Science.gov

Sample records for magnetohydrodynamics mhd power

  1. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  3. Methodology to assess the effects of magnetohydrodynamic electromagnetic pulse (MHD-EMP) on power systems

    SciTech Connect

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.

    1985-01-01

    This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig.

  4. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commercial electric power systems

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Tesche, F. M.; Vance, E. F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  5. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    SciTech Connect

    Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  6. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  7. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  8. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  9. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  10. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  11. Application of Magnetohydrodynamics (MHD) and Recent Research Trend

    NASA Astrophysics Data System (ADS)

    Harada, Nobuhiro

    As the applications of Magnetohydrodynamic (MHD) energy conversion, research and development for high-efficiency and low emission electric power generation system, MHD accelerations and/or MHD thrusters, and flow control around hypersonic and re-entry vehicles are introduced. For closed cycle MHD power generation, high-efficiency MHD single system is the most hopeful system and space power system using mixed inert gas (MIG) working medium is proposed. For open cycle MHD, high-efficiency coal fired MHD system with CO2 recovery has been proposed. As inverse process of MHD power generation, MHD accelerators/thrusters are expected as the next generation propulsion system. Heat flux reduction to protect re-entry vehicles is expected by an MHD process for safety return from space missions.

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  14. Electrolytic process for desulphurization and seed regeneration in coal fired magnetohydrodynamic (MHD) power generation systems

    SciTech Connect

    Seamans, T. F.

    1985-07-09

    An electrolytic process for desulphurization and seed reprocessing and recovery in open cycle coal fired MHD electrical power generation systems is disclosed. Alkali metal sulfate is removed from the gaseous effluent of the generator and electrolyzed in solution in an electrolytic cell to alkali metal hydroxide and sulphuric acid. The alkali metal hydroxide may be recycled directly into the system combustor or may undergo further conversion to alkali metal carbonate or bicarbonate or both by carbonation reaction with the carbon dioxide contained in the substantially desulfurized MHD generator effluent gas. An alternative electrolytic cell conversion of alkali metal bicarbonate to alkali metal carbonate is also disclosed.

  15. Magnetohydrodynamics MHD Engineering Test Facility ETF 200 MWe power plant. Conceptual Design Engineering Report CDER. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.

  16. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  17. Hypervelocity plasmas with strong MHD (magnetohydrodynamic) interactions

    NASA Astrophysics Data System (ADS)

    Demetriades, S. T.; Maxwell, C. D.

    1984-12-01

    Use of body forces to inject energy into a plasma offers certain advantages over simple energy addition by Ohmic heating. To achieve ever-increasing levels of energy per unit mass by this strategy requires detailed and thorough understanding of high-interaction magnetohydrodynamics (HIMHD) through realistic computer simulation. Such simulation is possible by the existing, HIMHD codes provided they undergo further validation in the high-interaction regime through systematic experiments. The present work has carried out a critical assessment of several methods for achieving high-interaction, high-magnetic Reynolds number MHD flows. It indicates that continuous flow (as contrasted to pulsed flow) plasmajet-drive MHD devices offer the greatest advantages and potential for validating the STD/MHD codes at high MHD interaction over a wide range of parameters with the greatest confidence. It has led to the definition of specific plasmajet-driven experiments, utilizing existing equipment, as the most effective way to carry out this task.

  18. MHD (magnetohydrodynamics) program plan, FY88

    NASA Astrophysics Data System (ADS)

    1988-04-01

    The essential elements of the current program, which are based on the June 1984 Coal-Fired Magnetohydrodynamic (MHD) Preliminary Transition and Program Plan, are to: (1) develop technical and environmental data for the integrated MHD topping cycle system through long-term (1000 hours) proof of concept (POC) testing; (2) develop technical and environmental data for the integrated MHD bottoming cycle subsystem through long-term (4000 hours) POC testing; (3) design and construct a seed regeneration system capable of independent operation, using spent seed materials from the MHD process; (4) prepare a conceptual design for an MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. Results of the topping cycle POC tests at the Component Development and Integration Facility (CDIF), coupled with the bottoming cycle POC test results obtained at the Coal Fired Flow Facility (CFFF), and the seed regeneration POC effort will provide the critical engineering data base for the private sector's final decision on proceeding with the design, construction, and operation of an MHD retrofit. The development schedule, decision points, and resource requirements are shown.

  19. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    SciTech Connect

    Not Available

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  20. MHD-EMP analysis and protection. Technical report. [MHD-EMP (magnetohydrodynamic-electromagnetic pulse)

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.

    1993-09-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.

  1. Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed

    2015-11-01

    This paper deals with the boundary layer flow of nanofluid over power-law stretched surface. Analysis has been carried out in the presence of applied magnetic field and chemical reaction. Heat and mass transfer characteristics are studied using heat and mass convective conditions. The governing partial differential equations are transferred to the nonlinear ordinary differential equations. Convergent series solutions are obtained for fluid velocity, temperature and concentrations fields. Influences of pertinent parameters including Hartman number, thermal and concentration Biot numbers and chemical reaction parameters are discussed on the velocity, temperature and concentration profiles. Graphical result are presented and discussed. Computations for local Nusselt and Sherwood numbers are carried out. It is observed that the heat transfer rate is enhanced by increasing power-law index, thermal Biot number and chemical reaction parameter while mass transfer rate increases for power-law index and chemical reaction parameter.

  2. Magnetohydrodynamic (MHD) driven droplet mixer

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.

    2004-05-11

    A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.

  3. Concept to Employ Magnetohydrodynamic (MHD) Conversion in a 2 GW Direct Drive Inertial Fusion Energy (IFE) Power Reactor

    NASA Astrophysics Data System (ADS)

    Anderson, Brett; Burstein, Alison; Gentile, Charles

    2007-11-01

    The conceptual design of a 2 GW direct drive IFE power reactor may provide an opportunity to directly harness the power in the post detonation ion fields. Conceptually, this can be accomplished by utilizing a magnetic cusp field to guide the ions into equatorial and polar ion dumps. The ion fields resulting from this magnetic intervention configuration pose a distinct challenge, as their intensity may have the potential to damage the ion dumps. One method of addressing this challenge is by employing MHD conversion to transform the internal energy of the fields directly into electrical energy, a process which would also reduce the fields' strength. In order to analyze the potential of MHD conversion in IFE, results of previous work in other applications are examined in the context of this project. Preliminary assessment reveals that MHD conversion is a promising solution to this issue, although a number of engineering and practical concerns will need to be addressed. This paper concentrates on the primary issues associated with MHD conversion. Support for this research was provided by the U.S. Department of Energy's Science Undergraduate Laboratory Internship (SULI) Program.

  4. Space Power MHD (magnetohydrodynamic) System: Third quarterly technical progress report, 1 November 1987-31 January 1988

    SciTech Connect

    Not Available

    1988-03-15

    This progress report of the Space Power MHD System project presents the accomplishments during 1 November 1987 through 31 January 1988. The scope of work covered encompasses the definition of an MHD power system conceptual design and development plan (Task 1). Progress included the following: Subcontracts were issued to the MIT Plasma Fusion Center and the Westinghouse R and D Center. The performance of the 100 MW 500 sec. power system was optimized and the design concept finalized, including mass and energy balances. Mass and cost estimates were prepared. A design review was held at DOE/PETC. This also included the review of the technical issues definition and of the R and D Plan. Following the review, a final iteration on the conceptual design was initiated. Formulation of the R and D Plan was continued. Preparation of the Task 1 R and D Report was initiated. 12 figs.

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  6. Explosively-driven magnetohydrodynamic (MHD) generator studies

    SciTech Connect

    Agee, F.J.; Lehr, F.M.; Vigil, M.; Kaye, R.; Gaudet, J.; Shiffler, D.

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  7. CosmoMHD: A Cosmological Magnetohydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Li, Shengtai; Li, Hui; Cen, Renyue

    2008-01-01

    In this era of precision cosmology, a detailed physical understanding on the evolution of cosmic baryons is required. Cosmic magnetic fields, though still poorly understood, may represent an important component in the global cosmic energy flow that affects the baryon dynamics. We have developed an Eulerian-based cosmological magnetohydrodynamics code (CosmoMHD) with modern shock capturing schemes to study the formation and evolution of cosmic structures in the presence of magnetic fields. We have implemented several high-resolution finite-volume and finite-difference methods for solving the MHD equations with cosmology. The divergence-free condition of the magnetic fields is preserved at a level of computer round-off error via the constraint transport method. We have also implemented a high-resolution method via dual-equation formulation to track the thermal energy of the baryons accurately in very high Mach number or high Alfvén-Mach number regions. Several numerical tests have demonstrated the efficacy of the proposed schemes.

  8. OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji

    2016-04-01

    OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.

  9. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.

  10. MHD (Magnetohydrodynamics) Program Plan, FY 1989

    NASA Astrophysics Data System (ADS)

    1989-05-01

    The essential elements of the current program, which is a continuation of the program outlined in the FY 1988 MHD Program Plan, are to: develop technical and environmental data for the integrated MHD topping cycle system through long-term (1000 hours) proof of concept (POC) testing; develop technical and environmental data for the integrated MHD bottoming cycle subsystem through long-term (4000 hours) POC testing; design and construct a seed regeneration system capable of independent operation, using spent seed materials from the MHD process; prepare a conceptual design for an MHD retrofit plant; and continue system studies and supporting research necessary for system testing. Results of the topping cycle POC tests at the Component Development and Integration Facility (CDIF), coupled with the bottoming cycle POC test results obtained at the Coal Fired Flow Facility (CFFF), and the seed regeneration POC effort will provide the critical engineering data base for the private sector's final decision on proceeding with the design, construction, and operation of an MHD retrofit. The development schedule, decision points, and resource requirements are discussed. As part of the MHD program, international activities of several nations are monitored and evaluated through contact with the international MHD scientific and technical community.

  11. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  12. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  13. Analysis of the magnetohydrodynamic flow of a fissioning gas in a disk MHD generator

    SciTech Connect

    Welch, G.E.

    1992-01-01

    The influence of fissioning and magnetohydrodynamic (MHD) interaction on the steady, supersonic flow of a compressible, turbulent, weakly ionized, fissioning gas in an outflow disk MHD generator is investigated in this work. The two-dimensional (r,z) MHD flow is modeled using the thin-layer Navier-Stokes equations with MHD and fission power density source terms, and Maxwell's equations under the MHD Approximations and assuming negligible induced magnetic induction. The simple plasma physics models used in this work suggest that the electron number densities (O 10[sup 19]m[sup 3]) and corresponding electrical conductivity levels (O 1 S/m) obtained from fission-fragment induced ionization alone may be insufficient for practical MHD generator operation. The MHD flow equations with the fission power density source term are integrated in boundary-fitted coordinates using the explicit method of MacCormack. The equations of electromagnetics, with variable plasma physics transport properties, are solved using an Alternating-Direction-Implicit (ADI) scheme. A consistent 2-D MHD solution is obtained by iteration between the fluid solver an the electromagnetics solver. The 2-D M solution methodology is used to analyze the influence of duct geometry and fission power density (for neutron flux levels between 0 and 10[sup 17] n/cm[sup 2]s) on the behavior of internal supersonic flows (with total Mach numbers less than 3), and to characterize the effects of variable applied magnetic induction levels and generators load resistances on the spatial profiles of important generator variables. THe predictions of the 2-D MHD solver developed in this work are compared with those of a quasi-one-dimensional Euler solver with MHD an fission source terms; the agreement between the two approaches suggests that the quasi-one-dimensional Euler solver does an excellent job predicting the behavior of supersonic, fissioning, disk MHD flows.

  14. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  15. A nuclear powered space based multimegawatt MHD disc power system

    NASA Astrophysics Data System (ADS)

    Holman, Robert R.; Lance, Joseph R.; Vanbibber, Lawrence E.; Louis, Jean F.

    A very compact space based magnetohydrodynamic (MHD) power system capable of meeting space platform burst power needs is examined. An open cycle MHD disc generator concept has been incorporated in a nuclear power system arrangement. Thermal energy for the system is provided by a NERVA derivative nuclear reactor and the MHD disc generator is used for thermal to electric energy conversion. Study results show to date that the NERVA derivative reactor coupled with the MHD disc generator provides a low total system launch mass and a very high energy extraction of greater than 20 MJ/kg in power operation. This energy extraction is much higher than the less than 2.5 MJ/kg values of linear MHD generator systems studied previously.

  16. Investigation of a liquid-metal magnetohydrodynamic power system.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.

    1972-01-01

    Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.

  17. Assessment of MHD power plants with coal gasification

    NASA Astrophysics Data System (ADS)

    Delallo, M. R., Jr.; Weinstein, R. E.; Cutting, J. C.; Owens, W. R.

    1981-12-01

    An assessment of the operational characteristics and cost of magnetohydrodynamic (MHD) power plants integrated with coal gasification was performed. The coal gasifier produces a slag and sulfur free fuel for the MHD combustor. This clean fuel eliminates slag and sulfur interactions with the MHD topping cycle and simplifies the design of the combustor, the MHD channel, and the heat and seed recovery (HRSR) subsystem components. This may increase MHD and HRSR system reliability and provide the potential for earlier commercial demonstration of MHD. Integration techniques with three advanced medium BTU gasifiers were evaluated and an optimum system defined. A detailed comparison was then performed with a direct coal fired MHD power plant using oxygen enrichment. Results indicate that incorporating a coal gasification process with MHD simplifies system design at the expense of lower overall net plant efficiency and higher levelized cost of electricity

  18. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  20. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  1. Characterization of Magnetohydrodynamic (MHD) Shock Sensor using Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Rockwell, Owen; Hargather, Michael

    2013-11-01

    Schlieren imaging is used to quantitatively determine the speed and pressure duration of a shock wave traveling through air. The high-speed quantitative schlieren images are then used to characterize a new magnetohydrodynamic (MHD) shock sensor. This device uses the air density and particle velocity changes across a shock wave to determine the shock velocity via the distortion of a magnetic field. Using Faraday's law of electromagnetic induction, the shock velocity and pressure can be interpreted from a change in potential across the electrodes within the device. This principle along with the assumption that the shock wave is traveling through the undisturbed air allows for the calculation of shock velocity. Piezoelectric pressure gauges are used for comparison to measure the pressure pulse magnitude and duration.

  2. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  3. Numerical experimentation on spherically symmetric one-dimensional magnetohydrodynamic /MHD/ wave propagation

    NASA Technical Reports Server (NTRS)

    Han, S. M.; Wu, S. T.; Nakagawa, Y.

    1982-01-01

    Radial propagation of one-dimensional magnetohydrodynamic (MHD) waves are analyzed numerically on the basis of the Implicit-Continuous-Fluid-Eulerian (ICE) scheme. Accuracy of the numerical method and other properties are tested through the study of MHD wave propagation. The three different modes of MHD waves (i.e., fast-, slow- and Alfven (transverse) mode) are generated by applying physically consistent boundary perturbations derived from MHD compatibility relations. It is shown that the resulting flow following these waves depend upon the relative configurations of the initial magnetic field and boundary perturbations.

  4. Ways to improve MHD power plants and prospects of their application

    NASA Astrophysics Data System (ADS)

    Batenin, V. M.; Pistchikov, S. I.; Sokolov, J. N.; Shelkov, E. M.

    1991-05-01

    The characteristics of magnetohydrodynamic (MHD) power plants, their modification possibilities, and their areas of application are analyzed. The analysis is based on the status of available power plants including steam turbine and combined-cycle steam/gas power plants. Conventional MHD power plants, based on existing technical solutions and various novel schemes are discussed. The main directions for improvement of energy conversion efficiency are presented, together with ways to modify MHD systems so as to reduce their capital costs. The conclusion is that MHD power plants could be competitive with most advanced power generation technologies.

  5. Laser-powered MHD generators for space application

    NASA Astrophysics Data System (ADS)

    Jalufka, N. W.

    1986-10-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  6. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  7. Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.

    2005-01-01

    This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.

  8. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a negligible influence on system thrust and that the measured I(sub sp) of the system (200 sec) exceeded that computed for an equivalent nozzleless rocket (120 sec).

  9. Nuclear reactor magnetohydrodynamic power generator for directed energy weapons

    NASA Astrophysics Data System (ADS)

    Swallom, Daniel W.

    The SDI electrical power requirements for directed energy weapons (DEW) may range from tens of megawatts to over hundreds of megawatts. For this application, where the power requirement is continuous for a period to time ranging from tens to hundreds or thousands of seconds, nuclear magnetohydrodynamic (MHD) power generation provides an attractive method for producing the required power levels. The MHD power system offers the advantages of simplicity of operation because of no moving or rotational parts; no upper limit on gas inlet temperature, which is a restriction in the case of rotating machinery; an upper limit on current output, which prevents the output current from exceeding twice the nominal current; and favorable scaling to larger size systems.

  10. Magnetohydrodynamic (MHD) nuclear weapons effects on submarine cable systems. Volume 1. Experiments and analysis. Final report

    SciTech Connect

    Not Available

    1987-06-01

    This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.

  11. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction exerted a negligible influence on system thrust and that the measured I(sub sp) of the system (200 see) exceeded that computed for an equivalent nozzleless rocket (120 see).

  12. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    SciTech Connect

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  14. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  15. An adaptive grid, unsteady model for two-dimensional magnetohydrodynamic (MHD) flow

    NASA Technical Reports Server (NTRS)

    Panitchob, Supat; Wu, S. T.; Suess, S. T.

    1987-01-01

    An adaptive grid finite difference method for solving multi-dimensional, time-dependent, magnetohydrodynamic (MHD) equations is developed. The method is capable of solving problems that include high gradients due to geometry, propagation of shock waves and unsteady boundary conditions. The grid generation technique is based on variational principles with direct control over grid concentration, smoothness and skewness. An example for a two-dimensional MHD simulation of the propagation of a solar-flare-generated shock wave in solar wind flow in the heliographic equatorial plane is selected for illustration of this method.

  16. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  17. Power Requirement for Nonequilibrium MHD-Bypass Scramjet

    NASA Technical Reports Server (NTRS)

    Park, Chul; Bogdanoff, David W.; Mehta, Unmeel

    2000-01-01

    It has been suggested previously that the performance of scramjet propulsion system may be improved by the use of magnetohydrodynamic (MHD) energy bypass: an MHD generator could be made to decelerate the flow entering the combustor, thereby improving combustion efficiency, and the electrical power generated could be made to accelerate the flow exiting from the combustor prior to expanding through the nozzle. In one of such proposed schemes, the MHD generator is proposed to be operated at a low temperature and ionization is to be achieved under nonequilibrium by the application of an external power. In the present work, the required power of such an external source is calculated assuming a 100%-efficient nonequilibrium ionization scheme. The power required is that needed to prevent the degree of ionization from reaching equilibrium with the low gas temperature. The flow is seeded with potassium or cesium. Specific impulse is calculated with and without turbulent friction. The results show that, for typical intended flight conditions, the specific impulse obtained is substantially higher than that of a typical scramjet, but the required external-power is several times that of the power generated in the MHD generator.

  18. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  19. MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest

    SciTech Connect

    Doss, E.D.; Geyer, H.K. ); Roy, G.D. )

    1990-01-01

    This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.

  20. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.

  1. WhiskyMHD: Numerical Code for General Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Baiotti, Luca; Giacomazzo, Bruno; Hawke, Ian; et al.

    2010-10-01

    Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet. Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.

  2. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  3. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  4. Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal

    SciTech Connect

    Guazzotto, L.; Betti, R.

    2011-09-15

    Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.

  5. Substorm features in MHD (magnetohydrodynamics) simulations of magnetotail dynamics

    SciTech Connect

    Birn, J.; Hesse, M.

    1990-01-01

    We present a review and extended analysis of characteristic results from our nonideal three-dimensional MHD simulations of unstable magnetotail evolution, which develops without the necessity of external driving or prescribed localization on nonideal effects. These modes involve magnetic reconnection at a near-Earth site in the tail, consistent with the near-Earth neutral line model of substorms. The evolution tailward of the reconnection site is characterized by plasmoid formation and ejection into the far tail, plasma sheet thinning between the near-Earth neutral line (X line) and the departing plasmoid, and fast tailward flow, which occupies large sections of the plasma sheet at larger distance from the X line, while it occurs only in very limited space and time sections close to the X line. The region earthward of the X line is characterized by dipolarization, propagating from midnight toward the flank regions and, perhaps, tailward. It is associated with the signatures of the substorm current wedge: reduction and diversion of cross-tail current from a region surrounding the reconnection site and increase of Region 1 type field-aligned currents. A mapping of these currents to the Earth on the basis of an empirical magnetic field model shows good agreement of the mapped current system with the observed Region 1 field-aligned current system and its substorm associated changes, including also a nightward and equatorward shift of the peaks of the field-aligned current density. The evolution of the mappings of the boundaries of the closed field line region bears strong resemblance to the formation and expansion of he auroral bulge. The consistency of all of these details with observed substorm features strongly supports the idea that substorm evolution in the tail is that of a large scale nonideal instability.

  6. Gas Core Reactor with Magnetohydrodynamic Power System and Cascading Power Cycle

    SciTech Connect

    Smith, Blair M.; Anghaie, Samim

    2004-03-15

    The U.S. Department of Energy initiative Generation IV aim is to produce an entire nuclear energy production system with next-generation features for certification before 2030. A Generation IV-capable system must have superior sustainability, safety and reliability, and economic cost advantages in comparison with third generation light water reactors (LWRs). A gas core reactor (GCR) with magnetohydrodynamic (MHD) power converter and cascading power cycle forms the basis for a Generation IV concept that is expected to set the upper performance limits in sustainability and power conversion efficiency among all existing and proposed fission powered systems. A gaseous core reactor delivering thousands of megawatt fission power acts as the heat source for a high-temperature MHD power converter. A uranium tetrafluoride fuel mix, with {approx}95% mol fraction helium gas, provides a stable working fluid for the primary MHD Brayton cycle. The hot working fluid exiting a topping cycle MHD generator has sufficient heat to drive a conventional helium Brayton cycle with 35% thermal efficiency as well as a superheated steam Rankine cycle, with up to 40% efficiency, which recovers the waste heat from the intermediate Brayton cycle. A combined cycle efficiency of close to 70% can be achieved with only a modest MHD topping cycle efficiency. The high-temperature direct-energy conversion capability of an MHD dynamo combined with an already sophisticated steam-powered turbine industry knowledge base allows the cascading cycle design to achieve breakthrough first-law energy efficiencies previously unheard of in the nuclear power industry. Although simple in concept, the gas core reactor design has not achieved the state of technological maturity that established high-temperature gas-cooled reactors and high-temperature molten salt core reactors have pioneered. However, the GCR-MHD concept has considerable promise; for example, like molten salt reactors the fuel is continuously cycled, allowing high burnup, continuous burning of actinides, and hence greatly improved fuel utilization. The fuel inventory is two orders of magnitude lower than LWRs of comparable power output, and fissile plutonium production is likewise lower than in spent LWR fuel. Besides these features, specific GCR-MHD design challenges such as fission enhanced gas conductivity of the MHD partially ionized gas, GCR safety issues and related engineering problems are discussed.

  7. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  8. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  9. Gas Core Reactor-MHD Power System with Cascading Power Cycle

    SciTech Connect

    Smith, Blair M.; Anghaie, Samim; Knight, Travis W.

    2002-07-01

    The US Department of Energy initiative Gen-IV aim is to produce an entire nuclear energy production system with next generation features for certification before 2030. A Generation 4 capable system must have superior sustainability, safety and reliability, and economic cost advantages in comparison with third generation light water reactors. A gas core reactor (GCR) with magnetohydrodynamic (MHD) power converter and cascading power cycle forms the basis for a Generation IV concept that is expected to set the upper performance limits in sustainability and power conversion efficiency among all existing and proposed fission powered systems. A gaseous core reactor delivering 1000's MW fission power acts as the heat source for a high temperature magnetohydrodynamic power converter. A uranium tetrafluoride fuel mix, with {approx}95% mole fraction helium gas, provides a stable working fluid for the primary MHD-Brayton cycle. A helium Brayton cycle extracts waste heat from the MHD generator with about 20% energy efficiency, but the low temperature side is still hot enough ({approx}1600 K) to drive a second conventional helium Brayton cycle with about 35% efficiency. There is enough heat at the low temperature side of the He-Brayton cycle to generate steam, and so another heat recovery cycle can be added, this time a Rankine steam cycle with up to 40% efficiency. The proof of concept does not require a tremendously efficient (first law) MHD cycle, the high temperature direct energy conversion capability of an MHD dynamo, combined with already sophisticated steam powered turbine industry knowledge base allows the cascading cycle design to achieve break-through first law energy efficiencies previously unheard of in the nuclear power industry. Although simple in concept, the gas core reactor design has not achieved the state of technological maturity that, say, molten salt or high-temperature gas-cooled reactors have pioneered. However, even on paper the GCR-MHD concept holds considerable promise, for example, like molten salt reactors the fuel is continuously cycled, allowing high-burnup, and continuous burning of actinides, and hence greatly improved fuel utilization. The fuel inventory is two orders of magnitude lower than LWR's of comparable power output and fissile plutonium production is likewise lower than in spent LWR fuel. Besides these features this paper discusses specific GCR-MHD design challenges such as fission enhanced gas conductivity in the MHD channel, GCR safety issues and related engineering problems. (authors)

  10. Lithium-sulfur hexafluoride magnetohydrodynamic power system

    SciTech Connect

    Dobran, F.

    1987-02-24

    A method is described to operate a two-phase flow magnetohydrodynamic electric power generation system with liquid lithium and gaseous sulfur-hexafluoride flowing through a diverging channel, with side electrodes to remove the electric current generated in the flowing liquid lithium, across the applied magnetic field that is perpendicular to both the flow velocity and electrodes. Sulfur-hexafluoride is dispersed in the form of small bubbles and reacts with liquid lithium that forms a continuous phase to conduct the current between the electrodes so as to produce a near isothermal two-phase flow mixture and provides for an expansion of lithium across the magnetic field in the generator.

  11. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  12. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  13. Analyses of high power density MHD fuels

    NASA Astrophysics Data System (ADS)

    Lindeberry, J. T.

    Compact, open cycle combustion driven MHD generators are a viable source for meeting the requirements of short duration high power electrical energy demands. The starting point in the design of a high performance MHD generator system is the choice of energetic fuel which maximizes the generator power density. Four specific high energy fuels are considered: cyanogen, tetracyanoethylene, carbon-aluminum mixtures, and carbon-zirconium mixtures. These fuels, when burned in an oxygen enriched atmosphere, yield extremely high combustion temperatures. When the combustion products are seeded with an easily ionized compound, extremely high electrically conductive plasmas are produced. A maximization of plasma conductivity is one direct control the designer has of maximizing power density in the MHD generator. Results of computations for these fuels are given and other ancillary factors including their physical properties and handling characteristics are discussed. It is concluded that the aluminum-carbon fuels are prime candidates for further consideration based upon their high energy nature and their being nontoxic.

