Science.gov

Sample records for magnetized relativistic jets

  1. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  2. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  3. 3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi

    2006-01-01

    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.

  4. The Role of Magnetic Fields in Relativistic Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Newman, W. I.

    2012-05-01

    We explore, analytically and by numerical simulation, the evolution of the Kelvin-Helmholtz (KH) instability in a relativistic magnetized astrophysical jet. Our results successfully reproduce numerous magnetohydrodynamic features observed in relativistic astrophysical environments. The KH instability arises from a variation in flow speed orthogonal to the flow. Many astrophysical jets are relativistic, evidenced by apparent superluminal motion, and are likely collimated by a magnetic field, according to commonly accepted models. We find convergence of our numerical results between the hydrodynamic, magnetohydrodynamic, relativistic hydrodynamic, and relativistic magnetohydrodynamic regimes. We observe complementarity between fluid flow and magnetic field behavior. The early nonlinear regime corresponds to the formation of large vortices connected by a dual filamentary structure reminiscent of the cosmic double helix in the extragalactic jet 3C 273. These vortices are disrupted by the field, followed by a complex turbulent regime, and then an approach to an equilibrium configuration consisting of flow-aligned filaments. For stronger fields, this process occurs more rapidly, and sufficiently strong fields suppress vortices entirely. The jet also widens and decelerates by an amount depending on field strength. These results are in qualitative agreement with observations of numerous jets, including NGC 5128, 3C 273, and HH 30. Relativistic flows break synchronicity between longitudinal and transverse motions, thereby destabilizing the system, and enhancing the complexity of vortex disruption and turbulent breakdown. This desynchronization also causes early numerical breakdown at high Lorentz factors, a long-standing problem. Using a uniform-flow model, we provide the first mathematical analysis showing that for sufficiently high Lorentz factors, artificial diffusion not only fails to suppress numerical instability, but introduces growing modes which destabilize the

  5. The CD Kink Instability in Magnetically Dominated Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.; Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.

    2010-03-01

    The relativistic jets associated with blazar emission from radio through TeV gamma-rays are thought to be accelerated and collimated by strong helically twisted magnetic fields with footpoints threading the black hole ergosphere and the surrounding accretion disk. The resulting magnetically dominated jet is current-driven (CD) unstable. In a resistive system instability may lead to magnetic reconnection, particle acceleration to the high energies required by the observed emission, and also to the observed kinetically dominated jets far from the central engine. We have investigated the temporal development of current-driven kink instability in magnetically dominated relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We find that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch. We also present preliminary results showing the effect of velocity shear on the spatial and temporal development of the CD kink instability.

  6. The CD Kink Instability in Magnetically Dominated Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Lyubarsky, Yuri; Hardee, Phil

    The relativistic jets associated with blazar emission from radio through TeV gamma-rays are thought to be accelerated and collimated by strong helically twisted magnetic fields with foot-points threading the black hole ergosphere and/or the surrounding accretion disk. The resulting magnetically dominated jet is current-driven (CD) unstable. In a resistive system instability may lead to magnetic reconnection, particle acceleration to the high energies required by the observed emission, and also to the observed kinetically dominated jets far from the central engine. We have investigated the temporal development of current-driven kink instability in magnetically dominated relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We find that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends mod-erately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch. We also present preliminary results showing the effect of velocity shear on the spatial and temporal development of the CD kink instability.

  7. Radiation from Relativistic Jets in Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.

    2008-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.

  8. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  9. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  10. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  11. Dynamics of relativistic jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  12. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  14. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  15. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  16. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  17. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  18. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2007-01-01

    A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.

  1. Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected into an Oblique Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Koide, Shinji; Sakai, Jun-ichi; Christodoulou, Dimitris M.; Sol, Hélène; Mutel, Robert L.

    1998-05-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (1) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (2) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy, and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical venetian blinds out of the way while the slats are allowed to bend in three-dimensional space rather than as a two-dimensional slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging, since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized--but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  2. Spatial Growth of Current-driven Instability in Relativistic Rotating Jets and the Search for Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Singh, Chandra B.; Mizuno, Yosuke; de Gouveia Dal Pino, Elisabete M.

    2016-06-01

    Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.

  3. Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code

    NASA Astrophysics Data System (ADS)

    Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro

    1999-09-01

    Relativistic jets are observed in both active galactic nuclei (AGNs) and ``microquasars'' in our Galaxy. It is believed that these relativistic jets are ejected from the vicinity of black holes. To investigate the formation mechanism of these jets, we have developed a new general relativistic magnetohydrodynamic (GRMHD) code. We report on the basic methods and test calculations to check whether the code reproduces some analytical solutions, such as a standing shock and a Keplerian disk with a steady state infalling corona or with a corona in hydrostatic equilibrium. We then apply the code to the formation of relativistic MHD jets, investigating the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a nonrotating corona (either in a steady state infall or in hydrostatic equilibrium) around a nonrotating black hole. The numerical results show the following: as time goes on, the disk loses angular momentum as a result of magnetic braking and falls into the black hole. The infalling motion of the disk, which is faster than in the nonrelativistic case because of general relativistic effects below 3rS (rS is the Schwarzschild radius), is strongly decelerated around r=2rS by centrifugal force to form a shock inside the disk. The magnetic field is tightly twisted by the differential rotation, and plasma in the shocked region of the disk is accelerated by the JXB force to form bipolar relativistic jets. In addition, and interior to, this magnetically driven jet, we also found a gas-pressure-driven jet ejected from the shocked region by the gas-pressure force. This two-layered jet structure is formed not only in the hydrostatic corona case but also in the steady state falling corona case.

  4. General Relativistic Magnetohydrodynamic Simulations of Jets from Black Hole Accretions Disks: Two-Component Jets Driven by Nonsteady Accretion of Magnetized Disks

    NASA Astrophysics Data System (ADS)

    Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro

    1998-03-01

    The radio observations have revealed the compelling evidence of the existence of relativistic jets not only from active galactic nuclei but also from ``microquasars'' in our Galaxy. In the cores of these objects, it is believed that a black hole exists and that violent phenomena occur in the black hole magnetosphere, forming the relativistic jets. To simulate the jet formation in the magnetosphere, we have newly developed the general relativistic magnetohydrodynamic code. Using the code, we present a model of these relativistic jets, in which magnetic fields penetrating the accretion disk around a black hole play a fundamental role of inducing nonsteady accretion and ejection of plasmas. According to our simulations, a jet is ejected from a close vicinity to a black hole (inside 3rS, where rS is the Schwarzschild radius) at a maximum speed of ~90% of the light velocity (i.e., a Lorentz factor of ~2). The jet has a two-layered shell structure consisting of a fast gas pressure-driven jet in the inner part and a slow magnetically driven jet in the outer part, both of which are collimated by the global poloidal magnetic field penetrating the disk. The former jet is a result of a strong pressure increase due to shock formation in the disk through fast accretion flow (``advection-dominated disk'') inside 3rS, which has never been seen in the nonrelativistic calculations.

  5. The current-driven kink instability in magnetically dominated relativistic jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2012-04-01

    We have investigated the development of current-driven (CD) kink instability in relativistic jets, via 3D relativistic magnetohydrodynamic simulations. For this purpose, a static force-free equilibrium helical magnetic configuration is considered in order to study its influence on the linear and nonlinear stages of the instability. We found that this configuration is strongly distorted but not disrupted by the CD kink instability. Both the linear growth and the nonlinear evolution of this in-stability depend moderately on the radial density profile but are strongly sensitive to the magnetic pitch profile. For decreasing magnetic pitch, kink amplitude growth leads, in the nonlinear regime, to a slender helically twisted column wrapped by magnetic field. Differently, for increasing magnetic pitch, the kink amplitude nearly saturates in the nonlinear regime. We have also investigated the influence of velocity shear on the linear and non-linear development of the instability. We found that helically distorted density structures propagate along the jet with a speed and a flow structure that are dependent on the location of the velocity shear relative to the characteristic radius of the helically twisted force-free magnetic field. At small radius, the plasma flows through the kink. The kink propagation speed increases with the velocity shear radius, and the kink becomes more em-bedded in the plasma flow. Larger velocity shear radius leads to slower linear growth, with a later transition to the nonlinear stage and a larger maximum amplitude than in the case of a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and non-linear developments become more similar to those of a static plasma column.

  6. Relativistic Jets in Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqun; Woosley, S. E.; MacFadyen, A. I.

    2003-04-01

    We examine the propagation of two-dimensional relativistic jets through the stellar progenitor in the collapsar model for gamma-ray bursts. In agreement with previous studies, we find that the jet is collimated by its passage. Moreover, interaction of the jet with the star causes mixing that sporadically decelerates the jet, leading to a highly variable Lorentz factor. The jet that finally emerges has a moderate Lorentz factor, but a very large internal energy loading. In a second series of calculations we follow the emergence of such enegy-loaded jets from the star. For the initial conditions chosen, conversion of the remaining internal energy gives a terminal Lorentz factor of approximately 150. Implications of our calculations for GRB light curves, the luminosity-variability relation, and the GRB-supernova association are discussed.

  7. Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff-Riley dichotomy

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Bromberg, Omer

    2016-09-01

    Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically hot plasma. Jets above the critical power stably escape the core and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.

  8. Three-dimensional Relativistic MHD Simulations of Active Galactic Nuclei Jets: Magnetic Kink Instability and Fanaroff-Riley Dichotomy

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Bromberg, Omer

    2016-04-01

    Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically-hot plasma. Jets above the critical power stably escape the galaxy cores and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.

  9. Relativistic electrons and magnetic fields of the M87 jet on the ∼10 Schwarzschild radii scale

    SciTech Connect

    Kino, M.; Takahara, F.; Hada, K.; Doi, A.

    2014-05-01

    We explore energy densities of the magnetic fields and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self-absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core has a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic fields (U{sub B} ) and relativistic electrons (U{sub e} ) on the basis of the standard SSA formula. Imposing the condition that the Poynting power and kinetic power of relativistic electrons should be smaller than the total power of the jet, we find that (1) the allowed range of the magnetic field strength (B {sub tot}) is 1 G ≤ B {sub tot} ≤ 15 G and that (2) 1 × 10{sup –5} ≤ U{sub e} /U{sub B} ≤ 6 × 10{sup 2} holds. The uncertainty of U{sub e} /U{sub B} comes from the strong dependence on the angular size of the radio core and the minimum Lorentz factor of non-thermal electrons (γ {sub e,min}) in the core. It is still unsettled whether resultant energetics are consistent with either the magnetohydrodynamic jet or the kinetic power dominated jet even on the ∼10 Schwarzschild radii scale.

  10. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the

  11. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGESBeta

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  12. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.

  13. Relativistic MHD Simulations of Collision-induced Magnetic Dissipation in Poynting-flux-dominated Jets/outflows

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  14. On the linear stability of sheared and magnetized jets without current sheets - non-relativistic case

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2016-05-01

    In a prior paper (Kim et al. 2015) we considered the linear stability of magnetized jets that carry no net electric current and do not have current sheets. In this paper, in addition to physically well-motivated magnetic field structures, we also include the effects of jet shear. The jets we study have finite thermal pressure in addition to having realistic magnetic field structures and velocity shear. We find that shear has a strongly stabilizing effect on various modes of jet instability. Increasing shear stabilizes the fundamental pinch modes at long wavelengths and short wavelengths. Increasing shear also stabilizes the first reflection pinch modes at short wavelengths. Increasing shear has only a very modest stabilizing effect on the fundamental kink modes at long wavelengths; however, increasing shear does have a strong stabilizing effect on the fundamental kink modes at short wavelengths. The first reflection kink modes are strongly stabilized by increasing shear at shorter wavelengths. Overall, we find that the combined effect of magnetic field and shear stabilizes jets more than shear alone. In addition to the results from a formal linear stability analysis, we present a novel way of visualizing and understanding jet stability. This gives us a deeper understanding of the enhanced stability of sheared, magnetized jets. We also emphasize the value of our numerical approach in understanding the linear stability of jets with realistic structure.

  15. On the linear stability of sheared and magnetized jets without current sheets - non-relativistic case

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2016-09-01

    In a prior paper, we considered the linear stability of magnetized jets that carry no net electric current and do not have current sheets. In this paper, in addition to physically well-motivated magnetic field structures, we also include the effects of jet shear. The jets we study have finite thermal pressure in addition to having realistic magnetic field structures and velocity shear. We find that shear has a strongly stabilizing effect on various modes of jet instability. Increasing shear stabilizes the fundamental pinch modes at long wavelengths and short wavelengths. Increasing shear also stabilizes the first reflection pinch modes at short wavelengths. Increasing shear has only a very modest stabilizing effect on the fundamental kink modes at long wavelengths; however, increasing shear does have a strong stabilizing effect on the fundamental kink modes at short wavelengths. The first reflection kink modes are strongly stabilized by increasing shear at shorter wavelengths. Overall, we find that the combined effect of magnetic field and shear stabilizes jets more than shear alone. In addition to the results from a formal linear stability analysis, we present a novel way of visualizing and understanding jet stability. This gives us a deeper understanding of the enhanced stability of sheared, magnetized jets. We also emphasize the value of our numerical approach in understanding the linear stability of jets with realistic structure.

  16. A Magnetohydrodynamic Boost for Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing

    2007-01-01

    We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  17. Relativistic jets in astrophysics

    NASA Astrophysics Data System (ADS)

    Derishev, E. V.; Zheleznyakov, V. V.; Koryagin, S. A.; Kocharovsky, Vl. V.

    The properties of the plasma state of matter are determined by the motion and the electromagnetic emission of the non-bound electrically charged particles --- electrons, positrons, protons and ions. It is not easy to create plasma in a laboratory. However this state is typical for the cosmic conditions --- at the stars and in the interstellar space. The properties of the laboratory as well as the space plasma are investigated at the Institute of Applied Physics of the Russian Academy of Sciences. The research is focused on the mechanisms of generation and propagation of the electromagnetic radiation --- from the radio waves to the gamma-rays --- in the planetary and stellar atmospheres and at the other astrophysical objects. The extreme physical conditions for a plasma are realized near the compact objects like black holes, neutron stars and collapsing nuclei of the massive stars. The plasma could be strongly non-equlibrium and can produce strong electromagnetic fields. Its bulk motion as well as the chaotic motion of the constituting particles can be relativistic, i. e. the motion can achieve velocities close to the speed of light. The relativistic plasma is frequently observed in the form of jets.

  18. The Highest Redshift Relativistic Jets

    SciTech Connect

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.

    2007-12-18

    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.

  19. A Magnetohydrodynamic Boost for Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, dieter; Nishikwa, Ken-Ichi; Zhang, Bing

    2006-01-01

    We have performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field may change the properties of the shock interface between the tenuous, overpressured jet (V(sub j) (sup z)) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A poloidal magnetic field (B(sup z)), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to a larger Lorentz factors than those obtained in the pure-hydrodynamic case. In contrast, a strong toroidal magnetic field (B(sup y)), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case, but to a lesser extent than found for the poloidal case due to the fact that the velocity component normal to the shock interface is now much smaller. Overall, the acceleration efficiency in the toroidal case is less than that of the poloidal case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can have a significant influence on the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  20. Interaction of Relativistic Jets with Their Environments

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, M. C.

    2014-01-01

    Relativistic jets such as those emitted by active galactic nuclei are observed to be collimated over great distances, but the cause of this collimation is uncertain. Also not fully understood are the means by which these jets become accelerated to their extreme velocities. To probe these questions, I examine the possibility of collimation and acceleration of relativistic jets by the pressure of the ambient medium surrounding the jet base, in the limit in which the jet interior has lost causal contact with its surroundings. I model the jet with an ultrarelativistic equation of state, injected into an ambient medium that has a pressure that decreases as a power of spherical radius, p ~ r^-n. Within the range 2jet interior will be out of causal contact, but the outer layers of the jet gradually collimate toward the jet axis, leading to the formation of a shocked boundary layer. By constructing partially self-similar solutions to the fluid equations within this boundary layer, I examine the impact of the external pressure profile on the behavior of the fluid in the layer. I determine both the structure of the jet and the rate of energy conversion from internal to kinetic as the jet propagates outward, establishing both the collimation and acceleration profiles of the jet. I will discuss the differences in predicted jet behavior based on whether the jet is purely hydrodynamic or whether the model also includes the effects of a toroidal magnetic field threading the jet interior. I will also describe the conditions that create specific observed jet morphology, such as the "hollow cone" structure seen in jets such as M87. Finally, I will discuss the specific application of these models to describe the relativistic jets that are created by some tidal disruption events --- events in which a star passing near a supermassive black hole (SMBH) is torn apart by tidal forces, and the star material then accretes back onto the SMBH --- such as in the observations of Swift

  1. Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.

    2008-01-01

    Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.

  2. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  3. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz

  4. Relativistic jets and star formation

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey Vincent; Mukherjee, Dipanjan; Wagner, Alex; Slatyer Sutherland, Ralph

    2015-08-01

    We are conducting simulations of jets interacting with molecular and atomic gas on scales of a few kpc in forming galaxies. Competing processes, such as the dispersion of gas in the galaxy and star formation in the high-pressure environment determine whether positive or negative feedback predominates. We shall present our new simulations including an assessment of these different effects. Our simulations also predict the velocity and velocity dispersion of atomic and molecular gas in galaxies, which are undergoing interaction with relativistic jets. These results are of interest to radio and optical spectral imaging observations of galaxies undergoing feedback.

  5. THE INVARIANT TWIST OF MAGNETIC FIELDS IN THE RELATIVISTIC JETS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes E-mail: dimitris_christodoulou@uml.edu E-mail: gabuzda@physics.ucc.ie

    2009-09-10

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in active galactic nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1%. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.

  6. Relativistic MHD simulations of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.

    2005-06-01

    We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two

  7. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  8. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  9. Are relativistic jets monoparametric engines?

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Meyer, E. T.; Fossati, G.; Lister, M. L.

    We adopt as a working hypothesis that relativistic jets are essentially mono-parametric entities, and that their physical properties are a function of a single physical parameter, the same way the physical properties of main sequence stars are mainly a function of the star mass. We propose that the physical parameter is the jet kinetic power, and we use as a proxy for this quantity the low frequency extended radio luminosity (LFERL), an orientation insensitive quantity. We discuss the consequences of this hypothesis for the collective properties of relativistic jets and we show that a blazar sequence should spontaneously emerge on the peak frequency vs luminosity plot as the locus of those sources that are well aligned to the observer's line of sight. We also show that the sources of the same LFERL should form tracks that start from a location on the blazar sequence and move to lower luminosities and peak frequencies in a way that encodes information about the emitting plasma energetics and kinematics and velocity gradients, as well as about the inverse Compton (IC) emission seed photons. We are currently working on collecting the observations that will allow us to put this idea to the test.

  10. Relativistic MHD Simulations of Poynting Flux-driven Jets

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoyue; Li, Hui; Li, Shengtai

    2014-01-01

    Relativistic, magnetized jets are observed to propagate to very large distances in many active galactic nuclei (AGNs). We use three-dimensional relativistic MHD simulations to study the propagation of Poynting flux-driven jets in AGNs. These jets are already assumed to be being launched from the vicinity (~103 gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al., and we follow the propagation of these jets to ~parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When α, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to nonaxisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability being convective and the fact that the jet magnetic fields are rapidly evolving on Alfvénic time scales. We present the detailed jet properties and show that far from the jet launching region, a substantial amount of magnetic energy has been transformed into kinetic energy and thermal energy, producing a jet magnetization number σ < 1. In addition, we have also studied the effects of a gas pressure supported "disk" surrounding the injection region, and qualitatively similar global jet behaviors were observed. We stress that jet collimation, CDIs, and the subsequent energy transitions are intrinsic features of current-carrying jets.

  11. Simulations of Relativistic Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Duncan, G. C.

    1994-05-01

    We present results for 2-D, axisymmetric simulations of flows with Lorentz factors ~ 5 -- 10, typical of values inferred for superluminal BL Lacs and QSOs. The simulations were performed with a numerical hydrodynamic code that admits relativistic flow speed. We exploit the property that the relativistic Euler equations for mass, momentum and total energy densities in the laboratory frame have the same form as the nonrelativistic equations, to solve for laboratory frame variables using a conventional Godunov-type scheme with approximate Riemann solver: the HLLE method. The relativistic nature of the flow is incorporated by performing a Lorentz transformation at every step, at each cell center or cell boundary where pressure, sound speed or velocity are required. Determination of the velocity in this manner is a robust algebraic procedure within which we can ensure that vrelativistic flows exhibit a less pronounced pattern of incident and reflection shocks on axis. For flows which have propagated to a fixed number of jet radii, the Kelvin-Helmholtz instability at the contact surface is much less evident in the high Lorentz factor cases, supporting the contention that relativistic flows are less prone to such instability. We describe how the morphology of the cocoon and shocked ambient gas change with increasing Lorentz factor. This work was supported by NSF grant AST 9120224 and by the Ohio Supercomputer Center from a Cray Research Software Development Grant.

  12. String Mechanism for Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Dyadechkin, S. A.; Semenov, V. S.; Punsly, B.; Biernat, H. K.

    Here we present our latest studies of relativistic jet formation in the vicinity of a rotating black hole where the reconnection process has been taken into account. In order to simplify the problem, we use Lagrangian formalism and develop a method which enables us to consider a magnetized plasma as a set of magnetic flux tubes [5,6]. Within the limits of the Lagrangian approach, we perform numerical simulations of the flux tube (nonlinear string) behavior which clearly demonstrates the process of relativistic jet formation in the form of outgoing torsional nonlinear aves. It turns out that the jet is produced deep inside the ergosphere where the flux tube takes away spinning energy from the black hole due to the nonlocal Penrose process [2]. This is similar to the Blandford-Znajek (BZ) mechanism to some extent [8], however, the string mechanism is essentially time dependent. It is shown that the leading part of the accreting tube gains negative energy and therefore has to stay in the ergosphere forever. Simultaneously, another part of the tube propagates along the spinning axis away from the hole with nearly the speed of light. As a result, the tube is continuously stretching and our mechanism is essentially time dependent. Obviously, such process cannot last infinitely long and we have to take into account the reconnection process. Due to reconnection, the topology of the flux tube is changed and it gives rise to a plasmoid creation which propagates along spin axis of the hole with relativistic speed carrying off the energy and angular momentum away from the black hole.

  13. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  14. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  15. Relativistic HD and MHD modelling for AGN jets

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  16. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  17. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; Lyubarsky, Y.; Hartmann, D. H.; Fishman, G. J.

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  18. On Radiative Acceleration of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Takahara, F.

    1997-10-01

    The formation and acceleration of relativistic jets by radiative forces in black hole systems are investigated. Under a variety of circumstances, we calculate the bulk acceleration and radiative cooling of a confined plasma cell, immersed in different types of radiation fields and interacting by Compton scattering. Both non-relativistic (cold) and relativistic (hot) jet plasma, comprising mixtures of electron-proton and electron-positron components, are treated. We pay attention to some conceivable effects, previously neglected, which may possibly enhance the bulk acceleration; among them are an anisotropically radiating accretion disk surface, beamed secondary radiation from the inner jet, and scattering in the energy dependent Klein-Nishina regime. Our results are discussed in the context of relativistic jets in active galactic nuclei and Galactic black hole candidates, and the conditions necessary for successfully reproducing their observed properties are highlighted. In particular, the velocities of the recently discovered superluminal jets in Galactic black hole candidates (Lorentz factors of Γ ~ 2.5) are readily and very robustly accounted for if the jet is composed primarily of electron-positron pairs and the disk luminosity is near the Eddington value; the jet kinetic power can be consistent with optical depth and pair annihilation constraints. On the other hand, severe difficulty is met in attaining the velocities of AGN jets (Γ ~ 10), which can only be realized when a significant amount of beamed secondary radiation is present. We also contemplate additional important issues, such as global energetics.

  19. On particle acceleration in astrophysical relativistic jets

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2015-11-01

    Relativistic jets, e.g., in active galactic nuclei, are believed to be accelerators of high-energy cosmic rays. This is a lore but no justification of it exists. We investigate this problem from the first principles and present arguments that ``no-jets'' are better accelerators than the jets themselves. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  20. 3-D Relativistic MHD Simulations of Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Sakai, J.-I.; Frank, J.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1997-12-01

    We present the numerical simulations of relativistic jets propagating initially oblique to the field lines of a magnetized ambient medium. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies with a 2-D slab model. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized---but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  1. Non-Ballistic Motions in Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Homan, D. C.

    2002-12-01

    We present results from the 2cm Very Long Baseline Array (VLBA) survey of motions in relativistic jets (Kellermann et al. 1998; Zensus et al. 2002). In particular, we discuss the distribution of non-ballistic motions and present several examples from our sample. The non-ballistic motions we observe are generally in the direction of the downstream jet emission, providing evidence that jet features follow streaming flows in curved, bent jets. We also discuss the jet of the quasar 3C279, which displays a distinct change in the motion of a bright superluminal component. The new motion for this component is along a parallel track to the motion of an older superluminal component, suggesting collimation of the jet may still be occurring at radii (de-projected) of a kiloparsec or more.

  2. Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    SciTech Connect

    Ng, Johnny S.T.; Noble, Robert J.; /SLAC

    2005-07-13

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic (longitudinal) plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of two. The results are relevant to understanding the micro-physics at the interface region of an astrophysical jet with the interstellar plasma, for example, the edge of a wide jet or the jet-termination point.

  3. Efficient acceleration of relativistic magnetohydrodynamic jets

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Takahara, Fumio

    2013-08-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.

  4. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-05-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity ~0.3c) is created, as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (τS=rS/c, where rS≡2GM/c2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r=3rS. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfvén waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the lack of streaming material from an accompanying star.

  5. Laser Created Relativistic Positron Jets

    SciTech Connect

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  6. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  7. Numerical modelling of the lobes of radio galaxies in cluster environments - III. Powerful relativistic and non-relativistic jets

    NASA Astrophysics Data System (ADS)

    English, W.; Hardcastle, M. J.; Krause, M. G. H.

    2016-09-01

    We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets, we at times find magnetic field amplification by up to a factor of 2 in energy, but mostly the magnetic energy in the lobes is consistent with the magnetic energy injected. We confirm our earlier result that for jets with a toroidally injected magnetic field, the field in the lobes is predominantly aligned with the jet axis once the lobes are well developed, and that this leads to radio flux anisotropies of up to a factor of about two for mature sources. We reproduce the relationship between 151 MHz luminosity and jet power determined analytically in the literature.

  8. A New Relativistic Jet Model of Blazars

    NASA Astrophysics Data System (ADS)

    Webb, James; Benitez, Erika; Howard, Emily

    1998-11-01

    The subclass of Active galaxies called Blazars encompass the most intrinsically luminous and rapidly variable sources known to astrophysicists. Attempts to model these sources has largely been frustrated due in part to observational difficulties, but also due to the lack of theoretical models capable of explaining the different characteristics of the observed sources. Leading candidate models all incorporate a massive, rotating black hole which is accreting galactic material, with some of this material being ejected out the ratational axis of the hole in the form of relativistically expanding jets. These jets are thought to emit energy via the synchrotron process across the entire spectrum from radio frequences all the way through the GEV (sometimes TEV) gamma-ray frequencies. Attempts to model these sources with single relativistic jets has proven difficult. We present a new model which features concentric interacting jets that do a much better job of explaining the types of Blazars we observe. We also discuss ways of testing this new model against multifreuqency observations.

  9. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  10. The Formation of Relativistic Jets from Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Fishman, G. J.

    2003-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamics (GRMHD) simulation for Schwarzschild and Kerr black holes with a free falling corona and thin accretion disk. The initial simulation results with a Schwarzschild metric show that a jet is created as in the previous axisymmetric simulations with mirror symmetry at the equator. However, the time to form the jet is slightly longer than in the 2-D axisymmetric simulation. We expect that the dynamics of jet formation are modified due to the additional freedom in the azimuth dimension without axisymmetry with respect to the Z axis and reflection symmetry respect to the equatorial plane. The jet which is initially formed due to the twisted magnetic fields and shocks becomes a wind at the later time. The wind flows out with a much wider angle than the initial jet. The twisted magnetic fields at the earlier time were untwisted and less pinched. The accretion disk became thicker than the initial condition. Further simulations with initial perturbations will provide insights for accretion dynamics with instabilities such as magneto-rotational instability (MRI) and accretion-eject instability (AEI). These instabilities may contribute to variabilities observed in microquasars and AGN jets.

  11. Relativistic Shocks: Particle Acceleration and Magnetization

    NASA Astrophysics Data System (ADS)

    Sironi, L.; Keshet, U.; Lemoine, M.

    2015-10-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (i.e. where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of s_{γ}˜eq2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.

  12. Dynamics of Relativistic Magnetized Explosions

    NASA Astrophysics Data System (ADS)

    Lyutikov, M.

    2001-11-01

    The dynamics of (i) relativistic blast waves propagating through magnetized medium, (ii) magnetic explosions (when most energy is released in a form of toroidal magnetic field) is considered taking into account possible inhomogeneities of density and external magnetic field and additional energy supply. Self-similar solutions for the internal structure in the bulk flow and in the strongly magnetized sheath near contact discontinuity are found.

  13. Retardation magnification and the appearance of relativistic jets

    NASA Astrophysics Data System (ADS)

    Jester, Sebastian

    2008-10-01

    Thanks to the availability of high-resolution high-sensitivity telescopes such as the Very Large Array, the Hubble Space Telescope and the Chandra X-Ray Observatory, there is now a wealth of observational data on relativistic jets from active galactic nuclei (AGN) as well as galactic sources such as black hole X-ray binaries. Since the jet speeds cannot be constrained well from observations, but are generally believed to be relativistic, physical quantities inferred from observables are commonly expressed in terms of the unknown beaming parameters: the bulk Lorentz factor and the line-of-sight angle, usually in their combination as relativistic Doppler factor. This paper aims to resolve the discrepancies existing in the literature about such `debeaming' of derived quantities, in particular regarding the minimum-energy magnetic field estimate. The discrepancies arise because the distinction is not normally made between the case of a fixed source observed with different beaming parameters and the case where the source projection on the sky is held fixed. The former is usually considered, but it is the latter that corresponds to interpreting actual jet observations. Furthermore, attention is drawn to the fact that apparent superluminal motion has a spatial corollary, here called `retardation magnification', which implies that most parts of a relativistic jet that are actually present in the observer's frame (a `world map' in relativity terminology) are in fact hidden on the observer's image (the `world picture' in general, or `supersnapshot' in the special case of astronomy). Portions of this work were carried at the Particle Astrophysics Center, Fermilab MS 127, PO Box 500, Batavia, IL 60510, USA; and while the author was an Otto Hahn fellow of the Max-Planck-Gesellschaft at the Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ. E-mail: jester@mpia.de

  14. Current-Driven Kink Instability in Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hardee, Philip E.; Lyubarsky, Yuri; Nishikawa, Ken-Ichi

    We have investigated the development of current-driven (CD) kink instability in relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depend moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  15. Current-Driven Kink Instability in Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hardee, Philip E.; Lyubarsky, Yuri; Nishikawa, Ken-Ici

    2011-06-01

    We have investigated the development of current-driven (CD) kink instability in relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic field configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  16. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. III. ROTATING RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2012-09-20

    We have investigated the influence of jet rotation and differential motion on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we follow the temporal development within a periodic computational box. Displacement of the initial helical magnetic field leads to the growth of the CD kink instability. We find that, in accordance with the linear stability theory, the development of the instability depends on the lateral distribution of the poloidal magnetic field. If the poloidal field significantly decreases outward from the axis, then the initial small perturbations grow strongly, and if multiple wavelengths are excited, then nonlinear interaction eventually disrupts the initial cylindrical configuration. When the profile of the poloidal field is shallow, the instability develops slowly and eventually saturates. We briefly discuss implications of our findings for Poynting-dominated jets.

  17. Probing Turbulence and Acceleration at Relativistic Shocks in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Boettcher, Markus; Summerlin, Errol J.

    2016-04-01

    Acceleration at relativistic shocks is likely to be important in various astrophysical jet sources, including blazars and other radio-loud active galaxies. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazar jets. The spectral index of the non-thermal particle distributions resulting from Monte Carlo simulations of shock acceleration, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the mean magnetic field obliquity to the shock normal. We investigate the radiative synchrotron/Compton signatures of thermal and non-thermal particle distributions generated from the acceleration simulations. Important constraints on the frequency of particle scattering and the level of field turbulence are identified for the jet sources Mrk 501, AO 0235+164 and Bl Lacertae. Results suggest the interpretation that turbulence levels decline with remoteness from jet shocks, with a significant role for non-gyroresonant diffusion.

  18. Relativistic jet interaction with forming galaxies

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey Vincent; Mukherjee, Dipanjan; Wagner, Alex; Slatyer Sutherland, Ralph

    2015-08-01

    We are conducting simulations of jets interacting with molecular and atomic gas on scales of a few kpc in forming galaxies. Competing processes, such as the dispersion of gas in the galaxy and star formation in the high-pressure environment determine whether positive or negative feedback predominates. We shall present our new simulations including an assessment of these different effects. Our simulations also predict the velocity and velocity dispersion of atomic and molecular gas in galaxies, which are undergoing interaction with relativistic jets. These results are of interest to radio and optical spectral imaging observations of galaxies undergoing feedback. The other product of our simulations is the determination of the free-free optical depth due to free-free absorption. This is relevant to the low frequency turnover in Gigahertz Peak Spectrum and Compact Steep Spectrum radio sources.

  19. On the magnetization of BL Lac jets

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Ghisellini, G.

    2016-03-01

    The current paradigm foresees that relativistic jets are launched as magnetically dominated flows, whose magnetic power is progressively converted to kinetic power of the matter of the jet, until equipartition is reached. Therefore, at the end of the acceleration phase, the jet should still carry a substantial fraction (≈half) of its power in the form of a Poynting flux. It has been also argued that, in these conditions, the best candidate particle acceleration mechanism is efficient reconnection of magnetic field lines, for which it is predicted that magnetic field and accelerated relativistic electron energy densities are in equipartition. Through the modelling of the jet non-thermal emission, we explore if equipartition is indeed possible in BL Lac objects, i.e. low-power blazars with weak or absent broad emission lines. We find that one-zone models (for which only one region is involved in the production of the radiation we observe) the particle energy density is largely dominating (by 1-2 orders of magnitude) over the magnetic one. As a consequence, the jet kinetic power largely exceeds the magnetic power. Instead, if the jet is structured (i.e. made by a fast spine surrounded by a slower layer), the amplification of the inverse Compton emission due to the radiative interplay between the two components allows us to reproduce the emission in equipartition conditions.

  20. 3D Hydrodynamic Simulations of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Miller, M. A.; Duncan, G. C.; Swift, C. M.

    1998-12-01

    We present the results of validation runs and the first extragalactic jet simulations performed with a 3D relativistic numerical hydrodynamic code employing a solver of the RHLLE type and using adaptive mesh refinement (AMR; Duncan & Hughes, 1994, Ap. J., 436, L119). Test problems include the shock tube, blast wave and spherical shock reflection (implosion). Trials with the code show that as a consequence of AMR it is viable to perform exploratory runs on workstation class machines (with no more than 128Mb of memory) prior to production runs. In the former case we achieve a resolution not much less than that normally regarded as the minimum needed to capture the essential physics of a problem, which means that such runs can provide valuable guidance allowing the optimum use of supercomputer resources. We present initial results from a program to explore the 3D stability properties of flows previously studied using a 2D axisymmetric code, and our first attempt to explore the structure and morphology of a relativistic jet encountering an ambient density gradient that mimics an ambient inhomogeneity or cloud.

  1. Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-ichi; Hardee, Phil; Hartmann, Dieter; Niemiec, Jacek; Pohl, Martin; Nordlund, Aake; Sol, Helene; Gomez, Jose L.; Dutan, Ioana; Mizuno, Yosuke; Meli, Athina; Peer, Asaf; Frederiksen, Jacob

    2016-07-01

    In the study of relativistic jets one of the key open questions is their interaction with the environment. Here, we study the initial evolution of both electron-proton (e ^{-}- p ^{+}) and electron-positron (e±) relativistic jets, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). For an e ^{-}- p ^{+} jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counter-clockwise in the middle of jet. For an e± jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities which initiate a forward shock. Strong jet ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by e ^{-}- p ^{+} and e± jets may contribute to the polarization properties of the observed emission in AGN jets and gamma ray bursts.

  2. Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frederiksen, J. T.; Nordlund, Å.; Mizuno, Y.; Hardee, P. E.; Niemiec, J.; Gómez, J. L.; Pe'er, A.; Duţan, I.; Meli, A.; Sol, H.; Pohl, M.; Hartmann, D. H.

