherent system noise. Alternate sensor installations were not investigated, but might yield different results.

  17. Development of a dc motor with virtually zero powered magnetic bearing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  18. Development of a DC Glow Discharge Exhibit for the Demonstration of Plasma Behavior in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bruder, Daniel

    2010-11-01

    The DC Glow Discharge Exhibit is intended to demonstrate the effects a magnetic field produces on a plasma in a vacuum chamber. The display, which will be featured as a part of The Liberty Science Center's ``Energy Quest Exhibition,'' consists of a DC glow discharge tube and information panels to educate the general public on plasma and its relation to fusion energy. Wall posters and an information booklet will offer brief descriptions of fusion-based science and technology, and will portray plasma's role in the development of fusion as a viable source of energy. The display features a horse-shoe magnet on a movable track, allowing viewers to witness the effects of a magnetic field upon a plasma. The plasma is created from air within a vacuum averaging between 100-200 mTorr. Signage within the casing describes the hardware components. The display is pending delivery to The Liberty Science Center, and will replace a similar, older exhibit presently at the museum.

  19. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  20. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  1. Mean field analysis of the high temperature magnetic properties of terbium iron garnet in strong DC fields

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine; Wang, Wei

    2015-11-01

    This paper is devoted to the description of the magnetic phase diagrams (MPD) together with a special interest to the determination of more precise values of some reliable parameters at the compensation point, Tcomp=243.5±0.5 K of the terbium iron garnet, Tb3Fe5O12 or TbIG. Using isothermal magnetizations performed on single crystal in strong DC magnetic fields up to 200 kOe applied along the <111>, <110> and <100> directions within the temperature range 128-295 K, field-induced phase transitions between collinear and canted phases are observed in the vicinity of Tcomp at critical fields, Hc2. In comparison with the measurement at zero external magnetic field, the specific heat, Cp(T) at 80 kOe along <111> shows an excess around Tcomp characterized by an anomaly which has a width in the boundaries of the canted phase and a maximum at 252 K, the more accurate value of the critical temperature, TC* of the MPD in the (Hc2-T) plane. Better determinations of the molecular field coefficients which represent the magnetic interactions on the Tb sublattice are obtained by an improved molecular field model based on the saturation effects of the Tb sublattice and the differential susceptibility contribution due to the Fe sublattices to the total magnetic susceptibility of TbIG. The results are discussed in terms of the previous theoretical studies of the MPD predicted for weakly anisotropic ferrimagnets.

  2. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, D.A.; Haynes, H.D.

    1993-08-17

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  3. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.

    1993-01-01

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  4. Current-voltage characteristics of hydrogen DC plasma torches with different sizes in an external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wen, Guang-Dong; Su, Bao-Gen; Yang, Yi-Wen; Ren, Qi-Long

    2015-06-01

    Current-voltage (I-V) characteristics of hydrogen DC plasma torches with different sizes in an external axial magnetic field under atmospheric pressure are reported. Three anodes with different diameters are adopted in a 50-kW torch: 25 mm, 30 mm, and 35 mm, respectively. Two different diameters of anodes, that is, 100 mm and 130 mm, are adopted in a 1-MW plasma torch. The arc voltage shows a negative trend with the increase of arc current under the operating regimes. On the contrary, arc voltage shows a positive trend as the flow rate of carrier gas increases, and a similar trend is found with increasing the external magnetic flux density. A similarity formula is constructed to correlate the experimental data of the torches mentioned above. Linear fitting shows that the Pearson correlation coefficient is 0.9958. Project supported by the Special Fund for Basic Scientific Research of Central Colleges, China (Grant No. 2012FZA4023).

  5. Magnetization detecting electron paramagnetic resonance spectroscopy using a dc-SQUID directly coupled to an electron spin ensemble

    NASA Astrophysics Data System (ADS)

    Toida, Hiraku; Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Zhu, Xiaobo; Munro, William; Nemoto, Kae; Yamaguchi, Hiroshi; Saito, Shiro

    Electron parametric resonance (EPR) spectroscopy is one of the most widely-used tool to characterize materials containing unpaired electrons. In the case of conventional EPR spectrometers, the resonance is detected as a change of microwave transmittance of a cavity. In our method, on the other hand, magnetization of the sample induced by the resonance is detected by a direct current superconducting quantum interference device (dc-SQUID) magnetometer, which is bonded to the sample. Here, we report detection of electron spin polarization and EPR spectroscopy using a micrometer-sized dc-SQUID magnetometer. We measure temperature and in-plane magnetic field dependence of spin polarization ratio and it has good agreement to the hyperbolic tangent law. We also successfully demonstrate EPR spectroscopy by applying a continuous microwave signal to the sample with a on-chip microstrip. We estimate the sensing volume and the minimum distinguishable number of electron spins to be ~ 10-10 cm3 (~ 0.1 pl) and ~ 106, respectively. This result paves the way towards realizing highly sensitive EPR spectroscopy in nanometer-sized area. This work was supported by Commissioned Research of NICT and in part by MEXT KAKENHI (Grant No. 15648489 and 15H05869).

  6. Photothermal deflection spectroscopy and detection

    SciTech Connect

    Jackson, W. B.; Amer, Nabil M.; Boccara, A. C.; Fournier, D.

    1981-04-15

    The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed. We consider cw and pulsed cases of both transverse and collinear photothermal deflection spectroscopy for solids, liquids, gases, and thin films. The predictions of the theory are experimentally verified, its implications for imaging and microscopy are given, and the sources of noise are analyzed. The sensitivity and versatility of photothermal deflection spectroscopy are compared with thermal lensing and photoacoustic spectroscopy.

  7. Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16 : dc magnetization studies

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Chattopadhyay, M. K.; Roy, S. B.

    2007-10-01

    We report results of dc magnetization studies focusing particularly on the austenite-martensite phase transition in Ni50Mn34In16 . We show that the nature of this phase transition depends significantly on the temperature (T) and magnetic field (H) history of the sample. In the presence of high magnetic field, this austenite to martensite first order phase transition is kinetically arrested. The low-temperature and high-field magnetic state shows a typical nonergodic glasslike dynamical response. Comparisons are made with similar phenomena observed recently in various classes of magnetic materials including CMR manganites.

  8. Low frequency wave at the meniscus of a continuous caster generated by a DC magnetic field

    NASA Astrophysics Data System (ADS)

    Etay, J.; Delannoy, Y.

    2003-12-01

    A continuous casting system for steel has been studied under a continuous magnetic field with the help of physical and numerical models. The behaviour of the free surface and the internal flow has been investigated experimentally on a mercury model, representing at the scale one third a typical casting head. A specific numerical model has been used to describe the effect of the horizontal magnetic field on the mean flow. For experiments with a magnetic field, a wave was observed at the mercury surface, travelling from one side of the mould to the other. With the help of a numerical model, this low frequency instability was related to the recirculating flow created by the nozzle. An analysis is proposed, based on the bidimensionalisation generated by the magnetic field and by self sustained oscillations of the upper recirculating flow. All other fluctuations of the free surface level are damped by the magnetic field. Tables 2, Figs 5, Refs 8.

  9. Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields

    NASA Astrophysics Data System (ADS)

    Sánchez, Jorge H.; Rinaldi, Carlos

    2009-10-01

    The rotational Brownian motion of magnetized tri-axial ellipsoidal particles (orthotropic particles) suspended in a Newtonian fluid, in the dilute suspension limit, under applied d.c. and a.c. magnetic fields was studied using rotational Brownian dynamics simulations. The algorithm describing the change in the suspension magnetization was obtained from the stochastic angular momentum equation using the fluctuation-dissipation theorem and a quaternion formulation of orientation space. Simulation results are in agreement with the Langevin function for equilibrium magnetization and with single-exponential relaxation from equilibrium at small fields using Perrin's effective relaxation time. Dynamic susceptibilities for ellipsoidal particles of different aspect ratios were obtained from the response to oscillating magnetic fields of different frequencies and described by Debye's model for the complex susceptibility using Perrin's effective relaxation time. Simulations at high equilibrium and probe fields indicate that Perrin's effective relaxation time continues to describe relaxation from equilibrium and response to oscillating fields even beyond the small field limit.

  10. DC septum magnets for the damping rings of the SLC SLAC Linear Collider

    SciTech Connect

    Bijleveld, J.; Peterson, J.M.; Jensen, D.

    1986-07-01

    The injection/extraction systems of the 1.21 GeV Stanford Linear Collider (SLC) damping rings uses four pairs of water cooled septum magnets. Each pair consists of a thin-septum, low-field (3 mm, 3 kilogauss) magnet plus a thick-septum, high-field (12 mm, 8 kilogauss) model. In the latest design cooling reliability was improved by using stainless-steel tubing imbedded in the copper. The operating current in each is 2600 amperes, at a density of up to 120 amperes per mmS. Plasma-sprayed alumina is used to provide electrical insulation. The magnet system is compatible with 10 Z torr ultra-high vacuum. The magnet design, fabrication, and measurements are described.