  14. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    SciTech Connect

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-21

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  15. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems. Phase I, final report. Volume 3

    SciTech Connect

    Legro, J.R.; Abi-Samra, N.C.; Tesche, F.M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal has been defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena has been both detected in actual weapon tests and predicted from theoretical models. This volume documents a preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems, define the construction of approximate system response network models, and document the development of a unified methodology to assess equipment and systematic vulnerability. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  16. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems, phase 1, volume 3

    NASA Astrophysics Data System (ADS)

    Legro, J. R.; Abi-Samra, N. C.; Tesche, F. M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal was defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena was detected in actual weapon tests and predicted from theoretical models. A preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems documented the construction of approximate system response network models, and the development of a unified methodology to assess equipment and systematic vulnerability are defined. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  17. Magnetohydrodynamical 3-D effects on output performance of small scale MHD generator with inlet swirl

    SciTech Connect

    Miura, T.; Aoki, Y.; Kayukawa, N.

    1998-07-01

    The 5MWth MHD generator at Hokkaido University is designed as a swirl type generator in order to make the fuel reside for a sufficient time in a combustor. Effects of the swirl need to be considered to simulate the channel performance correctly. However study of MHD generator with inlet swirl is not reported so far. In this paper three dimensional phenomena and output performance of 5MWth MHD generator with inlet swirl at Hokkaido University are studied by three dimensional analysis. The flow processes in the MHD channel are represented by the three-dimensional Navier-Stokes equations. The flow in the MHD channel is predominantly in the axial direction, so that the parabolic approximation is adopted. The electrical governing equation consist of Maxwell equations and generalized Ohm's law. The infinite segmentation assumption is used for these equation. The magnetic Reynolds number is much smaller than unity, so that the applied magnetic field is given independently of the other quantities. The maximum magnetic field strength is 2.11T. The working gas is the combustion product of kerosene and oxygen at a stoichiometric ratio of 1:1. The fluid is seeded with K{sub 2}SO{sub 4} such that the combustion gas contains 1 wt% potassium. The thermodynamical and electrical properties are expressed in terms of fourth-order polynomials of pressure and enthalpy. In this calculation two different inlet conditions with different inlet mass flow rate are analyzed. One condition is the inlet mass flow rate = 0.58Kg/s and the other condition is the inlet mass flow rate = 0.63Kg/s. In this study three-dimensional flow in MHD generator with inlet swirl is simulated. Analyzed conditions are as follows. (1) inlet condition with no swirl, (2) inlet condition with swirl A : = 27.47m/s = 14.93m/s, (3) inlet condition with swirl B : = 51.90m/s = 28.42m/s. The calculation results is as follows. (A) inlet mass flow rate = 0.58Kg/s. The regions where temperature drops are generated by rotational swirl flow. The electrical conductivity falls at these regions, so that electrical potential is affected as well as conductivity. The electrode voltage drops at both anode and cathode increases compared with no swirl condition. And the drop of electrical conductivity decreases the Faraday current Jy. Consequently the output power of the MHD generator decreases and such effect is remarkable in case of strong secondary flow due to swirl. (B) inlet mass flow rate = 0.63Kg/s. In the case of swirl A output power decreases as well as the case of inlet mass flow rate = 0.58Kg/s. On the other hand in the case of swirl B output power increases when compared with no swirl condition.

  18. Flow simulation of the Component Development Integration Facility magnetohydrodynamic power train system

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1997-11-01

    This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.

  19. MHD advanced power train. Phase 1, Final report: Volume 3, Power train system description and specification for 200MWe Plant

    SciTech Connect

    Jones, A.R.

    1985-08-01

    This System Design Description and Specification provides the basis for the design of the magnetohydrodynamic (MHD) Power Train (PT) for a nominal 200 MWe early commercial tiHD/Steam Power Plant. This document has been developed under Task 2, Conceptual Design, of Contract DE-AC22-83PC60575 and is to be used by the project as the controlling and coordinating documentation during future design efforts. Modification and revision of this specification will occur as the design matures, and tiie-Westinghouse MHD Project Manager will be the focal point for maintaining this document and issuing periodic revisions. This document is intended to delineate the power train and-power train components requirements and assumptions that properly reflect the MHD/Steam Power Plant in the PT design. The parameters discussed in this document have been established through system calculations as well as through constraints set by technology and by limitations on materials, cost, physical processes associated with MHD, and the expected operating data for the plant. The specifications listed in this document have precedence over all referenced documents. Where this specification appears to conflict with the requirements of a reference document, such conflicts should be brought to the attention of the Westinghouse MHD Project Manager for resolution.

  20. Numerical modeling of power generation from high-speed flows. I. Development of a nonequilibrium magnetohydrodynamics code

    NASA Astrophysics Data System (ADS)

    Lorzel, Heath; Mikellides, Pavlos G.

    2011-05-01

    The time-dependent, 2[1/2]-dimensional, axisymmetric, magnetohydrodynamics (MHD) solver, MACH2 has been upgraded to include the effects of nonequilibrium air chemistry in order to properly model weakly ionized flows over high-speed vehicles. The thermochemical model was subjected to several validation cases such as comparisons to the experimentally deduced shock stand-off distance of nitrogen flow over spheres, the shock stand-off distance of spheres fired into air in a ballistic test facility, and the electron number density on the surface of the Ram-C re-entry experiment. Furthermore, the magnetic induction equation has been upgraded with new verified models that compute the Hall effect, ion slip terms, and an applied axial electric field. Finally, simulations of an idealized MHD electrical power generator are compared with existing analytic solutions, demonstrating the applicability of the improved numerical code to model, analyze and design MHD power generators onboard high-speed vehicles.

  1. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    NASA Astrophysics Data System (ADS)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  2. Analysis of coal-fired magnetohydrodynamic power generator experiments

    SciTech Connect

    Pian, C.C.P.

    1998-07-01

    Data from proof-of-concept MHD generator tests have been analyzed and compared with computer analyses. These analyses were used to evaluate the performance of the 50-MW coal-fired Integrated Topping Cycle MHD power generator and to provide an explanation for and solutions to eliminate the unusual internal channel flow patterns that were observed during testing. The model results were also used to investigate the generator's internal leakage as a function of its operating condition.

  3. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    NASA Astrophysics Data System (ADS)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system with maximum magnetic fields of 3 T and with maximum conductivity levels of 11 mhos/m. These operating parameters better the previous findings of 5 T and 10 mhos/m, and reveal that taking into account collisions between ions and neutral particles within a weakly ionized flow provides a more realistic model with added benefits of lower magnetic fields and conductivity levels especially at the higher Mach numbers. (Abstract shortened by UMI.).

  4. Radiation-driven MHD systems for space applications

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Jalufka, N. W.

    1982-01-01

    High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.

  5. Radiation-driven MHD systems for space applications

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Jalufka, N. W.

    High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.

  6. Magnetohydrodynamic (MHD) flow analysis of second grade fluids in a porous medium with prescribed vorticity

    NASA Astrophysics Data System (ADS)

    Akbar, Tanvir; Nawaz, Rab; Kamran, Muhammad; Rasheed, Amer

    2015-11-01

    Steady and unsteady flow of a second grade MHD fluid in a porous medium with Hall current effects is studied. Assuming an à priori known vorticity proportional to the stream function up to an additive uniform stream, exact solutions for velocity field are obtained corresponding to different choices of pertinent flow parameters. Graphical results are presented to depict the influence of pertinent flow parameters on the considered MHD flow.

  7. MHD-EPIC: Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.

  8. Modelling of the process of electric power generation in the channel of the open cycle MHD generator

    SciTech Connect

    Zaporowski, B.

    1994-12-31

    The paper contains the results of investigations on the mathematical model of magnetohydrodynamic energy converter for the numeric simulation of energy conversion process in the channel of the open cycle MHD generator. In the first part of the paper the complex mathematical model of the magnetohydrodynamic energy converter consisting of 9 differential equations is presented. The solution of the system of these equations allows to determine continuous variation of 9 flow and energy parameters along MHD channel. These parameters are: temperature of plasma, pressure of plasma, total enthalpy of plasma, density of plasma, velocity of plasma, cross section of MHD channel, electric power transferred to external circuit, electric power loss on Joule`s heat and loss of plasma thermal energy for cooling the channel walls. Composition of plasma and its physical properties are determined, along the channel, in the function of temperature and pressure on the basis of quantum statistical physics. In the second part of the paper numerous results of numeric simulation of energy conversion process (generation of electric energy in the MHD channel) in both Faraday`s and de Montardy`s channels are presented. They are performed with the help of the mathematical model of magnetohydrodynamic energy converter presented in the first part of the paper. The results of simulation are presented as charts, and contain: the dependence of the efficiency of electric energy generation in MHD channel of both Faraday`s and de Montardy`s types on temperature and pressure at the inlet of the channel, the changes of the plasma temperature, plasma pressure, plasma total enthalpy, plasma electrical conductivity, plasma Hall`s parameter and the cross section of the channel along its length in Faraday`s and de Montardy`s channel types, the changes of the intensities of electrical fields E{sub x} and E{sub y}, of the densities of currents J{sub x} and J{sub y}.

  9. MHD (magnetohydrodynamics) channel development: Quarterly report for January 1987-March 1987

    SciTech Connect

    Not Available

    1987-04-01

    During the report period several slag doping tests were performed. Four of these tests are described in this report. The results were generally encouraging. Four dopants were investigated: Fe/sub 2/O/sub 3/, Fe/sub 3/O/sub 4/, MnO, and CrO/sub 2/. All but the CrO/sub 2/ proved effective within some range of dopant flow rate. At flow rates above or below this range none of the dopants were desirable. The proper ranges for each of the dopants was coarsely mapped in these experiments. When the dopants were injected directly on the anode wall a power increase was observed. This indicates a possible reduction in the voltage drop due to the presence of the dopant. No power gain or loss was observed when the dopant was injected on the cathode wall. However, inter-cathode voltages were observed to spread more uniformly along the wall. High voltages decreased and low voltages increased. This result should help to reduce wear on the cathodes and their neighboring wall elements by reducing the local electrical field. Current control circuits were tested on both MK VI and MK VII type generators and components for consolidation circuits ordered. Solutions to waste disposal problems created by the implementation of new environmental regulations are being investigated. The MHD generator data from the CDIF 87-SEED-1, 87-SEED-2, and 87-SEED-3 tests have been analyzed and the results are presented in this report. The results of the SIDA model presented in this quarterly report are obtained by assuming a constant boundary layer voltage drop. Variations in the boundary layer voltage drop as a result of diagonal loading changes, iron oxide addition, or seeding rates changes were not considered. Corrections for the effects of ..delta..V/sub b1/ will be made to the results of SIDA when the voltage drop measurements become available.

  10. Magnetohydrodynamic (MHD) analyses of various forms of activity and their propagation through helio spheric space

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.

  11. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  12. Shear-induced instability and arch filament eruption - A magnetohydrodynamic (MHD) numerical simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Song, M. T.; Martens, P. C. H.; Dryer, M.

    1991-01-01

    A situation wherein a bipolar magnetic field embedded in a stratified solar atmosphere undergoes symmetrical shear motion at the footpoints is investigated via a 2D (nonplanar) MHD simulation. It was found that the vertical plasma flow velocities grow exponentially, leading to a new type of global MHD instability. The growth rate increases almost linearly until it reaches the same order of magnitude as the Alfven speed. Then a nonlinear MHD instability occurs beyond this point. It was found that the central loops are pinched by opposing Lorentz forces, and the outer closed loops stretch upward with the vertically-rising mass flow. The nonlinear dynamical shearing instability is illustrated by a numerical example that is given for three different values of the plasma beta that span several orders of magnitude.

  13. Evaluation of a candidate material for a coal-fired magnetohydrodynamic (MHD) high temperature recuperative air heater

    NASA Astrophysics Data System (ADS)

    Winkler, J.; Dahotre, N. B.; Boss, W.

    In order to achieve the desired efficiency in the magnetohydrodynamic (MHD) cycle, one of two procedures must be employed. The first is to inject pure oxygen during combustion in order to achieve higher combustion temperatures which will yield better conversion efficiencies. The other is to preheat the combustor air through the use of high temperature air heaters (HTAH). A recuperative air heater heats the combustor air directly by passing it through tubes which are in the exhaust gas flow before sending it into the combustor. The procedure of passing air through the furnace requires a material for the tubes which will withstand the high temperatures and corrosive environment of the furnace and should have a high heat transfer coefficient. All of the necessary properties seem to exist in ceramic materials, so ceramics have begun to be studied for high temperature air heaters as well as other high temperature applications. One such effort to evaluate the performance of a ceramic composite tube in a coal fired MHD facility in order to determine any changes in the tube material after exposure to high temperature and a highly corrosive environment is outlined. A recuperative high temperature air heater (HTAH) would be positioned in the radiant furnace, because the radiant furnace provides conditions comparable to an actual MHD facility and is adequate for testing HTAH materials. The temperature conditions in the furnace range from approximately 1600 C to 1890 C, and velocities of approximately 12 m/s to 100 m/s were measured depending on the location in the furnace. The evaluated tube was placed in the furnace in a reducing environment with approximately 14 m/s velocity, 1650 C gas temperature, and 1230 C tube temperature.

  14. A full-implicit-continuous-Eulerian (FICE) scheme for multidimensional transient magnetohydrodynamic (MHD) flows

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Hu, Y. Q.

    1984-01-01

    A full implicit continuous Eulerian (FICE) scheme is developed for solving multidimensional transient MHD flow problems. The physical system under consideration is a general case of a transient MHD flow in which an initial steady state is subject to a finite amplitude disturbance. The governing equations are described, their finite difference formulation is presented and the FICE algorithm is given. The boundary conditions are treated by classifying them into physical and computational ones. The usefulness of the FICE algorithm is demonstrated using a physical example concerning the dynamical response of the static solar atmosphere due to a representative photospheric disturbance.

  15. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  16. Gigawatt, Closed Cycle, Vapor Core-Mhd Space Power System Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Wetch, Joseph R.; Rhee, Hyop S.; Koester, J. Kent; Goodman, Julius; Maya, Issac

    1988-04-01

    A conceptual design study for a closed cycle gigawatt electric space power system has been conducted. The closed cycle static operation reduces power system interaction effects upon the space craft. This system utilizes a very high temperature (5500 K) plasma core reactor and a magnetohydrodynamic (MHD) power conversion subsystem to provide a power density of about 8 kWe/kg (0.13 kg/kWe) for several kilo-seconds. Uranium vapor is the fuel. Candidate working fluids are metal vapors such as lithium or calcium. The system is based on a Rankine cycle to minimize the electromagnetic pumping power requirement. The fission fragment induced nonequilibrium ionization in the plasma in the MHD power duct provides the plasma electric conductivity for gigawatt power generation. Waste heat is rejected utilizing lithium heat pipes at temperatures just below 2000 K, thus minimizing the radiator area requirement. Key technology issues are identified, including the containment of the 5500 K 'sun-liken plasma at 4 to 0 MPa In a reflector moderated, gas/vapor filled cavity core reactor. A promising scheme to protect the refractory metal reactor inner wall is presented, together with a heating load analysis in the wall. This scheme utilizes an ablating film of liquid lithium/calcium that evaporates into the cavity core to become the working fluid of the cycle.

  17. Numerical simulation model for the study of magneto-hydrodynamic (MHD) waves in a structured medium

    SciTech Connect

    Xiao, Y.

    1988-01-01

    This dissertation contains two basic parts: a formal development of a numerical simulation model for the study of MHD waves in a structured medium, and an application of the model to the investigation of the propagation of MHD waves in a magnetic slab and their interactions with nonmagnetic surroundings. The numerical model is a time-dependent, two-dimensional, and nonlinear MHD model with gravity and radiative energy loss. The corresponding numerical code is based on the newly developed SINIL (Semi-Implicit-Non-Iterative-Lagrangian) scheme. The MHD governing equations are discretized on a Lagrangian grid, using the control-volume method. The gas dynamic properties are solved explicitly, and the magnetic field is solved implicitly without using numerical iterations. Using this numerical model, three kinds of slab waves are studied, namely, kink type slab waves, sausage type slab waves, and kink-type single interface waves (which are considered as kink-type slab waves in the limit of infinite slab width). In this study, external acoustic waves can only be excited by internal body waves. The excitation of external acoustic waves represents the energy leakage from the internal magnetized region to the external field-free region.

  18. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  19. Estimation of Specific Mass for Multimegawatt NEP Systems Based on Vapor Core Reactors with MHD Power Conversion

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim

    2004-02-01

    Very low specific-mass power generation in space is possible using Vapor Core Reactors with Magnetohydrodynamic (VCR/MHD) generator. These advanced reactors at the conceptual design level have potential for the generation of tens to hundreds of megawatts of power in space with specific mass of about 1 kg/kWe. Power for nuclear electric propulsion (NEP) is possible with almost direct power conditioning and coupling of the VCR/MHD power output to the VASIMR engine, MPD, and a whole host of electric thrusters. The VCR/MHD based NEP system is designed to power space transportation systems that dramatically reduce the mission time for human exploration of the entire solar system or for aggressive long-term robotic missions. There are more than 40 years of experience in the evaluation of the scientific and technical feasibility of gas and vapor core reactor concepts. The proposed VCR is based on the concept of a cavity reactor made critical through the use of a reflector such as beryllium or beryllium oxide. Vapor fueled cavity reactors that are considered for NEP applications operate at maximum core center and wall temperatures of 4000 K and 1500K, respectively. A recent investigation has resulted in the conceptual design of a uranium tetrafluoride fueled vapor core reactor coupled to a MHD generator. Detailed neutronic design and cycle analyses have been performed to establish the operating design parameters for 10 to 200 MWe NEP systems. An integral system engineering-simulation code is developed to perform parametric analysis and design optimization studies for the VCR/MHD power system. Total system weight and size calculated based on existing technology has proven the feasibility of achieving exceptionally low specific mass (α ~1 kg/kWe) with a VCR/MHD powered system.

  20. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  1. Experiments in Magnetohydrodynamics

    ERIC Educational Resources Information Center

    Rayner, J. P.

    1970-01-01

    Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)

  2. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  3. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  4. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  5. MHD boundary layer flow of a power-law nanofluid with new mass flux condition

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Khan, Waqar Azeem

    2016-02-01

    An analysis is carried out to study the magnetohydrodynamic (" separators=" MHD ) boundary layer flow of power-law nanofluid over a non-linear stretching sheet. In the presence of a transverse magnetic field, the flow is generated due to non-linear stretching sheet. By using similarity transformations, the governing boundary layer equations are reduced into a system of ordinary differential equations. A recently proposed boundary condition requiring zero nanoparticle mass flux is employed in the flow analysis of power-law fluid. The reduced coupled differential equations are then solved numerically by the shooting method. The variations of dimensionless temperature and nanoparticle concentration with various parameters are graphed and discussed in detail. Numerical values of physical quantities such as the skin-friction coefficient and the reduced local Nusselt number are computed in tabular form.

  6. Experimental determination of the MHD-EMP effects on power distribution transformers

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX )

    1991-01-01

    It is a well-established fact that geomagnetic storms influence electrical power transmission and distribution systems. Previous cases of such storms in the northern latitudes have resulted in occasional power disruptions, and in some cases, damage to transformers. These effects are caused by a time variation of the earth's magnetic field creating an induced electric field along the surface of the earth. This E-field acts as a voltage source along long power transmission or distribution lines, and if the line is connected to the earth at both ends, a quasi-dc current can flow. This current can cause unwanted saturation in the magnetic cores of transformers in the power system, and this, in turn produces harmonic distortion and transformer heating. This can lead to system upset (shutdown) and possibly transformer burn-out. The detonation of a high altitude nuclear explosion is also known to affect the magnetosphere, producing late-time variations of the earth's magnetic field for several hundreds of seconds. Known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), or E{sub 3}, this environment is of particular concern to electrical power systems in the event of a nuclear attack. Although the MHD-EMP induced currents can be significantly larger in magnitude, they last for a shorter period of time than do those from a geomagnetic storm. The effect of this environment compounds the adverse effects of the early-time high altitude EMP (HEMP) environment, posing a potentially serious threat to the electrical system. The present paper documents an experimental program designed to better understand the behavior of distribution-class transformers subjected to quasi-dc current excitation. Given the knowledge of the MHD-EMP-induced current flowing in a long power line, and the transformer response characteristics obtained in this program, it will be possible to make more accurate assessments of the behavior of the overall power system to EMP. 7 refs., 5 figs.

  7. Experimental determination of the MHD-EMP effects on power distribution transformers

    NASA Astrophysics Data System (ADS)

    McConnell, B. W.; Barnes, Paul R.; Tesche, Frederick M.

    It is a well-established fact that geomagnetic storms influence electrical power transmission and distribution systems. Previous cases of such storms in the northern latitudes have resulted in occasional power disruptions, and in some cases, damage to transformers. These effects are caused by a time variation of the earth's magnetic field creating an induced electric field along the surface of the earth. This E-field acts as a voltage source along long power transmission or distribution lines, and if the line is connected to the earth at both ends, a quasi-dc current can flow. This current can cause unwanted saturation in the magnetic cores of transformers in the power system, and this, in turn produces harmonic distortion and transformer heating. This can lead to system upset (shutdown) and possibly transformer burn-out. The detonation of a high altitude nuclear explosion is also known to affect the magnetosphere, producing late-time variations of the earth's magnetic field for several hundreds of seconds. Known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), or E(sub 3), this environment is of particular concern to electrical power systems in the event of a nuclear attack. Although the MHD-EMP induced currents can be significantly larger in magnitude, they last for a shorter period of time than do those from a geomagnetic storm. The effect of this environment compounds the adverse effects of the early-time high altitude EMP (HEMP) environment, posing a potentially serious threat to the electrical system. The present paper documents an experimental program designed to better understand the behavior of distribution-class transformers subjected to quasi-dc current excitation. Given the knowledge of the MHD-EMP-induced current flowing in a long power line, and the transformer response characteristics obtained in this program, it will be possible to make more accurate assessments of the behavior of the overall power system to EMP.

  8. Research and development studies for MHD/coal power flow train components. Part I. Power take off. Progress report

    SciTech Connect

    Levi, E.

    1980-01-01

    This report covers the initial work performance at the Polytechnic under Task I of the contract: Power Take-Off. It is concerned with three main aspects of the problem: 1) development of power consolidation circuits; 2) preliminary design for the power take-off of singly-loaded magnetohydrodynamic channels; and 3) electrical nonuniformities in diagonally connected channels. The derivation of 3 models for the MHD generators is given. Such models are needed for the analysis and testing of various power consolidation circuits. Two novel schemes which utilize electric energy storage elements for absorbing the Hall interelectrode voltage are described. The originality of these schemes is protected by disclosures of invention of which copies are attached. Significant reduction in the cost and complexity of the power conditioning can be achieved by sacrificing the continuity of current in the electrode circuit. Such a chopped current scheme is described. The diagonal connection of electrode segments simplifies the problem of power take-off and offers the possibility of loading the channel through a single inverter. Two papers submitted for publication are included: 1) preliminary design for the power take-off singly-loaded MHD channels and 2) electrical non-uniformities in diagonally connected generators. (WHK)

  9. Compact high-power MHD electric station on natural gas

    SciTech Connect

    Velikhov, E.P.; Bykov, V.P.; Kuznetsov, V.P.; Lavkovsky, S.A.; Topelberg, V.V.; Osipov, M.I.; Panchenko, V.P.

    1998-07-01

    The results of preliminary study of the compact combined electric power station (CPS) of high-power, composed from 4 autonomous identical power units, are presented. Each power unit includes the closed cycle disk MHD generator on non-equilibrium plasma with gas turbine and gas turbine power plant (GTPP) of open cycle. The power station is intended for conversion of the chemical energy of natural gas into electric power immediately on a field with the subsequent transmission of it to the existing power system. The proposed electric power of CPS amounts to {approx}16 GWe ({approx}28 GWt) at consumption of a natural gas mass flow rate 590 kg/s. The power of one unit is {approx}4 GWe. A binary combined Brayton cycle on a ground of GTPP with firing of natural gas and MHD generator on inert gas (Ar) of high-pressure (2.5 MPa) is reviewed. It provides CPS efficiency {approx}58%. Conceptual system of power unit include the 3 identical open loops with GTPP and closed loop with high power disk MHD generator. The transformation and transmission systems of electric power from ac generator and dc MHD generator, a direct current with 500 kV voltage by cable to distances up to 600 km, are calculated and designed. The CPS structural block-scheme, multiple-unit scheme of cycles, main components, both parameters and features of power unit, layout and general view of CPS are presented. The minimization of mass and volume of units and CPS as a whole at reasonable meaning of efficiency is fulfilled. The executed designs have shown that the proposed CPS can be accommodated in bulk 140 x 140 x 50 m{sup 3}, thus its complete mass will make {approx}60,000 tons.

  10. Three-dimensional MHD (magnetohydrodynamic) flows in rectangular ducts of liquid-metal-cooled blankets

    SciTech Connect

    Hua, T.Q.; Walker, J.S.; Picologlou, B.F.; Reed, C.B.

    1988-07-01

    Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions for flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs.

  11. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    SciTech Connect

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I.; Downs, Cooper; Roussev, Ilia I.; Evans, Rebekah M.

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  12. Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed

    2015-06-01

    This paper investigates MHD steady flow of viscous nanofluid due to a rotating disk. Water is treated as a base fluid and copper as nanoparticle. Nanofluid fills the porous medium. Effects of partial slip, viscous dissipation and thermal radiation are also considered. Similarity transformations reduce the nonlinear partial differential equations to ordinary differential equations. Flow and heat transfer characteristics are computed by HAM solutions. Also computations for skin friction coefficient and Nusselt number are presented and examined for pertinent parameters. It is noted that higher velocity slip parameter decreases the radial and azimuthal velocities while temperature decreases for larger values of the thermal slip parameter. Also the rate of heat transfer enhances when the nanoparticle volume fraction increases.

  13. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  14. MHD (magnetohydrodynamic) thermal hydraulic analysis of three-dimensional liquid metal flows in fusion blanket ducts

    SciTech Connect

    Hua, T.A.; Picologlou, B.F.; Reed, C.B.; Walker, J.S.

    1988-02-01

    Magnetohydrodynamic flows of liquid metals in thin conducting ducts of various geometries in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. At walls parallel to the magnetic field lines, as at the side walls of a rectangular duct, the boundary layers (side layers) carry a significant fraction of the volumetric flow rate in the form of high velocity jets. The presence of these jets strongly enhances heat transfer performance. In addition, heat transfer can be further improved by guiding the flow toward a heated wall by proper variation of wall thicknesses, duct cross sectional dimensions and/or shape. Flows in nonconducting circular ducts are also examined. Experimental results obtained from the ALEX experiments at the Argonne National Laboratory are used to validate the numerical predictions. 6 refs., 7 figs.

  15. A liquid metal MHD concept for multimegawatt space power application

    NASA Astrophysics Data System (ADS)

    Bilton, J. R.; Hensler, R. L.; Walker, V. A.; Rushton, B. L.; Ambrosek, R. G.; Schnitzler, B. G.; Wheeler, F. J.; Storhok, V. W.; Lake, J. A.; Wadkins, R. P.

    The need for space power at very high levels in the hundreds of megawatts range, for short period of time, coupled with the need for moderately high power levels, in the tens of megawatts for extended periods, places unique requirements on the energy system designer. The system discussed is designed to meet the requirements for burst power levels of 300 to 600 MWe and alert power of less than 50 MWe. For a space power system, high reliability and low specific weight and volume are driving requirements. Efficiency is important to the extent that it influences system weight and low efficiency places extreme requirements on the energy source. Liquid metal MHD is a passive energy conversion process and thereby minimizes the number of rotating components. A liquid metal cooled fast reactor provides the heat source for the liquid metal MHD working fluid, while retaining a relatively compact core configuration for this range of powers. The power system studied is based on a two phase flow liquid metal MHD generator with lithium as the electrodynamic fluid and helium as the thermodynamic fluid.