    2016-04-01

    In the study of relativistic jets one of the key open questions is their interaction with the environment. Here we study the initial evolution of both electron-proton ({e}{--}-{p}+) and electron-positron (e±) relativistic jets, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz and Mushroom instabilities. For an {e}{--}-{p}+ jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counterclockwise in the middle of the jet. For an e± jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities that initiate a forward shock. Strong jet-ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by {e}{--}-{p}+ and e± jets may contribute to the polarization properties of the observed emission in AGN jets and gamma-ray bursts.

  3. Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Trier Trier Frederiksen, Jacob; Nordlund, Aake; Mizuno, Yosuke; Hardee, Philip E.; Niemiec, Jacek; Gomez, Jose; Pe'er, Asaf; Dutan, Ioana; Meli, Athina; Sol, Helene; Pohl, Martin; Hartmann, Dieter

    2016-04-01

    In the study of relativistic jets one of the key open questions is their interaction with the environment. Here, we study the initial evolution of both electron-proton (e-- p+) and electron-positron (e±) relativistic jets, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). For an e-- p+ jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counter-clockwise in the middle of the jet. For an e± jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities which initiate a forward shock. Strong jet-ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by e-- p+ and e± jets may contribute to the polarization properties of the observed emission in AGN jets and gamma ray bursts.

  4. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-01-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation ofjet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity approx.0.3c) is created, as shown by previous two-dimensional axi- symmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (T(sub s) = r(sub s)/c, where r(sub s = 2GM/c(sup 2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r(sub s). At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface ofthe thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfven waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the iack of streaming materiai from an accompanying star.

  5. STABILITY OF RELATIVISTIC FORCE-FREE JETS

    SciTech Connect

    Narayan, Ramesh; Tchekhovskoy, Alexander; Li, Jason

    2009-06-01

    We consider a two-parameter family of cylindrical force-free equilibria, modeled to match numerical simulations of relativistic force-free jets. We study the linear stability of these equilibria, assuming a rigid impenetrable wall at the outer cylindrical radius R{sub j}. Equilibria in which the Lorentz factor {gamma}(R) increases monotonically with increasing radius R are found to be stable. On the other hand, equilibria in which {gamma}(R) reaches a maximum value at an intermediate radius and then declines to a smaller value {gamma}{sub j} at R{sub j} are unstable. A feature of these unstable equilibria is that poloidal field line curvature plays a prominent role in maintaining transverse force balance. The most rapidly growing mode is an m = 1 kink instability which has a growth rate {approx}(0.4/{gamma} {sub j})(c/R{sub j}). The e-folding length of the equivalent convected instability is {approx}2.5{gamma} {sub j} R{sub j}. For a typical jet with an opening angle {theta}{sub j} {approx} few/{gamma}{sub j}, the mode amplitude grows only weakly with increasing distance from the base of the jet. The growth is much slower than one might expect from a naive application of the Kruskal-Shafranov stability criterion.

  6. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  7. Relativistic Doppler Beaming and Misalignments in AGN Jets

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  8. Radiation from Relativistic Shocks with Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.

    2009-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.

  9. Magnetized jet models for radio sources

    NASA Astrophysics Data System (ADS)

    Siah, M. J.

    1985-11-01

    Previous numerical calculations of the boundary of radio jet models consisting of a relativistic fluid that flows into a confining, dimpled gas cloud are extended. When all of the azimuthal field is assumed to remain inside the jet, the resulting boundary shapes are puffed up with respect to those formed in identical potentials with no anisotropic magnetic pressure. When the azimuthal component is allowed to escape from the jet into a sheath or cocoon around it, the pinching effect of this field geometry results in better collimation. This effect is stronger near the source of the ejected plasma. Overall evolution is retarded or unchanged when pressure and energy are explicitly included.

  10. General relativistic magnetohydrodynamical simulations of the jet in M 87

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, Monika; Falcke, Heino; Shiokawa, Hotaka

    2016-02-01

    Context. The connection between black hole, accretion disk, and radio jet can be constrained best by fitting models to observations of nearby low-luminosity galactic nuclei, in particular the well-studied sources Sgr A* and M 87. There has been considerable progress in modeling the central engine of active galactic nuclei by an accreting supermassive black hole coupled to a relativistic plasma jet. However, can a single model be applied to a range of black hole masses and accretion rates? Aims: Here we want to compare the latest three-dimensional numerical model, originally developed for Sgr A* in the center of the Milky Way, to radio observations of the much more powerful and more massive black hole in M 87. Methods: We postprocess three-dimensional GRMHD models of a jet-producing radiatively inefficient accretion flow around a spinning black hole using relativistic radiative transfer and ray-tracing to produce model spectra and images. As a key new ingredient in these models, we allow the proton-electron coupling in these simulations depend on the magnetic properties of the plasma. Results: We find that the radio emission in M 87 is described well by a combination of a two-temperature accretion flow and a hot single-temperature jet. Most of the radio emission in our simulations comes from the jet sheath. The model fits the basic observed characteristics of the M 87 radio core: it is "edge-brightened", starts subluminally, has a flat spectrum, and increases in size with wavelength. The best fit model has a mass-accretion rate of Ṁ ~ 9 × 10-3M⊙ yr-1 and a total jet power of Pj ~ 1043 erg s-1. Emission at λ = 1.3 mm is produced by the counter-jet close to the event horizon. Its characteristic crescent shape surrounding the black hole shadow could be resolved by future millimeter-wave VLBI experiments. Conclusions: The model was successfully derived from one for the supermassive black hole in the center of the Milky Way by appropriately scaling mass and

  11. Relativistic jet feedback in high-redshift galaxies I: Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-06-01

    We present the results of three dimensional relativistic hydrodynamic simulations of interaction of AGN jets with a dense turbulent two-phase interstellar medium, which would be typical of high redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent ISM. The jet driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multi-phase ISM and radial outflows. One of the striking result of this work is that low power jets (Pjet ≲ 1043ergs-1) although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  12. Relativistic jet feedback in high-redshift galaxies - I. Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-09-01

    We present the results of 3D relativistic hydrodynamic simulations of interaction of active galactic nucleus jets with a dense turbulent two-phase interstellar medium, which would be typical of high-redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent interstellar medium (ISM). The jet-driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multiphase ISM and radial outflows. One of the striking result of this work is that low-power jets (Pjet ≲ 1043 ergs-1), although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  13. Radiation from accelerated particles in relativistic jets with shocks and shear-flow

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Hardee, Phil; Dutan, Ioana; Niemiec, Jacek; Medvedev, Mikhail; Meli, Athina; Mizuno, Yosuke; Nordlund, Aake; Trier Frederiksen, Jacob; Sol, Helene; Zhang, Bing; Pohl, Martin; Hartmann, Dieter

    2014-08-01

    We investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Strong magnetic fields generated in the trailing shock contribute to the electron’s transverse deflection and acceleration. Kinetic Kelvin-Helmholtz instability (KKHI) is also responsible to create strong DC and AC magnetic fields. The velocity shears in core-sheath jets create strong magnetic field perpendicular to the jet. We examine how the Lorentz factors of jets affect the growth rates of KKHI. We have calculated, self-consistently, the radiation from electrons accelerated in these turbulent magnetic fields in the shocks. We found that the synthetic spectra depend on the bulk Lorentz factor of the jet, its temperature and strength of the generated magnetic fields. We will investigate synthetic spectra from accelerated electrons in strong magnetic fields generated by KKHI. The calculated properties of the emerging radiation provide our understanding of the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  14. Spatial growth of the current-driven instability in relativistic jets

    SciTech Connect

    Mizuno, Yosuke; Hardee, Philip E.; Nishikawa, Ken-Ichi

    2014-04-01

    We investigated the influence of velocity shear and a radial density profile on the spatial development of the current-driven (CD) kink instability along helically magnetized relativistic jets via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we use a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers growth of the kink instability. If the velocity shear radius is located inside the characteristic radius of the helical magnetic field, a static nonpropagating CD kink is excited as the perturbation propagates down the jet. Temporal growth disrupts the initial flow across the computational grid not too far from the inlet. On the other hand, if the velocity shear radius is outside the characteristic radius of the helical magnetic field, the kink is advected with the flow and grows spatially down the jet. In this case, flow is maintained to much larger distances from the inlet. The effect of different radial density profiles is more subtle. When the density increases with radius, the kink appears to saturate by the end of the simulation without apparent disruption of the helical twist. This behavior suggests that relativistic jets consisting of a tenuous spine surrounded by a denser medium with a velocity shear radius outside the radius of the maximum toroidal magnetic field have a relatively stable configuration.

  15. Relativistic 3D precessing jet simulations for the X-ray binary SS433

    NASA Astrophysics Data System (ADS)

    Monceau-Baroux, Rémi; Porth, Oliver; Meliani, Zakaria; Keppens, Rony

    2014-01-01

    Context. Modern high-resolution radio observations allow us a closer look into the objects that power relativistic jets. This is especially the case for SS433, an X-ray binary that emits a precessing jet that is observed down to the subparsec scale. Aims: We aim to study full 3D dynamics of relativistic jets associated with active galactic nuclei or X-ray binaries (XRB). In particular, we incorporate the precessing motion of a jet into a model for the jet associated with the XRB SS433. Our study of the jet dynamics in this system focuses on the subparsec scales. We investigate the impact of jet precession and the variation of the Lorentz factor of the injected matter on the general 3D jet dynamics and its energy transfer to the surrounding medium. After visualizing and quantifying jet dynamics, we aim to realize synthetic radio mapping of the data, to compare our results with observations. Methods: For our study we used a block-tree adaptive mesh refinement scheme and an inner time-dependent boundary prescription to inject precessing bipolar supersonic jets. Parameters extracted from observations were used. Different 3D jet realizations that match the kinetic flux of the SS433 jet were intercompared, which vary in density contrast and jet beam velocity. We tracked the energy content deposited in different regions of the domain affected by the jet. Our code allows us to follow the adiabatic cooling of a population of relativistic particles injected by the jet. This evolving energy spectrum of accelerated electrons, using a pressure-based proxy for the magnetic field, allowed us to obtain the radio emission from our simulation. Results: We find a higher energy transfer for a precessing jet than for standing jets with otherwise identical parameters as a result of the effectively increased interaction area. We obtain synthetic radio maps for all jets, from which one can see that dynamical flow features are clearly linked with enhanced emission sites. Conclusions: The

  16. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  17. eRMHD simulations of jets with helical magnetic fields

    NASA Astrophysics Data System (ADS)

    Roca-Sogorb, M.; Perucho, M.; Gómez, J. L.; Martí, J. M.; Antón, L.; Aloy, M. A.; Agudo, I.

    We present numerical magnetohydrodynamic and emission (eRMHD) simulations of relativistic jets in active galactic nuclei. We focus our study on the role played by the magnetic field in the dynamics of the jet, analyzing the balance of the main driving forces which determine the jet evolution. Overpressured jets with different magnetizations are considered in order to study their influence in the jet collimation, confinement and overall stability. Computation of the synchrotron emission from these models allows a direct comparison with actual sources. We find that the relative brightness of the knots associated with the recollimation shocks decreases with increasing magnetization, suggesting that overpressured jets presenting stationary components may have a relatively weak magnetization, with magnetic fields of the order of equipartition or below.

  18. Multiwavelength Probes of Relativistic Shock Environs in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Boettcher, M.; Summerlin, E. J.

    2013-04-01

    Diffusive shock acceleration (DSA) at relativistic shocks is likely to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud AGN. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This diagnostic potential was not possible prior to Fermi launch, when gamma-ray information was dominated by the highly-absorbed TeV band. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazars. The spectral index of the nonthermal particle distributions resulting from Monte Carlo simulations of DSA, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the shock magnetic field obliquity. We investigate self-consistently the radiative (synchrotron + Compton) signatures of the resulting thermal and nonthermal particle distributions. Important constraints on the frequency of particle scattering and the level of field turbulence are identified for blazars such as Mrk 501 and the Bl Lac object AO 0235+164. The possible interpretation that turbulence levels decline with remoteness from the shock, and a significant role for non-gyroresonant diffusion, are discussed.

  19. Relativistic Jet Properties of GeV-TeV Blazars and Possible Implications for the Jet Formation, Composition, and Cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei; Sun, Xiao Na

    We present spectral energy distributions (SEDs) fits to a sample of GeV-TeV flat spectrum radio quasars (FSRQs) and compare the jet properties between FSRQs and BL Lacs. We show that the SEDs can be fit with the single-zone leptonic model, and both the minimum and broken Lorentz factors of relativistic electrons can be constrained, with medians of gamma_{min}˜ 48 and gamma_b˜ 240. No statistical difference on the Doppler factors between the FSRQs and BL Lacs is found. Assuming that the jet power is carried by electron-proton pairs, the magnetic field, and the radiation field, we calculate the powers of these components and the total jet power (P_jet) based on our fitting results, hence derive the radiation efficiency and magnetization parameter of the jets. It is found that the FSRQ jets are dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac jets are dominated by particles and have a lower radiation efficiency than FSRQs. Interestingly, different from BL Lacs, P_jet of FSRQs are proportional to their central black hole (BH) masses. Measuring the jet production and radiation rates per central BH mass with P_jet/L_Edd and P_r/L_Edd, we find P_r/L_Edd~ (P_jet/L_Edd)({1.24±) 0.16} for FSRQs and P_r/L_Edd~ (P_jet/L_Edd)({0.85±) 0.09} for BL Lacs. The distribution of P_jet/L_Edd of FSRQs is in a narrow range, whereas it varies over several orders of magnitude for BL Lacs. These results likely suggest that the essential difference of FSRQs and BL Lacs may be due to the different jet production mechanisms. The dominating formation mechanism of FSRQ jets may be the BZ process. BL Lac jets may be produced via the BP and/or BZ processes, depending on structures and accretion rates of accretion disks. P_jet is correlated with the cavity kinetic power L_kin for our blazar sample. The magnetic field energy in the jets may provide the cavity kinetic energy for FSRQs and the kinetic energy of cold protons in the jets may be crucial for

  20. A magnetohydrodynamic model of the M87 jet. II. Self-consistent quad-shock jet model for optical relativistic motions and particle acceleration

    SciTech Connect

    Nakamura, Masanori

    2014-04-20

    We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the Hubble Space Telescope during 1994-1998. The model concept consists of ejection of a single relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the optical observations of HST-1 with the same model we used previously to describe similar features in radio very long baseline interferometry observations in 2005-2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge of the HST-1 complex as observed from radio to optical wavelengths, with forward/reverse fast-mode MHD shocks then responsible for observed moving features. Moreover, we identify such intrinsic properties as the shock compression ratio, degree of magnetization, and magnetic obliquity and show that they are suitable to mediate diffusive shock acceleration of relativistic particles via the first-order Fermi process. We suggest that relativistic MHD shocks in Poynting-flux-dominated helical jets may play a role in explaining observed emission and proper motions in many active galactic nuclei.

  1. Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nokhrina, E. E.; Beskin, V. S.; Kovalev, Y. Y.; Zheltoukhov, A. A.

    2015-03-01

    The analysis of the frequency dependence of the observed shift of the cores of relativistic jets in active galactic nuclei (AGNs) allows us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ = ne/nGJ, where nGJ is the Goldreich-Julian number density. We have obtained the median value for λmed = 3 × 1013 and the median value for the Michel magnetization parameter σM, med = 8 from an analysis of 97 sources. Since the magnetization parameter can be interpreted as the maximum possible Lorentz factor Γ of the bulk motion which can be obtained for relativistic magnetohydrodynamic (MHD) flow, this estimate is in agreement with the observed superluminal motion of bright features in AGN jets. Moreover, knowing these key parameters, one can determine the transverse structure of the flow. We show that the poloidal magnetic field and particle number density are much larger in the centre of the jet than near the jet boundary. The MHD model can also explain the typical observed level of jet acceleration. Finally, casual connectivity of strongly collimated jets is discussed.

  2. Modeling Relativistic Jets Using the Athena Hydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Pauls, David; Pollack, Maxwell; Wiita, Paul

    2014-11-01

    We used the Athena hydrodynamics code (Beckwith & Stone 2011) to model early-stage two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei. We analyzed variability of the radio emission by calculating fluxes from a vertical strip of zones behind a standing shock, as discussed in the accompanying poster. We found the advance speed of the jet bow shock for various input jet velocities and jet-to-ambient density ratios. Faster jets and higher jet densities produce faster shock advances. We investigated the effects of parameters such as the Courant-Friedrichs-Lewy number, the input jet velocity, and the density ratio on the stability of the simulated jet, finding that numerical instabilities grow rapidly when the CFL number is above 0.1. We found that greater jet input velocities and higher density ratios lengthen the time the jet remains stable. We also examined the effects of the boundary conditions, the CFL number, the input jet velocity, the grid resolution, and the density ratio on the premature termination of Athena code. We found that a grid of 1200 by 1000 zones allows the code to run with minimal errors, while still maintaining an adequate resolution. This work is supported by the Mentored Undergraduate Summer Experience program at TCNJ.

  3. AN ANGLE-DEPENDENT SYNCHROTRON SELF-COMPTON MODEL FOR RELATIVISTIC JET SOURCES

    SciTech Connect

    Jamil, O.; Boettcher, M.

    2012-11-01

    We report on the development of a numerical code to calculate the angle-dependent synchrotron + synchrotron self-Compton radiation from relativistic jet sources with partially ordered magnetic fields and anisotropic particle distributions. Using a multi-zone radiation transfer approach, we can simulate magnetic-field configurations ranging from perfectly ordered (unidirectional) to randomly oriented (tangled). We demonstrate that synchrotron self-Compton model fits to the spectral energy distributions (SEDs) of extragalactic jet sources may be possible with a wide range of magnetic-field values, depending on their orientation with respect to the jet axis and the observer. This is illustrated with the example of a spectral fit to the SED of Mrk 421 from multiwavelength observations in 2006, where acceptable fits are possible with magnetic-field values varying within a range of an order of magnitude for different degrees of B-field alignment and orientation.

  4. Relativistic Jet Dynamics and Calorimetry of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-01

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 <= θ0 <= 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r θ at which the expansion Lorentz factor drops to θ-1 0. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > ts = r θ/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t ~ ts occur only for well off-axis observers, θobs ~ 1 Gt θ0). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > ts observations.

  5. RELATIVISTIC JET DYNAMICS AND CALORIMETRY OF GAMMA-RAY BURSTS

    SciTech Connect

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-10

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 {<=} {theta}{sub 0} {<=} 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r{sub {theta}} at which the expansion Lorentz factor drops to {theta}{sup -1}{sub 0}. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > t{sub s} = r{sub {theta}}/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t {approx} t{sub s} occur only for well off-axis observers, {theta}{sub obs} {approx} 1 >> {theta}{sub 0}). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > t{sub s} observations.

  6. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  7. The physics of gamma-ray bursts & relativistic jets

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Zhang, Bing

    2015-02-01

    We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to 100s GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.

  8. A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.

    2004-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.

  9. Systematic Studies of Relativistic Jets and Shocks in AGN and GRBs

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi

    The proposed research is designed to provide a fundamental physical understanding of the role of magnetic fields in relativistic jets and shocks. Investigations will be conducted us- ing our relativistic MHD (RMHD) code. Results will be applied to the observed properties of AGN and GRB jets and via emission modeling. The research is motived by the long standing unresolved problems concerning multi-wavelength properties of AGN and GRB emission and aimed to gain true understanding of how jets are launched, evolve and develop. This research is designed to reach a fundamental understanding of the macroscopic dynamics leading to the observed emission. This research directly addresses both global jet dynamics and processes near black holes. In addition to studying the physics of jet acceleration and collimation, the proposed research will examine the differences arising from various magnetically dominated and kinetically dominated jet configurations indicated by jet acceleration and collimation process. The research includes: (1) Determination of the evolution of magnetic and kinetic struc- ture such as might arise from current driven (CD) and Kelvin-Helmholtz driven (KH) - instability via RMHD simulations. (2) Prediction of the observed motion, intensity and polar- ization of CD and KH instability structures on RMHD jets. (3) Coupling observed emission properties to the acceleration and collimation process. The content of this proposal conforms to the sub-goal 3D of NASA’s Strategic Plan, namely, “Discover the origin, structure, evolution, and destiny of the universe and the search for earth- like planets”. This research has broad impact via RMHD code development, ac- companying imaging and comparison with space-based spectral observations by current and future NASA missions, Chandra, RXTE, XMM, Integral, Suzaku, Fermi, JANUS, NuSTAR.

  10. Magnetically driven jets and winds

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  11. The power of relativistic jets is larger than the luminosity of their accretion disks.

    PubMed

    Ghisellini, G; Tavecchio, F; Maraschi, L; Celotti, A; Sbarrato, T

    2014-11-20

    Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter. PMID:25409827

  12. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  13. Causality and Communication: Relativistic astrophysical jets and the implementation of science communication training in astronomy classes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    Part I: Relativistic jets emitted from the centers of some galaxies (called active galaxies) exhibit many interesting behaviors that are not yet fully understood: acceleration and collimation over vast distances, for instance, and occasional flaring activity. In the first part of my thesis, I examine the possibility of collimation and acceleration of relativistic jets by the pressure of the ambient medium surrounding the jet base. I discuss the differences in predicted jet behavior due to including the effects of a magnetic field threading the jet interior, and I describe the conditions that create some observed jet shapes, such as the "hollow cone" structure seen in M87 and similar jets. I also discuss what happens when the pressure outside of the jet drops so slowly that the jet shocks repeatedly, generating entropy at its boundary. Finally, I examine the spectra of the 40 brightest gamma-ray flares from blazars (active galaxies with jets pointed toward us) recorded by the Fermi Gamma-ray Space Telescope in its first four years of operation. I develop models to describe the observed behavior of these flares and discuss the physical implications of these models. Part II: The ability to clearly communicate scientific concepts to both peers and the lay public is an important component of being a scientist. Few training programs exist, however, for scientists to obtain these skills. In the second part of my thesis, I examine the impact of two different training efforts for very early-career scientists: first, a short science communication workshop for science, technology, engineering and math (STEM) graduate students, and second, science communication training integrated into existing astronomy classes for undergraduate STEM majors and early STEM graduate students. I evaluate whether the students' written communication skills demonstrate measurable improvement after training, and track students' attitudes toward science communication.

  14. Energetic and radiative constraints on highly relativistic jets

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Rees, Martin J.; Sikora, Marek

    1994-01-01

    We examine constraints on the energetics and radiative efficiencies of highly relativistic, synchrotron-emitting jets. If the observed intraday radio variability of compact radio sources is intrinsic and results from incoherent synchrotron radiation, then the associated jets must have bulk Lorentz factors in the range Gamma varies approximately 30 to 100, several times larger than the largest values inferred from superluminal expansion, and larger even than the values required to avoid the synchrotron self-Compton catastrophe. We show that such highly relativistic jets produce synchrotron radiation with extremely low radiative efficiency. As a result they must carry enormous kinetic energy fluxes, L(sub j) approximately greater than 10(exp 47)(Delta Omega/0.1 sr), where Delta Omega is the solid angle subtended by the jet, in order to produce 'apparent' synchrotron brightness temperatures approximately greater than 10(exp 16) K. Energy losses by such jets should be strongly dominated by Compton scattering of diffuse ambient radiation, and they should produce large X-ray and gamma-ray fluxes.

  15. Energy balance in the course of relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Semenov, V. S.; Tolstykh, Yu. V.; Dyadechkin, S. A.

    Magnetic reconnection plays an important role in space physics, for example, in Earth's magnetosphere, on the Sun, in the magnetospheres of magnetars, pulsars, black holes, etc. Reconnection starts with abrupt drop of plasma conductivity in a small part of a current sheet, so called, diffusion region. As a result electric field is generated and is transferred by relativistic MHD surface wave from the diffusion region to the current sheet which leads to decay of the disturbed part of the current sheet into a system of slow shocks. Plasma is highly accelerated and heated at the shock fronts forming outflow region with relativistic plasma jets and weak magnetic field (Semenov & Bernikov 1991). At some stage the reconnection process has to switch-off, then outflow regions must detach from the site where the electric field was initiated, and propagate along the current sheet as solitary waves (Tolstykh et al. 2005). The energy balance of relativistic reconnection is investigated in details. It is shown that magnetic and thermal energy from the inflow region is spent for acceleration and heating of the plasma in jets. It is interesting that the temperature of the plasma in the wake of the propagating outflow regions drops after each pulse of reconnection. This differ from usual explosion which heats the plasma behind the shock front (Tolstykh et al. 2007).

  16. Is there a mildly relativistic jet in SN2007gr?

    NASA Astrophysics Data System (ADS)

    Paragi, Z.; van der Horst, A. J.; Tanaka, M.; Taylor, G. B.; Kouveliotou, C.; Granot, J.; Ramirez-Ruiz, E.; Pidopryhora, Y.; Bourke, S.; Campbell, R. M.; Garrett, M. A.; van Langevelde, H. J.

    2011-02-01

    SN2007gr was an ordinary type Ic supernova, with a hint of asymmetric explosion seen in the optical polarization spectrum. This type of SNe is occasionally associated with long duration gamma-ray bursts which generate ultra-relativistic jets; no relativistic outflows have yet been found by direct imaging in SNe Ib/c explosions. High resolution very long baseline interferometry (VLBI) data and simultaneous total radio flux density measurements indicated that SN2007gr has expanded mildly relativistically. We performed late time Westerbork Synthesis Radio Telescope (WSRT) observations to measure the level of the underlying extended emission. Comparison of the VLBI and the background-subtracted WSRT and independent VLA data indicate an at least partially resolved source with an average expansion velocity of >=0.4c, although the VLBI data could be consistent with a fainter source with an expansion velocity of ~0.2c as well.

  17. On the stability and energy dissipation in magnetized radio galaxy jets.

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-07-01

    It is commonly accepted that the relativistic jets observed in radio galaxies are launched magnetically and are powered by the rotational energy of the central supermassive black hole. Such jets carry most of their energy in the form of electromagnetic Poynting flux. However by the time the ejecta reach the emission zone most of that energy is transferred to relativistic motions of the jet material with a large fraction given to non-thermal particles, which calls for an efficient dissipation mechanism to work within the jet without compromising its integrity. Understanding the energy dissipation mechanisms and stability of Poynting flux dominated jets is therefore crucial for modeling these astrophysical objects. In this talk I will present the first self consistent 3D simulations of the formation and propagation of highly magnetized (σ ˜25), relativistic jets in a medium. We find that the jets develop two types of instability: i) a local, "internal" kink mode which efficiently dissipates half of the magnetic energy into heat, and ii) a global "external" mode that grows on longer time scales and causes the jets to bend sideways and wobble. Low power jets propagating in media with flat density profiles, such as galaxy cluster cores, are susceptible to the global mode, and develop FRI like morphology. High power jets remain stable as they cross the cores, break out and accelerate to large distances, appearing as FRII jets. Thus magnetic kink instability can account for both the magnetic energy dissipation and the population dichotomy in radio galaxy jets.

  18. Magnetic Fields in Stellar Jets

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.

    2007-06-01

    Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.

  19. Corrugation of Relativistic Magnetized Shock Waves

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent

    2016-08-01

    As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.

  20. Photospheric Emission from Collapsar Jets in 3D Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.

    2015-12-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.

  1. Variability in Active Galactic Nuclei from Propagating Turbulent Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-01

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is -1.8 to -2.3, while for the bulk velocity produced variations this range is -2.1 to -2.9 these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  2. Evidence for Highly Relativistic Velocities in the Kiloparsec-scale Jet of the Quasar 3C 345

    NASA Astrophysics Data System (ADS)

    Roberts, David H.; Wardle, John F. C.

    2012-11-01

    In this paper we use radio polarimetric observations of the jet of the nearby bright quasar 3C 345 to estimate the fluid velocity on kiloparsec scales. The jet is highly polarized, and surprisingly, the electric vector position angles in the jet are "twisted" with respect to the jet axis. Simple models of magnetized jets are investigated in order to study various possible origins of the electric vector distribution. In a cylindrically symmetric transparent jet a helical magnetic field will appear either transverse or longitudinal due to partial cancellations of Stokes parameters between the front and back of the jet. Synchrotron opacity can break the symmetry, but it leads to fractional polarization less than that observed and to strong frequency dependence that is not seen. Modeling shows that differential Doppler boosting in a diverging jet can break the symmetry, allowing a helical magnetic field to produce a twisted electric vector pattern. Constraints on the jet inclination, magnetic field properties, intrinsic opening angle, and fluid velocities are obtained and show that highly relativistic speeds (β >~ 0.95) are required. This is consistent with the observed jet opening angle, with the absence of a counter-jet, with the polarization of the knots at the end of the jet, and with some inverse-Compton models for the X-ray emission from the 3C 345 jet. This model can also apply on parsec scales and may help explain those sources where the electric vector position angles in the jet are neither parallel nor transverse to the jet axis.

  3. EVIDENCE FOR HIGHLY RELATIVISTIC VELOCITIES IN THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345

    SciTech Connect

    Roberts, David H.; Wardle, John F. C.

    2012-11-10

    In this paper we use radio polarimetric observations of the jet of the nearby bright quasar 3C 345 to estimate the fluid velocity on kiloparsec scales. The jet is highly polarized, and surprisingly, the electric vector position angles in the jet are 'twisted' with respect to the jet axis. Simple models of magnetized jets are investigated in order to study various possible origins of the electric vector distribution. In a cylindrically symmetric transparent jet a helical magnetic field will appear either transverse or longitudinal due to partial cancellations of Stokes parameters between the front and back of the jet. Synchrotron opacity can break the symmetry, but it leads to fractional polarization less than that observed and to strong frequency dependence that is not seen. Modeling shows that differential Doppler boosting in a diverging jet can break the symmetry, allowing a helical magnetic field to produce a twisted electric vector pattern. Constraints on the jet inclination, magnetic field properties, intrinsic opening angle, and fluid velocities are obtained and show that highly relativistic speeds ({beta} {approx}> 0.95) are required. This is consistent with the observed jet opening angle, with the absence of a counter-jet, with the polarization of the knots at the end of the jet, and with some inverse-Compton models for the X-ray emission from the 3C 345 jet. This model can also apply on parsec scales and may help explain those sources where the electric vector position angles in the jet are neither parallel nor transverse to the jet axis.

  4. A precessing relativistic jet model for 3C 449

    NASA Technical Reports Server (NTRS)

    Gower, A. C.; Hutchings, J. B.

    1982-01-01

    It is shown that the radio structure of 3C 449 can be matched with a model in which the jets are precessing and have relativistic (beta greater-than or equal to 0.4) velocities. The best-fit model implies a precession period of about 100,000 yr and a cone angle which increases with time. A similar model may be relevant for the radio structure of 3C 31. A brief discussion of the implications for 3C 449 is given.

  5. The Innermost Regions of Relativistic Jets: Wrapping Up the Enigma

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2013-12-01

    What are relativistic jets like within a million Schwarzschild radii of the accreting black hole that powers them? A meeting in Granada, Spain in June 2013, organized by José L. Gómez and his conspirators brought together observers and theorists to survey the current state of observational data and efforts to interpret them. This conference summary reviews the results, insights, arguments, conflicts, and agreements that occurred during five sunny days spent in a windowless room in a hotel at the bottom of the hill that holds the heart of the beautiful city.

  6. Magnetic jets in long GRBs: jet stability, energy dissipation & the connection with the magnetar model

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer

    2016-07-01

    It is commonly accepted that jets in long GRBs are powered by the magnetized rotation of a compact object: a BH or a fastly rotating magnetar. Such jets are intrinsically unstable to disruptive kink modes, yet they maintain their shape over many orders of magnitude as they propagate through the star and beyond, while converting their electromagnetic energy into radiation and kinetic energy. This calls for an efficient dissipation mechanism to work within the jet, without causing its disruption. In this talk I will present results from a 3D study of relativistic magnetized GRB jets propagating in stellar envelopes. The collimation of the jet leads to two types of instabilities: i) a local kink mode that causes internal dissipation of the magnetic energy to a state of equipartition with the thermal energy, ii) a global kink mode, which bodily deforms the jet, causing it to slow down may lead to jet stalling. I will discuss the interesting implications from these results on the energy emission in long GRBs and on the type of compact objects that power them. In particular I will show that within the framework of the magnetar model, the jet is expected to become highly kinked unstable and fail to breakout of the star. Instead it inflates a bubble with ~10^52 erg of energy at the center of the star leading to a highly energetic supernova.

  7. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  8. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  10. Dynamics of relativistic magnetized blast waves

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2002-03-01

    The dynamics of a relativistic blast wave propagating through a magnetized medium is considered, taking into account possible inhomogeneities of density and magnetic field and additional energy supply. Under the simplifying assumption of a spherically symmetric explosion in a medium with toroidal magnetic field self-similar solutions for the internal dynamics of the flow are derived. In the weakly magnetized case, when the bulk of the flow may be described by the unmagnetized solutions, there is a strongly magnetized sheath near the contact discontinuity (when it exists). Self-similar solutions inside the sheath are investigated. In the opposite limit of strongly magnetized upstream plasma new analytical self-similar solutions are found. Possible application to the physics of gamma-ray bursts is discussed.

  11. Multiwavelength Probes of the Environs of Relativistic Shocks in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.

    2014-03-01

    Diffusive shock acceleration (DSA) at relativistic shocks is likely to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud AGN. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This diagnostic potential was not possible prior to Fermi launch, when gamma-ray information was dominated by the highly-absorbed TeV band. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazar jets. The spectral index of the non-thermal particle distributions resulting from Monte Carlo simulations of DSA, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the magnetic field obliquity to the shock normal. We investigate self-consistently the radiative synchrotron/Compton signatures of the resulting thermal and non-thermal particle distributions. Important constraints on the frequency of particle scattering and the level of field turbulence are identified for the blazar AO 0235+164. The possible interpretation that turbulence levels decline with remoteness from jet shocks, and a significant role for non-gyroresonant diffusion, are discussed.

  12. Gamma-Ray Polarization of the Synchrotron Self-compton Process from a Highly Relativistic Jet

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Lin, Hai-Nan

    2014-11-01

    The high polarization observed in the prompt phase of some gamma-ray bursts invites extensive study of the emission mechanism. In this paper, we investigate the polarization properties of the synchrotron self-Compton (SSC) process from a highly relativistic jet. A magnetic-dominated, baryon-loaded jet ejected from the central engine travels with a large Lorentz factor. Shells with slightly different velocities collide with each other and produce shocks. The shocks accelerate electrons to a power-law distribution and, at the same time, magnify the magnetic field. Electrons move in the magnetic field and produce synchrotron photons. Synchrotron photons suffer from the Compton scattering (CS) process and then are detected by an observer located slightly off-axis. We analytically derive the formulae of photon polarization in the SSC process in two magnetic configurations: a magnetic field in the shock plane and perpendicular to the shock plane. We show that photons induced by the SSC process can be highly polarized, with the maximum polarization Π ~ 24% in the energy band [0.5, 5] MeV. The polarization depends on the viewing angles, peaking in the plane perpendicular to the magnetic field. In the energy band [0.05, 0.5] MeV, in which most γ-ray polarimeters are active, the polarization is about twice that in the Thomson limit, reaching Π ~ 20%. This implies that the Klein-Nishina effect, which is often neglected in the literature, should be carefully considered.

  13. Gamma-ray polarization of the synchrotron self-compton process from a highly relativistic jet

    SciTech Connect

    Chang, Zhe; Lin, Hai-Nan

    2014-11-01

    The high polarization observed in the prompt phase of some gamma-ray bursts invites extensive study of the emission mechanism. In this paper, we investigate the polarization properties of the synchrotron self-Compton (SSC) process from a highly relativistic jet. A magnetic-dominated, baryon-loaded jet ejected from the central engine travels with a large Lorentz factor. Shells with slightly different velocities collide with each other and produce shocks. The shocks accelerate electrons to a power-law distribution and, at the same time, magnify the magnetic field. Electrons move in the magnetic field and produce synchrotron photons. Synchrotron photons suffer from the Compton scattering (CS) process and then are detected by an observer located slightly off-axis. We analytically derive the formulae of photon polarization in the SSC process in two magnetic configurations: a magnetic field in the shock plane and perpendicular to the shock plane. We show that photons induced by the SSC process can be highly polarized, with the maximum polarization Π ∼ 24% in the energy band [0.5, 5] MeV. The polarization depends on the viewing angles, peaking in the plane perpendicular to the magnetic field. In the energy band [0.05, 0.5] MeV, in which most γ-ray polarimeters are active, the polarization is about twice that in the Thomson limit, reaching Π ∼ 20%. This implies that the Klein-Nishina effect, which is often neglected in the literature, should be carefully considered.