  11. Early operating and reliability experience with the CEBAF DC magnet power supplies

    SciTech Connect

    Merz, W.; Flood, R.; Martin, E.J.; O'Sullivan, M.

    1996-08-01

    The CEBAF accelerator is a five pass, recirculating, CW electron linear accelerator. There are a total of nine recirculation arcs connecting the two linacs. Three experimental halls are serviced by the accelerator through separate transport channels. The magnet powering system for CEBAF consists of approximately 2000 independent control channels. About 1850 of these channels are low current, trim magnet power supplies. There are 28 higher power supplies used to energize the major bending elements. Over one hundred, 20 amp, active shunts are used to vary current in selected magnets in the major dipole strings. The majority of the magnetic elements are concentrated in the arcs and transport channels. The correction dipoles, quadrupoles and sextupoles are each powered individually be a dedicated trim power supply channel. The arc and extraction channel dipoles are powered in series strings by the high powered supplies, known locally at CEBAF as `box power supplies'. Arc loads consist of some 30--40 magnets in series. Transport channel, path length control doglegs and septa box power supplies have loads ranging from 1 to 10 magnets. Shunts are installed on virtually all loads where two or more magnets are in series. At this time, 95% of the power supplies are installed and commissioned. In the past twelve months, beginning in May 1994, approximately 1200 trim magnet power supplies have been checked out. During this same period approximately 22 box power supplies and 100 shunts have been made operational. Full operation of the equipment has only been under way since early 1995. While this operation is only just beginning, much has been learned based on the reliability performance seen so far. The remainder of this paper describes the systems mentioned, their reliability problems, the fixes implemented to date, and some plans for the future. 6 refs., 3 tabs.

  12. Early operating and reliability experience with the CEBAF DC magnet power supplies

    SciTech Connect

    Merz, W.; Flood, R.; Martin, E.J.; O`Sullivan, M.

    1996-08-01

    The CEBAF accelerator is a five pass, recirculating, CW electron linear accelerator. There are a total of nine recirculation arcs connecting the two linacs. Three experimental halls are serviced by the accelerator through separate transport channels. The magnet powering system for CEBAF consists of approximately 2000 independent control channels. About 1850 of these channels are low current, trim magnet power supplies. There are 28 higher power supplies used to energize the major bending elements. Over one hundred, 20 amp, active shunts are used to vary current in selected magnets in the major dipole strings. The majority of the magnetic elements are concentrated in the arcs and transport channels. The correction dipoles, quadrupoles and sextupoles are each powered individually be a dedicated trim power supply channel. The arc and extraction channel dipoles are powered in series strings by the high powered supplies, known locally at CEBAF as ``box power supplies``. Arc loads consist of some 30-40 magnets in series. Transport channel, path length control doglegs and septa box power supplies have loads ranging from 1 to 10 magnets. Shunts are installed on virtually all loads where two or more magnets are in series. At this time, 95{percent} of the power supplies are installed and commissioned. In the past twelve months, beginning in May 1994, approximately 1200 trim magnet power supplies have been checked out. During this same period approximately 22 box power supplies and 100 shunts have been made operational. Full operation of the equipment has only been under way since early 1995. While this operation is only just beginning, much has been learned based on the reliability performance seen so far. The remainder of this paper describes the systems mentioned, their reliability problems, the fixes implemented to date, and some plans for the future. 6 refs., 3 tabs.

  13. An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control

    NASA Astrophysics Data System (ADS)

    Geno Peter, P.; Rajaram, M.

    2015-08-01

    In this paper, an enhanced Z-source inverter (ZSI) is introduced for controlling the speed of permanent magnet brushless DC motor (PMBLDCM) drive. It is the extension of the conventional ZSI and the elements used in the circuit are the same as those of the conventional ZSI, except that the position of Inverter Bridge and diode would be exchanged from the classical circuit diagram. This exchanged circuit avoids the startup path of the inrush current and hence reduces the inrush current and improves the motor efficiency. Different modes of enhanced ZSI are studied with PMBLDCM. The voltage polarity of Z-source capacitors in the proposed circuit is the same as that of the input voltage polarity. Furthermore, to get the same voltage boost, the capacitor voltage stress is reduced to a significant extent. The speed control capability of the proposed brushless DC motor drive is compared with that of the conventional ZSI. The proposed ZSI is implemented in MATLAB/Simulink working platform and the output performance is evaluated. Also, the performance of voltage ratio is analysed both by simulation and mathematical models. All these analyses are known to express the innovative features of the proposed system.

  14. Efficiency of plasma density control with dc discharge and magnetic field for different surface types in low pressure hypersonic flow

    NASA Astrophysics Data System (ADS)

    Schweigert, Irina

    2013-09-01

    Recently the problem of communication blackout during reentrant flight still remains unsolved. The spacecrafts enter the upper atmospheric layers with a hypersonic speed and the shock heated air around them becomes weakly ionized. The gas ionization behind the shock front is associative in nature and occurs through chemical reactions between fragments of molecules. The formation of a plasma layer near the surfaces of spacecraft causes serious problems related to the blocking of communication channels with the Earth and other spacecrafts. A promising way of restoring the radio communications is the application of electrical and magnetic fields for controlling the plasma layer parameters. Nevertheless the flux of electrons and ions on the surface charges it that essentially decrease the effect of electro-magnetic control of local plasma density. In Ref. it is shown that there is the way to remove the surface charge using the lateral diode string structures. Based on two dimensional kinetic Particle in cell Monte Carlo collision simulations, we study the possibility of local control the plasma layer parameters near a flat surface of two different types. The gas velocity distribution is set with a model profile. We apply DC voltage up to 4 kV and magnetic field B up to 200 G.

  15. Copper-rich phase segregation effects on the magnetic properties and DC-bias-superposition characteristic of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Hsiang, Hsing-I.; Wu, Jhao-Ling

    2015-01-01

    NiCuZn ferrites with Ni0.42Cu0.13+xZn0.45Fe2-xO4; x=0, 0.01, 0.02, 0.04, 0.07, 0.1 chemical compositions were prepared using conventional solid-state reaction in this study. The effects of different NiCuZn ferrite chemical compositions on the microstructure, magnetic properties and DC superposition characteristics were investigated. The results showed that increasing the CuO content in the NiCuZn ferrites led to copper-rich phase precipitation at the grain boundaries. The liquid phase resulted from copper-rich phase melting during sintering, promoting liquid phase densification and hence lowering the maximum densification rate temperature. The non-magnetic copper-rich secondary phase at the grain boundaries reduced the effective magnetic field applied on the ferrite grain, and hence enhanced the DC superposition characteristics at low magnetic field. The sample with x=0.07 sintered at 1100 °C for 2 h exhibited excellent initial permeability (μ'=325) and superior DC superposition characteristics. A NiCuZn ferrite with superior initial permeability and DC superposition characteristics can be obtained by changing the x value to adjust the non-magnetic copper-rich precipitate thickness at the grain boundaries.

  16. DC response of hot carriers under circularly polarized intense microwave fields and intense magnetic fields in quantum wells

    SciTech Connect

    Ishida, Norihisa

    2013-12-04

    Hot carrier dynamics under intense microwave and crossed magnetic fields are investigated theoretically for the case that the dominant scattering process is inelastic collision, especially intersubband and intrasubband transition in Quantum wells. If the applied electric fields are circularly polarized, the equation of motion forms symmetric on the x-y plane. But the carrier motions are complicated to accumulate because of acceleration and emission process. This situation makes possible to create a variation of the carrier motion, typically the carrier bunching is occurred. This state is a sort of population inversion. The DC response of this system attains strongly negative at appropriate field conditions. Through the simulation for the real case described below, it may include a type of induced emission.

  17. Consolidation and DC magnetic properties of nanocrystalline Supermalloy/iron composite cores prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Neamţu, B. V.; Chicinaş, I.; Isnard, O.; Ciascai, I.; Popa, F.; Marinca, T. F.

    2014-03-01

    The spark plasma sintering technique is used to prepare composite compacts starting from nanocrystalline Supermalloy and iron powder. The sintered compacts are investigated by X-ray diffraction, scanning electron microscopy, X-ray microanalysis, electrical resistivity and DC magnetic measurements. It is found that iron addition leads to an enhanced sintering process, the relative density of the compacts increases upon increasing iron content. The mean crystallite size of Supermalloy increases from 19 to 27±2 nm with increasing the iron content from 0% to 50 wt% (for identical sintering conditions). The interface created during the sintering process between iron and Supermalloy particles has a wide range of chemical composition including that corresponding to Rhometal like alloys. This leads to an increase of the electrical resistivity and coercivity of the compacts. The saturation induction and maximum relative permeability increase by 58% and 143% respectively, when the iron content increases up to 50 wt%.

  18. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community. PMID:11122491

  19. Three-dimensional magnetic cloak working from d.c. to 250 kHz.

    PubMed

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-01-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641

  20. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-11-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.

  1. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    PubMed Central

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-01-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641

  2. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    SciTech Connect

    Zuo, Z. J.; Pan, D. A. Zhang, S. G.; Qiao, L. J.; Jia, Y. M.

    2013-12-15

    Magnetoelectric (ME) coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,Ti)O{sub 3} composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (H{sub DC}), showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the H{sub DC} shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the H{sub DC} patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  3. Final report on P1-APMP.EM-S9: VNIIM/KRISS bilateral comparison of DC magnetic flux density by means of a transfer standard coil

    NASA Astrophysics Data System (ADS)

    Shifrin, V. Ya; Park, P. G.

    2013-01-01

    The purpose of this bilateral comparison is to check the conformance of the base quantities of magnetic measurements, DC magnetic flux density and its ratio to a current, as reproduced at VNIIM and KRISS. In these institutes adequate conditions for precise measurements in low magnetic fields are provided and the appropriate equipment for attaining a high level of accuracy is available. The results in this report cover the comparisons of two units, T/A and T, reproduced by the two institutes. The experimental comparison data show good agreement within the estimated uncertainty components of the standards. The coordinated values of the unit of DC magnetic flux density and its ratios to DC current show a standard uncertainty at the level of 1 × 10-6 to 1.2 × 10-6 (k = 1) using the value of the gyromagnetic ratio of the shielded protons γp that was recommended by CODATA in 2010, the experimental determination of the ratio (γ4He/γp) of 4He atoms to protons, and the standards of the two institutes. The results give a basis for carrying out multilateral comparisons of standard quantum magnetometers of metrological institutes in the framework of APMP with participation of geomagnetic observatories, which require the establishment of a unified standard of the unit of DC magnetic flux density. They also show the possibility of decreasing the uncertainty of the determination of the unit of DC magnetic flux density from direct comparisons of standard quantum magnetometers. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…

  5. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  6. Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1995-09-01

    This study demonstrates that exposure to 60 Hz magnetic fields (3.4--8.8 mt) and magnetic fields over the range DC-600 kHz (2.5--6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. the relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization.

  7. Magnetic, structural and dc electrical resistivity studies on the divalent cobalt substituted Ni-Zn ferrite system

    NASA Astrophysics Data System (ADS)

    Siva Ram Prasad, M.; Prasad, B. B. V. S. V.; Rajesh Babu, B.

    2015-02-01

    Polycrystalline cobalt substituted Ni-Zn ferrite with composition Ni0.65-xCox Zn0.35Fe2O4(x = 0.00-0.25 insteps of 0.05) have been prepared through the conventional solid state ceramic method. Calcination and sintering have been performed in air atmosphere at 950°C and 1250°C for 4 h and 2 h, respectively followed by natural cooling to room temperature. X-ray diffraction patterns of all samples indicated the formation of the single spinel structure and the accurate lattice parameter for each composition has been determined using the Nelson-Riley error function. The increase in lattice constant on cobalt substitution is attributed to the ionic radius difference between the displaced and the substituted ion. The variation in lattice constant on incorporation of Co2+ ion indicates its solubility into the spinel lattice and noticeable modification in structural properties have been observed. The observed increase in the saturation magnetization and Curie temperature with the increase in the Co2+ substitution is due to its higher magnetic moment compared to that of Ni2+, improvement in the A-B exchange interaction mechanism and large positive contribution to magnetic anisotropy due to presence of Co2+ when they are at the octahedral sites. The observed variation in the initial magnetic permeability and the magnetic loss factor with cobalt substitution measured at a low frequency of 1 KHz have been attributed to the modification in the density, porosity, grain size and anisotropy contributions. A nearly comparable variation is observed in the room temperature dc electrical resistivity and activation energy for conduction and is attributed to the modification in structure, role and nature of cobalt ions and the microstructure aspects like grain size and pore concentration. The activation energy values in the range of 0.28 to 0.36 eV suggest a possible electron hopping. The observed changes in the structural and the magnetic and electrical properties have all been

  8. Quantitative Analysis of CME Deflections in the Corona

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Shen, Chenglong; Wang, Yuming; Ye, Pinzhong; Liu, Jiajia; Wang, Shui; Zhao, Xuepu

    2011-07-01

    In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et al. ( Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.

  9. Limitation of linear colliders from transverse rf deflections

    SciTech Connect

    Seeman, J.T.

    1987-01-01

    Offaxis beam trajectories in a linear collider produce transverse wakefield and chromatic effects which cause emittance enlargement. One cause for non-centered trajectories in the accelerating structures is radial rf fields which produce transverse deflections. Static deflections can be compensated by static dipole magnetic fields. However, fluctuations of the rf fields cause variations in the deflections which must be managed or limited. Given the level of fluctuation of the phase and amplitude of an rf system, a limit on the allowable rf deflection can be calculated. Parameters, such as the beam emittance, lattice design, rf wavelength and the initial and final beam energies, influence the tolerances. Two tolerances are calculated: (1) one assumes that the wakefields are completely controlled, and that chromatic effects are the only enlarging mechanism (optimistic), and (2) the other assumes the limit is due to transverse wakefields without the aid of Landau damping (pessimistic).

  10. Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.

    PubMed

    Dujko, S; White, R D; Petrović, Z Lj; Robson, R E

    2010-04-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models. PMID:20481843

  11. DC CICC retrofit magnet preliminary design, software development and analysis report

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-05-28

    The January 1992 quarterly progress report discusses a two-dimensional finite element analysis (FEA) of the proposed retrofit MHD coil. The superconducting Cable-in-Conduit Conductor (CICC) winding pack has a smooth, semi-elliptical cross section and is supported by a similarly shaped strap which resists the electromagnetic forces tending to separate the coils on each side of the channel. The coils are designed to produce a peak on-axis field of 4.5 tesla with a nominal current density of 13.05{times}10{sup 6} A/m{sup 2}. A sketch of the magnet system and structure is shown in Fig. 1.0-1. The objective of this analysis is to quantify the highly 3-D characteristics of the proposed superconductivity magnet system, and develop an appropriate support concept. A fully paramatized 3-D finite element model of the coil and structure is developed as a means of obtaining the field and stress solutions. The flexibility of FEA and a model built using design parameters allows variations in the coil end turn bend radius, strap thickness, support details and positions to be studied. The preliminary results show the calculated stresses as a result of this iterative design process.

  12. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  13. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE PAGESBeta

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; Carretero, Luis

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  14. Modeling Magnetic Fields from a DC Power Cable Buried Beneath San Francisco Bay Based on Empirical Measurements.

    PubMed

    Kavet, Robert; Wyman, Megan T; Klimley, A Peter

    2016-01-01

    The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable's path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia-Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable's contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The modeling

  15. Modeling Magnetic Fields from a DC Power Cable Buried Beneath San Francisco Bay Based on Empirical Measurements

    PubMed Central

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter

    2016-01-01

    The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia-Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The

  16. Bubble Rising Velocity in Sodium Chloride Aqueous Solution under Horizontal DC High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwai, Kazuhiko; Furuhashi, Ippei

    2008-02-01

    In a continuous casting of steel, argon bubbles are injected from a nozzle to prevent nozzle clogging. However, this sometimes causes a problem of the entrapment of inclusions in a solidifying metal front. On the other hand, an electromagnetic brake has been utilized to control molten metal flow in the continuous casting process. Therefore, the understanding of bubble behavior in molten steel under the electromagnetic brake in which inertial force, Lorentz force and buoyancy force play an important role is essential for the optimization of the continuous casting process of steel. A water model experiment is one of the typical methods for direct observation of bubble behavior while it is impossible to use the water model experiment for this purpose because the Lorentz force is not induced by the bubble motion in the water. The Lorentz force is excited when a molten metal with low melting temperature is used instead of the water, however, the direct observation of the bubble motion is impossible because of opaque nature of metals. In order to overcome this problem and to get useful information for the bubble behavior under the electromagnetic brake, the bubble behavior has been simulated by use of a strong electrolyte under a high magnetic field. The principle of the simulation is based on that the ratios among those forces in the simulation system are the nearly same as the ratios in a practical operation. New knowledge about the effect of Lorentz force on the bubble behavior is discussed in this manuscript.

  17. Rosetta observations of solar wind deflection in the coma

    NASA Astrophysics Data System (ADS)

    Broiles, Thomas; Burch, James; Clark, George; Goldstein, Raymond; Koenders, Christoph; Mandt, Kathleen; Mokashi, Prachet; Samara, Marilia

    2015-04-01

    Until recently, study of the solar wind around comets was limited to remote observations and brief in-situ encounters. With the arrival of Rosetta at the comet Churyumov-Gerasimenko (CG), we have had near constant solar wind observations at the comet for over 6 months. This is an unprecedented opportunity to study this dynamic interaction over time. Neutral atoms produced by the comet become ionized through photoionization or charge-exchange with the solar wind. The freshly ionized particles experience v x B electric field and begin to gyrate around the interplanetary magnetic field. Currently, CG is ~2.6 AU from the Sun, and as of this writing, neutral production is still relatively low. Consequently, most pickup ions are produced locally (< few hundred kilometers), and a diamagnetic cavity may not exist. Moreover, neutral production is variable and changes over the comet's rotational period. We find the following: 1) The solar wind is heavily deflected near the comet (in some cases >45° away from the anti-sunward direction). 2) The solar wind helium experiences less deflection than the protons. 3) The periodicity of the deflection is highly variable, and can vary over minutes or hours. From these results, we conclude that the solar wind is deflected by a mechanism very close to the comet. We suggest the following possibilities: 1) The solar wind could be deflected by a Lorenz force in the opposite direction to that experienced by the pickup ions, which would also conserve the momentum of the two fluid system. This would explain why solar wind protons are more strongly deflected than the heavier alpha particles. Additionally, this would explain the periodicity of the deflections, which would react to changes in the interplanetary magnetic field. 2) The solar wind deflection might occur from strong charging of comet's nucleus. In which case, the nucleus may charge both positively or negatively. The nucleus could charge positively due photoionization of the surface

  18. Subminiature deflection circuit operates integrated sweep circuits in TV camera

    NASA Technical Reports Server (NTRS)

    Schaff, F. L.

    1967-01-01

    Small magnetic sweep deflection circuits operate a hand-held lunar television camera. They convert timing signals from the synchronizer into waveforms that provide a raster on the vidicon target. Raster size remains constant and linear during wide voltage and temperature fluctuations.

  19. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  20. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  1. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Savel'ev, Sergey; Kusmartsev, Feodor V.; Peeters, François M.

    2015-11-01

    We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a "superradiant" vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.

  2. A wideband deflected reflection based on multiple resonances

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Li, Yongfeng; Wang, Jun; Yan, Mingbao; Pang, Yongqiang

    2015-07-01

    We propose to realize wideband deflected reflection in microwave regime through multiple resonances. A wideband deflected reflection of a phase gradient metasurface is designed using a double-head arrow structure, which has demonstrated an ultra-wideband cross-polarized reflection caused by multiple electric and magnetic resonances. The wideband effect benefits from the wideband cross-polarized reflection and flexible phase modulation of the double-head arrow structure. Simulated and experimental results agree well with theoretical predictions. Furthermore, relative bandwidths of deflected reflection reach to 71 % for both x- and y-polarized waves under normal incidence. Our method of expansion bandwidth may pave the way in many practical applications, such as RCS reduction, stealth surfaces.

  3. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  4. Deflected Propagation ---- A Factor Deciding the Geoeffectiveness of A CME

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Liu, J.; Gui, B.; Wang, S.

    2010-12-01

    To answer the question if a CME can cause a significant change of the states of geo-space, the first issue we have to address is whether or not the CME will intersect with the Earth or what the trajectory of the CME is. From several observational cases and statistical studies, we show that the deflected propagations of CMEs are a common phenomenon. The amount of the deflection could be as large as several tens degrees in either latitude, longitude or both. Thus, an on-disk CME may not necessarily encounter the Earth, while a limb CME may be able to hit the Earth. Roughly, the CMEs' deflections can be classified as two different kinds. One is the deflection occurring in the corona, in which the CME's trajectory is controled by the distribution of the energy density of undisturbed coronal magnetic field. The other is that happenning in the IP space and in the ecliptic plane, in which the direction of the CME's propagation will be changed by the preceding or trailing background solar wind plasma depending on the velocity difference between the CME and ambient solar wind. Two models are proposed to describe the two different CME deflection behaviors, respectively. By applying the models to several cases, we may show that the trajectories of these CMEs predicted by the models match the observations fairly well.

  5. Elevator deflections on the icing process

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  6. The Seven Habits of Highly Deflective Colleagues

    ERIC Educational Resources Information Center

    Maher, Michelle; Chaddock, Katherine

    2009-01-01

    The authors define deflection as a strategy to bounce action or responsibility away from oneself and toward another person, time, or place. Although they contend that deflection occurs in all areas of personal and professional life, the authors limit their focus to the deflective colleague ("collega deflectivus") in academe. In this article, the…

  7. Elucidation of DC Magnetic Deviation in Converter Transformers Used for a Self-Commutated BTB System during Single-Line-to-Ground Faults

    NASA Astrophysics Data System (ADS)

    Hagiwara, Makoto; Pham, Phuong Viet; Akagi, Hirofumi

    This paper deals with a 50-MW self-commutated BTB (Back-To-Back) system intended for power-flow control between transmission networks. It focuses on the dynamic behavior of the BTB system during single-line-to-ground (SLG) faults. During an SLG fault, a dc magnetic deviation appears in the converter-transformers used for the BTB system just after the occurrence and restoration of the fault. It is indispensable to understand an amount of deviation because it may bring magnetic saturation as well as a large amount of magnetizing current to the transformers. This paper derives theoretical equations related to the deviation during the SLG fault. The theoretical analysis developed in this paper would make significant contributions to designing the transformers.

  8. Horizontal deflection of single particle in a paramagnetic fluid.

    PubMed

    Liu, S; Yi, Xiang; Leaper, M; Miles, N J

    2014-06-01

    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. PMID:24894886

  9. Microfluidic immunomagnetic multi-target sorting--a model for controlling deflection of paramagnetic beads.

    PubMed

    Tsai, Scott S H; Griffiths, Ian M; Stone, Howard A

    2011-08-01

    We describe a microfluidic system that uses a magnetic field to sort paramagnetic beads by deflecting them in the direction normal to the flow. In the experiments we systematically study the dependence of the beads' deflection on bead size and susceptibility, magnet strength, fluid speed and viscosity, and device geometry. We also develop a design parameter that can aid in the design of microfluidic devices for immunomagnetic multi-target sorting. PMID:21677937

  10. Effect of a strong, DC-induced magnetic field on circadian singing activity of the house cricket (orthoptera:gryllidae)

    SciTech Connect

    Shaw, K.C.; Bitzer, R.J.; Galliart, L.

    1995-05-01

    We investigated the effect of a strong, DC-induced electromagnetic field (EMF) on the circadian singing activity of the house cricket, Acheta domesticus (L.). Groups of 10 crickets were exposed to strong, DC-induced EMFs under two light regimes, 12:12 (L:D) h and 0:24 (L:D) h. Exposure to the strong EMF resulted in an increase in mean time per hour during which one or more crickets were singing and in number of crickets singing per hour. Correcting for phase shift during O:24 (L:D) h, the daily pattern of singing was apparently unaffected by any treatment. The greatest percentage of singing and number of crickets singing per hour occurred during actual or expected scotophase. This is the first report of an increase in insect activity during exposure to a strong DC-induced EMF.

  11. Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows

    PubMed Central

    Liang, Litao; Zhu, Junjie; Xuan, Xiangchun

    2011-01-01

    Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle’s relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model. PMID:22662037

  12. Report of the Workshop on Magnetic Information Technology - MINT (Washington, D.C., June 22-24, 1983).

    ERIC Educational Resources Information Center

    Bortz, Alfred B.; Dunkle, Susan B.

    Magnetic Information Technology (MINT), which involves use of magnetic techniques and materials to store information, is a critical growth industry in the United States. However, experts from both industry and academe forecast the inability of the United States to meet demand in this area. According to these experts, growth of magnetic information…

  13. Effect of anomalous electron cross-field transport on electron energy distribution function in a DC-RF magnetized plasma discharge

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Donnelly, Vincent; Kaganovich, Igor; Godyak, Valery

    2013-09-01

    The application of the magnetic field in a low pressure plasma can cause a spatial separation of cold and hot electron groups. This so-called magnetic filter effect is not well understood and is the subject of our studies. In this work, we investigate electron energy distribution function in a DC-RF plasma discharge with crossed electric and magnetic field operating at sub-mtorr pressure range of xenon gas. Experimental studies showed that the increase of the magnetic field leads to a more uniform profile of the electron temperature across the magnetic field. This surprising result indicates the importance of anomalous electron transport that causes mixing of hot and cold electrons. High-speed imaging and probe measurements revealed a coherent structure rotating in E cross B direction with frequency of a few kHz. Similar to spoke oscillations reported for Hall thrusters, this rotating structure conducts the largest fraction of the cross-field current. This work was supported by the US DOE under Contract DE-AC02-09CH11466.

  14. Effect of anomalous electron cross-field transport on electron energy distribution function in a DC-RF magnetized plasma discharge

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Donnelly, Vincent M.; Kaganovich, Igor D.; Godyak, Valery

    2013-10-01

    The application of the magnetic field in a low pressure plasma can cause a spatial separation of cold and hot electron groups. This so-called magnetic filter effect is not well understood and is the subject of our studies. In this work, we investigate electron energy distribution function in a DC-RF plasma discharge with crossed electric and magnetic field operating at sub-mtorr pressure range of xenon gas. Experimental studies showed that the increase of the magnetic field leads to a more uniform profile of the electron temperature across the magnetic field. This surprising result indicates the importance of anomalous electron transport that causes mixing of hot and cold electrons. High-speed imaging and probe measurements revealed a coherent structure rotating in E cross B direction with frequency of a few kHz. Similar to spoke oscillations reported for Hall thrusters, this rotating structure conducts the largest fraction of the cross-field current. This work was supported by DOE contract DE-AC02-09CH11466.

  15. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  16. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  17. Mechanistic interpretation of nondestructive pavement testing deflections

    NASA Astrophysics Data System (ADS)

    Hoffman, M. S.

    1980-06-01

    A method is proposed for the backcalculation of material properties in flexible pavements based on the interpretation of surface deflection measurements. ILLI-PAVE, a stress dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Over 11,000 deflection measurements for 24 different flexible pavement sections were collected and analyzed. Deflections were measured using the Benkelman Beam, the IDOT Road Rater, the Falling Weight Deflectometer, and an accelerometer to measure deflections under moving trucks. Loading mode effects on pavement response were investigated using dynamic and viscous pavement models. The factors controlling the pavement response to different loading modes were explained and identified. Correlations between different devices were developed. The proposed evaluation procedure is illustrated for three different flexible pavements using deflection data collected on several testing dates.

  18. Damping of unwanted modes in SRF deflecting/crabbing cavities

    SciTech Connect

    Burt, Graeme; Wang, Haipeng

    2014-01-01

    As deflecting and crab cavities do not use the fundamental acceleration mode for their operation, the spectrum of unwanted modes is significantly different from that of accelerating cavities. The fundamental acceleration mode is now unwanted and can cause energy spread in the beam; in addition this mode frequency is often close to or lower than that of the deflecting mode, making it difficult to damp. This is made more complex in some of the compact crab cavities as there small beampipes often attenuate the fields very sharply. In addition in some crab cavities there can be an orthogonal transverse mode similar to the deflecting mode, known as the same order mode. The degeneracy of these modes must be split by polarising the cavity and if the polarisation is not large enough, dampers should be placed at either an electric or magnetic field null of the crabbing mode to effectively damp the unwanted polarisation. Various concepts for dealing with unwanted modes in various SRF deflecting cavities will be reviewed.

  19. Measurement of Deflection Line on Bridges

    NASA Astrophysics Data System (ADS)

    Urban, Rudolf; Štroner, Martin

    2013-12-01

    Prestressed concrete bridges are very sensitive to the increase in long-term deflections. Reliable forecasts of deflections of bridge structures during construction and durability are crucial for achieving good durability. The main results of measurements are the changes of the deflection line of the bridge structures, which places special demands on the measurement procedure. Results from measurements are very useful for the improvement of mathematical prediction methods of behaviour of long span prestressed concrete structures.

  20. Influence of rare earth ion (Y{sup 3+}) on the magnetic and dc electrical properties of high density nanocrystalline Mg-Cd ferrites

    SciTech Connect

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Promod N.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► XRD confirm biphasic nature. ► Grain and crystallite are reduced as compared to ceramic method. ► The resistivity and magnetization increases with Y{sup 3+} addition in Mg-Cd ferrites. ► Coercivity and saturation magnetization shows size dependent behavior. -- Abstract: The samples having general formula Mg{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) with 5% Y{sup 3+} addition were prepared by oxalate co-precipitation technique. The characterization was carried by XRD, SEM and FTIR techniques. The XRD confirms the cubic spinel structure with orthoferrite (YFe{sub 2}O{sub 3}) secondary phase. Average crystallite size and grain size lies in the range (28.86–32.66 nm and 0.37–0.69 μm). The grain size is calculated by linear intercept method and lies in the range of 0.37–0.69 μm. The FT-IR shows two absorption bands in the frequency range of 350–800 cm{sup −1}. The addition of Y{sup 3+} for Fe{sup 3+} forms a secondary phase on the grain boundaries and increases the saturation magnetization with respect to that of pure Mg-Cd ferrites. The saturation magnetization, magnetic moment and coercive field is found to increase with cadmium content up to x = 0.4, obeying Neel's two sublattice model and decrease thereafter showing existence of non-collinear spin interaction. The saturation magnetization and coercivity shows size dependent behavior. Y–K type ordering is present in all samples except x = 1. The DC electrical resistivity increases while the Curie temperature (T{sub c}) decreases, with increase in cadmium content. The DC resistivity of Y{sup 3+} added Mg-Cd ferrite is higher than that reported for pure samples and for ceramic method. Activation energy in paramagnetic region is higher than that in ferromagnetic region.

  1. Deflection of slow light by magneto-optically controlled atomic media

    SciTech Connect

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-11-15

    We present a semiclassical theory for light deflection by a coherent {lambda}-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.

  2. Simplified dc to dc converter

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1984-01-01

    A dc to dc converter which can start with a shorted output and which regulates output voltage and current is described. Voltage controlled switches directed current through the primary of a transformer the secondary of which includes virtual reactance. The switching frequency of the switches is appropriately varied to increase the voltage drop across the virtual reactance in the secondary winding to which there is connected a low impedance load. A starting circuit suitable for voltage switching devices is provided.

  3. The effects of axial magnetic fields on the operating characteristics and downstream plasma parameters of DC plasma torches

    SciTech Connect

    Takakura, Y.; Ono, S.; Teii, S.

    1995-12-31

    Plasma torch is used in many industrial processes for high temperature sources. In the past, an application of magnetic field is experientially known to stabilize plasma torch operations. However, there is a little discussion regarding to magnetic field effects on plasma torch operating characteristics and plasma parameters. In this work, the influences of magnetic field and plasma gas flow rate on plasma torch current-voltage characteristics and downstream plasma parameters have been experimentally studied, and results are qualitatively analyzed based on the charged particle transport equation.

  4. Laser deflection of space objects -- An overview

    SciTech Connect

    Canavan, G.H.

    1997-04-01

    Lasers provide the two major attributes required for effective deflection of space objects: agility and efficiency. Lasers act instantaneously over long distances with little losses, but deliver energy at modest power levels. Material interceptors provide large impulses, but deliver only a fraction of the mass launched into space at low speeds. The two deflection concepts are compared, as are some important additional applications.

  5. ForeCAT: Using CME Deflections to Constrain their Mass and the Drag

    NASA Astrophysics Data System (ADS)

    Kay, C.; dos Santos, L. F. G.; Opher, M.

    2014-12-01

    Observations show that CMEs can deflect from a purely radial trajectory yet no consensus exists as to the cause of these deflections. The majority of the deflection motion occurs in the corona at distances where the magnetic energy dominates. Accordingly, many theories attribute the CME deflection to magnetic forces. In Kay et al. (2013) we presented ForeCAT, a model for CME deflections based on the magnetic forces (magnetic tension and magnetic pressure gradients). Kay et al. (2014) introduced an improved three-dimensional version of ForeCAT. Here we study the 2008 December 12 CME which occurred during solar minimum of Solar Cycle 24 (Byrne et al 2010, Gui et al. 2011, Liu et al 2010a,b). This CME erupted from high latitudes, and, despite the weak background magnetic field, deflected to the ecliptic, impacting Earth. From the observations, we are able to constrain all of the ForeCAT input parameters except for the CME mass and the drag coefficient that affects the CME motion. The reduced chi-square best fit to the observations constrains the CME mass range to 3e14 to 7e14 g and the drag coefficient range to 1.9 to 2.4. We explore the effects of a different magnetic background which decreases less rapidly than our standard Potential Field Source Surface (PFSS) model, as type II radio bursts suggest that the PFSS magnetic field decays too rapidly above active regions. For the case of the filament eruption of 2008 December 12 we find that the quiet sun coronal magnetic field should behave similar to the PFSS model. Finally, we present our current work exploring the case of the 2008 April 9 CME.

  6. Phase evolution in {sup 57}Fe/Al multilayers studied through dc magnetization, conversion electron Moessbauer spectroscopy, and transmission electron microscopy

    SciTech Connect

    Jani, Snehal; Lakshmi, N.; Venugopalan, K.; Sebastian, Varkey; Reddy, V. R.; Gupta, Ajay; Lalla, N. P.

    2008-12-15

    Fe/Al multilayer thin films with an overall atomic concentration ratio of Fe:Al=1:2 have been prepared by ion-beam sputtering. Phase formation and microstructural evolution with thermal annealing have been studied by x-ray reflectivity, cross-sectional transmission electron microscopy, dc magnetization, and conversion electron Moessbauer spectroscopy. These studies show that although the starting composition is Al rich, the intermixing of Fe and Al at the interfaces leads to the formation of a magnetic Fe{sub 3}Al-like region at the interface. Thus, the magnetic contribution in the as-deposited multilayer structure (MLS) is not only from pure Fe but also from an Fe{sub 3}Al-like region formed at the interface. On annealing the MLS, a stable nonmagnetic MLS consisting of intermetallic B2Fe{sub 50}Al{sub 50} separated by thin Al layers is formed. Further annealing only induces better ordering of Fe{sub 50}Al{sub 50} and does not destroy the MLS.

  7. Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application.

    PubMed

    Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri

    2014-03-01

    Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc. PMID:24745226

  8. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  9. Precise atomic mass measurements by deflection mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  10. Observation of self-magnetic field relaxations in Bi2223 and Y123 HTS tapes after over-current pulse and DC current operation

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Sun, J.; Chikumoto, N.; Otabe, E. S.; Shyshkin, O.; Charfi-Kaddour, S.; Yamaguchi, S.

    2016-07-01

    The development of power transmission lines based on long-length HTS tapes requires the production of high quality tapes. Due to fault conditions, technical mistakes and human errors during the operation of a DC power transmission line, an over-current pulse, several times larger than the rated current, could occur. To study the effect of such over-current pulses on the transport current density distribution in the HTS tapes, we simulated two start-up scenarios for one BSCCO and two YBCO tapes. The first start-up scenario is an initial over-current pulse during which the transport current was turned on rapidly, rising to 900 A during the first milliseconds, then reduced to a 100 A DC current. The second start-up scenario is normal operation, and involved increasing the transport current slowly from 0 A to 100 A at a rate of 1 A/s. For both scenarios, we then measured the vertical component of the self-magnetic field by means of a Hall probe above the tape, and afterward, by solving a linear equation of the inverse problem we obtain the current density profiles. We observe a change of the self-magnetic field above the edge of the BSCCO and YBCO tapes during 30 min after the 5 ms of over-current pulse and during the normal operation. The current density profiles are peaked in the centre for over-current pulse, and more peaked around the edge of the HTS tape for normal operation, which means that the limited time over-current pulse changes the current density profiles of the HTS tapes. We observe also a loop of current for YBCO tapes and we show the role of the HTS tape stabilizer.

  11. DC to DC battery charger

    SciTech Connect

    Carr, F.L.; Terrill, L.R.

    1987-01-20

    A DC to DC battery charger is described for a vehicle comprising: adapter plug means for making electrical connections to a first battery through a cigarette lighter socket in the vehicle; means of making electrical connections to a second battery to be charged; a DC to AC converter and an AC to DC rectifier for elevating the voltage from the first battery to a voltage above that of the second battery; integrated circuit means for generating a pulse width modulated current as a function for the charged condition of the second battery; transistor switch means supplied with the pulse width modulated current for developing a charging voltage; a choke coil and a capacitor serially connected to the transistor switch means; and a diode connected across the choke coil and the capacitor whereby the capacitor is charged during pulses of current from the transistor switch means through the choke coil. The choke coil reverses polarity at the termination of the pulses of current and continues to charge the battery through the diode. The DC rectified voltage is controlled by the integrated circuit means for regulating current through the choke coil.

  12. Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1997-05-01

    Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT--0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus.

  13. DC current monitor

    NASA Technical Reports Server (NTRS)

    Canter, Stanley (Inventor)

    1991-01-01

    A non-intrusive DC current monitor is presented which emulates the theoretical operation of an AC transformer. A conductor, carrying the current to be measured, acts as the primary of a DC current transformer. This current is passed through the center of a secondary coil, and core positioned thereabout, and produces a magnetic flux which induces a current in the secondary proportional to the current flowing in the primary. Means are provided to periodically reset the transformer core such that the measurement inaccuracies associated with core saturation are obviated. A reset current is caused to periodically flow through the secondary coil which produces a magnetic flux oppositely polarized to the flux created by the current in the primary, thus allowing ongoing measurements to be made.

  14. Matter Wave Deflection through a Light Prism

    NASA Astrophysics Data System (ADS)

    Ronan, Joseph; Cronin, Alexander; Holmgren, William; Hromada, Ivan; Trubko, Raisa

    2011-10-01

    In optics, it is a well-known fact that a glass prism will bend a light beam incident on its surface. We present an atom optics experiment analogous to this phenomenon, but instead we use a light prism to deflect a beam of potassium atoms. We use a Mach-Zehnder atom interferometer to precisely measure atom beam deflections of as small as 5 nm. Through studying the beam deflection, we are able to investigate the dynamic polarizability and the magic zero wavelength of potassium.

  15. Using ForeCAT Deflections and Rotations to Constrain the Early Evolution of CMEs

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-08-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  16. Observation-based Analysis of the Deflection of a Polar Crown Filament Eruption

    NASA Astrophysics Data System (ADS)

    Pomoell, J.; Vainio, R.; Kilpua, E. K. J.

    2010-03-01

    We utilize STEREO quadrature observations to study two CMEs that both originated from high-latitude source regions on 2 November 2008. The first CME was associated with a huge polar crown filament eruption and propagated initially clearly northward from the equator. However, the CME was quickly deflected towards the equator while propagating further out. On the other hand, the second CME, originating from an active region, did not deflect from its original northward trajectory. Based on the observations we discuss the role of the size of the erupting structure and the magnetic topology of the surrounding environment in deflecting CMEs and suggest that both a breakout initiation scenario as well as a tether-cutting initiation scenario can explain the observed deflective dynamics of the filament eruption.

  17. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  18. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  19. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  20. Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model

    PubMed Central

    Zhuo, Jiachen; Keledjian, Kaspar; Xu, Su; Pampori, Adam; Gerzanich, Volodymyr; Simard, J. Marc; Gullapalli, Rao P.

    2015-01-01

    Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1–14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14–19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS. PMID:26301778

  1. Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model.

    PubMed

    Zhuo, Jiachen; Keledjian, Kaspar; Xu, Su; Pampori, Adam; Gerzanich, Volodymyr; Simard, J Marc; Gullapalli, Rao P

    2015-01-01

    Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1-14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14-19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS. PMID:26301778

  2. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  3. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  4. Deflection Sensors Utilizing Optical Multi-Stability

    NASA Astrophysics Data System (ADS)

    Shehadeh, Shadi H.; Cada, Michael; Qasymeh, Montasir; Ma, Yuan

    2010-06-01

    Deflection sensors have attracted significant attention due to their wide application in pressure and temperature measurements in practical systems. Several techniques have been proposed, studied, and tested to realize optical deflection sensor elements, including Mach-Zehnder (MZI), and Fabry-Pérot interferometers. In this work, a novel optical deflection sensor that is comprised of two cascaded optical resonators is proposed and analyzed. The proposed structure is designed to operate in the multi-stable (input to output) regime. As the first resonator is equipped with a movable mirror, which is connected to a diaphragm in order to sense changes in deflection, the second resonator is filled with non-linear material. It is demonstrated that such a structure has a novel memory property, aside from having the ability to yield instant deflection measurements. This novel property is attributed to the non-linear refractive index of the medium of the second resonator. Furthermore, the sensor sensitivity (which is the ratio of the change in the output light intensity to the change in the induced deflection) is enhanced due to the input-output multi-stable behavior of the proposed structure. This device possesses a promising potential for applications in future smart sensors.

  5. The deflection of 2008 December 12 CME

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.; Liu, J.; Ye, P.; Wang, S.

    2010-12-01

    The deflection of CME, which would significant influence the CME's geoeffectiveness, is an important topic of space weather study. In this work, the deflection of 2008 December 12 CME during it propagated from the Sun to Earth will be detailed studied based on the combination of remote and in situ observations. First, the 3-dimensions parameters reconstructed by Graduated Cylindrical Shell (GCS) model based on the STEREO observations were used to study the propagation direction evolution of this CME during it propagated in near solar space. During this phase, this CME deflect from high latitude region to equator in meridian plane but propagated almost along the longitude of W7 in ecliptic plane. Further, whether this CME deflected during it propagated in interplanetary space has also been checked. Based on the remote observations, if this CME propagated radially during it propagated in interplanetary space, it may arrived the Earth and then hit the STEREO A rather than hit STEREO B. But, the in situ observations show contrary results that this CME arrived the Earth and hit the STEREO B but missed STEREO A. This result show direct evidence that this CME deflected to east in ecliptic plane during it propagated in interplanetary space. The kinematic deflection model developed by Wang et. al (2004) has been applied on this CME. The calculation results of this model correspond well with the observational results.

  6. DC CICC retrofit magnet preliminary design, software development and analysis report. Quarterly progress report, [January 1, 1992--March 31, 1992

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-05-28

    The January 1992 quarterly progress report discusses a two-dimensional finite element analysis (FEA) of the proposed retrofit MHD coil. The superconducting Cable-in-Conduit Conductor (CICC) winding pack has a smooth, semi-elliptical cross section and is supported by a similarly shaped strap which resists the electromagnetic forces tending to separate the coils on each side of the channel. The coils are designed to produce a peak on-axis field of 4.5 tesla with a nominal current density of 13.05{times}10{sup 6} A/m{sup 2}. A sketch of the magnet system and structure is shown in Fig. 1.0-1. The objective of this analysis is to quantify the highly 3-D characteristics of the proposed superconductivity magnet system, and develop an appropriate support concept. A fully paramatized 3-D finite element model of the coil and structure is developed as a means of obtaining the field and stress solutions. The flexibility of FEA and a model built using design parameters allows variations in the coil end turn bend radius, strap thickness, support details and positions to be studied. The preliminary results show the calculated stresses as a result of this iterative design process.

  7. Magnetic Reconnection and Ion Flows During Point-Source DC Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Bongard, M. W.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2012-10-01

    A passive ion temperature polychromator has been deployed on Pegasus to study power balance and non-thermal ion distributions that arise during point source helicity injection. Spectra are recorded from a 1 m F/8.6 Czerny-Turner polychromator whose output is recorded by an intensified high-speed camera. During helicity injection, stochastic magnetic fields keep Te low and thus low ionization impurities penetrate to the core. Under these conditions, high core ion temperatures are measured (Ti 1.2 keV, Te 0.1 keV) using spectral lines from CIII, NIII, and BIV. This rapid ion heating is seen to coincide with internal MHD activity. The ion temperature closely follows the injection bias voltage, indicating that power from the guns is strongly coupled to the ions through this MHD activity. Bi-directional toroidal ion flows of ˜60 km/s have been observed on the BIV line during helicity injection when looking near the front of the injectors. The flow is on the order of the Alfv'en velocity, as predicted by Sweet-Parker reconnection, and is indicative of magnetic reconnection occurring near the injectors. When looking away from the helicity injectors, the bi-directional flow appears to be replaced by strong toroidal rotation, suggesting that ion acceleration during helicity injection is asymmetric and 3D in nature.

  8. Initial Results of DC Electric Fields, Associated Plasma Drifts, Magnetic Fields, and Plasma Waves Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.

    2010-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves

  9. Brachytherapy needle deflection evaluation and correction

    SciTech Connect

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-04-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively.

  10. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  11. Transverse photothermal beam deflection within a solid

    SciTech Connect

    Spear, J.D.; Russo, R.E. )

    1991-07-15

    The mirage effect within a transparent solid substrate was used for monitoring optical absorption of a thin film. Refractive index gradients, which accompany thermal gradients below the film-coated surface, cause a probe laser beam to be deflected. The spectrum of copper, deposited onto a piece of clear acrylic, was recorded by this method of photothermal deflection. The influence of thermally induced mechanical stresses can alter the effective value of the thermo-optic coefficient of the solid, {ital dn}/{ital dT}.

  12. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  13. Deflection of large near-earth objects

    SciTech Connect

    Canavan, G.H.

    1999-01-11

    The Earth is periodically hit by near Earth objects (NEOs) ranging in size from dust to mountains. The small ones are a useful source of information, but those larger than about 1 km can cause global damage. The requirements for the deflection of NEOs with significant material strength are known reasonably well; however, the strength of large NEOs is not known, so those requirements may not apply. Meteor impacts on the Earth`s atmosphere give some information on strength as a function of object size and composition. This information is used here to show that large, weak objects could also be deflected efficiently, if addressed properly.

  14. Lateral-deflection-controlled friction force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong

    2014-08-01

    Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.

  15. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  16. Correct light deflection in Weyl conformal gravity

    NASA Astrophysics Data System (ADS)

    Cattani, Carlo; Scalia, Massimo; Laserra, Ettore; Bochicchio, Ivana; Nandi, Kamal K.

    2013-02-01

    The conformal gravity fit to observed galactic rotation curves requires γ>0. On the other hand, the conventional method for light deflection by galaxies gives a negative contribution to the Schwarzschild value for γ>0, which is contrary to observation. Thus, it is very important that the contribution to bending should in principle be positive, no matter how small its magnitude is. Here we show that the Rindler-Ishak method gives a positive contribution to Schwarzschild deflection for γ>0, as desired. We also obtain the exact local coupling term derived earlier by Sereno. These results indicate that conformal gravity can potentially test well against all astrophysical observations to date.

  17. Deflection compensation for multiaperture negative ion beam extraction: analytical and numerical investigations

    NASA Astrophysics Data System (ADS)

    Cavenago, M.; Veltri, P.

    2014-12-01

    Deflection of negative ion beamlets due to the magnets embedded in the first extraction electrode for the purpose of dumping the co-extracted electrons is a serious issue for multiaperture ion accelerators of neutral beam injectors. Several kinds of magnet arrays which offer the possibility of cancelling ion deflection, employing crossed rows of magnets or even more compact parallel row arrangements, are discussed. A general equation for beamlet deflection is presented here, and the interference of the magnetic deflection and the electrostatic lens steering is carefully calculated; this equation may also include beamlet-beamlet interactions and image charge effects. Analytical expressions are given for the field and the line integrals for the magnet arrays, and these are simplified for beam optics calculations, but still retain an excellent agreement with numerical values. Optimization formulas for the filling fraction xy of the magnets are given, for cancellation of deflection both after the first electrode or after the second accelerating electrode. The latter case is of direct interest for the design of small accelerators (e.g., NIO1), for which compact solutions are proposed, while the former case may approximate well the design of a large accelerator such as MITICA, with a predicted xy = 0.1015 against a numerical optimized value of 0.0975 ± 0.005 in normal conditions. The detailed comparison between simulation results and theory shows that thin lens models are suitable approximations for calculating beam steering. Stability of optimal xy prediction with respect to the first accelerating gap length is shown, and the variation of xy with the voltage is discussed.

  18. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wang, Shui

    2009-11-01

    The numerical studies of the interplanetary coupling between multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. The interplanetary direct collision (DC)/oblique collision (OC) between both MCs results from their same/different initial propagation orientations. Here the OC is explored in contrast to the results of the DC. Both the slow MC1 and fast MC2 are consequently injected from the different heliospheric latitudes to form a compound stream during the interplanetary propagation. The MC1 and MC2 undergo contrary deflections during the process of oblique collision. Their deflection angles of ∣δ$\\theta$1∣ and ∣δ$\\theta$2∣ continuously increase until both MC-driven shock fronts are merged into a stronger compound one. The ∣δ$\\theta$1∣, ∣δ$\\theta$2∣, and total deflection angle Δ$\\theta$ (Δ$\\theta$ = ∣δ$\\theta$1∣ + ∣δ$\\theta$2∣) reach their corresponding maxima when the initial eruptions of both MCs are at an appropriate angular difference. Moreover, with the increase of MC2's initial speed, the OC becomes more intense, and the enhancement of δ$\\theta$1 is much more sensitive to δ$\\theta$2. The ∣δ$\\theta$1∣ is generally far less than the ∣δ$\\theta$2∣, and the unusual case of ∣δ$\\theta$1∣ $\\simeq$ ∣δ$\\theta$2∣ only occurs for an extremely violent OC. But because of the elasticity of the MC body to buffer the collision, this deflection would gradually approach an asymptotic degree. As a result, the opposite deflection between the two MCs, together with the inherent magnetic elasticity of each MC, could efficiently relieve the external compression for the OC in the interplanetary space. Such a deflection effect for the OC case is essentially absent for the DC case. Therefore, besides the magnetic elasticity, magnetic helicity, and reciprocal compression, the deflection due to the OC should be considered for the

  19. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  20. Improved laser ablation model for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Gibbings, Alison; Watson, Ian; Hopkins, John-Mark

    2014-10-01

    This paper presents an improved laser ablation model and compares the performance - momentum coupling and deflection system mass - of laser ablation against contactless deflection methods based on ion-propulsion. The deflection of an asteroid through laser ablation is achieved by illuminating the surface of the asteroid with high intensity laser light. The absorbed energy induces the sublimation of the surface material and the generation of a plume of gas and ejecta. Similar to a rocket engine, the flow of expelled material produces a continuous and controllable thrust that could be used to modify the trajectory and tumbling motion of the asteroid. Recent results gained from a series of laser ablation experiments were used to improve the sublimation and deflection models. In each experiment a terrestrial olivine sample was ablated, under vacuum, with a 90 W continuous wave laser. The paper presents a model that better fits the outcomes of the experimental campaign, in particular in terms of mass flow rate and spot temperature.

  1. Measuring Deflections Of Propeller And Fan Blades

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1993-01-01

    Method based on measurement of interruptions of laser beam provides information on deflections of blades of airplane propeller or unducted turbofan. Bends and twists deduced from timing of laser-beam shadows. Provides for nonintrusive measurement in wind tunnel or on open test stand.

  2. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  3. AIDA: The Asteroid Impact & Deflection Assessment Mission

    NASA Astrophysics Data System (ADS)

    Galvez, A.; Carnelli, I.; Michel, P.; Cheng, A. F.; Reed, C.; Ulamec, S.; Biele, J.; Abell, P.; Landis, R.

    2013-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) mission, a joint effort of ESA, JHU/APL, NASA, OCA, and DLR, is the first demonstration of asteroid deflection and assessment via kinetic impact. AIDA consists of two independent but mutually supporting mission elements, one of which is the asteroid kinetic impactor and the other is the characterization spacecraft. These two missions are, respectively, JHU/APL's Double Asteroid Redirection Test (DART) and the European Space Agency's Asteroid Investigation Mission (AIM) missions. As in the separate DART and AIM studies, the target of this mission is the binary asteroid [65803] Didymos in October, 2022. For a successful joint mission, one spacecraft, DART, would impact the secondary of the Didymos system while AIM would observe and measure any change in the relative orbit. AIM will be the first probe to characterise a binary asteroid, especially from the dynamical point of view, but also considering its interior and subsurface composition. The mission concept focuses on the monitoring aspects i.e., the capability to determine in-situ the key physical properties of a binary asteroid playing a role in the system's dynamic behavior. DART will be the first ever space mission to deflect the trajectory of an asteroid in a measurable way.- It is expected that the deflection can be measured as a change in the relative orbit period with a precision better than 10%. The joint AIDA mission will return vital data to determine the momentum transfer efficiency of the kinetic impact [1,2].

  4. Rural Youth and Anticipatory Goal Deflection.

    ERIC Educational Resources Information Center

    Curry, Evans W.; And Others

    Race, sex, community size, occupation of major wage earner, father's education, mother's education, and certainty of expectations were the variables used in this study to determine the "anticipatory occupational goal deflection" (AOGD) of urban and rural youth (blacks and whites) in Louisiana. Least squares analysis of variance and other…

  5. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  6. Simplified deflection-coil linearity testing

    NASA Technical Reports Server (NTRS)

    Kramer, G. P.

    1976-01-01

    Mask placed over face of image-dissecting photomultiplier tube has precision array of pinholes that permit light to impinge on tube at known points. Signals are fed to deflection coil which sweeps beam across each point without complex operator procedures.

  7. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  8. Asteroid Deflection: How, Where and When?

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2008-10-01

    To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.

  9. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  10. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at ~7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will

  11. Deflection of uncooperative targets using laser ablation

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  12. Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

    SciTech Connect

    Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

    2009-04-24

    Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

  13. dc power system for deuteron accelerator

    SciTech Connect

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  14. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  15. Dark matter prospects in deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Holmes, Michael; Nelson, Brent D.

    2009-07-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms.

  16. Deflection of a flexural cantilever beam

    NASA Astrophysics Data System (ADS)

    Sherbourne, A. N.; Lu, F.

    The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.

  17. AIDA: Asteroid Impact and Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Cheng, A.; Galvez, A.; Reed, C.; Carnelli, I.; Abell, P.; Ulamec, S.; Rivkin, A.; Biele, J.; Murdoch, N.

    2015-03-01

    AIDA (Asteroid Impact and Deflection Assessment) is a project of a joint mission demonstration of asteroid deflection and characterisation of the kinetic impact effects. It involves the Johns Hopkins Applied Physics Laboratory (with support from members of NASA centers including Goddard Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory), and the European Space Agency (with support from members of the french CNRS/Cte dAzur Observatory and the german DLR). This assessment will be done using a binary asteroid target. AIDA consists of two independent but mutually supporting mission concepts, one of which is the asteroid kinetic impactor and the other is the characterisation spacecraft. The objective and status of the project will be presented.

  18. Deflection evaluation using time-resolved radiography

    SciTech Connect

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. We have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed here, our intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made. 2 figs.

  19. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  20. High sensitivity ancilla assisted nanoscale DC magnetometry

    NASA Astrophysics Data System (ADS)

    Liu, Yixiang; Ajoy, Ashok; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola

    2016-05-01

    Sensing slowly varying magnetic fields are particularly relevant to many real world scenarios, where the signals of interest are DC or close to static. Nitrogen Vacancy (NV) centers in diamond are a versatile platform for such DC magnetometry on nanometer length scales. Using NV centers, the standard technique for measuring DC magnetic fields is via the Ramsey protocol, where sensitivities can approach better than 1 μ T/vHz, but are limited by the sensor fast dephasing time T2*. In this work we instead present a method of sensing DC magnetic fields that is intrinsically limited by the much longer T2 coherence time. The method exploits a strongly-coupled ancillary nuclear spin to achieve high DC field sensitivities potentially exceeding that of the Ramsey method. In addition, through this method we sense the perpendicular component of the DC magnetic field, which in conjunction with the parallel component sensed by the Ramsey method provides a valuable tool for vector DC magnetometry at the nanoscale.

  1. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    NASA Astrophysics Data System (ADS)

    Baltador, C.; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.

    2016-02-01

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.

  2. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets.

    PubMed

    Baltador, C; Veltri, P; Agostinetti, P; Chitarin, G; Serianni, G

    2016-02-01

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time. PMID:26932023

  3. Polyhedron tracking and gravity tractor asteroid deflection

    NASA Astrophysics Data System (ADS)

    Ummen, N.; Lappas, V.

    2014-11-01

    In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model Δv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.

  4. DC/DC Power Converter for Super-Capacitor Supplied by Electric Power Splitter

    NASA Astrophysics Data System (ADS)

    Haubert, T.; Mindl, P.

    The aim of the article is design of DC/DC converter and discussing of problematic supply using electric power splitter. The electric power splitter with AC/DC converter is source for the DC/DC converter, which is dedicated for charging and discharging of hybrid car drive super-capacitor energy storage. The electric power splitter is synchronous machine with two rotating parts. First rotor contains permanent magnet and the second rotor contains three-phase windings. The amplitude of output voltage depends on difference between first and second rotor speed. The main role of the DC/DC converter is to optimize energy content in super-capacitor storage used to acceleration and deceleration driving period of the passenger car with hybrid electric vehicle (HEV) drive system using electric power splitter.

  5. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  6. Designs of Superconducting Parallel-Bar Deflecting Cavities for Deflecting/Crabbing Applications

    SciTech Connect

    Delayen, J. R.; De Silva, S. U.

    2011-07-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is currently being considered for a number of applications. The new parallel-bar design with curved loading elements and circular or elliptical outer conductors have improved properties compared to the designs with rectangular outer conductors. We present the designs proposed as deflecting cavities for the Jefferson Lab 12 GeV upgrade and for Project-X and as crabbing cavities for the proposed LHC luminosity upgrade and electron-ion collider at Jefferson Lab.

  7. Electroweak naturalness and deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Everett, Lisa L.; Garon, Todd S.

    2016-04-01

    We investigate the question of electroweak naturalness within the deflected mirage mediation (DMM) framework for supersymmetry breaking in the minimal supersymmetric standard model. The class of DMM models considered are nine-parameter theories that fall within the general classification of the 19-parameter phenomenological minimal supersymmetric standard model. Our results show that these DMM models have regions of parameter space with very low electroweak fine-tuning, at levels comparable to the phenomenological minimal supersymmetric standard model. These parameter regions should be probed extensively in the current LHC run.

  8. Dark matter signals in deflected mirage mediation

    SciTech Connect

    Holmes, Michael

    2010-02-10

    We investigate the parameter space of a specific class of model within the deflected mirage mediation (DMM) scenario. We look at neutralino properties and compute the thermal relic density as well as interaction rates with xenon direct detection experiments. We find that there are portions of the parameter space which are in line with the current WMAP constraints. Further we find that none of the investigated parameter space is in conflict with current bounds from the Xenon10 experiment and that future large-scale liquid xenon experiments will probe a large portion of the model space.

  9. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  10. DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS

    SciTech Connect

    Peters, C.

    1984-10-01

    This report is a summary of mechanical load-deflection tests performed on prototype collars. The individual collar plates were N.C. machined from 0.125 inch thick 7075-T6 aluminum alloy plate. Inside corners were finished by EDM and outside corners and keyways were finished with an end milling operation. The last step was done with all the individual collar plates (98 pieces) assembled on pins to form the cross section shown in Fig. 1. Figure 1 also shows some of the basic collar dimensions.