  16. Design study of superconducting magnets for a combustion magnetohydrodynamic /MHD/ generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.; Hrycaj, T. M.; Burkhart, J. A.

    1978-01-01

    Results are presented for a trade-off and preliminary design study on concepts of a superconducting magnet system for a combustion MHD generator test facility. The main objective is to gain insight into the magnitude of the project in terms of physical characteristics and cost. The net result of a first-phase evaluation of attractive design alternatives is to concentrate subsequent efforts on (1) a racetrack coil geometry with an operating temperature of 4.2 K, (2) a racetrack coil geometry with an operating temperature of 2.0 K, and (3) a rectangular saddle coil geometry with an operating temperature of 4.2 K. All three systems are to produce 8 T, and use NbTi superconductor and iron for field enhancement. Design characteristics of the three systems are described. It is shown that the racetrack and rectangular saddle coil geometries seem most suitable for this application, the former because of its simplicity and the latter because of its efficient use of material. Advantages of the rectangular saddle over the two other systems are stressed.

  17. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  18. Energy analysis of MHD-steam and MHD-gas-steam power plants integrated with coal gasification

    SciTech Connect

    Zaporowski, B.; Roszkiewicz, J.; Sroka, K.

    1995-12-31

    The paper presents energy analysis of combined two media (MHD-steam) and three media (MHD-gas-steam) power plants of high efficiency of conversion of chemical energy of fuel into electric energy integrated with coal gasification. The goal of this paper is to show the possibility of obtaining the high efficiency (about 60%) of the conversion of chemical energy of coal into electric energy in combined power plants with the open cycle MHD generators. The base of performed energy analysis are the elaborated mathematical models: of gas generator, of combustion chamber of MHD generator, of MHD channel, of high-temperature heater of oxygen, nitrogen and air, of steam generator and the cycle of steam turbine and of the cycle of gas turbine, and also the computer programmes, elaborated on the base of these models for numerical simulation of the processes of energy conversion in these elements. The elaborated mathematical model of the process of coal gasification for MHD-steam power plants allows to calculate: composition, physical properties and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium and both the chemical and energy efficiency of coal gasification. Gas produced in the process of coal gasification is directed to combustion chamber of MHD generator after desulphurization. The mathematical model of physical, chemical and energy processes in combustion chamber of MHD generator allows to determine the temperature of oxidizer and its enrichment in oxygen necessary to obtain the plasma parameters desired for optimum process of energy conversion in MHD channel. The mathematical model of energy conversion in open cycle MHD channel was presented in paper. This model allows to perform numerical simulation of energy conversion process and to determine optimum parameters of plasma at the inlet to the channel necessary to obtain maximum efficiency of energy conversion.

  19. Use of a Nonequilibrium MHD Generator for Conversion of SNTP Nuclear Thermal Rocket Exhaust to DC Electric Power for a Multimegawatt Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Finley, Charles J.

    1994-07-01

    This paper explores a method by which the energy of a high speed flowing gas can efficiently be converted into DC electric power by a magnetohydrodynamic (MHD) generator. A nonequilibrium state may be created in the working fluid during the ionization process using an arc discharge. This nonequilibrium state may possibly be sustained in the fluid using the waste heat byproduct of the natural operation of the generator, if certain characteristics of the fluid/MHD system are maintained. The improved efficiency of the resulting nonequilibrium MHD generator not only allows the system to deliver increased power to the load, but reduces the amount of energy to be expelled from the closed fluid cycle by a radiator.

  20. MHD Advanced Power Train Phase I, Final Report, Volume 7

    SciTech Connect

    A. R. Jones

    1985-08-01

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  1. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  2. Impinging jet separators for liquid metal magnetohydrodynamic power cycles

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1973-01-01

    In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).

  3. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  4. MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient

    NASA Astrophysics Data System (ADS)

    Jiao, Chengru; Zheng, Liancun; Ma, Lianxi

    2015-08-01

    This paper studies the magnetohydrodynamic (MHD) thermosolutal Marangoni convection heat and mass transfer of power-law fluids driven by a power law temperature and a power law concentration which is assumed that the surface tension varies linearly with both the temperature and concentration. Heat and mass transfer constitutive equation is proposed based on N-diffusion proposed by Philip and the abnormal convection-diffusion model proposed by Pascal in which we assume that the heat diffusion depends non-linearly on both the temperature and the temperature gradient and the mass diffusion depends non-linearly on both the concentration and the concentration gradient with modified Fourier heat conduction for power law fluid. The governing equations are reduced to nonlinear ordinary differential equations by using suitable similarity transformations. Approximate analytical solution is obtained using homotopy analytical method (HAM). The transport characteristics of velocity, temperature and concentration fields are analyzed in detail.

  5. Comparative analysis of CCMHD power plants. [Closed Cycle MHD

    NASA Technical Reports Server (NTRS)

    Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.

    1981-01-01

    A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.

  6. Magnetohydrodynamics (MHD) modelling of flare energy buildup, the energy release phase, and its propagation into heliospheric space

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Panitchob, S.

    1986-01-01

    Solar flare energy buildup at the photospheric level and energy release and transport into heliospheric space are examined using a composite MHD model. A four phase composite MHD model is described. An example demonstrating the applicability of the model is presented; the model was applied to the active region AR 2372. The limitations of this composite MHD model approach to analyzing solar flare energy buildup are discussed.

  7. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  8. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  9. Magnetohydrodynamic turbulence: Observation and experiment

    SciTech Connect

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  10. Magnetohydrodynamic energy conversion by using convexly divergent channel

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2009-12-21

    We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The quality of MHD power-generating plasma and the energy conversion efficiency in the convexly divergent channel are compared with those from previous linearly divergent channel. The divergence enhancement in the channel upstream is effective for suppressing an excessive increase in static pressure, whereby notably high isentropic efficiency is achieved.

  11. Metal-ammonia MHD - A compact high-power marine propulsion engine

    NASA Astrophysics Data System (ADS)

    Johnson, Martin R.

    1990-07-01

    Metal-ammonia plasmas are electrically conductive, condensible fluids capable of unprecedented power densities in MHD power generation. This paper discusses the physical and chemical properties of MA plasmas, and presents a model for MHD duct performance predicting 100 MW power output from a 4 meter long duct. Problems of plasma stability are discussed.

  12. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    SciTech Connect

    Anghaie, S.; Saraph, G.

    1995-12-31

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.

  13. MHD micropumping of power-law fluids: A numerical solution

    NASA Astrophysics Data System (ADS)

    Moghaddam, Saied

    2013-02-01

    The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.

  14. Experiments on H2-O2 MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid have been carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments are conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator.

  15. Gyroscopic analog for magnetohydrodynamics

    SciTech Connect

    Holm, D.D.

    1982-07-20

    The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.

  16. Gyroscopic analog for magnetohydrodynamics

    SciTech Connect

    Holm, D.D.

    1981-01-01

    The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.

  17. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.

  18. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  19. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  20. Analysis and design of an ultra-high-temperature, hydrogen-fueled MHD generator as an open cycle power supply

    SciTech Connect

    Moder, J.P.

    1990-01-01

    The theoretical analysis of a partially-ionized hydrogen gas flow (gas temperatures of approximately 10,000 to 20,000 K) through a particular class of magnetohydrodynamic (MHD) generators and the preliminary design of these MHD generators as open cycle, electric power supplies are performed. Analysis of the gas flow through these ultra-high temperature MHD generators requires a coupled gas dynamics/radiative heat transfer solution. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using non-gray, absorbing-emitting two- and three-dimensional P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation, and through the temperature-and density-dependent absorption coefficient. The resulting nonlinear, elliptic problem is solved by iterative methods in which relaxed values for radiative losses and temperature and density distributions are exchanged between computational models for the gas dynamics and radiative heat transfer. The design of efficient MHD generators is formulated as an optimization problem. The objective is to maximize the extraction ratio subject to several constraints, including limits on heat transfer to the generator walls, distorting of the applied magnetic field and maximum Hall parameters. A numerical optimization code is used to find local optima within the feasible design space, given some approximation of the actual radiative loss distribution within the generator. Actual coupled solutions for some of these designs are then generated.

  1. Analysis and design of an ultra-high-temperature, hydrogen-fueled MHD generator as an open cycle power supply

    NASA Astrophysics Data System (ADS)

    Moder, Jeffrey P.

    1990-08-01

    The theoretical analysis of a partially-ionized hydrogen gas flow (gas temperatures of approximately 10,000 to 20,000 K) through a particular class of magnetohydrodynamic (MHD) generators and the preliminary design of these MHD generators as open cycle, electric power supplies are performed. Analysis of the gas flow through these ultra-high temperature MHD generators requires a coupled gas dynamics/radiative heat transfer solution. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using non-gray, absorbing-emitting two- and three-dimensional P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation, and through the temperature-and density-dependent absorption coefficient. The resulting nonlinear, elliptic problem is solved by iterative methods in which relaxed values for radiative losses and temperature and density distributions are exchanged between computational models for the gas dynamics and radiative heat transfer. The design of efficient MHD generators is formulated as an optimization problem. The objective is to maximize the extraction ratio subject to several constraints, including limits on heat transfer to the generator walls, distorting of the applied magnetic field and maximum Hall parameters. A numerical optimization code is used to find local optima within the feasible design space, given some approximation of the actual radiative loss distribution within the generator. Actual coupled solutions for some of these designs are then generated.

  2. Computer controlled MHD power consolidation and pulse generation system

    SciTech Connect

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  3. Numerical study of two-dimensional non-plane MHD wave propagation in a supersonic, superalfvenic magnetohydrodynamic flow

    NASA Technical Reports Server (NTRS)

    Han, S. M.; Wu, S. T.; Smith, Z. K.; Dryer, M.

    1984-01-01

    The features of a 2.5-dimensional time-dependent MHD numerical code used to simulate the propagation of finite amplitude MHD waves through an inhomogeneous, supersonic superalfvenic medium are described. Basic equations for conservation of mass, momentum, and free energy in a unit volume plasma gas and for magnetic induction are defined. Initial conditions are functions of the radial coordinates and disturbances are introduced at the lower boundary. A set of finite difference equations based on a Lax-Wendroff scheme is used for the simulation. The model is applied to analyzing a solar flare shock wave in steady-state and global transient conditions while propagating at 1 AU heliolongitude.

  4. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56 MHz, 5.2 kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  5. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  6. Effect of Power Control Function on Heat Transfer and Magnetohydrodynamic Two-Phase Flow in Electroslag Remelting Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Rong, Wenjie; Li, Baokuan

    2015-11-01

    A transient three-dimensional (3D) coupled mathematical model of electroslag remelting (ESR) furnace has been developed to investigate the impact of power control function on the heat transfer and magnetohydrodynamic (MHD) two-phase flow. Maxwell's equations are solved by electrical potential method. The volume of fluid (VOF) approach is implemented to describe the two phase flow. The Lorentz force and the Joule heating are updated at each iteration as a function of phase distribution. The solidification is modeled by enthalpy-porosity formulation. A reasonable agreement between the experiment and simulation is obtained. The melt rate increases 15.83% in the remelting process with a constant current of 1600 A. With the power control function, the current would be reduced if the melt rate is 1.05 times larger than its initial value. The fluctuation range of the melt rate therefore decreases to 7.23%. Moreover, the fluctuation is limited within 5.12% if we start the power control program when the melt rate is 1.03 times higher than its initial value. Not only the metal pool depth but also the input power decreases under the effect of the current control function.

  7. Downstream component corrosion in coal-fired MHD power plants

    SciTech Connect

    White, M. K.

    1980-06-01

    Results are given to date of corrosion probe studies conducted to evaluate the nature and severity of degradation of oiler and superheater materials in coal-fired MHD power generation systems. Tests were conducted with two air or nitrogen cooled probes in Cell III of the UTSI MHD facility. One probe had carbon steel samples subjected to metal temperatures of from 547K to 719K and reducing (SR = 0.85) gas conditions to simulate boiler tube conditions. The exposure time to date on these samples is 240 minutes. The other probe had samples of carbon steel, chromium-molybdenum steels and stainless steels subjected to temperatures ranging from 811K to 914K with oxidizing (SR = 1.15) gas conditions. The total run time on these samples was 70 minutes. The boiler probe samples were found to undergo predominantly pitted type corrosion beneath a deposit of ash/seed material having approximately 34% K/sub 2/SO/sub 4/. Weight loss rates varied from about 1.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the cool end of the probe to about 5.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the hot end. This loss is attributed primarily to sulfidation by hydrogen sulfide. Resistance to scaling of superheater materials increased progressively with the degree of alloying. Attack appeared to be in the form of surface scales containing mixtures of oxides and is attributed to either gaseous oxidation or to the presence of complex potassium trisulfates.

  8. MHD Energy Bypass Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several potential aerospace applications. The first is to improve the performance of hypersonic air-breathing engines for space launch and cruise vehicles. The second is to improve the performance of a high enthalpy wind tunnel. The third is to control a hypersonic vehicle. With such applications in mind, theoretical and experiments are being conducted at the NASA Ames Research Center to develop the MHD technology.

  9. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  10. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  11. Power take-off analysis for diagonally connected MHD channels

    SciTech Connect

    Pan, Y.C.; Doss, E.D.

    1980-01-01

    The electrical loading of the power take-off region of diagonally connected MHD channels is investigated by a two-dimensional model. The study examines the loading schemes typical of those proposed for the U-25 and U-25 Bypass channels. The model is applicable for the following four cases: (1) connection with diodes only, (2) connection with diodes and equal resistors, (3) connection with diodes and variable resistances to obtain a given current distribution, and (4) connection with diodes and variable resistors under changing load. The analysis is applicable for the power take-off regions of single or multiple-output systems. The general behaviors of the current and the potential distributions in all four cases are discussed. The analytical results are in good agreement with the experimental data. It is found possible to design the electrical circuit of the channel in the take-off region so as to achieve a fairly even load current output under changing total load current.

  12. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  13. Three-dimensional Hall Magnetohydrodynamics Turbulence

    NASA Astrophysics Data System (ADS)

    Meyrand, R.; Galtier, S.

    2012-07-01

    Direct numerical simulations of three-dimensional incompressible Hall magnetohydrodynamics are performed in a triple periodic box at moderate resolution. To investigate the transition from a large scale MHD turbulence regime to a small scale dispersive one we introduce a variable ion inertial length scale dI(t) which characterizes the strength of the Hall effect. By slowly increasing dI we are able to move our window of resolution from the pure MHD scales to the full Hall MHD one. We estimate the value of dI from which the Hall MHD regime appears. The present analysis is relevant in the context of solar wind turbulence where the power law spectrum for the magnetic field fluctuations steepens significantly at frequencies higher than a fraction of Hertz. This change of turbulence regime raises fundamental questions in plasma physics about the transition from a fluid model to a pure kinetic one.

  14. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  15. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  16. Evaluation of a candidate material for a coal-fired magnetohydrodynamic (MHD) high temperature recuperative air heater

    SciTech Connect

    Winkler, J; Dahotre, N B; Boss, W

    1993-02-01

    In order to achieve the desired efficiency in the MHD cycle, one of two procedures must be employed. The first is to inject pure oxygen during combustion in order to achieve higher combustion temperatures which will yield better conversion efficiencies. The other is to preheat the combustor air through the use of high temperature air heaters (HTAH). A recuperative air heater heats the combustor air directly by passing it through tubes which are in the exhaust gas flow before sending it into the combustor. The procedure of passing air through the furnace requires a material for the tubes which will withstand the high temperatures and corrosive environment of the furnace and should have a high heat transfer coefficient. All of the necessary properties seem to exist in ceramic materials, so ceramics have begun to be studied for high temperature air heaters as well as other high temperature applications. The present project outlines one such effort to evaluate the performance of a ceramic composite tube in a coal fired MHD facility in order to determine any changes in the tube material after exposure to high temperature and a highly corrosive environment. A recuperative high temperature air heater (HTAH) would be positioned in the radiant furnace, because the radiant furnace provides conditions comparable to an actual MHD facility and is adequate for testing HTAH materials. The temperature conditions in the furnace range from approximately 1600{degree}C to 1890{degree}C, and velocities of approximately 12 m/s to 100 m/s have been measured depending on the location in the furnace. The evaluated tube was placed in the furnace in a reducing environment with approximately 14 m/s velocity, 1650{degree}C gas temperature, and 1230{degree}C tube temperature.

  17. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  18. MHD-EMP protection guidelines

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  19. Analysis and Design of AN Ultra-High Hydrogen-Fueled MHD Generator as AN Open Cycle Power Supply.

    NASA Astrophysics Data System (ADS)

    Moder, Jeffrey P.

    1990-01-01

    The theoretical analysis of a partially-ionized hydrogen gas flow (gas temperatures ~10,000 -20,000 K) through a particular class of magnetohydrodynamic (MHD) generators and the preliminary design of these MHD generators as open cycle, electric power supplies are performed. Such potentially lightweight, compact and efficient power supplies may enable supersonic and hypersonic flight speeds for several beamed-energy airbreathing propulsion concepts. Analysis of the gas flow through these ultra-high temperature MHD generators requires a coupled gas dynamics/radiative heat transfer solution. The gas flow is assumed to remain in local thermodynamic equilibrium throughout the generator duct. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations while account for friction, convective and radiative heat transfer and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using non-gray, absorbing-emitting two- and three-dimensional P-1 approximations (truncated spherical harmonics) which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation, and through the temperature- and density -dependent absorption coefficient. The resulting nonlinear, elliptic problem is solved by iterative methods in which relaxed values for radiative losses and temperature and density distributions are exchanged between computational models for the gas dynamics and radiative heat transfer. The design of efficient MHD generators is formulated as an optimization problem. The objective it to maximize the extraction ratio (the ratio of electrical power extracted from the gas total power into the gas) subject to several constraints, including limits on heat transfer to the generator walls, distorting of the applied magnetic field and maximum Hall parameters. A numerical optimization code is used to find local optima within the feasible design space, given some approximation of the actual radiative loss distribution within the generator. Actual coupled solutions for some of these designs are then generated. Attempts to find a global optimum were limited to some extent by the failure of the iterative method employed to converge to a solution within a reasonable number of iterations for all local optima produced. The best design obtained, which converged to a coupled solution, was characterized by an extraction ratio of 35.5%, a power density of 10,500 MW_{rm e}/m ^3, a specific (extracted) energy of 324 MJ_{rm 3}/kg of hydrogen and a volume of 12,200 cm^3. It appears that extraction ratios for ultra-high temperature MHD generators may not greatly exceed those of conventional, lower temperature (seeded) MHD generators; however, power densities are greater by a factor of 10^2 -10^3, specific energies are greater by a factor of 100 and maximum wall heat fluxes and total heat loads may be on the order of 450 MW/m ^2 and 62 MW, respectively.

  20. Plasma Relaxation in Hall Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen K.

    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient α in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier β is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.

  1. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  2. Interelectrode break-down in MHD power generators

    SciTech Connect

    Chandra, A.; Chauhan, J.P.S.

    1983-12-01

    In commercial MHD generators, large electric fields are generated because of U ..lambda.. B field, where U is the velocity of the conducting fluid and B is the applied magnetic field. However, the large electric current densities (J) produced across the channel in such devices result in large Hall fields (J B) along the direction of flow of the working fluid. The large electric field (J ..lambda.. B) produced causes the break-down between the adjacent electrodes in MHD duct with segmented electrode geometry. The break-down leads not only to the deterioration of the performance of the MHD generator, but also causes destruction of the channel walls. The studies of the phenomenon leading to breakdown are thus important and essential for the design of a MHD duct. In the present paper, experimental studies have been presented to study the break-down potential in a duct made of copper electrodes and aluminum lining as insulator. The electric field is applied externally between the adjacent electrodes to simulate the Hall field. The voltage current characteristics have been observed for different temperatures of electrode and insulating wall and for different spacing between the electrodes. The working fluid is the combustion products of liquified petroleum gas (LPG) burnt with oxygen and seeded with aqueous solution of K/sub 2/CO/sub 3/. The typical gas temperature is 2500/sup 0/K and conductivity is about 50 ..cap omega../sup -1/m/sup -1/.

  3. Magnetohydrodynamic fluidic system

    DOEpatents

    Lee, Abraham P.; Bachman, Mark G.

    2004-08-24

    A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.

  4. Scale Locality of Magnetohydrodynamic Turbulence

    SciTech Connect

    Aluie, Hussein; Eyink, Gregory L.

    2010-02-26

    We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity - or, equivalently, fluxes of Elsaesser energies--are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.

  5. High-density magnetohydrodynamic energy conversion in a high-temperature inert gas

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2008-07-28

    We describe high-density magnetohydrodynamic (MHD) energy conversion in a high-temperature seed-free argon plasma, for which a compact disk-shaped Hall-type radial-flow MHD electrical power generator is used. The state of the MHD power-generating plasma changes with increasing total inflow temperature from 8200 to 9400 K; unstable behavior accompanied by the appearance of fine structures is transformed to a homogeneous and stable state. The attained enthalpy extraction efficiency is comparable to previous results using a conventional seeded gas. Furthermore, a high power output density is achieved even in relatively low-density magnetic flux.

  6. Direct Energy Conversion Fission Reactor, Gaseous Core Reactor with Magnetohydrodynamic (MHD) Generator; Final Report - Part I and Part II

    SciTech Connect

    Samim Anghaie; Blair Smith; Travis Knight

    2002-11-12

    This report focuses on the power conversion cycle and efficiency. The technical issues involving the ionization mechanisms, the power management and distribution and radiation shielding and safety will be discussed in future reports.

  7. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  8. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  9. Data assimilation for magnetohydrodynamics systems

    NASA Astrophysics Data System (ADS)

    Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.

    2006-05-01

    Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.

  10. Efficient magnetohydrodynamic simulations on graphics processing units with CUDA

    NASA Astrophysics Data System (ADS)

    Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng

    2011-10-01

    Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.

  11. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  12. MHD generators as pulse power sources for arc-driven railguns

    SciTech Connect

    Esposito, N.; Raugi, M.; Tellini, A.

    1995-01-01

    In this paper the performances of an electromagnetic launch system constituted by an arc driven railgun powered by a MHD generator are investigated. A small bore plasma driven railgun for fusion fuel pellet injection is examined considering as pulse power source a MHD generator having characteristics taken from operating devices. The analysis of the railgun and generator has been carried out by means of a lumped parameter equivalent network model that takes into account drag force and ablation effects and allowing the evaluation of the main electrical and thermodynamic quantity distributions of the plasma arc.

  13. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate that an MHD accelerator can be an effective augmentation system for increasing engine exhaust velocity. More specifically, the experiment is intended to show that electromagnetic effects are effective at producing flow acceleration whereas electrothermal effects do not cause unacceptable heating of the working fluid. The MHD accelerator was designed as an externally diagonalized segmented Faraday channel, which will be inserted into an existing 2-tesla electromagnet. This allows the external power to be connected through two terminals thereby minimizing the complexity and cost associated with powering each segment independently. The design of the accelerator and other components in the flow path has been completed and fabrication activities are underway. This paper provides a full description of MAPX including performance analysis, design, and test plans, and current status.

  14. Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis

    SciTech Connect

    Bednarczyk, A.A.

    1989-05-01

    The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.

  15. Priority pollutant analysis of MHD-derived combustion products

    NASA Astrophysics Data System (ADS)

    Parks, Katherine D.

    An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.

  16. Multimegawatt NEP with vapor core reactor MHD

    NASA Astrophysics Data System (ADS)

    Smith, Blair; Knight, Travis; Anghaie, Samim

    2002-01-01

    Efforts at the Innovative Nuclear Space Power and Propulsion Institute have assessed the feasibility of combining gaseous or vapor core reactors with magnetohydrodynamic power generators to provide extremely high quality, high density, and low specific mass electrical power for space applications. Innovative shielding strategies are employed to maintain an effective but relatively low mass shield, which is the most dominating part of multi-megawatt space power systems. The fission driven magnetohydrodynamic generator produces tens of kilowatt DC power at specific mass of less than 0.5 kg/kW for the total power system. The MHD output with minor conditioning is coupled to magnetoplasmadynamic thruster to achieve an overall NEP system specific mass of less than 1.0 kg/kW for power levels above 20 MWe. Few other concepts would allow comparable ensuing payload savings and flexible mission abort options for manned flights to Mars for example. .

  17. Parker problem in Hall magnetohydrodynamics

    SciTech Connect

    Shivamoggi, Bhimsen K.

    2009-05-15

    The Parker problem in Hall magnetohydrodynamics (MHD) is considered. Poloidal shear superposed on the toroidal ion flow associated with the Hall effect is incorporated. This is found to lead to a triple deck structure for the Parker problem in Hall MHD, with the magnetic field falling off in the intermediate Hall-resistive region more steeply (like 1/x{sup 3}) than that (like 1/x) in the outer ideal MHD region.

  18. Hamiltonian formalism of extended magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Abdelhamid, H. M.; Kawazura, Y.; Yoshida, Z.

    2015-06-01

    The extended magnetohydrodynamics (MHD) system, including the Hall effect and the electron inertia effect, has a Hamiltonian structure embodied by a noncanonical Poisson algebra on an infinite-dimensional phase space. A nontrivial part of the formulation is the proof of Jacobi's identity for the Poisson bracket. We unearth a basic Lie algebra that generates the Poisson bracket. A class of similar Poisson algebra may be generated by the same Lie algebra, which encompasses the Hall MHD system and inertial MHD system.

  19. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  20. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  1. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    SciTech Connect

    Not Available

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  2. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Seyler, C. E.; Martin, M. R.

    2011-01-01

    It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.

  3. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    SciTech Connect

    Seyler, C. E.; Martin, M. R.

    2011-01-15

    It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.

  4. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  5. MHD advanced power train. Phase 1, Final report: Volume 1, Executive summary

    SciTech Connect

    Jones, A.R.

    1985-08-01

    The Phase I objective of defining a plan for the development program that will provide qualification of the engineering data base for MHD power trains for MHD/steam plants with 200 MW(e) capacity, has been achieved. A program has been defined for engineering development of components, scale-up of power train components to reach 200 MW(e), integration of components into proof-of-concept power train systems at two logical ratings, and integration of power train system into the total plant at the larger rating. There is no requirement for scientific breakthrough. The plan will produce technical success in the shortest schedule and at lowest cost; it identifies the required management and engineering tools and expertise.

  6. An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator

    NASA Astrophysics Data System (ADS)

    Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.

  7. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  8. Estimates of Optimal Operating Conditions for Hydrogen-Oxygen Cesium-Seeded Magnetohydrodynamic Power Generator

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Nichols, L. D.

    1977-01-01

    The value of percent seed, oxygen to fuel ratio, combustion pressure, Mach number, and magnetic field strength which maximize either the electrical conductivity or power density at the entrance of an MHD power generator was obtained. The working fluid is the combustion product of H2 and O2 seeded with CsOH. The ideal theoretical segmented Faraday generator along with an empirical form found from correlating the data of many experimenters working with generators of different sizes, electrode configurations, and working fluids, are investigated. The conductivity and power densities optimize at a seed fraction of 3.5 mole percent and an oxygen to hydrogen weight ratio of 7.5. The optimum values of combustion pressure and Mach number depend on the operating magnetic field strength.