  14. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  15. Relativistic Jet Properties of GeV-TeV Blazars and Possible Implications for the Jet Formation, Composition, and Cavity Kinematics

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sun, Xiao-Na; Liang, En-Wei; Lu, Rui-Jing; Lu, Ye; Zhang, Shuang-Nan

    2014-06-01

    We fit the spectral energy distributions of a GeV-TeV flat spectrum radio quasar (FSRQ) sample with the leptonic model. Their γmin of the relativistic electron distributions, which significantly affect the estimate of the jet properties, are constrained, with a typical value of ~48. Their jet power, magnetized parameter, radiation efficiency, and jet production and radiation rates per central black hole (BH) mass are derived and compared with those of BL Lacertae (BL Lac) objects. We show that the FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac object jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lac objects, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lac objects. We also show that the jet power is correlated with the cavity kinetic power: the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs, and the kinetic energy of cold protons in the jets may be crucial for the cavity kinetic energy of BL Lac objects. We suggest that the dominating formation mechanism of FSRQ jets may be the Blandford-Znajek process, but BL Lac object jets may be produced via the Blandford-Payne and/or Blandford-Znajek processes, depending on the structures and accretion rates of accretion disks.

  16. Relativistic jet properties of GeV-TeV blazars and possible implications for the jet formation, composition, and cavity kinematics

    SciTech Connect

    Zhang, Jin; Lu, Ye; Zhang, Shuang-Nan; Sun, Xiao-Na; Liang, En-Wei; Lu, Rui-Jing E-mail: lew@gxu.edu.cn

    2014-06-20

    We fit the spectral energy distributions of a GeV-TeV flat spectrum radio quasar (FSRQ) sample with the leptonic model. Their γ{sub min} of the relativistic electron distributions, which significantly affect the estimate of the jet properties, are constrained, with a typical value of ∼48. Their jet power, magnetized parameter, radiation efficiency, and jet production and radiation rates per central black hole (BH) mass are derived and compared with those of BL Lacertae (BL Lac) objects. We show that the FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac object jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lac objects, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lac objects. We also show that the jet power is correlated with the cavity kinetic power: the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs, and the kinetic energy of cold protons in the jets may be crucial for the cavity kinetic energy of BL Lac objects. We suggest that the dominating formation mechanism of FSRQ jets may be the Blandford-Znajek process, but BL Lac object jets may be produced via the Blandford-Payne and/or Blandford-Znajek processes, depending on the structures and accretion rates of accretion disks.

  17. The collimation of magnetic jets by disc winds

    NASA Astrophysics Data System (ADS)

    Globus, N.; Levinson, A.

    2016-09-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disc wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disc wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about 10 percents of the jet power. For moderate wind powers, we find gradual collimation. For strong winds, we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfvén crossing times before becoming conical. We estimate that in the later case, the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced provided that the wind injection zone extends to several hundreds gravitational radii, and that its total power is about one-third of the jet power. The radio spectrum can be produced by synchrotron radiation of relativistically hot, thermal electrons in the sheath flow surrounding the inner jet.

  18. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs

  19. General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman

    2006-01-01

    We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.

  20. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows. PMID:26605521

  1. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  2. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  3. TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau

    SciTech Connect

    Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.; Scaife, Anna M. M.; Green, David A.; Buckle, Jane V.

    2014-09-01

    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.

  4. Gamma ray emitting globular clusters: Possible contribution from relativistic jets of intermediate mass black holes

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Gnedin, Yuri; Silant'ev, Nikolai; Natsvlishvili, Tinatin; Buliga, Stanislava

    2016-05-01

    We developed a method that allows us to estimate the high energy gamma ray luminosity of intermediate mass black holes (IMBH) located in the central regions of globular clusters. Our calculations are based on the relation between the relativistic jet kinetic power and the luminosity of the gamma ray radiation that is produced by the jet itself. The power of a relativistic jet is determined via the Blandford-Znajek mechanism. Our calculations show that the contribution of the central IMBH in gamma ray luminosity is comparable with the contribution of the population of millisecond pulsars.

  5. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  6. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel D.; Newman, William I.

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number MA. We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  7. Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation

    NASA Technical Reports Server (NTRS)

    Mufson, S. L.; Hutter, D. J.; Kondo, Y.; Wisniewski, W. Z.

    1988-01-01

    Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei.

  8. Instability of Toroidal Magnetic Field in Jets and Plerions

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    1998-01-01

    Astrophysical jets and pulsar-fed supernova remnants (plerions) are expected to develop highly organized magnetic structures dominated by concentric loops of toroidal field, Bφ. It has been argued that such structures could explain the polarization properties of some jets and contribute to their lateral confinement through magnetic tension forces. A concentric toroidal field geometry is also central to the Rees-Gunn model for the Crab Nebula, the archetypal plerion, and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this kind of equilibrium between magnetic and gas pressure forces, the ``equilibrium Z-pinch'' of the controlled fusion literature, is well known to be susceptible to disruptive localized instabilities, even when the magnetic field is weak and/or boundary conditions (e.g., a dense external medium) slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist for very long. To determine the growth rates of Z-pinch instabilities under astrophysical conditions, I derive a dispersion relation that is valid for the relativistic fluids of which jets and plerions may be composed, in the ideal magnetohydrodynamics (MHD) limit. The dominant instabilities are kink (m = 1) and pinch (m = 0) modes. The former generally dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which resistive dissipation of the field may be enhanced). I estimate the timescales over which the field structure is likely to be rearranged and relate these to distances along relativistic jets and radii from the central pulsar in a plerion. I conclude that the central tenet of the Rees-Gunn model for the Crab Nebula, the existence of a concentric toroidal field well outside the pulsar wind's termination shock, is physically unrealistic. With this assumption

  9. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  10. Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet

    NASA Astrophysics Data System (ADS)

    Crumley, P.; Lu, W.; Santana, R.; Hernández, R. A.; Kumar, P.; Markoff, S.

    2016-07-01

    Within the first 10 days after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray and gamma-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as SSC, photospheric and proton synchrotron. The infrared to gamma-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time scale shorter than ~1% of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray lightcurve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE.

  11. Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet

    NASA Astrophysics Data System (ADS)

    Crumley, P.; Lu, W.; Santana, R.; Hernández, R. A.; Kumar, P.; Markoff, S.

    2016-07-01

    Within the first 10 d after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as synchrotron self-Compton, photospheric and proton synchrotron. The infrared-to-γ-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time-scale shorter than ˜1 per cent of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux-dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray light curve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE.

  12. Swift J1644+57: an Ideal Test Bed of Radiation Mechanisms in a Relativistic Super-Eddington Jet

    NASA Astrophysics Data System (ADS)

    Crumley, P.; Lu, W.; Santana, R.; Hernández, R. A.; Kumar, P.; Markoff, S.

    2016-04-01

    Within the first 10 days after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray and gamma-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as SSC, photospheric and proton synchrotron. The infrared to gamma-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time scale shorter than ˜1% of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray lightcurve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE.

  13. Studying Absorption Line Feature in the Relativistic Jet Source GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    The galactic superluminal source GRS 1915+105 is among the most interesting objects in our Galaxy. It is subject to erratic accretion instabilities with energization of relativistic jets producing X-ray, optical and radio emission. This source was observed by ASCA on Sept. 27, 1994, April 20, 1995, October 23, 1996 and April 25, 1997 as part of a long timescale investigation. We detected strong variability of the source, and in particular the existence of burst/dip structure in October 1996 and April 1997. Clear evidence of transient absorption features at 6.7, 7.0 and 8.0 keV was obtained for the first time in September 1994 and April 1995. Given the phenomenology of plasmoid energization and ejection, these transient spectral features might be produced by material entrained in the radio jets or in other high-velocity outflows. Our contribution to the interpretation is to incorporate these observations into a overall theoretical picture for GRS 1915+105 also taking into account other observations by XTE and BSAX. The emerging picture is complex. The central source is subject to (most likely) super-Eddington instabilities mediated by magnetic field build-up, reconnection and dissipation in the form of blobs that eventually leads to the formation of transient spectral features from the surrounding of the plasmoid emitting region. A comprehensive theoretical investigation is in progress.

  14. Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, T.; Tajima, T.

    2014-05-01

    Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.

  15. Core shifts, magnetic fields and magnetization of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander

    2015-07-01

    We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ≃0.1-0.2 divided by the bulk Lorentz factor, Γj. Larger values, e.g. 1/Γj, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ≪1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.

  16. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    SciTech Connect

    Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.; Niemiec, J.; Medvedev, M.; Mizuno, Y.; Meli, A.; Sol, H.; Zhang, B.; Pohl, M.; Hartmann, D. H.

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  17. Radiatively driven relativistic jets with variable adiabatic index equation of state

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Kumar, Rajiv; Mandal, Samir; Chattopadhyay, Indranil

    2015-11-01

    We investigate a relativistic fluid jet driven by radiation from a shocked accretion disc around a non-rotating black hole approximated by Paczyński-Wiita potential. The sub-Keplerian and Keplerian accretion rates control the shock location and therefore, the radiation field around the accretion disc. We compute the radiative moments with full special relativistic transformation. The effect of a fraction of radiation absorbed by the black hole has been approximated, over and above the special relativistic transformations. We show that the radiative moments around a supermassive black hole are different compared to that around a stellar mass black hole. We show that the terminal speed of jets increases with the mass accretion rates, synchrotron emission of the accretion disc, and reduction of proton fraction of the flow composition. To obtain relativistic terminal velocities of jets, both thermal and radiative driving are important. We show for very high accretion rates and pair dominated flow, jets around supermassive black holes are truly ultrarelativistic, while for jets around stellar mass black holes, terminal Lorentz factor of about 10 is achievable.

  18. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2011-01-01

    Using our new 3-D relativistic particle-in-cell (PIC) code, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic compression. Behind the bow shock, in the jet shock, strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to go beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations and calculated radiation based on first principles. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the technique to calculate emission from electrons based on simulations with a small system. We obtain spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system may generate a jitter/synchrotron spectrum.

  19. The Case for a Misaligned Relativistic Jet from SN 2001em

    NASA Astrophysics Data System (ADS)

    Granot, Jonathan; Ramirez-Ruiz, Enrico

    2004-07-01

    SN 2001em, identified as a Type Ic supernova (SN Ic), has recently been detected in the radio and X-rays, >~2 yr after the explosion. The high luminosities at such late times might arise from a relativistic jet viewed substantially off-axis that becomes visible only when it turns mildly relativistic and its emission is no longer strongly beamed away from us. Alternatively, the emission might originate from the interaction of the SN shell with the circumstellar medium. We find that the latter scenario is hard to reconcile with the observed rapid rise in the radio flux and optically thin spectrum, Fν~ν-0.36+/-0.16t1.9+/-0.4, while these features arise naturally from a misaligned relativistic jet. The high X-ray luminosity provides an independent and more robust constraint; it requires ~1051 ergs in mildly relativistic ejecta. The source should therefore currently have a large angular size (~2 mas), which could be resolved in the radio with the Very Long Baseline Array. It is also expected to be bipolar and is thus likely to exhibit a large degree of linear polarization (~10%-20%). The presence of a relativistic outflow in SN 2001em would have interesting implications. It would suggest that several percent of SNe Ib/c produce mildly relativistic jets, with an initial Lorentz factor Γ0>~2, while the fraction that produces gamma-ray burst (GRB) jets (with Γ0>~100) is ~100 times smaller. This could considerably increase the expected number of transients similar to orphan GRB afterglows in the radio and to a lesser extent in the optical and X-rays, if there is a continuous distribution in Γ0. Furthermore, this may give further credence to the idea that core-collapse SNe, and in particular SNe Ib/c, are triggered by bipolar jets.

  20. Magnetic fields in relativistic collisionless shocks

    SciTech Connect

    Santana, Rodolfo; Kumar, Pawan; Barniol Duran, Rodolfo E-mail: pk@astro.as.utexas.edu

    2014-04-10

    We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ε {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ≥ X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ∼t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ε {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ε {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ∼10{sup –8}-10{sup –3} (∼10{sup –6}-10{sup –3}) and median of ∼few × 10{sup –5} (∼few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ∼10 μG, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF∝n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ∼1-1000 (∼10-300) with a median of ∼50 (∼50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

  1. WHAT IS ON TAP? THE ROLE OF SPIN IN COMPACT OBJECTS AND RELATIVISTIC JETS

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gueltekin, Kayhan; Walton, Dominic J.; Fabian, Andrew C.; Reynolds, Christopher S.; Nandra, Kirpaul

    2013-07-10

    We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes 3 different Seyfert samples with a total of 37 unique Seyferts, as well as 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with simple Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with more relativistically blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3{sigma} confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3{sigma} confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4{sigma} and 4.1{sigma} confidence level, respectively) between radio luminosity per bolometric luminosity and spin, as well as radio luminosity corrected for the fundamental plane (i.e., log ({nu}L{sub R}/L{sub Bol}{sup 0.67}/M{sub BH}{sup 0.78})) and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e., bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the

  2. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    NASA Astrophysics Data System (ADS)

    King, M.; Gray, R. J.; Powell, H. W.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Hicks, G. S.; Dover, N. P.; Rusby, D. R.; Carroll, D. C.; Padda, H.; Torres, R.; Kar, S.; Clarke, R. J.; Musgrave, I. O.; Najmudin, Z.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  3. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. New spectra based on simulations will be presented.

  4. Radio evidence for AGN activity: relativistic jets as tracers of SMBHs

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2016-02-01

    Although the radio emission from most quasars appears to be associated with star forming activity in the host galaxy, about ten percent of optically selected quasars have very luminous relativistic jets apparently powered by a SMBH which is located at the base of the jet. When these jets are pointed close to the line of sight their apparent luminosity is enhanced by Doppler boosting and appears highly variable. High resolution radio interferometry shows directly the outflow of relativistic plasma jets from the SMBH. Apparent transverse velocities in these so-called ``blazars'' are typically about 7c but reach as much as 50c indicating true velocities within one percent of the speed of light. The jets appear to be collimated and accelerated in regions as much as a hundred parsecs downstream from the SMBH. Measurements made with Earth to space interferometers indicate apparent brightness temperatures of ~ 1014 K or more. This is well in excess of the limits imposed by inverse Compton cooling. The modest Doppler factors deduced from the observed ejection speeds appear to be inadequate to explain the high observed brightness temperatures in terms of relativistic boosting.

  5. Relativistic simulations of black hole-neutron star coalescence: the jet emerges I

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2015-04-01

    The merger of binary black hole-neutron stars (BHNS) can form accretion disks, which are thought to support relativistic jets, thus providing the engine for a short-hard gamma-ray burst (sGRB). Until recently there existed no self-consistent calculation in full GR that starts from the late BHNS inspiral and demonstrates that jets can be launched after NS tidal disruption. This step is crucial to establishing BHNS systems as viable central engines for sGRBs and solidifying their role as multimessenger systems. In this talk I will provide the motivation for and review the fully relativistic simulations we have performed which, for the first time, show that BHNS mergers naturally give rise to jets.

  6. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  7. Relativistic effects on the nuclear magnetic shielding tensor

    NASA Astrophysics Data System (ADS)

    Melo, J. I.; Ruiz de Azua, M. C.; Giribet, C. G.; Aucar, G. A.; Romero, R. H.

    2003-01-01

    A new approach for calculating relativistic corrections to the nuclear magnetic shieldings is presented. Starting from a full relativistic second order perturbation theory expression a two-component formalism is constructed by transforming matrix elements using the elimination of small component scheme and separating out the contributions from the no-virtual pair and the virtual pair part of the second order corrections to the energy. In this way we avoid a strong simplification used previously in the literature. We arrive at final expressions for the relativistic corrections which are equivalent to those of Fukui et al. [J. Chem Phys. 105, 3175 (1996)] and at some other additional terms correcting both the paramagnetic and the diamagnetic part of the nuclear magnetic shielding. Results for some relativistic corrections to the shieldings of the heavy and light nuclei in HX and CH3X (X=Br,I) at both random phase and second order polarization propagator approach levels are given.

  8. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  9. Luminosity enhancement in relativistic jets and altered luminosity functions for beamed objects

    NASA Technical Reports Server (NTRS)

    Urry, C. M.; Shafer, R. A.

    1983-01-01

    Due to relativistic effects, the observed emission from relativistic jets is quite different from the rest frame emission. Systematic differences between the observed and intrinsic intensities of sources in which jet phenomena are occurring are discussed. Assuming that jets have a power law luminosity function of a slope B, the observed luminosity distribution as a function of the velocity of the jet, the spectral index of the rest frame emission, and the range of angles of the jets relative to our line of sight are calculated. The results is well-approximated by two power laws, the higher luminosity end having the original power law index X and the lower luminosity end having a flattened exponent independent of B and only slightly greater than 1. A model consisting of beamed emission from a jet and unbeamed emission from a stationary central component is investigated. The luminosity functions for these two-component sources are calculated for two ranges of angles. For sources in which beaming is important, the luminosity function is much flatter. Because of this, the relative numbers of ""beamed'' and ""unbeamed'' sources detected on the sky depend strongly on the luminosity at which the comparison is made.

  10. Self-magnetized effects in relativistic cold plasmas due to ponderomotive forces: application to relativistic magnetic guiding of light.

    PubMed

    Lehner, T; di Menza, L

    2002-01-01

    Nonlinear equations are derived relevant to describe the propagation of powerful electromagnetic fields launched within a plasma. The nonlinear generation of self-induced collective electromagnetic perturbations are obtained with matter lying in the relativistic regime. Our main result is the self-consistent treatment of the coupled equations between the pump and its self-induced fields. In particular, a mechanism is pointed out for self-generation of quasistatic magnetic field that is due to the relativistic ponderomotive force. This process is found to be more efficient to produce quasistatic magnetic fields, as confirmed by recent experiments, as compared to known effects such as the inverse Faraday effect. As an application, we investigate conditions for relativistic magnetic guiding of light to occur under the combined action of the self-induced density and magnetic field. PMID:11800797

  11. A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr

    NASA Astrophysics Data System (ADS)

    Paragi, Z.; Taylor, G. B.; Kouveliotou, C.; Granot, J.; Ramirez-Ruiz, E.; Bietenholz, M.; van der Horst, A. J.; Pidopryhora, Y.; van Langevelde, H. J.; Garrett, M. A.; Szomoru, A.; Argo, M. K.; Bourke, S.; Paczyński, B.

    2010-01-01

    The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration γ-ray bursts (GRBs). Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft γ-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observations of SN 2007gr indicate a typical type Ic supernova with ejecta velocities ~6,000kms-1, much lower than in GRB-associated supernovae. We conclude that in SN 2007gr a small fraction of the ejecta produced a low-energy mildly relativistic bipolar radio jet, while the bulk of the ejecta were slower and, as shown by optical spectropolarimetry, mildly aspherical.

  12. A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr.

    PubMed

    Paragi, Z; Taylor, G B; Kouveliotou, C; Granot, J; Ramirez-Ruiz, E; Bietenholz, M; van der Horst, A J; Pidopryhora, Y; van Langevelde, H J; Garrett, M A; Szomoru, A; Argo, M K; Bourke, S; Paczyński, B

    2010-01-28

    The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration gamma-ray bursts (GRBs). Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft gamma-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60 days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observations of SN 2007gr indicate a typical type Ic supernova with ejecta velocities approximately 6,000 km s(-1), much lower than in GRB-associated supernovae. We conclude that in SN 2007gr a small fraction of the ejecta produced a low-energy mildly relativistic bipolar radio jet, while the bulk of the ejecta were slower and, as shown by optical spectropolarimetry, mildly aspherical. PMID:20110996

  13. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    SciTech Connect

    Zrake, Jonathan

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  14. Inverse Cascade of Nonhelical Magnetic Turbulence in a Relativistic Fluid

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan

    2014-10-01

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum PM (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and -2, respectively. The magnetic coherence scale is found to grow in time as t 2/5, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  15. A Temporal Analysis Indicates a Mildly Relativistic Compact Jet in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Rodriguez, Jérôme

    2016-05-01

    Most of our knowledge of the radio morphology and kinematics of X-ray binary partially synchrotron self-absorbed compact jets (hereafter, compact jets) is based on the observations of GRS 1915+105, which has the most prominent compact jet. Yet, the compact jet bulk velocity, v, is poorly constrained in the literature, 0.07\\lt v/c\\lt 0.98. In spite of this uncertainty, compact jets are often unified with relativistic jets in active galactic nuclei. We estimated v as part of a temporal analysis of GRS 1915+105 jets in “high plateau states” (HPS). We define HPS as a state showing a hard X-ray spectrum and low level of long-term (\\gt 10 s) X-ray activity associated with 15 GHz flux density \\gt 70 mJy for \\gt 7 consecutive days. The radio emission is associated with compact jet emission. Two HPS were monitored at 15 GHz during their termination with e-folding times of 3.8 and 8.6 hr. We combine this timescale with the scale of the spatial variation of the linear source of a Very Large Baseline Array image preceding the fade of one of these HPS in order to estimate the jet speed. Our assumption that the reduction in radio emissivity propagates as an approximate discontinuity down the HPS jet (leaving a weak jet in its wake) indicates 0.17\\lt v/c\\lt 0.43. This agrees closely with the only other existing v estimates that are derived directly from radio images, jet asymmetry produced by Doppler enhancement.

  16. Formation of Hard Power-laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin; Li, Xiaocan

    2014-10-01

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density and when the system size is sufficiently large. The power law slope approaches ``-1'' for closed systems and gets softer when particle loss from the acceleration region is included. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection. We demonstrate that both continuous inflow and Fermi-type acceleration lead to the power-law distributions. Finally, we discuss the role of particle anisotropy in particle acceleration during magnetic reconnection. The work shows that hard power-law distributions are a common feature in relativistic magnetic reconnection region, which may be important for explaining the high-energy emissions in systems like pulsars, jets from black holes, and gamma-ray bursts.

  17. X ray emission from relativistic jets in AGNs and statistical implications

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Koenigl, Arieh

    1989-11-01

    Calculations of the Compton scattering interaction between an ultrarelativistic jet and a thermal radiation field, in an Active Galactic Nuclei (AGN), are presented. This process can be effective in decelerating ultrarelativistic jets that are accelerated by electromagnetic or hydromagnetic forces closer in to the central black hole. A narrow distribution of terminal Lorentz factors gammainfinity, consistent with the values inferred in superluminal radio sources, arises naturally in this model. The hard X-ray component detected in the spectra of 3C273 and several BL Lac objects may be due to the inverse Compton radiation produced in the course of the initial deceleration of their relativistic jets. The requirement that the luminosity of the hard X-ray component must exceed the total power in the associated jet is considered.

  18. Radiation from relativistic jets in blazars and the efficient dissipation of their bulk energy via photon breeding

    NASA Astrophysics Data System (ADS)

    Stern, Boris E.; Poutanen, Juri

    2008-02-01

    High-energy photons propagating in the magnetized medium with large velocity gradients can mediate energy and momentum exchange. Conversion of these photons into electron-positron pairs in the field of soft photons with the consequent isotropization and emission of new high-energy photons by Compton scattering can lead to the runaway cascade of the high-energy photons and electron-positron pairs fed by the bulk energy of the flow. This is the essence of the photon breeding mechanism. We study the problem of high-energy emission of relativistic jets in blazars via photon breeding mechanism using 2D ballistic model for the jet with the detailed treatment of particle propagation and interactions. Our numerical simulations from first principles demonstrate that a jet propagating in the soft radiation field of broad emission-line region can convert a significant fraction (up to 80 per cent) of its total power into radiation. We show that the gamma-ray background of similar energy density as observed at Earth is sufficient to trigger the photon breeding. The considered mechanism produces a population of high-energy leptons and, therefore, alleviates the need for Fermi-type particle acceleration models in relativistic flows. The mechanism reproduces basic spectral features observed in blazars including the blazar sequence (shift of spectral peaks towards lower energies with increasing luminosity). The significant deceleration of the jet at subparsec scales and the transversal gradient of the Lorentz factor (so-called structured jet) predicted by the model reconcile the discrepancy between the high Doppler factors determined by the fits to the spectra of TeV blazars and the low apparent velocities observed at very long baseline interferometry (VLBI) scales. The mechanism produces significantly broader angular distribution of radiation than that predicted by a simple model assuming the isotropic emission in the jet frame. This helps to reconcile the observed statistics and

  19. Baryon Loading Efficiency and Particle Acceleration Efficiency of Relativistic Jets: Cases for Low Luminosity BL Lacs

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.

    2016-09-01

    Relativistic jets launched by supermassive black holes, so-called active galactic nuclei (AGNs), are known as the most energetic particle accelerators in the universe. However, the baryon loading efficiency onto the jets from the accretion flows and their particle acceleration efficiencies have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected high-frequency-peaked BL Lacs (HBLs) following one-zone static synchrotron self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have {P}B/{P}e∼ 6.3× {10}-3 and the radiative efficiency {ε }{{rad,jet}}∼ 6.7× {10}-4, where P B and P e is the Poynting and electron power, respectively. By assuming 10 leptons per one proton, the jet power relates to the black hole mass as {P}{{jet}}/{L}{{Edd}}∼ 0.18, where {P}{{jet}} and {L}{{Edd}} is the jet power and the Eddington luminosity, respectively. Under our model assumptions, we further find that HBLs have a jet production efficiency of {η }{{jet}}∼ 1.5 and a mass loading efficiency of {ξ }{{jet}}≳ 5× {10}-2. We also investigate the particle acceleration efficiency in the blazar zone by including the most recent Swift/BAT data. Our samples ubiquitously have particle acceleration efficiencies of {η }g∼ {10}4.5, which is inefficient to accelerate particles up to the ultra-high-energy-cosmic-ray (UHECR) regime. This implies that the UHECR acceleration sites should not be the blazar zones of quiescent low power AGN jets, if one assumes the one-zone SSC model based on the DSA theory.

  20. Baryon Loading Efficiency and Particle Acceleration Efficiency of Relativistic Jets: Cases for Low Luminosity BL Lacs

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.

    2016-09-01

    Relativistic jets launched by supermassive black holes, so-called active galactic nuclei (AGNs), are known as the most energetic particle accelerators in the universe. However, the baryon loading efficiency onto the jets from the accretion flows and their particle acceleration efficiencies have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected high-frequency-peaked BL Lacs (HBLs) following one-zone static synchrotron self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have {P}B/{P}e˜ 6.3× {10}-3 and the radiative efficiency {ɛ }{{rad,jet}}˜ 6.7× {10}-4, where P B and P e is the Poynting and electron power, respectively. By assuming 10 leptons per one proton, the jet power relates to the black hole mass as {P}{{jet}}/{L}{{Edd}}˜ 0.18, where {P}{{jet}} and {L}{{Edd}} is the jet power and the Eddington luminosity, respectively. Under our model assumptions, we further find that HBLs have a jet production efficiency of {η }{{jet}}˜ 1.5 and a mass loading efficiency of {ξ }{{jet}}≳ 5× {10}-2. We also investigate the particle acceleration efficiency in the blazar zone by including the most recent Swift/BAT data. Our samples ubiquitously have particle acceleration efficiencies of {η }g˜ {10}4.5, which is inefficient to accelerate particles up to the ultra-high-energy-cosmic-ray (UHECR) regime. This implies that the UHECR acceleration sites should not be the blazar zones of quiescent low power AGN jets, if one assumes the one-zone SSC model based on the DSA theory.

  1. Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma

    SciTech Connect

    Abbas, Gohar; Bashir, M. F.; Murtaza, G.

    2012-07-15

    Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.

  2. Jet Rotation Driven by Magnetohydrodynamic Shocks in Helical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Fendt, Christian

    2011-08-01

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfvén Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  3. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  4. Magnetized plasma jets in experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  5. The high-efficiency jets magnetically accelerated from a thin disk in powerful lobe-dominated FRII radio galaxies

    SciTech Connect

    Li, Shuang-Liang

    2014-06-10

    A maximum jet efficiency line R ∼ 25 (R = L {sub jet}/L {sub bol}), found in FRII radio galaxies by Fernandes et al., was extended to cover the full range of jet power by Punsly. Recent general relativistic magnetohydrodynamic simulations of jet formation have mainly focused on the enhancement of jet power. In this work, we suggest that the jet efficiency could be very high even for conventional jet power if the radiative efficiency of disks was much smaller. We adopt the model of a thin disk with magnetically driven winds to investigate the observational high-efficiency jets in FRII radio galaxies. It is found that the structure of a thin disk can be significantly altered by the feedback of winds. The temperature of a disk gradually decreases with increasing magnetic field; the disk density, surface density, and pressure also change enormously. The lower temperature and higher surface density in the inner disk result in the rapid decrease of radiative efficiency. Thus, the jet efficiency is greatly improved even if the jet power is conventional. Our results can explain the observations quite well. The theoretical maximum jet efficiency of R ∼ 1000 suggested by our calculations is large enough to explain all of the high jet efficiency in observations, even considering the episodic activity of jets.

  6. Real-time evolution of a large-scale relativistic jet

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Romero, Gustavo E.; Sánchez-Sutil, Juan R.; Muñoz-Arjonilla, Álvaro J.

    2015-06-01

    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims: We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods: The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results: Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.

  7. RELATIVISTIC CORRECTION TO THE MOVEMENT OF MAGNETIC POLES

    SciTech Connect

    Ng, Kim Kwee

    2010-05-01

    The equations of motion, modified by the relativistic correction to a rotating inclined magnetic field, are discussed. It is shown that the magnetic moment would precess under the influence of the retardation torques identifiable by several higher-order terms in the relativistic correction. The observed cyclical behaviors from the clock-like pulse-emitting pulsars reported by many researchers are likely to be the consequences of the retardation effect produced by an inclined magnetic moment of a spinning body. The results, which come from the study of two independently rotating magnetic moments, are in agreement with the observed pulsar data for the pulsar PSR B1828-11. These electromagnetic driving forces are presented for further exploration and discussion.

  8. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  9. Relativistic generation of vortex and magnetic field a)

    NASA Astrophysics Data System (ADS)

    Mahajan, S. M.; Yoshida, Z.

    2011-05-01

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the "evolution" of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity—the magnetic field and the thermal-kinetic vorticity. The "strength" of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  10. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.

    PubMed

    Hamlin, Nathaniel D; Newman, William I

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  11. External Electromagnetic Fields of Slowly Rotating Relativistic Magnetized NUT Stars

    NASA Astrophysics Data System (ADS)

    Ahmedov, B. J.; Khugaev, A. V.

    2006-08-01

    Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with non-vanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation in specific angular momentum and NUT parameter . The relativistic star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and ii) dipolar magnetic field aligned with the axis of rotation. It has been shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, it has been obtained that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit.

  12. Formation and Collimation of Jets by Magnetic Forces

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kudoh, T.

    1999-12-01

    Recent development of theory and numerical simulations of magnetically driven jets from young stellar objects is reviewed. Topics to be discussed are: 1) Acceleration of jets: Magnetically driven jets are accelerated by both magneto-centrifugal force and magnetic pressure force. The former (latter) becomes important when magnetic field is strong (weak). The basic properties (i.e., terminal velocity and mass flux) of jets accelerated by these two forces is discussed in detail. We also discuss the condition of production of jets, which is applied to answer the following question: When do jets begin to be accelerated in the course of star formation ? 2) Collimation of jets: Magnetically driven jets can in principle be collimated by pinching effect of toroidal magnetic fields. Recently, some controvertial arguments have been put forward: Are all field lines (and jets) really collimated by pinching effect ? The current status of this issue is discussed. 3) Protostellar flares: Based on theory and numerical simulations, it has recently been recognized that the formation of jets has a close connection with occurrence of flares (possibly due to magnetic reconnection). We discuss how and when magnetic reconnection occurs in relation to jets.

  13. Magnetized laboratory plasma jets: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  14. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726

  15. Nonthermal Particle Acceleration and Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Werner, Gregory

    2015-11-01

    Many spectacular and violent phenomena in the high-energy universe exhibit nonthermal radiation spectra, from which we infer power-law energy distributions of the radiating particles. Relativistic magnetic reconnection, recognized as a leading mechanism of nonthermal particle acceleration, can efficiently transfer magnetic energy to energetic particles. We present a comprehensive particle-in-cell study of particle acceleration in 2D relativistic reconnection in both electron-ion and pair plasmas without guide field. We map out the power-law index α and the high-energy cutoff of the electron energy spectrum as functions of three key parameters: the system size (and initial layer length) L, the ambient plasma magnetization σ, and the ion/electron mass ratio (from 1 to 1836). We identify the transition between small- and large-system regimes: for small L, the system size affects the slope and extent of the high-energy spectrum, while for large enough L, α and the cutoff energy are independent of L. We compare high energy particle spectra and radiative (synchrotron and inverse Compton) signatures of the electrons, for pair and electron-ion reconnection. The latter cases maintain highly relativistic electrons, but include a range of different magnetizations yielding sub- to highly-relativistic ions. Finally, we show how nonthermal acceleration and radiative signatures alter when the radiation back-reaction becomes important. These results have important implications for assessing the promise and the limitations of relativistic reconnection as an astrophysically-important particle acceleration mechanism. This work is funded by NSF, DOE, and NASA.

  16. Relativistic Scott correction in self-generated magnetic fields

    NASA Astrophysics Data System (ADS)

    Erdős, László; Fournais, Søren; Solovej, Jan Philip

    2012-09-01

    We consider a large neutral molecule with total nuclear charge Z in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that Zα < 2/π, where α denotes the fine structure constant. We are interested in the ground state energy in the simultaneous limit Z → ∞, α → 0 such that κ = Zα is fixed. The leading term in the energy asymptotics is independent of κ, it is given by the Thomas-Fermi energy of order Z7/3 and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form S(αZ)Z2. The current paper extends the result of Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)] on the Scott correction for relativistic molecules to include a self-generated magnetic field. Furthermore, we show that the corresponding Scott correction function S, first identified by Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)], is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields.

  17. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Oka, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of <_ 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique. The same technique will be used to calculate radiation from accelerated electrons (positrons) in turbulent magnetic fields generated by Weibel instability.

  18. Searches for relativistic magnetic monopoles in IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Beiser, E.; Benabderrahmane, M. L.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-03-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (vge 0.76c) and mildly relativistic (vge 0.51c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 × 10^{-18} text {cm}^{-2} text {s}^{-1} text {sr}^{-1}. This is an improvement of almost two orders of magnitude over previous limits.

  19. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  20. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  1. Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    NASA Astrophysics Data System (ADS)

    Brüggen, Marcus; Bykov, Andrei; Ryu, Dongsu; Röttgering, Huub

    2012-05-01

    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel'dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.

  2. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.

    PubMed

    Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso

    2013-12-12

    Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission. PMID:24226774

  3. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  4. TWO-DIMENSIONAL NUMERICAL STUDY FOR RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV INSTABILITIES IN RELATIVISTIC JETS

    SciTech Connect

    Matsumoto, Jin; Masada, Youhei

    2013-07-20

    We study the stability of a non-rotating single-component jet using two-dimensional special relativistic hydrodynamic simulations. By assuming translational invariance along the jet axis, we exclude the destabilization effect by Kelvin-Helmholtz mode. The nonlinear evolution of the transverse structure of the jet with a normal jet velocity is highlighted. An intriguing finding in our study is that Rayleigh-Taylor and Richtmyer-Meshkov type instabilities can destroy cylindrical jet configuration as a result of spontaneously induced radial oscillating motion. This is powered by in situ energy conversion between the thermal and bulk kinetic energies. The effective inertia ratio of the jet to the surrounding medium {eta} determines a threshold for the onset of instabilities. The condition {eta} < 1 should be satisfied for the transverse structure of the jet being persisted.

  5. MAGNETIC ENERGY BUILDUP FOR RELATIVISTIC MAGNETAR GIANT FLARES

    SciTech Connect

    Yu Cong

    2011-09-01

    Motivated by coronal mass ejection studies, we construct general relativistic models of a magnetar magnetosphere endowed with strong magnetic fields. The equilibrium states of the stationary, axisymmetric magnetic fields in the magnetar magnetosphere are obtained as solutions of the Grad-Shafranov equation in a Schwarzschild spacetime. To understand the magnetic energy buildup in the magnetar magnetosphere, a generalized magnetic virial theorem in the Schwarzschild metric is newly derived. We carefully address the question whether the magnetar magnetospheric magnetic field can build up sufficient magnetic energy to account for the work required to open up the magnetic field during magnetar giant flares. We point out the importance of the Aly-Sturrock constraint, which has been widely studied in solar corona mass ejections, as a reference state in understanding magnetar energy storage processes. We examine how the magnetic field can possess enough energy to overcome the Aly-Sturrock energy constraint and open up. In particular, general relativistic (GR) effects on the Aly-Sturrock energy constraint in the Schwarzschild spacetime are carefully investigated. It is found that, for magnetar outbursts, the Aly-Sturrock constraint is more stringent, i.e., the Aly-Sturrock energy threshold is enhanced due to the GR effects. In addition, neutron stars with greater mass have a higher Aly-Sturrock energy threshold and are more difficult to erupt. This indicates that magnetars are probably not neutron stars with extreme mass. For a typical neutron star with mass of 1-2 M{sub sun}, we further explore the cross-field current effects, caused by the mass loading, on the possibility of stored magnetic field energy exceeding the Aly-Sturrock threshold.

