Science.gov

Sample records for magnetically levitated rotors

  1. Spin stabilized magnetic levitation of horizontal rotors.

    SciTech Connect

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  2. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  3. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    PubMed Central

    Fang, Jiancheng; Wang, Yingguang; Han, Bangcheng; Zheng, Shiqiang

    2013-01-01

    Unbalance in magnetically levitated rotor (MLR) can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor's unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR's rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  4. Software for System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2004-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a 'bounce' mode in which the rotor axis is displaced from the principal axis defined between the bearings and a 'tilt' mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the 'bounce' or 'tilt' modes.

  5. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  6. Thermal instability in a magnetically levitated doubly overhung rotor

    NASA Astrophysics Data System (ADS)

    Takahashi, Naohiko; Kaneko, Shigehiko

    2013-03-01

    This paper deals with a synchronous vibration instability that occurred in a two-stage overhung centrifugal compressor supported by magnetic bearings. The authors encountered an unbalance vibration that increased spirally in a polar plot at/near the first bending critical speed. The concentration of iron loss and thermal bending due to heat have been identified as the causes of the phenomenon, because the vibration stopped increasing when unbalance force rejection control (UFRC) was applied. In this paper, prior to an in-depth discussion of experiments on the above phenomenon, the compressor and magnetic bearing system are described. To provide a theoretical perspective, a model of the thermally induced vibration is presented and the stability is discussed. In the experiments, to exceed the first bending critical speed stably, balancing of the rotor under UFRC was carried out and rapid acceleration/deceleration was applied to the variable-speed drive system. The vibration behaviors around the critical speed were measured and the results verified the theoretical model. To evaluate the stability limit of the thermal bending, a method of measuring the model parameter that determines the stability is proposed and the measured data are compared with calculated results. Finally, methods for improving the stability are discussed.

  7. Planar rotational magnetic micromotors with integrated shaft encoder and magnetic rotor levitation

    NASA Technical Reports Server (NTRS)

    Guckel, Henry; Christenson, T. R.; Skrobis, K. J.; Klein, J.; Karnowsky, M.

    1994-01-01

    Deep x-ray lithography and electroplating may be combined to form a fabrication tool for micromechanical devices with large structural heights, to 500 micron, and extreme edge acuities, less than 0.1 micron-run-out per 100 micron of height. This process concept which originated in Germany as LIGA may be further extended by adding surface micromachining. This extension permits the fabrication of precision metal and plastic parts which may be assembled into three-dimensional micromechanical components and systems. The processing tool may be used to fabricate devices from ferromagnetic material such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit acceptable magnetic behavior for current to flux conversion and marginal behavior for permanent magnet applications. The tool and materials have been tested via planar, magnetic, rotational micromotor fabrication. Three phase reluctance machines of the 6:4 configuration with 280 micron diameter rotors have been tested and analyzed. Stable rotational speeds to 34,000 rpm with output torques above 10 x 10(exp -9) N-m have been obtained. The behavior is monitored with integrated shaft encoders which are photodiodes which measure the rotor response. Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced frictional torque losses to less than 1 percent of the available torque. The results indicate that high speed limits of these actuators are related to torque ripple. Hysteresis motors with magnetic bearings are under consideration and will produce high speed rotational machines with excellent sensor application potential.

  8. A new design for a compact centrifugal blood pump with a magnetically levitated rotor.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2004-01-01

    A compact centrifugal blood pump has been developed using a radial magnetic bearing with a two-degree of freedom active control. The proposed magnetic bearing exhibits high stiffness, even in passively controlled directions, and low power consumption because a permanent magnet, incorporated with the rotor, suspends its weight. The rotor is driven by a Lorentz force type of built-in motor, avoiding mechanical friction and material wear. The built-in motor is designed to generate only rotational torque, without radial and axial attractive forces on the rotor, leading to low power consumption by the magnetic bearing. The fabricated centrifugal pump measured 65 mm in diameter and 45 mm in height and weighed 0.36 kg. In the closed loop circuit filled with water, the pump provided a flow rate of 4.5 L/min at 2,400 rpm against a pressure head of 100 mm Hg. Total power consumption at that point was 18 W, including 2 W required for magnetic levitation, with a total efficiency of 5.7%. The experimental results showed that the design of the compact magnetic bearing was feasible and effective for use in a centrifugal blood pump. PMID:15672787

  9. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  10. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    NASA Astrophysics Data System (ADS)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  11. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOEpatents

    Romero, Louis; Christenson, Todd; Aaronson, Gene

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  12. Magnetic levitation experiments in Sendai

    NASA Astrophysics Data System (ADS)

    Mogi, I.; Takahashi, K.; Awaji, S.; Watanabe, K.; Motokawa, M.

    2006-11-01

    A levitating apple in a hybrid magnet implies the presence of microgravity conditions under gradient magnetic fields. However, several unique behaviors were found, the orientation of levitating rice grains, the alignment of levitating bismuth particles, and the thermal convection in water under the levitation conditions. These are unlikely under the microgravity conditions in the space and are characteristic of the magnetic levitation. On the basis of the understanding of such behaviors, the magnetic levitation was applied to containerless materials processing, and such an attempt resulted in the development of a magnetic levitation furnace.

  13. Optical encoder feedback system for levitating rotor system

    NASA Astrophysics Data System (ADS)

    Khanna, Shrey; Ho, Joe N.; Irwen, Jonathan; Rakka, Gurjinder; Wang, Weichih

    2010-03-01

    This paper describes the design and fabrication of feedback control system for a three phase motor with a diamagnetically levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. An optical mechanical feedback system controls the frequency at which the rotor spins. The current input to the coil is controlled by a mechanical relay circuit which latches based on a DC pulse signal generated by a PID control algorithm. The mechanical relay circuit allows current to flow to each coils (the actuators of this system), which then produces a magnetic field strong enough to spin the rotor.

  14. Magnetic Levitators With Superconductive Components

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1995-01-01

    Magnetic noncontact levitators that include superconductive components provide vibration-damping suspension for cryogenic instruments, according to proposal. Because superconductive components attached to levitated cryogenic instruments, no additional coolant liquid or refrigeration power needed. Also because vibration-damping components of levitators located outside cold chambers, in ambient environment, not necessary to waste coolant liquid or refrigeration power on dissipation of vibrational energy. At least three levitating magnets and three superconductors necessary for stable levitation.

  15. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  16. Electric generator using a triangular diamagnetic levitating rotor system.

    PubMed

    Ho, Joe Nhut; Wang, Wei-Chih

    2009-02-01

    This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s. PMID:19256668

  17. Magnetic levitation of single cells.

    PubMed

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  18. Magnetic levitation of single cells

    PubMed Central

    Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan

    2015-01-01

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  19. Magnetically suspended centrifugal blood pump with an axially levitated motor.

    PubMed

    Masuzawa, Toru; Ezoe, Shiroh; Kato, Tsuyoshi; Okada, Yohji

    2003-07-01

    The longevity of a rotary blood pump is mainly determined by the durability of its wearing mechanical parts such as bearings and seals. Magnetic suspension techniques can be used to eliminate these mechanical parts altogether. This article describes a magnetically suspended centrifugal blood pump using an axially levitated motor. The motor comprises an upper stator, a bottom stator, and a levitated rotor-impeller between the stators. The upper stator has permanent magnets to generate an attractive axial bias force on the rotor and electric magnets to control the inclination of the rotor. The bottom stator has electric magnets to generate attractive forces and rotating torque to control the axial displacement and rotation of the rotor. The radial displacement of the rotor is restricted by passive stability. A shrouded impeller is integrated within the rotor. The performance of the magnetic suspension and pump were evaluated in a closed mock loop circuit filled with water. The maximum amplitude of the rotor displacement in the axial direction was only 0.06 mm. The maximum possible rotational speed during levitation was 1,600 rpm. The maximum pressure head and flow rate were 120 mm Hg and 7 L/min, respectively. The pump shows promise as a ventricular assist device. PMID:12823418

  20. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation. PMID:16531346

  1. Magnetic levitation technology and transportation strategies

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the following topics: Benefits of magnetically levitated high speed transportation for the United States. Monorail MagLev, HSST magnetic levitation trains, past, present and future, a national vision for MagLev transit in America.

  2. Magnetic levitation of condensed hydrogen

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  3. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously. PMID:11924845

  4. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  5. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  6. Levitation of YBa2Cu3O(7-x) superconductor in a variable magnetic field

    NASA Technical Reports Server (NTRS)

    Terentiev, Alexander N.; Kuznetsov, Anatoliy A.

    1992-01-01

    The influence of both a linear alternating and rotational magnetic field component on the levitation behavior of a YBa2Cu3O(7-x) superconductor was examined. The transition from a plastic regime of levitation to an elastic one, induced by an alternating field component, was observed. An elastic regime in contrast to a plastic one is characterized by the unique position of stable levitation and field frequency dependence of relaxation time to this position. It was concluded that the vibrations of a magnet levitated above the superconductor can induce a transition from a plastic regime of levitation to an elastic one. It was found that a rotational magnetic field component induced rotations of a levitated superconductor. Rotational frictional motion of flux lines is likely to be an origin of torque developed. A prototype of a motor based on a levitated superconductor rotor is proposed.

  7. Vibration converter with magnetic levitation

    NASA Astrophysics Data System (ADS)

    Gladilin, A. V.; Pirogov, V. A.; Golyamina, I. P.; Kulaev, U. V.; Kurbatov, P. A.; Kurbatova, E. P.

    2015-05-01

    The paper presents a mathematical model, the results of computational and theoretical research, and the feasibility of creating a vibration converter with full magnetic levitation in the suspension of a high-temperature superconductor (HTSC). The axial and radial stability of the active part of the converter is provided by the interaction of the magnetic field of ring-shaped permanent magnets and a hollow cylinder made of the ceramic HTSC material. The force is created by a system of current-carrying coils whose magnetic field is polarized by permanent magnets and interacts with induced currents in the superconducting cylinder. The case of transition to the superconducting state of HTSC material in the field of the permanent magnets (FC mode) is considered. The data confirm the outlook for the proposed technical solutions.

  8. Magnetic levitation fluid dynamics

    NASA Astrophysics Data System (ADS)

    Bojarevics, V.; Pericleous, K.

    2001-06-01

    This work is concerned with the accurate computation of flow in a rapidly deforming liquid metal droplet, suspended in an AC magnetic field. Intense flow motion due to the induced electromagnetic force distorts dynamically the droplet envelope, which is initially spherical. The relative positional change between the liquid metal surface and the surrounding coil means that fluid flow and magnetic field computations need to be closely coupled. A spectral technique is used to solve this problem, which is assumed axisymmetric. The computed results are compared against a physical experiment and "ideal sphere" analytic solutions. A comparison between the "magnetic pressure" approximation and the full electromagnetic force solutions, shows fundamental differences; the full electromagnetic force solution is necessary for accurate results in most practical applications of this technique. The physical reason for the fundamental discrepancy is the difference in the electromagnetic force representation: only the gradient part of the full force is accounted for in the "magnetic pressure" approximation. Figs 9, Refs 13.

  9. Superconducting, Magnetically Levitated Merry-Go-Round

    ERIC Educational Resources Information Center

    Byer, R. L.; And Others

    1974-01-01

    Reviews the basic theory underlying the lift and drag forces of a magnetically levitated vehicle riding over a continuous sheet guideway. Included are descriptions of the future vehicle characteristics and the students' construction of a superconducting magnetically levitated merry-go-round demonstration apparatus in a laboratory experiment. (CC)

  10. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160

  11. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  12. A permanent-magnet rotor for a high-temperature superconducting bearing

    SciTech Connect

    Mulcahy, T.M.; Hull, J.R.; Uherka, K.L.; Abboud, R.G.; Wise, J.H.; Carnegie, D.W.

    1995-07-01

    Design, fabrication, and performance, of a 1/3-m dia., 10-kg flywheel rotor with only one bearing is discussed. To achieve low-loss energy storage, the rotor`s segmented-ring permanent-magnet (PM) is optimized for levitation and circumferential homogeneity. The magnet`s carbon composite bands enable practical energy storage.

  13. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  14. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  15. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  16. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    SciTech Connect

    Coffey, H.T.

    1992-12-31

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  17. Magnetic levitation self-regulating systems

    SciTech Connect

    Tozoni, O.

    1993-06-08

    A magnet levitation self-regulating system is described comprising monotypic magnetic devices combined together by rigid nonmagnetic couplers; said magnetic device comprising two cylindrical parts extended along a cylinder generatrix: a. an iron core having a symmetrical C-shaped cross section and an air gap between its core shoes; and b. a permanent magnet having a rectangular cross-section disposed in said air gap; wherein all the iron cores of said magnetic devices are fixed on a common foundation by a first plurality of rigid nonmagnetic couplers and formed a stator assembly; all the permanent magnets of said magnetic devices are connected together by a second plurality of rigid non-magnetic couplers and form a levitator assembly; said permanent magnets of said levitator generate an original magnetic field and magnetize the stator cores; said stator cores create a secondary magnetic field; both said original and secondary magnetic fields create a magnetic levitation force that provides a stable hovering of said levitator in a resulting magnetic field of said system.

  18. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  19. Controlled levitation of a large magnet above superconductors

    SciTech Connect

    Takamori, T.; Boland, J.J.; Dove, D.B. )

    1990-07-01

    The levitation of a permanent magnet over a type-II superconductor may be modified and controlled by the addition of a variable magnetic field to the magnet-superconductor system. Using this scheme, levitation of a magnet of significantly larger mass was established by the direct interaction of the additonal field with the levitating magnet.

  20. Secondary lift for magnetically levitated vehicles

    DOEpatents

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  1. The Inductrack Approach to Magnetic Levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    2000-04-19

    Concepts developed during research on passive magnetic bearing systems at the Lawrence Livermore National Laboratory gave rise to a new approach to magnetic levitation, the Inductrack. A passive induced-current system employing permanent magnets on the moving vehicle, the Inductrack maximizes levitation forces by a combination of two elements. First, the permanent magnets on the vehicle are arranged in a ''Halbach array,'' a magnet configuration that optimally produces a periodic magnetic field below the array, while canceling the field above the array. Second, the track is made up of close-packed shorted electrical circuits. These circuits couple optimally to the magnetic field of the Halbach array. As a result, levitating forces of order 40 metric tonnes per square meter of Halbach array can be generated, using NdFeB magnets whose weight is a few percent of the levitated weight. Being an induced-current system, the levitation requires motion of the vehicle above a low transition speed. For maglev applications this speed is a few kilometers per hour, walking speed. At rest or in the station auxiliary wheels are needed. The Inductrack is thus fail-safe, that is, drive system failure would only result in the vehicle slowing down and finally settling on its auxiliary wheels. On the basis of theoretical analyses a small model vehicle and a 20-meter-long track was built and tested at speeds of order 12 meters per second. A second model, designed to achieve 10-g acceleration levels and much higher speeds, is under construction under NASA sponsorship, en route to the design of maglev-based launchers for rockets. Some of the presently perceived practical problems of implementing full-scale maglev systems based on the Inductrack concept will be discussed.

  2. Magnetic Levitation Experiments with the Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  3. Levitating a Magnet Using a Superconductive Material.

    ERIC Educational Resources Information Center

    Juergens, Frederick H.; And Others

    1987-01-01

    Presented are the materials and a procedure for demonstrating the levitation of a magnet above a superconducting material. The demonstration can be projected with an overhead projector for a large group of students. Kits to simplify the demonstration can be purchased from the Institute for Chemical Education of the University of Wisconsin-Madison.…

  4. Magnetic Levitational Assembly for Living Material Fabrication.

    PubMed

    Tasoglu, Savas; Yu, Chu Hsiang; Liaudanskaya, Volha; Guven, Sinan; Migliaresi, Claudio; Demirci, Utkan

    2015-07-15

    Functional living materials with microscale compositional topographies are prevalent in nature. However, the creation of biomaterials composed of living micro building blocks, each programmed by composition, functionality, and shape, is still a challenge. A powerful yet simple approach to create living materials using a levitation-based magnetic method is presented. PMID:25872008

  5. A permanent-magnet rotor for a high-temperature superconducting bearing

    SciTech Connect

    Mulcahy, T.M.; Hull, J.R.; Uherka, K.L.; Abboud, R.G.; Wise, J.H.; Carnegie, D.W.; Bakis, C.E.; Gabrys, C.W.

    1996-07-01

    Design, fabrication, and performance of a 0.39-m diam., 6.8-kg flywheel rotor with only one bearing is discussed. To achieve low-loss energy storage, the rotor`s segmented-ring permanent magnet (PM) is optimized for levitation and circumferential homogeneity. A PM figure of merit is proposed that appears to correlate with loss data. Pre compression of the PM with fiber-composite banding is necessary for practical rotor speeds.

  6. Magnetic levitation system for moving objects

    DOEpatents

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  7. Magnetic levitation system for moving objects

    DOEpatents

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  8. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  9. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  10. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  11. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  12. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  13. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  14. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  15. Knolle Magnetrans: A magnetically levitated train system

    NASA Technical Reports Server (NTRS)

    Knolle, Ernst G.

    1992-01-01

    The Knolle Magnetrans is a continuous transportation system featuring small cars traveling in rapid succession, levitated by permanent magnets in repulsion, and propelled by stationary linear induction motors. The vehicles' headway, speed, acceleration, and deceleration are designed into the system and mechanically enforced. Passengers board dynamically and controls consist of a simple on-off relay. This paper summarizes the system design goals, describes the system components and discusses related environmental issues.

  16. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  17. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  18. The Inductrack concept: A new approach to magnetic levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.

    1996-05-01

    This report describes theoretical and experimental investigations of a new approach to the problem of the magnetic levitation of a moving object. By contrast with previously studied levitation approaches, the Inductrack concept concept represents a simpler, potentially less expensive, and totally passive means of levitating a high-speed train. It may also be applicable to other areas where simpler magnetic levitation systems are needed, for example, high-speed test sleds for crash testing applications, or low-friction conveyer systems for industrial use.

  19. Active Control of Magnetically Levitated Bearings

    SciTech Connect

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    2001-03-01

    This report summarizes experimental and test results from a two year LDRD project entitled Real Time Error Correction Using Electromagnetic Bearing Spindles. This project was designed to explore various control schemes for levitating magnetic bearings with the goal of obtaining high precision location of the spindle and exceptionally high rotational speeds. As part of this work, several adaptive control schemes were devised, analyzed, and implemented on an experimental magnetic bearing system. Measured results, which indicated precision positional control of the spindle was possible, agreed reasonably well with simulations. Testing also indicated that the magnetic bearing systems were capable of very high rotational speeds but were still not immune to traditional structural dynamic limitations caused by spindle flexibility effects.

  20. The near-field acoustic levitation of high-mass rotors

    SciTech Connect

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  1. The near-field acoustic levitation of high-mass rotors

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  2. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope. PMID:25362441

  3. Smart-Phone Based Magnetic Levitation for Measuring Densities

    PubMed Central

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615

  4. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615

  5. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    PubMed

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force. PMID:19405690

  6. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  7. Magnetically levitated space elevator to low-earth orbit.

    SciTech Connect

    Hull, J. R.; Mulcahy, T. M.

    2001-07-02

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of {approx} 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods.

  8. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  9. Modeling and vector control of planar magnetic levitator

    SciTech Connect

    Kim, W.; Trumper, D.L.; Lang, J.H.

    1998-11-01

    The authors designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom motion stages. In this paper, the authors discuss electromechanical modeling and real-time vector control of such a permanent-magnet levitator. They describe the dynamics in a dq frame introduced to decouple the forces acting on the magnetically levitated moving part, namely, the platen. A transformation similar to the Blondel-Park transformation is derived for commutation of the stator phase currents. The authors provide test results on step responses of the magnetically levitated stage. It shows 5-nm rms positioning noise in x and y, which demonstrates the applicability of such stages in the next-generation photolithography in semiconductor manufacturing.

  10. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  11. Magnetic levitation transport of mining products. Report of investigations/1995

    SciTech Connect

    Geraghty, J.J.; Wright, W.E.; Lombardi, J.A.

    1995-07-01

    U.S. Bureau of Mines researchers have developed innovative magnetic levitation (mag-lev) technology that allows for noncontact, frictionless conveyance of materials within a dedicated transit corridor. A transport system incorporating this technology could improve the safety and reduce the cost of underground mining and materials handling. The mag-lev transport technology uses two types of permanent magnets. An array of neodymium-iron-boron magnets is contained in the base of each levitated materials container, and an array of ceramic-5 magnets lines the bottom of the transit corridor. The orientation of the magnets is such that the two arrays repel each other. An electronic position control system, located on the levitated materials containers, overcomes the inherent lateral instability of the repelling magnet arrays.

  12. Coarse-fine residual gravity cancellation system with magnetic levitation

    NASA Technical Reports Server (NTRS)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  13. Three-dimensional tissue culture based on magnetic cell levitation

    NASA Astrophysics Data System (ADS)

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.; Killian, T. C.; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  14. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F.

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  15. Magnetic levitation of a flexible steel plate with a vibration suppressing magnet

    SciTech Connect

    Hayashiya, H.; Araki, N.; Paddison, J.E.; Ohsaki, H.; Masada, E.

    1996-09-01

    In the steel making process, the application of a magnetic levitation to the steel plate conveyance is expected. The advantages brought by introducing contactless support of a steel plate are improved quality of products, reduced maintenance cost of installations, increased productivity, and quieter operation. Here, a magnetic levitation system that has a vibration suppressing electromagnet which use only the velocity of the levitated object for the control has been studied. The proposed system has advantages of the stale levitation of a flexible steel plate which moves with time under the fixed electromagnets. The simulation of levitated plate`s response using finite element method and the magnetic levitation experiments using such a vibration suppressing magnet were carried out. The results show the vibration suppressing magnet is able to control the low frequency natural vibration effectively, and a notch filter is able to avoid the excitation of the high frequency natural vibration.

  16. Levitation of a magnet over a flat type II superconductor

    SciTech Connect

    Hellman, F.; Gyorgy, E.M.; Johnson D.W. Jr.; O'Bryan, H.M.; Sherwood, R.C.

    1988-01-15

    Levitation of a magnet over a type II superconductor where the field at the superconductor exceeds H/sub c//sub 1/ is described and shown. The penetration and pinning of the flux lines in the superconductor cause the position of the magnet to be stable over a flat disk; a complete Meissner effect would make this position unstable. Furthermore, the observed dependence of the height of levitation on such variables as the thickness of the superconducting disk and the size of the magnet are consistent with a model described in this paper based on the energy cost of flux penetration through vortices and inconsistent with a Meissner effect model.

  17. Magnetic Vibration Simulator with Magnetic Levitation for EDS Maglev

    NASA Astrophysics Data System (ADS)

    Murai, Toshiaki; Hasegawa, Hitoshi; Kashiwagi, Takayuki

    A magnetic vibration simulator is one of the most important test tools to evaluate the basic performance of superconducting magnet (SCM) for EDS maglev. In this paper, we propose a new magnetic vibration simulator which can also suspend car and bogie mounted with the SCMs to evaluate the performance of not only SCMs but also vehicle dynamics with levitation. This system is composed of magnetic exciting coils which can simultaneously suspend and vibrate the SCMs and inverters which can simultaneously control 3-phase and zero-phase currents. This paper describes the principle, analytical method and control method of this system, and using numerical example, the vehicle dynamics and the vibration response of SCM are revealed.

  18. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  19. Magnetic Field Gradient Levitation System for Physics and Biophysics

    NASA Astrophysics Data System (ADS)

    Valles, James; Guevorkian, Karine

    2002-03-01

    We are developing a Magnetic Field Gradient Levitation (MFGL) apparatus as a ground based system for simulating a low or variable gravity environment for diamagnetic materials. The system consists of a superconducting solenoid with a room temperature bore that can generate a magnetic force strong enough to levitate or cancel the body force of gravity in common organic materials (e.g. water, proteins, polypropylene). We will describe the specifications and capabilities of the apparatus and our initial experimental studies of gravitational sensitivity in the biological systems, frog embryos and paramecium.

  20. Static levitation in a high- T sub c superconductor tile on magnet arrangements

    SciTech Connect

    Komori, M.; Kitamura, T. Kyushu Institute of Technology, 680-4, Kawazu, Iizuka-City, Fukuoka, 820 )

    1991-05-15

    Static characteristics of a levitational mechanism are studied. The levitational mechanism consists of a high-{ital T}{sub {ital c}} superconductor tile (type-II superconductor) and a magnet arrangement of the same size bar magnets with alternating magnetic pole pattern. The levitation pressures have hysteresis loops because of the flux pinning effect. By using the alternating pole pattern of magnets larger static levitation pressure in proportion to the arrangement can be obtained over a wide area. Moreover the levitation pressure can be optimized with respect to the width of a bar magnet of the alternating pole pattern.

  1. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  2. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  3. Diamagnetically stabilized levitation control of an intraluminal magnetic capsule.

    PubMed

    Lam, Michael; Mintchev, Martin

    2009-08-01

    Controlled navigation promotes full utilization of capsule endoscopy for reliable real-time diagnosis in the gastrointestinal (GI) tract, but intermittent natural peristalsis can disturb the navigational control, destabilize the capsule and take it out of levitation. The focus of the present work was to develop an economical and effective real-time magnetic capsule-guiding system that can operate in the presence of naturally existing peristalsis while retaining navigational control. A real-size magnetic navigation system that can handle peristaltic forces of up to 1.5 N was designed utilizing the computer-aided design (CAD) system Maxwell 3D (Ansoft, Pittsburg, PA) and was verified using a small-size physical experimental setup. The proposed system contains a pair of 50 cm diameter, 10,000-turn copper electromagnets with a 10 cm x 10 cm ferrous core driven by currents of up to 300 A and can successfully maintain position control over the levitating capsule during peristalsis. The addition of bismuth diamagnetic casing for stabilizing the levitating capsule was also studied. A modeled magnetic field around the diamagnetically cased permanent magnet was shown to be redistributed aligning its interaction with the external electromagnets, thus stabilizing the levitating capsule. In summary, a custom-designed diamagnetically facilitated capsule navigation system can successfully steer an intraluminal magnet-carrying capsule. PMID:19550023

  4. Magnetic field controlled levitation and suspension of a magnet above and below type II superconductors

    SciTech Connect

    Takamori, T.; Boland, J.J.; Dove, D.B. )

    1989-10-02

    Observations are presented on levitation and suspension of a permanent magnet by combination of a variable magnetic field and a type II superconductor (YBa{sub 2}Cu{sub 3}O{sub {ital x}}). It has been found that a continuous range of distances exists where stable levitation and suspension may be obtained, and that the orientation of magnetic moment of the levitated or suspended magnet is also adjustable over a range of angles. In addition, the incorporation of the magnetic element makes it possible to suspend much higher mass than observed previously.

  5. Technical background for a demonstration magnetic levitation system

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1987-01-01

    A preliminary technical assessment of the feasibility of a demonstration Magnetic Levitation system, required to support aerodynamic models with a specified clear air volume around them, is presented. Preliminary calculations of required sizes of electromagnets and power supplies are made, indicating that the system is practical. Other aspects, including model position sensing and controller design, are briefly addressed.

  6. Lateral restoring force on a magnet levitated above a superconductor

    NASA Technical Reports Server (NTRS)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  7. Lateral restoring force on a magnet levitated above a superconductor

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    1990-03-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  8. Numerical analyses of trapped field magnet and stable levitation region of HTSC

    SciTech Connect

    Tsuchimoto, M.; Kojima, T.; Waki, H.; Honma, T.

    1995-05-01

    Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.

  9. New levitation scheme with AC superconducting magnet for EDS MAGLEV system

    SciTech Connect

    Kim, D.H.; Lee, J.K.; Hahn, S.Y.; Cha, G.

    1996-09-01

    This paper proposes a new magnetic levitation scheme which is able to generate levitation force for all speeds including a standstill. Auxiliary wheels which are needed in EDS MAGLEV vehicle can be eliminated. This scheme uses AC superconducting magnets to generate levitation force. In this paper, magnetic fields, forces and power dissipations generated by AC magnets moving above a conducting slab are calculated analytically. Results of calculation show characteristics of EDS system with AC magnet, such as levitation force and loss, are superior to those of EDS system with DC magnets for all speeds.

  10. Magnetic levitation/suspension system by high-temperature superconducting materials

    SciTech Connect

    Chen, I.; Hsu, J.; Jamn, G.; Lin, C.E.; Wu, M.K.

    1997-04-01

    Recently, with the advance of materials processing techniques, such as top-seeding and melt-texturing (TSMT) method, very large single-grained Y-Ba-Cu-O (YBCO) samples up to several centimeters in diameter can be produced. Each sample is capable of levitating over kilograms of weight. A HTS magnetic levitation (MagLev) transportation prototype has been constructed at National Cheng-Kung University (NCKU) to validate the concept of HTS-MagLev system based on Meissner effect. This HTS-MagLev is an inherent stable levitation system, unlike traditional MagLev system that requires sensors and feedback circuits to dynamically adjust its unstable levitation position. In this report, the results of various magnetic levitation parameters, such as different permanent magnet configurations, relative levitation stability, levitation force, etc., as well as magnetic field intensity and distribution will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  11. Time-optimal control of the magnetically levitated photolithography platen

    SciTech Connect

    Redmond, J.; Tucker, S.

    1995-01-01

    This report summarizes two approaches to time-optimal control of a nonlinear magnetically levitated platen. The system of interest is a candidate technology for next-generation photolithography machines used in the manufacture of integrated circuits. The dynamics and the variable peak control force of the electro-magnetic actuators preclude the direct application of classical time-optimal control methodologies for determining optimal rest-to-rest maneuver strategies. Therefore, this study explores alternate approaches using a previously developed computer simulation. In the first approach, conservative estimates of the available control forces are used to generate suboptimal switching curves. In the second approach, exact solutions are determined iteratively and used as a training set for an artificial neural network. The trained network provides optimal actuator switching times that incorporate the full nonlinearities of the magnetic levitation actuators. Sample problems illustrate the effectiveness of these techniques as compared to traditional proportional-derivative control.

  12. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  13. Disposable magnetically levitated centrifugal blood pump: design and in vitro performance.

    PubMed

    Hoshi, Hideo; Asama, Junichi; Shinshi, Tadahiko; Ohuchi, Katsuhiro; Nakamura, Makoto; Mizuno, Tomohiro; Arai, Hirokuni; Shimokohbe, Akira; Takatani, Setsuo

    2005-07-01

    A magnetically levitated (MagLev) centrifugal blood pump (CBP) with a disposable pump head has been designed to realize a safe, easy-to-handle, reliable, and low-cost extracorporeal blood pump system. It consisted of a radial magnetic-coupled driver with a magnetic bearing having a two-degree freedom control and a disposable pump head unit with a priming volume of 24 mL. The easy on-off disposable pump head unit was made into a three-piece system consisting of the top and bottom housings, and the impeller-rotor assembly. The size and weight of the disposable pump unit were 75 mm x 45 mm and 100 g, respectively. Because the structure of the pump head unit is easily attachable and removable, the gap between the electromagnets of the stator and the target material in the rotor increased to 1.8 mm in comparison to the original integrated bearing system of 1.0 mm. The pump performance, power requirements, and controllability of the magnetic bearing revealed that from 1400 to 2400 rpm, the pump performance remained fairly unchanged. The amplitudes of the X- and Y-axis rotor oscillation increased to +/- 24 microm. The axial displacement of the rotor, 0.4 mm, toward the top housing was also observed at the pump rpm between 1400 and 2400. The axial and rotational stiffness of the bearing were 15.9 N/mm and 4.4 Nm/rad, respectively. The MagLev power was within 0.7 Watts. This study demonstrated the feasibility of a disposable, magnetically suspended CBP as the safe, reliable, easy-to-handle, low-cost extracorporeal circulation support device. PMID:15982279

  14. Study of a new passive magnetic levitation concept

    SciTech Connect

    Post, R.F.

    1995-03-01

    As a bonus from an existing LDRD-supported project (Electromechanical Battery Research and Development) a new concept for the magnetic levitation of a moving object evolved. To initiate a study of the merits of the concept mid-year ``seed money`` LDRD funding was provided. The FY94 activities resulted in a preliminary evaluation of the merits of this concept through calculations, laboratory measurements, and the design of a simple test model. There is now considerable international interest in the ``Maglev`` concept for highspeed trains. Wear, rolling friction, and speed limitations of conventional rail technology make this technology unsuitable for such trains, whence the use of magnetic levitation. In present Maglev trains, however, such as those constructed in Germany and Japan, servo-controlled magnetic systems are required, involving sensor and control circuitry and non-trivial on-board power requirements. In such systems the failure of a control system can have serious consequences, so that redundant systems may be required, thus adding to the cost and complexity. It would be highly desirable to replace the present ``active``, servo-controlled magnetic levitation systems with a totally passive one, one for which neither control circuits nor on-board power would be required. Failure of such a system could be made to be much more benign in its consequences than for servo-controlled ones, and the cost, particularly of the on-board equipment, might be greatly reduced.

  15. A containerless levitation setup for liquid processing in a superconducting magnet.

    PubMed

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded. PMID:19044425

  16. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For

  17. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  18. Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue

    2016-09-01

    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.

  19. Development of magnetically levitated high speed transport system in Japan

    SciTech Connect

    Sawada, Kazuo

    1996-07-01

    In Japan, huge passenger traffic moves through the Tokyo-Osaka corridor and the demand is mounting on one more high speed line besides the Tokaido Shinkansen. A magnetically levitated vehicle (JR Maglev) using superconducting magnets has been developed for the Tokyo-Osaka superspeed express. JR Maglev has many advantages over conventional rail systems. This paper describes the necessity of one more high speed line in this corridor, the reason the author chose Maglev, the scheme of this system, history of the development and outline of the new Yamanashi test line project.

  20. Propulsion and stabilization system for magnetically levitated vehicles

    SciTech Connect

    Coffey, H.T.

    1993-06-29

    A magnetic levitation and propulsion system for a vehicle adapted to travel over a roadbed is described comprising: a guide way affixed to a support structure where the support structure is coupled to the roadbed, a plurality of superconducting magnet devices producing magnetic fields and affixed to the vehicle where the superconducting magnet devices are oriented parallel to one surface of the guide way to generate a repulsive force between the guide way and the magnetic devices, and a plurality of propulsion windings affixed to the support structure, where the propulsion windings are located above and parallel to the superconducting magnet devices and are energized by a power source to generate a vehicle propulsion force to propel the vehicle along the roadbed support structure.

  1. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  2. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    PubMed

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-01

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev. PMID:23972068

  3. Prominence condensation and magnetic levitation in a coronal loop

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Mok, Y.; Drake, J. F.

    1992-01-01

    The results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of the normal-polarity Kippenhahn-Schlueter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, elucidates the various contributions to the nonlinear dynamics of prominence condensation and levitation.

  4. A new maglev system for magnetically levitated carrier system

    NASA Astrophysics Data System (ADS)

    Morishita, Mimpei; Azukizawa, Teruo; Kanda, Shuji; Tamura, Noburu; Yokoyama, Toyohiko

    1989-11-01

    A power-saving electromagnetic suspension system has been developed in which electromagnets with permanent magnets are used to suspend the vehicle. The electromagnets are controlled to maintain air gap length so that the attractive force by the permanent magnet always balances the total weight of the vehicle and its loads, based on modern control theory. This technology realizes a significantly power-saving electromagnetic suspension system in which the electromagnetic coil current required to keep a vehicle levitating was extremely small, ideally zero. The 8-kg weight test vehicle with 4-kg load could be levitated continuously over 8 h, without recharging the on-board 1300-mAh batteries. This technology realized a completely contact-free material transportation system when combined with a contact-free driving system using linear motors. The attractive force characteristics of a permanent magnet with control electromagnets and the newly developed electromagnet control system that can eliminate power collecting devices from the electromagnetic suspension system are described.

  5. Expansion joint for guideway for magnetic levitation transportation system

    SciTech Connect

    Rossing, T.D.

    1991-12-31

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  6. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, Thomas D.

    1993-01-01

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  7. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  8. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie

    SciTech Connect

    Ohashi, S.; Ohsaki, H.; Masada, E.

    1999-09-01

    Numerical simulation of the superconducting magnetically levitated bogie (JR Maglev) has been studied. The active damper coil system is introduced. In this levitation system, the interaction between levitation and guidance is strong. This active damper coil system is designed for reducing the vertical vibration of the bogie. Using the numerical simulation, its effect on the lateral displacement of the bogie is assessed. The active damper coil system for the vertical vibration is shown to works as a passive damper for the lateral vibration.

  9. Magnetic levitation and stiffness in melt-textured Y-Ba-Cu-O

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M. ); Salama, K.; Selvamanickam, V. ); Weinberger, B.R.; Lynds, L. )

    1992-09-01

    Magnetic levitation and stiffness have been measured in several systems composed of a permanent magnet elastically suspended above a stationary melt-textured sample of Y-Ba-Cu-O. The levitation force and vertical stiffness have been calculated on the basis of magnetization measurements of the same system, and the calculated results showed excellent agreement with the experimental measurements. Based on the force and magnetization measurements, it is predicted that the same Y-Ba-Cu-O material configured in a geometry suitable for magnetic bearings could produce a levitation pressure of 100--400 kPa at 20 K.

  10. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    PubMed

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. PMID:21420837

  11. Ironless armature for high speed HTS disk shaped rotor in self levitating configuration

    NASA Astrophysics Data System (ADS)

    Granados, X.; Pallares, J.; Sena, S.; Blanco, J. A.; López, J.; Bosch, R.; Obradors, X.

    2002-08-01

    In the self-levitating configuration, the magnetic field created by the armature is capable of producing forces for the bearing, i.e. axial and radial forces, and torque. As it has been reported, the motor can work in two regimes. First synchronous mode, when the load angle does not exceed a certain value and second hysteresis mode, when the load angle is greater than 180°. In this type of motor, the speed is limited by the losses in the iron armature. In order to avoid these losses, ironless armatures need to be used. An obvious problem associated with such armatures is the high current density required to power the motor. In order to accomplish these high current values, we have included in the design of the armature a transformer that adapts its impedance to that of standard power sources. In this case, the iron acts as a yoke of the transformer and in the short term, it may be possible to substitute it by other magnetic materials such as ferrites enabling to operate the motor at higher frequencies. In this configuration iron has been eliminated from the magnetic circuit of the motor. The armature thus incorporates two machines working independently, a high frequency transformer and an ironless armature. Torque curves of the prototype will be reported.

  12. Dynamic performance of a magnetic levitation haptic device

    NASA Astrophysics Data System (ADS)

    Berkelman, Peter; Hollis, Ralph L.

    1997-12-01

    A new haptic interface device has been developed which uses Lorentz force magnetic levitation for actuation. With this device, the user grasps a floating rigid body to interact with the system. The levitated moving part grasped by the user contains curved oval wound coils and LEDs embedded in a hemispherical shell with a handle fixed at its center. The stationary base contains magnet assemblies facing the flotor coils and optical position sensors facing the flotor LEDs. The device is mounted in the top cover of a desk-side cabinet enclosure containing all the amplifiers, control hardware, microprocessing, and power supplies needed for operation. A network connection provides communication with a workstation to allow interaction with simulated 3D environments in real time. Ideally, the haptic interface device should reproduce the dynamics of the modelled or remote environment with such high fidelity that the user cannot distinguish interaction with the device from interaction with a real object in a real environment. In practice, this ideal can only be approached with a fidelity that depends on its dynamic properties such as position and force bandwidths, maximum forces and accelerations, position resolution, and realizable impedance range. The motion range of the moving part is approximately 25 mm and 15 - 20 degrees in all directions. A current of 0.75 A is required in three of the six coils to generate the vertical force to lift the 850 g levitated mass, dissipating only 13.5 W. Peak forces of over 50 N and torques of over 6 Nm are achievable with the present amplifiers without overheating the actuator coils. Other measured performance results include stiffness ranges from 0.005 N/mm to 25.0 N/mm and a position control bandwidth of approximately 75 Hz.

  13. Magnetic levitation in the analysis of foods and water.

    PubMed

    Mirica, Katherine A; Phillips, Scott T; Mace, Charles R; Whitesides, George M

    2010-06-01

    This paper describes a method and a sensor that use magnetic levitation (MagLev) to characterize samples of food and water on the basis of measurements of density. The sensor comprises two permanent NdFeB magnets positioned on top of each other in a configuration with like poles facing and a container filled with a solution of paramagnetic ions. Measurements of density are obtained by suspending a diamagnetic object in the container filled with the paramagnetic fluid, placing the container between the magnets, and measuring the vertical position of the suspended object. MagLev was used to estimate the salinity of water, to compare a variety of vegetable oils on the basis of the ratio of polyunsaturated fat to monounsaturated fat, to compare the contents of fat in milk, cheese, and peanut butter, and to determine the density of grains. PMID:20465289

  14. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    SciTech Connect

    Not Available

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  15. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    SciTech Connect

    BARNEY,PATRICK S.; LAUFFER,JAMES P.; PETTEYS,REBECCA; REDMOND,JAMES M.; SULLIVAN,WILLIAM N.

    1999-09-20

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller.

  16. Dynamic characteristics of magnetically-levitated vehicle systems.

    SciTech Connect

    Cai, Y.; Chen, S. S.; Energy Technology

    1997-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  17. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  18. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  19. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    NASA Astrophysics Data System (ADS)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-11-01

    We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  20. Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  1. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  2. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  3. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    NASA Technical Reports Server (NTRS)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  4. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  5. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    SciTech Connect

    Yang, Z.J.; Hull, J.R.; Mulcahy, T.M.; Rossing, T.D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. High-Sensitivity Measurement of Density by Magnetic Levitation.

    PubMed

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10(-4) g/cm(3) for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects. PMID:26815205

  7. Measuring densities of solids and liquids using magnetic levitation: fundamentals.

    PubMed

    Mirica, Katherine A; Shevkoplyas, Sergey S; Phillips, Scott T; Gupta, Malancha; Whitesides, George M

    2009-07-29

    This paper describes an analytical system that uses magnetic levitation to measure densities of solids and water-immiscible organic liquids with accuracies ranging from +/-0.0002 to +/-0.02 g/cm(3), depending on the type of experiment. The technique is compatible with densities of 0.8-3 g/cm(3) and is applicable to samples with volumes of 1 pL to 1 mL; the samples can be either spherical or irregular in shape. The method employs two permanent NdFeB magnets positioned with like poles facing one another--with the axis between the poles aligned with the gravitational field--and a container filled with paramagnetic medium (e.g., MnCl(2) dissolved in water) placed between these magnets. Density measurements are obtained by placing the sample into the container and measuring the position of the sample relative to the bottom magnet. The balance of magnetic and gravitational forces determines the vertical position of the sample within the device; knowing this position makes it possible to calculate the density of the sample. PMID:19621960

  8. The power of magnetic levitation-Part 2; Is magnetic transportation in the future

    SciTech Connect

    Moon, F.C. . Sibley School of Mechanical and Aerospace Engineering)

    1990-01-01

    This article discusses how new magnetic-levitation (MAGLEV) transportation technologies can be used to relieve airport congestion. New superconducting materials may improve the cost/benefits ratio for some MAGLEV systems. According to the author, postponement of research in MAGLEV technology in the United States will mean the loss of jobs and worsening trade balances near the end of the decade.

  9. Battery cars on superconducting magnetically levitated carriers: One commuting solution

    NASA Astrophysics Data System (ADS)

    Briggs, B. Mike; Oman, Henry

    1992-05-01

    Commuting to work in an urban-suburban metropolitan environment is becoming an unpleasant time-wasting process. We applied the technology of communication management to this commuting problem. Communication management is a system-engineering tool that produced today's efficient telephone network. The resulting best commuting option is magnetically levitated carriers of two-passenger, battery-powered, personally-owned local-travel cars. A commuter drives a car to a nearby station, selects a destination, drives on a waiting carrier, and enters an accelerating ramp. A central computer selects an optimum 100 miles-per-hour trunk route, considering existing and forecast traffic; assigns the commuter a travel slot, and subsequently orders switching-station actions. The commuter uses the expensive facilities for only a few minutes during each trip. The cost of travel could be less than 6 cents per mile.

  10. Output feedback control of a mechanical system using magnetic levitation.

    PubMed

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. PMID:25707718

  11. Optimization of guideway coil dimensions for a magnetic levitation system

    SciTech Connect

    Chen, Y.J.; Feng, J.

    1997-09-01

    A fast computer code that generates currents and forces for multiple magnetic levitation (MAGLEV) vehicle coils over a discrete guideway of arbitrary geometry has been developed, tested, and verified. A study of coil dimensions for overlapping loops, ladders, and discrete loops has been conducted to determine the optimal guideway design. A parameter known as figure of merit has been defined to assist in evaluating the level of merit for a particular track configuration. From this, it has been discovered that, for most cases, ladder tracks are a better configuration over both overlapping and discrete loops. On closer inspection, it was also discovered that an aspect ratio of unity for the dimensions of a ladder track yields the best overall results.

  12. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2).

  13. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  14. Automatic magnetic flux measurement of micro plastic-magnetic rotors

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei

    2015-07-01

    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within  ±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  15. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  16. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    NASA Astrophysics Data System (ADS)

    Patel, A.; Hopkins, S. C.; Baskys, A.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.

    2015-11-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications.

  17. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  18. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  19. Aspects of passive magnetic levitation based on high-T{sub c} superconducting YBCO thin films

    SciTech Connect

    Schoenhuber, P.; Moon, F.C.

    1995-04-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here the authors present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T{sub c} superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, the authors investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation.

  20. Diamagnetically Levitating Three Phase Motor with Optical Feedback Control

    NASA Astrophysics Data System (ADS)

    Khanna, Shrey; Nhut Ho, Joe; Irwen, Jonathan; Chih Wang, Wei

    2010-11-01

    This article describes a feasibility study of creating a low friction, low maintenance power delivering motor using a diamagnetically stabilized levitating rotor. The planar rotor described in this article uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. The principle behind levitation of the rotor and the dynamic forces on it are described in detail. An optical encoder feedback system is designed and fabricated that controls the frequency of the levitating rotor. The current input to the coils is given through a driving circuit that amplifies a DC pulse signal generated by a control algorithm designed in LabVIEW. The driving circuit allows current to flow through one phase at a time, which produces a magnetic field strong enough to spin the rotor. Experiments suggest that the optical encoder feedback control system can do reference tracking on the levitating rotor. The designed control algorithm can drive the rotor to specified reference frequencies up to 1.3 Hz using the optical encoder measurements.

  1. A Comprehensive C++ Controller for a Magnetically Supported Vertical Rotor. 1.0

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2001-01-01

    This manual describes the new FATMaCC (Five-Axis, Three-Magnetic-Bearing Control Code). The FATMaCC (pronounced "fat mak") is a versatile control code that possesses many desirable features that were not available in previous in-house controllers. The ultimate goal in designing this code was to achieve full rotor levitation and control at a loop time of 50 microsec. Using a 1-GHz processor, the code will control a five-axis system in either a decentralized or a more elegant centralized (modal control) mode at a loop time of 56 microsec. In addition, it will levitate and control (with only minor modification to the input/output wiring) a two-axis and/or a four-axis system. Stable rotor levitation and control of any of the systems mentioned above are accomplished through appropriate key presses to modify parameters, such as stiffness, damping, and bias. A signal generation block provides 11 excitation signals. An excitation signal is then superimposed on the radial bearing x- and y-control signals, thus producing a resultant force vector. By modulating the signals on the bearing x- and y-axes with a cosine and a sine function, respectively, a radial excitation force vector is made to rotate 360 deg. about the bearing geometric center. The rotation of the force vector is achieved manually by using key press or automatically by engaging the "one-per-revolution" feature. Rotor rigid body modes can be excited by using the excitation module. Depending on the polarities of the excitation signal in each radial bearing, the bounce or tilt mode will be excited.

  2. Analyzing forensic evidence based on density with magnetic levitation.

    PubMed

    Lockett, Matthew R; Mirica, Katherine A; Mace, Charles R; Blackledge, Robert D; Whitesides, George M

    2013-01-01

    This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (± 0.0002 g/cm(3) ) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and verifiable and provides numerical values--independent of the specific apparatus or analyst--that correspond to the absolute density of the sample that may be entered into a searchable database. We discuss the feasibility of MagLev as a possible means of characterizing forensic-related evidence and demonstrate the ability of MagLev to (i) determine the density of samples of glitter and gunpowder, (ii) separate glitter particles of different densities, and (iii) determine the density of a glitter sample that was removed from a complex sample matrix. PMID:22804094

  3. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  4. Improved optical feedback reference tracking for diamagnetically levitating motor system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Vu, Jefferey; Khanna, Shrey

    2011-04-01

    This paper describes the design and fabrication of an optical sensor to sense vertical displacement of a diamagnetically stabilized levitating rotor. The planar rotor described in this paper rotates due to nine electromagnetic coils evenly spaced around the rotor. A driving circuit allows current to flow through the coils one phase at a time. This produces a magnetic field strong enough to spin the rotor. However, instability due to a number of factors is prevalent in the present system. This instability is observed as vertical and horizontal displacement of the levitating rotor. The purpose of an additional optical sensor is to measure and record this vertical displacement and combine it with topsensing optical measurements in order to create a three-dimensional optical sensing mechanism around the rotor.

  5. Linear synchronous motor having enhanced levitational forces

    SciTech Connect

    Tozoni, O.

    1993-07-06

    A linear synchronous motor for a high speed vehicle is described comprising: (a) a linear stator assembly divided into sections and having an air gap, the stator assembly generating a magnetic field traveling wave in the air gap from an alternating current source, the traveling wave having variable speeds and accelerations along different sections of the stator assembly; (b) a rotor assembly having at least one propulsion magnet forming at least one pole-pitch of a selected length that is selectively variable while the vehicle is in motion, the magnet including an upper portion, a lower portion spaced apart from the upper portion, and a nonmagnetic coupler rigidly coupling the upper portion to the lower portion, the rotor assembly coupled to the vehicle and disposed in the air gap of the stator and movable laterally with respect to the stator, the rotor assembly generating a magnetic flux that produces an attractive force between a magnetic field of the rotor assembly and the traveling wave of the stator assembly, the magnetic field of the rotor assembly propelling the vehicle and generating a levitation force levitating the vehicle; and (c) a synchronizing unit operatively associated with the rotor assembly to vary the length of the pole-pitch such that the pole-pitch length is substantially equal to one-half the length of the traveling wave at any given position along the linear stator assembly.

  6. Effect of reciprocating motions around working points on levitation force of superconductor-magnet system

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Zhang, Fei; Sun, Tao; Yuan, Xiaoyang; Zhang, Cuiping

    2016-09-01

    In order to simulate vibration around working points in practical operation of superconducting levitation system, magnet in a simple superconductor-magnet system are conducted reciprocating motions around static height in this study. Two YBCO cylindrical samples with different grain orientations are used to investigate the effect of reciprocating motions of magnet on superconducting magnetic force. The c-axis of sample S1 is perpendicular to the top surface while sample S2 is parallel to the top surface. The initial cooling processes for the superconductors include zero-field-cooled (ZFC) and filed-cooled (FC). Compared to the levitation force before reciprocating motions, the ZFC levitation force at static height becomes smaller after reciprocating while the FC force presents opposite phenomenon. It is found that levitation force at static height tends to be stable after several times of reciprocating under ZFC and FC conditions and its time-decay phenomenon is suppressed in some extent, which is meaningful for the practical application of superconducting levitation system. Based on vortex dynamic, some physical discussions are presented to the experimental results.

  7. Vibration of Induction Motor Rotor in Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwata, Yoshio; Sato, Hidenori; Komatsuzaki, Toshihiko; Saito, Takuhiro

    The rotor vibration of two-pole induction motor with rotating magnetic field has been investigated. The vibration is measured at any relative location of the stator and the rotor with various power supply frequencies in the experiment and is analyzed in consideration of mechanical factors of the rotor. The following conclusion is obtained through the experiment and the analysis; (1) 2ω vibration of twice the power supply frequency ω is generated because of offset between the stator center and the gyrational center of the rotor. (2) Two vibrations of ω(1-s) and ω(1+s) where s is slip ratio are generated because of the rotor unbalance or the disagreement between the gyrational center and geometrical center of the rotor. (3) An unstable vibration is predicted in the analysis when the power supply frequency is equal to natural frequency of the rotor, however, the unstable vibration was not generated in the experiment because of the damping.

  8. Analysis of Magnetic Bearing Using Inductive Levitation by Relative Motion between Magnet and Conductor

    NASA Astrophysics Data System (ADS)

    Takanashi, Takeshi; Matsuya, Yuji; Ohtsuka, Yusuke; Nishikawa, Masahiro

    In chemical plants, anticorrosion magnetic drive pump is commonly used to deliver corrosive chemical liquid because of its high anti-corrosion performance. However, when bubbles enter in the chemical pump and accumulate between the shaft and the bearing, the shaft is often broken by thermal shock. The magnetic bearing which holds the rotor in non-contact has a good advantage to avoid thermal shock and to keep the rotor in a stable state by restoring force induced from eddy current in the conductor. The model of magnetic bearing was analyzed using three dimensional finite element method. In this model, the restoring force of 68.6N and the braking torque of 8.7N·m were obtained. The locus of rotation axis was also estimated from a radial load and a drag coefficient. The rotor may locate inside the movable range.

  9. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  10. Annoyance caused by the sounds of a magnetic levitation train.

    PubMed

    Vos, Joos

    2004-04-01

    In a laboratory study, the annoyance caused by the passby sounds from a magnetic levitation (maglev) train was investigated. The listeners were presented with various sound fragments. The task of the listeners was to respond after each presentation to the question: "How annoying would you find the sound in the preceding period if you were exposed to it at home on a regular basis?" The independent variables were (a) the driving speed of the maglev train (varying from 100 to 400 km/h), (b) the outdoor A-weighted sound exposure level (ASEL) of the passbys (varying from 65 to 90 dB), and (c) the simulated outdoor-to-indoor reduction in sound level (windows open or windows closed). As references to the passby sounds from the maglev train (type Transrapid 08), sounds from road traffic (passenger cars and trucks) and more conventional railway (intercity trains) were included for rating also. Four important results were obtained. Provided that the outdoor ASELs were the same, (1) the annoyance was independent of the driving speed of the maglev train, (2) the annoyance caused by the maglev train was considerably higher than that caused by the intercity train, (3) the annoyance caused by the maglev train was hardly different from that caused by road traffic, and (4) the results (1)-(3) held true both for open or closed windows. On the basis of the present results, it might be expected that the sounds are equally annoying if the ASELs of the maglev-train passbys are at least 5 dB lower than those of the intercity train passbys. Consequently, the results of the present experiment do not support application of a railway bonus to the maglev-train sounds. PMID:15101639

  11. Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.

    NASA Technical Reports Server (NTRS)

    Mir, L.; Simard, C.; Grana, D.

    1973-01-01

    Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.

  12. Effect of size on levitation force in a magnet/superconductor system

    SciTech Connect

    Yang, Z.J.; Hull, J.R.

    1996-03-01

    We consider a model system consisting of an infinitely long magnetic dipole line placed symmetrically above an infinitely long superconducting strip. Using the Meissner effect of superconductors, we derive analytical expressions of the levitation forces acting on the dipole line. At lowest-order approximation, we discuss the possible application of our model system to estimate the upper limit of the levitation forces in some magnetic bearing systems. In one example, the model correctly calculated the vertical vibration frequency of an experimental superconducting bearing.

  13. Blade loss dynamics of a magnetically supported rotor

    NASA Astrophysics Data System (ADS)

    Viggiano, F.; Schweitzer, G.

    The equations for a rigid rotor in magnetic bearings are derived and examined for their response following a sudden unbalance created by a blade loss. The investigations concentrate on the maximum transient and steady-state response after unbalance. The analytical results are compared with experiments which were performed on a magnetic bearing test stand at our laboratory. A major result is that magnetic bearings are very well suited to cope with the loss of a rotor blade.

  14. Vibration and Control of Flexible Rotor Supported by Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou

    1988-01-01

    Active vibration control of flexible rotors supported by magnetic bearings is discussed. Using a finite-element method for a mathematical model of the flexible rotor, the eigenvalue problem is formulated taking into account the interaction between a mechanical system of the flexible rotor and an electrical system of the magnetic bearings and the controller. However, for the sake of simplicity, gyroscopic effects are disregarded. It is possible to adapt this formulation to a general flexible rotor-magnetic bearing system. Controllability with and without collocation sensors and actuators located at the same distance along the rotor axis is discussed for the higher order flexible modes of the test rig. In conclusion, it is proposed that it is necessary to add new active control loops for the higher flexible modes even in the case of collocation. Then it is possible to stabilize for the case of uncollocation by means of this method.

  15. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  16. The Levitation Characteristics of MGB2 Plates on Tracks of Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Perini, E.; Bassani, E.; Giunchi, G.

    2010-04-01

    The bulk MgB2 can be manufactured in large plates by an innovative process: the reactive liquid Mg infiltration (Mg-RLI). According to this process it is possible to produce, even at lab scale, plates of 10÷20 cm in lateral dimensions. The superconducting material resulting is very dense and, even if it is in polycrystalline form, it levitates with respect to Permanent Magnets (PM), like the textured YBCO samples, up to 35 K. In order to control the levitation forces and stiffnesses of an MgB2 plate (10×10×1 cm3) moving with respect to a track of PM's (NdFeB bars arranged in 4 lines according to an Halbach disposition and separated by Iron flux concentrators), we have used an instrumented Cryogenic Levitation Apparatus (CLA). We have studied different kind of movements of the PM's track with respect to the MgB2 plate. First, we consider the vertical movement, assumed z direction, which describes the properly levitation characteristics. Secondly, we consider two kinds of lateral movements of the track, assumed x direction, with the long size of the magnets either perpendicular or parallel to the movement direction. The resulting configurations simulate the main movements that a superconducting levitating vehicle will do in a real track, either of axial or of guidance type. The levitation axial forces, measured in Field Cooling or Zero Field Cooling conditions, indicate that at the distance between superconducting plate and PM's of 4 mm it is possible to have an overall levitating pressure of 7 N/cm2.

  17. Analysis and comparison of two two-dimensional Halbach permanent magnet arrays for magnetically levitated planar motor

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Kou, Baoquan; Xing, Feng; Zhang, He

    2014-05-01

    A novel 2-D Halbach permanent magnet array which can be used in magnetically levitated planar motor is proposed in this paper. The air-gap flux density distribution of the novel 2-D Halbach permanent magnet array is solved by the scalar magnetic potential equation. In order to compare with the well-known Halbach magnet array that was used by Jansen et al. [IEEE Trans. Ind. Appl. 44(4), 1108 (2008)], harmonic analysis of the x- and z- component of the air-gap flux density are carried out by Fourier decomposition. Comparison of Bx and Bz between the two 2-D Halbach magnet arrays are made. And it is verified that the performance of the new Halbach magnet array is superior to the existing Halbach magnet arrays, its higher magnetic flux density and lower high-order harmonics will help to improve the performance of the magnetically levitated planar motor.

  18. A magnetically levitated synchronous permanent magnet planar motor with concentric structure winding used for lithography machine

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Kou, Baoquan; Xing, Feng; Jin, Yinxi; Zhang, Hailin; Zhu, Jianguo

    2015-05-01

    A novel magnetically levitated synchronous permanent magnet planar motor (MLSPMPM) with concentric structure winding, which can be used in lithography machine, is proposed in this paper. Topology and principle of the new MLSPMPM are introduced. The scalar magnetic potential is used to solve the magnetic system, and the differential equations are solved by the separation of variables method according to the boundary conditions. Characteristics, such as flux density, electromagnetic force, and back-EMF of the MLSPMPM, are obtained analytically. All of the results are validated by the finite element method. A prototype of the MLSPMPM is manufactured. Based on the prototype motor, some experiments are carried out. The measured results are used to showcase the validity of the analytical analysis.

  19. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    SciTech Connect

    Hull, J.R.; Rossing, T.D.; Mulcahy, T.M.; Uherka, K.L.

    1992-10-23

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss``coefficient of friction`` for thrust bearings of this type can be as low as 8 {times} 10{sup {minus}6}. While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K ({Delta}B{sup 3}/J{sub c}) where K is a geometric coefficient, {Delta}B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J{sub c} is the critical current density of the HTS. It is clear that a small decrease in {Delta}B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of {Delta}B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing {Delta}B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  20. Disc rotors with permanent magnets for brushless DC motor

    DOEpatents

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  1. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    PubMed

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  2. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-01

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. PMID:25589230

  3. Noncontact orientation of objects in three-dimensional space using magnetic levitation

    PubMed Central

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.

    2014-01-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  4. Separation and enrichment of enantiopure from racemic compounds using magnetic levitation.

    PubMed

    Yang, Xiaochuan; Wong, Shin Yee; Bwambok, David K; Atkinson, Manza B J; Zhang, Xi; Whitesides, George M; Myerson, Allan S

    2014-07-18

    Crystallization of a solution with high enantiomeric excess can generate a mixture of crystals of the desired enantiomer and the racemic compound. Using a mixture of S-/RS-ibuprofen crystals as a model, we demonstrated that magnetic levitation (MagLev) is a useful technique for analysis, separation and enantioenrichment of chiral/racemic products. PMID:24875274

  5. Effect of mass and pole strength on the levitation height of a magnet over a superconductor

    SciTech Connect

    Williams, R.; Matey, J.R.; Arie, Y.; Rathee, J.

    1989-05-01

    We have measured the effect of the mass and pole strength of a magnet on its equilibrium levitation height z over a superconducting disk of YBa/sub 2/Cu/sub 3/O/sub 7/. A simple image force model gives the observed dependence of z on the mass and pole strength, but not the observed proportionality factor.

  6. Levitation force and magnetic stiffness in bulk high-temperature superconductors

    SciTech Connect

    Chang, P.Z.; Moon, F.C. ); Hull, J.R.; Mulcahy, T.M. )

    1990-05-01

    Levitation forces between a small permanent magnet and a disk of bulk high-temperature superconductor at 77 K were measured as a function of vertical separation for disks of composition Y-Ba-Cu-O, Ag/Y-Ba-Cu-O, (Pb,Bi)-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O. The forces were highly hysteretic; however, for all samples, on the initial descent of the magnet toward the disk, the force was unique, independent of magnet speed, and varied approximately as the negative exponential of the separation distance. Magnetic stiffness, associated with minor hysteresis loops, was found to be approximately proportional to the levitation force, and nearly independent of magnet configuration and superconductor composition.

  7. Density determination of nail polishes and paint chips using magnetic levitation

    NASA Astrophysics Data System (ADS)

    Huang, Peggy P.

    Trace evidence is often small, easily overlooked, and difficult to analyze. This study describes a nondestructive method to separate and accurately determine the density of trace evidence samples, specifically nail polish and paint chip using magnetic levitation (MagLev). By determining the levitation height of each sample in the MagLev device, the density of the sample is back extrapolated using a standard density bead linear regression line. The results show that MagLev distinguishes among eight clear nail polishes, including samples from the same manufacturer; separates select colored nail polishes from the same manufacturer; can determine the density range of household paint chips; and shows limited levitation for unknown paint chips. MagLev provides a simple, affordable, and nondestructive means of determining density. The addition of co-solutes to the paramagnetic solution to expand the density range may result in greater discriminatory power and separation and lead to further applications of this technique.

  8. New densimeter for cryogenic fluids by magnetic levitation of a high-T/sub c/ superconductor

    SciTech Connect

    Fujii, K.; Takenaka, M.; Nara, K.

    1988-12-01

    A new magnetic densimeter for cryogenic fluids has been developed by adapting a magnetic levitation of a high-T/sub c/ superconductor. In this instrument, a superconducting material made of Y--Ba--Cu--O is sealed in a hollow glass buoy, and a stable levitation of the buoy is carried out with the Meissner effect of the superconductor simply by placing the buoy in the fluid above a ring-shaped permanent magnet. The fluid density is obtained from the magnetic force required to levitate the buoy in the fluid. To measure this force, the magnet is suspended from an electronic balance and the reaction force acting on the magnet is determined directly as a change of the apparent weight of the magnet. Details are given of the theoretical calculation of the force acting on the superconductor in the magnetic field and of the construction of the apparatus. The measurements of the saturated liquid density of nitrogen have shown a standard deviation of 0.014%. The total uncertainty of the measurements is estimated to be less than 0.06%. The results agree with reliable literature values within the experimental uncertainty.

  9. Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.

    2006-01-01

    Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.

  10. Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.

    PubMed

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai

    2009-06-01

    In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications. PMID:19423437

  11. Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Tuo, X. G.; Li, L. L.; Ye, C. Q.; Liao, X. L.; Wang, S. Y.

    2012-03-01

    Compared with the permanent magnet, the magnetized bulk high-Tc superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-Tc superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  12. Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Feng, Guosheng; Xu, Rundong; Wang, Xiaofeng; Wu, Jizhou; Chen, Gang; Dai, Xingcan; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2015-05-01

    We report a detailed study of effective magnetically levitated loading of cold atoms in a crossed dipole trap: an appropriate magnetic field gradient precisely compensates for the destructive gravitational force of the atoms and an additional bias field simultaneously eliminates the antitrapping potential induced by the magnetic field gradient. The magnetic levitation is required for a large-volume crossed dipole trap to form a shallow but very effective loading potential, making it a promising method for loading and trapping more cold atoms. For cold cesium atoms in the F =3 , m F =3 state prepared by three-dimensional degenerated Raman sideband cooling, a large number of atoms ˜3.2 ×106 have been loaded into a large-volume crossed dipole trap with the help of the magnetic levitation technique. The dependence of the number of atoms loaded and trapped in the dipole trap on the magnetic field gradient and bias field, respectively, is in good agreement with the theoretical analysis. The optimum magnetic field gradient of 31.13 G/cm matches the theoretical value of 31.3 G/cm well. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for many atomic species in high-field seeking states.

  13. Modeling and analysis of a magnetically levitated synchronous permanent magnet planar motor

    NASA Astrophysics Data System (ADS)

    Kou, Baoquan; Zhang, Lu; Li, Liyi; Zhang, Hailin

    2012-04-01

    In this paper, a new magnetically levitated synchronous permanent magnet planar motor (MLSPMPM) driven by composite-current is proposed, of which the mover is made of a copper coil array and the stator are magnets and magnetic conductor. The coil pitch τt and permanent magnet pole pitch τp satisfy the following relationship 3nτt = (3n ± 1)τp. Firstly, an analytical model of the planar motor is established, flux density distribution of the two-dimensional magnet array is obtained by solving the equations of the scalar magnetic potential. Secondly, the expressions of the electromagnetic forces induced by magnetic field and composite current are derived. To verify the analytical model and the electromagnetic forces, finite element method (FEM) is used for calculating the flux density and electromagnetic forces of the MLSPMPM. And the results from FEM are in good agreement with the results from the analytical equations. This indicates that the analytical model is reasonable.

  14. High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Oda, Yutaka; Ataka, Mitsuo

    2004-02-01

    By using gadolinium chloride as a crystallizing agent, and by applying a magnetic field of 3.8 T, we could crystallize lysozyme in a floating and containerless state. Optically, these crystals had little injury on the surface. Such flawless crystals were obtained only when they crystallized at the air-solution interface. White X-ray topography also showed that the crystals grown in a floating state contained less strain. As to why the crystals floated, we considered that magneto-Archimedes levitation occurred: lysozyme crystals are diamagnetic and the solution containing the Gd ions is paramagnetic. Owing to the difference in the magnetic property, the upward magnetic buoyancy force acting on the crystals could be enhanced, leading to levitation even in a usual superconducting magnet. This method may be used to manufacture high-quality protein crystals.

  15. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response. PMID:20839658

  16. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  18. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  19. Measurements of Surfactant Squeeze-out Using Magnetically-Levitated Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Charles

    2004-01-01

    Liquid bridges: Columns of liquid supported by two solid surfaces. These are generally opposing right circular cylinders in 0g. For a cylindrical bridge of length L and diameter d, in zero g, the maximum slenderness ratio Lambda [L/d] = pi [Rayleigh]. In the presence of gravity the cylindrical shape of an axisymmetric bridge tends to deform. Fluid has a volumetric magnetic susceptibility X. Magnetic levitation has numerous applications in studies of fluids, "soft" and "hard" condensed matter physics, and biophysics

  20. Levitation force on a permanent magnet over a superconducting plane: Modified critical-state model

    SciTech Connect

    Yang, Z.J.

    1997-08-01

    The authors consider a model system of a permanent magnet above a semi-infinite superconductor. They introduce a modified critical-state model, and carry out derivations of the levitation force acting on the magnet. A key feature of the modification allows the current density to be less than the critical value. The theoretical results show an exponential relationship between the force and the distance. Analytical expressions are developed for permanent magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindrical magnet. In the latter case, the exponential relationship has been observed in numerous experiments but without previous interpretation.

  1. Method and apparatus for assembling permanent magnet rotors

    DOEpatents

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A permanent magnet assembly (22) for assembly in large permanent magnet (PM) motors and generators includes a two-piece carrier (23, 24) that can be slid into a slot (13) in the rotor (10) and then secured in place using a set screw (37). The invention also provides an auxiliary carrier device (50) with guide rails (51) that line up with the teeth (12) of the rotor, so that a permanent magnet assembly (22) can be pushed first into a slot (13), and then down the slot (13) to its proper location. An auxiliary tool (50) is provided to move the permanent magnet assembly (22) into position in the slot (13) before it is secured in place. Methods of assembling and disassembling the magnet assemblies (22) in the rotor (10) are also disclosed.

  2. Method and apparatus for assembling permanent magnet rotors

    DOEpatents

    Hsu, J.S.; Adams, D.J.

    1999-06-22

    A permanent magnet assembly for assembly in large permanent magnet motors and generators includes a two-piece carrier that can be slid into a slot in the rotor and then secured in place using a set screw. The invention also provides an auxiliary carrier device with guide rails that line up with the teeth of the rotor, so that a permanent magnet assembly can be pushed first into a slot, and then down the slot to its proper location. An auxiliary tool is provided to move the permanent magnet assembly into position in the slot before it is secured in place. Methods of assembling and disassembling the magnet assemblies in the rotor are also disclosed. 2 figs.

  3. Magnetic levitation systems for future aeronautics and space research and missions

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  4. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  5. Extended multipole image of a nonideal permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Kildishev, Alexander V.; Nyenhuis, John A.; Zhilichev, Yuriy N.

    2003-05-01

    Reduction of the external magnetic field (magnetic signature) of large electric motors may be important in military and other applications. This article deals with critical issues in the design and manufacturing of permanent magnet (PM) motors that are responsible for increased magnetic signatures. Emphasis is on analysis of the nonidealities of PM rotors such as imbalances in the permanent magnet excitation system due to manufacturing tolerances and differences in material properties. Spatial harmonic analysis is used to describe the magnetic signature. The rotor simulation considers rectangular PM segments, and uses statistical characterization of possible nonidealities in dimensions, positioning, and magnetization. The approach focuses on lower degree magnetic multipole moments (dipolar, quadrupolar, and octupolar) in spheroidal and spherical domains, and is applied to PM inducing elements.

  6. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  7. In situ observation of containerless protein crystallization by magnetically levitating crystal growth

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanimoto, Yoshifumi; Udagawa, Chikako; Morimoto, Shotaro; Hagiwara, Masayuki

    2016-03-01

    We report on the results of the crystal growth of hen-egg lysozyme by magnetically levitating crystals in a small amount of buffer solution. The concentrations of lysozyme and the precipitating agent (gadolinium chloride) were 6.53 wt % and 0.362 mol/kg, respectively. Gadolinium chloride, which induces the magneto-Archimedes effect, was utilized to levitate the crystals with Bz · (dBz/dz) = 22.46 T2/m, where Bz is the vertical (z) component of the magnetic flux density vector. Although the collected crystals were small, we succeeded in maintaining the levitation of the crystals into a specific place in the liquid phase from the beginning of nucleation. In situ observation revealed that a state of pseudo-weightlessness was generated in the vicinity of the magnet bore edge, and small crystals were concentrated inside the domain moving along an hourglass-shaped surface. We found by numerical computations that the formation of the hourglass-shaped domain is attributable to the radial component of the magnetic force.

  8. Magnetic levitation force and penetration depth in type-II superconductors

    SciTech Connect

    Xu, J.H.; Miller, J.H. Jr.; Ting, C.S. )

    1995-01-01

    The superconducting levitation force [ital F] acting on a magnet placed above a type-II superconductor in both Meissner and mixed states is calculated as a function of temperature, based upon the London model. A simple relationship between the levitation force and the London penetration depth [lambda] is found. In particular, in the limit of [ital a]/[lambda][much gt]1, where [ital a] is the separation between the magnet and the superconductor, [ital F] varies linearly with [lambda], regardless of the shape of the magnet. The temperature dependences of [lambda] and [ital F] are examined for various superconducting pairing states, including [ital s]-wave, [ital d]-wave, and [ital s]+[ital id] states. It is found that, at low temperatures, both [lambda] and [ital F] show an exponential temperature dependence for [ital s]-wave, linear-[ital T] for [ital d]-wave, and [ital T][sup 2] dependence in a wide low-temperature range for the [ital s]+[ital id] state with a dominant [ital d]-wave component. The magnetic force microscope (MFM) is proposed to accurately measure the temperature-dependent levitation force. It is shown that the microscopic size of the MFM tip enables one to obtain the intrinsic temperature-dependent penetration depth of a single grain, in spite of the overall quality of the superconducting sample.

  9. Measurement and calculation of levitation forces between magnets and granular superconductors

    SciTech Connect

    Johansen, T.H.; Bratsberg, H.; Baziljevich, M.; Hetland, P.O.; Riise, A.B.

    1995-04-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T{sub c} superconductivity. Because of this, the interaction between a strong permanent magnet (PM) and bulk high-T{sub c} superconductor (HTSC) is currently a subject of much interest. The authors have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here they report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level using a minimum of model parameters.

  10. A low frequency nonlinear energy harvester with large bandwidth utilizing magnet levitation

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Cai, C. S.; Kong, Bo

    2015-04-01

    The application of vibration based energy harvesting in civil infrastructures usually has to resolve two major problems, namely, the low excitation frequency and large frequency range. To this end, a nonlinear energy harvester utilizing magnet levitation is proposed in this study. The proposed harvester can convert low frequency excitations into high frequency ones in its four doubly clamped piezoelectric beams through multi-impact. A large bandwidth is expected due to the stiffness nonlinearity introduced by using magnet levitation. A theoretical model is first developed for the harvester. Then, sinusoidal vibrations and simulated bridge vibrations are used as the external excitations to verify the performance of the harvester. The simulation results show an improved robustness of the harvester under low frequency vibrations, which indicates the proposed harvester is an ideal device for energy harvesting in civil infrastructures.

  11. Measurement and calculation of levitation forces between magnets and granular superconductors

    NASA Technical Reports Server (NTRS)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  12. Magnetically levitated nano-robots: an application to visualization of nerve cells injuries.

    PubMed

    Lou, Mingji; Jonckheere, Edmond

    2007-01-01

    This paper proposes a swarm of magnetically levitated nano-robots with high sensitivity nano-sensors as a mean to detect chemical sources, specifically the chemical signals released by injured nervous cells. In the aftermath of the process, further observation by these nano-robots would be used to monitor the healing process and assess the amount of regeneration, if any, or even the repair, of the injured nervous cells. PMID:17377291

  13. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  14. Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight

    SciTech Connect

    Hazi, A

    2005-09-20

    the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work on Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to

  15. Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept)

    NASA Astrophysics Data System (ADS)

    Rohacs, Daniel; Rohacs, Jozsef

    2016-08-01

    The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.

  16. Application of Fuzzy Logic to EMS-type Magnetically Levitated Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Kusagawa, Shinichi; Baba, Jumpei; Shutoh, Katsuhiko; Masada, Eisuke

    A type of the magnetically levitated railway system with the electro-magnetic suspension system (EMS), which is named HSST system, will be put into revenue service as an urban transport in Nagoya, Japan at the beginning of April 2005. To extend its operational velocity higher than 200km/h for applications in other cities, the design of its EMS system is reexamined for improvement of riding comfort and performances of a train. In order to achieve these objectives, the multipurpose optimization on the basis of the genetic algorithm is applied for the design of EMS-type magnetically levitated vehicle, control parameters of which are optimized both to follow the rail exactly in high-speed and to provide enough riding comfort to passengers. However, the ability to follow sharp irregularities of the rail and to cope with high frequency noises in the gap length control system should be coordinated with riding comfort. The fuzzy logic is introduced into the dynamic control loop and verified to solve the problem. Far better coordination is obtained between the vehicle performances and riding comfort of passengers in high-speed against such various rail conditions. The levitation control with fuzzy logic is shown to be useful for the critical design problem as the high-speed maglev railways.

  17. Rotor's Suspension for Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing.

    PubMed

    Tang, Jiqiang; Xiang, Biao; Wang, Chun'e

    2015-09-01

    A novel Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing (conical MB) can generate great gyroscopic moment by tilting the high-speed rotor. To output the gyroscopic moment, the high-speed rotor must be suspended stably and can be tilted. But when the rotor tilts, the gap between the stator and rotor of conical MB changes nonlinearly, what will cause the magnetic force and current stiffness of this conical MB to be serious nonlinear. To solve these problems, one kind of adaptive controller based on Lyapunov stability theory is designed by regarding the current stiffness of this conical MB as uncertain parameter. The validity of this adaptive control method is verified on a Vernier-gimballing MSFW with 68 Nms angular momentum and 1.7° maximum tilting angle. All experimental results indicated that this adaptive control has better performances on controlling rotor's stable suspension than existing PID control when the rotor translates or tilts. PMID:26089172

  18. Modelling and control of a rotor supported by magnetic bearings

    NASA Technical Reports Server (NTRS)

    Gurumoorthy, R.; Pradeep, A. K.

    1994-01-01

    In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.

  19. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

    PubMed

    Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W

    2011-10-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB. PMID:22065892

  20. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA

    PubMed Central

    Cheng, Shanbao; Olles, Mark W.; Burger, Aaron F.; Day, Steven W.

    2011-01-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers’ initial assumption about the function of this HMB. PMID:22065892

  1. Magnetic Field Is the Dominant Factor to Induce the Response of Streptomyces avermitilis in Altered Gravity Simulated by Diamagnetic Levitation

    PubMed Central

    Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin

    2011-01-01

    Background Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. Methodology/Principal Findings S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. Conclusion/Significance We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:22039402

  2. Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability.

    PubMed

    Nemiroski, Alex; Soh, Siowling; Kwok, Sen Wai; Yu, Hai-Dong; Whitesides, George M

    2016-02-01

    Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) < ρ < 2.3 g/cm(3)) that are close in density to the suspending, aqueous medium. This paper explores a simple method-"tilted MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys). PMID:26722977

  3. Design framework of a teleoperating system for a magnetically levitated robot with force feedback

    NASA Astrophysics Data System (ADS)

    Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu

    2002-02-01

    Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.

  4. Calculation of levitation forces in permanent magnet-superconductor systems using finite element analysis

    SciTech Connect

    Camacho, D.; Mora, J.; Fontcuberta, J.; Obradors, X.

    1997-08-01

    In this paper we present calculations of levitation forces between a cylindrical permanent magnet and a cylindrical superconductor using a commercial finite element program. Force limits for zero field cooled and field cooled processes have been obtained using the Meissner effect and the perfect pinning hypothesis, respectively. Comparison of the experimentally determined forces with respect to these limits provides a simple estimation of the sample quality. The hysteretical behavior of the forces has been reproduced assuming a critical state model for the superconductor. Results are compared with experimental data. Excellent agreement has been found for forces measured after zero field cooled process thus allowing us to estimate the critical current of the samples. As a further exploitation of the software capabilities we have investigated the effects of the superconducting sample geometry and the effects of different strategies of flux conditioning to optimize the levitation forces. {copyright} {ital 1997 American Institute of Physics.}

  5. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  6. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  7. Rigid levitation and suspension of high-temperature superconductors by magnets

    SciTech Connect

    Brandt, E.H. )

    1990-01-01

    A high-{ital T}{sub {ital c}} superconductor floating freely above a magnet of low symmetry remains rigidly suspended in the air in almost any position and orientation as if stuck in an invisible heap of sand. This striking effect is due to pinning of the magnetic flux lines inside the superconductor and is often overlooked, since usually magnets with rotational symmetry are used for levitation. Magnets with rotational symmetry allow for nearly undamped orbiting and rotation of the superconductor about the magnet's symmetry axis. But even in this geometry, flux-line pinning can be seen, since it forces the orbiting superconductor to turn the same face toward the axis. Superconductors with sufficiently strong pinning may even be suspended below a magnet.

  8. Rotor Design of Permanent Magnet Synchronous Motor for Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kondo, Keiichiro; Fujishima, Yasushi; Wakao, Shinji

    The permanent magnet synchronous motor (PMSM) is an efficient machine, which has found application over wide power and speed ranges. This paper presents the optimal rotor design of a PMSM for use on a railway vehicle. This design utilizes reluctance torque in order to develop higher torque at starting with low open circuit voltage at high speed.

  9. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  10. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  11. Magnetic rigid rotor in the quantum regime: Theoretical toolbox

    NASA Astrophysics Data System (ADS)

    Rusconi, Cosimo C.; Romero-Isart, Oriol

    2016-02-01

    We describe the quantum dynamics of a magnetic rigid rotor in the mesoscopic scale where the Einstein-De Haas effect is predominant. In particular, we consider a single-domain magnetic nanoparticle with uniaxial anisotropy in a magnetic trap. Starting from the basic Hamiltonian of the system under the macrospin approximation, we derive a bosonized Hamiltonian describing the center-of-mass motion, the total angular momentum, and the macrospin degrees of freedom of the particle treated as a rigid body. This bosonized Hamiltonian can be approximated by a simple quadratic Hamiltonian that captures the rich physics of a nanomagnet tightly confined in position, nearly not spinning, and with its macrospin antialigned to the magnetic field. The theoretical tools derived and used here can be applied to other quantum mechanical rigid rotors.

  12. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    SciTech Connect

    Rudnev, I. A. Ermolaev, Yu. S.

    2007-07-15

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa{sub 2}Cu{sub 3}O{sub 7-x} melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive force are determined as functions of the thickness of the superconducting block in the superconductor cooling regime in both zero and nonzero magnetic fields. The dependence of the levitation force on the geometric parameters and critical current of the superconductor is found.

  13. Effect of size and geometry on levitation force measurements between permanent magnets and high-temperature superconductors

    SciTech Connect

    Cha, Y.S.; Hull, J.R.; Mulcahy, T.M.; Rossing, T.D. )

    1991-11-15

    A series of experiments measuring the levitation force between a permanent magnet (PM) and a high-temperature superconductor (HTS) and between pairs of PMs, coupled with finite-element calculations of the forces and fields, has identified factors that influence the levitation force. The self-demagnetizing factor within the HTS and, to some extent, within the PM has a profound effect on magnetic pressure. For large HTSs with strong flux-pinning, the demagnetizing effect of the diamagnetic image of the PM is substantial. For short distances between the HTS and PM, compression of magnetic flux produces a dependence on PM diameter.

  14. Effect of size and geometry on levitation force measurements between permanent magnets and high-temperature superconductors

    SciTech Connect

    Cha, Y.S.; Hull, J.R.; Mulcahy, T.M.; Rossing, T.D. Northern Illinois Univ., De Kalb, IL . Dept. of Physics)

    1991-01-01

    A series of experiments measuring the levitation force between a permanent magnet (PM) and a high temperature superconductor (HTS) and between pairs of PMs, coupled with finite-element analysis of the experiments, has identified factors that influence the levitation force. The self demagnetizing factor within the HTS and, to some extent, within the PM has a profound effect on magnetic pressure. For large HTSs with strong flux-pinning, the demagnetizing effect of the diamagnetic image of the PM is substantial. For short distances between the HTS and PM, compression of magnetic flux produces a dependence on PM diameter. 8 refs.

  15. Stability of magnetic tip/superconductor levitation systems

    NASA Astrophysics Data System (ADS)

    K. Alqadi, M.

    2015-11-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  16. Dynamics of a flexible rotor in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Humphris, R. R.; Kelm, R. D.

    1987-01-01

    Discussed is a magnetic bearing which was designed and tested in a flexible rotor both as support bearings and as a vibration controller. The design of the bearing is described and the effect of control circuit bandwidth determined. Both stiffness and damping coefficients were measured and calculated for the bearing with good agreement. The bearings were then placed in a single mass rotor as support bearings and the machine run through two critical speeds. Measurements were made of the vibration response in plain bushings and magnetic bearings. Comparisons were also made of the theoretical calculations with the measured peak unbalance response speeds. Finally, runs were made with the magnetic bearing used as a vibration controller.

  17. Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation

    NASA Astrophysics Data System (ADS)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-02-01

    We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.

  18. Effect of guideway discontinuities on magnetic levitation and drag forces

    SciTech Connect

    Rossing, T.D.; Korte, R.; Hull, J.R. )

    1991-11-15

    Transients in the lift and drag forces on a NdFeB permanent magnet were observed as the magnet passed over various discontinuities in a rotating aluminum disk at velocities of 4 to 25 m/s. For full cuts in the disk, the amplitude of the lift and drag transients and the wave form of the drag transient depend on the width, and the amplitudes are much larger than for partial cuts. The use of a backing plate to join two cut segments is ineffective.

  19. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.

    PubMed

    Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant

    2014-07-01

    This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. PMID:24947430

  20. Animal trials of a Magnetically Levitated Left-Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Paden, Brad; Antaki, James; Groom, Nelson

    2000-01-01

    The University of Pittsburgh/Magnetic Moments mag-lev left-ventricular assist devices (LVADs), the Streamliner HG3b and HG3c, have successfully been implanted in calves. The first was implanted for 4 hours on July 10, 1998 and the second for 34 days on August 24, 1999 respectively. The tests confirmed the feasibility of low power levitation (1.5 watts coil power) and very low blood damage in a mag-lev ventricular assist device. In this paper, we describe the unique geometry of this pump and its design. Key features of this LVAD concept are the passive radial suspension and active voice-coil thrust bearing.

  1. Safety of high speed magnetic levitation transportation systems. Preliminary safety review of the transrapid maglev system

    NASA Astrophysics Data System (ADS)

    Dorer, R. M.; Hathaway, W. T.

    1990-11-01

    The safety of various magnetically levitated trains under development for possible implementation in the United States is of direct concern to the Federal Railroad Administration. Safety issues are addressed related to a specific maglev technology. The Transrapid maglev system was under development by the German Government over the last 10 to 15 years and was evolved into the current system with the TR-07 vehicle. A technically based safety review was under way over the last year by the U.S. Department of Transportation. The initial results of the review are presented to identify and assess potential maglev safety issues.

  2. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  3. All Aboard! For a Lesson on Magnetic Levitated Trains.

    ERIC Educational Resources Information Center

    Moore, Virginia S.; Kaszas, William J.

    1995-01-01

    Presents an activity that explores the operation of Maglev trains. Demonstrates that elementary students can master cutting-edge technology through creating and racing magnetic vehicles on a specially designed track, researching the history of rail transportation, and exploring a current science issue. (NB)

  4. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  5. The influence of nonlinear magnetic pull on hydropower generator rotors

    NASA Astrophysics Data System (ADS)

    Gustavsson, Rolf. K.; Aidanpää, Jan-Olov

    2006-11-01

    In large electrical machines the electromagnetic forces can in some situations have a strong influence on the rotor dynamics. One such case is when the rotor is eccentrically displaced in the generator bore. A strong unbalanced magnetic pull will then appear in the direction of the smallest air-gap. In this paper, the influence of nonlinear magnetic pull is studied for a hydropower generator where the generator spider hub does not coincide with the centre of the generator rim. The generator model consists of a four-degree-of-freedom rigid body, which is connected to an elastic shaft supported by isotropic bearings. The influence of magnetic pull is calculated for the case when the generator spider hub deviates from the centre of the generator rim. A nonlinear model of the magnetic pull is introduced to the model by radial forces and transverse moments. In the numerical analysis input parameters typical for a 70 MW hydropower generator are used. Results are presented in stability and response diagrams. The results show that this type of rotor configuration can in some cases become unstable. Therefore, it is important to consider the distance between the centreline of generator spider hub and the centreline of generator rim.

  6. Improvement of the propulsion force for HTSC-permanent magnet hybrid magnetically levitated carrying system by using the pinned flux of HTSC

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Sasaki, R.; Ueno, T.; Ohashi, S.

    Magnetically levitated carrying system has been developed. In this system, pinning force of high temperature bulk superconductor (HTSC) is used for the levitation and guidance. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. For the propulsion system, electromagnets are installed on the surface of the magnetic rail. Improvement of the propulsion force is studied. In the previous system, only flux of the permanent magnet of the carrier is used for propulsion. To increase propulsion force, that of the HTSC of the carrier is also used. Using this excitation method, the propulsion force is improved even though total number of the excited coil is the same.

  7. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression. PMID:22296880

  8. Developments in Understanding Stability as Applied to Magnetic Levitated Launch Assist

    NASA Technical Reports Server (NTRS)

    Gering, James A.

    2002-01-01

    Magnetic levitation is a promising technology, with the potential of constituting the first stage of a third generation space transportation system. Today, the Space Shuttle burns on the order of one million pounds of solid rocket propellant to bring the orbiter and external tank to nearly Mach 1 (1,000 kph). Imagine the reductions in launch vehicle weight, complexity and risk if an aerospace vehicle could be accelerated to the same speed utilizing about $1,000 of off-board electrical energy stored in flywheels. After over two decades of development, maglev trains travel on full-scale demonstration tracks in Germany and Japan reaching speeds approaching 500 kph. Encouraging as this may appear, the energy and power required to accelerate a 1 million pound launch vehicle to 1,000 kph would radically redefine the state-of-the-art in electrical energy storage and delivery. Reaching such a goal will require levitation with sufficient stability to withstand an operating environment fundamentally different from that of a high-speed train. Recently NASA let contracts for the construction of three maglev demonstration tracks. This construction and several associated trade studies represent a first-order investigation into the feasibility of maglev launch assist. This report provides a review of these efforts, other government sponsored maglev projects and additional technical literature pertinent to maglev stability. This review brings to light details and dimensions of the maglev stability problem which are not found in previous NASA-sponsored trade studies and which must be addressed in order to realize magnetic levitation as a launch assist technology.

  9. Magnetic levitation and confinement of molten metals. Ph.D Thesis

    SciTech Connect

    Roy, S.S.

    1993-12-31

    Electromagnetic forces generated within the bulk of a liquid metal, due to imposed alternating magnetic field, can alter the shape of the free surface of the liquid metal. Most of the research in this area has been focused on theoretical development of electromagnetic processes and there is a lack of well defined experimental results with which to verify the theoretical models. In this thesis, the interaction of electromagnetic field structure with liquid metals was studies both from theoretical and experimental viewpoints. Levitation and shaping experiments were successfully carried out with liquid sodium in mineral oil in a cone-shaped coil. Small droplets ranging from 1.2 to 2.1 gm of liquid sodium were levitated. The modeling of a levitated droplet in an electromagnetic field was carried out using the Free Movement method. This is a surface coupled model where the skin depth is assumed to be zero. There was a good match between the experimental and predicted results. The shaping experiments were also carried out using liquid sodium in a cylindrical coil. Liquid sodium was repelled from the wall of the container and the meniscus profile was measured. The experimental results were compared with the results predicted by the mathematical model. The comparison was good away from the inductor but the model did not predict the shape near the inductor due to fluid flow during shaping. The mathematical model is used to predict the meniscus shapes of liquid steel under an imposed electromagnetic field. This technique is used to investigate the effect of applied magnetic fields on the static meniscus shapes of a liquid steel column and on the equilibrium meniscus shape of liquid steel in the mold of a continuous caster when there is not relative movement between the model and the strand. The heating rate of liquid steel due to induced eddy currents within the bulk of the metal is also studied.

  10. Magnetic nondestructive testing of rotor blade tips

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Marsili, R.; Rossi, G.; Tomassini, R.

    2015-05-01

    This paper deals with a particular magnetic nondestructive technique applied to the control of the position of the steel blades in rotating parts of turbines and engines. The working principle is based on a bridge of four identical magneto-resistive sensors. One sensor is placed near the blades, and the change in magnetic field produced by a permanent magnet and deviated by the change in position of the blade is detected by the sensor bridge. The position of the sensor is indicated, via dedicated FEM simulations, in order to have high sensitivity to the position change and high output signal. The accuracy and effectiveness of the proposed method are shown by experimental tests carried out in our laboratories. In particular, the tests indicate that the proposed magnetic nondestructive technique can be used in an almost large velocity range, and for quite different values of blade tip. The method seems also promising for the detection of blade vibrations.

  11. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation.

    PubMed

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R; Dave, Bhuvanesh; Godin, Biana

    2014-01-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors. PMID:25270048

  12. Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated materials.

    PubMed

    Rustan, G E; Spyrison, N S; Kreyssig, A; Prozorov, R; Goldman, A I

    2012-10-01

    We describe the development of a new method for measuring the electrical resistivity and magnetic susceptibility of high temperature liquids and solids. The technique combines a tunnel diode oscillator with an electrostatic levitation furnace to perform noncontact measurements on spherical samples 2-3 mm in diameter. The tank circuit of the oscillator is inductively coupled to the sample, and measurements of the oscillator frequency as a function of sample temperature can be translated into changes in the sample's electrical resistivity and magnetic susceptibility. Particular emphasis is given on the need to improve the positional stability of the levitated samples, as well as the need to stabilize the temperature of the measurement coil. To demonstrate the validity of the technique, measurements have been performed on solid spheres of pure zirconium and low-carbon steel. In the case of zirconium, while absolute values of the resistivity were not determined, the temperature dependence of the resistivity was measured over the range of 640-1770 K and found to be in good agreement with literature data. In the case of low-carbon steel, the ferromagnetic-paramagnetic transition was clearly observable and, when combined with thermal data, appears to occur simultaneously with the solid-solid structural transition. PMID:23126782

  13. Three-Dimensional In Vitro Co-Culture Model of Breast Tumor using Magnetic Levitation

    PubMed Central

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R.; Dave, Bhuvanesh; Godin, Biana

    2014-01-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors. PMID:25270048

  14. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony

    2015-12-01

    In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.

  15. Relationship of the Levitation Force Between Single and Multiple YBCO Bulks Above a Permanent Magnet Guideway Operating Dive-Lift Movement with Different Angles

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.

    2013-04-01

    In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.

  16. Control Coil Arrangement for a Rotating Machine Rotor

    SciTech Connect

    Shah, Manoj R.; Lewandowski, Chad R.

    1999-05-05

    A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

  17. Control coil arrangement for a rotating machine rotor

    DOEpatents

    Shah, Manoj R.; Lewandowsk, Chad R.

    2001-07-31

    A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

  18. Energy and economic implications of magnetically-levitated vehicles

    SciTech Connect

    Johnson, L.R.; Rote, D.M.

    1988-01-01

    Maglev systems, if implemented as ''spokes'' around the nation's major hub airports, have the potential to significantly reduce air traffic congestion. Maglev systems could improve the capacity of existing airports, obviating the need to build major new airports at a time when there is widespread public opposition to both airport expansion and new construction. Because of maglev's high speed (250-300 mph), the maglev has a logical market niche of trips between 100 and 600 miles. These short distance flights are the most energy intensive for the airlines; consequently, maglevs provide the opportunity to save 10 to 15% of the energy used by the scheduled airlines, through substitution of more efficient transport and reduced delays. Integrated into airline service, rather than competing with airlines, the economics of maglev systems is substantially enhanced. Indeed, a substantial portion of a national maglev system (3000 miles) around several major hub airports could be built over the next twenty years with a portion of the costs that the Federal Aviation Administration calculates are incurred by the airlines and the passengers---nearly $5 billion in 1986. Further, maglevs are the most promising large-scale application for the new class of high temperature superconductors, because of the relatively low threshold design requirements of the magnets compared to other potential applications. In addition, the new superconductors will improve maglev system reliability and may reduce capital and operating costs by as much as 10%. 2 figs.

  19. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection

    SciTech Connect

    Ribani, P.L.; Urbano, N.

    2000-01-01

    Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with those for a standard side-wall cross-connected system.

  20. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    ERIC Educational Resources Information Center

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  1. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.

    2013-10-01

    Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  2. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    PubMed Central

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  3. Electromagnet weight reduction in a magnetic levitation system for contactless delivery applications.

    PubMed

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper's procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  4. Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, J. T.; Jabbar, M. A.

    2006-04-01

    In design of permanent magnet motors for high-precision applications, it is sometimes necessary, early in the design stage, to have a detailed analysis of the effect of rotor eccentricity that may result from manufacturing imperfectness or use of fluid dynamic or aerodynamic bearings. This paper presents an analytical model for electromagnetic torque and forces in permanent magnet motors with rotor eccentricity. The model gives an insight to the relationship between the effect of the eccentricity and the other motor design parameters on the electromagnetic forces. It is shown that the calculated magnetic forces obtained from this model agree well with those obtained from numerical simulations that are very computationally demanding.

  5. Three-dimensional cell culturing by magnetic levitation for evaluating efficacy/toxicity of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sabino, Luis G.; Menezes, Priscila F. C.; Bagnato, Vanderlei S.; Souza, Glauco; Killian, Thomas C.; Kurachi, Cristina

    2014-03-01

    We used three dimensional cell cultures (3D) based on the magnetic levitation method (MLM) to evaluate cytotoxicity of photodynamic therapy (PDT). First, we decorated Hep G2 and MDA-MB-321 cells with NanoShuttle by introducing it in the media and incubated overnight. Next day, we transferred the cells to a 6-well plate and placed a magnetic driver on the top of the plate to start levitation. We monitored the formation of the 3D cell culture by optical microscopy and after four days, we added the photosensitizer Photogem (PG) in the culture media in concentrations of 50, 25, 12.5, 6.25μg/ml. We incubated them for 24 hours, after that we washed the cultures with PBS and added fresh media. Samples were then illuminated for 600s using a 630nm LED-based device, generating light intensities of 30 mW/cm2 in a total light fluence of 18 J/cm2. Following the illumination, we added fresh media, and 30 hours later, the 3D structures were broken using a pipettor and the cells seeded in 96 well plates, 105 cells per well, with a magnetic drive placed on the bottom of the plate to create cell culture dots. After 24 hours, we used a MTT assay to evaluate PDT cytotoxicity. The PDT effect, evaluated by the half maximal effective concentration (EC50), in MDA-MB-231 cells (EC50 =3.14 μg/ml) is more aggressive compared to the effect of PDT in Hep G2 cells (EC50 = 7.48 μg/ml). It suggests that the cell culture structure and its interaction facilitated the PG uptake and consequently elevated the Photodynamic effect for MDA-MB-231.

  6. Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway

    NASA Astrophysics Data System (ADS)

    Liu, Minxian; Lu, Yiyun; Wang, Suyu; Ma, Guangtong

    2011-04-01

    The superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the nonuniformity of the magnetic field along the movement direction above the NdFeB guideway is inevitable due to the assembly error and inhomogeneity of the material property of the NdFeB magnet. So it is required to study the characteristics of levitation force of the bulks affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we will study the characteristics of the levitation force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet is used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experimental results, it has found that the levitation force is decreasing with the application of the AC external magnetic field, and the decay increasing with the amplitude of the applied magnetic field and is almost independent of the frequency.

  7. Post-assembly magnetization of a 100 kW high speed permanent magnet rotor

    SciTech Connect

    Lv, Yiliang; Wang, Guobin; Li, Liang

    2015-03-15

    A post-assembly magnetizing fixture has been designed and successfully used to magnetize the rotor of a 100 kW high speed permanent magnet synchronous motor. The rotor is a solid cylinder with outer diameter of 80 mm and total length of 515 mm. The permanent magnet material is samarium-cobalt (Sm{sub 2}Co{sub 17}) with saturation magnetizing field of 6 T. The mechanical stability of the magnetizing fixture has been studied as well as the general design methodology. The magnetizing coil is subdivided in order to reduce the electromagnetic force, and the coils are separately reinforced in different ways. The electromagnetic and structural optimization is performed by finite element analysis and verified by experiments.

  8. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2006-03-01

    A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP. PMID:16480390

  9. Digital control of magnetic bearings supporting a multimass flexible rotor

    NASA Technical Reports Server (NTRS)

    Keith, F. J.; Williams, R. D.; Allaire, P. E.; Schafer, R. M.

    1993-01-01

    The characteristics of magnetic bearings used to support a three mass flexible rotor operated at speeds up to 14,000 RPM are discussed. The magnetic components of the bearing are of a type reported in the literature previously, but the earlier analog controls were replaced by digital ones. Analog-to-digital and digital-to-analog converters and digital control software were installed in an AT&T PC. This PC-based digital controller was used to operate one of the magnetic bearings on the test rig. Basic proportional-derivative control was applied to the bearings, and the bearing stiffness and damping characteristics were evaluated. Particular attention is paid to the frequency dependent behavior of the stiffness and damping properties, and comparisons are made between the actual controllers and ideal proportional-derivative control.

  10. Measuring binding of protein to gel-bound ligands using magnetic levitation.

    PubMed

    Shapiro, Nathan D; Mirica, Katherine A; Soh, Siowling; Phillips, Scott T; Taran, Olga; Mace, Charles R; Shevkoplyas, Sergey S; Whitesides, George M

    2012-03-28

    This paper describes the use of magnetic levitation (MagLev) to measure the association of proteins and ligands. The method starts with diamagnetic gel beads that are functionalized covalently with small molecules (putative ligands). Binding of protein to the ligands within the bead causes a change in the density of the bead. When these beads are suspended in a paramagnetic aqueous buffer and placed between the poles of two NbFeB magnets with like poles facing, the changes in the density of the bead on binding of protein result in changes in the levitation height of the bead that can be used to quantify the amount of protein bound. This paper uses a reaction-diffusion model to examine the physical principles that determine the values of rate and equilibrium constants measured by this system, using the well-defined model system of carbonic anhydrase and aryl sulfonamides. By tuning the experimental protocol, the method is capable of quantifying either the concentration of protein in a solution, or the binding affinities of a protein to several resin-bound small molecules simultaneously. Since this method requires no electricity and only a single piece of inexpensive equipment, it may find use in situations where portability and low cost are important, such as in bioanalysis in resource-limited settings, point-of-care diagnosis, veterinary medicine, and plant pathology. It still has several practical disadvantages. Most notably, the method requires relatively long assay times and cannot be applied to large proteins (>70 kDa), including antibodies. The design and synthesis of beads with improved characteristics (e.g., larger pore size) has the potential to resolve these problems. PMID:22364170