  9. H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Hawk, Clark W.

    1998-01-01

    A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.

  10. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  11. Optimization of the oxidant supply system for combined cycle MHD power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1982-01-01

    An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.

  12. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  13. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  14. Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.

    2016-02-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  15. The infinite interface limit of multiple-region relaxed magnetohydrodynamics

    SciTech Connect

    Dennis, G. R.; Dewar, R. L.; Hole, M. J.; Hudson, S. R.

    2013-03-15

    We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.

  16. Scale-locality of magnetohydrodynamic turbulence

    SciTech Connect

    Aluie, Hussein; Eyink, Gregory L

    2009-01-01

    We investigate the scale-locality of cascades of conserved invariants at high kinetic and magnetic Reynolds numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross-helicity - or, equivalently, fluxes of Elsaesser energies - are dominated by the contributions of local triads. Corresponding spectral transfers are also scale-local when defined using octave wavenumber bands. Flux and transfer of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term also may be dominated by non-local triads but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion non locally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.

  17. Closed cycle MHD power generation experiments in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1974-01-01

    Many modifications were made in the MHD facility. These include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation of all the high temperature components from each other and from ground, and experimentation with various cesium seed vaporization and injection techniques. With the exception of the cesium system which needs further improvement the above modifications were quite successful and resulted in improvements in generator performance. The facility was run for a total of 400 hours in the past year, with 70 hours of this operation at temperatures of 2000 K or more with hot generator walls. With the exception of replacing one cracked brick in the MHD channel no repairs were required in the high temperature loop components for the duration of these tests. Uniform Faraday and Hall voltage profiles were obtained and the Faraday open circuit voltage varied from 90 to 100 percent of the ideal uBh. The magnitudes of the measured parameters are: Faraday open circuit voltage approximately 70 V, total Faraday current approximately 20 A, Hall voltage approximately 250 V, power output approximately 300 W, and power density .036 W/cu cm.

  18. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  19. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  20. Tungsten and tungsten-copper for coal-fired MHD power generation

    NASA Astrophysics Data System (ADS)

    Farrar, L. C.; Shields, J. A.

    1992-08-01

    Magnetohydrodynamics (MHO) can improve the thermal efficiency and reduce levels of SOx and NO emissions of existing coal-fired power generation plants. Although the thermal and electrochemical environments for a coal-fired MHO channel challenge the materials used, platinum, tungsten, and tungsten-copper have been found to be suitable choices. Evaluations indicate these materials perform adequately as electrodes and other gas-side surfaces in the coal-fired MHO channel. Analysis of test elements has resulted in the identification of wear mechanisms. Testing of a prototypical coal-fired MHO channel incorporating these materials is under way and will be completed in 1993.

  1. Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2009-01-01

    Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.

  2. Magnetohydrodynamic Waves

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.

    2007-07-01

    The heating of solar atmosphere from chromosphere to corona is one of the key fundamental and yet unresolved questions of modern space and plasma physics. In spite of the multi-fold efforts spanning over half a century including the many superb technological advances and theoretical developments (both analytical and computational) the unveiling of the subtle of coronal heating still remains an exciting job for the 21st century! In the present paper I review the various popular heating mechanisms put forward in the existing extensive literature. The heating processes are, somewhat arbitrarily, classified as hydrodynamic (HD), magnetohydrodynamic (MHD) or kinetic based on the model medium. These mechanisms are further divided based on the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent heating). In particular, attention is paid to discuss shock dissipation, Landau damping, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, I briefly review the various observational consequences of the many proposed heating mechanisms and confront them with high-resolution ground-based and satellite data currently available.

  3. Multi-region relaxed magnetohydrodynamics with flow

    SciTech Connect

    Dennis, G. R. Dewar, R. L.; Hole, M. J.; Hudson, S. R.

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  4. Potential vorticity in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Mace, R. L.

    2015-01-01

    A version of Noether's second theorem using Lagrange multipliers is used to investigate fluid relabelling symmetries conservation laws in magnetohydrodynamics (MHD). We obtain a new generalized potential vorticity type conservation equation for MHD which takes into account entropy gradients and the J × B force on the plasma due to the current J and magnetic induction B. This new conservation law for MHD is derived by using Noether's second theorem in conjunction with a class of fluid relabelling symmetries in which the symmetry generator for the Lagrange label transformations is non-parallel to the magnetic field induction in Lagrange label space. This is associated with an Abelian Lie pseudo algebra and a foliated phase space in Lagrange label space. It contains as a special case Ertel's theorem in ideal fluid mechanics. An independent derivation shows that the new conservation law is also valid for more general physical situations.

  5. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  6. Advanced researches of closed cycle MHD power generation in Tokyo Institute of Technology: FUJI-1 experiments and numerical simulations

    SciTech Connect

    Kabashima, S.

    1998-07-01

    The recent developments of power generation experiments and numerical simulations for closed cycle MHD power generation performed at Tokyo Institute of Technology are explained and discussed. The FUJI-1 experiments realize 18.4% of enthalpy extraction, and the 38.1 and 30.1% of enthalpy extraction are obtained by shock tunnel facility for He/Cs and Ar/Cs working gases, respectively. The author can succeed with the 3-dimensional calculations of two temperature model equation for nonequilibrium plasma in a disk generator. The experimental and numerical results promise a high efficiency MHD power generation system, and a typical system which realizes the total efficiency of 60% is proposed.

  7. Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.

    2003-01-01

    This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.

  8. Diagnostic development and support of MHD test facilities

    SciTech Connect

    Not Available

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

  9. Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.

  10. Study of multi-phase flow characteristics in an MHD power train

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1993-08-01

    Computer simulation was used to predict two-phase flow processes in the CDIF MHD power train system. The predictions were used to evaluate the effects of operating and design parameters on the performance of the system and a parametric evaluation provides information to enhance the performance of the system. Major components of the system under investigation are the two-stage combustor, the converging/diverging nozzle, the supersonic MHD channel, and the diffuser. Flow in each component was simulated using a computer code. Integrating the computer codes, the two-phase flow processes in the system was calculated. Recently, the computer codes were used to investigate problems of nozzle erosion and the non-uniform iron oxide coverage on the cathode wall in the channel. A limited parametric study was conducted. The results indicated that (1) among the three nozzle geometries under investigation a {number_sign}5 nozzle has the smoothest flow development in the nozzle and has the lowest droplet deposition on wall and (2) smaller particle size and lower injection velocity tend to disperse the iron oxide particles more uniformly in the nozzle.

  11. Status of power generation experiments in the NASA Lewis closed-cycle MHD facility.

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1972-01-01

    In this paper the design and operation of the closed-cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger (preheater), heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The heater can supply 1.1 MW of thermal power to a 2.27 kg/sec gas stream. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths (B = 0.2 T), the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. The Hall voltage and short circuit current decrease sharply with increasing magnetic field strength, however. Comparison of these data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  12. On Hall magnetohydrodynamics equilibria

    SciTech Connect

    Throumoulopoulos, G. N.; Tasso, H.

    2006-10-15

    Steady states are studied in the framework of the ideal Hall magnetohydrodynamics (HMHD) model in arbitrary and axisymmetric geometries. In arbitrary geometry, conditions are found under which certain magnetohydrodynamics (MHD) equilibrium solutions can also satisfy the HMHD equations. For axisymmetric plasmas reduced equations are derived for uniform electron temperatures on magnetic surfaces and either barotropic ions or incompressible ion flows. The Hall and electron pressure gradient terms result in a deviation of the magnetic from the ion velocity surfaces, and consequently, the axisymmetric equilibria obey a set of coupled partial differential equations: one for the poloidal magnetic flux function and the other for a flux function labeling the ion velocity surfaces. Furthermore, the characteristics of certain classes of axisymmetric steady states with side conditions, as flows parallel to the magnetic field or purely poloidal incompressible flows, are identified and compared with respective MHD equilibria. Unlike in the frame of MHD, steady states with parallel axisymetric flows must be incompressible and equilibria with purely poloidal incompressible flows are possible. Certain analytic axisymmetric solutions are also constructed.

  13. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    PubMed

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade. PMID:25723225

  14. MHD control in burning plasmas MHD control in burning plasmas

    NASA Astrophysics Data System (ADS)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge in the field of burn control is to find the proper balance between desired and detrimental effects of the various MHD modes and to develop the methods and tools for active feedback control of MHD modes in burning plasmas. Therefore, it is necessary to understand the dynamics of the system, in this case the mutual interactions between the fast alpha particles and the MHD instabilities. Since burning plasmas do not yet exist, the relevant experimental work until ITER comes into full operation needs to be largely based on alpha-particle simulation experiments in which the alpha particles are accelerated to high energies by means of special heating techniques. The precise conditions of a burning plasma can be only partly mimicked in present tokamaks. Hence, also a detailed computational modelling effort is needed, in order to understand the impact of findings in present machines for those of the future. In 2011 two dedicated workshops were devoted to MHD control. Firstly, there was a workshop on Control of Burning Plasmas that took place from 21-25 March 2011 at the Lorentz Centre in Leiden, The Netherlands. Secondly, the 480th Wilhelm and Else Heraeus Seminar that took place from 16-18 June in Bad Honnef, Germany was devoted to Active Control of Instabilities in Hot Plasmas. This special issue presents a collection of papers that have been presented at the two workshops, along with a few papers that are the result of an open call to contribute to this special issue.

  15. Results of closed cycle MHD power generation tests with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.

  16. Results of closed cycle MHD power generation test with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.

  17. Waves in the Hall-magnetohydrodynamics model

    SciTech Connect

    Hameiri, Eliezer; Ishizawa, Akihiro; Ishida, Akio

    2005-07-15

    The three magnetohydrodynamic (MHD) waves are followed as they transition under the influence of an increasingly strong Hall current effect to the characteristic waves of the Hall-MHD model. Also followed are the wave normal surfaces and the ray surfaces (approximating wave fronts) of these waves. The changes in the nature of the waves are found to be considerable, and are described both analytically and numerically. Most notably, the incompressible MHD shear Alfven wave becomes a compressible fluid-dynamical wave with negligible perturbation of the electromagnetic field, while the two MHD compressible waves become incompressible, the fast wave becoming mostly electromagnetic and the slow wave becoming mostly fluid-dynamical.

  18. Improvement of Scramjet Performance-Experimental Demonstration of MHD Acceleration

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Park, Chul; Mehta, Unmeel B.; Arnold, James (Technical Monitor)

    2001-01-01

    One of the critical technologies of MHD (Magnetohydrodynamics) bypass scramjet propulsion for space launch and cruise vehicles is MHD acceleration. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. The objectives, the methods used and the preliminary results are described in this paper.

  19. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  20. MHD memes

    NASA Astrophysics Data System (ADS)

    Dewar, R. L.; Mills, R.; Hole, M. J.

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  1. Plasma relaxation and topological aspects in Hall magnetohydrodynamics

    SciTech Connect

    Shivamoggi, B. K.

    2012-07-15

    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient {alpha} in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier {beta} is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.

  2. Plasma relaxation and topological aspects in Hall magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen

    2013-10-01

    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD (Shivamoggi). The torsion coefficient al in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier β is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.

  3. Plasma relaxation and topological aspects in Hall magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2012-07-01

    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient α in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier β is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.

  4. The Hydra Magnetohydrodynamics Package

    NASA Astrophysics Data System (ADS)

    Koning, J. M.; Kerbel, G. D.; Marinak, M. M.

    2009-11-01

    The Magnetohydrodynamics package of the ALE radiation-hydrodynamics code Hydra is being extended to model the magnetic field and its effect on temperature for ICF targets. The current package capabilities include a fully three-dimensional resistive MHD package in the small Hall limit. An operator split method is used to couple the MHD to the hydrodynamics and is fully implicit in time and second order accurate in space. A three-dimensional vector finite element method is utilized to define a set of spaces and differential operators that maintain the zero divergence of the magnetic field exactly. The Hydra MHD package has been improved by the addition of an exact circuit solution method that enables the potential for multiple circuits. A significant enhancement of Hydra is the addition of a Python interpreter embedded in the code. The Python interpreter allows users to make full use of Python's features in parallel with full access to the parameters and variables in the simulation. Examples of the Python interpreter used with MHD package and Hydra in general will be presented.

  5. A Magnetohydrodynamic Model of the M87 Jet I: Superluminal Knot Ejections from HST-1 as Trails of Quad Relativistic MHD Shocks

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Garofalo, D. A.; Meier, D. L.

    2010-01-01

    We introduce a new paradigm for understanding the jet in M87: a collimated relativistic flow in which strong magnetic fields play a dominant dynamical role. Here we focus on the flow downstream of HST-1 - an essentially stationary flaring feature that ejects trails of superluminal components. We propose that these components are quad relativistic MHD shock fronts (forward fast/slow and reverse slow/fast modes) in a narrow jet with a helically twisted magnetic structure. And we demonstrate the properties of such shocks with simple one-dimensional numerical simulations. Quasi-periodic ejections of similar component trails may be responsible for the M87 jet substructures observed further downstream on kpc scales. This new paradigm requires the assimilation of some new concepts into the astrophysical jet community, particularly the behavior of slow/fast-mode waves/shocks and of current-driven helical kink instabilities. However, the prospects of these ideas applying to a large number of other jet systems may make this worth the effort. M.N. greatly acknowledges support from the Allan C. Davis fellowship jointly awarded by the Department of Physics and Astronomy at Johns Hopkins University and the Space Telescope Science Institute. Part of this research described was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  6. Variational principle with singular perturbation of hall magnetohydrodynamics

    SciTech Connect

    Ohsaki, Shuichi; Yoshida, Zensho

    2005-06-15

    The Hall magnetohydrodynamics (H-MHD) model can describe an intrinsic small scale (ion skin depth l{sub i}) introduced by the Hall effect. The Hall term appears as a singular perturbation to the conventional magnetohydrodynamics (MHD) model, and hence, the MHD limit (l{sub i}{yields}0) may be singular. The H-MHD system has three constants of motion, the energy, the magnetic (electron) and ion helicities. The ion helicity is known to be 'fragile' with respect to the energy norm of the magnetic and flow fields [Z. Yoshida and S. M. Mahajan, Phys. Rev. Lett. 88, 095001 (2002)]. Under an appropriate ordering of scales, the ion helicity translates as the cross helicity that is a constant of motion of the MHD system. Conservation of the cross helicity is an essential condition to recover the macroscopic MHD picture from the H-MHD framework.

  7. Simulation of three-dimensional multi-phase flow characteristics in the deswirl section of the CDIF MHD power train

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1994-06-01

    A three-dimensional, two-phase, turbulent flow computer code was used to predict flow characteristics of seed particles and coal gas in the deswirl section of the CDIF MHD power train system. Seed material which has a great effect on the overall performance of the MHD system is injected in the deswirl against the swirling coal gas flow coming from the first stage combustor. While testing the MHD system, excessive seed material (70% more than theoretical value) was required to achieve design operating conditions. Calculations show that the swirling coal gas flow turns a 90 degree angle to minimize the swirl motion before entering a second stage combustor and many seed particles are too slow to react to the flow turning and deposit on the walls of the deswirl section. Some seed material deposited on the walls is covered by slag layer and removed from the gas flow. The reduction of seed material in the gas flow decreases MHD power generation significantly. A computational experiment was conducted and its results show that seed injection on the wall can be minimized by simply changing the seed injection and an optimum location was identified. If seed is injected from the location of choice, the seed deposition is reduced by a factor of 10 compared to the original case.

  8. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    SciTech Connect

    Joseph, Ilon

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  9. Channel-wall limitations in the magnetohydrodynamic induction generator

    NASA Technical Reports Server (NTRS)

    Jackson, W. D.; Pierson, E. S.

    1969-01-01

    Discussion of magnetohydrodynamic induction generator examines the machine in detail and materials problems influencing its design. The higher upper-temperature limit of the MHD system promises to be more efficient than present turbine systems for generating electricity.

  10. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  11. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  12. SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS

    SciTech Connect

    Beresnyak, Andrey

    2014-04-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096{sup 3}, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.

  13. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    SciTech Connect

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  14. Magnetohydrodynamically generated velocities in confined plasma

    NASA Astrophysics Data System (ADS)

    Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-01

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  15. Magnetohydrodynamically generated velocities in confined plasma

    SciTech Connect

    Morales, Jorge A. Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-15

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  16. Ideal MHD stability of the Component Test Facility and Culham Spherical Tokamak Power Plant

    NASA Astrophysics Data System (ADS)

    Keating, O.; Wilson, H. R.; Hole, M. J.

    2004-11-01

    As well as complementing the physics base for ITER, theory and progress in Spherical Tokamak (ST) experiments have prompted design studies into next step ST devices such as the Component Test Facility (CTF) [1], and ST power plants such as the 3GW (fusion) / 1GW (electric) Culham ST Power Plant (STPP) [2]. In this study, low toroidal wave number (n=0,1,2,3) and ballooning (n=∞) ideal MHD stability of the CTF and STPP concepts is addressed: for low n modes scans of growth rate with conformal wall radius and on-axis safety factor q0 are performed, whilst for ballooning modes the proximity to the marginally stable pressure-driven boundaries assessed. Stable equilibria are reported in both configurations, consolidating the viability of the ST line. Time permitting, the effects of toroidal flow will be qualitatively investigated, and the role of fast particles discussed. [1] H. R. Wilson et al, EPS Conf. Plasma Phs., P4-196. 2004. [2] H. R. Wilson et al, in-press, Nuc. Fus. 2004.

  17. Remarkable connections between extended magnetohydrodynamics models

    NASA Astrophysics Data System (ADS)

    Lingam, M.; Morrison, P. J.; Miloshevich, G.

    2015-07-01

    Through the use of suitable variable transformations, the commonality of all extended magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all) for each of these models are obtained through these correspondences. The commonality of all the extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely associated with the canonical momenta of the two underlying species. The Lie-dragging of these 2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof ensures the Jacobi identity for the Poisson brackets of all the models.

  18. Wave turbulence in incompressible Hall magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Galtier, Sébastien

    We investigate the steepening of the magnetic fluctuation power law spectra observed in the inner Solar wind for frequencies higher than 0.5 Hz. This high frequency part of the spectrum may be attributed to dispersive nonlinear processes. In that context, the long-time behavior of weakly interacting waves is examined in the framework of three-dimensional incompressible Hall magnetohydrodynamic (MHD) turbulence. The Hall term added to the standard MHD equations makes the Alfvén waves dispersive and circularly polarized. We introduce the generalized Elsässer variables and, using a complex helicity decomposition, we derive for three-wave interaction processes the general wave kinetic equations; they describe the nonlinear dynamics of Alfvén, whistler and ion cyclotron wave turbulence in the presence of a strong uniform magnetic field B_0 \\(e}_{Vert) . Hall MHD turbulence is characterized by anisotropies of different strength: (i) for wavenumbers textit{kd}_i {≫} 1 (d_i is the ion inertial length) nonlinear transfers are essentially in the direction perpendicular (⊥) to B_0; (ii) for textit{kd}_i {≪} 1 nonlinear transfers are exclusively in the perpendicular direction; (iii) for textit{kd}_i ˜ 1, a moderate anisotropy is predicted. We show that electron and standard MHD turbulence can be seen as two frequency limits of the present theory but the standard MHD limit is singular; additionally, we analyze in detail the ion MHD turbulence limit. Exact power law solutions of the master wave kinetic equations are given in the small- and large-scale limits for which we have, respectively, the total energy spectra E(k_{⊥},k_{Vert}) ˜ k_{⊥}(-5/2) |k_{Vert}|(-1/2) and E(k_{⊥},k_{Vert}) ˜ k_{⊥}(-2) . An anisotropic phenomenology is developed to describe continuously the different scaling laws of the energy spectrum; one predicts E(k_{⊥},k_{Vert}) ˜ k_{⊥}(-2) |k_{Vert}|(-1/2) (1+k_{⊥}(2d_) i(2)(-1/4)) . Non-local interactions between Alfvén, whistler and ion cyclotron waves are investigated; a non-trivial dynamics exists only when a discrepancy from the equipartition between the large-scale kinetic and magnetic energies happens.

  19. Relabeling symmetries in hydrodynamics and magnetohydrodynamics

    SciTech Connect

    Padhye, N.; Morrison, P.J.

    1996-04-01

    Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.

  20. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  1. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  2. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  3. Closed cycle MHD power generation experiments in the NASA Lewis facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1974-01-01

    Discussion of the performance improvements achieved through some modifications made in the closed cycle MHD facility. These modifications include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation, and experimentation with various cesium seed vaporization and injection techniques. Uniform Faraday and Hall voltage profiles were obtained, and the Faraday open circuit voltage varied from 90 to 100% of the ideal uBh.

  4. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  5. Magnetohydrodynamic Turbulence: Generalized Formulation and Extension to Compressible Cases

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen

    2008-11-01

    A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich- Sridhar (GS) phenomenologies of magnetohydrodynamic (MHD) turbulence is developed [1]. This affords a clarification of the regimes of validity of IK and GS models of MHD turbulence. This formulation is generalized further to include compressibility effects. [1] B.K. Shivamoggi: Ann. Phys., vol. 323, p.1295, (2008).

  6. Multi-symplectic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Zank, G. P.; Zank

    2014-10-01

    A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential à where α=Ã. d x is Lie dragged with the flow, and B=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n-1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.

  7. Magnetohydrodynamic Turbulence and the Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2014-01-01

    The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.

  8. Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling

    DOEpatents

    Berry, Gregory F.

    1991-01-01

    A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.

  9. A simulation of the IPS variations from a magnetohydrodynamical simulation

    NASA Technical Reports Server (NTRS)

    Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.

    1987-01-01

    Calculations of the variations of interplanetary scintillation (IPS) from a disturbance simulated by a 3-D magnetohydrodynamical (MHD) model of the solar wind are presented. The simulated maps are compared with observations and it is found that the MHD model reproduces the qualitative features of observed disturbances. The disturbance produced by the MHD simulation is found to correspond in strength with the weakest disturbance which can be reliably detected by existing single station IPS observations.

  10. MHD technology in aluminum casting

    SciTech Connect

    Kalinichenko, I.

    1984-08-01

    The use of MHD technology in aluminum casting is discussed. Associates of the Latvian Academy of Sciences Institute of Physics developed magnetohydrodynamic units for the Siberian plant. A MHD unit made it possible to free five persons from heavy work at the plant. Labor productivity doubled in this section. With the aid of the magnetic field, the alloy silumin is obtained in only three hours. Specialists of the Irkutsk affiliate of the All-Union Scientific Research and Design Institute of the Aluminum, Magnesium and Electrode Industry are convinced that MHD technology has a bright future. However, this will necessitate the development of new MHD technology for different types of casting facilities, with their specific features taken into account.

  11. Survey of MHD plant applications

    NASA Technical Reports Server (NTRS)

    Lynch, J. J.; Seikel, G. R.; Cutting, J. C.

    1979-01-01

    Open-cycle MHD is one of the major R&D efforts in the Department of Energy's program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open-cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open-cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.

  12. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2001-01-01

    This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.

  13. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  14. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    PubMed

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)MHD equilibria that model ball lightning with dynamics of plasma inside the fireball. PMID:12513610

  15. Hall-magnetohydrodynamic turbulence with electron inertia

    NASA Astrophysics Data System (ADS)

    Martin, L. N.; Andres, N.; Dmitruk, P.; Gomez, D. O.

    2013-12-01

    The magnetohydrodynamic (one-fluid) model is often regarded as a reasonable description of the dynamics of a plasma. One-fluid models are useful in the context of large scale dynamics, but when a more detailed description is needed (for instance, when the physical context favors the development of small scales) it is most appropriate to consider two-fluid models. Within the framework of two-fluid MHD for a fully ionized hydrogen plasma, we study the effect of the Hall term and electron inertia in MHD turbulence, observing whether these effects change the energy cascade, the characteristic scales of the flow and the dynamics of global magnitudes, with particular interest in the dissipation processes. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics (RHMHD) and 2.5-D Hall-MHD including electron inertia are performed for different values of the ion and electron skin depth (controlling the impact of the Hall term and the electron inertia).

  16. Diagnostic development and support of MHD test facilities. Technical progress report, January--March 1991

    SciTech Connect

    Shepard, W.S.; Cook, R.L.

    1991-12-31

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`S computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  17. Diagnostic development and support of MHD Test Facilities. Technical progress report, October 1991--December 1991

    SciTech Connect

    Not Available

    1994-07-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`s computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  18. MHD simple waves and the divergence wave

    SciTech Connect

    Webb, G. M.; Pogorelov, N. V.; Zank, G. P.

    2010-03-25

    In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.

  19. NONIDEAL MAGNETOHYDRODYNAMIC TURBULENT DECAY IN MOLECULAR CLOUDS

    SciTech Connect

    Downes, T. P.; O'Sullivan, S.

    2009-08-20

    It is well known that nonideal magnetohydrodynamic (MHD) effects are important in the dynamics of molecular clouds: both ambipolar diffusion and possibly the Hall effect have been identified as significant. We present the results of a suite of simulations with a resolution of 512{sup 3} of turbulent decay in molecular clouds, incorporating a simplified form of both ambipolar diffusion and the Hall effect simultaneously. The initial velocity field in the turbulence is varied from being super-Alfvenic and hypersonic, through to trans-Alfvenic but still supersonic. We find that ambipolar diffusion increases the rate of decay of the turbulence increasing the decay from t {sup -1.25} to t {sup -1.4}. The Hall effect has virtually no impact in this regard. The power spectra of density, velocity, and the magnetic field are all affected by the nonideal terms, being steepened significantly when compared with ideal MHD turbulence with exponents. The density power-spectra components change from {approx}1.4 to {approx}2.1 for the ideal and nonideal simulations respectively, and power spectra of the other variables all show similar modifications when nonideal effects are considered. Again, the dominant source of these changes is ambipolar diffusion rather than the Hall effect. There is also a decoupling between the velocity field and the magnetic field at short length scales. The Hall effect leads to enhanced magnetic reconnection, and hence less power, at short length scales. The dependence of the velocity dispersion on the characteristic length scale is studied and found not to be power law in nature.

  20. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  1. Summary and evaluation of the parametric study of potential early commercial MHD power plants (PSPEC)

    NASA Technical Reports Server (NTRS)

    Staigner, P. J.; Abbott, J. M.

    1980-01-01

    Two parallel contracted studies were conducted. Each contractor investigated three base cases and parametric variations about these base cases. Each contractor concluded that two of the base cases (a plant using separate firing of an advanced high temperature regenerative air heater with fuel from an advanced coal gasifier and a plant using an intermediate temperature metallic recuperative heat exchanger to heat oxygen enriched combustion air) were comparable in both performance and cost of electricity. The contractors differed in the level of their cost estimates with the capital cost estimates for the MHD topping cycle and the magnet subsystem in particular accounting for a significant part of the difference. The impact of the study on the decision to pursue a course which leads to an oxygen enriched plant as the first commercial MHD plant is described.