  6. Polarimetry of the transient relativistic jet of GRB 110328/Swift J164449.3+573451

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; van der Horst, A. J.; Levan, A. J.; Tanvir, N. R.; Karjalainen, R.; Kamble, A.; Kouveliotou, C.; Metzger, B. D.; Russell, D. M.; Skillen, I.; Starling, R. L. C.; Wijers, R. A. M. J.

    2012-04-01

    We present deep infrared (Ks-band) imaging polarimetry and radio (1.4- and 4.8-GHz) polarimetry of the enigmatic transient Swift J164449.3+573451. This source appears to be a short-lived jet phenomenon in a galaxy at redshift z= 0.354, activated by a sudden mass accretion on to the central massive black hole, possibly caused by the tidal disruption of a star. We aim to find evidence for this scenario through linear polarimetry, as linear polarization is a sensitive probe of jet physics, source geometry and the various mechanisms giving rise to the observed radiation. We find a formal Ks-band polarization measurement of Plin= 7.4 ± 3.5 per cent (including systematic errors). Our radio observations show continuing brightening of the source, which allows sensitive searches for linear polarization as a function of time. We find no evidence of linear polarization at radio wavelengths of 1.4 and 4.8 GHz at any epoch, with the most sensitive 3σ limits as deep as 2.1 per cent. These upper limits are in agreement with expectations from scenarios in which the radio emission is produced by the interaction of a relativistic jet with a dense circumsource medium. We further demonstrate how polarization properties can be used to derive properties of the jet in Swift J164449.3+573451, exploiting the similarities between this source and the afterglows of gamma-ray bursts.

  7. ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS?

    SciTech Connect

    Bromberg, Omer; Piran, Tsvi; Nakar, Ehud

    2011-10-01

    Low-luminosity gamma-ray bursts (ll-GRBs) constitute a subclass of GRBs that play a central role in the GRB-supernova connection. While ll-GRBs differ from typical long GRBs (LGRBs) in many aspects, they also share some common features. Therefore, the question whether the gamma-ray emission of ll-GRBs and LGRBs has a common origin is of great interest. Here we address this question by testing whether ll-GRBs, like LGRBs according to the Collapsar model, can be generated by relativistic jets that punch holes in the envelopes of their progenitor stars. The Collapsar model predicts that the durations of most observed bursts will be comparable to, or longer than, the time it takes the jets to break out of the star. We calculate the jet breakout times of ll-GRBs and compare them to the observed durations. We find that there is a significant excess of ll-GRBs with durations that are much shorter than the jet breakout time and that these are inconsistent with the Collapsar model. We conclude that the processes that dominate the gamma-ray emission of ll-GRBs and of LGRBs are most likely fundamentally different.

  8. New constraints on gamma-ray burst jet geometry and relativistic shock physics

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Mundell, C. G.; Harrison, R.; Margutti, R.; Sudilovsky, V.; Zauderer, B. A.; Kobayashi, S.; Cucchiara, A.; Melandri, A.; Pandey, S. B.; Berger, E.; Bersier, D.; D'Elia, V.; Gomboc, A.; Greiner, J.; Japelj, J.; Kopač, D.; Kumar, B.; Malesani, D.; Mottram, C. J.; O'Brien, P. T.; Rau, A.; Smith, R. J.; Steele, I. A.; Tanvir, N. R.; Virgili, F.

    2014-02-01

    We use high-quality, multiband observations of Swift GRB 120404A, from γ-ray to radio frequencies, together with the new hydrodynamics code of van Eerten et al. to test the standard synchrotron shock model. The evolution of the radio and optical afterglow, with its prominent optical rebrightening at trest ˜ 260-2600 s, is remarkably well modelled by a decelerating jet viewed close to the jet edge, combined with some early re-energization of the shock. We thus constrain the geometry of the jet with half-opening and viewing angles of 23° and 21°, respectively, and suggest that wide jets viewed off-axis are more common in GRBs than previously thought. We also derive the fireball microphysics parameters ɛB = 2.4 × 10-4 and ɛe = 9.3 × 10-2 and a circumburst density of n = 240 cm-3. The ability to self-consistently model the microphysics parameters and jet geometry in this way offers an alternative to trying to identify elusive canonical jet breaks at late times. The mismatch between the observed and model-predicted X-ray fluxes is explained by the local rather than the global cooling approximation in the synchrotron radiation model, constraining the microphysics of particle acceleration taking place in a relativistic shock and, in turn, emphasizing the need for a more realistic treatment of cooling in future developments of theoretical models. Finally, our interpretation of the optical peak as due to the passage of the forward shock synchrotron frequency highlights the importance of high-quality multiband data to prevent some optical peaks from being erroneously attributed to the onset of fireball deceleration.

  9. Non-thermal emission from standing relativistic shocks: an application to red giant winds interacting with AGN jets

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.

    2015-03-01

    Context. Galactic and extragalactic relativistic jets are surrounded by rich environments that are full of moving objects, such as stars and dense medium inhomogeneities. These objects can enter into the jets and generate shocks and non-thermal emission. Aims: We characterize the emitting properties of the downstream region of a standing shock formed due to the interaction of a relativistic jet with an obstacle. We focus on the case of red giants interacting with an extragalactic jet. Methods: We perform relativistic axisymmetric hydrodynamical simulations of a relativistic jet meeting an obstacle of very large inertia. The results are interpreted in the framework of a red giant whose dense and slow wind interacts with the jet of an active galactic nucleus. Assuming that particles are accelerated in the standing shock generated in the jet as it impacts the red giant wind, we compute the non-thermal particle distribution, the Doppler boosting enhancement, and the non-thermal luminosity in gamma rays. Results: The available non-thermal energy from jet-obstacle interactions is potentially enhanced by a factor of ~100 when accounting for the whole surface of the shock induced by the obstacle, instead of just the obstacle section. The observer gamma-ray luminosity, including the effective obstacle size, the flow velocity and Doppler boosting effects, can be ~300 (γj/10)2 times higher than when the emitting flow is assumed at rest and only the obstacle section is considered, where γj is the jet Lorentz factor. For a whole population of red giants inside the jet of an active galactic nucleus, the predicted persistent gamma-ray luminosities may be potentially detectable for a jet pointing approximately to the observer. Conclusions: Obstacles interacting with relativistic outflows, for instance clouds and populations of stars for extragalactic jets, or stellar wind inhomogeneities in microquasar jets and in winds of pulsars in binaries, should be taken into account when

  10. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    SciTech Connect

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  11. The role of magnetic reconnection on jet/accretion disk systems

    NASA Astrophysics Data System (ADS)

    de Gouveia Dal Pino, E. M.; Piovezan, P. P.; Kadowaki, L. H. S.

    2010-07-01

    Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims: Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods: In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results: The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 109 orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the

  12. Different Paths to Some Fundamental Physical Laws: Relativistic Polarization of a Moving Magnetic Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Yarman, T.

    2010-01-01

    In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…

  13. Constraining the magnetic field in GRB relativistic collisionless shocks using radio data

    NASA Astrophysics Data System (ADS)

    Barniol Duran, R.

    2014-08-01

    Using gamma-ray burst (GRB) radio afterglow observations, we calculate the fraction of shocked plasma energy in the magnetic field in relativistic collisionless shocks (ɛB). We obtained ɛB for 38 bursts by assuming that the radio afterglow light curve originates in the external forward shock, and that its peak at a few to tens of days is due to the passage of the minimum (injection) frequency through the radio band. This allows for the determination of the peak synchrotron flux of the external forward shock, fp, which is f_p ∝ ɛ _B^{1/2}. The obtained value of ɛB is conservatively a minimum if the time of the `jet break' is unknown, since after the `jet break' fp is expected to decay with time faster than before it. Claims of `jet breaks' have been made for a subsample of 23 bursts, for which we can estimate a measurement of ɛB. Our results depend on the blast wave total energy, E, and the density of the circumstellar medium (CSM), n, as ɛB ∝ E-2n-1. However, by assuming a CSM magnetic field (˜10 μG), we can express the lower limits/measurements on ɛB as a density-independent ratio, B/Bsc, of the magnetic field behind the shock to the CSM shock-compressed magnetic field. We find that the distribution on both the lower limit on and the measurement of B/Bsc spans ˜3.5 orders of magnitude and both have a median of B/Bsc ˜ 30. This suggests that some amplification, beyond simple shock compression, is necessary to explain these radio afterglow observations.

  14. Structure of Magnetic Tower Jets in Stratified Atmospheres

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Li, Hui; Li, Shengtai

    2006-12-01

    Using a new approach to modeling the magnetically dominated outflows from active galactic nuclei, we study the propagation of magnetic tower jets in gravitationally stratified atmospheres (such as a galaxy cluster environment) at large scales (more than tens of kiloparsecs) by performing three-dimensional MHD simulations. We present the detailed analysis of the MHD waves, the cylindrical radial force balance, and the collimation of magnetic tower jets. As magnetic energy is injected into a small central volume over a finite amount of time, the magnetic fields expand down the background density gradient, forming a collimated jet and an expanded ``lobe'' due to the gradually decreasing background density and pressure. Both the jet and lobes are magnetically dominated. In addition, the injection and expansion produce a hydrodynamic shock wave that moves ahead of and encloses the magnetic tower jet. This shock can eventually break the hydrostatic equilibrium in the ambient medium and cause a global gravitational contraction. This contraction produces a strong compression at the head of the magnetic tower front and helps to collimate the jet radially to produce a slender body. At the outer edge of the jet, the magnetic pressure is balanced by the background (modified) gas pressure, without any significant contribution from the hoop stress. On the other hand, along the central axis of the jet, hoop stress is the dominant force in shaping the central collimation of the poloidal current. The system, which possesses a highly wound helical magnetic configuration, never quite reaches a force-free equilibrium state, although the evolution becomes much slower at late stages. The simulations were performed without any initial perturbations, so the overall structures of the jet remain mostly axisymmetric.

  15. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  16. Pinpointing the base of the AGN jets through general relativistic X-ray reverberation studies

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.

    2015-03-01

    Many theoretical models of Active Galactic Nuclei (AGN) predict that the X-ray corona, lying above the black hole, constitutes the base of the X-ray jet. Thus, by studying the exact geometry of the close black hole environment, we can pinpoint the launching site of the jet. Detection of negative X-ray reverberation time delays (i.e. soft band X-ray variations lagging behind the corresponding hard band X-ray variations) can yield significant information about the geometrical properties of the AGN, such as the location of the X-ray source, as well as the physical properties of the the black hole, such as its mass and spin. In the frame-work of the lamp-post geometry, I present the first systematic X-ray time-lag modelling results of an ensemble of 12 AGN, using a fully general relativistic (GR) ray tracing approach for the estimation of the systems' response functions. By combing these state-of-the art GR response models with statistically innovative fitting routines, I derive the geometrical layout of the close BH environment for each source, unveiling the position of the AGN jet-base.

  17. Relativistic Killingbeck energy states under external magnetic fields

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S. M.

    2016-07-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states.

  18. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  19. DISCOVERY OF SUB- TO SUPERLUMINAL MOTIONS IN THE M87 JET: AN IMPLICATION OF ACCELERATION FROM SUB-RELATIVISTIC TO RELATIVISTIC SPEEDS

    SciTech Connect

    Asada, Keiichi; Nakamura, Masanori; Inoue, Makoto; Doi, Akihiro; Nagai, Hiroshi E-mail: nakamura@asiaa.sinica.edu.tw

    2014-01-20

    The velocity field of the M87 jet from milli-arcsecond (mas) to arcsecond scales is extensively investigated together with new radio images taken from European VLBI Network (EVN) observations. We detected proper motions of components located at between 160 mas from the core and the HST-1 complex for the first time. Newly derived velocity fields exhibit a systematic increase from sub- to superluminal speeds in the upstream of HST-1. If we assume that the observed velocities reflect the bulk flow, here we suggest that the M87 jet may be gradually accelerated through a distance of 10{sup 6} times the Schwarzschild radius of the supermassive black hole. The acceleration zone is co-spatial with the jet parabolic region, which is interpreted as the collimation zone of the jet. The acceleration and collimation take place simultaneously, which we suggest is characteristic of magnetohydrodynamic flows. The distribution of the velocity field has a peak at HST-1, which is considered as the site of over-collimation, and shows a deceleration downstream of HST-1 where the jet is conical. Our interpretation of the velocity map in the M87 jet provides a hypothesis for active galactic nuclei which suggests that the acceleration and collimation zone of relativistic jets extends over the whole scale within the sphere of influence of the supermassive black hole.

  20. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    SciTech Connect

    Lopez, Rodrigo A.; Munoz, Victor; Asenjo, Felipe A.; Alejandro Valdivia, J.

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  1. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    NASA Astrophysics Data System (ADS)

    López, Rodrigo A.; Asenjo, Felipe A.; Muñoz, Víctor; Alejandro Valdivia, J.

    2012-08-01

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfvén one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfvén branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  2. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ˜ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (˜100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  3. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ∼ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (∼100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  4. Scaling of magnetic reconnection in relativistic collisionless pair plasmas.

    PubMed

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-03-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and approaches the speed of light when σ>O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains ∼0.1 in both the nonrelativistic and relativistic limits. PMID:25793820

  5. Nine Years of Observations of Hard X-Rays from Relativistic Jet Objects with BATSE

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Harmon, B. A.; Fishman, G. J.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The observed hard X-ray temporal and spectral characteristics will be displayed for over nine years of BATSE (Burst and Transient Source Experiment) data from the Compton Observatory. These observations were obtained using the Earth occultation technique, a technique that has become increasingly more sensitive and accurate as systematic effects are understood and corrected. The principal objects that are being presented in this study include: GRO J1655-40, GRS 1915+105, Cyg X-3, Cyg X-1, XTE J1550-564, XTE J1859+226, XTE J1748-288, and V4641 Sgr. Light curves and spectral will be presented and discussed in terms of relativistic jet production in these systems.

  6. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star

    NASA Astrophysics Data System (ADS)

    Bloom, Joshua S.; Giannios, Dimitrios; Metzger, Brian D.; Cenko, S. Bradley; Perley, Daniel A.; Butler, Nathaniel R.; Tanvir, Nial R.; Levan, Andrew J.; O'Brien, Paul T.; Strubbe, Linda E.; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lee, William H.; Nayakshin, Sergei; Quataert, Eliot; King, Andrew R.; Cucchiara, Antonino; Guillochon, James; Bower, Geoffrey C.; Fruchter, Andrew S.; Morgan, Adam N.; van der Horst, Alexander J.

    2011-07-01

    Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 106 to 107 solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.

  7. Towards Observational Astronomy of Jets in Active Galaxies from General Relativistic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy

    2016-01-01

    We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between

  8. IGR J12580+0134: The First Tidal Disruption Event with an Off-beam Relativistic Jet

    NASA Astrophysics Data System (ADS)

    Lei, Wei-Hua; Yuan, Qiang; Zhang, Bing; Wang, Daniel

    2016-01-01

    Supermassive black holes (SMBHs) can capture and tidally disrupt stars or substellar objects orbiting nearby. The detections of Sw J1644+57-like events suggest that at least some TDEs can launch a relativistic jet beaming toward Earth. A natural expectation would be the existence of TDEs with a relativistic jet beaming away from Earth. The nearby TDE candidate IGR J12580+0134 provides new insights into the jet phenomenon. Combining several constraints, we find that the event invokes a 8-40 Jupiter mass object tidally disrupted by a 3× {10}5-1.8× {10}7{M}⊙ SMBH. Recently, a bright radio transient was discovered by Irwin et al. in association with IGR J12580+0134. We perform detailed modeling of the event based on a numerical jet model previously developed for the radio emission of Sw J1644+57. We find that the radio data of IGR J12580+0134 can be interpreted within an external forward shock model in the Newtonian regime. Using Sw J1644+57 as a template and properly correcting for its luminosity, we argue that the observed X-ray flux in early times is too faint to allow an on-beam relativistic jet unless the Lorentz factor is very small. Rather, the X-ray emission is likely from the disk or corona near the black hole. From various constraints, we find that the data are consistent with an off-beam relativistic jet with a viewing angle of {θ }{{obs}}≳ {30}{{o}}, and an initial Lorentz factor of {{{Γ }}}j≳ a few. This scenario can readily be tested in the upcoming very long baseline interferometry observations.

  9. X-Ray imaging of ultrafast magnetic reconnection driven by relativistic electrons

    NASA Astrophysics Data System (ADS)

    Raymond, A.; McKelvey, A.; Zulick, C.; Maksimchuk, A.; Thomas, A. G. R.; Willingale, L.; Chykov, V.; Yanovsky, V.; Krushelnick, K.

    2015-05-01

    Evidence of magnetic reconnection (MR) events driven by relativistic electrons is observed between two high-intensity laser/plasma interaction sites. The two laser foci were on average 20um FWHM containing 50TW of power each, delivered with a split f/3 paraboloid onto copper foil targets at a focused intensity of 1019 W/cm2 with the HERCULES laser system. Cu K-alpha emissions from the interactions were imaged with a spherically bent Quartz crystal, and by motorizing one half of the paraboloid vertically the focal separation was varied between 0- 400um. Splitting the beam halves revealed an enhanced region between the foci with the highest a maximized K-alpha signal intensity at one inter-beam separation, evidencing inflow from relativistic electron driven MR. A filtered LANEX screen was imaged to search for outflow/jet electrons along the plane of the target surface and normal to the axis defined by the two spots, to calculate the electron temperature and to search for spatial profile nonuniformities potentially directly originating from reconnection events. Ongoing 2D and 3D PIC simulations are being conducted to better understand and model the measured electron outflow dynamics.

  10. Rotating and binary relativistic stars with magnetic field

    NASA Astrophysics Data System (ADS)

    Markakis, Charalampos

    We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry

  11. Jet Deflection by Very Weak Guide Fields during Magnetic Reconnection

    SciTech Connect

    Goldman, M. V.; Newman, D. L.; Che, H.; Lapenta, G.; Markidis, S.

    2011-09-23

    Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended ''outer electron diffusion regions.'' New PIC simulations with an ion to electron mass ratio as large as 1836 (an H{sup +} plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.

  12. Magnetic energy dissipation in force-free jets

    NASA Technical Reports Server (NTRS)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  13. Laboratory Studies of Supersonic Magnetized Plasma Jets and Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey

    2013-06-01

    In this talk I will focus on laboratory plasma experiments producing magnetically driven supersonic plasma jets and on the interaction of these jets with ambient media. The experiments are scalable to astrophysical flows in that the critical dimensionless numbers such as the plasma collisionality, the plasma beta, the Reynolds number and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes. In the experiments the jets are driven and collimated by the toroidal magnetic fields and it is found that the level of MHD instabilities in the jets strongly depends on the strength of the field represented by the ratio of the thermal to magnetic field pressures (plasma beta). The experiments show the possibility of formation of episodic outflows, with periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities [1,2]. We also found that it is possible to form quasi-laminar jets which are “indirectly” collimated by the toroidal magnetic fields, but this requires the presence of the lower density halo plasma surrounding the central jet [3]. Studies of the radiative shocks formed in the interaction of the supersonic magnetized plasma flows with ambient plasma will be also presented, and the development of cooling instabilities in the post-shock plasma will be discussed. This research was sponsored by EPSRC Grant No. EP/G001324/1 and by the OFES DOE under DOE Cooperative Agreement No. DE-SC-0001063. References 1. A. Ciardi, S.V. Lebedev, A. Frank et al., The Astrophysical Journal, 691: L147-L150 (2009) 2. F.A. Suzuki-Vidal, S.V. Lebedev, S.N. Bland et al., Physics of Plasmas, 17, 112708 (2010). 3. F.A. Suzuki-Vidal, M. Bocchi, S.V. Lebedev et al., Physics of Plasmas, 19, 022708 (2012).

  14. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions

    SciTech Connect

    Chen, Hui; Heeter, R. F.; Link, A.; Fiksel, G.; Barnak, D.; Chang, P.-Y.; Meyerhofer, D. D.

    2014-04-15

    Collimation of positrons produced by laser-solid interactions has been observed using an externally applied axial magnetic field. The collimation leads to a narrow divergence positron beam, with an equivalent full width at half maximum beam divergence angle of 4° vs the un-collimated divergence of about 20°. A fraction of the laser-produced relativistic electrons with energies close to those of the positrons is collimated, so the charge imbalance ratio (n{sub e−}/n{sub e+}) in the co-propagating collimated electron-positron jet is reduced from ∼100 (no collimation) to ∼2.5 (with collimation). The positron density in the collimated beam increased from 5 × 10{sup 7} cm{sup −3} to 1.9 × 10{sup 9} cm{sup −3}, measured at the 0.6 m from the source. This is a significant step towards the grand challenge of making a charge neutral electron-positron pair plasma jet in the laboratory.

  15. Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves

    SciTech Connect

    Abbas, Gohar; Bashir, M. F.; Murtaza, G.

    2011-10-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].

  16. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  17. Kubo formulas for relativistic fluids in strong magnetic fields

    SciTech Connect

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-12-15

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.

  18. Measurements of Fast Magnetic Reconnection Driven by Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Raymond, Anthony; McKelvey, Andrew; Zulick, Calvin; Chuanfei, Dong; Maksimchuk, Anatoly; Thomas, Alexander; Yanovsky, Victor; Krushelnick, Karl; Willingale, Louise; Chykov, Vladimir; Nilson, Phil; Chen, Hui; Williams, Gerald; Bhattacharjee, Amitava; Fox, Will

    2015-11-01

    Magnetic reconnection is a process whereby opposing magnetic field lines are forced together and topologically rearrange, resulting in lower magnetic potential energy and in corresponding plasma heating. Such occurrences are ubiquitous in astrophysics as well as appearing in laboratory plasmas such as in ICF in the form of instabilities. We report measurements in the domain of ultra-fast, ultra-intense lasers, in which the mechanism responsible follows from radially expanding surface electrons with v ~ c . Results are compared from two laser facilities (HERCULES and Omega EP), both of which produced two relativistic intensity pulses focused within close proximity onto copper foils. A spherical X-ray crystal was used to image the Kα radiation induced by electron currents, revealing the midplane diffusion region wherein electrons are accelerated into the target by the electric field generated during reconnection. The characteristics of this signal are studied as a function of the focal spot separation, laser energy, and pulse duration. The results are then compared to 3D PIC simulations.

  19. Tidal disruption and magnetic flux capture: powering a jet from a quiescent black hole

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Tchekhovskoy, Alexander; Narayan, Ramesh

    2014-12-01

    The transient Swift J1644+57 is believed to have been produced by an unlucky star wandering too close to a supermassive black hole (BH) leading to a tidal disruption event. This unusual flare displayed highly super-Eddington X-ray emission which likely originated in a relativistic, collimated jet. This presents challenges to modern accretion and jet theory as upper limits of prior BH activity, which we obtain from the radio afterglow of this event, imply that both the pre-disruption BH and stellar magnetic fluxes fall many orders of magnitude short of what is required to power the observed X-ray luminosity. We argue that a pre-existing, `fossil' accretion disc can contain a sufficient reservoir of magnetic flux and that the stellar debris stream is capable of dragging this flux into the BH. To demonstrate this, we perform local, 3D magnetohydrodynamic simulations of the disc-stream interaction and demonstrate that the interface between the two is unstable to mixing. This mixing entrains a sufficient amount of fossil disc magnetic flux into the infalling stellar debris to power the jet. We argue that the interaction with the fossil disc can have a pronounced effect on the structure and dynamics of mass fallback and likely the resulting transient. Finally, we describe possible ramifications of these interactions on unresolved problems in tidal disruption dynamics, in particular, the efficiency of debris circularization, and effects of the disruption on the pre-existing BH system.

  20. Probing the Relativistic Jets of Active Galactic Nuclei with Multiwavelength Monitoring

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Aller, Margo

    2005-01-01

    The work completed includes the analysis of observations obtained during Cycle 7 (March 2002-February 2003) of the Rossi X-ray Timing Explorer (RXTE). The project was part of a longer-term, continuing program to study the X-ray emission process in blazars and radio galaxies in collaboration with Dr. Ian McHardy (U. of Southampton, UK) and Prof. Thomas Balonek (Colgate U.). The goals of the program are to study the X-ray emission mechanism in blazars and radio galaxies and the relation of the X-ray emission to changes in the relativistic jet. The program includes contemporaneous brightness and linear polarization monitoring at radio and optical wavelengths, total and polarized intensity imaging at at 43 GHz with a resolution of 0.1 milliarcseconds with the VLBA, and well-sampled X-ray light curves obtained from a series of approved RXTE programs. The objects studied in the time period covered by the grant were 3C 120, 3C 279, PKS 1510-089, and 3C 273, all with radio jets containing bright knots that appear to move at superluminal speeds. During RXTE Cycle 7, the project was awarded RXTE time to monitor PKS 1510-089 two times per week, 3C 273 and 3C 279 three times per week, and 3C 120 four times per week. In addition, 3C273 and 3C 279 were observed several times per day during a ten-day period in April 2002. The X-ray data, including those from earlier cycles, were compared with radio measurements obtained in the centimeter-wave band by the monitoring program of Drs. Margo and Hugh Aller at the University of Michigan Radio Astronomy Observatory, monthly imaging observations with the VLBA at 43 GHz, and optical observations obtained at several telescopes around the world.

  1. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  2. Dynamics of Laboratory Astrophysical Jets with Magnetized Helical Flows

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2014-10-01

    A triple electrode planar plasma gun (MOCHI LabJet) designed to study the dynamics of magnetized helical flows in plasma jets provides boundary conditions and dimensionless numbers relevant to astrophysical jets. The goal is to observe the effect of current and flow profiles on the collimation and stability of jets to address the questions: why are jets collimated and long? How are jet irregularities related to plasma instabilities? The current and azimuthal flow profiles of the jets are tailored by biasing the electrodes at different potentials. High-speed camera images, high-resolution Ḃ probe measurements, and 3D vector tomography of plasma flows will map a stability space for varying current and flow profiles. An analytical stability space is derived with Newcomb's variational analysis applied to collimated magnetic flux tubes with skin and core currents. Two numerical stability spaces are also computed by integrating the Euler-Lagrange equation and applying a shooting method to the ideal MHD eigenvalue problem. The eigenvalue problem is generalized to include azimuthal flows and computed with a monotonicity condition for minimizing the required scanning of the complex eigenvalue space. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  3. A magnetically collimated jet from an evolved star.

    PubMed

    Vlemmings, Wouter H T; Diamond, Philip J; Imai, Hiroshi

    2006-03-01

    Planetary nebulae often have asymmetric shapes, even though their progenitor stars were symmetric; this structure could be the result of collimated jets from the evolved stars before they enter the planetary nebula phase. Theoretical models have shown that magnetic fields could be the dominant source of jet-collimation in evolved stars, just as these fields are thought to collimate outflows in other astrophysical sources, such as active galactic nuclei and proto-stars. But hitherto there have been no direct observations of both the magnetic field direction and strength in any collimated jet. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A (at a distance of 2.6 kpc from the Sun), which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, approximately 1,000 au from the star. We conclude from the data that the magnetic field is indeed collimating the jet. PMID:16511488

  4. FAST X-RAY/IR CROSS-CORRELATIONS AND RELATIVISTIC JET FORMATION IN GRS 1915+105

    SciTech Connect

    Lasso-Cabrera, N. M.; Eikenberry, S. S.

    2013-10-01

    We present cross-correlation analyses of simultaneous X-ray and near-infrared (near-IR) observations of the microquasar GRS 1915+105 during relativistic jet-producing epochs (X-ray class α and β). While previous studies have linked the large amplitude IR flares and X-ray behaviors to jet formation in these states, our new analyses are sensitive to much lower amplitude IR variability, providing more sensitive probes of the jet formation process. The X-ray to IR cross-correlation function (CCF) shows significant correlations that vary in form between the different X-ray states. During low/hard dips in both classes, we find no significant X-ray/IR correlation. During high-variability epochs, we find consistently significant correlations in both α and β classes, but with strong differences in the CCF structure. The high variability α CCF shows strong anti-correlation between X-ray/IR, with the X-ray preceding the IR by ∼13 ± 2 s. The high variability β state shows a time-variable CCF structure, which is statistically significant but without a clearly consistent lag. Our simulated IR light curves, designed to match the observed CCFs, show variably flickering IR emission during the class β high-variability epoch, while class α can be fit by IR flickering with frequencies in the range 0.1-0.3 Hz, strengthening ∼10 s after every X-ray subflare. We interpret these features in the context of the X-ray-emitting accretion disk and IR emission from relativistic jet formation in GRS 1915+105, concluding that the CCF analysis places the origin in a synchrotron-emitting relativistic compact jet at a distance from the compact object of ∼0.02 AU.

  5. Interfacial Stability of Converging Plasma Jets for Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Cassibry, J. T.; Thio, Y. C. F.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The merging of a spherical distribution of plasma jets to dynamically form a gaseous liner has been proposed for use in magnetized target fusion propulsion. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The analysis lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that during the merging of the jets to form a liner and before contact with the target plasma the growth of the perturbed flow at the jet interface is not likely to destabilize the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of liner can withstand velocity variation up to 50% between the neighboring jets over the density and temperature ranges investigated.

  6. Relativistic precessing jets in quasars and radio galaxies - Models to fit high resolution data

    NASA Technical Reports Server (NTRS)

    Gower, A. C.; Gregory, P. C.; Unruh, W. G.; Hutchings, J. B.

    1982-01-01

    The formulation of generalized models tracing the geometry and intensity of the synchrotron emission from precessing, twin, relativistic jets as projected on the plane of the sky is presented. It is shown that neither the shape of the image nor its relative intensities are altered by including the effects of a cosmological redshift and a relative velocity between the source and observer. The models are fitted to the available data for several quasars and radio galaxies and demonstrate the plausibility of the phenomenon. Probable selection effects are considered and diagnostics given for recognizing objects showing this behavior. In the radio galaxies considered, velocities up to about 0.2c and precession periods of 1,000,000 yr are deduced. In the QSOs investigated, velocities of 0.7c and greater are found and periods of order 10,000 yr. In some cases precession cone angles increase with time. Consequences in terms of lifetimes of QSO behavior and binary supermassive objects are discussed.

  7. Recollimation and Radiative Focusing of Relativistic Jets: Applications to Blazars and M87

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Levinson, Amir

    2009-07-01

    Recent observations of M87 and some blazars reveal violent activity in small regions located at relatively large distances from the central engine. Motivated by these considerations, we study the hydrodynamic collimation of a relativistic cooling outflow using a semianalytical model developed earlier. We first demonstrate that radiative cooling of the shocked outflow layer can lead to a focusing of the outflow and its reconfinement in a region having a very small cross-sectional radius. Such a configuration can produce rapid variability at large distances from the central engine via reflections of the converging recollimation shock. Possible applications of this model to TeV blazars are discussed. We then apply our model to M87. The low radiative efficiency of the M87 jet renders focusing unlikely. However, the shallow profile of the ambient medium pressure inferred from observations results in extremely good collimation that can explain the reported variability of the X-ray flux emitted from the HST-1 knot.

  8. Coronal Jets in Closed Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Wyper, Peter Fraser; DeVore, C. R.

    2015-04-01

    Coronal jets are dynamic, collimated structures observed in solar EUV and X-ray emission. They appear predominantly in the open field of coronal holes, but are also observed in areas of closed field, especially active regions. A common feature of coronal jets is that they originate from the field above a parasitic polarity of opposite sign to the surrounding field. Some process - such as instability onset or flux emergence - induces explosive reconnection between the closed “anemone” field and the surrounding open field that generates the jet. The lesser number of coronal jets in closed-field regions suggests a possible stabilizing effect of the closed configuration with respect to coronal jet formation. If the scale of the jet region is small compared with the background loop length, as in for example type II spicules, the nearby magnetic field may be treated as locally open. As such, one would expect that if a stabilizing effect exists it becomes most apparent as the scale of the anemone region approaches that of the background coronal loops.To investigate if coronal jets are indeed suppressed along shorter coronal loops, we performed a number of simulations of jets driven by a rotation of the parasitic polarity (as in the previous open-jet calculations by Pariat et. al 2009, 2010, 2015) embedded in a large-scale closed bipolar field. The simulations were performed with the state of the art Adaptively Refined Magnetohydrodynamics Solver. We will report here how the magnetic configuration above the anemone region determines the nature of the jet, when it is triggered, and how much of the stored magnetic energy is released. We show that regions in which the background field and the parasitic polarity region are of comparable scale naturally suppress explosive energy release. We will also show how in the post-jet relaxation phase a combination of confined MHD waves and weak current layers are generated by the jet along the background coronal loops, both of which

  9. Spatial Stability of the Expanding Magnetized Slab Jet

    NASA Astrophysics Data System (ADS)

    Cooper, M. A.; Hardee, P. E.; Clarke, D. A.

    1993-12-01

    A spatial stability analysis of the Kelvin-Helmholtz instability in an expanding axially magnetized slab jet is presented. The results are then compared with numerical simulations to see if the perturbation theory correctly describes global instabilities. Provided the jet is highly super-Alfvenic and highly supersonic then the dispersion relation describing the propagation and growth of a perturbation admits the same type of solutions as those found for purely fluid jets. However, in the region where the jet is only slightly super-Alfvenic or slightly supersonic, the expansion of the jet causes the solution to split into a growing and damped pair. This splitting occurs for both sonic and Alfvenic disturbances which propagate along the flow direction. At high frequencies, the growing solutions of the fundamental sinusoidal mode correspond to sound waves and Alfven waves propagating in the flow direction, while the damped solutions correspond to sound waves and Alfven waves propagating against the flow. Those solutions which are damped at high frequencies become growing as the frequency is decreased. The opposite is true for growing solutions at high frequencies. When the jet is sub-Alfvenic, at least one solution of the fundamental mode is not stabilized. However, the simulations suggest that any instabilities that arise when the jet is sub- or trans-Alfvenic will be damped out as the jet becomes fully super-Alfvenic. Therefore, for sub-Alfvenic jets it may be necessary to consider the effects of expansion on the stability of the jet. This work was supported by NSF grant AST-8919180 and EPSCoR grant EHR-9108761.

  10. Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenni; Wu, Zhengwei; Li, Chunhua; Yang, Weihong

    2014-11-01

    A model for the nonlinear properties of obliquely propagating electron acoustic solitary waves in a two-electron populated relativistically quantum magnetized plasma is presented. By using the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived and this equation gives the solitary wave solution. It is observed that the relativistic effects, the ratio of the cold to hot electron unperturbed number density and the magnetic field normalized by electron cyclotron frequency significantly influence the solitary structures.

  11. THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES

    SciTech Connect

    De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico E-mail: jfg@ucolick.org E-mail: enrico@ucolick.org

    2012-12-01

    We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t {sup -5/3} decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet

  12. The Dynamics, Appearance, and Demographics of Relativistic Jets Triggered by Tidal Disruption of Stars in Quiescent Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico

    2012-12-01

    We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t -5/3 decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet's origin

  13. Relativistic Cyclotron Resonance Shape in Magnetic Bottle Geonium

    NASA Astrophysics Data System (ADS)

    Dehmelt, Hans; Mittleman, Richard; Liu, Yuan

    1988-10-01

    The thermally excited axial oscillation of the electron through the weak magnetic bottle needed for the continuous Stern-Gerlach effect modulates the cyclotron frequency and produces a characteristic ≈ 12-kHz-wide vertical rise-exponential decline line shape of the cyclotron resonance. At the same time the relativistic mass shift decreases the frequency by ≈ 200 Hz per cyclotron motion quantum level n. Nevertheless, our analysis of the complex line shape shows that it should be possible to produce an abrupt rise in the cyclotron quantum number n from 0 to ≈ 20 over a small fraction of 200 Hz, when the 160-GHz microwave drive approaches the n = 0 → 1 transition, and a jump of 14 levels over a frequency increment of 200 Hz has already been observed in preliminary work. This realizes an earlier proposal to generate a very sharp cyclotron resonance feature by quasithermal excitation with a square noise band and should provide a way to detect spin flips when a weak bottle is used to reduce the broadening of the g - 2 resonance by a factor of 20.

  14. Searching for Soft Relativistic Jets in Core-Collapse Supernovae with the IceCube Optical Follow-up Program

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. -H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Stamatikos, M.

    2011-01-01

    Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of < or approx.100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 10(exp 51) erg, respectively, does not exceed 4:2% at 90% confidence.