  2. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  3. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    SciTech Connect

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to a significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)

  4. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  5. Gravitational radiation from primordial helical inverse cascade magnetohydrodynamic turbulence

    SciTech Connect

    Kahniashvili, Tina; Campanelli, Leonardo; Gogoberidze, Grigol; Maravin, Yurii; Ratra, Bharat

    2008-12-15

    We consider the generation of gravitational waves by primordial helical inverse-cascade magnetohydrodynamic (MHD) turbulence produced by bubble collisions at the electroweak phase transition. We extend the previous study 1 by considering both currently discussed models of MHD turbulence. For popular electroweak phase transition parameter values, the generated gravitational wave spectrum is only weakly dependent on the MHD turbulence model. Compared with the unmagnetized electroweak phase transition case, the spectrum of MHD-turbulence-generated gravitational waves peaks at lower frequency with larger amplitude and can be detected by the proposed Laser Interferometer Space Antenna.

  6. Alfven Wave Tomography for Cold MHD Plasmas

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  7. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.

    2003-01-01

    The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

  8. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    SciTech Connect

    Bloom, M.H.; Lederman, S.; Sforza, P.; Matalon, M.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limit of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.

  9. Neutrino magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-01

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  10. Anomalous magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2013-09-01

    Anomalous symmetries induce currents which can be parallel rather than orthogonal to the hypermagnetic field. Building on the analogy of charged liquids at high magnetic Reynolds numbers, the persistence of anomalous currents is scrutinized for parametrically large conductivities when the plasma approximation is accurate. Different examples in globally neutral systems suggest that the magnetic configurations minimizing the energy density with the constraint that the helicity be conserved coincide, in the perfectly conducting limit, with the ones obtainable in ideal magnetohydrodynamics where the anomalous currents are neglected. It is argued that this is the rationale for the ability to extend to anomalous magnetohydrodynamics the hydromagnetic solutions characterized by finite gyrotropy. The generally covariant aspects of the problem are addressed with particular attention to conformally flat geometries which are potentially relevant for the description of the electroweak plasma prior to the phase transition.

  11. NUMERICAL SIMULATIONS OF IMBALANCED STRONG MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Perez, Jean Carlos; Boldyrev, Stanislav E-mail: boldyrev@wisc.edu

    2010-02-10

    Magnetohydrodynamics (MHD) is invoked to address turbulent fluctuations in a variety of astrophysical systems. MHD turbulence in nature is often anisotropic and imbalanced, in that Alfvenic fluctuations moving in opposite directions along the background magnetic field carry unequal energies. This work formulates specific requirements for effective numerical simulations of strong imbalanced MHD turbulence with a guide field B {sub 0}. High-resolution simulations are then performed and they suggest that the spectra of the counterpropagating Alfven modes do not differ from the balanced case, while their amplitudes and the corresponding rates of energy cascades are significantly affected by the imbalance. It is further proposed that the stronger the imbalance the larger the magnetic Reynolds number that is required in numerical simulations in order to correctly reproduce the turbulence spectrum. This may explain current discrepancies among numerical simulations and observations of imbalanced MHD turbulence.

  12. Strong magnetohydrodynamic turbulence with cross helicity

    SciTech Connect

    Perez, Jean Carlos; Boldyrev, Stanislav

    2010-05-15

    Magnetohydrodynamics (MHD) provides the simplest description of magnetic plasma turbulence in a variety of astrophysical and laboratory systems. MHD turbulence with nonzero cross helicity is often called imbalanced, as it implies that the energies of Alfven fluctuations propagating parallel and antiparallel the background field are not equal. Recent analytical and numerical studies have revealed that at every scale, MHD turbulence consists of regions of positive and negative cross helicity, indicating that such turbulence is inherently locally imbalanced. In this paper, results from high resolution numerical simulations of steady-state incompressible MHD turbulence, with and without cross helicity are presented. It is argued that the inertial range scaling of the energy spectra (E{sup +}-) of fluctuations moving in opposite directions is independent of the amount of cross helicity. When cross helicity is nonzero, E{sup +} and E{sup -} maintain the same scaling, but have differing amplitudes depending on the amount of cross helicity.

  13. MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Krishna Prasad, S.

    2016-02-01

    This chapter reviews the observations of magnetohydrodynamic (MHD) waves in coronal holes focusing primarily on progress made in the past few years. It also discusses on the new evidences of wave damping and highlights how such observations can be used to probe coronal conditions through seismology. Numerous observations, using imaging and spectroscopic techniques, have revealed the presence of different MHD waves in these structures that can be categorized into compressive and incompressive waves. One of the most desirable characteristics of MHD wave observations in the solar atmosphere, is their dissipation. The energy carried by these waves has to be deposited at appropriate heights to facilitate coronal heating and solar wind acceleration. It turned out that the compressive waves are easy to dissipate with the conventional physical mechanisms whereas the incompressive waves require some special conditions.

  14. Micromachined magnetohydrodynamic actuators and sensors

    SciTech Connect

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  15. Magnetohydrodynamics of chiral relativistic fluids

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg

    2015-08-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  16. Discontinuous Galerkin Methods for Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Rossmanith, James

    2009-11-01

    Standard shock-capturing numerical methods fail to give accurate solutions to the equations of magnetohydrodynamics (MHD). The essential reason for this failure is that by ignoring the divergence-free constraint on the magnetic field, these methods can be shown to be entropy unstable. In this talk we will briefly review the entropy stability theorem for discontinuous Galerkin (DG) methods. We will then present a class of constrained transport (CT) methods that we will show give both stable and accurate results on several test cases. The proposed CT approach can be viewed as a predictor-corrector method, where an approximate magnetic field is first predicted by a standard DG method, and then corrected through the use of a magnetic potential. Finally, we will briefly describe efforts to extend this approach to Hall MHD and genuinely two-fluid plasma models.

  17. Electromagnetic pulse and the electric power network

    SciTech Connect

    Klein, K.W.; Barnes, P.R.; Zaininger, H.W.

    1984-01-01

    This paper defines the nuclear electromagnetic pulse (EMP) - electric power system interaction problem. A description of high altitude EMP (HEMP) characteristics, source region EMP (SREMP) characteristics, and magnetohydrodynamics EMP (MHD-EMP) characteristics are presented. The results of initial calculations of EMP induced surges on electric power transmission and distribution lines are presented and compared with lightning induced surges. Potential EMP impacts on electric power systems are discussed, and an overview of the Department of Energy (DOE) EMP research program is presented.

  18. The rebirth of MHD

    NASA Astrophysics Data System (ADS)

    Edelhart, M.; Greenfield, A.

    1982-02-01

    A low-temperature MHD system employing liquid metal and a low-boiling point organic vapor as its working fluids is described, and considered from the standpoints of: (1) development status; (2) thermal energy sources, with emphasis on low-temperature solar collectors and industrial process waste heat; (3) economic advantage, by comparison to Rankine-cycle and photovoltaic solar systems; and (4) operational efficiency. Figures for the net cost of power produced by the three solar systems compared, when the further conversion of MHD exhaust heat is considered, are $0.57/kWh for the photovoltaic, $0.116/kWh for the Rankine cycle, and $0.054/kWh for the low-temperature MHD. A further contrast is drawn with the typically 2500 C-working gas MHD systems being developed in the U.S. and U.S.S.R.

  19. Nonlinear subcritical magnetohydrodynamic beta limit

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.

    2010-07-01

    Published gyrokinetic simulations have had difficulty operating beyond about half the ideal magnetohydrodynamic (MHD) critical beta limit with stationary and low transport levels in some well-established reference cases. Here it is demonstrated that this limitation is unlikely due to numerical instability, but rather appears to be a nonlinear subcritical MHD beta limit [R. E. Waltz, Phys. Rev. Lett. 55, 1098 (1985)] induced by the locally enhanced pressure gradients from the diamagnetic component of the nonlinearly driven (zero frequency) zonal flows. Strong evidence that the zonal flow corrugated pressure gradient profiles can act as a MHD-like beta limit unstable secondary equilibrium is provided. It is shown that the addition of sufficient E ×B shear or operation closer to drift wave instability threshold, thereby reducing the high-n drift wave turbulence nonlinear pumping of the zonal flows, can allow the normal high-n ideal MHD beta limit to be reached with low transport levels. Example gyrokinetic simulations of experimental discharges are provided: one near the high-n beta limit reasonably matches the low transport levels needed when the high experimental level of E ×B shear is applied; a second experimental example at moderately high beta appears to be limited by the subcritical beta.

  20. Key contributions in MHD power generation. Quarterly technical progress report, September 1, 1979-November 30, 1979

    SciTech Connect

    Louis, J F

    1980-03-01

    Separate entries were made in the data base for the four tasks which include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage. (WHK)

  1. Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-01-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  2. Parametric study of prospective early Commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    NASA Astrophysics Data System (ADS)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-02-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  3. Multiscaling in Hall-Magnetohydrodynamic Turbulence: Insights from a Shell Model

    NASA Astrophysics Data System (ADS)

    Banerjee, Debarghya; Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul

    2013-10-01

    We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of three-dimensional Hall-magnetohydrodynamic, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.

  4. MHD performance demonstration experiment, October 1, 1080-September 30, 1981

    SciTech Connect

    Whitehead, G. L.; Christenson, L. S.; Felderman, E. J.; Lowry, R. L.; Bordenet, E. J.

    1981-12-01

    The Arnold Engineering Development Center (AEDC) has been under contract with the Department of Energy (DOE) since December 1973 to conduct a magnetohydrodynamic (MHD) High Performance Demonstration Experiment (HPDE). The objective of this experimental research is to demonstrate the attainment of MHD performance on a sufficiently large scale to verify that projected commercial MHD objectives are possible. This report describes the testing of the system under power-producing conditions during the period from October 1, 1980 to September 30, 1981. Experimental results have been obtained with the channel configured in the Faraday mode. Test conditions were selected to produce low supersonic velocity along the entire channel length. Tests have been conducted at magnetic fields up to 4.1 Tesla (T) (70% of design). Up to 30.5 MW of power has been produced to date (60% of design) for an enthalpy extraction of approximately 11%. The high Hall voltage transient, observed during the previous series of tests has been reduced. The reduction is mostly probably due to the fuel and seed being introduced simultaneously. The replacement of the ATJ graphite caps on the electrode walls with pyrolytic graphite caps has resulted in significantly higher surface temperature. As a result, the voltage drop is some 60% of the cold wall voltage drop during the previous series of tests. However, the absolute value of the present voltage drop is still greater than the original design predictions. Test results indicate, however, that the overall enthalpy extraction objective can be achieved.

  5. Magnetohydrodynamic modelling of exploding foil initiators

    NASA Astrophysics Data System (ADS)

    Neal, William

    2015-06-01

    Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.

  6. Hall magnetohydrodynamics in space and laboratory plasmas

    SciTech Connect

    Huba, J.D.

    1995-06-01

    Hall magnetohydrodynamic (MHD) theory has been used to understand and describe a variety of space and laboratory plasma phenomena. Generally speaking, the theory is applicable to phenomena occurring on length scales shorter than an ion inertial length and time scales shorter than an ion cyclotron period. The theory has been successfully applied to structuring of sub-Alfvenic plasma expansions, and to rapid magnetic field transport in plasma opening switches. An overview of the underlying physics associated with the Hall term, and a brief description of recent research on the application of Hall MHD theory to space and laboratory processes is presented. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Spectral modeling of magnetohydrodynamic turbulent flows.

    PubMed

    Baerenzung, J; Politano, H; Ponty, Y; Pouquet, A

    2008-08-01

    We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrodynamic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model extends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an important point for dynamo computations. PMID:18850939

  8. Spectral modeling of magnetohydrodynamic turbulent flows

    NASA Astrophysics Data System (ADS)

    Baerenzung, J.; Politano, H.; Ponty, Y.; Pouquet, A.

    2008-08-01

    We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrodynamic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model extends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an important point for dynamo computations.

  9. Magnetohydrodynamic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    1995-01-01

    The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.

  10. MHD direct channel from heat to electricity

    NASA Astrophysics Data System (ADS)

    Lihach, N.

    1980-04-01

    The potential benefits and difficulties of the development and operation of a combined MHD/steam electric generating plant are assessed. The concept of MHD power generation by the passage of extremely hot, pressurized coal combustion gases ionized by a seeding material through the field of a superconducting magnet, coupled with conventional steam generation using the MHD exhaust gases as a heat source, is outlined, and areas of MHD technology requiring extensive development are indicated. Recent research on these areas is reviewed, and achievements in MHD channel durability, superconducting magnets, power inverters and the planned start-up of a 40-50 MW component development and integration facility are noted. Development strategies to ensure the competitiveness of MHD with other advanced power systems are discussed, and means of ensuring reliability are indicated. The economic potential of MHD is considered, and it is noted that MHD may also be coupled with future fusion and high-temperature nuclear reactors.

  11. Long-term evolution of decaying magnetohydrodynamic turbulence in the multiphase interstellar medium

    SciTech Connect

    Kim, Chang-Goo; Basu, Shantanu E-mail: basu@uwo.ca

    2013-12-01

    Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of E∝t {sup –1} and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (∼0.2E {sub 0}) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.

  12. Long-term Evolution of Decaying Magnetohydrodynamic Turbulence in the Multiphase Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Basu, Shantanu

    2013-12-01

    Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of Evpropt -1 and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (~0.2E 0) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.

  13. Specific Mass Estimates for A Vapor Core Reactor With MHD

    SciTech Connect

    Knight, Travis; Smith, Blair; Anghaie, Samim

    2002-07-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a vapor core reactor (VCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasma-dynamic (MPD) thruster. The VCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF{sub 4}) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Gaseous and liquid-vapor core reactors can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. This unique feature makes this reactor concept a very natural and attractive candidate for very high power (10 to 1000 MWe) and low specific mass (0.4 to 5 kg/kWe) nuclear electric propulsion (NEP) applications since the MHD output could be coupled with minimal power conditioning to MPD thrusters or other types of thruster for producing thrust at very high specific impulse (I{sub sp} 1500 to 10,000 s). The exceptional specific mass performance of an optimized VCRMHD- NEP system could lead to a dramatic reduction in the cost and duration of manned or robotic interplanetary as well as interstellar missions. The VCR-MHD-NEP system could enable very efficient Mars cargo transfers or short (<8 month) Mars round trips with less initial mass in low Earth orbit (IMLEO). The system could also enable highly efficient lunar cargo transfer and rapid missions to other destinations throughout the solar system. (authors)

  14. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium equations of a plasma in a magnetic field (which will be used further in models of dynamic processes), approaches to the description of three dimensional (3-D) equilibrium are briefly discussed, and the basis of the theory of linear instabilities and the basic types of MHD instabilities, with account taken of ideal resistive modes, are considered. The value of the material of these chapters is that here in a brief form the results of numerous researches in this area are presented, and frequently with a fresh point of view of old results. Chapters 5 to 10 are devoted to the subject of the book, non-linear magnetohydrodynamics. In the introduction to Chapter 5 the author pays attention to the fact that long standing doubts about the feasibility of magnetic thermonuclear reactors because of inevitable instabilities of non-uniform plasmas have been overcome in the last two decades: the plasma in tokamaks is rather well confined, despite the presence of some instabilities. The latter, as a rule, result only in the redistribution of current and plasma pressure profiles and some increase of transport, but can also lead to extremely undesirable effects. In this connection in Chapter 5 the attention of the reader is directed to the physics of the most important plasma instabilities in tokamaks. Models of the development of external and internal kink modes in tokamaks are considered, including the `vacuum bubble' model in shearless plasmas, the evolution of the resistive tearing mode together with saturation of the magnetic islands arising at a tearing instability. The rather long Chapter 6 is devoted to the fundamentals of the magnetic hydrodynamic dissipative process in the magnetic field line reconnection. This process of rapid dissipation of the energy of a magnetic field, having in the simplest case different directions in two adjacent volumes of plasma, underlies the theory of the phenomenon of powerful flares in the solar chromosphere, resulting in the well-known `magnetic storms' on the earth, and the theory of rather dangerous disruptive instabilities in tokamaks. After a discussion of the Sweet-Parker model of the diffusive current sheet, two models of the ideally conducting plasma flow generating such a sheet are considered in detail: the Petchek slow shock model (1964) and the Syrovatskii current sheet solution (1971). The first, introduced with a hypothesis about the geometry of the current sheet, has been dominant for more than two decades (at least, as the author writes, in the western hemisphere). It has been superseded by (accepted, mainly, in the eastern hemisphere) Syrovatskii's model with an external potential flow, compressing the hyperbolic branches of the magnetic field lines about an X point. This model quite naturally results in the necessity of introducing an extended singular current sheet, which is quite consistent with the later Biskamp numerical simulation (1986). In Chapter 6 the results are presented of 2-D simulations of the formation of a current sheet with details of the edge structure and with repeated generation of plasmoids at the edge, caused by tearing instability. Results on the coalescence of two identical magnetic islands, on the development of a kink island at a tearing instability of a primarily cylindrical plasma and on the generation of plasmoids in a model of the geomagnetic tail are described. At the end of Chapter 6 the topology of a 3-D configuration with a magnetic zero is briefly discussed. Finally, in the last section a way of explaning the explosive development of the reconnection process, based on the hypothesis of the growth of turbulent resistivity at an excess of the threshold value of current density is presented. In Chapter 7 which covers MHD turbulence the classical spectral approach to the description of the turbulence of ideal non-dissipative systems is presented. The dynamically important invariants, which are quadratic in the magnetic and velocity fields, are introduced: the total energy, the magnetic helicity, the cross-helicity. Then it is shown how the corresponding spectral functions are deduced from the Gibbs distribution. The processes of self-organization are considered, which are connected with the selective dissipation rates of the ideal invariants. The best known example is the process of turbulent relaxation of energy at conservation of magnetic helicity, resulting in the alignment of the vectors j and B (j = μB, μ = const). Examples of numerical calculations of turbulence structure are presented. An important connection in dynamo theory (generation and maintenance of a magnetic field) between the electric field, generated along the basic magnetic field, with averaged helicity (α effect), and the Alfvén effect on turbulence (asymptotic approach of a velocity field to a field of Alfvén velocity; briefly, alignment of the vectors v and normalized B) is deduced. Furthermore, the spectra of uniform turbulence (the distribution of the energy on the wavenumbers), the Kolmogorov spectrum Ek propto k-5/3 in the usual hydrodynamics and the Iroshnikov-Kraichnan spectrum Ek propto k-3/2 in magnetic hydrodynamics are derived, and the turbulent dissipation scales and the intermittence, a property of the structure (the spottiness) of the fully developed turbulence when the dissipative processes are concentrated in narrow layers of complicated form, are considered. At the end of this chapter a picture of the turbulent convection of a weak magnetic field, when it is possible to neglect the Lorentz force, is presented. The subsequent three chapters of the book are devoted to the description of plasma dynamic processes in tokamaks, in reversed field pinches and in solar flares. This is a good opportunity for a detailed study of MHD processes in plasmas, as is described in detail in Chapter 8, for tokamaks. Here the three main dynamic phenomena observed in these installations are considered in detail: (a) Relaxation sawtooth oscillations of the electron temperature in the central region of the plasma column (internal disruptions), (b) The most dangerous major disruptions, (c) The edge localized mode (ELM). The author analyses in detail the Kadomtsev reconnection model of the sawtooth collapse, as a basis for understanding all the different relaxation processes in tokamaks. He pays attention to the explanation of the difference between the Kadomtsev reconnection model of sawtooth collapse and the observed partial reconnection with a non-flat final q(r) profile inside the magnetic surface q = 1. Considering major disruptions he gives a clear qualitative picture of this threatening phenomenon, beginning with the shrinking of the temperature and current density profiles, followed by the (m, n) = (2,1) tearing mode instability and ending with multihelicity tearing instabilities leading to stochastic field lines and small scale turbulent processes. In connection with the ELMs observed after the L-H transition, the author explains initially the nature of the improved `high confinement' regime (H mode) developed from the `low confinement' regime (L mode) when the input power exceeds a threshold level at appropriate boundary conditions. The ELMs are considered as `a relaxation of the steep pressure gradient at the plasma edge' due to ballooning instability. The characteristic features of the giant ELMs (type 1) occurring at high plasma heating power and of the faster type III ELMs, which were the first to be observed, are presented in lucid form. At the end of Chapter 8, in Table 8.1, the main MHD properties of the disruptive processes in tokamak plasmas are summarized. In Chapter 9, the dynamical processes in toroidal pinches with stabilization of large scale perturbations by a weak (mainly internal) toroidal magnetic field, having the reverse direction to the current channel, are considered. In this system 3-D turbulence redistributes the total flux, conserved owing to the metallic wall in accordance with Taylor's theory, to satisfy the above mentioned alignment of the vectors j and B. The details of this remarkable process are described. The final chapter is devoted to solar flares, which are as the author says `probably, the most spectacular eruptive events in cosmic plasmas'. This chapter describes in detail the structure of the solar convection zone and the solar atmosphere, considers the formation of the rope-like structure of the magnetic field and the thick flux tubes displayed as sunspots, as well as the buoyancy of the flux tubes and different models of the MHD processes leading to solar flares. In summary, the reviewed book is rich in content, reflecting the important issues of striking phenomena such as solar flares, the, quite dangerous for plasma confinement, major disruptions in tokamaks and the, conversely quite favourable for plasma confinement, non-linear process of L-H transition in tokamaks and continuous turbulent generation and maintenance of stabilizing toroidal magnetic fields in reversed field pinches, as well as other interesting MHD processes. The analysis of these very complicated phenomena is based on non-elementary mathematics. This could make it difficult for non-theoreticians to read some parts of the book. However, as for an explanation of the physics of the phenomena, the author achieves this in a rather simple manner: briefly, and with the minimal number of necessary formulas. This is done strictly without oversimplifications. This makes the book useful to both theoreticians and experimenters who wish to learn about non-linear processes such as disruptions and plasma self-organization.

  15. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    1982-01-01

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  16. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  17. MHD and Kinetic Modeling of the Ionospheres of Venus and Mars

    SciTech Connect

    Shinagawa, H.; Terada, N.

    2009-06-16

    It is widely recognized that both Venus and Mars possess no significant global intrinsic magnetic fields, and that the solar wind interacts directly with the upper atmospheres and ionospheres of Venus and Mars. In addition, local crustal magnetic fields are also present in various regions at Mars, suggesting that some regions of the Martian ionosphere are influenced not only by the solar wind but also by the crustal magnetic field. Previous studies have suggested that the basic structures of the ionospheres of the planets can be described by fluid and MHD(magnetohydrodynamic) processes. Various models of the ionospheres of Venus and Mars based on the MHD formulation have been constructed during the last two decades. Although the MHD approach has been successful in reproducing the ionospheres of the planets, some studies have indicated that MHD modeling is not necessarily appropriate in the regions of the topside ionosphere, the ionopause, and the magnetosheath, where the ion kinetic processes are likely to play an important role. The kinetic processes in the topside ionosphere might have significant influences even in the lower ionosphere. Thanks to a great progress made for computer power as well as the efficiency of calculations of the hybrid model, high-resolution kinetic models of the solar wind interaction with Venus and Mars, which self-consistently include the ionosphere, have been developed. In this paper, status of MHD and kinetic modeling of the ionospheres of Venus and Mars is briefly reviewed.

  18. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  19. Toward Estimating Current Densities in Magnetohydrodynamic Generators

    NASA Astrophysics Data System (ADS)

    Bokil, V. A.; Gibson, N. L.; McGregor, D. A.; Woodside, C. R.

    2015-09-01

    We investigate the idea of reconstructing current densities in a magnetohydrodynamic (MHD) generator channel from external magnetic flux density measurements in order to determine the existence and location of damaging arcs. We model the induced fields, which are usually neglected in low magnetic Reynold's number flows, using a natural fixed point iteration. Further we present a sensitivity analysis of induced fields to current density profiles in a 3D, yet simplified model.

  20. Exact solutions of the incompressible dissipative Hall magnetohydrodynamics

    SciTech Connect

    Xia, Zhenwei; Yang, Weihong

    2015-03-15

    By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.

  1. Exact solutions of the incompressible dissipative Hall magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Xia, Zhenwei; Yang, Weihong

    2015-03-01

    By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.

  2. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect

    Annen, K.D.

    1981-08-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  3. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  4. Reflection Properties of Gravito-MHD Waves in an Inhomogeneous Horizontal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Jovanović, G.

    2014-11-01

    We derive the dispersion equation for gravito-magnetohydrodynamical (MHD) waves in an isothermal, gravitationally stratified plasma with a horizontal inhomogeneous magnetic field. Sound and Alfvén speeds are constant. Under these conditions, it is possible to derive analytically the equations for gravito-MHD waves. The high values of the viscous and magnetic Reynolds numbers in the solar atmosphere imply that the dissipative terms in the MHD equations are negligible, except in layers around the positions where the frequency of the MHD wave equals the local Alfvén or slow wave frequency. Outside these layers the MHD waves are accurately described by the equations of ideal MHD.

  5. Self-organized criticality in MHD driven plasma edge turbulence

    NASA Astrophysics Data System (ADS)

    dos Santos Lima, G. Z.; Iarosz, K. C.; Batista, A. M.; Caldas, I. L.; Guimarães-Filho, Z. O.; Viana, R. L.; Lopes, S. R.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2012-01-01

    We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfvén Brésillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high MHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation.

  6. Phase transition-like behavior of magnetospheric substorms: Global MHD simulation results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M. I.; Sharma, S. A.; Papadopoulos, K.; Goodrich, C. C.; Guzdar, P. N.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2003-01-01

    Using nonlinear dynamical techniques, we statistically investigate whether the simulated substorms from global magnetohydrodynamic (MHD) models have a combination of global and multiscale features, revealed in substorm dynamics by [2000] and featured the phase transition-like behavior. We simulate seven intervals of total duration of 280 hours from the data set used in the above works [, 1985]. We analyze the input-output (vBs-pseudo AL index) system obtained from the global MHD model and compare the results to those inferred from the original set (vBs-observed AL index). The analysis of the coupled vBs-pseudo AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs-observed AL index system. Although the comparison between observations and global MHD simulations for individual events may vary, the overall global transition pattern during the substorm cycle revealed by singular spectrum analysis (SSA) is statistically consistent between simulations and observations. The coupled vBs-pseudo AL index system also shows multiscale behavior (scale-invariant power law dependence) in SSA power spectrum. Besides, we find the critical exponent of the nonequilibrium transitions in the magnetosphere, which reflects the multiscale aspect of the substorm activity, different from power law frequency of autonomous systems. The exponent relates input and output parameters of the magnetosphere. We also discuss the limitations of the global MHD model in reproducing the multiscale behavior when compared to the real system.

  7. Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael

    2001-02-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .

  8. Converging cylindrical shocks in ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.

  9. Converging cylindrical shocks in ideal magnetohydrodynamics

    SciTech Connect

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.

  10. Ideal MHD

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey P.

    2014-06-01

    1. Introduction; 2. The ideal MHD model; 3. General properties of ideal MHD; 5. Equilibrium: one-dimensional configurations; 6. Equilibrium: two-dimensional configurations; 7. Equilibrium: three-dimensional configurations; 8. Stability: general considerations; 9. Alternate MHD models; 10. MHD stability comparison theorems; 11. Stability: one-dimensional configurations; 12. Stability: multi-dimensional configurations; Appendix A. Heuristic derivation of the kinetic equation; Appendix B. The Braginskii transport coefficients; Appendix C. Time derivatives in moving plasmas; Appendix D. The curvature vector; Appendix E. Overlap limit of the high b and Greene-Johnson stellarator models; Appendix F. General form for q(y); Appendix G. Natural boundary conditions; Appendix H. Upper and lower bounds on dQKIN.