  15. Self-compression of intense short laser pulses in relativistic magnetized plasma

    SciTech Connect

    Olumi, M.; Maraghechi, B.

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  16. Solar Polar Jets Driven by Magnetic Reconnection, Gravity, and Wind

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.

    2014-06-01

    Polar jets are dynamic, narrow, radially extended structures observed in solar EUV emission near the limb. They originate within the open field of coronal holes in “anemone” regions, which are intrusions of opposite magnetic polarity. The key topological feature is a magnetic null point atop a dome-shaped fan surface of field lines. Applied stresses readily distort the null into a current patch, eventually inducing interchange reconnection between the closed and open fields inside and outside the fan surface (Antiochos 1996). Previously, we demonstrated that magnetic free energy stored on twisted closed field lines inside the fan surface is released explosively by the onset of fast reconnection across the current patch (Pariat et al. 2009, 2010). A dense jet comprised of a nonlinear, torsional Alfvén wave is ejected into the outer corona along the newly reconnected open field lines. Now we are extending those exploratory simulations by including the effects of solar gravity, solar wind, and expanding spherical geometry. We find that the model remains robust in the resulting more complex setting, with explosive energy release and dense jet formation occurring in the low corona due to the onset of a kink-like instability, as found in the earlier Cartesian, gravity-free, static-atmosphere cases. The spherical-geometry jet including gravity and wind propagates far more rapidly into the outer corona and inner heliosphere than a comparison jet simulation that excludes those effects. We report detailed analyses of our new results, compare them with previous work, and discuss the implications for understanding remote and in-situ observations of solar polar jets.This work was supported by NASA’s LWS TR&T program.

  17. About the magnetic origin of Chromospheric Spicules and Coronal Jets

    NASA Astrophysics Data System (ADS)

    Koutchmy, S.; Filippov, B.; Tavabi, E.

    2012-06-01

    Observations of jet- like phenomena near the solar limb are reported for a long time, first in Hα (Secchi observations of spicules in the 1870 ies), and after, from eclipse high resolution coronal images taken in white-light (1920-1973) as spiky structures. EUV jets were reported in the 70 ies from rocket and space-borne CIV filtergrams and finally X-EUV jets were reported from SXT observations of Yohkoh and from EIT and CDS SoHO observations. There is now little doubt that they are of magnetic origin although no magnetic field measurements exist for these regions and thermo-dynamical models are still work out. New observations of both spicules and jets with the SOT/SXT of Hinode were subjected to an analysis showing the influence of the null point(s) of the magnetic field. The collective behavior of the H CaII SOT(Hinode) time sequences of processed with the Madmax operator images of limb spicules show the torsional effects which were partly suggested before from the interpretation of high resolution limb spectra taken on Russian coronagraphs and the VTT at SacPeak. 100 s and shorter period waves are recorded. We propose a reconnection process occurring at the top of an emerging twisted flux tube for explaining some peculiarities of the spicular eruptions and possibly, as a viable mechanism for explaining the SXR jet eruptions. The result of a numerical 3D modeling illustrates this erupting mechanism although the behavior of the magneto-plasma structure near a null point, as shown by coronal filtergrams, does not necessary imply reconnections, especially the case of jets making a long coronal ray we observed in white-light with Lasco C2.

  18. Wave-breaking phenomena in a relativistic magnetized plasma.

    PubMed

    Maity, Chandan; Sarkar, Anwesa; Shukla, Padma Kant; Chakrabarti, Nikhil

    2013-05-24

    We study the wave-breaking phenomenon of relativistic upper-hybrid (UH) oscillations in a cold magnetoplasma. For our purposes, we use the electron continuity and relativistic electron momentum equations, together with Maxwell's equations, as well as introduce Lagrangian coordinates to obtain an exact nonstationary solution of the governing nonlinear equations. It is found that bursts in the electron density appear in a finite time as a result of relativistic electron mass variations in the UH electric field, indicating a phase mixing or breaking of relativistic UH oscillations. We highlight the relevance of our investigation of the UH wave phase-mixing or UH wave-breaking process to electron energization and plasma particle heating. PMID:23745888

  19. Pressure and Magnetics Measurements of Single and Merged Jets

    NASA Astrophysics Data System (ADS)

    Messer, S.; Case, A.; Brockington, S.; Bomgardner, R.; Witherspoon, F. D.

    2010-11-01

    We present pressure and magnetic data from both a single full scale coaxial gun and from the merging of jets from several minirailguns. The magnetic probes measure all three components of field, and include an array of probes inside the coaxial gun. Magnetic measurements beyond the muzzle of the gun show the scale of currents trapped in the plasma plume. The pressure probe measures adiabatic stagnation pressure and shows how this quantity decreases with distance from the gun as well as the changes in stagnation pressure through the merge process. Stagnation pressure is influenced by density, temperature, and velocity, and serves as a check on spectroscopic and interferometer measurements. Unlike optical measurements, stagnation pressure is taken at a definite location. These guns are early prototypes of guns to be installed on the Plasma Liner eXperiment at LANL. The jet-merging results are reviewed in the context of what is expected for PLX.

  20. Spatiotemporal evolution of high power laser pulses in relativistic magnetized inhomogeneous plasmas

    SciTech Connect

    Bokaei, B.; Niknam, A. R. Imani, E.

    2015-09-15

    In this work, the spatiotemporal evolution of Gaussian laser pulse propagated through a plasma is investigated in the presence of an external axial magnetic field. The coupled equations of self-focusing and self-compression are obtained via paraxial approximation by taking into account the relativistic nonlinearity. The effect of axial magnetic field on simultaneously relativistic self-focusing and self-compression of the laser pulse is studied for homogeneous and inhomogeneous plasmas. The results show that the simultaneous use of both axial magnetic field and density ramp-up leads to generate pulses with the smallest spot size and shortest compression length.

  1. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    PubMed

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  2. Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas

    SciTech Connect

    Hussain, Azhar; Stefan, Martin; Brodin, Gert

    2014-03-15

    We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.

  3. Relativistic solitons and shocks in magnetized e(-)-e(+)-p(+) fluids

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzihong

    1989-01-01

    A new type of relativistic magnetosonic soliton, which is electrically charged with a gigavolt potential, is found to exist in a magnetized electron-positron-proton plasma. Relativistic collisionless shocks resulting from such solitons can carry an even larger electric potential at the shock front. GeV electrons and positrons in some active astrophsyical sources may be produced due to acceleration by these electric fields.

  4. Laboratory Studies of Magnetically Driven, Radiatively Cooled Supersonic Plasma Jets

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey V.

    2010-05-01

    Results of the recent experiments with radiatively cooled jets performed on the pulsed power MAGPIE facility (1.5MA, 250ns) at Imperial College will be presented. The experiments are scalable to astrophysical flows in that critical dimensionless numbers such as the plasma collisionality, the plasma beta, Reynolds number and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes. The main part of the presentation will concentrate on the dynamics of magnetically driven jets, in particular on formation of episodic outflows [1]. The experimental results show the periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities. Experimental data on the energy balance in the magnetically driven jets, the conversion of the Poynting flux energy into kinetic energy of the outflow, will be also presented. *) In collaboration with A. CIARDI, F.A. SUZUKI-VIDAL, S.N. BLAND, M. BOCCHI, G. BURDIAK, J.P. CHITTENDEN, P. de GROUCHY, G. HALL, A. HARVEY-THOMSON, A. MAROCCHINO, G. SWADLING, A. FRANK, E. G. BLACKMAN, C. STEHLE, M. CAMENZIND. This research was sponsored by EPSRC, by the OFES DOE, by the NNSA under DOE Cooperative Agreement No. DE-FC03-02NA00057 and by the European Community's Marie Curie Actions within the JETSET network under Contract No. MRTNCT- 2004 005592. References [1] A. Ciardi, S.V. Lebedev, A. Frank et al., The Astrophysical Journal, 691: L147-L150 (2009).

  5. DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY

    SciTech Connect

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2012-10-01

    We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P{sub jet}/L{sub edd} {approx}< 10{sup -4}, although systems with large cloud complexes {approx}> 50 pc require jets of Eddington ratio in excess of 10{sup -2} to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than {approx}25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.

  6. MAGNETIC-FIELD AMPLIFICATION BY TURBULENCE IN A RELATIVISTIC SHOCK PROPAGATING THROUGH AN INHOMOGENEOUS MEDIUM

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Pohl, Martin; Niemiec, Jacek; Zhang, Bing; Hardee, Philip E.

    2011-01-10

    We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.

  7. Magnetic Fields Sculpt Narrow Jets From Dying Star

    NASA Astrophysics Data System (ADS)

    2006-03-01

    Molecules spewed outward from a dying star are confined into narrow jets by a tightly-wound magnetic field, according to astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to study an old star about 8,500 light-years from Earth. Magnetic Field Around Jet Artist's Conception Shows Tightly-Wound Magnetic Field Confining Jet CREDIT: NRAO/AUI/NSF (Click on image for larger version) The star, called W43A, in the constellation Aquila, is in the process of forming a planetary nebula, a shell of brightly-glowing gas lit by the hot ember into which the star will collapse. In 2002, astronomers discovered that the aging star was ejecting twin jets of water molecules. That discovery was a breakthrough in understanding how many planetary nebulae are formed into elongated shapes. "The next question was, what is keeping this outpouring of material confined into narrow jets? Theoreticians suspected magnetic fields, and we now have found the first direct evidence that a magnetic field is confining such a jet," said Wouter Vlemmings, a Marie Curie Fellow working at the Jodrell Bank Observatory of the University of Manchester in England. "Magnetic fields previously have been detected in jets emitted by quasars and protostars, but the evidence was not conclusive that the magnetic fields were actually confining the jets. These new VLBA observations now make that direct connection for the very first time," Vlemmings added. By using the VLBA to study the alignment, or polarization, of radio waves emitted by water molecules in the jets, the scientists were able to determine the strength and orientation of the magnetic field surrounding the jets. "Our observations support recent theoretical models in which magnetically-confined jets produce the sometimes-complex shapes we see in planetary nebulae," said Philip Diamond, also of Jodrell Bank Observatory. During their "normal" lives, stars similar to our Sun are powered by the nuclear fusion

  8. Wave-breaking amplitudes of relativistic upper-hybrid oscillations in a cold magnetized plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil

    2016-06-01

    A travelling wave solution is presented for relativistic upper-hybrid oscillations (RUHOs) in a cold magnetized plasma. An expression for the wave-breaking amplitudes of RUHOs is derived. The wave-breaking amplitudes of RUHOs are found to decrease with the increase of the strength of an ambient magnetic field. These results will be of relevance to the laboratory context of particle acceleration by wake-fields in which magnetic field plays a central role.

  9. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk–magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  10. One-pion exchange current effects on magnetic form factor in the relativistic formalism

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Liu, Jian; Ren, Zhongzhou

    2016-08-01

    One-pion exchange current effects on the magnetic form factors of some odd nuclei are studied in the relativistic formalism. The Dirac wave functions of nucleons are calculated from the relativistic mean-field theory. After fitting to experimental data by quenching factors, it is found that taking the one-pion exchange currents into account gives a better description of the magnetic form factor. The root-mean-square radii of the valance nucleon orbits are also calculated in RMF model, which coincide with experimental radii extracted with meson exchange current corrections.

  11. Electromagnetic Models of Extragalactic Jets

    SciTech Connect

    Lisanti, M.; Blandford, R.; /KIPAC, Menlo Park

    2007-10-22

    Relativistic jets may be confined by large-scale, anisotropic electromagnetic stresses that balance isotropic particle pressure and disordered magnetic field. A class of axisymmetric equilibrium jet models will be described and their radiative properties outlined under simple assumptions. The partition of the jet power between electromagnetic and mechanical forms and the comoving energy density between particles and magnetic field will be discussed. Current carrying jets may be recognized by their polarization patterns. Progress and prospects for measuring this using VLBI and GLAST observations will be summarized.

  12. Microwave radiation power of relativistic electron beam with virtual cathode in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Kurkin, S. A.; Hramov, A. E.; Koronovskii, A. A.

    2013-07-01

    The study of the output power of the electromagnetic radiation of the relativistic electron beam (REB) with virtual cathode in the presence of external magnetic field has been found out. The typical dependencies of the output microwave power of the vircator versus external magnetic field have been analyzed by means of 3D electromagnetic simulation. It has been shown that the power of vircator demonstrates several maxima with external magnetic field growth. The characteristic features of the power behavior are determined by the conditions of the virtual cathode formation in the presence of the external transversal magnetic field and the REB self-magnetic fields.

  13. Microwave radiation power of relativistic electron beam with virtual cathode in the external magnetic field

    SciTech Connect

    Kurkin, S. A.; Hramov, A. E.; Koronovskii, A. A.; Saratov State Technical University, Politechnicheskaja 77, Saratov 410028

    2013-07-22

    The study of the output power of the electromagnetic radiation of the relativistic electron beam (REB) with virtual cathode in the presence of external magnetic field has been found out. The typical dependencies of the output microwave power of the vircator versus external magnetic field have been analyzed by means of 3D electromagnetic simulation. It has been shown that the power of vircator demonstrates several maxima with external magnetic field growth. The characteristic features of the power behavior are determined by the conditions of the virtual cathode formation in the presence of the external transversal magnetic field and the REB self-magnetic fields.

  14. Relativistic Runaway Electron Avalanches in the Presence of an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Liu, N.; Rassoul, H.; Briggs, M. S.

    2015-12-01

    Relativistic runaway electron avalanches are known to be produced inside the high electric field regions of thunderstorms. In this work, we include the effects of an external static magnetic field. Previous studies have shown that the magnetic field has a great influence on the electron motion at higher altitudes, e.g. Lehtinen et al., 1997, and Gurevich et al., 1996. This result proves important when studying phenomena such as Terrestrial Gamma-ray Flashes, and their effects on the upper atmosphere. Therefore, electron avalanche rates, feedback rates, and electron energy distribution functions will be analyzed and compared to the results of previous studies that did not include a magnetic field. The runaway electron avalanche model (REAM) is a Monte Carlo code that simulates the generation, interactions, and propagation of relativistic runaway electrons in air [Dwyer, 2003, 2004, 2007]. We use this simulation for varying strengths and angles between the electric and magnetic fields to calculate avalanche lengths and angular distribution functions of the relativistic runaway electrons. We will also show electron distribution functions in momentum space. Finally, we will discuss the important regimes for which the magnetic field becomes significant in studying the properties of runaway electron avalanches and relativistic feedback.

  15. Fluid Instabilities in the Crab Nebula Jet: Results from Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Mignone, A.; Striani, E.; Bodo, G.; Anjiri, M.

    2014-09-01

    We present an overview of high-resolution relativistic MHD numerical simulations of the Crab Nebula South-East jet. The models are based on hot and relativistic hollow outflows initially carrying a purely toroidal magnetic field. Our results indicate that weakly relativistic (γ˜ 2) and strongly magnetized jets are prone to kink instabilities leading to a noticeable deflection of the jet. These conclusions are in good agreement with the recent X-ray (Chandra) data of Crab Nebula South-East jet indicating a change in the direction of propagation on a time scale of the order of few years.

  16. Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking

    SciTech Connect

    Pegoraro, F.

    2015-11-15

    Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations.

  17. Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking

    NASA Astrophysics Data System (ADS)

    Pegoraro, F.

    2015-11-01

    Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations.

  18. Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Melzani, Mickaël; Walder, Rolf; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M.

    2014-10-01

    Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs), a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low β ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma restmass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here 10 ≤ σe ≤ 360), the reconnection outflows are dominated by thermal agitation instead of bulk kinetic energy. (ii) At high inflow electron magnetization (σe ≥ 80), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far lower than the inflow E × B bulk velocity. (iv) Island centers are magnetically isolated from the rest of the flow and can present a density depletion at their center. (v) The reconnection rates are slightly higher than in non-relativistic studies. They are best normalized by the inflow relativistic Alfvén speed projected in the outflow direction, which then leads to rates in a close range (0.14-0.25), thus allowing for an easy estimation of the reconnection electric field.

  19. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM.

    SciTech Connect

    GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

    2001-06-18

    A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II.

  20. Filamentation of laser in a magnetized plasma under relativistic and ponderomotive nonlinearities

    SciTech Connect

    Singh, Ranjeet; Tripathi, V. K.

    2009-05-15

    Filamentation of a circularly polarized short pulse laser propagating along the direction of ambient magnetic field in plasma is studied. The nonlinearity arises through the combined effect of relativistic mass variation and ponderomotive force induced electron cavitation. The growth rate is maximum {gamma}{sub max} for an optimum filament size, q{sub opt}{sup -1}. {gamma}{sub max} and q{sub opt} increases with plasma density and ambient magnetic field.

  1. Relativistic soliton formation in laser magnetized plasma interactions

    NASA Astrophysics Data System (ADS)

    Feng, W.; Li, J. Q.; Kishimoto, Y.

    2016-05-01

    The laser plasma interactions in the presence of strong magnetic field are studied by employing particle-in-cell simulations. Simulations show that the energy absorption of strong laser pulse is mainly characterized by the electron cyclotron resonance heating (ECRH) when the magnetic field is large enough. However, it is found that for a weaker magnetic field, a standing or moving soliton can be generated in some moderate laser intensity regions, greatly enhancing the laser absorption. The laser intensity for the soliton heating decreases as the magnetic field increases. Furthermore, the soliton position moves towards the front boundary when the laser intensity or magnetic field strength increases.

  2. On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma

    SciTech Connect

    Abbas, Gohar; Iqbal, Z.; Murtaza, G.

    2015-03-15

    The dispersion relations for the weakly magnetized perpendicular propagating modes (O-mode, X-mode, and upper hybrid mode) based on the ultra-relativistic Fermi-Dirac distribution function with chemical potential are derived using the Vlasov–Maxwell model. The results are presented in terms of Polylog functions without making any approximation. It is found that as the ratio μ/T is increased, the cutoff points shift downward. A comparison is also performed with the previously derived results for ultra-relativistic Maxwellian distribution.

  3. Plasma waves in a relativistic, strongly anisotropic plasma propagated along a strong magnetic field

    NASA Technical Reports Server (NTRS)

    Onishchenko, O. G.

    1980-01-01

    The dispersion properties of plasma waves in a relativistic homogeneous plasma propagated along a strong magnetic field are studied. It is shown that the non-damping plasma waves exist in the frequency range omega sub p or = omega or = omega sub L. The values of omega sub p and omega sub L are calculated for an arbitrary homogeneous relativistic function of the particle distribution. In the case of a power ultrarelativistic distribution, it is shown that, if the ultrarelativistic tail of the distribution drops very rapidly, slightly damping plasma waves are possible with the phase velocity (omega/K)c.

  4. Theoretical grounds of relativistic methods for calculation of spin–spin coupling constants in nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.

    2016-04-01

    The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin–spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin–spin coupling constants using the available software are given. The bibliography includes 622 references.

  5. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  6. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Astrophysics Data System (ADS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Jörn; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, John E.; Tramper, Frank

    2011-02-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states." Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2.

  7. Formal relations connecting different approaches to calculate relativistic effects on molecular magnetic properties

    NASA Astrophysics Data System (ADS)

    Zaccari, D. G.; Ruiz de Azúa, M. C.; Melo, J. I.; Giribet, C. G.

    2006-02-01

    In the present work a set of formal relations connecting different approaches to calculate relativistic effects on magnetic molecular properties are proven. The linear response (LR) within the elimination of the small component (ESC), Breit Pauli, and minimal-coupling approaches are compared. To this end, the leading order ESC reduction of operators within the minimal-coupling four-component approach is carried out. The equivalence of all three approaches within the ESC approximation is proven. It is numerically verified for the NMR nuclear-magnetic shielding tensor taking HX and CH3X (X =Br,I) as model compounds. Formal relations proving the gauge origin invariance of the full relativistic effect on the NMR nuclear-magnetic shielding tensor within the LR-ESC approach are presented.

  8. Jet quenching effects on the direct, elliptic, and triangular flow at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Andrade, R. P. G.; Noronha, J.; Denicol, Gabriel S.

    2014-08-01

    In this paper we investigate how the energy and momentum deposited by partonic dijets in the quark-gluon plasma (QGP) may affect the direct, elliptic, and triangular flow of low (and intermediate) pT hadrons in central Au +Au collisions at the BNL Relativistic Heavy Ion Collider. The dijets are modeled as external sources in the energy-momentum conservation equations for hydrodynamics, which are solved on an event-by-event basis within the ideal-fluid approximation. We focus our investigation at midrapidity and solve the hydrodynamic equations by imposing boost invariance. Differential anisotropic flow coefficients for pT≳1GeV are found to be significantly enhanced if the dijets deposit on average more than 12 GeV in the QGP (or more than 6 GeV per jet). Because this extra energy and momentum added to the medium perturbs the geometry-induced hydrodynamic expansion, the correlation between the v2 and v3 coefficients (for pT≳1GeV) and their corresponding initial eccentricities are considerably weakened. In addition, we argue that the extra amount of direct flow induced by dijets may be quantified by comparing the azimuthal dependence of dihadron correlations in dijet events with the corresponding quantity obtained in events without dijets. This comparison could be used to give a rough estimate of the magnitude of the effective coupling between the jets and the medium.

  9. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  10. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  11. Asymmetric neutrino production in magnetized proto-neutron stars in fully relativistic mean-field approach

    SciTech Connect

    Maruyama, Tomoyuki; Kajino, Toshitaka; Hidaka, Jun; Takiwaki, Tomoya; Yasutake, Nobutoshi; Kuroda, Takami; Cheoun, Myung-Ki; Ryu, Chung-Yeol; Mathews, Grant J.

    2014-05-02

    We calculate the neutrino production cross-section in the proto-neutron-star matter under a strong magnetic field in the relativistic mean-field approach. We introduce a new parameter-set which can reproduce the 1.96 solar mass neutron star. We find that the production process increases emitted neutrinos along the direction parallel to the magnetic field and decrease those along its opposite direction. It means that resultant asymmetry due to the neutrino absorption and scattering process in the magnetic field becomes larger by the addition of the neutrino production process.

  12. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  13. Interaction of Radio Jets with Magnetic Fields in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    1997-10-01

    High Faraday rotation measures in the centers of cooling-flow clusters indicate the presence of strong magnetic fields. We examine the effects of these strong fields on the propagation of radio jets emerging from the central cD galaxies of these clusters, and the deformation of the magnetic fields by the fast-propagating jets. We argue that active regions will develop around these radio jets as a result of the violent response of the strong ambient magnetic fields. The magnetic tension can act back on the jets by influencing the development of Rayleigh-Taylor and Kelvin-Helmholtz instability modes, and by exerting a nonaxisymmetric force on the jets. If the jet propagation direction is not along the magnetic field lines, then the jet will be sharply bent by the magnetic tension. Future MHD numerical simulations that will study these effects more quantitatively should be compared directly with specific clusters. If, indeed, some properties of jets expanding from cD galaxies in cooling-flow clusters will turn out to result from interaction with strong magnetic fields in the intracluster medium at the centers of these clusters, then this will strengthen the cooling-flow model, since it will support the presence of inflow.

  14. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    PubMed

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection. PMID:25375716

  15. Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-01

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ≡B2/(4πnmec2)>1 and when the system size is sufficiently large. In the limit σ≫1, the spectral index approaches p=1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  16. Equilibrium configurations of a jet of an ideally conducting liquid in an external nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Zubareva, O. V.

    2016-06-01

    Possible equilibrium configurations of the free surface of a jet of an ideally conducting liquid placed in a nonuniform magnetic field are considered. The magnetic field is generated by two thin wires that are parallel to the jet and bear oppositely directed currents. Equilibrium is due to a balance between capillary and magnetic forces. For the plane symmetric case, when the jet deforms only in the plane of its cross section, two one-parameter families of exact solutions to the problem are derived using the method of conformal mapping. According to these solutions, a jet with an initially circular cross section deforms up to splitting into two separate jets. A criterion for jet splitting is derived by analyzing approximate two-parameter solutions.

  17. Plasma jets subject to adjustable current polarities and external magnetic fields

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Schrafel, Peter; Gourdain, Pierre; Seyler, Charles; Kusse, Bruce

    2014-12-01

    In the present research, collimated plasma jets form from ablation of a radial foil (Al 20 μm thin disk) using a pulsed power generator (COBRA) with 1 MA peak current and 100 ns rise time. Plasma dynamics of the jet are diagnosed with and without an applied uniform axial magnetic field (1 T) and under a change of current polarities, which correspond to current moving either radially outward or inward from the foil's central axis. Experimental results are compared with numerical simulations (PERSEUS). The influence of the Hall effect on the jet development is observed under opposite current polarities. Additionally, the magnetic field compression within the jet is examined. Further studies will compare the laboratory-generated plasma jets and astrophysical jets with embedded magnetic fields.

  18. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVENIC JET: TEMPORAL PROPERTIES

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2011-06-10

    We have investigated the influence of a velocity shear surface on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria in three dimensions. In this study, we follow the temporal development within a periodic computational box and concentrate on flows that are sub-Alfvenic on the cylindrical jet's axis. Displacement of the initial force-free helical magnetic field leads to the growth of CD kink instability. We find that helically distorted density structure propagates along the jet with speed and flow structure dependent on the radius of the velocity shear surface relative to the characteristic radius of the helically twisted force-free magnetic field. At small velocity shear surface radius, the plasma flows through the kink with minimal kink propagation speed. The kink propagation speed increases as the velocity shear radius increases and the kink becomes more embedded in the plasma flow. A decreasing magnetic pitch profile and faster flow enhance the influence of velocity shear. Simulations show continuous transverse growth in the nonlinear phase of the instability. The growth rate of the CD kink instability and the nonlinear behavior also depend on the velocity shear surface radius and flow speed, and the magnetic pitch radial profile. Larger velocity shear radius leads to slower linear growth, makes a later transition to the nonlinear stage, and with larger maximum amplitude than that occuring for a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and nonlinear development can be similar to the development of a static plasma column.

  19. Conditions for jet formation in accreting neutron stars: the magnetic field decay

    NASA Astrophysics Data System (ADS)

    García, Federico; Aguilera, Deborah N.; Romero, Gustavo E.

    2011-02-01

    Accreting neutron stars can produce jets only if they are weakly magnetized (B ~ 108 G). On the other hand, neutron stars are compact objects born with strong surface magnetic fields (B ~ 1012 G). In this work we study the conditions for jet formation in a binary system formed by a neutron star and a massive donor star once the magnetic field has decayed due to accretion. We solve the induction equation for the magnetic field diffusion in a realistic neutron star crust and discuss the possibility of jet launching in systems like the recently detected Supergiant Fast X-ray Transients.

  20. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  1. Nonlinear dynamics of cold magnetized non-relativistic plasma in the presence of electron-ion collisions

    SciTech Connect

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2015-09-15

    A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.

  2. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    NASA Technical Reports Server (NTRS)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  3. Twisting space-time: relativistic origin of seed magnetic field and vorticity.

    PubMed

    Mahajan, S M; Yoshida, Z

    2010-08-27

    We demonstrate that a purely ideal mechanism, originating in the space-time distortion caused by the demands of special relativity, can break the topological constraint (leading to helicity conservation) that would forbid the emergence of a magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. The new mechanism, arising from the interaction between the inhomogeneous flow fields and inhomogeneous entropy, is universal and can provide a finite seed even for mildly relativistic flows. PMID:20868171

  4. Nonlinear effects in new magnetic pickup coils for JET

    SciTech Connect

    Quercia, A.; Pomaro, N.; Visone, C.

    2006-10-15

    In the framework of the JET magnetic diagnostic enhancement, a set of pickup coils (UC subsystem) wound on metallic Inconel registered 600 former was manufactured. For cross-validation purposes, two different calibration methods were used. A discrepancy in the range of 3% was observed, which can be explained when considering the dependence of the calibration coefficients on the field strength, which in turn is mostly due to the nonlinear behavior of the Inconel former. For this reason a specimen of Inconel was analyzed by means of a magnetometer, which showed a nonlinear and hysteretic behavior occurring at low field level (below 5 mT). The calibration coefficients are also measured at low field (0.1-2 mT) and so are affected by such peculiar ferromagnetic behavior. Moreover, the ferromagnetic behavior might be sensitive to mechanical and thermal treatments performed during probe manufacturing and testing. Therefore the achievable accuracy for the calibration of coils wound on Inconel formers is limited by the following effects: (i) the field level in operation can be completely different from the field used in the calibration procedure; (ii) measurements of the magnetic properties on Inconel specimens cannot be extrapolated to the former, because of unpredictable effects of mechanical and thermal treatments made on the coil; (iii) residual magnetization; and (iv) temperature variations during operation.

  5. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  6. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-12-15

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.

  7. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  8. Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers.

    PubMed

    Ping, Y L; Zhong, J Y; Sheng, Z M; Wang, X G; Liu, B; Li, Y T; Yan, X Q; He, X T; Zhang, J; Zhao, G

    2014-03-01

    Three-dimensional fast magnetic reconnection driven by two ultraintense femtosecond laser pulses is investigated by relativistic particle-in-cell simulation, where the two paralleled incident laser beams are shot into a near-critical plasma layer to form a magnetic reconnection configuration in self-generated magnetic fields. A reconnection X point and out-of-plane quadrupole field structures associated with magnetic reconnection are formed. The reconnection rate is found to be faster than that found in previous two-dimensional Hall magnetohydrodynamic simulations and electrostatic turbulence contribution to the reconnection electric field plays an essential role. Both in-plane and out-of-plane electron and ion accelerations up to a few MeV due to the magnetic reconnection process are also obtained. PMID:24730781

  9. Bose-Einstein condensation of bound pairs of relativistic fermions in a magnetic field

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Hou, De-fu; Ren, Hai-cang; Wu, Ping-ping

    2016-04-01

    The Bose-Einstein condensation of bound pairs made of equally and oppositely charged fermions in a magnetic field is investigated using a relativistic model. The Gaussian fluctuations have been taken into account in order to study the spectrum of bound pairs in the strong coupling region. We found, in the weak coupling region, that the condensation temperature increases with an increasing magnetic field displaying the magnetic catalysis effect. In the strong coupling region, the inverse magnetic catalysis appears when the magnetic field is low and is replaced by the usual magnetic catalysis effect when magnetic field is sufficiently high, in contrast to the nonrelativistic case where the inverse magnetic catalysis prevails in the strong coupling region regardless of the strength of the magnetic field. The resulting response to the magnetic field is the consequence of the competition between the dimensional reduction by Landau orbitals in pairing dynamics and the anisotropy of the kinetic spectrum of the bound pairs. We thus conclude that dimensional reduction dominates in the weak domain and strong coupling one except in the small magnetic field region, where the enhanced fluctuations dominate.

  10. A thermal distribution function for relativistic magnetically insulated electron flows

    SciTech Connect

    Desjarlais, M.P.; Sudan, R.N.

    1986-05-01

    A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q = ..omega../sup 2//sub p//..cap omega../sup 2/ equilibria in its zero-temperature limit. Analytic solutions are given for the general, constant Q, zero-temperature equilibria.

  11. Pair production rates in mildly relativistic, magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Burns, M. L.; Harding, A. K.

    1984-01-01

    Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4.

  12. Embedding magnetic field lines in the plasma jet of an exploding radial foil on COBRA

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Gourdain, Pierre; Greenly, John; Kusse, Bruce

    2009-11-01

    Previous investigations of exploding radial foils have shown the formation of an axial plasma jet in the early stages of the foil explosion. In this case a thin load foil was pressed at an outer annulus held at ground, and contacted in the center by a small straight rod cathode driven by the 1MA COBRA accelerator. The present experiments look at the effects of inducing a transient magnetic field in the region containing the plasma jet. This induced magnetic field is created in one of two ways: twisting the rod cathode to have a helical coil segment near the foil, or putting an inductive current path in parallel to the straight rod cathode. Of great interest is whether this applied magnetic field can be embedded into the plasma jet and influence its development. The jet is diagnosed visually with laser shadowgraphy and observation of XUV emission. B-dot probes measure the magnetic field strength in the region near the jet.

  13. Electric current variations and 3D magnetic configuration of coronal jets

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  14. COOLING RATES FOR RELATIVISTIC ELECTRONS UNDERGOING COMPTON SCATTERING IN STRONG MAGNETIC FIELDS

    SciTech Connect

    Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L. E-mail: zw1@rice.edu

    2011-05-20

    For inner magnetospheric models of hard X-ray and gamma-ray emission in high-field pulsars and magnetars, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. This is in part due to the proximity of a hot soft photon bath from the stellar surface to putative radiation dissipation regions in the inner magnetosphere. Moreover, because the scattering process becomes resonant at the cyclotron frequency, the effective cross section exceeds the classical Thomson value by over two orders of magnitude, thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. This paper presents computations of the electron cooling rates for this process, which are needed for resonant Compton models of non-thermal radiation from such highly magnetized pulsars. The computed rates extend previous calculations of magnetic Thomson cooling to the domain of relativistic quantum effects, sampled near and above the quantum critical magnetic field of 44.13 TG. This is the first exposition of fully relativistic, quantum magnetic Compton cooling rates for electrons, and it employs both the traditional Johnson and Lippmann cross section and a newer Sokolov and Ternov (ST) formulation of Compton scattering in strong magnetic fields. Such ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance and has not been addressed before in the context of cooling by Compton scattering. The QED effects are observed to profoundly lower the rates below extrapolations of the familiar magnetic Thomson results, as expected, when recoil and Klein-Nishina reductions become important.

  15. Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals.

    PubMed

    Tchoumakov, Serguei; Civelli, Marcello; Goerbig, Mark O

    2016-08-19

    We investigate Weyl semimetals with tilted conical bands in a magnetic field. Even when the cones are overtilted (type-II Weyl semimetal), Landau-level quantization can be possible as long as the magnetic field is oriented close to the tilt direction. Most saliently, the tilt can be described within the relativistic framework of Lorentz transformations that give rise to a rich spectrum, displaying new transitions beyond the usual dipolar ones in the optical conductivity. We identify particular features in the latter that allow one to distinguish between semimetals of different types. PMID:27588870

  16. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    DOE PAGESBeta

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less

  17. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    SciTech Connect

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.

  18. On the asymptotic balance between electric and magnetic energies for hydromagnetic relativistic flows

    SciTech Connect

    Núñez, Manuel

    2013-06-15

    In the equations of classical magnetohydrodynamics, the displacement current is considered vanishingly small due to low plasma velocities. For velocities comparable to the speed of light, the full relativistic electromagnetic equations must be used. In the absence of gravitational forcings and with an isotropic Ohm's law, it is proved that for poloidal magnetic field and velocity and toroidal electric field, the electric and magnetic energies tend to be equivalent in average for large times. This represents a partial extension of Cowling's theorem for axisymmetric fields.

  19. The Extent of Power-law Energy Spectra in Collisionless Relativistic Magnetic Reconnection in Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2016-01-01

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law {γ }-α , with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. For large L and σ, the power-law index α approaches about 1.2.

  20. High frequency electromagnetic modes in a weakly magnetized relativistic electron plasma

    SciTech Connect

    Abbas, Gohar; Murtaza, G.; Kingham, R. J.

    2010-07-15

    Using the linearized Vlasov-Maxwell model, the polarization tensor for a weakly magnetized electron plasma is derived. For isotropic relativistic Maxwellian velocity distribution function, dispersion relations are obtained for both parallel and perpendicular propagations. The integrals (called Meijer G functions) that arise due to relativistic effects are examined in various limits and dispersion relations are derived for the nonrelativistic, weakly, strongly, and ultrarelativistic Maxwellian velocity distributions. It is generally observed that the propagation domains of the modes are enlarged as one proceeds from the nonrelativistic to the highly relativistic regime. Resultantly, due to the relativistic effects, the Whistler mode is suppressed in the R-wave, the nonpropagation band of X-mode is reduced, and the X-mode itself approaches the O-mode. Further, the results derived in the ultra- and nonrelativistic limits found to be in agreement with the earlier calculations [G. Abbas et al. Phys. Scr. 76, 649 (2007); F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984), Vol. 1].

  1. CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS

    SciTech Connect

    Kharb, P.; Lister, M. L.; Hogan, B. S.; Marshall, H. L.

    2012-04-01

    }13 Degree-Sign are obtained for the two quasars. Broadband (radio-optical-X-ray) spectral energy distribution (SED) modeling of individual jet components in both quasars suggests that the optical emission is from the synchrotron mechanism, while the X-rays are produced via the inverse Compton mechanism from relativistically boosted cosmic microwave background seed photons. The locations of the upstream X-ray termination peaks strongly suggest that the sites of bulk jet deceleration lie upstream (by a few kiloparsecs) of the radio hot spots in these quasars. These regions are also the sites of shocks or magnetic field dissipation, which reaccelerate charged particles and produce high-energy optical and X-ray photons. This is consistent with the best-fit SED modeling parameters of magnetic field strength and electron power-law indices being higher in the jet termination regions compared to the cores. The shocked jet regions upstream of the radio hot spots, the kiloparsec-scale jet wiggles and a 'nose cone'-like jet structure in 0106+013, and the V-shaped radio structure in 3C 345, are all broadly consistent with instabilities associated with Poynting-flux-dominated jets. A greater theoretical understanding and more sensitive numerical simulations of jets spanning parsec to kiloparsec scales are needed, however, to make direct quantitative comparisons.

  2. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  3. The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Lobanov, A. P.; Martí, J.-M.; Hardee, P. E.

    2006-09-01

    Context: .Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in the immediate vicinity of the central black holes in AGN. Aims: .We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known quasar 3C 273. Methods: .We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for the jet by Lobanov & Zensus (2001, Science, 294, 128), and one in which the effects of jet precession and the injection of discrete components have been taken into account. We compare the model with the structures observed in 3C 273 using very long baseline interferometry and constrain the basic properties of the flow. Results: .We find growing perturbation modes in the simulation with similar wavelengths to those observed, but with a different set of wave speeds and mode identification. If the observed longest helical structure is produced by the precession of the flow, longer precession periods should be expected. Conclusions: .Our results show that some of the observed structures could be explained by growing Kelvin-Helmholtz instabilities in a slow moving region of the jet. However, we point towards possible errors in the mode identification that show the need of more complete linear analysis in order to interpret the observations. We conclude that, with the given viewing angle, superluminal components and jet precession cannot explain the observed structures.

  4. Magnetized relativistic stellar models in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-04-01

    We consider the structure of the magnetic fields inside the neutron stars in Eddington-inspired Born-Infeld (EiBI) gravity. In order to construct the magnetic fields, we derive the relativistic Grad-Shafranov equation in EiBI and numerically determine the magnetic distribution in such a way that the interior magnetic fields should be connected to the exterior distribution. Then, we find that the magnetic distribution inside the neutron stars in EiBI is qualitatively similar to that in general relativity, where the deviation of magnetic distribution in EiBI from that in general relativity is almost comparable to uncertainty due to the equation of state for the neutron star matter. However, we also find that the magnetic fields in the crust region are almost independent of the coupling constant in EiBI, which suggests a possibility of obtaining the information about the crust equation of state independent from the gravitational theory via the observations of the phenomena associated with the crust region. In any case, since the imprint of EiBI gravity on the magnetic fields is weak, the magnetic fields could be a poor probe of gravitational theories, considering the many magnetic uncertainties.

  5. Discovery at Young Star Hints Magnetism Common to All Cosmic Jets

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Astronomers have found the first evidence of a magnetic field in a jet of material ejected from a young star, a discovery that points toward future breakthroughs in understanding the nature of all types of cosmic jets and of the role of magnetic fields in star formation. Throughout the Universe, jets of subatomic particles are ejected by three phenomena: the supermassive black holes at the cores of galaxies, smaller black holes or neutron stars consuming material from companion stars, and young stars still in the process of gathering mass from their surroundings. Previously, magnetic fields were detected in the jets of the first two, but until now, magnetic fields had not been confirmed in the jets from young stars. "Our discovery gives a strong hint that all three types of jets originate through a common process," said Carlos Carrasco-Gonzalez, of the Astrophysical Institute of Andalucia Spanish National Research Council (IAA-CSIC) and the National Autonomous University of Mexico (UNAM). The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to study a young star some 5,500 light-years from Earth, called IRAS 18162-2048. This star, possibly as massive as 10 Suns, is ejecting a jet 17 light-years long. Observing this object for 12 hours with the VLA, the scientists found that radio waves from the jet have a characteristic indicating they arose when fast-moving electrons interacted with magnetic fields. This characteristic, called polarization, gives a preferential alignment to the electric and magnetic fields of the radio waves. "We see for the first time that a jet from a young star shares this common characteristic with the other types of cosmic jets," said Luis Rodriguez, of UNAM. The discovery, the astronomers say, may allow them to gain an improved understanding of the physics of the jets as well as of the role magnetic fields play in forming new stars. The jets from young stars, unlike the other types, emit radiation

  6. Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.

    2008-01-01

    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.

  7. Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.

  8. Plasma Jets Subject to Adjustable Current Polarities and External Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Schrafel, Peter; Gourdain, Pierre; Seyler, Charles; Kusse, Bruce

    2014-10-01

    In the present research, collimated plasma jets form from ablation of a radial foil (Al 20 μm thin disk) using a pulsed power generator (COBRA) with 1 MA peak current and 100 ns rise time. Plasma dynamics of the jet are diagnosed with and without an applied uniform external field (1-1.5 T) and under a change of current polarities, which correspond to current moving either radially outward or inward from the foil's central axis. Experimental results are compared with numerical simulations (PERSEUS). The influence of the Hall effect on the jet development is observed under opposite current polarities. Additionally, the magnetic field compression within the jet is examined. Further studies will compare the laboratory-generated plasma jets and astrophysical jets with embedded magnetic fields.

  9. X-Ray Imaging of Ultrafast Magnetic Reconnection Driven by Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Raymond, Anthony; McKelvey, Andrew; Zulick, Calvin; Maksimchuk, Anatoly; Thomas, Alexander; Willingale, Louise; Chvykov, Vladimir; Yanovsky, Victor; Krushelnick, Karl

    2014-10-01

    Magnetic reconnection events driven by relativistic electrons are observed between two high intensity laser/plasma interaction sites. The two laser focuses were on average 20 μm FWHM containing 50 TW of power each, delivered with a split f/3 paraboloid onto copper foil targets at a focused intensity of 4×1018 W/cm2. A spherically bent k-alpha X-ray Bragg crystal was utilized to image the interactions, and by motorizing one half of the paraboloid vertically the focal separation was varied between 0-200 μm. While these k-alpha images demonstrated a ring structure surrounding a single focus (due to electrons returning from vacuum to the rear of the target surface), splitting the focuses revealed the rings of either spot interacting and enhancing between the focuses, evidencing magnetic reconnection driven by the relativistic electron currents. Imaging the transversely propagating electrons with a filtered LANEX screen demonstrated relativistic currents with spatial nonuniformities potentially directly originating from reconnection events, and varying target geometries were used to investigate the resulting effects on the spatial electron profiles. At present PIC simulations are being conducted to better understand and attempt to reproduce the measured electron outflow dynamics. Currently at: ELI Attosecond Light Pulse Source.

  10. Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-04-01

    An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.

  11. Multiple Plasma Ejections and Intermittent Nature of Magnetic Reconnection in Solar Chromospheric Anemone Jets

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Isobe, H.; Nishizuka, N.; Nishida, K.; Shibata, K.

    2012-11-01

    The recent discovery of chromospheric anemone jets with the Solar Optical Telescope (SOT) on board Hinode has shown an indirect evidence of magnetic reconnection in the solar chromosphere. However, the basic nature of magnetic reconnection in chromosphere is still unclear. We studied nine chromospheric anemone jets from SOT/Hinode using Ca II H filtergrams, and we found multiple bright, plasma ejections along the jets. In most cases, the major intensity enhancements (larger than 30% relative to the background intensity) of the loop correspond to the timing of the plasma ejections. The typical lifetime and size of the plasma ejecta are about 20-60 s and 0.3-1.5 Mm, respectively. The height-time plot of jet shows many sub-structures (or individual jets) and the typical lifetime of the individual jet is about one to five minutes. Before the onset of the jet activity, a loop appears in Ca II H and gradually increases in size, and after few minutes several jets are launched from the loop. Once the jet activity starts and several individual jets are launched, the loop starts shrinking with a speed of ~4 km s-1. In some events, a downward moving blob with a speed of ~35 km s-1 was observed, associated with the upward moving plasma along one of the legs of the loop hosting the jets. The upward moving plasma gradually developed into jets. Multiple plasma ejections in chromospheric anemone jet show the strongly time-dependent as well as intermittent nature of magnetic reconnection in the solar chromosphere.

  12. MULTIPLE PLASMA EJECTIONS AND INTERMITTENT NATURE OF MAGNETIC RECONNECTION IN SOLAR CHROMOSPHERIC ANEMONE JETS

    SciTech Connect

    Singh, K. A. P.; Nishida, K.; Shibata, K.; Isobe, H.; Nishizuka, N. E-mail: nishida@kwasan.kyoto-u.ac.jp E-mail: isobe@kwasan.kyoto-u.ac.jp

    2012-11-01

    The recent discovery of chromospheric anemone jets with the Solar Optical Telescope (SOT) on board Hinode has shown an indirect evidence of magnetic reconnection in the solar chromosphere. However, the basic nature of magnetic reconnection in chromosphere is still unclear. We studied nine chromospheric anemone jets from SOT/Hinode using Ca II H filtergrams, and we found multiple bright, plasma ejections along the jets. In most cases, the major intensity enhancements (larger than 30% relative to the background intensity) of the loop correspond to the timing of the plasma ejections. The typical lifetime and size of the plasma ejecta are about 20-60 s and 0.3-1.5 Mm, respectively. The height-time plot of jet shows many sub-structures (or individual jets) and the typical lifetime of the individual jet is about one to five minutes. Before the onset of the jet activity, a loop appears in Ca II H and gradually increases in size, and after few minutes several jets are launched from the loop. Once the jet activity starts and several individual jets are launched, the loop starts shrinking with a speed of {approx}4 km s{sup -1}. In some events, a downward moving blob with a speed of {approx}35 km s{sup -1} was observed, associated with the upward moving plasma along one of the legs of the loop hosting the jets. The upward moving plasma gradually developed into jets. Multiple plasma ejections in chromospheric anemone jet show the strongly time-dependent as well as intermittent nature of magnetic reconnection in the solar chromosphere.

  13. Magnetically Driven Jets from Accretion Disks. I. Steady Solutions and Application to Jets/Winds in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro; Shibata, Kazunari

    1997-01-01

    We solve one-dimensional steady and axisymmetric magnetohydrodynamic (MHD) equations to study basic properties of astrophysical jets from accretion disks. Assuming the configuration of the poloidal magnetic field, we solve for a wide range of parameters of the poloidal magnetic field strength in the disk. We include a thermal energy in the solution, although the jet is mainly accelerated by the magnetic force, so that we are able to obtain the mass flux of the jet and physical quantities, such as temperature, in the disk. We find that the mass flux (Ṁ) depends on the poloidal magnetic field strength of the disk (Bp0) when the toroidal component of the magnetic field (Bφ0) is dominant near the disk surface, although it is independent of the magnetic field when the poloidal component is dominant there:Ṁ~const,if |Bφ/Bp|0<<1,Bp0,if |Bφ/Bp|0>>1. Since Michel's minimum energy solution [v∞~(B2p0/Ṁ)1/3] is almost satisfied in the magnetically driven jets, the terminal velocity (v∞) depends on Bp0 as v∞~B1/3p0 when | Bφ/Bp |0 >> 1, and as v∞~B2/3p0 when | Bφ/Bp |0 << 1. When the toroidal component of the magnetic field is dominant near the disk surface (| Bφ/Bp |0 >> 1), the acceleration mainly takes place after the flow speed exceeds the Alfvén speed. This means that the magnetic pressure largely contributes to the acceleration of these jets. We also study the dependence of mass flux on the other parameters, such as inclination angle of the poloidal field, the rotational velocity of the disk, and the r-dependence of the poloidal magnetic field strength along the field line, where r is the distance from the axis. We discuss the application of these models, i.e., the MHD jets from accretion disks, to jets/winds observed in young stellar objects (such as optical jets, T Tauri winds, and fast neutral winds). The mass-loss rates observed in these jets/winds will constrain the physical quantities in the disks. When the mass-loss rate is Ṁ~10-8 M⊙ yr-1

  14. Generation of relativistic electrons and ultra-high magnetic field for fast ignition

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady; Fisch, Nathaniel

    1997-11-01

    Certain plasma processes would play a crutialal role during fast ignition (M. Tabak et. al., Phys. Plasmas 1,) 1626 (1994)., including the production of relativistic electrons in laser-matter interactions, the resulting generation of multi-megagauss magnetic fields, and the self-consistent effect on the relativistic electrons. We present an analytical model of fast electron generation by ``snow-plowing'' the plasma by an intense laser pulse and evaluate the electron beam current and energy. Since focused propagation of the electron beam is essential, and self-magnetic field can provide the required focusing, collisional and collisionless mechanisms of magnetic field penetration into the plasma are evaluated. Another mechanism of magnetic field generation is the inverse Faraday effect (IFE), whereby angular momentum is transfered from the ions to the electrons in the presence of circularly polarized laser. Implications of IFE to fast ignition are discussed. Another mechanism of B-field generation is the modification of electron-ion collisions in the presence of intense laser field. (G. Shvets and N. J. Fisch, Phys. Plasmas 4,) 428 (1997).

  15. On the Distribution of Particle Acceleration Sites in Plasmoid-dominated Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Uzdensky, Dmitri A.; Cerutti, Benoît; Werner, Gregory R.; Begelman, Mitchell C.

    2015-12-01

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  16. Numerical Simulations of Chromospheric Anemone Jets Associated with Moving Magnetic Features

    NASA Astrophysics Data System (ADS)

    Yang, Liping; He, Jiansen; Peter, Hardi; Tu, Chuanyi; Zhang, Lei; Feng, Xueshang; Zhang, Shaohua

    2013-11-01

    Observations with the space-based solar observatory Hinode show that small-scale magnetic structures in the photosphere are found to be associated with a particular class of jets of plasma in the chromosphere called anemone jets. The goal of our study is to conduct a numerical experiment of such chromospheric anemone jets related to the moving magnetic features (MMFs). We construct a 2.5 dimensional numerical MHD model to describe the process of magnetic reconnection between the MMFs and the pre-existing ambient magnetic field, which is driven by the horizontal motion of the magnetic structure in the photosphere. We include thermal conduction parallel to the magnetic field and optically thin radiative losses in the corona to account for a self-consistent description of the evaporation process during the heating of the plasma due to the reconnection process. The motion of the MMFs leads to the expected jet and our numerical results can reproduce many observed characteristics of chromospheric anemone jets, topologically and quantitatively. As a result of the tearing instability, plasmoids are generated in the reconnection process that are consistent with the observed bright moving blobs in the anemone jets. An increase in the thermal pressure at the base of the jet is also driven by the reconnection, which induces a train of slow-mode shocks propagating upward. These shocks are a secondary effect, and only modulate the outflow of the anemone jet. The jet itself is driven by the energy input due to the reconnection of the MMFs and the ambient magnetic field.

  17. NUMERICAL SIMULATIONS OF CHROMOSPHERIC ANEMONE JETS ASSOCIATED WITH MOVING MAGNETIC FEATURES

    SciTech Connect

    Yang, Liping; He, Jiansen; Tu, Chuanyi; Zhang, Lei; Peter, Hardi; Feng, Xueshang; Zhang, Shaohua

    2013-11-01

    Observations with the space-based solar observatory Hinode show that small-scale magnetic structures in the photosphere are found to be associated with a particular class of jets of plasma in the chromosphere called anemone jets. The goal of our study is to conduct a numerical experiment of such chromospheric anemone jets related to the moving magnetic features (MMFs). We construct a 2.5 dimensional numerical MHD model to describe the process of magnetic reconnection between the MMFs and the pre-existing ambient magnetic field, which is driven by the horizontal motion of the magnetic structure in the photosphere. We include thermal conduction parallel to the magnetic field and optically thin radiative losses in the corona to account for a self-consistent description of the evaporation process during the heating of the plasma due to the reconnection process. The motion of the MMFs leads to the expected jet and our numerical results can reproduce many observed characteristics of chromospheric anemone jets, topologically and quantitatively. As a result of the tearing instability, plasmoids are generated in the reconnection process that are consistent with the observed bright moving blobs in the anemone jets. An increase in the thermal pressure at the base of the jet is also driven by the reconnection, which induces a train of slow-mode shocks propagating upward. These shocks are a secondary effect, and only modulate the outflow of the anemone jet. The jet itself is driven by the energy input due to the reconnection of the MMFs and the ambient magnetic field.

  18. Effect of self-magnetic fields on the nonlinear dynamics of relativistic electron beam with virtual cathode

    SciTech Connect

    Hramov, A. E.; Koronovskii, A. A.; Kurkin, S. A.; Filatova, A. E.

    2012-11-15

    The report is devoted to the results of the numerical study of the virtual cathode (VC) formation conditions in the relativistic electron beam (REB) under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam, and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.

  19. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2015-12-01

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.

  20. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    DOE PAGESBeta

    Manuel, M. J. -E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; et al

    2014-08-20

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysicalmore » systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. Furthermore, this result is a topic of ongoing investigation.« less

  1. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    SciTech Connect

    Manuel, M. J. -E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2014-08-20

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. Furthermore, this result is a topic of ongoing investigation.

  2. RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT SHEET IN A RELATIVISTICALLY MAGNETIZED PLASMA

    SciTech Connect

    Inoue, Tsuyoshi

    2012-11-20

    The linear stability of a current sheet that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current sheet embedded in relativistically magnetized plasma always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current sheet, which can induce the so-called turbulent reconnection, the rate of which is essentially free from plasma resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.

  3. Simulation of a low magnetic field relativistic backward wave oscillator with single mode structure

    NASA Astrophysics Data System (ADS)

    Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Ning, Qi; Liang, Xu

    2016-02-01

    A low magnetic field relativistic backward wave oscillator with single mode structure is presented. Particle-in-cell simulation results show that 1.25 GW output power with 37% efficiency is generated under 0.88 T. The mode purity of the output signal is high because higher modes are cut off by the structure. According to the analytical results, the influence of bombardment of electrons on the surface of the slow wave structures is minor. A modulation cavity is adopted to enhance beam-wave interaction and realize mechanical frequency tunability. The power capacity is increased though redistribution of electric field. The computational results indicate that the device with a single mode structure is a competitive candidate for devices working at low magnetic field especially for devices focused with permanent magnet.

  4. Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    SciTech Connect

    Bettarini, Lapo; Landi, Simone; Velli, Marco; Londrillo, Pasquale

    2009-06-15

    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled as a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.

  5. Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    NASA Astrophysics Data System (ADS)

    Bettarini, Lapo; Landi, Simone; Velli, Marco; Londrillo, Pasquale

    2009-06-01

    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled as a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.

  6. Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    SciTech Connect

    Baker, D.N.; Pulkkinen, T.I.; Li, X.; Kanekal, S.G.; Blake, J.B.; Selesnick, R.S.; Henderson, M.G.; Reeves, G.D.; Spence, H.E.

    1998-08-01

    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth{close_quote}s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related {open_quotes}magnetic clouds{close_quotes} at 1 AU. As these CME/cloud systems interact with the Earth{close_quote}s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27{endash}29, 1996, and January 10{endash}11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields ({partial_derivative}B/{partial_derivative}t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event. {copyright} 1998 American Geophysical Union

  7. Quantum speed limit for a relativistic electron in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Villamizar, D. V.; Duzzioni, E. I.

    2015-10-01

    We analyze the influence of relativistic effects on the minimum evolution time between two orthogonal states of a quantum system. Defining the initial state as a homogeneous superposition between two Hamiltonian eigenstates of an electron in a uniform magnetic field, we obtain a relation between the minimum evolution time and the displacement of the mean radial position of the electron wave packet. The quantum speed limit time is calculated for an electron dynamics described by Dirac and Schrödinger-Pauli equations considering different parameters, such as the strength of magnetic field and the linear momentum of the electron in the axial direction. We highlight that when the electron undergoes a region with extremely strong magnetic field the relativistic and nonrelativistic dynamics differ substantially, so that the description given by the Schrödinger-Pauli equation enables the electron to travel faster than c , which is prohibited by Einstein's theory of relativity. This approach allows a connection between the abstract Hilbert space and the space-time coordinates, besides the identification of the most appropriate quantum dynamics used to describe the electron motion.

  8. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  9. Magnetic properties of f-electron systems in spin-polarized relativistic density functional theory

    NASA Astrophysics Data System (ADS)

    Yamagami, H.; Mavromaras, A.; Kübler, J.

    1997-12-01

    The magnetic ground state of the series of lanthanide and actinide trivalent ions is investigated by means of spin-polarized relativistic spin-density functional theory. In the local density functional approximation (LDA) an internal effective magnetic field due to exchange and correlation couples to the spin degrees of freedom. The resulting set of coupled Dirac equations yields ground-state multiplets that obey the well-known Hund's rules. This remarkable result comes about by the coupling of the j = l + 1/2 with the j = l - 1/2 states due to the exchange - correlation potential that is, as usual, the functional derivative of the exchange - correlation energy with respect to the spin magnetic moment. The effect of the coupling is shown to depend on the varying relative strengths of spin - orbit coupling and exchange splitting within the f series. Since in the f levels the internal exchange splitting dominates rather than the spin - orbit splitting, the energy level scheme is that of the Paschen - Back effect, and thus features of the Russell - Saunders coupling persist in spite of relativistic effects.

  10. Diagnostic application of magnetic islands rotation in JET

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Alessi, E.; Baruzzo, M.; Casolari, A.; Giovannozzi, E.; Giroud, C.; Hawkes, N.; Menmuir, S.; Pucella, G.; Contributors, JET

    2016-07-01

    Measurements of the propagation frequency of magnetic islands in JET are compared with diamagnetic drift frequencies, in view of a possible diagnostic application to the determination of markers for the safety factor profile. Statistical analysis is performed for a database including many well-diagnosed plasma discharges. Propagation in the plasma frame, i.e. with subtracted E  ×  B Doppler shift, results to be in the ion diamagnetic drift direction, with values ranging from 0.8 (for islands at the q  =  2 resonant surface) to 1.8 (for more internal islands) times the ion diamagnetic drift frequency. The diagnostic potential of the assumption of island propagation at exactly the ion diamagnetic frequency is scrutinised. Rational-q locations obtained on the basis of this assumption are compared with the ones measured by equilibrium reconstruction including motional Stark effect measurements as constraints. Systematic shifts and standard deviations are determined for islands with (poloidal, toroidal) periodicity indexes of (2, 1), (3, 2), (4, 3) and (5, 3) and possible diagnostic applications are indicated.

  11. On the dynamic efficiency of internal shocks in magnetized relativistic outflows

    NASA Astrophysics Data System (ADS)

    Mimica, P.; Aloy, M. A.

    2010-01-01

    We study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We model internal shocks as being caused by collisions of shells of plasma with the same energy flux and a non-zero relative velocity. The contact surface, where the interaction between the shells takes place, can break up either into two oppositely moving shocks (in the frame where the contact surface is at rest), or into a reverse shock and a forward rarefaction. We find that for moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40 per cent. Thus, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. If the slower shell propagates with a sufficiently large velocity, the efficiency is only weakly dependent on its Lorentz factor. Consequently, the dynamic efficiency of shell interactions in the magnetized flow of blazars and gamma-ray bursts is effectively the same. These results are quantitatively rather independent on the equation of state of the plasma. The radiative efficiency of the process is expected to be a fraction fr < 1 of the estimated dynamic one, the exact value of fr depending on the particularities of the emission processes which radiate away the thermal or magnetic energy of the shocked states.

  12. Mass Flux and Terminal Velocities of Magnetically Driven Jets from Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro; Shibata, Kazunari

    1995-10-01

    In order to investigate astrophysical jets from accretion disks, we solve 1.5-dimensional steady MHD equations for a wide range of parameters, assuming the shape of poloidal magnetic field lines. We include a thermal effect to obtain the relation between the mass flux of the jet and the magnetic energy at the disk, although the jet is mainly accelerated by the magnetic force. It is found that the mass flux of the jets ( M dot ) is dependent on the magnetic energy at the disk surface, i.e., M dot ~ (rho Aa|Bp/B|)_{{slow}} ~ (rho Aa|Bp/Bphi|)_{{slow}} ~ Ealpha_{{mg}} [where rho is the density, a is the sound velocity, A is the cross section of the magnetic flux, B = (B2p + B2phi)^{1/2} , Bp and B phi are the poloidal and toroidal magnetic field strength, respectively, Emg is the magnetic energy in unit of the gravitational energy at the disk surface, and the suffix "slow" denotes the value at a slow point], when the magnetic energy is not too large. The parameter alpha increases from 0 to 0.5 with decreasing magnetic energy. Since the scaling law of Michel's minimum energy solution nearly holds in the magnetically driven flows, the dependence of the terminal velocity on the magnetic energy becomes weaker than had been expected, i.e., v_∞ ~ E^{(1-alpha)/3}_{{mg}} . It is shown that the terminal velocity of the jet is an order of Keplerian velocity at the footpoint of the jets for a wide range of values of Emg expected for accretion disks in star-forming regions and active galactic nuclei. We argue that the mass-loss rates observed in the star-forming regions would constrain the magnetic energies at the disk surfaces.

  13. On variational formulation of current drive problem in uniformly magnetized relativistic plasma

    NASA Astrophysics Data System (ADS)

    Hu, Y. M.; Hu, Y. J.

    2016-01-01

    A fully relativistic extension of the variational principle with the modified test function for the Spitzer function with momentum conservation in the electron-electron collision is investigated in uniformly magnetized plasma. The term of the momentum conserving constraint in Hirshman’s variational calculation is studied. The model developed is extended for arbitrary temperatures and covers exactly the asymptotic for u\\gg 1 when {{Z}\\text{eff}}\\gg 1 , and the results obtained are suited to facilitate the development of a rigorous variational formulation of current drive efficiency in tokamak plasma.

  14. Relativistic and non-relativistic magnetohydrodynamic flows around compact stars

    NASA Astrophysics Data System (ADS)

    Mobarry, Clark Matthew

    A set of theoretical tools are developed for studying the magnetized accretion disks and astrophysical jets in active galaxies. A general theory is developed for the steady axisymmetric flow of an ideal general-relativistic fluid around a Schwarzschild black hole. The theory leads to a second-order partial differential equation, a Grad-Shafranov equation, for the magnetic flux function psi(R, theta). The magnetic surface functions of the Grad-Shafranov method are shown to be the Lagrange multipliers of an energy principle. Thus, the magnetic surface functions are not arbitrary functions, but must be chosen consistent with physically stable equilibria. From the energy principle, a numerical artificial friction method is developed to solve the general relativistic Grad-Shafranov equation with fluid flow. This method is suited for the internal boundaries between elliptic and hyperbolic behavior present in magnetospheres with fluid flow. The friction method is shown to be compatible with a theory for the slow dissipative evolution of a nearly ideal MagnetoHydroDynamic (MHD) fluid. A virial theorem is derived from the basic equations of general relativistic MHD. It is used to obtain an upper bound on the total energy in the electromagnetic field in terms of the total gravitational binding energy between the black hole and the matter (and energy) outside it. An analysis is made of the motion of a charged test particle in the electromagnetic field of a magnetized accretion disk surrounding a black hole. The results are consistent with stable orbits close to the event horizon. A semi-analytical model is developed for the evolution and dissipation of narrow magnetized jets from an active galaxy. This model exhibits the acceleration and expansion of the jets with increasing axial distance from the central object.

  15. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej

    2015-07-01

    We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.

  16. BIPOLAR JETS LAUNCHED FROM MAGNETICALLY DIFFUSIVE ACCRETION DISKS. I. EJECTION EFFICIENCY VERSUS FIELD STRENGTH AND DIFFUSIVITY

    SciTech Connect

    Sheikhnezami, Somayeh; Fendt, Christian; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid E-mail: fendt@mpia.de

    2012-09-20

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code, we solve the time-dependent resistive magnetohydrodynamic equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We apply a turbulent magnetic diffusivity based on {alpha}-prescription, but also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical timescales corresponding to 900 orbital periods of the inner disk. As a general result, we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of superfast-magnetosonic speed. For long timescales, the disk's internal dynamics change, as due to outflow ejection and disk accretion the disk mass decreases. For magnetocentrifugally driven jets, we find that for (1) less diffusive disks, (2) a stronger magnetic field, (3) a low poloidal diffusivity, or (4) a lower numerical diffusivity (resolution), the mass loading of the outflow is increased-resulting in more powerful jets with high-mass flux. For weak magnetization, the (weak) outflow is driven by the magnetic pressure gradient. We consider in detail the advection and diffusion of magnetic flux within the disk and we find that the disk and outflow magnetization may substantially change in time. This may have severe impact on the launching and formation process-an initially highly magnetized disk may evolve into a disk of weak magnetization which cannot drive strong outflows. We further investigate the jet asymptotic velocity and the jet rotational velocity in

  17. Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.

  18. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties

    NASA Astrophysics Data System (ADS)

    Roura, P. G.; Melo, J. I.; Ruiz de Azúa, M. C.; Giribet, C. G.

    2006-08-01

    The linear response within the elimination of the small component formalism is aimed at obtaining the leading order relativistic corrections to magnetic molecular properties in the context of the elimination of the small component approximation. In the present work we extend the method in order to include two-body effects in the form of a mean field one-body operator. To this end we consider the four-component Dirac-Hartree-Fock operator as the starting point in the evaluation of the second order relativistic expression of magnetic properties. The approach thus obtained is the fully consistent leading order approximation of the random phase approximation four-component formalism. The mean field effect on the relativistic corrections to both the diamagnetic and paramagnetic terms of magnetic properties taking into account both the Coulomb and Breit two-body interactions is considered.

  19. Properties of Blazar Jets Defined by an Economy of Power

    NASA Astrophysics Data System (ADS)

    Petropoulou, Maria; Dermer, Charles D.

    2016-07-01

    The absolute power of a relativistic black hole jet includes the power in the magnetic field, the leptons, the hadrons, and the radiated photons. A power analysis of a relativistic radio/γ-ray blazar jet leads to bifurcated leptonic synchrotron-Compton (LSC) and leptohadronic synchrotron (LHS) solutions that minimize the total jet power. Higher Doppler factors with increasing peak synchrotron frequency are implied in the LSC model. Strong magnetic fields {B}\\prime ≳ 100 {{G}} are found for the LHS model with variability times ≲ {10}3 {{s}}, in accord with highly magnetized, reconnection-driven jet models. Proton synchrotron models of ≳ 100 {GeV} blazar radiation can have sub-Eddington absolute jet powers, but models of dominant GeV radiation in flat spectrum radio quasars require excessive power.

  20. Relativistic dynamics of two spin-half particles in a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Datta, Sambhu N.; Misra, Anirban

    2001-01-01

    Relativistic dynamics of two spin-1/2 particles in an external, homogeneous magnetic field is investigated here. The problem is important for a preliminary understanding of the effect of magnetic field on atoms and molecules at the relativistic level. The relativistic Hamiltonian is formulated in three distinct forms which involve the Bethe-Salpeter interaction, generalized Breit interaction and projected Breit interaction. The total pseudomomentum of the two-particle system is conserved in each case, and its components are distinct in the zero-charge sector. This permits the separation of the center of mass motion from the Hamiltonian of the neutral two-particle system. The resulting Hamiltonian operator describes the movement of the two particles in relative coordinates. It is further simplified by using suitable unitary transformations so as to reduce the one-particle operator for the first particle into a diagonal form. The effective equation of motion for the movement of the second particle in relative coordinates is then identified. A second set of transformations convert the two-particle relative Hamiltonian into a form where the one-particle operator for each spin-1/2 particle is completely diagonalized and separable into positive and negative energy states. The correspondingly transformed interaction operators can be written in an order by order expansion from which the odd terms are removable by using suitable Foldy-Wouthuysen type transformations in a systematic way. The resulting Hamiltonian operator reduces to previously known expressions when the magnetic field is switched off. Thus the two sets of transformations which convert the one particle parts completely into separable as well as diagonal forms also transform the interaction operator to generate terms consistently through order v2/c2. The field dependence lies entirely in the diagonalized one-particle parts, which is a consequence of the initial choice of interaction operators. Our results also

  1. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component

    NASA Astrophysics Data System (ADS)

    Kudo, K.; Maeda, H.; Kawakubo, T.; Ootani, Y.; Funaki, M.; Fukui, H.

    2006-06-01

    The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer [J. Chem. Phys. 122, 064104 (2005)], is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X =F,Cl,Br,I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.

  2. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    SciTech Connect

    Ivanov, I. A. Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N.; Burdakov, A. V.; Sorokina, N. V.; Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Polosatkin, S. V.

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  3. General Relativistic Magnetohydrodynamic Simulations of Collapsars

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Yamada, S.; Koider, S.; Shipata, K.

    2005-01-01

    We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of collapsars including a rotating black hole. Initially, we assume that the core collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a disklike structure and the generation of a jetlike outflow near the central black hole. The jetlike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is approximately 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.

  4. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    SciTech Connect

    Ghizzo, A.

    2013-08-15

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  5. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    NASA Astrophysics Data System (ADS)

    Ghizzo, A.

    2013-08-01

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the "multiring" model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al. [Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  6. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  7. North-south asymmetry in the magnetic deflection of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Zimbardo, G.; Patsourakos, S.; Bothmer, V.; Nakariakov, V. M.

    2015-11-01

    Context. Measurements of the sunspots area, of the magnetic field in the interplanetary medium, and of the heliospheric current sheet (HCS) position, reveal a possible north-south (N-S) asymmetry in the magnetic field of the Sun. This asymmetry could cause the bending of the HCS of the order of 5-10 deg in the southward direction, and it appears to be a recurrent characteristic of the Sun during the minima of solar activity. Aims: We study the N-S asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Methods: Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure (β ≪ 1), we can assume that the magnetic field controls the dynamics of plasma. On average, jets follow magnetic field lines during their propagation, highlighting their local direction. We measured the position angles at 1 R⊙ and at 2 R⊙ of 79 jets, based on the Solar TErrestrial RElations Observatory (STEREO) ultraviolet and white-light coronagraph observations during the solar minimum period March 2007-April 2008. The average jet deflection is studied both in the plane perpendicular to the line of sight and, for a reduced number of jets, in 3D space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole (g1), quadrupole (g2), and esapole (g3) moments. Results: We found that the propagation of the jets is not radial, which is in agreement with the deflection due to magnetic field lines. Moreover, the amount of the deflection is different between jets over the north and those from the south pole. A comparison of jet deflections and field line tracing shows that a ratio g2/g1 ≃ -0.5 for the quadrupole and a ratio g3/g1 ≃ 1.6-2.0 for the esapole can describe the field. The presence of a non-negligible quadrupole moment confirms the N-S asymmetry of the solar magnetic field for the considered period. Conclusions: We find that the

  8. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    PubMed

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  9. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  10. On the theory of magnetic field generation by relativistically strong laser radiation

    SciTech Connect

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M. |

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields {approximately} 100 Mg and greater.

  11. General relativistic simulations of slowly rotating, magnetized stars: A perturbative metric approach

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah; Liu, Y. T.; Shapiro, S.

    2007-04-01

    Understanding the role general relativistic magnetohydrodynamic (GRMHD) effects play in the evolution of nascent neutron stars is a problem at the forefront of theoretical astrophysics. To this end, we performed long-term (˜10^4 M) axisymmetric simulations of differentially rotating magnetized neutron stars in the slow-rotation, weak magnetic field limit using a dynamically updated perturbative metric evolution technique. Although the perturbative metric approach yields results comparable to those obtained via a nonperturbative (BSSN) metric evolution technique, simulations performed with the perturbative metric solver require about 1/4 the computational resources at a given resolution. This computational efficiency enabled us to observe and analyze the effects of magnetic braking and the magnetorotational instability (MRI) at very high resolution. Our GRMHD simulations demonstrate that (1) MRI is not observed unless the estimated fastest-growing mode wavelength is resolved by >˜ 10 gridpoints; (2) as resolution is improved, the MRI growth rate converges, but due to the small-scale nature of MRI-induced turbulence, the maximum growth amplitude increases, but does not exhibit convergence, even at the highest resolution; and (3) independent of resolution, magnetic braking drives the star toward uniform rotation as energy is sapped from differential rotation by winding magnetic fields.

  12. Particle Acceleration and Magnetic Field Amplification at Non-relativistic Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano; Spitkovsky, A.

    2013-04-01

    We investigate the dynamics of non-relativistic, collisionless shocks by using unprecedentedly large 2D and 3D hybrid (kinetic ions - fluid electrons) simulations. We find that, at parallel shocks, ions are efficiently accelerated via first-order Fermi mechanism; the current driven by the energetic particles propagating into the upstream medium excites plasma instabilities that strongly perturb the initial electromagnetic configuration. In particular, the filamentation instability produces tubular, underdense, magnetic-field-depleted cavities, in which accelerated particles are channeled. These structures grow while being advected with the fluid, effectively corrugating the shock surface and triggering turbulent motions in the downstream. The net result is a marked increase of the magnetic field, both ahead and behind the shock, in agreement with the high levels of magnetization inferred at the blast waves of young supernova remnants. We also discuss the dependence of the ion acceleration efficiency on the orientation and on the strength of the upstream magnetic field, finding that ions are preferentially accelerated at parallel, fast shocks (i.e., shocks propagating along the initial magnetic field, with velocities much larger than the Alfvén speed).