  11. Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.

    1997-01-01

    Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.

  12. High-temperature inert gas plasma magnetohydrodynamic energy conversion by using linear-shaped Faraday-type channel

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Zhuang, Yunqin; Okuno, Yoshihiro

    2013-02-01

    We describe high-density magnetohydrodynamic (MHD) energy conversion in a high-temperature seed-free argon plasma, for which a compact linear-shaped Faraday-type MHD electrical power generator is used. Short-time-duration single-pulse shock-tunnel-based experiments demonstrate the MHD energy conversion with varying total inflow temperature up to 9000 K and applied magnetic-flux density up to 4.0 T. The high-temperature plasma is transformed from the thermal-equilibrium state at the entrance to the weak-nonequilibrium state in the supersonic MHD channel. The discharge structure is reasonably homogeneous without suffering from serious streamer development. The power generation performance is monotonically improved by increasing total inflow temperature and strength of magnetic field. The enthalpy extraction efficiency of 13.1% and overall power density of 0.16 GW/m3 are attained. The local power density at the middle of the channel reaches 0.24 GW/m3.

  13. Dynamo Action and Meridional Circulation Dynamics in Eulag-MHD Global 3D MHD Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Passos, D. M. D. C.; Charbonneau, P.

    2014-12-01

    The steady advance in computer power has finally enabled us to explore the solar dynamo problem by means of 3D global magnetohydrodynamical (MHD) simulations of the convection zone.Using the EULAG-MHD code, we have succeeded in producing simulations of the Sun's magnetic activity cycles that resemble the observed evolutionary patterns of the large-scale solar magnetic field. In these simulations the anelastic ideal MHD equations are solved in a thick, rotating shell of electrically conducting fluid, under solar-like stratification and thermal forcing. Since these simulations are fully dynamical in all time and spatial resolved scales, they achieve highly turbulent regimes and naturally produce variable amplitude solutions.We have recently been able to produce a simulation that spans for 1650 years and that produced 40 complete sunspot like cycles, the longest of its kind so far.This allows to perform statistical studies and establish direct comparisons with the observed solar cycle. Some of the main similarities and differences between the statistical properties of simulated and observed cycles are presented here (e.g. evidence for Gnevyshev-Ohl patterns, Gleissberg modulation or hemispheric coupling). Additionally, by studying the behaviour of the large scale flows in the simulation (differential rotation and meridional circulation) we also find evidence for solar cycle modulation of the deep equatorward flow in the meridional circulation. This result is briefly discussed as well as its implications for current helioseismic measurement methodologies and for classical kinematic mean-field flux transport dynamo simulations.

  14. Transient electrical behavior in magnetohydrodynamic generators. Final report

    SciTech Connect

    Koester, J.K.; Eustis, R.H.

    1984-04-01

    Large-scale magnetohydrodynamic (MHD) power generators require electrode controls and power conditioning for efficient, reliable operation. The behavior of generator electrical nonuniformities induced by both internal faults and by external circuits was investigated in this project. A technique for describing nonuniformities was developed by both analytic and experimental methods. An analytic model for the plasma region is described for the effect of general variations in Faraday currents and axial-leakage currents on electrode voltages in terms of nine sets of influence coefficients. The use of these coefficients as a rapid method convenient for studying the characteristics of electrical nonuniformities is described. The development and results of a computer code for predicting the value of influence coefficents as a function of geometry, plasma-boundary layers, and Hall effect are presented. The experimental measurements of these coefficients in a laboratory-scale MHD channel by ac diagnostic equipment are described and compared with theory. The validity of the influence-coefficient approach is demonstrated by experiments. The effects of finite segmentation, nonlinear arc-voltage drop, and plasma coupling on the temporal evolution of electrical nonuniformities are presented. The conditions for buckling-type instabilities of electrode-current distribution are defined. A channel-equivalent circuit based on a lumped-parameter model that can simulate Hall effect, electrode arcs, and plasma coupling is shown. Relationships between lumped parameter values and influence coefficients are presented. 47 references.

  15. Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994

    SciTech Connect

    Not Available

    1995-02-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

  16. MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980

    SciTech Connect

    Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.

    1981-03-01

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).

  17. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  18. Action principles for extended magnetohydrodynamic models

    SciTech Connect

    Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L.; Wurm, A.

    2014-09-15

    The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.

  19. MHD Generator Performance Limitations

    NASA Technical Reports Server (NTRS)

    Rosa, R. J.

    1973-01-01

    The electrical properties of the gas are the primary limiting factor to MHD generator performance; the most relevant electrical properties are the conductivity and the Hall parameter. The maximum allowable pressure at several given levels of power extration vs. temperature is represented graphically.

  20. Quantitative, Comprehensive, Analytical Model for Magnetic Reconnection in Hall Magnetohydrodynamics

    SciTech Connect

    Simakov, Andrei N.; Chacon, L.

    2008-09-05

    Dissipation-independent, or 'fast', magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{sub i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{sub i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{sub i}.

  1. Computation of multi-region relaxed magnetohydrodynamic equilibria

    SciTech Connect

    Hudson, S. R.; Lazerson, S.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von

    2012-11-15

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  2. Magnetohydrodynamic turbulence: Generalized formulation and extension to compressible cases

    SciTech Connect

    Shivamoggi, Bhimsen K.

    2008-06-15

    A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) phenomenalogies of magnetohydrodynamic (MHD) turbulence is developed. This affords a clarification of the regimes of validity of the IK and GS models and hence help resolve some controversies on this aspect. This general formulation appears to have a certain robustness as revealed here by its form invariance with respect to inclusion of compressible effects. Generalizations of the IK and GS spectra to compressible MHD turbulence are given. These two branches are shown to merge with the MHD shockwave spectrum, as to be expected, in the infinite compressibility limit.

  3. Magnetohydrodynamic turbulence: Generalized formulation and extension to compressible cases

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen K.

    2008-06-01

    A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) phenomenalogies of magnetohydrodynamic (MHD) turbulence is developed. This affords a clarification of the regimes of validity of the IK and GS models and hence help resolve some controversies on this aspect. This general formulation appears to have a certain robustness as revealed here by its form invariance with respect to inclusion of compressible effects. Generalizations of the IK and GS spectra to compressible MHD turbulence are given. These two branches are shown to merge with the MHD shockwave spectrum, as to be expected, in the infinite compressibility limit.

  4. Basic properties of magnetohydrodynamic turbulence in the inertial range

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey

    2012-06-01

    We revisit the issue of the spectral slope of magnetohydrodynamic (MHD) turbulence in the inertial range and argue that the numerics favour a Goldreich-Sridhar -5/3 slope rather than a -3/2 slope. We also perform precision measurements of the anisotropy of MHD turbulence and determine the anisotropy constant CA= 0.34 of Alfvénic turbulence. Together with the previously measured Kolmogorov constant CK= 4.2, or 3.3 for a purely Alfvénic case, it constitutes a full description of the MHD cascade in terms of spectral quantities, which is of high practical value for astrophysics.

  5. Computation of Multi-region Relaxed Magnetohydrodynamic Equilibria

    SciTech Connect

    Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; von Nessi, G.; Lazerson, S.

    2013-03-29

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  6. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes.

  7. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  8. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-05-01

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  9. Exact Riemann solver for ideal magnetohydrodynamics that can handle all types of intermediate shocks and switch-on/off waves

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Yamada, S.; Yamada

    2014-04-01

    We have built a code to obtain the exact solutions of Riemann problems in ideal magnetohydrodynamics (MHD) for an arbitrary initial condition. The code can handle not only regular waves but also switch-on/off rarefactions and all types of non-regular shocks: intermediate shocks and switch-on/off shocks. Furthermore, the initial conditions with vanishing normal or transverse magnetic fields can be handled, although the code is partly based on the algorithm proposed by Torrilhon (2002) (Torrilhon, M. 2002 Exact solver and uniqueness condition for Riemann problems of ideal magnetohydrodynamics. Research report 2002-06, Seminar for Applied Mathematics, ETH, Zurich, Switzerland), which cannot deal with all types of non-regular waves nor the initial conditions without normal or transverse magnetic fields. Our solver can find all the solutions for a given Riemann problem, and hence, as demonstrated in this paper, one can investigate the structure of the solution space in detail. Therefore, the solver is a powerful instrument to solve the outstanding problem of existence and uniqueness of solutions of MHD Riemann problems. Moreover, the solver may be applied to numerical MHD schemes like the Godunov scheme in the future.

  10. An MHD variational principle that admits reconnection

    NASA Technical Reports Server (NTRS)

    Rilee, M. L.; Sudan, R. N.; Pfirsch, D.

    1997-01-01

    The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.

  11. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  12. Canonical Hamiltonian mechanics of Hall magnetohydrodynamics and its limit to ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, Z.; Hameiri, E.

    2013-08-01

    While a microscopic system is usually governed by canonical Hamiltonian mechanics, that of a macroscopic system is often noncanonical, reflecting a degenerate Poisson structure underlying the coarse-grained phase space. Probing into symplectic leaves (local structures in a foliated phase space), we may be able to elucidate the order of transition from micro to macro. The Lagrangian guides our analysis. We formulate canonized Hamiltonian systems of Hall magnetohydrodynamics (HMHD) which have a hierarchized set of canonical variables; the simplest system is the subclass in which the ion vorticity and magnetic field have integral surfaces. Renormalizing the singularity scaled by the reciprocal Hall parameter (as the ion vorticity surfaces and the magnetic surfaces are set to merge), we delineate the singular limit to ideal magnetohydrodynamics (MHD). The formulated canonical equations will be useful in the study of ordered structures and dynamics (with integrable vortex lines) in HMHD and their singular limit to MHD, such as magnetic confinement systems, shocks or vortical dynamics.

  13. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  14. A Three-Fluid, Implicit, MHD Code

    NASA Astrophysics Data System (ADS)

    Lileikis, D. E.

    1996-11-01

    A three fluid, implicit, magnetohydrodynamics (MHD) code has been developed for the study of plasma rocket thrusters. The code solves the coupled MHD equations for a two dimensional, planar geometry using a modified form of the Beam & Warming alternating direction implicit scheme. Hall effect, ion slip and electron pressure gradient terms are retained in Ohm's law. Interaction between the electrons, ions and neutrals is handled via approximations to the elastic collision integrals. Nonequilibrium electron-impact ionization and three- body recombination models are also included in the model.

  15. Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability

    SciTech Connect

    Ahedo, Eduardo; Ramos, Jesus J.

    2012-07-15

    An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number.

  16. THE SIGNATURE OF INITIAL CONDITIONS ON MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Dallas, V.; Alexakis, A. E-mail: alexakis@lps.ens.fr

    2014-06-20

    We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our computational domain, dominating the scaling of the energy spectrum, which follows a E∝k {sup –2} power law. As the Reynolds number increases, the curling of the current sheets due to Kelvin-Helmholtz-type instabilities and reconnection modifies the scaling of the energy spectrum from k {sup –2} toward k {sup –5/3}. This transition occurs due to the decorrelation of the velocity and the current density which is proportional to Re{sub λ}{sup −3/2}. Finite Reynolds number behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of Re{sub λ} ≅ 440 with 2048{sup 3} grid points. This behavior demonstrates that even state-of-the-art numerical simulations of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical observations are discussed.

  17. Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability

    NASA Astrophysics Data System (ADS)

    Ahedo, Eduardo; Ramos, Jesús J.

    2012-07-01

    An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number.

  18. Structure Formation through Magnetohydrodynamical Instabilities in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Tajima, T.; Horton, W.

    2000-12-01

    The shear flow instabilities under the presence of magnetic fields in the protoplanetary disk can greatly facilitate the formation of density structures that serve as seeds prior to the onset of the gravitational Jeans instability. Such a seeding process may explain several outstanding puzzles in the planetary genesis that are further compounded by the new discoveries of extrasolar planets and a new insight into the equation of state of dense matter. This puzzle also includes the apparent narrow window of the age difference of the Sun and the Earth. We evaluate the effects of the Parker, magnetorotational(Balbus-Hawley), and kinematic dynamo instabilities by comparing the properties of these instabilities. We calculate the mass spectra of aggregated density structures by the above mechanism in the radial direction for an axisymmetric magnetohydrodynamic(MHD) torus equiblium and power-law density profile models. The mass spectrum of the magnetorotational instability may describe the origin of giant planets away from the central star such as Jupiter. Our local three-dimentional MHD simulation indicates that the coupling of the Parker and magnetorotational instabilities creates spiral arms and gas blobs in the accretion disk, reinforcing the theory and model.

  19. Energy Dissipation in Magnetohydrodynamic Turbulence: Coherent Structures or Nanoflares?

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven

    2014-10-01

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent, occurring mainly in current sheets. However, the question remains whether the overall energy dissipation is dominated by small (dissipation-scale) structures or by large (inertial-range) structures. To systematically investigate this question, we develop and apply a procedure to identify and characterize dissipative structures in numerical simulations of reduced MHD. We find that the probability distribution of energy dissipation rates exhibits a power law tail with index very close to the critical value of -2.0, indicating that structures of all intensities contribute equally to the overall energy dissipation. We then measure the characteristic spatial scales of structures using two methods: one based on the linear scales across the structure and the other based on the Minkowski functionals, which rigorously characterize the morphology of any shape. We find that energy dissipation is dominated by coherent structures with lengths and widths uniformly distributed across the inertial range, while thicknesses lie deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. The current sheets therefore exhibit features of both coherent structures and nanoflares.

  20. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  1. New IES Scheme for Power Conditioning at Ultra-High Currents: from Concept to MHD Modeling and First Experiments

    NASA Astrophysics Data System (ADS)

    Chuvatin, Alexandre S.; Rudakov, Leonid I.; Kokshenev, Vladimir A.; Aranchuk, Leonid E.; Huet, Dominique; Gasilov, Vladimir A.; Krukovskii, Alexandre Yu.; Kurmaev, Nikolai E.; Fursov, Fiodor I.

    2002-12-01

    This work introduces an inductive energy storage (IES) scheme which aims pulsed-power conditioning at multi- MJ energies. The key element of the scheme represents an additional plasma volume, where a magnetically accelerated wire array is used for inductive current switching. This plasma acceleration volume is connected in parallel to a microsecond capacitor bank and to a 100-ns current ruse-time useful load. Simple estimates suggest that optimized scheme parameters could be reachable even when operating at ultra-high currents. We describe first proof-of-principle experiments carried out on GIT12 generator [1] at the wire-array current level of 2 MA. The obtained confirmation of the concept consists in generation of a 200 kV voltage directly at an inductive load. This load voltage value can be already sufficient to transfer the available magnetic energy into kinetic energy of a liner at this current level. Two-dimensional modeling with the radiational MHD numerical tool Marple [2] confirms the development of inductive voltage in the system. However, the average voltage increase is accompanied by short-duration voltage drops due to interception of the current by the low-density upstream plasma. Upon our viewpoint, this instability of the current distribution represents the main physical limitation to the scheme performance.

  2. MHD-Epic: Embedded Particle-in-Cell Simulations of Reconnection in Global 3D Extended MHD Simulations

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Toth, G.; Borovikov, D.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    With the new modeling capability in the Space Weather Modeling Framework (SWMF) of embedding an implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamics model (Daldorff et al. 2014, JCP, 268, 236) we are ready to locally handle the full physics of the reconnection and its implications on the full system where globally, away from the reconnection region, a magnetohydrodynamic description is satisfactory. As magnetic reconnection is one of the main drivers in magnetospheric and heliospheric plasma dynamics, the self-consistent description of the electron dynamics in the coupled MHD-EPIC model is well suited for investigating the nature of these systems. We will compare the new embedded MHD-EPIC model with pure MHD and Hall MHD simulations of the Earth's magnetosphere.

  3. Numerical simulations of Hall MHD small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Gómez, Daniel O.; Mininni, Pablo D.; Dmitruk, Pablo

    2010-11-01

    Much of the progress in our understanding of dynamo mechanisms, has been made within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible. We present results from three dimensional simulations of the Hall-MHD equations subjected to random non-helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter, using a pseudospectral code to achieve exponentially fast convergence.

  4. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  5. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  6. Magnetohydrodynamic electrochemistry in the field of Nd-Fe-B magnets. Theory, experiment, and application in self-powered flow delivery systems.

    PubMed

    Leventis, N; Gao, X

    2001-08-15

    Nd-Fe-B permanent magnets are easily available, powerful, and inexpensive and generate strong quantifiable convective effects during electrolysis, similar to those obtained with rotating electrodes or large electromagnets. The magnetic field of Nd-Fe-B magnets has been simulated numerically and mapped. Its most characteristic difference from the field of most commercial electromagnets is the presence of magnetic field gradients, which introduce additional body forces in the electrolytic solution and create new modes of mass transfer due to the attraction of electrogenerated radicals into areas of stronger field. The effect of those new forces on the radial distribution of the flow profile in the vicinity of the electrode has been monitored with generation-collection experiments and optical photography. The emerging utility of Nd-Fe-B magnets in systems of chemical interest is demonstrated with flow control and delivery devices, based on galvanic cells configured as self-powered magnetohydrodynamic pumps. PMID:11534726

  7. Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations

    NASA Astrophysics Data System (ADS)

    Gibbon, J. D.; Gupta, A.; Krstulovic, G.; Pandit, R.; Politano, H.; Ponty, Y.; Pouquet, A.; Sahoo, G.; Stawarz, J.

    2016-04-01

    It is shown how suitably scaled, order-m moments, Dm±, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number PM=1 . These vorticity fields are defined by ω±=curlz±=ω ±j , where z± are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014), 10.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q± that characterize the inertial range power-law dependencies of the z± energy spectra, E±(k ) , are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case PM≠1 and (b) the relation between Dm± and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.

  8. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  9. Regular shock refraction in planar ideal MHD

    NASA Astrophysics Data System (ADS)

    Delmont, P.; Keppens, R.

    2010-03-01

    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.

  10. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  11. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  12. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.

    2012-10-20

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  13. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  14. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    SciTech Connect

    Myrabo, L.N.; Rosa, R.J.

    2004-03-30

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves.

  15. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core. Still there are problems of containment since many of the proposed vessel materials such as W or Mo have high neutron cross sections making the design of a critical system difficult. There is also the possibility for a GCR to remain in a subcritical state, and by the use of a shockwave mechanism, increase the pressure and temperature inside the core to achieve criticality. This type of GCR is referred to as a shockwave-driven pulsed gas core reactor. These two basic designs were evaluated as advance concepts for space power and propulsion.

  16. Magnetohydrodynamic Propulsion for the Classroom

    NASA Astrophysics Data System (ADS)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  17. MHD augmented chemical rocket propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Schulz, R. J.; Chapman, J. N.; Rhodes, R. P.

    1992-07-01

    A performance analysis is carried out of a magnetohydrodynamic (MHD) augmented chemical thruster (based on a gaseous hydrogen-oxygen system) for space applications such as orbit transfer. The mathematical model used in the analysis is a one-dimensional flow model using equilibrium chemistry for the combustor, choked nozzle, and MHD channel portions of the system, and chemical nonequilibrium kinetics for the high area-ratio gas dynamic nozzle portion of the system. The performance of the chemical-MHD-augmented thruster is compared with that of a pure electric thruster of the same specific impulse level.

  18. MHD stability of incompressible coronal loops with radiative energy loss

    NASA Technical Reports Server (NTRS)

    An, C.-H.

    1983-01-01

    Previous studies of the magnetohydrodynamic (MHD) stability of solar coronal loops have not taken into account the effects of radiative energy loss in the energy equation. However, since coronal loops continuously lose energy by radiation and heat conduction, it is important to understand how these energy loss mechanisms affect MHD stability. We investigate the problem assuming that a magnetic loop has cylindrical geometry. As a first step, stability is studied for a localized mode, and the result is applied to a specific equilibrium. We find that the radiative energy loss effect not only changes the growth rate of ideally unstable modes, but also alters the stability boundary predicted by ideal MHD theory.

  19. Design and calculated performance and cost of the ECAS Phase II open cycle MHD power generation system

    NASA Technical Reports Server (NTRS)

    Harris, L. P.

    1977-01-01

    A 2000 MWe MHD/steam plant for central station applications has been designed and costed as part of the Energy Conversion Alternatives Study (ECAS). This plant is fueled by Illinois No. 6 coal, rejects heat through mechanical draft wet cooling towers, and includes coal processing equipment, seed reprocessing, electrical inversion of the MHD generator output and emission controls to current EPA standards. It yields an estimated overall efficiency of 0.483 (7066 Btu/kWe-hr), a capital cost of $718 per kWe (1975 dollars), and a cost of electricity at 65% capacity factor of 32 mills per kWe-hr. If the assumed life and reliability could be achieved with these performance parameters, the MHD system should prove attractive.

  20. A numerical study of low frequency wave in Hall MHD reconnection with various plasma

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jin, S. P.; Yang, H. A.; Zhou, G. C.; Liu, S. L.

    Magnetic reconnection with various plasma beta the ratio of plasma pressure to the magnetic pressure is studied using a 2 5 dimensional Hall magnetohydrodynamics MHD code developed from a multi-step implicit scheme The initial state of the Hall MHD simulation is an equilibrium Harris sheet with a zero guide field i e B y0 0 at t 0 Driven by a constant boundary inflow a quasi--steady fast reconnection occurs in the plasma with a low uniform resistivity The reconnection rate partial A partial A partial t partial t vert st in the quasi--steady state is in the range of 0 15 partial A partial A partial t partial t vert st 0 095 for the cases with plasma beta ranging 0 5 beta 6 5 In this report the waves in the Hall MHD reconnection are investigated The time series of the out-of-plane magnetic field B y and the velocity components V x V z in the x z plane at the given points are transferred into the power spectrums by the Fast Fourier Transform FFT for the cases with various plasma beta The results indicate that the frequencies of the B y V x V z power spectrums are in the range of omega ci omega 8 omega ci where omega ci is the proton cyclotron frequency A shift of low frequency and the energy reduction in the power spectrum can be found as the plasma beta increases Using the Minimum Variance Analysis

  1. Electromagnetic pulse (EMP) interaction with electric power systems. Power Systems Technology Program. Final report

    SciTech Connect

    Zaininger, H.W.

    1984-08-01

    A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP) - high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. The purpose of this project was first to define typical electrical power system characteristics for EMP analysis, and second, to determine reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms.

  2. MHD-EMP protection guidelines

    SciTech Connect

    Barnes, P.R.; Vance, E.F.

    1992-01-01

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  3. MHD Oscillations in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Leonovich, A. S.; Mazur, V. A.; Kozlov, D. A.

    2016-02-01

    In studies of hydromagnetic oscillations of the Earth's magnetosphere, it is often considered as a giant resonator for magnetohydrodynamic (MHD) waves. A shear flow instability on the magnetopause has long been regarded as a possible source of MHD oscillations in the Earth's magnetosphere. A most interesting phenomenon investigated for the past two decades are ultra-low-frequency oscillations with a discrete spectrum. Such oscillations are recorded usually in the midnight-morning sector of the magnetosphere at 60° to 80° latitudes. Another type of MHD oscillations typical of the magnetotail is the coupled Alfvén and slow magnetosonic waves on stretched magnetic field lines passing through the current sheet. Each of these modes can propagate along paths that almost coincide with the magnetic field lines. The recently discovered kink-like oscillations are oscillations of the current sheet itself, similar to a piece of fabric fluttering in the wind. In this regard they are called flapping modes.

  4. MHD modeling of magnetized target fusion experiments.

    SciTech Connect

    Sheehey, P. T.; Faehl, Rickey J.; Kirkpatrick, R. C.; Lindemuth, I. R.

    2001-01-01

    Magnetized Target Fusion (MTF) is an alternate approach to controlled fusion in which a dense (0(1017-'8 cm-')), preheated (O(200 ev)), and magnetized (0( 100 kG)) target plasma is hydrodynamically compressed by an imploding liner. If electron thermal conduction losses are magnetically suppressed, relatively slow O(1 cm/microsecond) 'liner-on-plasma' compressions may be practical, using liners driven by inexpensive electrical pulsed power. Target plasmas need to remain relatively free of potentially cooling contaminants during formation and compression. Magnetohydrodynamic (MHD) calculations including detailed effects of radiation, heat conduction, and resistive field diffusion have been used to model separate target plasma (Russian MAGO, Field Reversed Configuration at Los Alamos National Laboratory) and liner implosion experiments (without plasma fill), such as recently performed at the Air Force Research Laboratory (Albuquerque). Using several different codes, proposed experiments in which such liners are used to compress such target plasmas are now being modeled in one and two dimensions. In this way, it is possible to begin to investigate important issues for the design of such proposed liner-on-plasma fusion experiments. The competing processes of implosion, heating, mixing, and cooling will determine the potential for such MTF experiments to achieve fusion conditions.

  5. ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA

    SciTech Connect

    Goossens, M.; Soler, R.; Arregui, I.

    2012-12-01

    Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.

  6. MHD--Developing New Technology to Meet the Energy Crisis

    ERIC Educational Resources Information Center

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  7. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect

    Makwana, K. D. Cattaneo, F.; Zhdankin, V.; Li, H.; Daughton, W.

    2015-04-15

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{sub ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  8. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE PAGESBeta

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  9. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    PubMed

    Meyrand, Romain; Galtier, Sbastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387

  10. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    NASA Astrophysics Data System (ADS)

    Sullivan, Brian P.; Bhattacharjee, A.; Huang, Yi-Min

    2010-11-01

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  11. Ballooning mode stability in the Hall-magnetohydrodynamics model

    SciTech Connect

    Torasso, R.; Hameiri, Eliezer

    2005-03-01

    The governing equations of the ballooning modes are derived within the Hall-magneto-hydrodynamics (HMHD) model and given a standard Hamiltonian form, which is then used to derive sufficient conditions for stability. In most cases, ideal magnetohydrodynamics (MHD) stability implies HMHD stability, as is the case for tokamak configurations if the pressure is a monotone increasing function of density and the entropy is monotone decreasing. The same result holds for general MHD plasmas with constant entropy and for incompressible plasmas. However, in the case of (compressible) closed-line systems such as the field-reversed configuration, or in a typical magnetospheric magnetic field, MHD ballooning stability does not guarantee HMHD stability. For the explicitly solvable configuration of the Z pinch it is in fact shown that the plasma can be MHD stable but HMHD unstable.

  12. The complete set of Casimirs in Hall-magnetohydrodynamics

    SciTech Connect

    Kawazura, Yohei; Hameiri, Eliezer

    2012-08-15

    A procedure for determining all the Casimir constants of motion in magnetohydrodynamics (MHD) [E. Hameiri, Phys. Plasmas 11, 3423 (2004)] is extended to Hall-MHD. We obtain and solve differential equations for the variational derivatives of all the Casimirs, which must be satisfied for any dynamically accessible motion in Hall-MHD. In an extension of the more commonly considered Hall-MHD model, we also include the electron fluid entropy. The most interesting case for plasma confinement, which is usually true for axisymmetric configurations but desirable in general, is when both the magnetic field and the ion velocity field form the two separate families of nested toroidal surfaces. The Casimirs are then three functionals for each surface, involving the fluxes of certain vector fields and the number of particles contained in each. We also determine a family of independent Casimirs in a general configuration.

  13. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    SciTech Connect

    Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin

    2010-11-15

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  14. The complete set of Casimirs in Hall-magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Hameiri, Eliezer

    2012-08-01

    A procedure for determining all the Casimir constants of motion in magnetohydrodynamics (MHD) [E. Hameiri, Phys. Plasmas 11, 3423 (2004)] is extended to Hall-MHD. We obtain and solve differential equations for the variational derivatives of all the Casimirs, which must be satisfied for any dynamically accessible motion in Hall-MHD. In an extension of the more commonly considered Hall-MHD model, we also include the electron fluid entropy. The most interesting case for plasma confinement, which is usually true for axisymmetric configurations but desirable in general, is when both the magnetic field and the ion velocity field form the two separate families of nested toroidal surfaces. The Casimirs are then three functionals for each surface, involving the fluxes of certain vector fields and the number of particles contained in each. We also determine a family of independent Casimirs in a general configuration.

  15. Spontaneous Chiral Symmetry Breaking of Hall Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k-7/3 spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k-11/3 is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.

  16. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  17. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  18. Hall magnetohydrodynamics near an X-type magnetic neutral line

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2009-01-01

    Hall magnetohydrodynamics (MHD) near a two-dimensional (2D) X-type magnetic neutral line is considered. The Hall effects are shown to be able to sustain the hyperbolicity of the magnetic field (and hence a more open X-point configuration) near the neutral line in the steady state. This result is predicated on considering the steady Hall MHD state as the temporal asymptotic limit of the corresponding time-dependent problem. For the time-dependent Hall MHD problem, the Hall effects are shown to have a negligible impact on the current-sheet formation process near the X-type magnetic neutral line at short times but, subsequently, to quench the finite-time singularity exhibited in ideal MHD and, hence to prevent the plasma collapse, in consistency with the sustenance of the hyperbolicity of the magnetic field in the corresponding steady problem.

  19. Advected Invariants in Magnetohydrodynamics and Gas Dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Hu, Q.; McKenzie, J. F.; Dasgupta, B.; Zank, G. P.

    2014-05-01

    In this paper we discuss conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics associated with advected invariants. The invariants in some cases, can be related to fluid relabelling symmetries associated with the Lagrangian map. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. We discuss the gauge condition required for the magnetic helicity to be advected with the flow. The conditions for the cross helicity to be an invariant are discussed. We discuss the different variants of helicity in fluid dynamics and in MHD, including: fluid kinetic helicity, cross helicity, magnetic helicity, Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant for special flows for which the magnetic helicity is zero.

  20. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    SciTech Connect

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  1. Three-dimensional Resistive Magnetohydrodynamics in Hydra

    NASA Astrophysics Data System (ADS)

    Koning, Joseph; Kerbel, Gary; Marinak, Michael

    2008-11-01

    The Magnetohydrodynamics package in the ALE radiation-hydrodynamics code Hydra implements the three-dimensional resistive magnetic diffusion equations in the small Hall limit. The diffusion equations are discretized, on semi-structured grids, using a vector finite element method with H(curl), H(div) and H(grad) conforming spaces, resulting in a method that is second order accurate in space and fully implicit in time. Coupling of the MHD forces and Joule heating to the hydrodynamics package is accomplished through a split scheme. The package includes a second-order accurate advection method utilizing an exact DeRham complex to preserve the divergence free magnetic induction. Several improvements to the package have been applied, including matrix monotonicity constraints, a scalable iterative solution method and an arbitrary linear circuit source. This work is proceeding to create an MHD package that incorporates the full Ohm's law.

  2. MAGNETOHYDRODYNAMIC SHALLOW WATER WAVES: LINEAR ANALYSIS

    SciTech Connect

    Heng, Kevin; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.ed

    2009-10-01

    We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them 'magnetostrophic modes'. We obtain analytical functions for the velocity, height, and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.

  3. Visual analysis of two-dimensional magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Frank, M.; Barleon, L.; Müller, U.

    2001-08-01

    Magnetohydrodynamics (MHD) offers a unique opportunity to study the behavior of two-dimensional turbulent flows. A strong external magnetic field B perpendicular to the flow direction of an electrically conducting fluid will suppress velocity gradients in the direction of B. The resulting approximation is known as quasi-two-dimensional MHD. An experimental configuration is presented which meets this requirement, along with a spatially extended probe used to visualize the two-dimensional flow kinematics inside the opaque liquid metal flow. As a prototypical example, the wake behind a circular cylinder is investigated for Reynolds numbers up to R=10 000. New and unexpected vortex patterns are observed that deviate significantly from usual hydrodynamic flows. Also, stability limits for the transition from stationary to nonstationary flow patterns are experimentally determined for the cylinder wake and another type of shear flow profile. These results confirm existing theoretical predictions and thus validate the quasi-two-dimensional approach.

  4. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  5. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  6. Time-resolved observation of discrete and continuous magnetohydrodynamic dynamo in the reversed-field pinch edge

    SciTech Connect

    Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S. )

    1994-08-01

    We report the first experimental verification of the magnetohydrodynamic (MHD) dynamo in the reversed-field pinch (RFP). A burst of MHD dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the Madison Symmetric Totus RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes.

  7. MHD Space Sailing

    NASA Astrophysics Data System (ADS)

    Kisiel, T.; Soida, M.

    2007-12-01

    The rocket technology dates back as far as medieval China. Used initially for entertainment and religious practices over time rockets evolved into weapons and finally into means of transportation. Today, we are nearing the top of the rockets' capabilities. Although, for now they are the only way for us to send anything into space we are becoming more and more aware of the limitations of this technology. It is essential that we invent other means of propelling probes and other interplanetary vehicles through space. The authors had performed a series of magnetohydrodynamic simulations using the University of Chicago's Flash package to find out whether the interactions between the Solar Wind and the conducting ring with the electric current would occur. The MHD simulations gave the results similar to the monte-carlo calculations performed by dr Charles Danforth from the University of Colorado. It is the authors' conclusion that the promising results should encourage further study of the phenomenon and the possibility of using it in practice.

  8. Magnetohydrodynamic Augmentation of Pulse Detonation Engines

    NASA Astrophysics Data System (ADS)

    Zeineh, Christopher; Cole, Lord; Karagozian, Ann

    2010-11-01

    Pulse detonation engines (PDEs) are the focus of increasing attention due to their potentially superior performance over constant pressure engines. Yet due to its unsteady chamber pressure, the PDE system will either be over- or under-expanded for the majority of the cycle, with energy being used without maximum gain. Magnetohydrodynamic (MHD) augmentation offers the opportunity to extract energy and apply it to a separate stream where the net thrust will be increased. With MHD augmentation, such as in the Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) concept, energy could be extracted from the high speed portion of the system, e.g., through a generator in the nozzle, and then applied directly to another flow or portion of the flow as a body force. The present high resolution numerical simulations explore the flow evolution and potential performance of such propulsion systems. An additional magnetic piston applying energy in the PDE chamber can also act in concert with the PDRIME for separate thrust augmentation. Results show that MHD can indeed influence the flow and pressure fields in a beneficial way in these configurations, with potential performance gains under a variety of flight and operating conditions. There are some challenges associated with achieving these gains, however, suggesting further optimization is required.

  9. Linear wave propagation in relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Meliani, Z.

    2008-10-01

    The properties of linear Alfvén, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comparison with the Newtonian MHD limits easier and to stress the graphical representation of their anisotropic linear wave properties using the phase and group speed diagrams. By drawing these for both the fluid rest frame and for a laboratory Lorentzian frame which sees the plasma move with a three-velocity having an arbitrary orientation with respect to the magnetic field, a graphical view of the relativistic aberration effects is obtained for all three MHD wave families. Moreover, it is confirmed that the classical Huygens construction relates the phase and group speed diagram in the usual way, even for the lab frame viewpoint. Since the group speed diagrams correspond to exact solutions for initial conditions corresponding to a localized point perturbation, their formulae and geometrical construction can serve to benchmark current high-resolution algorithms for numerical relativistic MHD.

  10. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    PubMed

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere. PMID:26382548

  11. Hall magnetohydrodynamics and its applications to laboratory and cosmic plasma

    SciTech Connect

    Witalis, E.A.

    1986-12-01

    A revision is performed of the classical magnetohydrodynamic (MHD) theory for the magnetized plasma properties. The importance of retaining the Hall term and using a two-fluid plasma description is stressed. The plasma Hall Magnetohydrodynamics (HMHD) description is derived by accounting for the noncentral character of the internal particle-particle forces sustaining the plasma charge neutrality. Plasma properties with similarities to the Meissner effect are predicted. The HMHD model and its extension to a current-tube plasma description are used to explain experimentally observed characteristics of magnetic confinement plasmas, with application also to cosmic plasmas.

  12. Magnetohydrodynamic propulsion using on-board sources

    NASA Astrophysics Data System (ADS)

    Martin, James A.

    1998-01-01

    Magnetohydrodynamics is considered to extract power from flow and to inset power into flow at different points in propulsion systems that might be useful for advanced Earth-to-orbit vehicles. No beamed power is considered, and so the power is all generated from on-board sources. An ideal analysis is used as the first step toward deciding which concepts to examine further. The airbreathing engine concept that uses magnetohydrodynamics to replace the rotating machinery in a turbojet engine provides the most attractive results.

  13. Design concepts for a pulse power test facility to simulate EMP surges in overhead power lines. Part I. Fast pulse

    SciTech Connect

    Ramrus, A.

    1986-02-01

    Objective of the study was to create conceptual designs of high voltage pulsers capable of simulating two types of electromagnetic pulses (EMPs) caused by a high-altitude nuclear burst; the slow rise time magnetohydrodynamic (MHD-EMP) and the fast rise time high-altitude EMP (HEMP). The pulser design was directed towards facilities capable of performing EMP vulnerability testing of components used in the national electric power system.

  14. Magnetohydrodynamic waves and coronal seismology: an overview of recent results.

    PubMed

    De Moortel, Ineke; Nakariakov, Valery M

    2012-07-13

    Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares. PMID:22665899

  15. A magnetohydrodynamic model of whistler duct structure in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Wang, S.; Wang, J. F.; Comfort, R. H.

    1984-01-01

    In this study, the physical structure for the propagation of whistler waves within a duct in the earth's magnetosphere is investigated by means of magnetohydrodynamic (MHD) theory. Expressions for the current density and induced magnetic field are determined analytically and evaluated in terms of two models for the duct plasma density distribution. It is found that once the duct is formed, forces associated with the current structure will maintain it. MHD instabilities are examined briefly and found to be unlikely to threaten duct maintenance in regions where whistlers are typically observed. Examination of some effects of field-aligned currents suggest that this may be a viable mechanism for duct formation.

  16. Operational Performance of the Two-Channel 10 Megawatt Feedback Amplifier System for MHD Control on the Columbia University HBT-EP Tokamak

    SciTech Connect

    Reass, W.A.; Wurden, G.A.

    1997-10-06

    The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 {micro}H saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency.

  17. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  18. Modeling Extreme 'Carrington-Type' Space Weather Events Using Three-dimensional Global MHD Simulations

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-01-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al., (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst approx. = -1600 nT.

  19. Phenomenology treatment of magnetohydrodynamic turbulence with nonequipartition and anisotropya)

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Matthaeus, W. H.

    2005-05-01

    Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such "nonequipartitioned" MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, which are extensions of (i) Taylor's constant flux in an inertial range and (ii) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations are controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance, in principle, also requires consideration of nonequipartition effects.

  20. MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Verth, G.; Jess, D. B.

    2016-02-01

    Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.

  1. Magnetic levitation and MHD propulsion

    NASA Astrophysics Data System (ADS)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des développements actuels avec en particulier les premiers essais en rade de Kobe de Yamato I, navire de 260 tonnes, entraîné par MHD.

  2. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  3. US/USSR cooperative program in open-cycle MHD electrical power generation. Joint test report no. 4. Tests in the U-25B facility MHD generator tests No. 6 and 7

    NASA Astrophysics Data System (ADS)

    Picologlou, B. F.; Batenin, V. M.

    1981-01-01

    The MHD generator was operated at its design parameters. New plasma diagnostic devices are described and include: a traversing dual electrical probe for determining distribution of electron concentrations, a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the forest data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities.

  4. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    SciTech Connect

    Donato, S.; Servidio, S.; Carbone, V.; Dmitruk, P.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.

    2012-09-15

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  5. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Donato, S.; Servidio, S.; Dmitruk, P.; Carbone, V.; Shay, M. A.; Cassak, P. A.; Matthaeus, W. H.

    2012-09-01

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  6. Efficient acceleration of relativistic magnetohydrodynamic jets

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Takahara, Fumio

    2013-08-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.

  7. Development and validation of a magneto-hydrodynamic solver for blood flow analysis

    NASA Astrophysics Data System (ADS)

    Kainz, W.; Guag, J.; Benkler, S.; Szczerba, D.; Neufeld, E.; Krauthamer, V.; Myklebust, J.; Bassen, H.; Chang, I.; Chavannes, N.; Kim, J. H.; Sarntinoranont, M.; Kuster, N.

    2010-12-01

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.

  8. Development and validation of a magneto-hydrodynamic solver for blood flow analysis.

    PubMed

    Kainz, W; Guag, J; Benkler, S; Szczerba, D; Neufeld, E; Krauthamer, V; Myklebust, J; Bassen, H; Chang, I; Chavannes, N; Kim, J H; Sarntinoranont, M; Kuster, N

    2010-12-01

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal. PMID:21081822

  9. Computational Methods for Ideal Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kercher, Andrew D.

    Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency. All results are given for Cartesian grids, but the algorithms are implemented for a general geometry on a unstructured grids.

  10. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  11. Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy

    SciTech Connect

    Schaffner, D. A.; Brown, M. R.; Lukin, V. S.

    2014-08-01

    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.

  12. Temporal and Spatial Turbulent Spectra of MHD Plasma and an Observation of Variance Anisotropy

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Brown, M. R.; Lukin, V. S.

    2014-08-01

    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.

  13. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  14. Hall Magnetohydrodynamics near a Hyperbolic Magnetic Neutral Line

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen

    2008-11-01

    Hall magnetohydrodynamics (MHD) properties near a two-dimensional X-type magnetic neutral line in the steady state are considered. Upon viewing the steady state as the asymptotic limit of the corresponding time-dependent problem, Hall effects are shown to be or not to be able to sustain the hyperbolicity of the magnetic field (and hence a more open X-point configuration) near the neutral line depending on the initial conditions.

  15. Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow

    NASA Astrophysics Data System (ADS)

    Fomichev, V. P.; Yadrenkin, M. A.

    2013-01-01

    New data on experimental implementation of the magnetohydrodynamic (MHD) parachute configuration in an air flow with Mach number M = 6 about a flat plate are considered. It is shown that MHD interaction near a flat plate may transform an attached oblique shock wave into a normal detached one, which considerably extends the area of body-incoming flow interaction. This effect can be employed in optimizing return space vehicle deceleration conditions in the upper atmosphere.

  16. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.

  17. A data-constrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhou, Yufen; Jiang, Chaowei; Feng, Xueshang; Wu, Chin-Chun; Hu, Qiang

    2016-02-01

    In this study, we present a three-dimensional magnetohydrodynamic model based on an observed eruptive twisted flux rope (sigmoid) deduced from solar vector magnetograms. This model is a combination of our two very well tested MHD models: (i) data-driven 3-D magnetohydrodynamic (MHD) active region evolution (MHD-DARE) model for the reconstruction of the observed flux rope and (ii) 3-D MHD global coronal-heliosphere evolution (MHD-GCHE) model to track the propagation of the observed flux rope. The 6 September 2011, AR11283, event is used to test this model. First, the formation of the flux rope (sigmoid) from AR11283 is reproduced by the MHD-DARE model with input from the measured vector magnetograms given by Solar Dynamics Observatory/Helioseismic and Magnetic Imager. Second, these results are used as the initial boundary condition for our MHD-GCHE model for the initiation of a coronal mass ejection (CME) as observed. The model output indicates that the flux rope resulting from MHD-DARE produces the physical properties of a CME, and the morphology resembles the observations made by STEREO/COR-1.

  18. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.

    1981-01-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  19. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1981-05-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  20. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-04-01

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  1. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  2. Transition from Kinetic to MHD Behavior in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.; Wan, Minping

    2015-10-01

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag-Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the question of interest by examining several different indicators of MHD-like behavior.

  3. Three Dimensional Simulations of Compressible Hall MHD Plasmas

    SciTech Connect

    Shaikh, Dastgeer; Shukla, P. K.

    2008-10-15

    We have developed three dimensional, time dependent, compressible, non-adiabatic, driven and massively parallelized Hall magnetohydrodynamic (MHD) simulations to investigate turbulent spectral cascades in a regime where characteristic lengthscales associated with plasma fluctuations are smaller than ion gyro radii. Such regime is ubiquitously present in solar wind and many other collisionless space plasmas. Particularly in the solar wind, the high time resolution databases identify a spectral break at the end of MHD inertial range spectrum that corresponds to a high frequency regime. In the regime, turbulent cascades cannot be explained by the usual MHD models. With the help of our 3D Hall MHD code, we find that characteristic turbulent interactions in the high frequency regime evolve typically on kinetic Alfven time scales. The turbulent fluctuation associated with kinetic Alfven interactions are compressive and anisotropic and possess equipartition of kinetic and magnetic energies.

  4. On the question of hysteresis in Hall MHD Reconnection

    NASA Astrophysics Data System (ADS)

    Sullivan, Brian; Bhattacharjee, Amitava; Huang, Yi-Min

    2010-11-01

    Recently, questions have been raised regarding the cause of hysteresis, or bi-stability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This poster presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al.[Phys. Rev. Lett. 95, 235002 (2005)] is, in fact, a different phenomenon from that recently reported by Zocco et al. on the basis of analysis and simulations in electron MHD with finite electron inertia. [Phys. Plasmas 16, 110703 (2009)] We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  5. MHD Spectroscopy

    SciTech Connect

    Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M

    2004-03-23

    Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.

  6. MHD integrated topping cycle project

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois no. 6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  7. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  8. Feasibility of MHD submarine propulsion

    SciTech Connect

    Doss, E.D. ); Sikes, W.C. )

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  9. Proof-of-concept tests of the magnetohydrodynamic steam-bottoming system at the DOE Coal-Fired Flow Facility. Final report

    SciTech Connect

    Attig, R.C.

    1996-10-09

    The development of coal-fired magnetohydrodynamic (MHD) power can be viewed as consisting of two parts; the topping cycle and the bottoming cycle. The topping cycle consists of the coal combustor, MHD generator and associated components. The bottoming cycle consists of the heat recovery, steam generation, seed recovery/regeneration, emissions control (gas and particulate), ash handling and deposition, and materials evaluation. The report concentrates on the bottoming cycle, for which much of the technology was developed at the University of Tennessee Space Institute (UTSI). Because of the complexity of the required technology, a number of issues required investigation. Of specific concern regarding the bottoming cycle, was the design of the steam cycle components and emissions control. First, the high combustion temperatures and the use of large quantities of potassium in the MHD combustor results in a difference in the composition of the gases entering the bottoming cycle compared to conventional systems. Secondly, a major goal of the UTSI effort was to use a variety of coals in the MHD system, especially the large reserves of high-sulfur coals available in the United States.

  10. Global invariants in ideal magnetohydrodynamic turbulence

    SciTech Connect

    Shebalin, John V.

    2013-10-15

    Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.

  11. Conservative regularization of ideal hydrodynamics and magnetohydrodynamics

    SciTech Connect

    Thyagaraja, A.

    2010-03-15

    Inviscid, incompressible hydrodynamics and incompressible ideal magnetohydrodynamics (MHD) share many properties such as time-reversal invariance of equations, conservation laws, and certain topological features. In three dimensions, these systems may lead to singular solutions (involving vortex and current sheets). While dissipative (viscoresistive) effects can regularize the equations leading to bounded solutions to the initial-boundary value (Cauchy) problem which presumably exist uniquely, the time-reversal symmetry and associated conservation properties are certainly destroyed. The present work is analogous to (and suggested by) the Korteweg-de Vries regularization of the one-dimensional, nonlinear kinematic wave equation. Thus the regularizations applied to the original equations of hydrodynamics and ideal MHD retain conservation properties and the symmetries of the original equations. Integral invariants which generalize those known for the original systems are shown to imply bounded enstrophy. The regularization developed can also be applied to the corresponding dissipative models (such as the Navier-Stokes equations and the viscoresistive MHD equations) and may imply interesting regularity properties for the solutions of the latter as well. The models developed thus have intrinsic mathematical interest as well as possible applications to large-scale numerical simulations in systems where dissipative effects are extremely small or even absent.

  12. Finite dissipation and intermittency in magnetohydrodynamics.

    PubMed

    Mininni, P D; Pouquet, A

    2009-08-01

    We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. PMID:19792189

  13. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  14. Magnetohydrodynamics and its hazard assessment

    NASA Astrophysics Data System (ADS)

    Chan, W.-T.

    1981-11-01

    Potential occupational and environmental hazards of a typical combined open-cycle MHD/steam cycle power plant are critically assessed on the basis of direct/indirect research information. Among the potential occupational hazards, explosion at the coal feed system or at the superconducting magnet; combustor rupture in a confined pit; high intensity dc magnetic field exposure at the channel; and combustion products leakage from the pressurized systems are of primary concern. While environmental emissions of SO(x), NO(x) and fine particulates are considered under control in experimental scale, control effectiveness at high capacity operation remains uncertain. Gaseous emission of some highly toxic trace elements including radioactive species may be of concern without gas cleaning device in the MHD design.

  15. Small-scale behavior of Hall magnetohydrodynamic turbulence.

    PubMed

    Stawarz, Julia E; Pouquet, Annick

    2015-12-01

    Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs. PMID:26764833

  16. Small-scale behavior of Hall magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Stawarz, Julia E.; Pouquet, Annick

    2015-12-01

    Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 7683 points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k-7 /3 scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.

  17. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  18. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Supratik; Galtier, Sébastien

    2016-03-01

    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations.

  19. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  20. Cylindrical Hall - MHD Waves: A Nonlinear Solution

    NASA Astrophysics Data System (ADS)

    Krishan, V.; Varghese, B. A.

    2008-02-01

    The exact nonlinear cylindrical solution for incompressible Hall - magnetohydrodynamic (HMHD) waves, including dissipation, essentially from electron - neutral collisions, is obtained in a uniformly rotating, weakly ionized plasma such as exists in photospheric flux tubes. The ω - k relation of the waves, called here Hall - MHD waves, demonstrates the dispersive nature of the waves, introduced by the Hall effect, at large axial and radial wavenumbers. The Hall - MHD waves are in general elliptically polarized. The partially ionized plasma supports lower frequency modes, lowered by the factor δ≡ratio of the ion mass density to the neutral particle mass density, as compared to the fully ionized plasma ( δ=1). The relation between the velocity and the magnetic field fluctuations departs significantly from the equipartition found in Alfvén waves. These short-wavelength and arbitrarily large amplitude waves could contribute toward the heating of the solar atmosphere.

  1. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  2. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  3. Energy dissipation in magnetohydrodynamic turbulence: coherent structures or 'nanoflares'?

    SciTech Connect

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven M.

    2014-11-10

    We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power-law tail with an index very close to the critical value of –2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both coherent structures and nanoflares previously conjectured as a coronal heating mechanism.

  4. Energy Dissipation in Magnetohydrodynamic Turbulence: Coherent Structures or "Nanoflares"?

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven M.

    2014-11-01

    We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power-law tail with an index very close to the critical value of -2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both coherent structures and nanoflares previously conjectured as a coronal heating mechanism.

  5. MHD-EMP protection guidelines

    SciTech Connect

    Barnes, P.R.; Vance, E.F.

    1992-03-01

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth`s magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it`s global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  6. Coarse-graining study of homogeneous and isotropic Hall magnetohydrodynamics turbulence

    NASA Astrophysics Data System (ADS)

    Miura, H.; Araki, K.

    2013-01-01

    Inter-scale magnetic energy transfer associated with the Hall effects in homogeneous and isotropic magnetohydrodynamics (MHD) turbulence and the applicability of a Smagorinsky-type diffusive sub-grid-scale (SGS) model to Hall MHD turbulence are studied numerically. Low-pass filter analysis on magnetic energy transfer functions shows that their profiles change considerably when the cut-off wave number is comparable to the Taylor-scale wave number. It is shown that the Smagorinsky-type model is applicable to Hall MHD turbulence as a basic SGS model, while the Hall effects tend to overestimate the grid-scale magnetic energy transfer.

  7. Experimental evidence of phase coherence of magnetohydrodynamic turbulence in the solar wind: GEOTAIL satellite data.

    PubMed

    Koga, D; Chian, A C-L; Hada, T; Rempel, E L

    2008-02-13

    Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress. PMID:17681910

  8. ON THE ROLE OF INVOLUTIONS IN THE DISCONTINUOUS GALERKIN DISCRETIZATION OF MAXWELL AND MAGNETOHYDRODYNAMIC SYSTEMS

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2005-01-01

    The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.

  9. VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Daum, P.

    2007-03-01

    Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD) models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.

  10. The superconducting MHD-propelled ship YAMATO-1

    NASA Astrophysics Data System (ADS)

    Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro

    1995-04-01

    In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.

  11. The superconducting MHD-propelled ship YAMATO-1

    NASA Technical Reports Server (NTRS)

    Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro

    1995-01-01

    In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.

  12. Global Magneto-Rotational Instability (MRI) in Hall MHD

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Mahajan, Swadesh; Krishan, Vinod; Guzdar, Parvez

    2006-04-01

    We derive the radial eigenmode equation for the linear (thin accretion disk) MRI within the framework of Hall Magnetohydrodynamics (HMHD). Eigenmodes are computed with a finite-differencing method, and the stability of these are compared to global MHD modes as well as the local approximation. In both MHD and HMHD the local analysis can give misleading conditions for instability as well as for the scaling of the frequency. In general the Hall current is stabilizing, however, parameter regimes exist where the Hall current can have a destabilizing effect.

  13. The generation and damping of propagating MHD kink waves in the solar atmosphere

    SciTech Connect

    Morton, R. J.; Verth, G.; Erdélyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  14. Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    SciTech Connect

    Klein, R I; Li, P S; McKee, C F; Fisher, R

    2008-04-10

    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.

  15. Jet formation in GRBs: a semi-analytic model of MHD flow in Kerr geometry with realistic plasma injection

    SciTech Connect

    Globus, Noemie; Levinson, Amir

    2014-11-20

    We construct a semi-analytic model for magnetohydrodynamic (MHD) flows in Kerr geometry that incorporates energy loading via neutrino annihilation on magnetic field lines threading the horizon. We compute the structure of the double-flow established in the magnetisphere for a wide range of energy injection rates and identify the different operation regimes. At low injection rates, the outflow is powered by the spinning black hole via the Blandford-Znajek mechanism, whereas at high injection rates, it is driven by the pressure of the plasma deposited on magnetic field lines. In the intermediate regime, both processes contribute to the outflow formation. The parameter that quantifies the load is the ratio of the net power injected below the stagnation radius and the maximum power that can be extracted magnetically from the black hole.

  16. Treatment of MHD turbulence with non-equipartition and anisotropy

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Matthaeus, W. H.