  13. Self-collimated electromagnetic jets from magnetized accretion disks - The even-symmetry case

    NASA Technical Reports Server (NTRS)

    Wang, J. C. L.; Sulkanen, M. E.; Lovelace, R. V. E.

    1990-01-01

    This paper extends the previous treatment (Lovelace et al., 1987) of the origin of self-collimated EM jets to the case of even field symmetry, where the magnetic flux function Psi(r, z) is an even function of z. A viscous resistive accretion disk is assumed to surround a black hole with a force-free plasma outside of the disk. Inside the disk, the induction equation is solved for Psi(r, z) and the toroidal magnetic field. Outside the disk, previous results are used to study the formation of self-collimated EM jets. In contrast with the odd-symmetry case, for even symmetry the toroidal magnetic field acts to vertically compress the disk; a comparatively large toroidal magnetic field can exist inside the disk; and an appreciable fraction (possibly all) of the available accretion power can go into the jets.

  14. Axial Magnetic Field Compression within Radial Foil Plasma Jets, Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Potter, William; Chang, Jae Young; Banasek, Jacob; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-11-01

    Compression of an axial magnetic field correlates with density hollowing and azimuthal rotation of a plasma jet generated by the COBRA pulsed power machine (1 MA peak current in 100 ns rise time) in a radial foil (15 μm Al thin disk) configuration. The plasma jet compresses an external 1 T axial magnetic field (Bz) as it collimates along the central z-axis. Experimental measurements use a Bdot magnetic probe placed in the center of the hollow plasma jet. Experimental results show compression of the 1 T Bz field to 2.4 +/- 0.3 T. Predictions made by the extended magnetohydrodynamics (XMHD) code, PERSEUS, show a 5.0 +/- 0.7 T field at the probe location. We overview physical reasons for the discrepancy between the experimental and simulation magnetic field compression measurements.

  15. Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates

    NASA Astrophysics Data System (ADS)

    Opher, M.; Drake, J. F.; Zieger, B.; Swisdak, M.; Toth, G.

    2016-05-01

    As the solar system moves through the interstellar medium, the solar wind is deflected forming the heliosphere. The standard picture of the heliosphere is a comet-shape like structure with the tail extending for 1000s of astronomical units. This standard picture stems from a view where magnetic forces are negligible and the solar magnetic field is convected passively down the tail. Recently, we showed that the magnetic tension of the solar magnetic field plays a crucial role on organizing the solar wind in the heliosheath into two jet-like structures. The two jets are separated by the interstellar medium that flows between them. The heliosphere then has a "croissant"-like shape where the distance to the heliopause downtail is almost the same as towards the nose. This new view of the heliosphere is in agreement with the energetic neutral atoms maps taken by the Interstellar Boundary Explorer and INCA/CASSINI. We developed as well an analytic model of the heliosheath in the axisymmetric limit that shows how the magnetic tension force is the driver for the north and south jets. We confirmed that the formation of these jets with magnetohydrodynamic (MHD) simulations. The main reason why previous global MHD simulations did not see these jets is due to spurious magnetic dissipation that was present at the heliospheric current sheet. We instead kept the same polarity for the interplanetary (solar) magnetic field in both the northern and southern hemispheres, eliminating spurious magnetic dissipation effects at the heliospheric current sheet. In this paper, we extend these previous results to include additional cases where we used: (a) weaker solar magnetic field; (b) solar magnetic field that reverses polarity at the solar equator in the axisymmetric limit; and (c) slower motion through the interstellar system. We discuss as well future challenges regarding the structure of the heliosphere.

  16. Particle Acceleration in Collapsing Magnetic Traps with a Braking Plasma Jet

    NASA Astrophysics Data System (ADS)

    Borissov, Alexei; Neukirch, Thomas; Threlfall, James

    2016-05-01

    Collapsing magnetic traps (CMTs) are one proposed mechanism for generating non-thermal particle populations in solar flares. CMTs occur if an initially stretched magnetic field structure relaxes rapidly into a lower-energy configuration, which is believed to happen as a by-product of magnetic reconnection. A similar mechanism for energising particles has also been found to operate in the Earth's magnetotail. One particular feature proposed to be of importance for particle acceleration in the magnetotail is that of a braking plasma jet, i.e. a localised region of strong flow encountering stronger magnetic field which causes the jet to slow down and stop. Such a feature has not been included in previously proposed analytical models of CMTs for solar flares. In this work we incorporate a braking plasma jet into a well studied CMT model for the first time. We present results of test particle calculations in this new CMT model. We observe and characterise new types of particle behaviour caused by the magnetic structure of the jet braking region, which allows electrons to be trapped both in the braking jet region and the loop legs. We compare and contrast the behaviour of particle orbits for various parameter regimes of the underlying trap by examining particle trajectories, energy gains and the frequency with which different types of particle orbit are found for each parameter regime.

  17. Particle Acceleration in Collapsing Magnetic Traps with a Braking Plasma Jet

    NASA Astrophysics Data System (ADS)

    Borissov, Alexei; Neukirch, Thomas; Threlfall, James

    2016-06-01

    Collapsing magnetic traps (CMTs) are one proposed mechanism for generating non-thermal particle populations in solar flares. CMTs occur if an initially stretched magnetic field structure relaxes rapidly into a lower-energy configuration, which is believed to happen as a by-product of magnetic reconnection. A similar mechanism for energising particles has also been found to operate in the Earth's magnetotail. One particular feature proposed to be of importance for particle acceleration in the magnetotail is that of a braking plasma jet, i.e. a localised region of strong flow encountering stronger magnetic field which causes the jet to slow down and stop. Such a feature has not been included in previously proposed analytical models of CMTs for solar flares. In this work we incorporate a braking plasma jet into a well studied CMT model for the first time. We present results of test particle calculations in this new CMT model. We observe and characterise new types of particle behaviour caused by the magnetic structure of the jet braking region, which allows electrons to be trapped both in the braking jet region and the loop legs. We compare and contrast the behaviour of particle orbits for various parameter regimes of the underlying trap by examining particle trajectories, energy gains and the frequency with which different types of particle orbit are found for each parameter regime.

  18. Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas.

    PubMed

    Soto-Chavez, A R; Mahajan, S M; Hazeltine, R D

    2010-02-01

    A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfvénic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfvén mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described. PMID:20365661

  19. Magnetic resonance imaging (MRI) study of jet height hysteresis in packed beds

    NASA Astrophysics Data System (ADS)

    Köhl, Maximilian H.; Lu, Guang; Third, James R.; Prüssmann, Klaas P.; Müller, Christoph R.

    2013-06-01

    The jet-spout transition in fluidized beds can show hysteretic behavior. In this study the jet-spout transition was studied as a function of orifice velocity for particles of different size and shape using Magnetic Resonance Imaging (MRI). The measurements showed that the particle shape primarily affect to the width of the hysteresis loop whereas particle size governs the position of the hysteresis loop with regards to the orifice velocity.

  20. A Numerical Gamma-Ray Burst Simulation Using Three-Dimensional Relativistic Hydrodynamics: The Transition from Spherical to Jet-like Expansion

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.; Gehrels, Neil; Vishniac, Ethan T.

    2003-01-01

    Utilizing 3D relativistic hydrodynamical calculations, we have examined the evolution of an expanding relativistic blob of gas intended to be representative of a jet associated with ejecta from an extremely energetic event such as a hypernova, that produces a gamma-ray burst (Aloy et al. 2000; Tan, Matzner, & McKee 2001; MacFadyen, Woosley, & Heger 2001, Zhang, Woosley, & Heger 2003, Zhang, Woosley, & MacFadyen 2003). Since these are the first such calculations applied to the blob during the time in which the afterglow radiation is produced, we have purposely kept them simple in an effort to concentrate on the most fundamental aspects of the physics. We restrict our attention to the transition from spherical to jetlike expansion that occurs during the time that the Lorentz factor becomes less than the reciprocal of the jet spreading angle. We have not yet attached specific numbers to our results. From the SRHD equations, one sees that the relevant quantities are the ratios of pressure to density, and of distance to time. If we specify either one of these two sets of numbers, the other one is also determined.

  1. Constraints on common envelope magnetic fields from observations of jets in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Tocknell, James; De Marco, Orsola; Wardle, Mark

    2014-04-01

    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 yr after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we have not been able to find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation may preclude the formation of even one accretion disc able to supply the necessary accretion rate to cause the observed jets.

  2. On the jet structure and magnetic field configuration of GRB 020813

    NASA Astrophysics Data System (ADS)

    Lazzati, D.; Covino, S.; Gorosabel, J.; Rossi, E.; Ghisellini, G.; Rol, E.; Castro Cerón, J. M.; Castro-Tirado, A. J.; Della Valle, M.; di Serego Alighieri, S.; Fruchter, A. S.; Fynbo, J. P. U.; Goldoni, P.; Hjorth, J.; Israel, G. L.; Kaper, L.; Kawai, N.; Le Floc'h, E.; Malesani, D.; Masetti, N.; Mazzali, P.; Mirabel, F.; Moller, P.; Ortolani, S.; Palazzi, E.; Pian, E.; Rhoads, J.; Ricker, G.; Salmonson, J. D.; Stella, L.; Tagliaferri, G.; Tanvir, N.; van den Heuvel, E.; Wijers, R. A. M. J.; Zerbi, F. M.

    2004-07-01

    The polarization curve of GRB 020813 is discussed and compared to different models for the structure, evolution and magnetisation properties of the jet and the interstellar medium onto which the fireball impacts. GRB 020813 is best suited for this kind of analysis for the smoothness of its afterglow light curve, ensuring the applicability of current models. The polarization dataset allows us to rule out the standard GRB jet, in which the energy and Lorentz factor have a well defined value inside the jet opening angle and the magnetic field is generated at the shock front. We explore alternative models finding that a structured jet or a jet with a toroidal component of the magnetic field can fit equally well the polarization curve. Stronger conclusions cannot be drawn due to the incomplete sampling of the polarization curve. A more dense sampling, especially at early times, is required to pin down the structure of the jet and the geometry of its magnetic field. Based on observations collected at the European Southern Observatory, Cerro Paranal (Chile), ESO programmes 69.D-0461(A) and 69.D-0701(A).

  3. The Mass and Spin of The Extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and Its Implications for The Trigger for Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-05-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high spin, moderate inclination, low mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140 - 260 × the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different to the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10 - 15) jets.

  4. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  5. Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets

    NASA Astrophysics Data System (ADS)

    Karlsson, Tomas; Liljeblad, Elisabet; Kullen, Anita; Raines, Jim M.; Slavin, James A.; Sundberg, Torbjörn

    2016-09-01

    We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.

  6. Numerical Modeling of Annular High-Current Relativistic Beam Forming in a Toroidal Chamber with a Magnet

    NASA Astrophysics Data System (ADS)

    Bogdanovich, B. Yu.; L'vov, E. I.; Nesterovich, A. V.; Sukhanova, L. A.; Khlestkov, Yu. A.

    2016-04-01

    A scheme of forming an annular high-current relativistic beam (HCRB) from a directly propagating HCRB in a diode with magnetic insulation and toroidal chamber with a constant magnet is described. The code KARAT is used to analyze numerically the HCRB dynamics. It is demonstrated that for a proper relationship of the system parameters the directly propagating HCRB is rolled up into a torus.

  7. A FLUX ROPE NETWORK AND PARTICLE ACCELERATION IN THREE-DIMENSIONAL RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Kagan, Daniel; Milosavljevic, Milos; Spitkovsky, Anatoly

    2013-09-01

    We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles {approx}30 Degree-Sign -40 Degree

  8. Guiding of Relativistic Electron Beams in Solid Targets by Resistively Controlled Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kar, S.; Robinson, A. P. L.; Carroll, D. C.; Lundh, O.; Markey, K.; McKenna, P.; Norreys, P.; Zepf, M.

    2009-02-01

    Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak , Phys. PlasmasPHPAEN1070-664X 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored—thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.

  9. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    PubMed

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle). PMID:22540591

  10. Implementation of a compact magnetic electron energy spectrometer for intense relativistic electron beams. Interim report

    SciTech Connect

    Gregor, J.A.; Antoniades, J.A.

    1993-11-05

    A diagnostic used for measuring the energy of 1 to 5 MEV pulsed electron beams by means independent of the beam generating device is investigated. The method employed is capable of collecting the required data optically in a single pulse. The beam energy is measured using a magnetic electron spectrometer coupled with a scintillating material. Using a polaroid camera to collect data, the energy of electron beams from two field emission diode accelerators is measured. The first is a nominal 1 MEV, 16 kA, 25 ns FWHM electron beam and the second is a nominal 5 MEV, 20 kA, 50 ns FWHM electron beam. A detailed study of measurement accuracy and possible sources of error was accomplished. Energy, Relativistic, Electron beam. Electron, Spectrometer.

  11. Terahertz radiation from a laser bunched relativistic electron beam in a magnetic wiggler

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2012-07-15

    We develop a formalism for tunable coherent terahertz radiation generation from a relativistic electron beam, modulated by two laser beams, as it passes through a magnetic wiggler of wave vector k{sub w}z-caret. The lasers exert a beat frequency ponderomotive force on beam electrons, and modulate their velocity. In the drift space, velocity modulation translates into density modulation. As the beam bunches pass through the wiggler, they acquire a transverse velocity, constituting a transverse current that acts as an antenna to produce coherent THz radiation, when {omega}{sub 1}-{omega}{sub 2}=k{sub w}c/(cos{theta}-v{sub 0b}/c), where {omega}{sub 1}, {omega}{sub 2} are the frequencies of the lasers, v{sub 0b}z-caret is the beam velocity, and {theta} is the direction of maximum radiated intensity with respect to the direction of propagation of the beam.

  12. Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms

    NASA Astrophysics Data System (ADS)

    McAdams, K. L.; Reeves, G. D.

    The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.

  13. Magnetic Reconnection-Powered Relativistic Particle Acceleration, High-Energy Gamma-Ray Emission, and Pair Production in Coronae of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    2015-11-01

    Magnetic reconnection is a fundamental plasma process believed to play an important role in energetics of magnetically-dominated coronae of various astrophysical objects including accreting black holes. Building up on recent advances in kinetic simulations of relativistic collisionless reconnection, we investigate nonthermal particle acceleration and its key observational consequences for these systems. We argue that reconnection can efficiently accelerate coronal electrons (as well as ions) up to hundreds of MeV or even GeV energies. In brightest systems, radiation back-reaction due to inverse-Compton (and/or synchrotron) emission becomes important at these energies and limits any further electron acceleration, thereby turning reconnection layers into powerful and efficient radiators of γ-rays. We then evaluate the rate of absorption of the resulting γ-ray photons by the ambient soft (X-ray) photon fields and show that it can be a significant source of pair production, with important implications for the composition of black-hole coronae and jets. Finally, we assess the prospects of laboratory studies of magnetic reconnection in the physical regimes relevant to black-hole accretion flows using modern and future laser-plasma facilities. This work is supported by DOE, NSF, and NASA.

  14. Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications

    NASA Astrophysics Data System (ADS)

    Deák, A.; Simon, E.; Balogh, L.; Szunyogh, L.; dos Santos Dias, M.; Staunton, J. B.

    2014-06-01

    We develop a self-consistent relativistic disordered local moment (RDLM) scheme aimed at describing finite-temperature magnetism of itinerant metals from first principles. Our implementation in terms of the Korringa-Kohn-Rostoker multiple-scattering theory and the coherent potential approximation allows us to relate the orientational distribution of the spins to the electronic structure, thus a self-consistent treatment of the distribution is possible. We present applications for bulk bcc Fe, L10-FePt, and FeRh ordered in the CsCl structure. The calculations for Fe show significant variation of the local moments with temperature, whereas according to the mean-field treatment of the spin fluctuations the Curie temperature is overestimated. The magnetic anisotropy of FePt alloys is found to depend strongly on intermixing between nominally Fe and Pt layers, and it shows a power-law behavior as a function of magnetization for a broad range of chemical disorder. In the case of FeRh we construct a lattice constant vs temperature phase diagram and determine the phase line of metamagnetic transitions based on self-consistent RDLM free-energy curves.

  15. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    SciTech Connect

    Wu, Ping; Sun, Jun; Cao, Yibing

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatially periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.

  16. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  17. Interfacial Stability of Spherically Converging Plasma Jets for Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Wu, S. T.; Eskridge, Richard; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner to implode a magnetized target to produce the fusion reaction. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The results lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that the maximum temporal growth rate of the perturbed flow at the jet interface is very small in comparison with the time to full compression of the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of the gaseous liner can withstand velocity variation of the order of 10% between the neighboring jets over the density and temperature ranges investigated.

  18. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    SciTech Connect

    Khan, S. A.

    2012-01-15

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  19. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.

    PubMed

    Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J

    2014-10-17

    Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. PMID:25324383

  20. Effect of the plasma-generated magnetic field on relativistic electron transport.

    PubMed

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver. PMID:21867317

  1. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Su, Jiancang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Liang, Xu; Ning, Qi

    2016-07-01

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reduced gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.

  2. A NOVEL EMISSION SPECTRUM FROM A RELATIVISTIC ELECTRON MOVING IN A RANDOM MAGNETIC FIELD

    SciTech Connect

    Teraki, Yuto; Takahara, Fumio

    2011-07-10

    We numerically calculate the radiation spectrum from relativistic electrons moving in small-scale turbulent magnetic fields expected in high-energy astrophysical sources. Such a radiation spectrum is characterized by the strength parameter a = {lambda}{sub B} e|B|/mc {sup 2}, where {lambda}{sub B} is the length scale of the turbulent field. When a is much larger than the Lorentz factor of a radiating electron {gamma}, synchrotron radiation is realized, while a << 1 corresponds to the so-called jitter radiation regime. Because for 1 < a < {gamma} we cannot use either approximations, we should have recourse to the Lienard-Wiechert potential to evaluate the radiation spectrum, which is performed in this Letter. We generate random magnetic fields assuming Kolmogorov turbulence, inject monoenergetic electrons, solve the equation of motion, and calculate the radiation spectrum. We perform numerical calculations for several values of a with {gamma} = 10. We obtain various types of spectra ranging between jitter radiation and synchrotron radiation. For a {approx} 7, the spectrum takes a novel shape which had not been noticed up to now. It is like a synchrotron spectrum in the middle energy region, but in the low frequency region it is a broken power law and in the high frequency region an extra power-law component appears beyond the synchrotron cutoff. We give a physical explanation of these features.

  3. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs.

  4. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.

    2010-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. The properties of this radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  5. From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy in Radio-Loud AGN

    NASA Technical Reports Server (NTRS)

    Meyer, Eileen T.; Fossati, Giovanini; Georganopoulos, Markos; Lister, Matthew L.

    2012-01-01

    We revisit the concept of a blazar sequence that relates the synchrotron peak frequency (Vpeak) in blazars with synchrotron peak luminosity (Lpeak, in vLv) using a large sample of radio-loud AGN. We present observational evidence that the blazar sequence is formed from two populations in the synchrotron Vpeak - Lpeak plane, each forming an upper edge to an envelope of progressively misaligned blazars, and connecting to an adjacent group of radio galaxies having jets viewed at much larger angles to the line of sight. When binned by jet kinetic power (Lkin; as measured through a scaling relationship with extended radio power), we find that radio core dominance decreases with decreasing synchrotron Lpeak, revealing that sources in the envelope are generally more misaligned. We find population-based evidence of velocity gradients in jets at low kinetic powers (approximately 10(exp 42) - 10(exp 44.5) erg s(exp -1)), corresponding to FR I radio galaxies and most BL Lacs. These low jet power 'weak jet' sources, thought to exhibit radiatively inefficient accretion, are distinguished from the population of non-decelerating, low synchrotron-peaking (LSP) blazars and FR II radio galaxies ('strong' jets) which are thought to exhibit radiatively efficient accretion. The two-population interpretation explains the apparent contradiction of the existence of highly core-dominated, low-power blazars at both low and high synchrotron peak frequencies, and further implies that most intermediate synchrotron peak (ISP) sources are not intermediate in intrinsic jet power between LSP and high synchrotron-peaking (HSP) sources, but are more misaligned versions of HSP sources with similar jet powers.

  6. FROM THE BLAZAR SEQUENCE TO THE BLAZAR ENVELOPE: REVISITING THE RELATIVISTIC JET DICHOTOMY IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.

    2011-10-20

    We revisit the concept of a blazar sequence that relates the synchrotron peak frequency ({nu}{sub peak}) in blazars with synchrotron peak luminosity (L{sub peak}, in {nu}L{sub {nu}}) using a large sample of radio-loud active galactic nuclei. We present observational evidence that the blazar sequence is formed from two populations in the synchrotron {nu}{sub peak}-L{sub peak} plane, each forming an upper edge to an envelope of progressively misaligned blazars, and connecting to an adjacent group of radio galaxies having jets viewed at much larger angles to the line of sight. When binned by jet kinetic power (L{sub kin}; as measured through a scaling relationship with extended radio power), we find that radio core dominance decreases with decreasing synchrotron L{sub peak}, revealing that sources in the envelope are generally more misaligned. We find population-based evidence of velocity gradients in jets at low kinetic powers ({approx}10{sup 42}-10{sup 44.5} erg s{sup -1}), corresponding to Fanaroff-Riley (FR) I radio galaxies and most BL Lac objects. These low jet power 'weak-jet' sources, thought to exhibit radiatively inefficient accretion, are distinguished from the population of non-decelerating, low synchrotron-peaking (LSP) blazars and FR II radio galaxies ('strong' jets) which are thought to exhibit radiatively efficient accretion. The two-population interpretation explains the apparent contradiction of the existence of highly core-dominated, low-power blazars at both low and high synchrotron peak frequencies, and further implies that most intermediate synchrotron peak sources are not intermediate in intrinsic jet power between LSP and high synchrotron-peaking (HSP) sources, but are more misaligned versions of HSP sources with similar jet powers.

  7. A LABORATORY EXPERIMENT OF MAGNETIC RECONNECTION: OUTFLOWS, HEATING, AND WAVES IN CHROMOSPHERIC JETS

    SciTech Connect

    Nishizuka, N.; Shimizu, T.; Hayashi, Y.; Tanabe, H.; Kuwahata, A.; Kaminou, Y.; Ono, Y.; Inomoto, M.

    2012-09-10

    Hinode observations have revealed intermittent recurrent plasma ejections/jets in the chromosphere. These are interpreted as a result of non-perfectly anti-parallel magnetic reconnection, i.e., component reconnection, between a twisted magnetic flux tube and the pre-existing coronal/chromospheric magnetic field, though the fundamental physics of component reconnection is not revealed. In this paper, we experimentally reproduced the magnetic configuration and investigated the dynamics of plasma ejections, heating, and wave generation triggered by component reconnection in the chromosphere. We set plasma parameters as in the chromosphere (density 10{sup 14} cm{sup -3}, temperature 5-10 eV, i.e., (5-10) Multiplication-Sign 10{sup 4} K, and reconnection magnetic field 200 G) using argon plasma. Our experiment shows bi-directional outflows with the speed of 5 km s{sup -1} at maximum, ion heating in the downstream area over 30 eV, and magnetic fluctuations mainly at 5-10 {mu}s period. We succeeded in qualitatively reproducing chromospheric jets, but quantitatively, we still have some differences between observations and experiments such as in jet velocity, total energy, and wave frequency. Some of them can be explained by the scale gap between solar and laboratory plasma, while the others are probably due to the difference in microscopy and macroscopy, collisionality, and the degree of ionization, which have not been achieved in our experiment.

  8. Magnetic reconnection resulting from flux emergence: implications for jet formation in the lower solar atmosphere?

    NASA Astrophysics Data System (ADS)

    Ding, J. Y.; Madjarska, M. S.; Doyle, J. G.; Lu, Q. M.; Vanninathan, K.; Huang, Z.

    2011-11-01

    Aims: We aim at investigating the formation of jet-like features in the lower solar atmosphere, e.g. chromosphere and transition region, as a result of magnetic reconnection. Methods: Magnetic reconnection as occurring at chromospheric and transition regions densities and triggered by magnetic flux emergence is studied using a 2.5D MHD code. The initial atmosphere is static and isothermal, with a temperature of 2 × 104 K. The initial magnetic field is uniform and vertical. Two physical environments with different magnetic field strength (25 G and 50 G) are presented. In each case, two sub-cases are discussed, where the environments have different initial mass density. Results: In the case where we have a weaker magnetic field (25 G) and higher plasma density (Ne = 2 × 1011 cm-3), valid for the typical quiet Sun chromosphere, a plasma jet would be observed with a temperature of 2-3 × 104 K and a velocity as high as 40 kms-1. The opposite case of a medium with a lower electron density (Ne = 2 × 1010 cm-3), i.e. more typical for the transition region, and a stronger magnetic field of 50 G, up-flows with line-of-sight velocities as high as ~90 kms-1 and temperatures of 6 × 105 K, i.e. upper transition region - low coronal temperatures, are produced. Only in the latter case, the low corona Fe ix 171 Å shows a response in the jet which is comparable to the O v increase. Conclusions: The results show that magnetic reconnection can be an efficient mechanism to drive plasma outflows in the chromosphere and transition region. The model can reproduce characteristics, such as temperature and velocity for a range of jet features like a fibril, a spicule, a hot X-ray jet or a transition region jet by changing either the magnetic field strength or the electron density, i.e. where in the atmosphere the reconnection occurs.

  9. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  10. Modelling the kinked jet of the Crab nebula

    NASA Astrophysics Data System (ADS)

    Mignone, A.; Striani, E.; Tavani, M.; Ferrari, A.

    2013-12-01

    We investigate the dynamical propagation of the South-East jet from the Crab pulsar interacting with supernova ejecta by means of three-dimensional relativistic magnetohydrodynamic (MHD) numerical simulations with the PLUTO code. The initial jet structure is set up from the inner regions of the Crab nebula. We study the evolution of hot, relativistic hollow outflows initially carrying a purely azimuthal magnetic field. Our jet models are characterized by different choices of the outflow magnetization (σ parameter) and the bulk Lorentz factor (γj). We show that the jet is heavily affected by the growth of current-driven kink instabilities causing considerable deflection throughout its propagation length. This behaviour is partially stabilized by the combined action of larger flow velocities and/or reduced magnetic field strengths. We find that our best jet models are characterized by relatively large values of σ (≳1) and small values of γj ≃ 2. Our results are in good agreement with the recent X-ray (Chandra) data of the Crab nebula South-East jet indicating that the jet changes direction of propagation on a time-scale of the order of few years. The 3D models presented here may have important implications in the investigation of particle acceleration in relativistic outflows.

  11. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  12. An H&beta surge and X-ray jet - Magnetic properties and velocity patterns

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, J.; Liu, Y.

    2000-09-01

    We described simultaneous observations of a surge in H&beta and an X-ray jet in NOAA 8100 on November 1, 1997. We found that the H&beta surge was spatially coincident with the X-ray jet. They occurred at the site where the pre-existing magnetic flux was ``cancelled" by a newly emerging flux of opposite polarity. At the base of the surge we identified surge-flaring in the H&beta filtergrams, and both blueshifts and redshifts in the H&beta Dopplergrams. The X-ray jet appeared about 2 hours after the first appearance of the surge. The surge consisted of two ejecting threads. Initially, these two components were twisted together, then became untwisted before the appearance of the X-ray jet. This example presents an alternative scenario of plasma ejection. The magnetic reconnection in the lower atmosphere, which was responsible for the H&beta surge, created the twisted surge threads; the X-ray jet likely resulted from a fast reconnection in the upper atmosphere, which took place well after the H&beta surge.

  13. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    SciTech Connect

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  14. Constraints on Common Envelope Magnetic Fields from Observations of Jets in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola; Tocknell, J.; Wardle, M.

    2014-01-01

    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary and may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few Gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 years after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands Gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we cannot find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation would preclude the formation of even one accretion disk able to supply the necessary accretion rate to cause the observed jets. Additional and improved observations of post-CE PN will provide a powerful tool to constrain the CE interaction.

  15. Force-free equilibria of magnetized jets. [pressure confined extragalactic radio hydromagnetics

    NASA Technical Reports Server (NTRS)

    Koenigl, A.; Choudhuri, A. R.

    1985-01-01

    Force-free equilibrium configurations of magnetic-pressure-dominated magnetized supersonic jets confined by slowly varying external pressure are investigated analytically. For the case where internal dissipation mechanisms are active, the lowest-energy field configuration is found to be the superposition of an axisymmetric mode and a helical mode with a wavelength equal to 5 times the jet radius, and the pressure below which the nonaxisymmetric mode becomes energetically favorable is given as 2700 times the product of the 4th power of the magnetic helicity per unit length and the -6th power of the magnetic flux. A model of the total and polarized emission of such a configuration is developed and applied to the extended well-collimated astronomically resolved jet NGC 6251. The model is shown to reproduce significant features such as transverse oscillations of the ridge line, width oscillations and emission knots, the projected magnetic-field configuration, oscillations of the degree of polarization, and the distribution of the Faraday rotation measure.

  16. Jet Pump for Liquid Helium Circulation Through the Fast Cycling Magnets of Nuclotron

    NASA Astrophysics Data System (ADS)

    Agapov, Nikolay; Emelianov, Nikita; Mitrofanova, Julia; Nikiforov, Dmitry

    Nuclotron is the first fast cycling superconducting synchrotron intended for the acceleration of high-energy nuclei and heavy ions. Its cryogenic system includes two helium refrigerators with a total capacity of 4000 W at 4.5 K. The 251.5 m long accelerator ring consists of 144 superconducting dipole and quadruple magnets. The magnets connected in parallel are refrigerated by a two-phase flow of boiling helium. In order to increase liquid helium flow directed to the superconducting magnets, jet pumps are used. We explain theoretical and experimental results that allow one to determinate main technical specifications and optimal geometric dimensions of the jet pumps. The experience of using this device and corresponding flow diagrams are described.

  17. The simulation of a propulsive jet and force measurement using a magnetically suspended wind tunnel model

    NASA Technical Reports Server (NTRS)

    Garbutt, K. S.; Goodyer, M. J.

    1994-01-01

    Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.

  18. Initial Evolution of GRB Jets with Different Species

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-ichi; Hardee, Phil; Hartmann, Dieter; Niemiec, Jacek; Pohl, Martin; Sol, Helene; Gomez, Jose L.; Nordlund, Aake; Dutan, Ioana; Mizuno, Yosuke; Meli, Athina; Peer, Asaf; Frederiksen, Jacob

    2016-07-01

    In the study of GRB jets one of the key open questions is their interaction with the environment. Here, we study the initial evolution of both electron-proton and electron-positron relativistic jets injected, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). For an electron-proton jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counter-clockwise in the middle of jet. For an electron-positron jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities which initiate a forward shock. Strong jet ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by different jets may contribute to the polarization properties of the observed emission in gamma ray bursts. The different electron acceleration mechanisms in different jets may affect the light-curves in GRB observations.

  19. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.

    PubMed

    Maldonado, Alejandro F; Aucar, Gustavo A

    2014-09-11

    The reference values for NMR magnetic shieldings, σ(ref), are of the highest importance when theoretical analysis of chemical shifts are envisaged. The fact that the nonrelativistically valid relationship among spin-rotation constants and magnetic shieldings is not any longer valid for heavy atoms requires that the search for σ(ref) for such atoms needs new strategies to follow. We present here results of σ(ref) that were obtained by applying our own simple procedure which mixes accurate experimental chemical shifts (δ) and theoretical magnetic shieldings (σ). We calculated σ(Sn) and σ(Pb) in a family of heavy-halogen-containing molecules. We found out that σ(ref)[Sn;Sn(CH3)4] in gas phase should be close to 3864.11 ± 20.05 ppm (0.5%). For Pb atom, σ(ref)[Pb;Pb(CH3)4] should be close to 14475.1 ± 500.7 ppm. Such theoretical values correspond to calculations with the relativistic polarization propagator method, RelPPA, at the RPA level of approach. They are closer to experimental values as compared to those obtained applying few different functionals such as PBE0, B3LYP, BLYP, BP86, KT2, and KT3 of the density functional theory, DFT. We studied tin and lead shieldings of the XY(4-n)Z(n) (X = Sn, Pb; Y, Z = H, F, Cl, Br, I) and PbH(4-n)I(n) (n = 0, 1, 2, 3, 4) family of compounds with four-component functionals as implemented in the DIRAC code. For these systems results of calculations with RelPPA-RPA are more reliable than DFT ones. We argue about why those DFT functionals must be modified in order to obtain more accurate results of NMR magnetic shieldings within the relativistic regime: first, there is a dependence among both electron-correlation and relativistic effects that should be introduced in some way in the functionals; and second, the DIRAC code uses standard nonrelativistic functionals and the functionals B3LYP and PBE0 were parametrized only with data taken from light elements. It can explain why they are not able to properly introduce

  20. A Study of Radio Polarization in Protostellar Jets

    NASA Astrophysics Data System (ADS)

    Cécere, Mariana; Velázquez, Pablo F.; Araudo, Anabella T.; De Colle, Fabio; Esquivel, Alejandro; Carrasco-González, Carlos; Rodríguez, Luis F.

    2016-01-01

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ˜1000 km s-1 and ˜10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.

  1. Design and construction of a magnetic resonance compatible multi-injector gas jet delivery system.

    PubMed

    Megias-Alguacil, David; Keller, Thierry; Lutz, Kai; Barlow, Ashley P; Ettlin, Dominik A

    2008-01-01

    We present the design, construction, and performance of a novel multi-injector gas jet delivery capable of operating in a magnetic resonance imaging environment. This apparatus is computer controlled and built with two separate pneumatic circuits enabling gas jet applications at variable sites through four independently activated injectors. Gas jet delivery is fully controllable in terms of pressure, flow rate, gas temperature, application time, and duration of interstimulus interval. We characterized these parameters, considering effects such as pressure drop by flow transport, transient effects, and delays in activation. The system offers new possibilities for use in various biomedical contexts such as, e.g., quantitative sensory testing or dental hypersensitivity assessment. PMID:18248053

  2. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. PMID:25883352

  3. Turbulent amplification of magnetic fields in colliding laboratory jets

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Meinecke, J.; Bell, A. R.; Doyle, H.; Bingham, R.; Churazov, E. M.; Crowston, R.; Murphy, C. D.; Woolsey, N. C.; Drake, R. P.; Kuranz, C. C.; MacDonald, M. J.; Wan, W. C.; Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.; Kuramitsu, Y.; Sakawa, Y.; Park, H.-S.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Lamb, D. Q.; Gregori, G.

    2015-11-01

    Turbulence and magnetic fields are ubiquitous in the universe. In galaxy clusters, turbulence is believed to amplify seed magnetic fields to values of a few μG, as observed through diffuse radio-synchrotron emission and Faraday rotation measurements. In this study we present experiments that emulate such a process in a controlled laboratory environment. Two laser-driven plasma flows collide to mimic the dynamics of a cluster merger. From the measured density fluctuations we infer the development of Kolmogorov-like turbulence. Measurements of the magnetic field show it is amplified by turbulent motions, reaching a non-linear regime that is a precursor to turbulent dynamo. We also present numerical simulations with the FLASH code that model these experiments. The simulations reproduce the measured plasma properties and enable us to disentangle and characterize the complex physical processes that occur in the experiment. This study provides a promising experimental platform to probe magnetic field amplification by turbulence in plasmas, a process thought to occur in many astrophysical phenomena.

  4. Relativistic Jets in the Radio Reference Frame Image Database. II. Blazar Jet Accelerations from the First 10 Years of Data (1994-2003)

    NASA Astrophysics Data System (ADS)

    Piner, B. G.; Pushkarev, A. B.; Kovalev, Y. Y.; Marvin, C. J.; Arenson, J. G.; Charlot, P.; Fey, A. L.; Collioud, A.; Voitsik, P. A.

    2012-10-01

    We analyze blazar jet apparent speeds and accelerations from the RDV series of astrometric and geodetic very long baseline interferometry (VLBI) experiments. From these experiments, we have produced and analyzed 2753 global VLBI images of 68 sources at 8 GHz with a median beam size of 0.9 milliarcseconds (mas) and a median of 43 epochs per source. From this sample, we analyze the motions of 225 jet components in 66 sources. The distribution of the fastest measured apparent speed in each source has a median of 8.3c and a maximum of 44c. Sources in the 2FGL Fermi LAT catalog display higher apparent speeds than those that have not been detected. On average, components farther from the core in a given source have significantly higher apparent speeds than components closer to the core; for example, for a typical source, components at ~3 mas from the core (~15 pc projected at z ~ 0.5) have apparent speeds about 50% higher than those of components at ~1 mas from the core (~5 pc projected at z ~ 0.5). We measure accelerations of components in orthogonal directions parallel and perpendicular to their average velocity vector. Parallel accelerations have significantly larger magnitudes than perpendicular accelerations, implying that observed accelerations are predominantly due to changes in the Lorentz factor (bulk or pattern) rather than projection effects from jet bending. Positive parallel accelerations are significantly more common than negative ones, so the Lorentz factor (bulk or pattern) tends to increase on the scales observed here. Observed parallel accelerations correspond to modest source frame increases in the bulk or pattern Lorentz factor.