    2005-11-01

    Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here we discuss a phenomenology for such ``non-equipartitioned'' MHD flow. We suggest two conditions for a MHD flow to transition to strong turbulent flow, extensions of (i) Taylor's constant flux in an inertial range, and (ii) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, we point out that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle also requires consideration of non-equipartition effects.

  17. Observation of MHD Instabilities Driven by Energetic Electrons in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Mitsutaka, Isobe; Kunihiro, Ogawa; Akihiro, Shimizu; Masaki, Osakabe; Shin, Kubo; Toi, K.; LHD Experiment Group

    2015-04-01

    Coherent magnetic fluctuations in an acoustic range of frequency have been regularly observed in low-density (ne < 0.2×1019 m-3) plasmas with strong second harmonic electron cyclotron resonance heating (ECRH) on the Large Helical Device. Hard X-ray measurements indicated that energetic electrons are generated in these ECRH discharges. The magnetic fluctuations are suppressed in higher density discharges where energetic electrons are not present. The ECRH power modulation experiment indicated that the observed magnetohydrodynamic (MHD) mode has an acoustic nature rather than an Alfvénic nature. supported by the Grant-in-Aid for Encouragement of Scientists from the Japan Society for the Promotion of Science (No. 20656150). This work was also partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328 and NRF: No. 2012K2A2A6000443)

  18. Ultra-High-Resolution Observations of MHD Waves in Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Jess, D. B.; Verth, G.

    This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

  19. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Ahmed, Jawad; Shahzad, Azeem; Khan, Masood; Ali, Ramzan

    2015-11-01

    This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  20. Experiments on magneto-hydrodynamics instabilities with ECH/ECCD in FTU using a minimal real-time control system

    NASA Astrophysics Data System (ADS)

    Sozzi, C.; Galperti, C.; Alessi, E.; Nowak, S.; Apruzzese, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Bruschi, A.; Buratti, P.; Calabrò, G.; Esposito, B.; Figini, L.; Garavaglia, S.; Granucci, G.; Grosso, L. A.; Marchetto, C.; Marinucci, M.; Marocco, D.; Mazzotta, C.; Mellera, V.; Minelli, D.; Mosconi, M.; Moro, A.; Piergotti, V.; Pucella, G.; Ramogida, G.; Romano, A.; Tudisco, O.

    2015-08-01

    Experiments on real time control of magneto-hydrodynamic (MHD) instabilities using injection of electron cyclotron waves (ECW) are being performed with a control system based on only three real time key items: an equilibrium estimator based on a statistical regression, a MHD instability marker (SVDH) using a three-dimensional array of pick-up coils and a fast ECW launcher able to poloidally steer the EC absorption volume with dρ/dt = 0.1/30 ms maximum radial speed. The MHD instability, usually a tearing mode with poloidal mode number m and toroidal mode number n such that m/n = 2/1 or 3/2 is deliberately induced either by neon gas injection or by a density ramp hitting the density limit. No diagnostics providing the radial localization of the instabilities have been used. The sensitivity of the used MHD marker allows to close the control loop solely on the effect of the actuator’s action with little elaboration. The nature of the instability triggering mechanism in these plasma prevents that the stabilization lasts longer than the ECW pulse. However when the ECW power is switched on, the instability amplitude shows a marked sensitivity to the position of the absorption volume with an increase or decrease of its growth rate. Moreover the suppression of the dominant mode by ECRH performed at high plasma density even at relatively low power level facilitates the development of a secondary mode. This minimized set of control tools aim to explore some of the difficulties which can be expected in a fusion reactor where reduced diagnostic capabilities and reduced actuator flexibility can be expected.

  1. An extended HLLC Riemann solver for the magneto-hydrodynamics including strong internal magnetic field

    NASA Astrophysics Data System (ADS)

    Guo, Xiaocheng

    2015-06-01

    By revisiting the derivation of the previously developed HLLC Riemann solver for magneto-hydrodynamics (MHD), the paper presents an extended HLLC Riemann solver specifically designed for the MHD system in which the magnetic field can be decomposed into a strong internal magnetic field and an external component. The derived HLLC Riemann solver satisfies the conservation laws. The numerical tests show that the extended solver deals with the global MHD simulation of the Earth's magnetosphere well, and maintains high numerical resolution. It recovers the previously developed HLLC Riemann solver for the MHD as long as the internal field is set to zero. Thus, it is backward compatible with the previous HLLC solver, and suitable for the MHD simulations no matter whether a strong internal magnetic field is included or not.

  2. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  3. Measurements of Prompt and MHD-Induced Fast Ion Loss from National Spherical Torus Experiment Plasmas

    SciTech Connect

    D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod'ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij

    2002-10-15

    A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.

  4. Toward 3D MHD modeling of neoclassical tearing mode suppression by ECCD

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Westerhof, E.

    2012-09-01

    We propose a framework to extend the magnetohydrodynamic (MHD) equations to include electron cyclotron current drive (ECCD) and discuss previous models proposed by Giruzzi et al. [2] and by Hegna and Callen [3]. To model neoclassical tearing mode (NTM) instabilities and study the growth of magnetic islands as NTMs evolve, we employ the nonlinear reduced-MHD simulation JOREK. We present tearing-mode growth-rate calculations from JOREK simulations.

  5. Experimental investigation of magnetohydrodynamic instabilities in a Magneto-Plasma-Dynamic thruster

    NASA Astrophysics Data System (ADS)

    Zuin, M.; Agostini, M.; Cavazzana, R.; Martines, E.; Serianni, P. Scarin G.; Antoni, V.; Bagatin, M.; Andrenucci, M.; Paganucci, F.; Rossetti, P.; Signori, M.

    2004-09-01

    An extensive experimental investigation has been carried out in order to understand the role of magnetohydrodynamic (MHD) instabilities on the reduced performance of Magneto-Plasma-Dynamic (MPD) thrusters when operating at high current. MPDs are electromagnetic plasma accelerators, currently under investigation as a possible, high-power electric propulsion option for primary space missions, whose thrust efficiency is limited by the onset of critical regimes observed when the current rises beyond a threshold value. Recently, it has been found (ZUIN M. et al. Phys. Rev. Lett., 95 (2004) 225003) that in these devices large-scale MHD helical kink mode instabilities develop, with m/n = 1/1 azimuthal and axial periodicity, and that the critical current condition is well described by the Kruskal-Shafranov criterion. In this paper the spatial structure of the kink has been reconstructed by magnetic and electrostatic probes and the results of two photomultiplier arrays, 16 channels each, collecting total radiation in the range 350-850 nm, confirm the helical structure of a kink with nonuniform pitch.

  6. Review of Recent Results in Global MHD Modeling: ISTP Project Scientist for Theory and Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Curtis, Steven

    1999-01-01

    Global MHD (magnetohydrodynamic) simulations have shown a remarkable ability to describe the global dynamics of geospace. The limitations of the physical approximations underlying MHD would seem to limit the effectiveness of these codes, since kinetic and hybrid effects should manifest themselves by cross-scale coupling from microscales to mesoscales to global scales. However three effects appear to allow the codes to operate much more successfully than one would at first believe. They are:(l) the globally self-consistent nature of the codes with very well defined exterior boundary conditions (the solar wind) which allows the proper intercommunication between magnetospheric regions on MHD scales, (2) the control by global dynamics of the boundary layer locations where micro and meso scale processes operate, and (3) the critical role of numerical diffusion and with a sufficiently high resolution grid, the use of an empirical resistivity term, which if set at a level where the major magnetosphere boundaries properly calibrate against their observed locations, appear to well represent the effects of kinetic and hybrid processes on the global dynamics. The effectiveness of the global MHD codes, which have been developed under the ISTP mission, in describing Wind, Polar and Geotail observations, as well as ground-based observations are described. Particular emphasis is placed upon the Polar imaging data which when combined with ground-based data and global MHD-based synthetic aurora and convection patterns provide a powerful tool in understanding the final link in the solar-terrestrial chain: coupling into the atmosphere and ionosphere.

  7. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    SciTech Connect

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.

    2010-03-15

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

  8. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    NASA Astrophysics Data System (ADS)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.

    2010-03-01

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n =1-20). The results use the compressible MHD model and depend on a precise representation of "ideal-like" and "vacuumlike" or "halo" regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 108 and 103 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 105, which is much larger than experimentally measured values using Te values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

  9. Magneto-hydrodynamics Simulation in Astrophysics

    NASA Astrophysics Data System (ADS)

    Pang, Bijia

    2011-08-01

    Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and ATI GPU) using different languages (FORTRAN, C, Cell, CUDA and OpenCL). Initial performance results for these systems are presented, and we conclude that substantial gains in performance over traditional systems are possible. In particular, it is possible to extract a greater percentage of peak theoretical performance from some heterogeneous systems when compared to x86 architectures.

  10. MHD considerations for a self-cooled liquid lithium blanket

    SciTech Connect

    Sze, D.K.; Mattas, R.F.; Hull, A.B.; Picologlou, B.F.; Smith, D.L.

    1992-03-01

    The magnetohydrodynamic (MHD) effects can present a feasibility issue for a self-cooled liquid metal blanket of magnetically confined fusion reactors, especially inboard regime of a tokamak. This pressure drop can be significantly reduced by using insulated wall structure. A self-healing insulating coating has been identified, which will reduce the pressure drop by more than a factor of 10. The future research direction to further quantify the performance of this coating is also outlined.

  11. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  12. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    NASA Technical Reports Server (NTRS)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  13. Finite dissipation and nonuniversality in magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Berera, Arjun; McKay, Mairi; Goldstraw, Erin; McComb, W. David

    2015-11-01

    A model equation for the Reynolds number dependence of the dimensionless dissipation rate Cɛ in homogeneous magnetohydrodynamic turbulence in the absence of a mean magnetic field is derived from the real-space energy balance equation, leading to Cɛ =Cɛ , ∞ + C /R- + O (1 /R-2)) , where R- is a generalized Reynolds number. The constant Cɛ , ∞ is here defined in terms of the Elsässer fields and is shown to describe the total energy transfer flux. This flux depends on magnetic and cross helicities, because these affect the nonlinear transfer of energy, suggesting that the value of Cɛ , ∞ is not universal. Direct numerical simulations for freely decaying and stationary MHD turbulence were conducted on up to 20483 grid points, showing good agreement between data and the model for both cases, different initial values of cross and magnetic helicities and different forcing schemes. The ideas introduced here can be used to derive similar model equations for other turbulent systems.

  14. General polytropic magnetohydrodynamic cylinder under self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Xing, Heng-Rui

    2016-02-01

    Based on general polytropic (GP) magnetohydrodynamics (MHD), we offer a self-similar dynamic formalism for a magnetized, infinitely long, axially uniform cylinder of axisymmetry under self-gravity with radial and axial flows and with helical magnetic field. We identify two major classes of solution domains and obtain a few valuable MHD integrals in general. We focus on one class that has the freedom of prescribing a GP dynamic equation of state including the isothermal limit and derive analytic asymptotic solutions for illustration. In particular, we re-visit the isothermal MHD problem of Tilley & Pudritz (TP) and find that TP's main conclusion regarding the MHD solution behaviour for a strong ring magnetic field of constant toroidal flux-to-mass ratio Γϕ to be incorrect. As this is important for conceptual scenarios, MHD cylinder models, testing numerical codes and potential observational diagnostics of magnetized filaments in various astrophysical contexts, we show comprehensive theoretical analysis and reasons as well as extensive numerical results to clarify pertinent points in this Letter. In short, for any given Γϕ value be it small or large, the asymptotic radial scaling of the reduced mass density α(x) at sufficiently large x should always be ˜x-4 instead of ˜x-2 contrary to the major claim of TP.

  15. SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu

    2014-09-20

    Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.

  16. A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.

    2012-08-01

    This thesis presents an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. The code has been parallelized by adapting the framework provided by Gadget-2. A set of standard test problems, including one part in a million amplitude linear MHD waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities are presented. Finally we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. We provide a rigorous methodology for verifying a numerical method on two dimensional Kelvin-Helmholtz instability. The test problem was run in the Pencil Code, Athena, Enzo, NDSPHMHD, and Phurbas. A strict comparison, judgment, or ranking, between codes is beyond the scope of this work, although this work provides the mathematical framewor! k needed for such a study. Nonetheless, how the test is posed circumvents the issues raised by tests starting from a sharp contact discontinuity yet it still shows the poor performance of Smoothed Particle Hydrodynamics. We then comment on the connection between this behavior and the underlying lack of zeroth-order consistency in Smoothed Particle Hydrodynamics interpolation. In astrophysical magnetohydrodynamics (MHD) and electrodynamics simulations, numerically enforcing the divergence free constraint on the magnetic field has been difficult. We observe that for point-based discretization, as used in finite-difference type and pseudo-spectral methods, the divergence free constraint can be satisfied entirely by a choice of interpolation used to define the derivatives of the magnetic field. As an example we demonstrate a new class of finite-difference type derivative operators on a regular grid which has the divergence free property. This principle clarifies the nature of magnetic monopole errors. The principles and techniques demonstrated in this chapter are particularly useful for the magnetic field, but can be applied to any vector field. Finally, we examine global zoom-in simulations of turbulent magnetorotationally unstable flow. We extract and analyze the high-current regions produced in the turbulent flow. Basic parameters of these regions are abstracted, and we build one dimensional models including non-ideal MHD, and radiative transfer. For sufficiently high temperatures, an instability resulting from the temperature dependence of the Ohmic resistivity is found. This instability concentrates current sheets, resulting in the possibility of rapid heating from temperatures on the order of 600 Kelvin to 2000 Kelvin in magnetorotationally turbulent regions of protoplanetary disks. This is a possible local mechanism for the melting of chondrules and the formation of other high-temperature materials in protoplanetary disks.

  17. MHD Contractors' Review Meeting: Abstracts

    NASA Astrophysics Data System (ADS)

    The objectives of the Integrated Topping Cycle project are to design, construct, and deliver all prototypical hardware necessary to conduct long duration integrated MHD topping cycle proof-of-concept tests at the Component Development and Integration Facility (CDIF) in Butte, Montana. The results of the long duration tests will augment the existing engineering data base on MHD power train reliability, maintainability, durability, and performance, and will serve as a basis for scaling up to the early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include the following three systems: (1) a slagging coal combustion subsystem with a rated capacity of 50 MW thermal input, capable of operation with eastern (Illinois) or western (Montana Rosebud) coal; (2) a channel subsystem consisting of a segmented supersonic nozzle, channel (with current controls), and diffuser, capable of power output of 1.5 MW(sub e); and (3) a current consolidation subsystem to interface the channel with the existing facility inverter.

  18. Application of a magnetohydrodynamic element in the control loop of a rotating spacecraft with cavities partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Nazirov, R. R.; Rabinovich, B. I.; Mytarev, A. I.

    2008-06-01

    This paper is a continuation of [1 3] and a generalization of the results for a rotating spacecraft with cavities partially filled with liquid and equipped with an operational magnetohydrodynamic (MHD) element in the loop of its attitude control. This element makes possible the creation of hingeless systems of stabilization and orientation that do not require rocket propellant consumption. The application of an MHD element is considered for stabilization in the mode of spin-up of a spacecraft not having gyroscopic stability.

  19. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 3. Tests in the U-25B facility: MHD generator tests No. 4 and 5

    SciTech Connect

    Picologlou, B F; Batenin, V M

    1980-07-01

    A description of the modifications made to improve the plasma parameters of the U-25B Facility is presented. The oxygen enrichment system was modified to allow oxygen enrichment of up to 50% (by volume) ahead of the preheaters. Optimum design and operating conditions of the seed injection system were defined as a result of experimental investigations. An account of the extensive diagnostic studies performed and a description of the measurement techniques and of the new submillimeter laser interferometer are given. The performance of the MHD generator is analyzed for different operating modes. Studies of fluctuations and nonuniformities, current take-off distributions, local electrical analysis, overall heat transfer history of the MHD channel, and an extensive parametric study of the generator are presented. A detailed account of the complete disassembly and inspection of channel No. 1 after more than 100 hours of operation with the combustor, and of the condition of its various elements is also given.

  20. Anisotropic scaling of magnetohydrodynamic turbulence.

    PubMed

    Horbury, Timothy S; Forman, Miriam; Oughton, Sean

    2008-10-24

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3. PMID:18999759

  1. Anisotropic Scaling of Magnetohydrodynamic Turbulence

    SciTech Connect

    Horbury, Timothy S.; Forman, Miriam; Oughton, Sean

    2008-10-24

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k{sub parallel}{sup -2} spectrum but is also consistent with the presence of a 'critical balance' style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.

  2. Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Wardle, Mark

    2015-08-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.

  3. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7

    SciTech Connect

    Picologlou, B F; Batenin, V M

    1981-01-01

    A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.

  4. Outline of fast analyzer for MHD equilibrium FAME

    NASA Astrophysics Data System (ADS)

    Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto

    1994-02-01

    The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments.

  5. Evaluation of materials for the MHD steam bottoming plant

    SciTech Connect

    Natesan, K.; Swift, W.M.

    1989-05-01

    Test data have been obtained on the corrosion of several commercial ASME-coded alloys and their weldments by exposing internally cooled ring specimens to simulated magnetohydrodynamics (MHD) environments. The specimens, coated with a K/sub 2/SO/sub 4/-rich deposit, were exposed for times up to 2000 h at metal temperatures of 762, 593, and 567/degree/C to simulated MHD conditions for the intermediate-temperature air heater (ITAH), ITAH transition region (transition from a low- to medium-chromium alloy to a high-chromium steel), and secondary superheater (SSH), respectively. This paper discusses, in detail, the observed corrosion scale morphologies of various exposed specimens. Data on scale thickness, depth of intergranular penetration, and metal recession are presented, and the results are used to assess the corrosion behavior of various materials for application in the MHD steam bottoming plant. 6 refs., 7 figs., 3 tabs.

  6. High Resolution Simulations of Relativistic Hydrodynamic and MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan; MacFadyen, A.

    2013-01-01

    We present a program of simulations designed to investigate the basic properties of relativistic hydrodynamic and magnetohydrodynamic (MHD) turbulence. We employ a well-tested 5th-order accurate numerical scheme at resolutions of up to 2048^3 zones for hydrodynamic turbulence, and a minimally diffusive 2nd-order scheme at resolutions of up to 1024^3 in the case of relativistic MHD. For the hydrodynamic case, we simulate a relativistically hot gas in a cubic periodic domain continuously driven at large scales with Lorentz factor of about 3. We find that relativistic turbulent velocity fluctuations with Γ β > 1 persist from the driving scale down to scales an order of magnitude smaller, demonstrating the existence of a sustained relativistic turbulent cascade. The power spectrum of the fluid 4-velocity is broadly Kolmogorov-like, roughly obeying a power law with 5/3 index between scales 1/10 and 1/100 of the domain. Departures from 5/3 scaling are larger for the power spectrum of 3-velocity. We find that throughout the inertial interval, 25% of power is in dilatational modes, which obey strict power law scaling between 1/2 and 1/100 of the domain with an index of 1.88. Our program also explores turbulent amplification of magnetic fields in the conditions of merging neutron stars, using a realistic equation of state for dense nuclear matter (ρ ˜ 10^13 g/cm^3). We find that very robustly, seed fields are amplified to magnetar strength (≥ 4 * 10^16 Gauss) within ˜1 micro-second for fluid volumes near the size of the NS crust thickness <10 meters. We present power spectra of the kinetic and magnetic energy taken long into the fully stationary evolution of the highest resolution models, finding the magnetic energy to be in super-equipartition (4 times larger) with the kinetic energy through the inertial range. We believe that current global simulations of merging NS binaries are insufficiently resolved for studying field amplification via turbulent processes. Larger magnetic fields, as found in our high resolution local simulations, may have consequences for gravitational wave signals, GRB precursor events, radio afterglows, and optical afterglows due to emission from ejected radioactive r-process material.

  7. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    SciTech Connect

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-11-15

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  8. Intermittent structures and magnetic discontinuities in MHD turbulence and solar wind

    NASA Astrophysics Data System (ADS)

    Greco, A.; Matthaeus, W. H.; Servidio, S.; Chuychai, P.; Dmitruk, P.

    2008-12-01

    In this work we re-examined the statistics of rapid spatial variations of the magnetic field in simulations of Hall magnetohydrodynamic (HMHD) turbulence, using analysis of intermittency properties of the turbulence, and also using methods often employed to identify discontinuities in the solar wind (as in the earlier work of Tsurutani&Smith 1979). The hypothesis is that the statistics of intermittent events might be related to the statistics of classical MHD discontinuities. Indeed, those methods give similar distributions of events, often identifying the same structures. This suggests that observed discontinuities might not be static solutions to the MHD equations, but instead may be related to flux tube boundaries and intermittent structures that appear spontaneously in MHD turbulence. Then, we further examine the link between intermittency and MHD discontinuities, directly comparing statistical analysis from solar wind data and 3D and 2D simulations of MHD turbulence. The comparison between ACE solar wind data and simulations of magnetohydrodynamic turbulence shows a good agreement in the Waiting-Time analysis of magnetic field discontinuities. This result adds to evidence that solar wind magnetic structures may emerge fast and locally from nonlinear dynamics that can be properly described in the framework of MHD theory. Finally, probability distribution functions of increments in ACE data and in simulations reveal a robust structure consisting of small random currents, current cores, and intermittent current sheets. This classification provides a real-space picture of the nature of intermittent MHD turbulence.

  9. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  10. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  11. Magneto-hydrodynamically stable axisymmetric mirrors

    SciTech Connect

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W.; Berk, H. L.; Simonen, T. C.

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  12. Multiple time scale methods in tokamak magnetohydrodynamics

    SciTech Connect

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.

  13. Inclusion of parallel fluid flow in the KITES 3D MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel

    2014-10-01

    The KITES (Kyoto ITerative Equilibrium Solver) code is being developed for the calculation of flowing MHD (magnetohydrodynamic) equilibria in nonsymmetric devices. [Daniel Raburn and Atsushi Fukuyama, Plasma and Fusion Research: Regular Articles 7, 240381 (2012).] An update on the code is presented, including preliminary results on the calculation of equilibria with purely parallel flow.

  14. Optimum performance of MHD-augumented chemical rocket thrusters for space propulsion applications

    SciTech Connect

    Schulz, R.J.; Chapman, J.N.

    1995-12-31

    The use of magnetohydrodynamic (MHD) acceleration of a chemical rocket exhaust stream, to augment the thrust of small, space-propulsion type chemical thrusters was examined, with the purpose of identifying {open_quotes}optimum{close_quotes} performance. Optimum performance is defined herein as the highest spacecraft acceleration levels with concurrent highest specific impulse, that the hybrid propulsion system can generate, given a fixed mass flow of propellant and fixed chamber pressure (150 psia). The exhaust nozzle-MHD channel selected was of the simplest kind, a three-segmented Faraday generator, for simplicity in design, manufacture, and power control circuit assembly. The channel expanded in only one plane or direction, the plane intersecting the electrodes. The distance between the side walls was fixed. Three different fuel oxidizer combinations were investigated: H{sub 2} - O{sub 2}, fuel oil - O{sub 2}, and hydrazine - nitrogen tetroxide. These represent the spectrum of typical liquid rocket propellants. The fraction of the propellant flow representing potassium, as K{sub 2}CO{sub 3}, was kept constant at 1/2 percent of the total propellant flow. The results of the study verify that the MHD-augmented chemical thruster will be an important propulsion system option for space missions requiring accelerations of the order of milli-gravities with specific impulses of the order of 4,000 seconds. The system study showed that a 3-segmented, diverging Faraday channel with about a 2{degrees} divergence angle, enclosed by a 4 Tesla magnet, was capable of providing exhaust gas exit velocities of the order of 40000 m/s for all three propellant combinations. Hence, a hybrid propulsion system of the type identified here is capable of providing thrusts of the order of 400 Newtons, spacecraft accelerations of the order 2 milli-gravities, with electric power requirements of about 2.4 megawatts, based on propellant total mass flow rates of about 10 grams per second.

  15. Validation of Magnetospheric Magnetohydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Curtis, Brian

    Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar wind, the OpenGGCM has a large region of Earthward flow velocity (Ux) in the current sheet region that grows as time progresses in a compressed environment. BATS-R-US Bz , rho and Ux stabilize to a near constant value approximately one hour into the run under high compression conditions. Under high compression, the SWMF parameters begin to oscillate approximately 100 minutes into the run. All three models have similar magnetopause positions under low pressure conditions. The OpenGGCM current sheet velocities along the Sun-Earth line are largest under low pressure conditions. The results of this analysis indicate the need for accounting for model uncertainties and differences when comparing model predictions with data, provide error bars on model prediction in various magnetospheric regions, and show that the magnetotail is sensitive to the preconditioning time.

  16. Status of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Lineberry, John T.

    2007-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  17. Liquid-metal flows: Magnetohydrodynamics and applications; Proceedings of the Fifth Beersheba International Seminar on Magnetohydrodynamic Flows and Turbulence, University of the Negev, Beersheba, Israel, Mar. 2-6, 1987

    NASA Astrophysics Data System (ADS)

    Branover, Herman; Mond, Michael; Unger, Yeshajahu

    The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion ('OMACON') systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surface determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.

  18. Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Mehta, Unmeel B.

    2003-01-01

    A new parabolized Navier-Stokes (PNS) algorithm has been developed to efficiently compute magnetohydrodynamic (MHD) flows in the low magnetic Reynolds number regime. In this regime, the electrical conductivity is low and the induced magnetic field is negligible compared to the applied magnetic field. The MHD effects are modeled by introducing source terms into the PNS equation which can then be solved in a very efficient manner. To account for upstream (elliptic) effects, the flowfields are computed using multiple streamwise sweeps with an iterated PNS algorithm. Turbulence has been included by modifying the Baldwin-Lomax turbulence model to account for MHD effects. The new algorithm has been used to compute both laminar and turbulent, supersonic, MHD flows over flat plates and supersonic viscous flows in a rectangular MHD accelerator. The present results are in excellent agreement with previous complete Navier-Stokes calculations.

  19. Global MHD Simulations of Space Plasma Environments: Heliosphere, Comets, Magnetospheres of Plants and Satellites

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.

    2000-01-01

    Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.

  20. Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number

    NASA Astrophysics Data System (ADS)

    Sukoriansky, Semion; Zemach, Efi

    2016-03-01

    Flows of electrically conducting fluids under the action of external magnetic field present an example of strongly anisotropic turbulence. Such flows are not only important for different engineering applications, but also provide an interesting framework for studies of quasi-two-dimensional turbulence with strongly modified transport properties in easily controllable laboratory experiments. We present theoretical results that advance our understanding of magnetohydrodynamic (MHD) flows with low magnetic Reynolds number by treating this phenomenon within the quasi-normal scale elimination (QNSE) theory. Previous applications of the theory to turbulent flows with stable stratification and solid body rotation have demonstrated that QNSE is a powerful tool for studies of anisotropic turbulent flows. We derive expressions for scale-dependent eddy viscosities and eddy diffusivities in the directions parallel and normal to the external magnetic field and investigate progressive anisotropization of turbulent transport of momentum and passive scalar. The theory yields analytical expressions for anisotropic one-dimensional spectra of MHD turbulence. In particular, the theory sheds light upon the modification of the Kolmogorov k-5/3 spectrum by anisotropic Ohmic (Joule) dissipation.