  5. Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Shibata, K.; Nishizuka, N.; Isobe, H.

    2011-11-01

    The solar optical telescope onboard Hinode with temporal resolution of less than 5 s and spatial resolution of 150 km has observed the lower solar atmosphere with an unprecedented detail. This has led to many important findings, one of them is the discovery of chromospheric anemone jets in the solar chromosphere. The chromospheric anemone jets are ubiquitous in solar chromosphere and statistical studies show that the typical length, life time and energy of the chromospheric anemone jets are much smaller than the coronal events (e.g., jets/flares/CMEs). Among various observational parameters, the apparent length and maximum velocity shows good correlation. The velocity of chromospheric anemone jets is comparable to the local Alfvén speed in the lower solar chromosphere. Since the discovery of chromospheric anemone jets by Hinode, several evidences of magnetic reconnection in chromospheric anemone jets have been found and these observations are summarized in this paper. These observations clearly suggest that reconnection occurs quite rapidly as well as intermittently in the solar chromosphere. In the solar corona (λi > δSP), anomalous resistivity arises due to various collisionless processes. Previous MHD simulations show that reconnection becomes fast as well as strongly time-dependent due to anomalous resistivity. Such processes would not arise in the solar chromosphere which is fully collisional and partially-ionized. So, it is unclear how the rapid and strongly time-dependent reconnection would occur in the solar chromosphere. It is quite likely that the Hall and ambipolar diffusion are present in the solar chromosphere and they could play an important role in driving such rapid, strongly time-dependent reconnection in the solar chromosphere.

  6. Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere

    SciTech Connect

    Singh, K. A. P.; Shibata, K.; Nishizuka, N.; Isobe, H.

    2011-11-15

    The solar optical telescope onboard Hinode with temporal resolution of less than 5 s and spatial resolution of 150 km has observed the lower solar atmosphere with an unprecedented detail. This has led to many important findings, one of them is the discovery of chromospheric anemone jets in the solar chromosphere. The chromospheric anemone jets are ubiquitous in solar chromosphere and statistical studies show that the typical length, life time and energy of the chromospheric anemone jets are much smaller than the coronal events (e.g., jets/flares/CMEs). Among various observational parameters, the apparent length and maximum velocity shows good correlation. The velocity of chromospheric anemone jets is comparable to the local Alfven speed in the lower solar chromosphere. Since the discovery of chromospheric anemone jets by Hinode, several evidences of magnetic reconnection in chromospheric anemone jets have been found and these observations are summarized in this paper. These observations clearly suggest that reconnection occurs quite rapidly as well as intermittently in the solar chromosphere. In the solar corona ({lambda}{sub i} > {delta}{sub SP}), anomalous resistivity arises due to various collisionless processes. Previous MHD simulations show that reconnection becomes fast as well as strongly time-dependent due to anomalous resistivity. Such processes would not arise in the solar chromosphere which is fully collisional and partially-ionized. So, it is unclear how the rapid and strongly time-dependent reconnection would occur in the solar chromosphere. It is quite likely that the Hall and ambipolar diffusion are present in the solar chromosphere and they could play an important role in driving such rapid, strongly time-dependent reconnection in the solar chromosphere.

  7. FAST MAGNETIC RECONNECTION AND PARTICLE ACCELERATION IN RELATIVISTIC LOW-DENSITY ELECTRON-POSITRON PLASMAS WITHOUT GUIDE FIELD

    SciTech Connect

    Bessho, Naoki; Bhattacharjee, A.

    2012-05-10

    Magnetic reconnection and particle acceleration in relativistic Harris sheets in low-density electron-positron plasmas with no guide field have been studied by means of two-dimensional particle-in-cell simulations. Reconnection rates are of the order of one when the background density in a Harris sheet is of the order of 1% of the density in the current sheet, which is consistent with previous results in the non-relativistic regime. It has been demonstrated that the increase of the Lorentz factors of accelerated particles significantly enhances the collisionless resistivity needed to sustain a large reconnection electric field. It is shown analytically and numerically that the energy spectrum of accelerated particles near the X-line is the product of a power law and an exponential function of energy, {gamma}{sup -1/4}exp (- a{gamma}{sup 1/2}), where {gamma} is the Lorentz factor and a is a constant. However, in the low-density regime, while the most energetic particles are produced near X-lines, many more particles are energized within magnetic islands. Particles are energized in contracting islands by multiple reflection, but the mechanism is different from Fermi acceleration in magnetic islands for magnetized particles in the presence of a guide field. In magnetic islands, strong core fields are generated and plasma beta values are reduced. As a consequence, the fire-hose instability condition is not satisfied in most of the island region, and island contraction and particle acceleration can continue. In island coalescence, reconnection between two islands can accelerate some particles, however, many particles are decelerated and cooled, which is contrary to what has been discussed in the literature on particle acceleration due to reconnection in non-relativistic hydrogen plasmas.

  8. Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2002-01-01

    We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.

  9. Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiberto, Paola; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Chiolerio, Alessandro; Martino, Paola; Pandolfi, Paolo; Allia, Paolo

    2013-04-01

    Two ferrofluid inks for jet-printing, containing magnetite NPs of slightly different average radius (sample A: 6 nm; sample B: 8 nm) were prepared by adding a dispersion of magnetite nanopowders in n-hexane to an insulating ink. Isothermal magnetization loops of inks were measured by means of a vibrating sample magnetometer in the temperature interval 5-300 K up to 70 kOe. The inks were then ejected at room temperature on standard paper by means of either a thermal ink jet head (TIJ; sample A) or a piezoelectric ink jet head (PIJ; sample B). Magnetic properties of prints on paper (FC/ZFC curves, isothermal magnetic loops and related hysteretic properties) were measured between 10 and 300 K using an alternating gradient force magnetometer up to 20 kOe. The inks display a different magnetic behavior with respect to both prints. In particular, the dispersed NPs are characterized by an effective radius (and ensuing magnetic interaction) larger than expected on the basis of the properties of the starting powders. Instead, the NP radii in both prints are closer to the starting values. The printed magnetic films show an almost perfect superparamagnetic (SP) response around room temperature; however, at temperatures lower than 100 K the SP scaling is not observed and both samples behave as interacting superparamagnetic (ISP) materials. The evolution from the SP to the ISP regime is marked by a steady increase in the hysteretic properties of both samples. Particular attention will be paid to the study of magnetic interactions occurring among NPs. The effect of the ejection process on the degree of aggregation of magnetite NPs will be here studied.

  10. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    SciTech Connect

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, J. Alejandro

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  11. Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Metzger, Brian D.; Giannios, Dimitrios; Kelley, Luke Z.

    2014-01-01

    The unusual transient Swift J1644+57 likely resulted from a collimated relativistic jet, powered by the sudden onset of accretion on to a massive black hole (BH) following the tidal disruption (TD) of a star. However, several mysteries cloud the interpretation of this event, including (1) the extreme flaring and `plateau' shape of the X-ray/γ-ray light curve during the first t - ttrig ˜ 10 d after the γ-ray trigger; (2) unexpected rebrightening of the forward shock radio emission at t - ttrig ˜ months; (3) lack of obvious evidence for jet precession, despite the misalignment typically expected between the angular momentum of the accretion disc and BH; (4) recent abrupt shut-off in the jet X-ray emission at t - ttrig ˜ 1.5 yr. Here, we show that all of these seemingly disparate mysteries are naturally resolved by one assumption: the presence of strong magnetic flux Φ• threading the BH. Just after the TD event, Φ• is dynamically weak relative to the high rate of fall-back accretion dot{M}, such that the accretion disc (jet) freely precesses about the BH axis = our line of sight. As dot{M} decreases, however, Φ• becomes dynamically important, leading to a state of `magnetically arrested disk' (MAD). MAD naturally aligns the jet with the BH spin, but only after an extended phase of violent rearrangement (jet wobbling), which in Swift J1644+57 starts a few days before the γ-ray trigger and explains the erratic early light curve. Indeed, the entire X-ray light curve can be fitted to the predicted power-law decay dot{M} ∝ t^{-α } (α ≃ 5/3 - 2.2) if the TD occurred a few weeks prior to the γ-ray trigger. Jet energy directed away from the line of sight, either prior to the trigger or during the jet alignment process, eventually manifests as the observed radio rebrightening, similar to an off-axis (orphan) γ-ray burst afterglow. As suggested recently, the late X-ray shut-off occurs when the disc transitions to a geometrically thin (jetless) state once

  12. Numerical simulation of spontaneous magnetic fields in laser produced plasma jets using MAG code

    SciTech Connect

    Diyankov, O. V.; Glazyrin, I. V.; Koshelev, S. V.; Lykov, V. A.

    1997-04-15

    The results of numerical simulation of spontaneous magnetic field generation and influence of this field on laser produced plasma jet expansion in vacuum and low density gas are presented. The numerical simulation has been carried out using MAG code for the case of aluminum plate of 5 {mu}m of thickness irradiated by Nd laser. The laser pulse duration was 0.5 nsec at half-width, laser irradiation intensity was up to 10{sup 13} W/cm{sup 2} and laser focal spot diameter was about 100 {mu}m. According to the received results, the magnetic field amplitude achieves the value of 150 kGs. This fact has no considerable influence on the temperature maximum in laser produced plasma, but significantly affects the process of the energy transport from plasma jet to low density gas.

  13. Perturbative analysis of sheared flow Kelvin-Helmholtz instability in a weakly relativistic magnetized electron fluid

    SciTech Connect

    Sundar, Sita; Das, Amita; Kaw, Predhiman

    2012-05-15

    In the interaction of intense lasers with matter/plasma, energetic electrons having relativistic energies get created. These energetic electrons can often have sheared flow profiles as they propagate through the plasma medium. In an earlier study [Phys. Plasmas 17, 022101 (2010)], it was shown that a relativistic sheared electron flow modifies the growth rate and threshold condition of the conventional Kelvin-Helmholtz instability. A perturbative analytic treatment for the case of weakly relativistic regime has been provided here. It provides good agreement with the numerical results obtained earlier.

  14. The size of the jet launching region in M87

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; McKinney, Jonathan C.; Agol, Eric

    2012-04-01

    The supermassive black hole candidate at the centre of M87 drives an ultra-relativistic jet visible on kiloparsec scales, and its large mass and relative proximity allow for event horizon scale imaging with very long baseline interferometry at millimetre wavelengths (mm-VLBI). Recently, relativistic magnetohydrodynamic simulations of black hole accretion flows have proven capable of launching magnetically dominated jets. We construct time-dependent disc/jet models of the innermost portion of the M87 nucleus by performing relativistic radiative transfer calculations from one such simulation. We identify two types of models, jet-dominated or disc/jet, that can explain the spectral properties of M87, and use them to make predictions for current and future mm-VLBI observations. The Gaussian source size for the favoured sky orientation and inclination from observations of the large-scale jet is ?as (≃4-6 Schwarzschild radii) on current mm-VLBI telescopes, very similar to existing observations of Sgr A*. The black hole shadow, direct evidence for an event horizon, should be visible in future measurements using baselines between Hawaii and Mexico. Both models exhibit variability at millimetre wavelengths with factor of ≃2 amplitudes on year time-scales. For the low inclination of M87, the counter-jet dominates the event horizon scale millimetre wavelength emission from the jet-forming region.

  15. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    SciTech Connect

    Colavita, E.; Hacyan, S.

    2014-03-15

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.

  16. Relativistic effects on the nuclear magnetic shieldings of rare-gas atoms and halogen in hydrogen halides within relativistic polarization propagator theory

    NASA Astrophysics Data System (ADS)

    Gomez, Sergio S.; Maldonado, Alejandro; Aucar, Gustavo A.

    2005-12-01

    In this work an analysis of the electronic origin of relativistic effects on the isotropic dia- and paramagnetic contributions to the nuclear magnetic shielding σ(X ) for noble gases and heavy atoms of hydrogen halides is presented. All results were obtained within the 4-component polarization propagator formalism at different level of approach [random-phase approximation (RPA) and pure zeroth-order approximation (PZOA)], by using a local version of the DIRAC code. From the fact that calculations of diamagnetic contributions to σ within RPA and PZOA approaches for HX(X =Br,I,At) and rare-gas atoms are quite close each to other and the finding that the diamagnetic part of the principal propagator at the PZOA level can be developed as a series [S(Δ)], it was found that there is a branch of negative-energy "virtual" excitations that contribute with more than 98% of the total diamagnetic value even for the heavier elements, namely, Xe, Rn, I, and At. It contains virtual negative-energy molecular-orbital states with energies between -2mc2 and -4mc2. This fact can explain the excellent performance of the linear response elimination of small component (LR-ESC) scheme for elements up to the fifth row in the Periodic Table. An analysis of the convergency of S(Δ ) and its physical implications is given. It is also shown that the total contribution to relativistic effects of the innermost orbital (1s1/2) is by far the largest. For the paramagnetic contributions results at the RPA and PZOA approximations are similar only for rare-gas atoms. On the other hand, if the mass-correction contributions to σp are expressed in terms of atomic orbitals, a different pattern is found for 1s1/2 orbital contributions compared with all other s-type orbitals when the whole set of rare-gas atoms is considered.

  17. Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds

    NASA Astrophysics Data System (ADS)

    Mochol, Iwona; Pétri, Jérôme

    2015-04-01

    The population of gamma-ray pulsars, including Crab observed in the TeV range, and Vela detected above 50 GeV, challenges existing models of pulsed high-energy emission. Such models should be universally applicable, yet they should account for spectral differences among the pulsars. We show that the gamma-ray emission of Crab and Vela can be explained by synchrotron radiation from the current sheet of a striped wind, expanding with a modest Lorentz factor Γ ≲ 100 in the Crab case, and Γ ≲ 50 in the Vela case. In the Crab spectrum, a new synchrotron self-Compton component is expected to be detected by the upcoming experiment CTA. We suggest that the gamma-ray spectrum directly probes the physics of relativistic magnetic reconnection in the striped wind. In the most energetic pulsars, like Crab, with dot{E}_{38}^{3/2}/P_{-2}≳ 0.002 (where dot{E} is the spin-down power, P is the pulsar period, and X = Xi × 10i in CGS units), reconnection proceeds in the radiative cooling regime and results in a soft power-law distribution of cooling particles; in less powerful pulsars, like Vela, particle energization is limited by the current sheet size, and a hard particle spectrum reflects the acceleration mechanism. A strict lower limit on the number density of radiating particles corresponds to emission close to the light cylinder, and, in units of the GJ density, it is ≳ 0.5 in the Crab wind, and κ ≳ 0.05 in the Vela wind.

  18. The low energy magnetic spectrometer on Ulysses and ACE response to near relativistic protons

    NASA Astrophysics Data System (ADS)

    Morgado, Bruno; Filipe Maia, Dalmiro Jorge; Lanzerotti, Louis; Gonçalves, Patrícia; Patterson, J. Douglas

    2015-05-01

    Aims: We show that the Heliosphere Instrument for Spectra Composition and Anisotropy at Low Energies (HISCALE) on board the Ulysses spacecraft and the Electron Proton Alpha Monitor (EPAM) on board the Advance Composition Explorer (ACE) spacecraft can be used to measure properties for ion populations with kinetic energies in excess of 1 GeV. This previously unexplored source of information is valuable for understanding the origin of near relativistic ions of solar origin. Methods: We model the instrumental response from the low energy magnetic spectrometers from EPAM and HISCALE using a Monte Carlo approach implemented in the Geant4 toolkit to determine the response of different energy channels to energies up to 5 GeV. We compare model results with EPAM observations for 2012 May 17 ground level solar cosmic ray event, including directional fluxes. Results: For the 2012 May event, all the ion channels in EPAM show an onset more than one hour before ions with the highest nominal energy range (1.8 to 4.8 MeV) were expected to arrive. We show from Monte Carlo simulations that the timing at different channels, the ratio between counts at the different channels, and the directional fluxes within a given channel, are consistent with and can be explained by the arrival of particles with energies from 35 MeV to more than 1 GeV. Onset times for the EPAM penetrating protons are consistent with the rise seen in neutron monitor data, implying that EPAM and ground neutron monitors are seeing overlapping energy ranges and that both are consistent with GeV ions being released from the Sun at 10:38 UT.

  19. Quantum hologram and relativistic hodogram: Magnetic resonance tomography and gravitational wavelet detection

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; Schempp, Walter

    2001-06-01

    Quantum holography is a well established theory of mathematical physics based on harmonic analysis on the Heisenberg Lie group G. The geometric quantization is performed by projectivization of the complexified coadjoint orbit picture of the unitary dual Ĝ of G in order to achieve a geometric adjustment of the quantum scenario to special relativity theory. It admits applications to various imaging modalities such as synthetic aperture radar (SAR) in the microwave range, and, most importantly for the field of non-invasive medical diagnosis, to the clinical imaging modality of magnetic resonance tomography (MRI) in the radio frequency range. Quantum holography explains the quantum teleportation phenomemon through Einstein-Podolsky-Rosen (EPR) channels which is a consequence of the non-locality of phase coherent quantum field theory, the concept of absolute simultaneity of special relativity theory which provides the Einstein equivalence of energy and Fitzgerald-Lorentz dilated mass, and the perfect quantum holographic replication process of molecular genetic information processing. It specifically reveals what was before unobservable in quantum optics, namely the interference phenomena of matter wavelets of Bose-Einstein condensates, and what was before unobservable in special relativity, namely the light in flight (LIF) recording processing by ultrafast laser pulse trains. Finally, it provides a Lie group theoretical approach to the Kruskal coordinatized Schwarzschild manifold of relativistic cosmology with large scale applications to general relativity theory such as gravitational instanton symmetries and the theory of black holes. The direct spinorial detection of gravitational wavelets emitted by the binary radio pulsar PSR 1913+16 and known only by anticipatory system computation so far will also be based on the principles of quantum holography applied to very large array (VLA) radio interferometers. .

  20. Interaction of co-propagating jets in the presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    MacDonald, Michael; Doyle, Hugo; Brambrink, Erik; Crowston, Robert; Drake, R. Paul; Kuranz, Carolyn; Lamb, Don; Koenig, Michel; Kozlowski, Pawel; Marques, Jean-Raphael; Meinecke, Jena; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Tzeferacos, Petros; Woosley, Nigel; Gregori, Gianluca; Acsel Collaboration

    2013-10-01

    We observed the interaction of two co-propagating jets in 1 mbar of argon gas in the presence of an external magnetic field at the LULI laser facility. The jets were created by irradiating a 100 μm aluminum foil with two 1.5 ns laser pulses separated by 5 mm, each containing 500 J of 527 nm light. Optical interferometry and schlieren imaging were used to observe the flow of the interacting jets. Additionally, an induction coil was fielded to measure the magnetic field 3 cm from the initiation of the flows. Measurements were made with and without a 0.5 T external magnetic field. Preliminary results and analysis will be presented. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 256973. and by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840.

  1. Observations of a Series of Flares and Associated Jet-like Eruptions Driven by the Emergence of Twisted Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Park, Sung-Hong; Kim, Sujin; Cho, Kyung-Suk; Kumar, Pankaj; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Song, Donguk; Kim, Yeon-Han

    2016-01-01

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed a curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.

  2. Evidence for magnetic field compression in shocks within the jet of V404 Cyg

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Russell, D. M.; Covino, S.; Mooley, K.; Fender, R. P.; Rumsey, C.

    2016-08-01

    We present optical and near-IR linear polarimetry of V404 Cyg during its 2015 outburst and in quiescence. We obtained time resolved r'-band polarimetry when the source was in outburst, near-IR polarimetry when the source was near quiescence and multiple wave-band optical polarimetry later in quiescence. The optical to near-IR linear polarization spectrum can be described by interstellar dust and an intrinsic variable component. The intrinsic optical polarization, detected during the rise of one of the brightest flares of the outburst, is variable, peaking at 4.5 per cent and decaying to 3.5 per cent. We present several arguments that favour a synchrotron jet origin to this variable polarization, with the optical emission originating close to the jet base. The polarization flare occurs during the initial rise of a major radio flare event that peaks later, and is consistent with a classically evolving synchrotron flare from an ejection event. We conclude that the optical polarization flare represents a jet launching event; the birth of a major ejection. For this event we measure a rather stable polarization position angle of -9° E of N, implying that the magnetic field near the base of the jet is approximately perpendicular to the jet axis. This may be due to the compression of magnetic field lines in shocks in the accelerated plasma, resulting in a partially ordered transverse field that have now been seen during the 2015 outburst. We also find that this ejection occurred at a similar stage in the repetitive cycles of flares.

  3. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  4. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  5. Structure of exhaust jets produced by magnetic reconnection localized in the out-of-plane direction

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.

    2015-01-01

    Three-dimensional electromagnetic particle-in-cell simulations are used to investigate the structure of exhaust jets produced by magnetic reconnection localized in the out-of-plane direction. The localized reconnection is produced by periodically blocking the cross-tail current density, a procedure that has effects analogous to those produced by the assumption of a region of anomalous resistivity in fluid treatments of reconnection. The width of the blocking region is varied between 4 and 24di, where di is the ion inertial length. After an initial displacement in the electron-drift direction, the jet front undergoes a marked expansion in the ion-drift direction, reaching a total cross-tail width of 15-20di regardless of the initial width. The jet front breaks up into small-scale finger structures of the order of 1-2di in width, which appears to be due to the action of the ballooning/interchange instability. Ahead of the front, the ion pressure Pixx is increased due to reflection of ions from the moving front and the penetration of high-speed ions in the jet through the front. The ion temperature Tixx exhibits a minimum within the front, while the electron temperature is enhanced in the front. The properties of the reconnection-generated fronts are compared and contrasted with those of interchange heads produced by a decreasing entropy profile.

  6. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    NASA Astrophysics Data System (ADS)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-07-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  7. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    NASA Astrophysics Data System (ADS)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-04-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  8. Magnetically collimated pair jets at the LLNL Titan laser

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Chen, Hui; Barnak, Daniel; Betti, Riccardo; Fiksel, Gennady; Hazi, Andrew; Kerr, Shaun; Krauland, Christine; Link, Anthony; Manuel, Mario; Meyerhofer, David; Nagel, Sabrina; Park, Jaebum; Peebles, Jonathan; Pollock, Bradley; Tommasini, Riccardo

    2015-11-01

    Positron-electron pair production experiments were performed at the Titan laser at the Jupiter Laser Facility to investigate the dependence of target thickness and atomic number on pair yield. Externally applied axial magnetic fields, generated by a Helmholtz coil, were used to collimate positrons where the signal observed at the detector increased by a factor of 20 over reference shots without a field. This enabled the detection of positrons from a range of target materials. The emitted positron yield was found to be proportional to the square of the atomic number. This scaling is reduced from the Bethe-Heitler cross section of Z4 by Compton scattering and the stopping power of the target. Monte Carlo simulations support these conclusions, providing a power-law scaling of emitted positrons for all materials and a range of mm-thick targets. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 12-ERD-062 and the LLNL LGSP.

  9. Causality and stability of cosmic jets

    NASA Astrophysics Data System (ADS)

    Porth, Oliver; Komissarov, Serguei S.

    2015-09-01

    In stark contrast to their laboratory and terrestrial counterparts, cosmic jets appear to be very stable. They are able to penetrate vast spaces, which exceed by up to a billion times the size of their central engines. We propose that the reason behind this remarkable property is the loss of causal connectivity across these jets, caused by their rapid expansion in response to fast decline of external pressure with the distance from the `jet engine'. In atmospheres with power-law pressure distribution, pext ∝ z-κ, the total loss of causal connectivity occurs, when κ > 2 - the steepness which is expected to be quite common for many astrophysical environments. This conclusion does not seem to depend on the physical nature of jets - it applies both to relativistic and non-relativistic flows, both magnetically dominated and unmagnetized jets. In order to verify it, we have carried out numerical simulations of moderately magnetized and moderately relativistic jets. The results give strong support to our hypothesis and provide with valuable insights. In particular, we find that the z-pinched inner cores of magnetic jets expand slower than their envelopes and become susceptible to instabilities even when the whole jet is stable. This may result in local dissipation and emission without global disintegration of the flow. Cosmic jets may become globally unstable when they enter flat sections of external atmospheres. We propose that the Fanaroff-Riley (FR) morphological division of extragalactic radio sources into two classes is related to this issue. In particular, we argue that the low power FR-I jets become reconfined, causally connected and globally unstable on the scale of galactic X-ray coronas, whereas more powerful FR-II jets reconfine much further out, already on the scale of radio lobes and remain largely intact until they terminate at hotspots. Using this idea, we derived the relationship between the critical jet power and the optical luminosity of the host

  10. A study on the steady-state solutions of a relativistic Bursian diode in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Kuznetsov, V. I.; Bakaleinikov, L. A.; Chakrabarti, Nikhil

    2016-08-01

    A comprehensive study on the steady states of a planar vacuum diode driven by a cold relativistic electron beam in the presence of an external transverse magnetic field is presented. The regimes, where no electrons are turned around by the external magnetic field and where they are reflected back to the emitter by the magnetic field, are both considered in a generalized way. The problem is solved by two methods: with the Euler and the Lagrange formulation. Taking non-relativistic limit, the solutions are compared with the similar ones which were obtained for the Bursian diode with a non-relativistic electron beam in previous work [Pramanik et al., Phys. Plasmas 22, 112108 (2015)]. It is shown that, at a moderate value of the relativistic factor of the injected beam, the region of the ambiguous solutions located to the right of the SCL bifurcation point (space charge limit) in the non-relativistic regime disappears. In addition, the dependencies of the characteristic bifurcation points and the transmitted current on the Larmor frequency as well as on the relativistic factor are explored.

  11. Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet

    SciTech Connect

    Ugai, M.

    2009-11-15

    It is well known that magnetic pulsations of long periods impulsively occur in accordance with the sudden onset of geomagnetic substorms and drastic enhancement of electrojets in the ionosphere. On the basis of the spontaneous fast reconnection model, the present paper examines the physical mechanism by which both magnetic pulsations and strong electrojets are impulsively driven by the fast (Alfvenic) reconnection jet. When a large-scale plasmoid [or traveling compression region (TCR)], directly caused by the fast reconnection jet, collides with the magnetic loop footpoint, strong electrojets are impulsively driven in a finite extent in the loop footpoint in accordance with the evolution of the current wedge and the generator current circuit. Simultaneously, magnetohydrodynamic (Alfven) waves, accompanied by the TCR, are reflected from the electrojet layer, leading to impulsive magnetic pulsations ahead of the loop footpoint because of the interaction (or resonance) between the reflected waves and the waves traveling toward the footpoint. The pulsations propagate outward in all directions from the source region of the wave reflection, and the pulsation periods are typically estimated to be of several tens of seconds.

  12. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  13. Laboratory Study of the Shaping and Evolution of Magnetized Episodic Plasma Jets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew

    2015-11-01

    The expansion of hot, dense plasma (100 eV, 1018 cm-3) into vacuum occupied by a strong magnetic field (β =Pkinetic /Pmag ~ 1) along the expansion axis is a seemingly elementary physics problem, yet it is one that has scarcely been investigated. As well as being a fundamental problem in plasma physics, understanding such a situation is important to provide an explanation of large-scale jets observed in the formation of young stellar objects (YSO). Additionally, the ability to manipulate such a situation (e.g. to optimize x-ray emission) may be essential to the feasibility of recently proposed inertial confinement fusion (ICF) schemes with an imposed magnetic field. To investigate these situations, a CF2 foil is irradiated with the ELFIE laser (1013 W/cm2, 0.6 ns) in an external axial magnetic field of 20 T. As the plasma expands radially it is restricted by magnetic pressure that creates a cavity with a shock at the expansion edge. This shock redirects flow back on axis and creates a strong, stationary, conical shock that collimates the flow into a jet traveling over 1000 km/s and extending many centimeters. The effect of episodic heating (e.g. from variable mass ejection in a YSO, or pulse shaping in ICF) was investigated by irradiating the target with a precursor laser (1012 W/cm2, 0.6 ns) at 9 to 19 ns prior to the main pulse. The addition of this relatively small addition of energy (<20% of the main pulse energy) changed the dynamics of the expansion dramatically by increasing the strength of the conical shock, reducing the forward expansion of the cavity and dramatically increasing emission. We also present MHD simulations that reproduce the experimental observables and help to understand dynamics of jet and cavity formation. Prepared by LLNL under Contract DE-AC52-07NA27344. Presently at Lawrence Livermore National Laboratory.

  14. Evidence for Helical Magnetic fields in Kiloparsec-Scale AGN Jets and the Action of a Cosmic Battery

    NASA Technical Reports Server (NTRS)

    Gabuzda, D. C.; Christodoulou, D. M.; Contopulos, I.; Kazanas, D.

    2012-01-01

    A search for transverse kiloparsec-scale gradients in Faraday rotation-measure (RM) maps of extragalactic radio sources in the literature has yielded 6 AGNs displaying continuous, monotonic RM gradients across their jets, oriented roughly orthogonal to the local jet direction. The most natural interpretation of such transverse RM gradients is that they are caused by the systematic change in the line-of-sight components of helical magnetic fields associated with these jets. All the identified transverse RM gradients increase in the counterclockwise (CCW) direction on the sky relative to the centers of these AGNs. Taken together with the results of Contopoulos et al. who found evidence for a predominance of clockwise (CW) transverse RM gradients across parsec-scale (VLBI) jets, this provides new evidence for preferred orientations of RM gradients due to helical jet magnetic fields, with a reversal from CW in the inner jets to CCW farther from the centers of activity. This can be explained by the "Poynting-Robertson cosmic-battery" mechanism, which can generate helical magnetic fields with a. characteristic "twist," which are expelled with the jet outflows. If the Poynting-Robertson battery mechanism is not operating, an alternative mechanism must be identified, which is able to explain the 'predominance of CW /CCW RM gradients on parsec/kiloparsec scales.

  15. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    SciTech Connect

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-07-20

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I{sub {nu}} falls with distance d from the core, following the relation, I{sub {nu}}{proportional_to}d{sup a} , where a is typically {approx} - 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r{proportional_to}d 0{sup .4}; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in

  16. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  17. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  18. The Twisting Jet from the Vela Pulsar

    NASA Astrophysics Data System (ADS)

    Teter, M. A.; Pavlov, G. G.; Sanwal, D.; Kargaltsev, O.

    2002-05-01

    Observations of the Vela pulsar-wind nebula (PWN) with Chandra have revealed a long, thin filament -- an extension of the pulsar's jet beyond the bright outer arc confining the PWN in the direction of the pulsar's proper motion. This curved external jet terminates in a region of enhanced emission (a blob) at a distance of about 100'' (0.15 pc) from the pulsar, larger than the size of the PWN. The shape of the jet and its brightness are seen to vary on a timescale as short as a few days, its remote parts move in the sky plane with apparent velocities of up to 0.2 c. The X-ray spectrum of the external jet, including the termination blob, shows no spectral features. It is well described by a power-law model with a photon-index of γ ~= 1.2 (slightly harder than the average spectrum of the PWN, γ ~= 1.5). This indicates that the jet's radiation is due to synchrotron emission of relativistic particles in a magnetic field. The fact that the jet remains confined, although it twists at large distances from the pulsar, suggests a self-confining structure of its magnetic field. The varying shape and intensity of this stream of relativistic particles can be associated with varying local conditions in the Vela SNR and/or large-scale MHD instabilities and internal variations of the magnetic field within the jet. We will present a movie with a sequence of 12 Chandra images over past two years, demonstrating the structure of the twisting jet, and discuss various interpretations of these observations. The work was partially supported by SAO grant GO2-3091X and NASA grant NAG5-10865.

  19. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2014-04-01

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to

  20. The Role of Macroscopic and Microscopic Jet Instabilities

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.

    2013-12-01

    Relativistic jets, be they Poynting flux or kinetic flux dominated, are current driven (CD) and/or Kelvin-Helmholtz (KH) velocity shear driven unstable. These macroscopic MHD instabilities may be responsible for some of the observed larger scale twisted jet structures and typically do not disrupt jets on less than kiloparsec scales. Here I review our understanding of the jet properties that will lead to the observed relative stability of astrophysical jets. In addition, I review the progress made on the microscopic scale plasma instabilities in shocks and velocity shears that may lead to magnetic field generation and that does lead to the particle acceleration required to produce the observed emission from radio wavelengths to TeV energies. Finally, I discuss these instabilities in the context of the jet in M87.

  1. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  2. On reduction of transient process duration in a relativistic Cherenkov microwave oscillator without a guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Tot'meninov, E. M.; Klimov, A. I.

    2016-06-01

    Coupling impedance Z 0 of a continuous relativistic electron beam with the fundamental harmonic of the TM01 wave slowed down to the speed of light in a slow-wave structure (SWS) based on a hollow corrugated waveguide is estimated analytically and using the program based on the scattering matrix method. It is shown that Z 0 in relativistic Cherenkov microwave oscillators without a guiding magnetic field realized in earlier experiments with the given type of interaction amounts to about 6-7 Ω, which is several times higher than the coupled impedances averaged over the SWS cross section for-1 and +1 spatial harmonics of the operating wave and can be increased in future to values exceeding 10 Ω due to a decrease in the average SWS diameter in admissible limits. In numerical simulation using the KARAT code, the possibility of reduction of the time of stabilization of oscillations of the Cherenkov microwave oscillator without a guiding magnetic field by 1.5 times is demonstrated.

  3. Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature.

    PubMed

    Asenjo, Felipe A; Borotto, Felix A; Chian, Abraham C-L; Muñoz, Víctor; Valdivia, J Alejandro; Rempel, Erico L

    2012-04-01

    We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrödinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics. PMID:22680585

  4. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    SciTech Connect

    Yu, S.; Sessler, A.

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  5. Magnetogenesis through a Relativistic Biermann Effect

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    2012-10-01

    In a 2010 Physical Review Letter, Mahajan and Yoshida proposed a relativistic correction to the well-known Biermann Battery. The Biermann Battery allows for the generation of magnetic fields in a plasma fluid from orthogonal gradients in temperature and entropy (Bt ∇T x∇σ). The proposed correction would result in an additional term, proportional to the gradient of velocity squared crossed with the gradient of entropy (Bt ∇v^2 x∇σ). This new effect can in some cases provide the dominate source of magnetic field growth, even when the fluid is only mildly relativistic. This could in turn help explain the dynamics of certain relativistic plasmas, including modern laser plasmas and astrophysical jets. It is possible it could even provide a primordial source for the seed fields needed to explain the cosmological magnetic fields that appear to permeate most galaxies. In my poster, I will explain the theory underlying this new correction and present simulations demonstrating magnetic field growth in a variety of test cases, performed using both a particle-in-cell code and a fluid model.

  6. Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; McKinney, Jonathan C.; Markoff, Sera; Tchekhovskoy, Alexander

    2014-05-01

    Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high-luminosity hard-to-soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence the accretion state directly, and hence the magnetic field structure is an important second parameter in explaining observations of accreting black holes across the mass and luminosity scales.

  7. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander

    2008-02-01

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.

  8. Spin and orbital magnetism of coinage metal trimers (Cu{sub 3}, Ag{sub 3}, Au{sub 3}): A relativistic density functional theory study

    SciTech Connect

    Afshar, Mahdi; Sargolzaei, Mohsen

    2013-11-15

    We have demonstrated electronic structure and magnetic properties of Cu{sub 3}, Ag{sub 3} and Au{sub 3} trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21μ{sub B} was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.

  9. News and Views: Challenges of Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Opher, Reuven

    2013-12-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of compact objects (black holes and neutron stars), dark sector (dark matter and dark energy), plasma astrophysics (origin of jets, cosmic rays, and magnetic fields), and the primordial universe (physics at the beginning of the Universe). In these four subjects, I discuss 12 of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale universe. The near-future possibilities, in observations and theory, for addressing these challenges are also discussed.

  10. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  11. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    DOE PAGESBeta

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-04-05

    Our goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers ofmore » bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4–6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed “green” part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. In conclusion, this study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.« less

  12. Rayleigh-Taylor-Instability Evolution in Colliding-Plasma-Jet Experiments with Magnetic and Viscous Stabilization

    SciTech Connect

    Adams, Colin Stuart

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational