Magnetohydrodynamic power generation
NASA Technical Reports Server (NTRS)
Smith, J. L.
1984-01-01
Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.
1985-01-01
This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig.
Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))
1992-03-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.
Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants
NASA Technical Reports Server (NTRS)
Owens, W.; Berg, R.; Murthy, R.; Patten, J.
1981-01-01
A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.
Barnes, P.R. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)
1992-03-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.
ERIC Educational Resources Information Center
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering)
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Synopsis of Magnetohydrodynamic Power Generation
NASA Technical Reports Server (NTRS)
Smith, J. L.
1986-01-01
Concise summary of magnetohydrodynamic (MHD) theory, history, and future trends presented in report. Worldwide research on MHD covered, and selected data from key research projects included. Magnetohydrodynamic generator produces electric current by passing fluid at high speed through strong magnetic field. Fluid ionized gas, plasma, or liquid metal. Magnetohydrodynamic generators offer potential for high efficiency, low power cost, and cleaner emissions.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
Analysis for trace elements in magnetohydrodynamic (MHD) pilot power plant effluents
Clevenger, T.E.; Hinderberger, E.J. Jr.; Yates, D.A.; James, W.D.
1984-04-01
Instrumental neutron activation analysis and inductively coupled argon plasma emission were evaluated as to their applicability for the multielement analysis of coal, slag, and fly ash from the University of Tennessee Space Institute's Magnetohydrodynamic pilot plant. Both techniques were successfully used in the analysis of these samples. The agreement between results from the instrumental neutron activation analysis and inductively coupled argon plasma emission methods was excellent, as was their agreement with NBS standard reference material values. The solubilization procedure developed for the ICAP analysis was capable of dissolving totally any of the MHD coal, slag, and fly ash samples. There is still a problem with the loss of the volatile elements and silicon when this technique is used. 39 references.
NASA Technical Reports Server (NTRS)
1981-01-01
The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.
An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator
Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.
Analysis for trace elements in magnetohydrodynamic (MHD) pilot power plant effluents
Clevenger, T.E.
1984-04-01
Instrumental neutron activation analysis and inductively coupled argon plasma emission were evaluated for their applicability for the multi-element analysis of coal, slag and fly ash from the University of Tennessee Space Institute's MHD pilot plant. Both techniques were successfully used in the analysis and the agreement between the results was excellent. The solubilisation procedure developed for the ICAP analysis was capable of dissolving totally any of the MHD coal, slag and fly ash samples. There is still a problem with the loss of volatile elements and silicon when this technique is used.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R. (Pittsburgh, PA)
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.
1993-09-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.
MHD (Magnetohydrodynamics) recovery and regeneration
McIlroy, R.A.; Probert, P.B.; Lahoda, E.J.; Swift, W.M.; Jackson, D.M.; Prasad, J.; Martin, J.; Rogers, C.; Ho, K.K.; Senary, M.K.; Lee, S. (Babcock and Wilcox Co., Alliance, OH (USA). Research Center; Westinghouse Electric Corp., Pittsburgh, PA (USA); Argonne National Lab., IL (USA); Tennessee Univ., Tullahoma, TN (USA). Space Inst.; Hudson Engineering (USA); Babcock and Wilcox Co., Alliance, OH (USA). Re
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
F. A. Hals; D. B. Stickler; R. Kessler; R. E. Gannon
1978-01-01
In a magnetohydrodynamic (MHD) generator an electrically conducting gas replaces the rotating copper coil of the currently used electric generator. This substitution involves a principle which was recognized 150 years ago by Faraday. Development of the MHD process as an industrial method of generating electricity, however, had to wait until a better understanding of the dynamics and handling of hot
NASA Astrophysics Data System (ADS)
Anderson, Brett; Burstein, Alison; Gentile, Charles
2007-11-01
The conceptual design of a 2 GW direct drive IFE power reactor may provide an opportunity to directly harness the power in the post detonation ion fields. Conceptually, this can be accomplished by utilizing a magnetic cusp field to guide the ions into equatorial and polar ion dumps. The ion fields resulting from this magnetic intervention configuration pose a distinct challenge, as their intensity may have the potential to damage the ion dumps. One method of addressing this challenge is by employing MHD conversion to transform the internal energy of the fields directly into electrical energy, a process which would also reduce the fields' strength. In order to analyze the potential of MHD conversion in IFE, results of previous work in other applications are examined in the context of this project. Preliminary assessment reveals that MHD conversion is a promising solution to this issue, although a number of engineering and practical concerns will need to be addressed. This paper concentrates on the primary issues associated with MHD conversion. Support for this research was provided by the U.S. Department of Energy's Science Undergraduate Laboratory Internship (SULI) Program.
Not Available
1988-03-15
This progress report of the Space Power MHD System project presents the accomplishments during 1 November 1987 through 31 January 1988. The scope of work covered encompasses the definition of an MHD power system conceptual design and development plan (Task 1). Progress included the following: Subcontracts were issued to the MIT Plasma Fusion Center and the Westinghouse R and D Center. The performance of the 100 MW 500 sec. power system was optimized and the design concept finalized, including mass and energy balances. Mass and cost estimates were prepared. A design review was held at DOE/PETC. This also included the review of the technical issues definition and of the R and D Plan. Following the review, a final iteration on the conceptual design was initiated. Formulation of the R and D Plan was continued. Preparation of the Task 1 R and D Report was initiated. 12 figs.
Mesofluidic magnetohydrodynamic power generation
Fucetola, Jay J
2012-01-01
Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
MHD I: Demonstrate Magnetohydrodynamic Propulsion in a Minute
NSDL National Science Digital Library
Remember the silent caterpillar drive from the movie The Hunt for Red October? The caterpillar drive was a fictional magnetohydrodynamic propulsion system. Magnetohydrodynamic (MHD) propulsion is a means of using electrical current, instead of a noisy propeller, to push a ship through the water. Surprisingly enough, a working example of this futuristic drive system is quite easy to build. Assuming that you've got the materials handy, you can build one in about a minute. This is a great student project or a good demonstration.
NASA Technical Reports Server (NTRS)
Hoover, D. Q.
1976-01-01
Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.
Pulse Detonation Rocket Magnetohydrodynamic Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.
2003-01-01
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.
Conceptual Design Of A Coal-fired Mhd Retrofit For Beijing No. 3 Thermal Power Plant In China
S. Ciwon; J. N. Chapman; N. R. Johanson
1990-01-01
Coal-fired Magnetohydrodynamics (MHD) retrofit of an existing utility power plant via a steam connection has been selected as a technical approach for demonstration of actual commercialization in the MHD national program in China. A scientific team consisting of the three major MHD research institutions and two units under PRC Department of Energy are directing the conceptual design of the MHD
The Galerkin boundary node method for magneto-hydrodynamic (MHD) equation
NASA Astrophysics Data System (ADS)
Tatari, Mehdi; Ghasemi, Fatemeh
2014-02-01
In this research, a variational reformulation for magneto-hydrodynamic (MHD) problem is derived. Existence and uniqueness of the weak solution are discussed. The Galerkin boundary node method is a boundary meshless method which uses MLS basis functions to approximate solution of problems. This paper tries to apply this method for a variational form of the magneto-hydrodynamic (MHD) problem. Numerical experiments reveal that the method is effective and convenient for this problem.
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
Rackliffe, G.B.; Crouse, J.C.; Legro, J.R.; Kruse, V.J.
1987-01-01
This paper quantifies the quasi-dc currents induced on a power system by a simulated magnetohydrodynamic pulse (MHD-EMP). The determination of the quasi-dc currents is based upon the similarity between the effects of MHD-EMP and the impact of geomagnetic storms. The paper highlights how the methodology to calculate geomagnetic-induced currents from solar storms was modified to calculate the currents induced by a MHD-EMP event. After specification of the MHD-EMP environment and the selection of a power system to study, the quasi-dc currents induced in the power system were calculated.
Laser-powered MHD generators for space application
Jalufka, N.W.
1986-10-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Magnetohydrodynamics in a closed cycle inert gas MHD generator
Kabashima, S.; Yamasaki, Y.; Shioda, S.
1987-06-01
In the paper is discussed nonequilibrium MHD power generation with high enthalpy extraction. The shock tunnel experiment with a disk generator-driven helium gas could result in 21.4 percent enthalpy extraction for 2200 K gas temperature. The experimental results can be qualitatively explained by a quasi-one dimensional approach which can take into account the dynamical processes such as fluctuations and the shock wave of working gas. Since externally induced fluctuations by control error may reduce the performance of the generator, the parameters of the generator must be carefully controlled. 11 references.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
Nuclear reactor magnetohydrodynamic power generator for directed energy weapons
NASA Astrophysics Data System (ADS)
Swallom, Daniel W.
The SDI electrical power requirements for directed energy weapons (DEW) may range from tens of megawatts to over hundreds of megawatts. For this application, where the power requirement is continuous for a period to time ranging from tens to hundreds or thousands of seconds, nuclear magnetohydrodynamic (MHD) power generation provides an attractive method for producing the required power levels. The MHD power system offers the advantages of simplicity of operation because of no moving or rotational parts; no upper limit on gas inlet temperature, which is a restriction in the case of rotating machinery; an upper limit on current output, which prevents the output current from exceeding twice the nominal current; and favorable scaling to larger size systems.
Investigations for biogas operated MHD power generators
Dahiya, R.P.; Chand, A.; Sharma, S.C.
1983-12-01
Biogas is produced from the anaerobic fermentation of the organic matter containing cellulose, such as agricultural wastes, human wastes, animal wastes, etc. It contains methane (50-70%), carbon dioxide (30-50%), and very small amounts of hydrogen and hydrogen sulphide. Adequate quantities of raw material to generate biogas are normally available in rural areas, and therefore, there is a possibility that almost all the energy requirements of the rural sector may be fulfilled by biogas. Presently in the rural sector, biogas is used mainly to provide thermal energy (for cooking, etc.), and up to a limited extent, to meet the electrical energy requirements by running electrical generators with engines powered by a mixture of oil and biogas. In this paper, the authors propose a scheme in which biogas can be used to generate electricity more efficiently by using magnetohydrodynamic (MHD) power generators. Investigations have been carried out to make feasibility studies for biogas-operated open cycle MHD power generators. Composition, temperature and electrical conductivity of the seeded (with potassium) combustion products of biogas-air/oxygen systems have been analytically investigated for different percentages of CO/sub 2/ in biogas and at various combustor pressures for a seeding ratio of 1 percent by weight. The effect of preheating and enrichment of air on temperature and electrical conductivity of the seeded combustion plasmas has also been studied.
Performance of rf-assisted magnetohydrodynamics power generator
Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki
2005-11-15
The present paper describes the performance of a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamics (MHD) electrical power generator and compares it to a multiple-load MHD generator. rf heating which is superimposed on self-excited Joule heating preionizes cesium-seeded helium gas independent of the in situ loading conditions, whereby Hall potential profile is improved and electron temperature is increased. Furthermore, the dynamic stabilization effect cancels ionization instability and homogenizes plasma structure, which is the most important superiority of the rf-power assistance over a conventional plasma actuation by loading-rate control. The power-generating performance is significantly improved with the aid of the rf power under wide seeding and loading conditions, where the electrical load-matching characteristic is slightly changed.
Not Available
1987-06-01
This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.
Experimental program for investigation of high power density MHD
NASA Astrophysics Data System (ADS)
Lineberry, J. T.; Schmidt, H. J.; Chapman, J. N.
Research on magnetohydrodynamic (MHD) power generation, directed at the proof-of-concept of combustion MHD as a viable source for use with space-based weapons systems, is described. Currently, small-scale laboratory evaluations of a solid-aluminum, carbon-fueled hybrid combustor are being completed. Ultimate plans for this research include coupling of this combustor to an MHD generator to demonstrate high power density in the laboratory. This report includes experimental results from the initial hybrid combustor tests. The design of this combustor system and its design point are detailed. Experimental data from firings are presented and analyzed. The burn or regression rate for this fuel is summarized. The combustor tests have been successful; the design point for this system was readily achieved and sustained.
Rf-assisted magnetohydrodynamic power generation in a pure-argon plasma
Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki
2005-04-25
We describe seed-free pure-argon-plasma magnetohydrodynamic (MHD) power generation assisted by an external radio-frequency electromagnetic field to enhance the nonequilibrium plasma excitation process. The rf heating induces nonequilibrium ionization under a low total argon-gas temperature at which thermal ionization is insufficient. The rf-assisted plasma, the behavior of which is rather stable, contributes to continuous MHD energy conversion.
NASA Technical Reports Server (NTRS)
Holman, R. R.; Lippert, T. E.
1976-01-01
Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.
Power Requirement for Nonequilibrium MHD-Bypass Scramjet
NASA Technical Reports Server (NTRS)
Park, Chul; Bogdanoff, David W.; Mehta, Unmeel
2000-01-01
It has been suggested previously that the performance of scramjet propulsion system may be improved by the use of magnetohydrodynamic (MHD) energy bypass: an MHD generator could be made to decelerate the flow entering the combustor, thereby improving combustion efficiency, and the electrical power generated could be made to accelerate the flow exiting from the combustor prior to expanding through the nozzle. In one of such proposed schemes, the MHD generator is proposed to be operated at a low temperature and ionization is to be achieved under nonequilibrium by the application of an external power. In the present work, the required power of such an external source is calculated assuming a 100%-efficient nonequilibrium ionization scheme. The power required is that needed to prevent the degree of ionization from reaching equilibrium with the low gas temperature. The flow is seeded with potassium or cesium. Specific impulse is calculated with and without turbulent friction. The results show that, for typical intended flight conditions, the specific impulse obtained is substantially higher than that of a typical scramjet, but the required external-power is several times that of the power generated in the MHD generator.
MHD channel performance for potential early commercial MHD power plants
NASA Technical Reports Server (NTRS)
Swallom, D. W.
1981-01-01
The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.
Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation
Lytle, J.M.; Marchant, D.D.
1980-11-01
The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.
Rapporteur report: MHD electric power plants
NASA Technical Reports Server (NTRS)
Seikel, G. R.
1980-01-01
Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.
MHD-EMP interaction with power transmission and distribution systems
Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Barnes, P.R. (Oak Ridge National Lab., TN (United States))
1991-01-01
A nuclear detonation at altitudes of several hundred kilometers above the earth will distort the earth's magnetic field and results in a time-variation of the geomagnetic field on the earth's surface. This magnetic field interacts with the finitely conducting earth to produce a time varying electric field, also on the earth's surface. Known at the magnetohydrodynamic electromagnetic pulse (MHD-EMP), this resulting E-field can induce a net voltage in long electrical conductors, such as power transmission lines. If these conductors are electrically connected to the earth at both ends, a current can be induced to flow in the conductors, and this can cause damage or upset to certain electrical systems. This paper presents the results of a study on the interaction of the MHD-EMP with power transmission and distribution (T D) systems. A brief overview of the MHD-EMP environment used in the study is presented, and the analytical models used for estimating the coupling of this environment to T D lines are discussed. Because of the quasi-static nature of MHD-EMP, the models are essentially simple DC circuit models. However, complications arise in attempting to treat realistic line configurations having a large number of support towers and an overhead shield or neutral wires. There models are discussed in detail. 3 refs., 5 figs., 1 tab.
MHD-EMP interaction with power transmission and distribution systems
Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States)
1991-12-01
A nuclear detonation at altitudes of several hundred kilometers above the earth will distort the earth`s magnetic field and results in a time-variation of the geomagnetic field on the earth`s surface. This magnetic field interacts with the finitely conducting earth to produce a time varying electric field, also on the earth`s surface. Known at the magnetohydrodynamic electromagnetic pulse (MHD-EMP), this resulting E-field can induce a net voltage in long electrical conductors, such as power transmission lines. If these conductors are electrically connected to the earth at both ends, a current can be induced to flow in the conductors, and this can cause damage or upset to certain electrical systems. This paper presents the results of a study on the interaction of the MHD-EMP with power transmission and distribution (T&D) systems. A brief overview of the MHD-EMP environment used in the study is presented, and the analytical models used for estimating the coupling of this environment to T&D lines are discussed. Because of the quasi-static nature of MHD-EMP, the models are essentially simple DC circuit models. However, complications arise in attempting to treat realistic line configurations having a large number of support towers and an overhead shield or neutral wires. There models are discussed in detail. 3 refs., 5 figs., 1 tab.
High power pulsed plasma MHD experiments
NASA Astrophysics Data System (ADS)
Baum, D. W.; Gill, S. P.; Shimmin, W. L.; Watson, J. D.
1982-09-01
Results of high power pulsed plasma MHD experiments are reported. An explosively driven plasma source is used to drive a Faraday mode MHD generator with an externally applied B-field of several tesla. The highest power achieved was 6 gigawatts in a 140 kJ electrical pulse delivered to a resistive load. The experimentally observed scaling relationships of power with applied B-field and electrode area are also presented.
Activities of MHD power generation in Japan
Kabashima, Shigeharu; Yamasaki, Hiroyuki
1995-12-31
Recent MHD activities are summarized. In Japan several universities and companies are concerned with NM researches and developments. The open cycle MED power generation is investigated mainly by groups of Hokkaido University, Kyoto University, and Toyohashi University of Technology. The groups of Tokyo Institute of Technology and Kyoto University accompanied with Toshiba and Mitsubishi Heavy Industry corporations have investigated the closed cycle MHD power generation.
Solar driven liquid metal MHD power generator
NASA Astrophysics Data System (ADS)
Lee, J. H.; Hohl, F.
1983-06-01
A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.
Solar driven liquid metal mhd power generator
Hohl, F.; Lee, J.H.
1983-06-14
A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a mhd generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the mhd generator thereby generating electrical power. The mixture is then separated and recycled.
Solar driven liquid metal MHD power generator
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F. (inventors)
1983-01-01
A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.
Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics
S. Ghosh; E. Siregar; D. A. Roberts; M. L. Goldstein
1996-01-01
Solar wind frequency spectra show a distinct steepening of the f-5\\/3 power law inertial range spectrum at frequencies above the Doppler-shifted ion cyclotron frequency. This is commonly attributed to dissipation due to wave-particle interactions. We consider the extent to which this steepening can be described, using a magnetohydrodynamic formulation that includes the Hall term. An important characteristic of Hall MHD
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
NASA Astrophysics Data System (ADS)
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta ?N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta ?N is increased.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-21
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Legro, J.R.; Abi-Samra, N.C.; Tesche, F.M.
1985-05-01
In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal has been defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena has been both detected in actual weapon tests and predicted from theoretical models. This volume documents a preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems, define the construction of approximate system response network models, and document the development of a unified methodology to assess equipment and systematic vulnerability. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.
Jones, A.R.
1985-08-01
This System Design Description and Specification provides the basis for the design of the magnetohydrodynamic (MHD) Power Train (PT) for a nominal 200 MWe early commercial tiHD/Steam Power Plant. This document has been developed under Task 2, Conceptual Design, of Contract DE-AC22-83PC60575 and is to be used by the project as the controlling and coordinating documentation during future design efforts. Modification and revision of this specification will occur as the design matures, and tiie-Westinghouse MHD Project Manager will be the focal point for maintaining this document and issuing periodic revisions. This document is intended to delineate the power train and-power train components requirements and assumptions that properly reflect the MHD/Steam Power Plant in the PT design. The parameters discussed in this document have been established through system calculations as well as through constraints set by technology and by limitations on materials, cost, physical processes associated with MHD, and the expected operating data for the plant. The specifications listed in this document have precedence over all referenced documents. Where this specification appears to conflict with the requirements of a reference document, such conflicts should be brought to the attention of the Westinghouse MHD Project Manager for resolution.
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1997-11-01
This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.
Power facility with a built-in multipolar MHD generator
Kovalev, K.L.; Markina, T.A. [Moscow Aviation Institute, Moscow (Russian Federation)
1995-05-01
The scheme of a power facility with a built-in multipolar MHD generator is discussed. In most papers devoted to airborne high-power MHD generators (self-contained or built into the nozzle of the propulsion unit), MHD channels are discussed that are based on a two-pole scheme. The processes of energy conversion in these MHD generators are usually accompanied by disturbances of flow in the entire channel volume, which, in many cases, is undesirable for the operation of power facilities. Depending on the number of pairs of poles, the proposed facility makes it possible to accomplish MHD conversion both in the nozzle peripheral zone and in the central part of the flow. An analysis of the methods and results of calculations of volume MHD effects for finite Hall parameters {beta} and MHD-interaction s, as well as of the output characteristics of multipolar MHD generators equipped with electrode modules of different types are given. A comparison of the theoretical and experimental data is made. A scheme involving an advanced propulsion unit fired with cryogenic fuel H{sub 2}+O{sub 2} and a built-in multipolar MHD generator is considered. The problems of using built-in multipolar MHD generators in propulsion units utilizing other fuel pairs are discussed.
NASA Astrophysics Data System (ADS)
Lorzel, Heath; Mikellides, Pavlos G.
2011-05-01
The time-dependent, 2[1/2]-dimensional, axisymmetric, magnetohydrodynamics (MHD) solver, MACH2 has been upgraded to include the effects of nonequilibrium air chemistry in order to properly model weakly ionized flows over high-speed vehicles. The thermochemical model was subjected to several validation cases such as comparisons to the experimentally deduced shock stand-off distance of nitrogen flow over spheres, the shock stand-off distance of spheres fired into air in a ballistic test facility, and the electron number density on the surface of the Ram-C re-entry experiment. Furthermore, the magnetic induction equation has been upgraded with new verified models that compute the Hall effect, ion slip terms, and an applied axial electric field. Finally, simulations of an idealized MHD electrical power generator are compared with existing analytic solutions, demonstrating the applicability of the improved numerical code to model, analyze and design MHD power generators onboard high-speed vehicles.
Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle
NASA Astrophysics Data System (ADS)
Lian, Kun; Heng, Khee-Hang
2001-09-01
This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.
NASA Astrophysics Data System (ADS)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system wit
R. Matsumoto; T. Tajima; M. Kaisig; K. Shibata; Y. Ishido; S. Tsuneta; G Kawai; H. Kurokawa; M. Akioka; L. Acton; K. Strong; N. Nitta
1992-01-01
The soft X-ray telescope on the Yohkoh mission enabled us to observe the evolution of emerging flux regions (EFR) in coronal X-rays with high spatial and temportal resolution. Futhermore, we now have enough computing capability to perform three-dimensional MHD simulation of EFRs with sufficient spacial resolution to study details of the flux emergence process. These new tools provide the opportunity
Research on a super-small-scale MHD power system
He, Z.; Huam, L.Z.; Yao, F.G. )
1994-03-01
This paper describes a super-small-scale MHD power system, which can generate 4--10W pulse power with a plasma produced by an explosive or combustion as a working substance. Heat shielding material was made and tested, with the result that electrical insulation is desirable. This power generator can be used as an electrical power source of rocket or missile fuses.
NASA Astrophysics Data System (ADS)
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Harada, Nobuhiro
2011-01-01
Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.
NASA Astrophysics Data System (ADS)
Knight, Travis; Anghaie, Samim
2004-02-01
Very low specific-mass power generation in space is possible using Vapor Core Reactors with Magnetohydrodynamic (VCR/MHD) generator. These advanced reactors at the conceptual design level have potential for the generation of tens to hundreds of megawatts of power in space with specific mass of about 1 kg/kWe. Power for nuclear electric propulsion (NEP) is possible with almost direct power conditioning and coupling of the VCR/MHD power output to the VASIMR engine, MPD, and a whole host of electric thrusters. The VCR/MHD based NEP system is designed to power space transportation systems that dramatically reduce the mission time for human exploration of the entire solar system or for aggressive long-term robotic missions. There are more than 40 years of experience in the evaluation of the scientific and technical feasibility of gas and vapor core reactor concepts. The proposed VCR is based on the concept of a cavity reactor made critical through the use of a reflector such as beryllium or beryllium oxide. Vapor fueled cavity reactors that are considered for NEP applications operate at maximum core center and wall temperatures of 4000 K and 1500K, respectively. A recent investigation has resulted in the conceptual design of a uranium tetrafluoride fueled vapor core reactor coupled to a MHD generator. Detailed neutronic design and cycle analyses have been performed to establish the operating design parameters for 10 to 200 MWe NEP systems. An integral system engineering-simulation code is developed to perform parametric analysis and design optimization studies for the VCR/MHD power system. Total system weight and size calculated based on existing technology has proven the feasibility of achieving exceptionally low specific mass (? ~1 kg/kWe) with a VCR/MHD powered system.
MHD conversion of solar energy. [space electric power system
NASA Technical Reports Server (NTRS)
Lau, C. V.; Decher, R.
1978-01-01
Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.
Experimental determination of the MHD-EMP effects on power distribution transformers
McConnell, B.W.; Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States))
1991-01-01
It is a well-established fact that geomagnetic storms influence electrical power transmission and distribution systems. Previous cases of such storms in the northern latitudes have resulted in occasional power disruptions, and in some cases, damage to transformers. These effects are caused by a time variation of the earth's magnetic field creating an induced electric field along the surface of the earth. This E-field acts as a voltage source along long power transmission or distribution lines, and if the line is connected to the earth at both ends, a quasi-dc current can flow. This current can cause unwanted saturation in the magnetic cores of transformers in the power system, and this, in turn produces harmonic distortion and transformer heating. This can lead to system upset (shutdown) and possibly transformer burn-out. The detonation of a high altitude nuclear explosion is also known to affect the magnetosphere, producing late-time variations of the earth's magnetic field for several hundreds of seconds. Known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), or E{sub 3}, this environment is of particular concern to electrical power systems in the event of a nuclear attack. Although the MHD-EMP induced currents can be significantly larger in magnitude, they last for a shorter period of time than do those from a geomagnetic storm. The effect of this environment compounds the adverse effects of the early-time high altitude EMP (HEMP) environment, posing a potentially serious threat to the electrical system. The present paper documents an experimental program designed to better understand the behavior of distribution-class transformers subjected to quasi-dc current excitation. Given the knowledge of the MHD-EMP-induced current flowing in a long power line, and the transformer response characteristics obtained in this program, it will be possible to make more accurate assessments of the behavior of the overall power system to EMP. 7 refs., 5 figs.
Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)
1988-01-01
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Experiments in Magnetohydrodynamics
ERIC Educational Resources Information Center
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Comparison of SS-GIC and MHD-EMP-GIC effects on power systems
Meliopoulos, A.P.S.; Glytsis, E.N. (Georgia Inst. of Tech., Atlanta, GA (United States)); Cokkinides, G.J. (Univ. of South Carolina, Columbia, SC (United States)); Rabinowitz, M. (Electric Power Research Inst., Palo Alto, CA (United States))
1994-01-01
A comparative study of the effects of solar storm geomagnetically induced currents (SS-GIC) and nuclear detonation geomagnetically induced currents (magnetohydrodynamic electromagnetic pulse GIC or MHD-EMP-GIC) on the power system. The earth surface electric field of the MHD electromagnetic pulse is given to be on the order of 100 V/km, with a duration up to several minutes; and the electric field of the solar storms is on the order of 10 V/km, and lasts from several minutes to one hour. Both phenomena cause flow of almost direct current in the windings of power transformers through the grounding system. For long transmission lines, i.e. 300 miles or longer, this DC current offsets the 60 Hz AC and many saturate transformer cores, with secondary results such as high magnetization currents, increased harmonics, and concomitant effect on power system operation. The level of the transformer core saturation depends on the time constant of the saturation process, and on the duration and magnitude of the direct current through the transformer windings. Thus, although the solar storm effects on the power system are greater due to their much longer duration. This paper presents a technique for the computation of the induced and/or transferred voltages and currents to an electric power system from geomagnetic disturbances. For this purpose, models of transmission lines which explicitly represent grounding, earth potential, and frequency dependent phenomena, and power transformers which explicit representation of nonlinear magnetization characteristics, are utilized. Using this technique, a parametric analysis of saturation time constants is performed and the effects of MHD-EMP and SS-GIC are compared.
A nonvariational code for calculating three-dimensional MHD (magnetohydrodynamic) equilibria
Greenside, H.S.; Reiman, A.H.; Salas, A.
1987-09-01
Details are presented of the PIES code, which uses a nonvariational algorithm for calculating fully three-dimensional MHD equilibria. The MHD equilibrium equations are directly iterated in special coordinates to find self-consistent currents and magnetic fields for given pressure and current profiles and for a given outermost magnetic surface. Three important advantages of this approach over previous methods are the ease with which net current profiles can be imposed, the explicit treatment of resonances, and the ability to handle magnetic islands and stochastic field lines. The convergence properties of the code are studied for several axisymmetric and nonaxisymmetric finite-..beta.. equilibria that have magnetic surfaces. 36 refs., 14 figs., 3 tabs.
H2-O2 combustion powered steam-MHD central power systems
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Smith, J. M.; Nichols, L. D.
1974-01-01
Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.
NASA Technical Reports Server (NTRS)
Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.
2008-01-01
We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.
Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed
2015-06-01
This paper investigates MHD steady flow of viscous nanofluid due to a rotating disk. Water is treated as a base fluid and copper as nanoparticle. Nanofluid fills the porous medium. Effects of partial slip, viscous dissipation and thermal radiation are also considered. Similarity transformations reduce the nonlinear partial differential equations to ordinary differential equations. Flow and heat transfer characteristics are computed by HAM solutions. Also computations for skin friction coefficient and Nusselt number are presented and examined for pertinent parameters. It is noted that higher velocity slip parameter decreases the radial and azimuthal velocities while temperature decreases for larger values of the thermal slip parameter. Also the rate of heat transfer enhances when the nanoparticle volume fraction increases.
Performance calculations for 1000 MWe MHD/steam power plants
NASA Technical Reports Server (NTRS)
Pian, C. C. P.
1981-01-01
The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.
Towards Integrated Pulse Detonation Propulsion and MHD Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.
1999-01-01
The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.
NASA Astrophysics Data System (ADS)
Jiao, Chengru; Zheng, Liancun; Ma, Lianxi
2015-08-01
This paper studies the magnetohydrodynamic (MHD) thermosolutal Marangoni convection heat and mass transfer of power-law fluids driven by a power law temperature and a power law concentration which is assumed that the surface tension varies linearly with both the temperature and concentration. Heat and mass transfer constitutive equation is proposed based on N-diffusion proposed by Philip and the abnormal convection-diffusion model proposed by Pascal in which we assume that the heat diffusion depends non-linearly on both the temperature and the temperature gradient and the mass diffusion depends non-linearly on both the concentration and the concentration gradient with modified Fourier heat conduction for power law fluid. The governing equations are reduced to nonlinear ordinary differential equations by using suitable similarity transformations. Approximate analytical solution is obtained using homotopy analytical method (HAM). The transport characteristics of velocity, temperature and concentration fields are analyzed in detail.
Plasma plume MHD power generator and method
Hammer, J.H.
1993-08-10
A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.
Impinging jet separators for liquid metal magnetohydrodynamic power cycles
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1973-01-01
In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).
Comparative analysis of CCMHD power plants. [Closed Cycle MHD
NASA Technical Reports Server (NTRS)
Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.
1981-01-01
A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Panitchob, S.
1986-01-01
Solar flare energy buildup at the photospheric level and energy release and transport into heliospheric space are examined using a composite MHD model. A four phase composite MHD model is described. An example demonstrating the applicability of the model is presented; the model was applied to the active region AR 2372. The limitations of this composite MHD model approach to analyzing solar flare energy buildup are discussed.
Experiments on H2-O2 MHD power generation
NASA Astrophysics Data System (ADS)
Smith, J. M.
1980-06-01
MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid have been carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments are conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator.
Magnetohydrodynamics simulations on graphics processing units
Wong, Hon-Cheng; Feng, Xueshang; Tang, Zesheng
2009-01-01
Magnetohydrodynamics (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the authors' knowledge, the first implementation to accelerate computation of MHD simulations on GPUs. Numerical tests have been performed to validate the correctness of our GPU MHD code. Performance measurements show that our GPU-based implementation achieves speedups of 2 (1D problem with 2048 grids), 106 (2D problem with 1024^2 grids), and 43 (3D problem with 128^3 grids), respec...
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
Computer controlled MHD power consolidation and pulse generation system
Johnson, R.; Marcotte, K.; Donnelly, M.
1990-01-01
The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.
Engineering support for magnetohydrodynamic power plant analysis and design studies
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.
1980-01-01
The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.
Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator
Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki
2005-12-01
We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56 MHz, 5.2 kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
NASA Astrophysics Data System (ADS)
Wang, Qiang; Rong, Wenjie; Li, Baokuan
2015-09-01
A transient three-dimensional (3D) coupled mathematical model of electroslag remelting (ESR) furnace has been developed to investigate the impact of power control function on the heat transfer and magnetohydrodynamic (MHD) two-phase flow. Maxwell's equations are solved by electrical potential method. The volume of fluid (VOF) approach is implemented to describe the two phase flow. The Lorentz force and the Joule heating are updated at each iteration as a function of phase distribution. The solidification is modeled by enthalpy-porosity formulation. A reasonable agreement between the experiment and simulation is obtained. The melt rate increases 15.83% in the remelting process with a constant current of 1600 A. With the power control function, the current would be reduced if the melt rate is 1.05 times larger than its initial value. The fluctuation range of the melt rate therefore decreases to 7.23%. Moreover, the fluctuation is limited within 5.12% if we start the power control program when the melt rate is 1.03 times higher than its initial value. Not only the metal pool depth but also the input power decreases under the effect of the current control function.
The Hydra Magnetohydrodynamics Package
J. M. Koning; G. D. Kerbel; M. M. Marinak
2009-01-01
The Magnetohydrodynamics package of the ALE radiation-hydrodynamics code Hydra is being extended to model the magnetic field and its effect on temperature for ICF targets. The current package capabilities include a fully three-dimensional resistive MHD package in the small Hall limit. An operator split method is used to couple the MHD to the hydrodynamics and is fully implicit in time
Downstream component corrosion in coal-fired MHD power plants
White, M. K.
1980-06-01
Results are given to date of corrosion probe studies conducted to evaluate the nature and severity of degradation of oiler and superheater materials in coal-fired MHD power generation systems. Tests were conducted with two air or nitrogen cooled probes in Cell III of the UTSI MHD facility. One probe had carbon steel samples subjected to metal temperatures of from 547K to 719K and reducing (SR = 0.85) gas conditions to simulate boiler tube conditions. The exposure time to date on these samples is 240 minutes. The other probe had samples of carbon steel, chromium-molybdenum steels and stainless steels subjected to temperatures ranging from 811K to 914K with oxidizing (SR = 1.15) gas conditions. The total run time on these samples was 70 minutes. The boiler probe samples were found to undergo predominantly pitted type corrosion beneath a deposit of ash/seed material having approximately 34% K/sub 2/SO/sub 4/. Weight loss rates varied from about 1.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the cool end of the probe to about 5.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the hot end. This loss is attributed primarily to sulfidation by hydrogen sulfide. Resistance to scaling of superheater materials increased progressively with the degree of alloying. Attack appeared to be in the form of surface scales containing mixtures of oxides and is attributed to either gaseous oxidation or to the presence of complex potassium trisulfates.
Parametric study of potential early commercial MHD power plants
NASA Technical Reports Server (NTRS)
Hals, F. A.
1979-01-01
Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.
MHD-steam thermal power plant electrical stations with zero stack emission
Borghi, C.A.; Ribani, P.L. [Univ. of Bologna (Italy). Inst. of Electrotechnics] [Univ. of Bologna (Italy). Inst. of Electrotechnics
1996-03-01
A system study of a combined cycle MHD-steam thermal power plant electrical station with zero stack emission through recirculation of CO{sub 2}, is presented. The design of the MHD generator of the topper is done by means of a quasi-one dimensional optimization model. The technology of the components is conventional. An overall efficiency larger than 40% for power plants with thermal power inputs above 1,000 MWth, is obtained.
Particle Acceleration by Magnetohydrodynamic Turbulence
J. Cho; A. Lazarian
2007-01-01
Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-beta) and gaseous pressure (high-beta) dominated plasmas. We consider the acceleration by
Generation of compressible modes in MHD turbulence
Jungyeon Cho; A. Lazarian
2005-01-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvénic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfvén, slow,
NASA Technical Reports Server (NTRS)
Dellinger, T. C.; Hnat, J. G.; Marston, C. H.
1979-01-01
A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.
The development of MHD energy conversion methods in the USSR
NASA Astrophysics Data System (ADS)
Kirillin, V. A.; Sheindlin, A. E.
1981-12-01
It is noted that the development of magnetohydrodynamic (MHD) power conversion systems has evolved to the point where it is possible to commercially introduce MHD power plants into industry. Even with the present level of technology, the sharp increase in thermal efficiency of these plants by as much as 50-60% results in fuel economies of 20-35% and in reductions in generation costs of 6-7%. A description is given of an MHD power plant and its various aggregates. Also given are a review of the state of the art of MHD technology and an outline of the Soviet program for its commercial exploitation. The design of MHD electrical power plants, the interrelation between various aggregates, and the problems arising from nonstandard equipment are discussed.
Parametric study of potential early commercial power plants Task 3-A MHD cost analysis
NASA Technical Reports Server (NTRS)
1983-01-01
The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.
Parametric study of potential early commercial power plants Task 3-A MHD cost analysis
NASA Astrophysics Data System (ADS)
1983-04-01
The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.
MHD Integrated Topping Cycle Project
Not Available
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Studies of cycles for liquid-metal magnetohydrodynamic generation of power
NASA Technical Reports Server (NTRS)
Lee, K.; Petrick, M.
1969-01-01
Studies of liquid-metal magnetohydrodynamic power cycles indicate that the overall efficiency of a binary cycle, employing a liquid-metal topping cycle and a bottoming steam cycle, may reach 60 percent. Details of analyses and data on cycles are presented, and the commercial potential of the binary cycle is discussed.
Analysis and Design of AN Ultra-High Hydrogen-Fueled MHD Generator as AN Open Cycle Power Supply.
NASA Astrophysics Data System (ADS)
Moder, Jeffrey P.
1990-01-01
The theoretical analysis of a partially-ionized hydrogen gas flow (gas temperatures ~10,000 -20,000 K) through a particular class of magnetohydrodynamic (MHD) generators and the preliminary design of these MHD generators as open cycle, electric power supplies are performed. Such potentially lightweight, compact and efficient power supplies may enable supersonic and hypersonic flight speeds for several beamed-energy airbreathing propulsion concepts. Analysis of the gas flow through these ultra-high temperature MHD generators requires a coupled gas dynamics/radiative heat transfer solution. The gas flow is assumed to remain in local thermodynamic equilibrium throughout the generator duct. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations while account for friction, convective and radiative heat transfer and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using non-gray, absorbing-emitting two- and three-dimensional P-1 approximations (truncated spherical harmonics) which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation, and through the temperature- and density -dependent absorption coefficient. The resulting nonlinear, elliptic problem is solved by iterative methods in which relaxed values for radiative losses and temperature and density distributions are exchanged between computational models for the gas dynamics and radiative heat transfer. The design of efficient MHD generators is formulated as an optimization problem. The objective it to maximize the extraction ratio (the ratio of electrical power extracted from the gas total power into the gas) subject to several constraints, including limits on heat transfer to the generator walls, distorting of the applied magnetic field and maximum Hall parameters. A numerical optimization code is used to find local optima within the feasible design space, given some approximation of the actual radiative loss distribution within the generator. Actual coupled solutions for some of these designs are then generated. Attempts to find a global optimum were limited to some extent by the failure of the iterative method employed to converge to a solution within a reasonable number of iterations for all local optima produced. The best design obtained, which converged to a coupled solution, was characterized by an extraction ratio of 35.5%, a power density of 10,500 MW_{rm e}/m ^3, a specific (extracted) energy of 324 MJ_{rm 3}/kg of hydrogen and a volume of 12,200 cm^3. It appears that extraction ratios for ultra-high temperature MHD generators may not greatly exceed those of conventional, lower temperature (seeded) MHD generators; however, power densities are greater by a factor of 10^2 -10^3, specific energies are greater by a factor of 100 and maximum wall heat fluxes and total heat loads may be on the order of 450 MW/m ^2 and 62 MW, respectively.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Guo, W. P.
1997-01-01
We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Salehi, Rezvan
2013-12-01
In this paper a meshfree weak-strong (MWS) form method is considered to solve the coupled equations in velocity and magnetic field for the unsteady magnetohydrodynamic flow throFor this modified estimaFor this modified estimaFor this modified estimaugh a pipe of rectangular and circular sections having arbitrary conducting walls. Computations have been performed for various Hartman numbers and wall conductivity at different time levels. The MWS method is based on applying a meshfree collocation method in strong form for interior nodes and nodes on the essential boundaries and a meshless local Petrov-Galerkin method in weak form for nodes on the natural boundary of the domain. In this paper, we employ the moving least square reproducing kernel particle approximation to construct the shape functions. The numerical results for sample problems compare very well with steady state solution and other numerical methods.
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
NASA Technical Reports Server (NTRS)
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
ECONOMIC COMPARISON OF MHD EQUILIBRIUM OPTIONS FOR ADVANCED STEADY STATE TOKAMAK POWER PLANTS
Najmabadi, Farrokh
, plant thermal-to- electric power conversion efficiency) are not varied, and economic factors (unit costs reduces the complexity of power plant design to algorithms involving a rather NUCLEAR FUSION, Vol. 38, NoECONOMIC COMPARISON OF MHD EQUILIBRIUM OPTIONS FOR ADVANCED STEADY STATE TOKAMAK POWER PLANTS D
Local anisotropy and power spectra in magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Servidio, S.; Dmitruk, P.; Carbone, V.; Oughton, S.; Wan, M.; Osman, K. T.
2012-12-01
Correlation and spectral anisotropy play important roles in solar wind and astrophysical plasmas, having significant impact on descriptions of the turbulence cascade, particle scattering, the nature of kinetic dissipation, and the transport of turbulence. Anisotropy emerges dynamically in MHD, producing stronger gradients across the large-scale mean magnetic field than along it, and occurring both globally and locally. Recently, properties of correlation anisotropy have been investigated through numerical simulations, showing the effect is intensified for more localized estimates of the mean magnetic field. The mathematical formulation of this property shows that local anisotropy mixes second-order with higher order correlations [1]. Sensitivity of local statistical estimates to higher order correlations can be understood in connection with the stochastic coordinate system inherent in such formulations. We demonstrate this in specific cases, and illustrate the connection to higher order statistics by showing the sensitivity of local anisotropy to phase randomization, after which the global measure of anisotropy is recovered at all scales of averaging. This study establishes that anisotropy of the local structure function is not a measure of anisotropy of the energy spectrum, but is rather related to higher order statistics. [1] Matthaeus et al, Astrophys. J., 750, 103 (2012)
Scale Locality of Magnetohydrodynamic Turbulence
Aluie, Hussein; Eyink, Gregory L.
2010-02-26
We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity - or, equivalently, fluxes of Elsaesser energies--are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.
MHD-steam thermal power plant electrical stations with zero stack emission
Borghi, C.A.; Botti, M.; Ribani, P.L. [Univ. of Bologna (Italy)
1994-12-31
In the present work a system study of a combined cycle MHD-steam thermal power plant electrical station with zero stack emission through recirculation of CO{sub 2}, is presented. The design of the MHD generator of the topper is done by means of a quasi-one-dimensional optimisation model. The thermodynamic of the combustion gas, typical of this cycle, is considered. The technology of the components is conventional. An overall efficiency larger than 41% for power plants with electrical power inputs above 600 MWe, are obtained.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M. (Oak Ridge, TN)
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M. (Oak Ridge, TN)
1997-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Samim Anghaie; Blair Smith; Travis Knight
2002-11-12
This report focuses on the power conversion cycle and efficiency. The technical issues involving the ionization mechanisms, the power management and distribution and radiation shielding and safety will be discussed in future reports.
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
Efficient magnetohydrodynamic simulations on graphics processing units with CUDA
NASA Astrophysics Data System (ADS)
Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng
2011-10-01
Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.
Data assimilation for magnetohydrodynamics systems
NASA Astrophysics Data System (ADS)
Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.
2006-05-01
Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.
MHD generators as pulse power sources for arc-driven railguns
Esposito, N.; Raugi, M.; Tellini, A.
1995-01-01
In this paper the performances of an electromagnetic launch system constituted by an arc driven railgun powered by a MHD generator are investigated. A small bore plasma driven railgun for fusion fuel pellet injection is examined considering as pulse power source a MHD generator having characteristics taken from operating devices. The analysis of the railgun and generator has been carried out by means of a lumped parameter equivalent network model that takes into account drag force and ablation effects and allowing the evaluation of the main electrical and thermodynamic quantity distributions of the plasma arc.
MAGNETOHYDRODYNAMICS MAGNETOHYDRODYNAMICS (or MHD for short) is
Priest, Eric
to the ionosphere, the plasma universe begins, including the region be- tween Earth and Sun, the whole of the Sun is valid for length-scales much larger than the MEAN-FREE PATH for particle collisions, #21;mpf #25; 300, which may accelerate plasma or create structure; (ii) it stores energy, which may later be released as
Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis
Bednarczyk, A.A.
1989-05-01
The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.
Interplanetary magnetohydrodynamics.
NASA Astrophysics Data System (ADS)
Burlaga, L. F.
In recent decades, spacecraft such as the Pioneer, Helios, and Voyager have explored the interplanetary medium between the orbits of Mercury and Pluto. This book summarizes the principal results of these historic expeditions, using magnetohydrodynamics as the framework for interpreting objects and processes observed in the interplanetary medium. Topics include various types of magnetohydrodynamic shocks and their interactions, tangential and rotational discontinuities, force-free field configurations, the formation of merged interaction regions associated with various types of flows, the destruction of flows, the growth of the Kelvin-Helmholtz instability and formation of a heliospheric vortex street, the development of multifractal fluctuations on various scales, and the evolution of multifractal intermittent turbulence. Spacecraft such as the Pioneer, Vela, and Voyager have explored the interplanetary medium between the orbits of Mercury and Pluto. The insights derived from these missions have been successfully applied to magnetospheric, astro-solar, and cosmic ray physics. This book is an overview of these insights, using magnetohydrodynamic (MHD) flows as the framework for interpreting objects and processes observed in the interplanetary medium. Topics include various types of MHD shocks and interactions among them, tangential and rotational discontinuities, force-free field configurations, the formation of merged interaction regions associated with various types of flows, the destruction of flows, the growth of the Kelvin-Helmholtz instability and formation of a heliospheric vortex street, the development of multifractal fluctuations on various scales, and the evolution of multifractal intermittent turbulence. Students and researchers in astrophysics will value the data from these missions, which provide confirmation of many theoretical models of the interstellar medium.
Solar-Driven Liquid-Metal MHD Generator
NASA Technical Reports Server (NTRS)
Hohl, F.; Lee, J. H.
1982-01-01
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.
Not Available
1981-11-01
Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)
Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Harada, N.
2005-01-01
A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.
Measurement of the Electric Fluctuation Spectrum of Magnetohydrodynamic Turbulence S. D. Bale,1
California at Berkeley, University of
´n waves [10]. Here we report the first measured power spectrum of electric fluctuations in solar wind, University of Minnesota, Minneapolis, Minnesota 55455, USA 3 The Blackett Laboratory, Imperial College June 2005) Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral
Analysis of processes in nonequilibrium plasma generators for pulsed MHD power systems
Novikov, V.A.
1995-12-31
The application of a disk channel for pulsed MHD power systems will allow to increase significantly their power density (power per unit weight or volume of the MHD generator). However the application of traditional plasma generators like combustors on a propellant or on a powder-like metalized fuel with combustion temperature about 4000 K and condensed phase (Al{sub 2}O{sub 3}) content of 35-45% mass aggravate still further the problems associated with the channel operation life. This is due to the necessary of a high temperature, high velocity, heterogeneous flow turn through an angle about 90{degrees} and due to the more stringent requirements on an erosion rate of a material of the nozzle throat insert. In this connection, the ideas on development of a nonequilibrium plasma generator (NPG) using direct heating of a noble gas during combustion of a special fuel in oxygen are very attractive for pulsed MHD power systems with the disk channel because the working media at the MHD channel inlet has the stagnation temperature about 2500 K at Al{sub 2}O{sub 3} volume concentration of 5%, that is significantly lower than for traditional plasma generating fuels (PGF), and the electrical conductivity {sigma} more higher than for PGF combustion products.
NASA Astrophysics Data System (ADS)
Seikel, G. R.; Zauderer, B.
If power is required in space for more than a large fraction of a day, steady state power sources (such as solar and nuclear) will have the lightest system weight. If megawatts of power are needed, closed cycle MHD systems (if successfully developed) have the potential of being very light and highly efficient. Such MHD generators are uniquely capable of fully exploiting advances in high-temperature reactor technology which could make up to 2500 K long-life, iner-gas-cooled reactors feasible. A particularly attractive MHD system is a turbo-MHD cycle which has a turbine driven compressor. It potentially have very low specific mass, high efficiency, and relatively low MHD generator enthalpy extraction.
Magnetohydrodynamic lattice Boltzmann simulations of turbulence and rectangular jet flow
Riley, Benjamin Matthew
2009-05-15
Magnetohydrodynamic (MHD) investigations of decaying isotropic turbulence and rectangular jets (RJ) are carried out. A novel MHD lattice Boltzmann scheme that combines multiple relaxation time (MRT) parameters for the ...
An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator
NASA Astrophysics Data System (ADS)
Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.
Turbulent Magnetohydrodynamic Jet Collimation and Thermal Driving
Peter T. Williams
2003-12-21
We have argued that magnetohydrodynamic (MHD) turbulence in an accretion disk naturally produces hoop-stresses, and that in a geometrically-thick flow these stresses could both drive and collimate an outflow. We based this argument on an analogy of turbulent MHD fluids to viscoelastic fluids, in which azimuthal shear flow creates hoop-stresses that cause a variety of flow phenomena, including the Weissenberg effect in which a fluid climbs a spinning rod. One of the more important differences between the Weissenberg effect and astrophysical jets is the source of power. In our previous analysis, we only considered the power due to the spin-down torque on the central object, and thus found that we could only drive an outflow if the central object were maximally rotating. Here we take into account the energy that is liberated by the accreting matter, and describe a scenario in which this energy couples to the outflow to create a thermodynamic engine.
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Performance calculations for 200-1000 MWe MHD/steam power plants
NASA Technical Reports Server (NTRS)
Staiger, P. J.
1981-01-01
The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.
NASA Technical Reports Server (NTRS)
Smith, J. M.; Nichols, L. D.
1977-01-01
The value of percent seed, oxygen to fuel ratio, combustion pressure, Mach number, and magnetic field strength which maximize either the electrical conductivity or power density at the entrance of an MHD power generator was obtained. The working fluid is the combustion product of H2 and O2 seeded with CsOH. The ideal theoretical segmented Faraday generator along with an empirical form found from correlating the data of many experimenters working with generators of different sizes, electrode configurations, and working fluids, are investigated. The conductivity and power densities optimize at a seed fraction of 3.5 mole percent and an oxygen to hydrogen weight ratio of 7.5. The optimum values of combustion pressure and Mach number depend on the operating magnetic field strength.
Open-cycle MHD energy conversion - Prospects and developments for central station power generation
F. Hals; S. Petty; D. Stickler; A. Solbes
1977-01-01
The principles of MHD, MHD research projects, and the conservational and environmental benefits offered by MHD are described. Topics discussed include the MHD channel, the superconducting magnet, coal combustion for an MHD plant, air preheaters, seed recovery and regeneration, and a bottoming plant including NOx emission control. It is concluded that significant progress has been achieved in the development of
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
Particle Acceleration by MHD Turbulence
Jungyeon Cho; A. Lazarian
2005-01-01
Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call\\u000afor revisions in the picture of particle acceleration. We make use of the\\u000arecently established scaling of slow and fast MHD modes in strong and weak MHD\\u000aturbulence to provide a systematic study of particle acceleration in magnetic\\u000apressure (low-$\\\\beta$) and gaseous pressure (high-$\\\\beta$) dominated plasmas.\\u000aWe consider the acceleration by
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.
2000-01-01
The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.
Scale-locality of magnetohydrodynamic turbulence
Aluie, Hussein; Eyink, Gregory L
2009-01-01
We investigate the scale-locality of cascades of conserved invariants at high kinetic and magnetic Reynolds numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross-helicity - or, equivalently, fluxes of Elsaesser energies - are dominated by the contributions of local triads. Corresponding spectral transfers are also scale-local when defined using octave wavenumber bands. Flux and transfer of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term also may be dominated by non-local triads but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion non locally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept
Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))
1988-10-01
The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.
The infinite interface limit of multiple-region relaxed magnetohydrodynamics
Dennis, G. R.; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)
2013-03-15
We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.
Experimental studies on closed cycle MHD power generation with Fuji-1 facility
Okuno, Yoshihiro; Kabashima, Shigeharu; Okamura, Tetsuji; Yoshikawa, Kunio; Tsuji, Kiyoshi; Suekane, Tetsuya; Shioda, Susumu; Yamasaki, Hiroyuki; Hasegawa, Yasuo
1996-12-31
Experimental studies on closed cycle MHD power generation with Fuji-1 blow-down facility at Tokyo Institute of Technology are presented. Recently, a new disk generator (Disk-F4) has been installed and a new seed injection system has been introduced from IVTAN (Institute of High Temperature in Russia). The design concept of the new generator channel is focused mainly on the reliability of high power generation. The Mach number at the generator inlet and the thermal input are increased up to {approximately}2.8 and {approximately}3.0 MW, respectively. In the new seeding system, a melted seed material is pushed by a piston dozator, instead of gas-pressure-driven in the previous system. The controllability of seed fraction is markedly improved, and the large fluctuation as has been observed previously is diminished. In the power generation experiments with the new components, the maximum power output of 502kW and the enthalpy extraction ratio of 16.7% have been obtained. These values at the present stage are lower than the maximum values previously achieved in the facility. However, the reliable high power generation can be expected with the new generator. The behavior of plasma and fluid under high MHD interaction taking place in the generator channel is also discussed.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
Phase mixing of a three dimensional magnetohydrodynamic pulse
D. Tsiklauri; V. M. Nakariakov; G. Rowlands
2003-03-12
Phase mixing of a three dimensional magnetohydrodynamic (MHD) pulse is studied in the compressive, three-dimensional (without an ignorable coordinate) regime. It is shown that the efficiency of decay of an Alfvenic part of a compressible MHD pulse is related linearly to the degree of non-planeness of the pulse in the homogeneous transverse direction. In the developed stage of phase mixing (for large times), coupling to its compressive part does not alter the power-law decay of an Alfvenic part of a compressible MHD pulse. The same applies to the dependence upon the resistivity of the Alfvenic part of the pulse. All this implies that the dynamics of Alfven waves can still be qualitatively understood in terms of the previous 2.5D models. Thus, the phase mixing remains a relevant paradigm for the coronal heating applications in the realistic 3D geometry and compressive plasma.
R. L. Dewar; R. Mills; M. J. Hole
2008-10-14
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics.
Dewar, R L; Hole, M J
2008-01-01
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics.
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia)] [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Magneto-Hydrodynamics Based Microfluidics
Qian, Shizhi; Bau, Haim H.
2009-01-01
In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890
Hamiltonian formalism of extended magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Abdelhamid, H. M.; Kawazura, Y.; Yoshida, Z.
2015-06-01
The extended magnetohydrodynamics (MHD) system, including the Hall effect and the electron inertia effect, has a Hamiltonian structure embodied by a noncanonical Poisson algebra on an infinite-dimensional phase space. A nontrivial part of the formulation is the proof of Jacobi?s identity for the Poisson bracket. We unearth a basic Lie algebra that generates the Poisson bracket. A class of similar Poisson algebra may be generated by the same Lie algebra, which encompasses the Hall MHD system and inertial MHD system.
Prospects for energy recovery from plastic waste gasifiers by means of MHD topping cycle
Geri, A.; Verdone, N.; Salvini, A.
1999-12-01
In this paper the authors present a feasibility study of a combined MagnetoHydroDynamic (MHD) and steam turbine plant in which the working gas is made of burnt plastic waste. The possibility of MHD retrofit of existing plant, especially fed by fossil fuel, is well known, and has been studied both for its economical and environmental benefits. The environmental impact and the elimination of pollution agents has become a prime necessity in waste digestion. Furthermore, plants in which the production of electrical power by means of burnt gases produced in the digestion process have been designed and built. In this field an MHD integration plant could be very attractive. This feasibility study has been developed by simulating an ideal plant with a plastic incinerator, an MHD device and conventional steam turbines. As a result, the simulations have indicated economic and environmental advantages with notable efficiency improvements in the generation of electrical power.
Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions
Wang, Lile
2014-01-01
Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...
Diagnostic development and support of MHD test facilities
Not Available
1990-01-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.
Status of power generation experiments in the NASA Lewis closed-cycle MHD facility.
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Nichols, L. D.
1972-01-01
In this paper the design and operation of the closed-cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger (preheater), heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The heater can supply 1.1 MW of thermal power to a 2.27 kg/sec gas stream. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths (B = 0.2 T), the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. The Hall voltage and short circuit current decrease sharply with increasing magnetic field strength, however. Comparison of these data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium equations of a plasma in a magnetic field (which will be used further in models of dynamic processes), approaches to the description of three dimensional (3-D) equilibrium are briefly discussed, and the basis of the theory of linear instabilities and the basic types of MHD instabilities, with account taken of ideal resistive modes, are considered. The value of the material of these chapters is that here in a brief form the results of numerous researches in this area are presented, and frequently with a fresh point of view of old results. Chapters 5 to 10 are devoted to the subject of the book, non-linear magnetohydrodynamics. In the introduction to Chapter 5 the author pays attention to the fact that long standing doubts about the feasibility of magnetic thermonuclear reactors because of inevitable instabilities of non-uniform plasmas have been overcome in the last two decades: the plasma in tokamaks is rather well confined, despite the presence of some instabilities. The latter, as a rule, result only in the redistribution of current and plasma pressure profiles and some increase of transport, but can also lead to extremely undesirable effects. In this connection in Chapter 5 the attention of the reader is directed to the physics of the most important plasma instabilities in tokamaks. Models of the development of external and internal kink modes in tokamaks are considered, including the `vacuum bubble' model in shearless plasmas, the evolution of the resistive tearing mode together with saturation of the magnetic islands arising at a tearing instability. The rather long Chapter 6 is devoted to the fundamentals of the magnetic hydrodynamic dissipative process in the magnetic field line reconnection. This process of rapid dissipation of the energy of a magnetic field, having in the simplest case different directions in two adjacent volumes of plasma, underlies the theory of the phenomenon of powerful flares in the solar chromosphere, resulting in the well-known `magnetic storms' on the earth, and the theory of rather dangerous disruptive instabilities in tokamaks. Aft
Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.
Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav
2015-02-13
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to ??1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade. PMID:25723225
Results of closed cycle MHD power generation test with a helium-cesium working fluid
NASA Technical Reports Server (NTRS)
Sovie, R. J.
1977-01-01
The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.
Results of closed cycle MHD power generation tests with a helium-cesium working fluid
NASA Technical Reports Server (NTRS)
Sovie, R. J.
1977-01-01
The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.
NASA Technical Reports Server (NTRS)
Staiger, P. J.; Penko, P. F.
1982-01-01
The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.
Improvement of Scramjet Performance-Experimental Demonstration of MHD Acceleration
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Park, Chul; Mehta, Unmeel B.; Arnold, James (Technical Monitor)
2001-01-01
One of the critical technologies of MHD (Magnetohydrodynamics) bypass scramjet propulsion for space launch and cruise vehicles is MHD acceleration. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. The objectives, the methods used and the preliminary results are described in this paper.
An Implicit, Nonlinear Reduced Resistive MHD Solver
L. Chacón; D. A. Knoll; J. M. Finn
2002-01-01
Implicit time differencing of the resistive magnetohydrodynamic (MHD) equations can step over the limiting time scales-such as Alfvén time scales-to resolve the dynamic time scales of interest. However, nonlinearities present in these equations make an implicit implementation cumbersome. Here, viable paths for an implicit, nonlinear time integration of the MHD equations are explored using a 2D reduced viscoresistive MHD model.
An Implicit, Nonlinear Reduced Resistive MHD Solver
L. Chacón; D. A. Knoll; J. M. Finn
2002-01-01
Implicit time differencing of the resistive magnetohydrodynamic (MHD) equations can step over the limiting time scales—such as Alfvén time scales—to resolve the dynamic time scales of interest. However, nonlinearities present in these equations make an implicit implementation cumbersome. Here, viable paths for an implicit, nonlinear time integration of the MHD equations are explored using a 2D reduced viscoresistive MHD model.
Use of MHD systems in hypersonic aircraft
V. L. Fraishtadt; A. L. Kuranov; E. G. Sheikin
1998-01-01
The possibilities of using magnetohydrodynamic (MHD) systems on hypersonic aircraft are discussed. The distinctive features\\u000a of using MHD systems in the flow path of ramjet engines are examined. A quasi-one-dimensional mathematical model for the engine\\u000a is presented which includes the MHD interaction with the flow. It is shown that the specific impulse of an engine system can\\u000a be raised by
NASA Astrophysics Data System (ADS)
Dewar, R. L.; Mills, R.; Hole, M. J.
2009-05-01
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
NASA Astrophysics Data System (ADS)
Dennis, G. R.; Hudson, S. R.; Dewar, R. L.; Hole, M. J.
2014-07-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
Dennis, G. R. Dewar, R. L.; Hole, M. J.; Hudson, S. R.
2014-07-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.
Plasma relaxation and topological aspects in Hall magnetohydrodynamics
Shivamoggi, B. K. [University of Central Florida, Orlando, Florida 32816-1364 (United States)
2012-07-15
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient {alpha} in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier {beta} is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.
Magnetohydrodynamic Rebound Shocks of Supernovae
Lou, Yu-Qing
2007-01-01
We construct magnetohydrodynamic (MHD) similarity rebound shocks joining `quasi-static' asymptotic solutions around the central degenerate core to explore an MHD model for the evolution of random magnetic field in supernova explosions. This provides a theoretical basis for further studying synchrotron diagnostics, MHD shock acceleration of cosmic rays, and the nature of intense magnetic field in compact objects. The magnetic field strength in space approaches a limiting ratio, that is comparable to the ratio of the ejecta mass driven out versus the progenitor mass, during this self-similar rebound MHD shock evolution. The intense magnetic field of the remnant compact star as compared to that of the progenitor star is mainly attributed to both the gravitational core collapse and the radial distribution of magnetic field.
Magnetohydrodynamic Rebound Shocks of Supernovae
Yu-Qing Lou; Wei-Gang Wang
2007-04-02
We construct magnetohydrodynamic (MHD) similarity rebound shocks joining `quasi-static' asymptotic solutions around the central degenerate core to explore an MHD model for the evolution of random magnetic field in supernova explosions. This provides a theoretical basis for further studying synchrotron diagnostics, MHD shock acceleration of cosmic rays, and the nature of intense magnetic field in compact objects. The magnetic field strength in space approaches a limiting ratio, that is comparable to the ratio of the ejecta mass driven out versus the progenitor mass, during this self-similar rebound MHD shock evolution. The intense magnetic field of the remnant compact star as compared to that of the progenitor star is mainly attributed to both the gravitational core collapse and the radial distribution of magnetic field.
Not Available
1981-11-01
Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)
The Hydra Magnetohydrodynamics Package
NASA Astrophysics Data System (ADS)
Koning, J. M.; Kerbel, G. D.; Marinak, M. M.
2009-11-01
The Magnetohydrodynamics package of the ALE radiation-hydrodynamics code Hydra is being extended to model the magnetic field and its effect on temperature for ICF targets. The current package capabilities include a fully three-dimensional resistive MHD package in the small Hall limit. An operator split method is used to couple the MHD to the hydrodynamics and is fully implicit in time and second order accurate in space. A three-dimensional vector finite element method is utilized to define a set of spaces and differential operators that maintain the zero divergence of the magnetic field exactly. The Hydra MHD package has been improved by the addition of an exact circuit solution method that enables the potential for multiple circuits. A significant enhancement of Hydra is the addition of a Python interpreter embedded in the code. The Python interpreter allows users to make full use of Python's features in parallel with full access to the parameters and variables in the simulation. Examples of the Python interpreter used with MHD package and Hydra in general will be presented.
FIRST-ORDER SYSTEM LEAST SQUARES FOR INCOMPRESSIBLE RESISTIVE MAGNETOHYDRODYNAMICS
McCormick, Steve
. A. MANTEUFFEL , S. F. MCCORMICK , AND J. W. RUGE Abstract. Magnetohydrodynamics (MHD) is a fluid, Manteuffel, McCormick, and Ruge define a work unit to be one computation of the residual on the finest grid
SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
Beresnyak, Andrey, E-mail: andrey.at.astro@gmail.com [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2014-04-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096{sup 3}, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.
NASA Technical Reports Server (NTRS)
Hals, F. A.
1981-01-01
Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, D.H.; Thresh, H.R.
1980-06-24
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.
Remarkable connections between extended magnetohydrodynamics models
NASA Astrophysics Data System (ADS)
Lingam, M.; Morrison, P. J.; Miloshevich, G.
2015-07-01
Through the use of suitable variable transformations, the commonality of all extended magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all) for each of these models are obtained through these correspondences. The commonality of all the extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely associated with the canonical momenta of the two underlying species. The Lie-dragging of these 2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof ensures the Jacobi identity for the Poisson brackets of all the models.
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1980-01-01
The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, C.M.; Deeds, W.E.
1999-07-13
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, Carsten M. (Dadeville, AL); Deeds, W. Edward (Knoxville, TN)
1999-01-01
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.
Ideal magnetohydrodynamic ballooning stability boundaries in three-dimensional equilibriaa...
Hudson, Stuart
Ideal magnetohydrodynamic ballooning stability boundaries in three-dimensional equilibriaa... C. C; accepted 29 November 2001 The impact of three-dimensional geometry on ideal magnetohydrodynamic ballooning- tions, local criterion deduced from ideal magnetohydro- dynamic MHD ballooning and Mercier mode theory
Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves*
Oughton, Sean
Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfve´n waves* P. Dmitruk, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics MHD open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While
Multi-symplectic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Zank, G. P.; Zank
2014-10-01
A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential Ã where ?=Ã. d x is Lie dragged with the flow, and B=?×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n-1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.
Not Available
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
Status report on MHD generator materials
Rossing, B.R.; Cadoff, L.H.; Sadler, J.W.
1981-01-01
The development of materials for the MHD generator has been cited as a major technical obstacle in the development of commercial coal-fired MHD electrical power generation. Serious effort has been in progress to develop and test coal fired MHD electrodes and materials. MHD generator design and operation will be reviewed. 12 refs.
Survey of MHD plant applications
NASA Technical Reports Server (NTRS)
Lynch, J. J.; Seikel, G. R.; Cutting, J. C.
1979-01-01
Open-cycle MHD is one of the major R&D efforts in the Department of Energy's program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open-cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open-cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.
Alfven wave tomography for cold magnetohydrodynamic plasmas I. Y. Dodin and N. J. Fisch
of ideal magnetohydrodynamics MHD nonlinear equations. The evolution of the MHD spectrum is shown inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation the evolution of Alfve´n waves' spectrum specifically due to their scattering on quasistatic perturbations
Daniel R Reynolds; Ravi Samtaney; Hilari C Tiedeman
2012-01-01
Single-fluid resistive magnetohydrodynamics (MHD) is a fluid description of fusion plasmas which is often used to investigate macroscopic instabilities in tokamaks. In MHD modeling of tokamaks, it is often desirable to compute MHD phenomena to resistive time scales or a combination of resistive-Alfvén time scales, which can render explicit time stepping schemes computationally expensive. We present recent advancements in the
Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling
Berry, Gregory F. (Naperville, IL)
1991-01-01
A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.
Advances in Solar System Magnetohydrodynamics, 1991
Eric R. Priest; Alan W. Hood
1991-01-01
Most of the solar system exists in the plasma state (the fourth state of matter). Its subtle nonlinear interaction with the magnetic field can be described by the equations of magnetohydrodynamics (MHD). Over the past few years this important and complex field of research has been actively pursued and increasingly diversely applied to the fields of geophysics, space physics, and
Shepard, W.S.; Cook, R.L.
1991-12-31
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`S computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
Magnetohydrodynamic stability comparison theorems revisited
Cerfon, Antoine J.; Freidberg, Jeffrey P. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany Street, Cambridge, Massachusetts 02139 (United States)
2011-01-15
Magnetohydrodynamic (MHD) stability comparison theorems are presented for several different plasma models, each one corresponding to a different level of collisionality: a collisional fluid model (ideal MHD), a collisionless kinetic model (kinetic MHD), and two intermediate collisionality hybrid models (Vlasov-fluid and kinetic MHD-fluid). Of particular interest is the re-examination of the often quoted statement that ideal MHD makes the most conservative predictions with respect to stability boundaries for ideal modes. Some of the models have already been investigated in the literature and we clarify and generalize these results. Other models are essentially new and for them we derive new comparison theorems. Three main conclusions can be drawn: (1) it is crucial to distinguish between ergodic and closed field line systems; (2) in the case of ergodic systems, ideal MHD does indeed make conservative predictions compared to the other models; (3) in closed line systems undergoing perturbations that maintain the closed line symmetry this is no longer true. Specifically, when the ions are collisionless and their gyroradius is finite, as in the Vlasov-fluid model, there is no compressibility stabilization. The Vlasov-fluid model is more unstable than ideal MHD. The reason for this is related to the wave-particle resonance associated with the perpendicular precession drift motion of the particles (i.e., the ExB drift and magnetic drifts), combined with the absence of any truly toroidally trapped particles. The overall conclusion is that to determine macroscopic stability boundaries for ideal modes for any magnetic geometry using a simple conservative approach, one should analyze the ideal MHD energy principle for incompressible displacements.
Yu. G. Ignatyev
2011-01-05
On the basis of simple principles we derive and investigate the equations of relativistic plasma magnetohydrodynamics (MHD) in an arbitrary gravitational field. An exact solution describing the motion of magnetoactive plasma against the background of the metric of a plane gravitational wave (PGW) with an arbitrary amplitude is obtained. It is shown that in strong magnetic fields even a sufficiently small amplitude PGW can create a shock MHD wave, propagating at a subluminal velocity. Astrophysical consequences of the anomalous plasma acceleration are considered.
Application of a hot air turbine for efficiency improvement in MHD\\/steam power plants
1979-01-01
It is possible to gain 2 percent to 3 percent efficiency points in the MHD\\/steam combined cycle by application of a hot air turbocompressor. This gain is accomplished without any increase of air preheat temperature. Moreover, the size of the steam boiler and turbines in the bottom plant is reduced in the arrangement here proposed, all the compressed and preheated
NONIDEAL MAGNETOHYDRODYNAMIC TURBULENT DECAY IN MOLECULAR CLOUDS
Downes, T. P. [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); O'Sullivan, S. [National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland)], E-mail: turlough.downes@dcu.ie
2009-08-20
It is well known that nonideal magnetohydrodynamic (MHD) effects are important in the dynamics of molecular clouds: both ambipolar diffusion and possibly the Hall effect have been identified as significant. We present the results of a suite of simulations with a resolution of 512{sup 3} of turbulent decay in molecular clouds, incorporating a simplified form of both ambipolar diffusion and the Hall effect simultaneously. The initial velocity field in the turbulence is varied from being super-Alfvenic and hypersonic, through to trans-Alfvenic but still supersonic. We find that ambipolar diffusion increases the rate of decay of the turbulence increasing the decay from t {sup -1.25} to t {sup -1.4}. The Hall effect has virtually no impact in this regard. The power spectra of density, velocity, and the magnetic field are all affected by the nonideal terms, being steepened significantly when compared with ideal MHD turbulence with exponents. The density power-spectra components change from {approx}1.4 to {approx}2.1 for the ideal and nonideal simulations respectively, and power spectra of the other variables all show similar modifications when nonideal effects are considered. Again, the dominant source of these changes is ambipolar diffusion rather than the Hall effect. There is also a decoupling between the velocity field and the magnetic field at short length scales. The Hall effect leads to enhanced magnetic reconnection, and hence less power, at short length scales. The dependence of the velocity dispersion on the characteristic length scale is studied and found not to be power law in nature.
Test particle acceleration in three-dimensional Hall MHD turbulence
P. Dmitruk; W. H. Matthaeus
2006-01-01
Numerical experiments of test particle acceleration are performed using turbulent magnetic and electric fields obtained from direct numerical solutions of the compressible three-dimensional Hall magnetohydrodynamic (MHD) equations. Comparisons are made of the results for the test particle momentum distribution function with and without the Hall term in the MHD solution. Electrons and protons are considered for the test particles at
Operational analysis of open-cycle MHD
NASA Astrophysics Data System (ADS)
Lippert, T. E.; McCutchan, D. A.
1980-07-01
Open cycle magnetohydrodynamic (OCMHD) conceptual power plant designs are studied in the context of a utility system to form a better basis for understanding their design, design requirements, and market possibilities. Based on assumed or projected plant costs and performance characteristics, assumed economics and escalation factors, and one coal supply and delivery scenario, overall and regional OCMHD utility market possibilities are reviewed. Additionally, for one hypothetical utility system a generation expansion plan is developed that includes OCMHD as a baseload power generating station. The impact on generation system economics and operation of alternating selected MHD plant cost and performance characteristics is reviewed. Baseload plant availability is shown as an important plant design consideration, and a general methodology and data base is developed to assess the impact on design and cost of various reliability decisions. An overall plant availability goal is set and the required availabilities of various MHD high technology components are derived to meet the plant goal. The approach is then extended to projecting channel life goals for various plant design configurations and assumptions.
Magnetohydrodynamic and hybrid simulations of broadband fluctuations near interplanetary shocks
Agim, Y.Z.; Vinas, A.F.; Goldstein, M.L. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
1995-09-01
We present results of a theoretical study of evolution of a spectrum of finite amplitude right-hand elliptically polarized magnetohydrodynamic (MHD) waves. The analysis includes use of one-and-a-half-dimensional solutions of the equations that describe compressible MHD together with one-and-a-half-dimensional hybrid simulation of the phenomenon. The motivation of the study is to understand the origin and properties of finite amplitude waves often observed in the vicinity of collisionless shocks in the heliosphere. The solutions of the MHD equations are compared with both the results of the hybrid simulations and observations previously reported by Vinas et al. in the vicinity of a quasi-parallel interplanetary shock. The initial conditions of the MHD solutions were constructed to model the observed spectrum of magnetic and velocity fluctuations; plasma parameters were also chosen to replicate the observed parameters. For the typical parameters of {beta} = 0.5, {sigma}B/B{sub 0} = 0.25 and a spectrum of parallel propagating, circularly polarized dispersive waves, initially the density and magnetic energy density correlations grow due to the (nonlinear) ponderomotive effect. The spectral features below the ion cyclotron frequency are established quickly on the Alfvenic timescale but then persist and match closely the observed fluctuations. The parametric decay instabilities that subsequently appear further enhance the density fluctuations and produce a high-frequency magnetic power spectrum consistent with the spacecraft observation. The MHD and hybrid simulations extend the previous picture of wave generation by a beam-driven ion cyclotron instability to the fully nonlinear stage. 64 refs., 24 figs.
Bloom, M. H.
1980-01-01
The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to a significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)
Free boundary skin current MHD (magnetohydrodynamic) equilibria
Reusch, M.F.
1988-02-01
Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulae which generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo and Merkel is discussed. A numerical technique for the construction of solutions, based on one of the methods is presented. A study is made of the bifurcations of an equilibrium of general form. 28 refs., 9 figs.
NASA Technical Reports Server (NTRS)
Staigner, P. J.; Abbott, J. M.
1980-01-01
Two parallel contracted studies were conducted. Each contractor investigated three base cases and parametric variations about these base cases. Each contractor concluded that two of the base cases (a plant using separate firing of an advanced high temperature regenerative air heater with fuel from an advanced coal gasifier and a plant using an intermediate temperature metallic recuperative heat exchanger to heat oxygen enriched combustion air) were comparable in both performance and cost of electricity. The contractors differed in the level of their cost estimates with the capital cost estimates for the MHD topping cycle and the magnet subsystem in particular accounting for a significant part of the difference. The impact of the study on the decision to pursue a course which leads to an oxygen enriched plant as the first commercial MHD plant is described.
Electromagnetic pulse and the electric power network
Klein, K.W.; Barnes, P.R.; Zaininger, H.W.
1984-01-01
This paper defines the nuclear electromagnetic pulse (EMP) - electric power system interaction problem. A description of high altitude EMP (HEMP) characteristics, source region EMP (SREMP) characteristics, and magnetohydrodynamics EMP (MHD-EMP) characteristics are presented. The results of initial calculations of EMP induced surges on electric power transmission and distribution lines are presented and compared with lightning induced surges. Potential EMP impacts on electric power systems are discussed, and an overview of the Department of Energy (DOE) EMP research program is presented.
Magnetohydrodynamic Shearing Waves
Bryan M. Johnson
2007-02-12
I consider the nonaxisymmetric linear theory of a rotating, isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model of a thin disk, using a decomposition in terms of shearing waves, i.e., plane waves in a frame comoving with the shear. These waves do not have a definite frequency as in a normal mode decomposition, and numerical integration of a coupled set of amplitude equations is required to characterize their time dependence. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytical solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. The solutions have the following properties: 1) Their accuracy increases with wavenumber, so that most perturbations that fit within the disk are well-approximated as modes with time-dependent frequencies and amplitudes. 2) They can be broadly classed as incompressive and compressive perturbations, the former including the nonaxisymmetric extension of magnetorotationally unstable modes, and the latter being the extension of fast and slow modes to a differentially-rotating medium. 3) Wave action is conserved, implying that their energy varies with frequency. 4) Their shear stress is proportional to the slope of their frequency, so that they transport angular momentum outward (inward) when their frequency increases (decreases). The complete set of solutions constitutes a comprehensive linear test suite for numerical MHD algorithms that incorporate a background shear flow. I conclude with a brief discussion of possible astrophysical applications.
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
MESSENGER Observations of Magnetohydrodynamic Waves in the Solar Corona from Faraday Rotation
NASA Astrophysics Data System (ADS)
Jensen, E. A.; Nolan, M.; Bisi, M. M.; Chashei, I.; Vilas, F.
2013-07-01
During the declining phase of the longest solar minimum in a century, the arrival of the MESSENGER spacecraft at superior conjunction allowed the measurement of magnetohydrodynamic (MHD) waves in the solar corona with its 8 GHz radio frequency signal. MHD waves crossing the line of sight were measured via Faraday rotation fluctuations (FRFs) in the plane of polarization (PP) of MESSENGER's signal. FRFs in previous observations of the solar corona (at greater offset distances) consisted of a turbulent spectrum that decreased in power with increasing frequency and distance from the Sun. Occasionally a spectral line, a distinct peak in the power spectral density spectrum around 4 to 8 mHz, was also observed in these early data sets at offset distances of about 5 to 10 solar radii. The MESSENGER FRF data set shows a spectral line at an offset distance between 1.55 to 1.85 solar radii with a frequency of 0.6±0.2 mHz. Other possible spectral lines may be at 1.2, 1.7, and 4.5 mHz; MHD waves with these same frequencies have been observed in X-ray data traveling along closed coronal loops at lower offset distances. An initial analysis of the MESSENGER spectral line(s) shows behavior similar to turbulent spectra: decreasing power with increasing frequency and distance from the Sun. Here we detail the steps taken to process the MESSENGER change in PP data set for the MHD wave investigation.
Shock structure in classical magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Kennel, Charles F.
1988-01-01
How the structure of coplanar MHD fast and slow shocks depends upon the relative magnitudes of the dissipation coefficients contained in classical magnetohydrodynamics is examined. An asymptotic method is used in which the scale lengths for resistivity, thermal conduction, and viscosity are widely separated, and the qualitative dependence of the shock solutions upon the ordering of the scales is studied. Upper limit Mach numbers for both fast and slow shocks are defined at which resistivity and thermal conduction taken together can provide all the shock dissipation and at which viscosity is not needed.
NASA Astrophysics Data System (ADS)
Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.
1980-02-01
The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.
NASA Technical Reports Server (NTRS)
Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.
1980-01-01
The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.
Self-organizing magnetohydrodynamic plasma
NASA Astrophysics Data System (ADS)
Sato, T.; Horiuchi, R.; Watanabe, K.; Hayashi, T.; Kusano, K.
1990-09-01
In a resistive magnetohydrodynamic (MHD) plasma, both the magnetic energy and the magnetic helicity dissipate with the resistive time scale. However, when sufficiently large free magnetic energy does exist, an ideal current driven instability is excited whereby magnetic reconnection is driven at a converging point of induced plasma flows which does exist in a bounded compressible plasma. At a reconnection point excess free energy (entropy) is rapidly dissipated by ohmic heating and lost by radiation, while magnetic helicity is completely conserved. The magnetic topology is largely changed by reconnection and a new ordered structure with the same helicity is created. It is discussed that magnetic reconnection plays a key role in the MHD self-organization process.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P. (Walnut Creek, CA); Lemoff, Asuncion V. (Union City, CA)
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Magnetohydrodynamics of chiral relativistic fluids
NASA Astrophysics Data System (ADS)
Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg
2015-08-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ?m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Anomalous Magnetohydrodynamics
Massimo Giovannini
2013-07-09
Anomalous symmetries induce currents which can be parallel rather than orthogonal to the hypermagnetic field. Building on the analogy with charged liquids at high magnetic Reynolds numbers, the persistence of anomalous currents is scrutinized for parametrically large conductivities when the plasma approximation is accurate. Different examples in globally neutral systems suggest that the magnetic configurations minimizing the energy density with the constraint that the helicity be conserved coincide, in the perfectly conducting limit, with the ones obtainable in ideal magnetohydrodynamics where the anomalous currents are neglected. It is argued that this is the rationale for the ability of extending to anomalous magnetohydrodynamics the hydromagnetic solutions characterized by finite gyrotropy. The generally covariant aspects of the problem are addressed with particular attention to conformally flat geometries which are potentially relevant for the description of the electroweak plasma prior to the phase transition.
Conceptual design of a coal-fired MHD retrofit plant (Scholz Plant---Sneads, FL): Volume 2, Drawings
Not Available
1989-04-01
The US DOE/PETC is funding a conceptual design study to evaluate a coal-fired MHD retrofit plant of sufficient size to demonstrate the technical and economic viability of an MHD system operating within and electric utility environment. Westinghouse Advanced Energy Systems (WAES), via Contract No. DE-AC22-87PC79668, is responsible for the site-specific conceptual design of a coal-fired magnetohydrodynamic (MHD) retrofit of the Scholz Generating Station. The Scholz Generating Station is owned and operated by Gulf Power Company, a member of the Southern Electric System. WAES is directing a design team comprised of the following members: Southern Electric International (the architectural engineering arm of the Southern Electric System), University of Tennessee Space Institute (UTSI), Seitec Inc., HMJ Corporation, STD Research Corporation, and Westinghouse R D.
Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Gourgouliatos, K. N.
2009-03-01
Many, yet unresolved, questions in astrophysics are associated to the presence of electromagnetic fields. These include problems of solar magnetohydrodynamics, where a significant amount of observational data is available but also relativistic systems involving the launch of jets from ?-ray bursts. Motivated by these phenomena, we study a series of problems of magnetohydrodynamics. Our task is to study systems where analytical solutions are possible so that we obtain an understanding of their physical behaviour. For this purpose, we study separable solution of force-free magnetic fields and we then apply them in systems of arcade topology. This problem is motivated by the arcade structures observed on the surface of the Sun before coronal mass ejections. We assume a magnetic arcade, emerging from the surface of a spherical conductor where the magnetic field is radially self-similar. Then, because of differential rotation on the surface of the conductor the field lines are twisted and energy is injected in the system. Assuming force-free magnetic fields the system reacts in two ways, a toroidal component is introduced and the poloidal flux expands. No matter how slow the rate of differential rotation is, the predicted expansion velocity becomes very rapid at late stages. This is the limitation of the non-relativistic magnetohydrodynamics approximation. The rest of this thesis is about problems of relativistic magnetohydrodynamics. We present the analogue of force-free magnetic fields for systems of spherical geometry, first derived by Prendergast (2005) and we expand it to systems of cylindrical geometry. We derive analytical and semi-analytical solutions of electromagnetic fields emerging from a central explosion in vacuum and in the presence of a co-expanding fluid. The mathematical description of this problem leads to a set of non-linear partial differential equations. As it is impossible to find general solutions for this set of equations, we assume self-similar solutions. We discuss applications of these explosions to ?-ray bursts.
MHD direct channel from heat to electricity
NASA Astrophysics Data System (ADS)
Lihach, N.
1980-04-01
The potential benefits and difficulties of the development and operation of a combined MHD/steam electric generating plant are assessed. The concept of MHD power generation by the passage of extremely hot, pressurized coal combustion gases ionized by a seeding material through the field of a superconducting magnet, coupled with conventional steam generation using the MHD exhaust gases as a heat source, is outlined, and areas of MHD technology requiring extensive development are indicated. Recent research on these areas is reviewed, and achievements in MHD channel durability, superconducting magnets, power inverters and the planned start-up of a 40-50 MW component development and integration facility are noted. Development strategies to ensure the competitiveness of MHD with other advanced power systems are discussed, and means of ensuring reliability are indicated. The economic potential of MHD is considered, and it is noted that MHD may also be coupled with future fusion and high-temperature nuclear reactors.
Nonlinear subcritical magnetohydrodynamic beta limit
Waltz, R. E.
2010-07-15
Published gyrokinetic simulations have had difficulty operating beyond about half the ideal magnetohydrodynamic (MHD) critical beta limit with stationary and low transport levels in some well-established reference cases. Here it is demonstrated that this limitation is unlikely due to numerical instability, but rather appears to be a nonlinear subcritical MHD beta limit[R. E. Waltz, Phys. Rev. Lett. 55, 1098 (1985)] induced by the locally enhanced pressure gradients from the diamagnetic component of the nonlinearly driven (zero frequency) zonal flows. Strong evidence that the zonal flow corrugated pressure gradient profiles can act as a MHD-like beta limit unstable secondary equilibrium is provided. It is shown that the addition of sufficient ExB shear or operation closer to drift wave instability threshold, thereby reducing the high-n drift wave turbulence nonlinear pumping of the zonal flows, can allow the normal high-n ideal MHD beta limit to be reached with low transport levels. Example gyrokinetic simulations of experimental discharges are provided: one near the high-n beta limit reasonably matches the low transport levels needed when the high experimental level of ExB shear is applied; a second experimental example at moderately high beta appears to be limited by the subcritical beta.
Specific Mass Estimates for A Vapor Core Reactor With MHD
Knight, Travis; Smith, Blair; Anghaie, Samim
2002-07-01
This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a vapor core reactor (VCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasma-dynamic (MPD) thruster. The VCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF{sub 4}) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Gaseous and liquid-vapor core reactors can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. This unique feature makes this reactor concept a very natural and attractive candidate for very high power (10 to 1000 MWe) and low specific mass (0.4 to 5 kg/kWe) nuclear electric propulsion (NEP) applications since the MHD output could be coupled with minimal power conditioning to MPD thrusters or other types of thruster for producing thrust at very high specific impulse (I{sub sp} 1500 to 10,000 s). The exceptional specific mass performance of an optimized VCRMHD- NEP system could lead to a dramatic reduction in the cost and duration of manned or robotic interplanetary as well as interstellar missions. The VCR-MHD-NEP system could enable very efficient Mars cargo transfers or short (<8 month) Mars round trips with less initial mass in low Earth orbit (IMLEO). The system could also enable highly efficient lunar cargo transfer and rapid missions to other destinations throughout the solar system. (authors)
Long-term evolution of decaying magnetohydrodynamic turbulence in the multiphase interstellar medium
Kim, Chang-Goo [Currently at Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Basu, Shantanu, E-mail: ckim256@uwo.ca, E-mail: basu@uwo.ca, E-mail: cgkim@astro.princeton.edu [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)
2013-12-01
Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of E?t {sup –1} and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (?0.2E {sub 0}) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.
Multiscaling in Hall-Magnetohydrodynamic Turbulence: Insights from a Shell Model
Debarghya Banerjee; Samriddhi Sankar Ray; Ganapati Sahoo; Rahul Pandit
2013-03-04
We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-$k$ and high-$k$ power-law ranges of 3D Hall-MHD, and find that the extended-self-similarity (ESS) procedure is helpful in extracting the multiscaling nature of structure functions in the high-$k$ regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.
Magnetohydrodynamic modelling of exploding foil initiators
NASA Astrophysics Data System (ADS)
Neal, William
2015-06-01
Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.
MHD and Kinetic Modeling of the Ionospheres of Venus and Mars
Shinagawa, H.; Terada, N. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)
2009-06-16
It is widely recognized that both Venus and Mars possess no significant global intrinsic magnetic fields, and that the solar wind interacts directly with the upper atmospheres and ionospheres of Venus and Mars. In addition, local crustal magnetic fields are also present in various regions at Mars, suggesting that some regions of the Martian ionosphere are influenced not only by the solar wind but also by the crustal magnetic field. Previous studies have suggested that the basic structures of the ionospheres of the planets can be described by fluid and MHD(magnetohydrodynamic) processes. Various models of the ionospheres of Venus and Mars based on the MHD formulation have been constructed during the last two decades. Although the MHD approach has been successful in reproducing the ionospheres of the planets, some studies have indicated that MHD modeling is not necessarily appropriate in the regions of the topside ionosphere, the ionopause, and the magnetosheath, where the ion kinetic processes are likely to play an important role. The kinetic processes in the topside ionosphere might have significant influences even in the lower ionosphere. Thanks to a great progress made for computer power as well as the efficiency of calculations of the hybrid model, high-resolution kinetic models of the solar wind interaction with Venus and Mars, which self-consistently include the ionosphere, have been developed. In this paper, status of MHD and kinetic modeling of the ionospheres of Venus and Mars is briefly reviewed.
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
NASA Astrophysics Data System (ADS)
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
Improved thermal/MHD design of self-cooled blankets for high-power-density fusion reactors
Sedehi, S.; Lund, K.O.
1986-01-01
In this work, an improved self-cooled blanket design is conceived that seeks to minimize the induced current and pressure loss, while maintaining effective cooling and power output. Standard solutions for fully developed MHD flows in rectangular ducts are utilized to describe the magnetic pressure drop in rectangular ducts in terms of the duct aspects ratio. A newly available analytical result for developing and fully developed temperatures is utilized in determining the maximum wall temperature and outlet temperature. Based on results from rectangular ducts, improved annular-type duct designs are proposed and evaluated. The results from the rectangular duct analysis indicate reduced pressure drop and increased thermal performance for large aspect ratio (ratio of duct width in the toroidal B-field direction to width normal to B-field). An infinite aspect ratio occurs for the annular duct design and it is shown that this configuration has superior characteristics as a self-cooled blanket design concept.
Numerical Measurements of the Spectrum in Magnetohydrodynamic Turbulence
Joanne Mason; Fausto Cattaneo; Stanislav Boldyrev
2007-06-13
We report the results of an extensive set of direct numerical simulations of forced, incompressible, magnetohydrodynamic turbulence with a strong guide field. The aim is to resolve the controversy regarding the power law exponent (\\alpha, say) of the field perpendicular energy spectrum E(k_\\perp) \\propto k_\\perp ^ {\\alpha}. The two main theoretical predictions, \\alpha=-3/2 and \\alpha=-5/3, have both received some support from numerical simulations carried out by different groups. Our simulations have a resolution of 512^3 mesh points, a strong guide field, an anisotropic simulation domain, and implement a broad range of large-scale forcing routines, including those previously reported in the literature. Our findings indicate that the spectrum of well developed, strong incompressible MHD turbulence with a strong guide field is E(k_{\\perp})\\propto k_{\\perp}^{-3/2}.
Energy Dissipation in Magnetohydrodynamic Turbulence: Coherent Structures or "Nanoflares"?
Zhdankin, Vladimir; Perez, Jean Carlos; Tobias, Steven M
2014-01-01
We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power law tail with index very close to the critical value of -2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both co...
NASA Technical Reports Server (NTRS)
Sovie, R. J.
1976-01-01
The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.
Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD
NASA Astrophysics Data System (ADS)
Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael
2001-02-01
This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .
System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134
Annen, K.D.
1981-08-01
The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.
Magnetohydrodynamic instability
NASA Astrophysics Data System (ADS)
Priest, E. R.; Cargill, P.; Forbes, T. G.; Hood, A. W.; Steinolfson, R. S.
1986-12-01
There have been major advances in the theory of magnetic reconnection and of magnetic instability, with important implications for the observations, as follows: (1) Fast and slow magnetic shock waves are produced by the magnetohydrodynamics of reconnection and are potential particle accelerators. (2) The impulsive bursty regime of reconnection gives a rapid release of magnetic energy in a series of bursts. (3) The radiative tearing mode creates cool filamentary structures in the reconnection process. (4) The stability analyses imply that an arcade can become unstable when either its height or twist of plasma pressure become too great.
Magnetohydrodynamics in the Inflationary Universe
I. Brevik; H. B. Sandvik
1999-12-20
Magnetohydrodynamic (MHD) waves are analysed in the early Universe, in the inflationary era, assuming the Universe to be filled with a nonviscous fluid of the Zel'dovich type ($p=\\rho$) in a metric of the de Sitter form. A spatially uniform, time dependent, magnetic field ${\\bf B_0}$ is assumed to be present. The Einstein equations are first solved to give the time dependence of the scale factor, assuming that the matter density, but not the magnetic field, contribute as source terms. The various modes are thereafter analysed; they turn out to be essentially of the same kind as those encountered in conventional nongravitational MHD, although the longitudinal magnetosonic wave is not interpretable as a physical energy-transporting wave as the group velocity becomes superluminal. We determine the phase speed of the various modes; they turn out to be scale factor independent. The Alfv\\'{e}n velocity of the transverse magnetohydrodynamic wave becomes extremely small in the inflationary era, showing that the wave is in practice 'frozen in'.
Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models
NASA Technical Reports Server (NTRS)
Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.
1997-01-01
Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.
Slip effects on the peristaltic transport of MHD fluid with variable viscosity
NASA Astrophysics Data System (ADS)
Ali, N.; Hussain, Q.; Hayat, T.; Asghar, S.
2008-02-01
This Letter concerns with the peristaltic analysis of MHD viscous fluid in a two-dimensional channel with variable viscosity under the effect of slip condition. A long wavelength and low Reynolds number assumption is used in the problem formulation. An exact solution is presented for the case of hydrodynamic fluid while for magnetohydrodynamic fluid a series solution is obtained in the small power of viscosity parameter. The salient features of pumping and trapping phenomena are discussed in detail through the numerical integration. It is noted that an increase in the slip parameter decreases the peristaltic pumping region. Moreover, the size of trapped bolus decreases by increasing the slip parameter.
Magnetohydrodynamic Numerical Simulations of Magnetic Reconnection in Interstellar Medium
Syuniti Tanuma
2000-01-01
In this thesis, we perform two-dimensional (2D) resistive magnetohydrodynamic (MHD) numerical simulations of the magnetic reconnection in interstellar medium. Part I is introduction. The motivation of the study is to investigate the origin of hot gas in interstellar medium. A scenario for generating X-ray gas in Galaxy is proposed, and examined by performing 2D MHD simulations with simple assumptions (Part
NASA Astrophysics Data System (ADS)
Murakami, Tomoyuki; Zhuang, Yunqin; Okuno, Yoshihiro
2013-02-01
We describe high-density magnetohydrodynamic (MHD) energy conversion in a high-temperature seed-free argon plasma, for which a compact linear-shaped Faraday-type MHD electrical power generator is used. Short-time-duration single-pulse shock-tunnel-based experiments demonstrate the MHD energy conversion with varying total inflow temperature up to 9000 K and applied magnetic-flux density up to 4.0 T. The high-temperature plasma is transformed from the thermal-equilibrium state at the entrance to the weak-nonequilibrium state in the supersonic MHD channel. The discharge structure is reasonably homogeneous without suffering from serious streamer development. The power generation performance is monotonically improved by increasing total inflow temperature and strength of magnetic field. The enthalpy extraction efficiency of 13.1% and overall power density of 0.16 GW/m3 are attained. The local power density at the middle of the channel reaches 0.24 GW/m3.
Satyamurthy, P.; Thiyagarajan, T.K.; Dixit, N.S.; Venkatramani, N. [Bhabha Atomic Research Centre, Bombay (India)
1995-12-31
Two-phase flows consisting of high density liquid metals like lead or lead alloys are used in Liquid Metal Magnetohydrodynamic power generators of gravity type. Non-intrusive measurement of void fraction constitutes an important part of monitoring the industrial power unit. Gamma ray attenuation method of void fraction measurement is most suitable for this purpose. However, due to very large path lengths of two-phase region (0.2-0.25 m) gamma ray beam of 1.33 MeV energy, very large source strength of the order of kilo curie is required. This makes diagnostic system very bulky and also gives rise to radiation handling problems. A modified equation for void fraction is developed where the counts corresponding to the liquid metal alone which decides the overall strength, is replaced by the counts corresponding to some reference void fraction. Using this equation, depending upon the void fraction value, the source strength can be reduced to as low as a fraction of a curie. Experiments have been conducted with {sup 60}Co with 75 mCi and 20 mCi source strength in a mercury-nitrogen liquid metal simulation facility to verify the accuracy of measuring the void fraction based on the modified equation. The values matched well with the values based on the standard equation.
NASA Astrophysics Data System (ADS)
Passos, D. M. D. C.; Charbonneau, P.
2014-12-01
The steady advance in computer power has finally enabled us to explore the solar dynamo problem by means of 3D global magnetohydrodynamical (MHD) simulations of the convection zone.Using the EULAG-MHD code, we have succeeded in producing simulations of the Sun's magnetic activity cycles that resemble the observed evolutionary patterns of the large-scale solar magnetic field. In these simulations the anelastic ideal MHD equations are solved in a thick, rotating shell of electrically conducting fluid, under solar-like stratification and thermal forcing. Since these simulations are fully dynamical in all time and spatial resolved scales, they achieve highly turbulent regimes and naturally produce variable amplitude solutions.We have recently been able to produce a simulation that spans for 1650 years and that produced 40 complete sunspot like cycles, the longest of its kind so far.This allows to perform statistical studies and establish direct comparisons with the observed solar cycle. Some of the main similarities and differences between the statistical properties of simulated and observed cycles are presented here (e.g. evidence for Gnevyshev-Ohl patterns, Gleissberg modulation or hemispheric coupling). Additionally, by studying the behaviour of the large scale flows in the simulation (differential rotation and meridional circulation) we also find evidence for solar cycle modulation of the deep equatorward flow in the meridional circulation. This result is briefly discussed as well as its implications for current helioseismic measurement methodologies and for classical kinematic mean-field flux transport dynamo simulations.
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
2014-09-15
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=?(?{sub 0}/p{sub 0}) I/(2 ?) where I is the current, ?{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ? R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.
Converging cylindrical shocks in ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{? _0/p_0} I/(2 ? ) where I is the current, ?0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ? R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then slows the shock Mach number growth producing a maximum followed by monotonic reduction towards magnetosonic conditions, even as the shock accelerates toward the axis. A parameter space of initial shock Mach number at a given radius is explored and the implications of the present results for inertial confinement fusion are discussed.
Not Available
1995-02-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.
Applications of Lie-group methods to the equations of magnetohydrodynamics
Mandrekas, J.
1987-01-01
The invariance properties of various sets of magnetohydrodynamic (MHD) equations are studied using techniques from the theory of differential forms. Equations considered include the ideal MHD equations in different geometries and with different magnetic field configurations, the MHD equations in the presence of gravitational forces due to self-attraction or external fields, and the MHD equations including finite thermal conductivity and magnetic viscosity. The knowledge of the group structure of these equations is then used to introduce similarity variables to these equations. For each choice of similarity variables, the original set of partial differential equations is transformed into a set of ordinary differential equations and the most general form of the initial conditions is determined. Three cases are studied in detail and the corresponding sets of ordinary differential equations are solved numerically: the problem of a blast wave in an inhomogeneous atmosphere, the problem of a piston moving according to a power law in time, and the problem of a piston moving according to an exponential law in time.
Resistive MHD Simulations of Laminar Round Jets with Application to Magnetic Nozzle Flows
Araya, Daniel
2012-02-14
This thesis investigates fundamental flows of resistive magnetohydrodynamics (MHD) by a new numerical tool based on the gas-kinetic method. The motivation for this work stems from the need to analyze the mechanisms of plasma detachment...
Brown, Michael R.
://dx.doi.org/10.1063/1.4919391] I. INTRODUCTION We present a tutorial of MHD turbulence. Our focus will be on magnetohydrodynamic (MHD) turbulence as measured in the solar wind, but the techniques described apply equally well to laboratory, and even simulated plasma turbulence. In Sec. I, we open with an introduction to turbu- lence
A Comparison of Two Intermediate State HLLC Solvers for Ideal Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Gurski, K. F.
2008-04-01
This paper compares a solver based on the HLLC (Harten-Lax-van Leer-contact wave) approximate nonlinear Riemann solver for gas dynamics for ideal magnetohydrodynamics (MHD) with the HLL, Roe, Linde, and Li solvers. Simulation results are given for three one-dimensional test cases not previously shown in the original paper presenting the smooth HLLC solver for MHD.
On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydrodynamic flows
On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydrodynamic flows Ran Duana magneto- hydrodynamic (MHD) fluids with zero resistivity, evolving with a free interface in the presence-linear problem in some sense. Keywords: Rayleigh-Taylor instability, MHD, ill-posedness, Hadamard sense. 1
[Nonlinear magnetohydrodynamics
Not Available
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.
NASA Astrophysics Data System (ADS)
1991-10-01
The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include the following: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector.
Rebound Shock Breakouts of Exploding Massive Stars: A MHD Void Model
Hu, Ren-Yu
2008-01-01
With a self-similar magnetohydrodynamic (MHD) model of an exploding progenitor star and an outgoing rebound shock and with the thermal bremsstrahlung as the major radiation mechanism in X-ray bands, we reproduce the early X-ray light curve observed for the recent event of XRO 080109/SN 2008D association. The X-ray light curve consists of a fast rise, as the shock travels into the "visible layer" in the stellar envelope, and a subsequent power-law decay, as the plasma cools in a self-similar evolution. The observed spectral softening is naturally expected in our rebound MHD shock scenario. We propose to attribute the "non-thermal spectrum" observed to be a superposition of different thermal spectra produced at different layers of the stellar envelope.
Rebound Shock Breakouts of Exploding Massive Stars: A MHD Void Model
Ren-Yu Hu; Yu-Qing Lou
2008-08-28
With a self-similar magnetohydrodynamic (MHD) model of an exploding progenitor star and an outgoing rebound shock and with the thermal bremsstrahlung as the major radiation mechanism in X-ray bands, we reproduce the early X-ray light curve observed for the recent event of XRO 080109/SN 2008D association. The X-ray light curve consists of a fast rise, as the shock travels into the "visible layer" in the stellar envelope, and a subsequent power-law decay, as the plasma cools in a self-similar evolution. The observed spectral softening is naturally expected in our rebound MHD shock scenario. We propose to attribute the "non-thermal spectrum" observed to be a superposition of different thermal spectra produced at different layers of the stellar envelope.
Solar wind turbulence from MHD to sub-ion scales: high-resolution hybrid simulations
Franci, Luca; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr
2015-01-01
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wave numbers. The simulation results exhibit simultaneously several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magneto-hydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm's law.
Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations
NASA Astrophysics Data System (ADS)
Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr
2015-05-01
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghaie, S.
2008-01-01
Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.
Numerical simulations for MHD coronal seismology
NASA Astrophysics Data System (ADS)
Pascoe, David James
2014-07-01
Magnetohydrodynamic (MHD) processes are important for the transfer of energy over large scales in plasmas and so are essential to understanding most forms of dynamical activity in the solar atmosphere. The introduction of transverse structuring into models for the corona modifies the behavior of MHD waves through processes such as dispersion and mode coupling. Exploiting our understanding of MHD waves with the diagnostic tool of coronal seismology relies upon the development of sufficiently detailed models to account for all the features in observations. The development of realistic models appropriate for highly structured and dynamical plasmas is often beyond the domain of simple mathematical analysis and so numerical methods are employed. This paper reviews recent numerical results for seismology of the solar corona using MHD.
NASA Astrophysics Data System (ADS)
Reynolds, James; Lipnikov, Konstantin; Rousculp, Christopher; Kaul, Ann; Peterson, Jeff; Nelson, Eric; Gianakon, Thomas
2011-10-01
FLAG is a arbitrary polyhedral, rad-hydro, multi-fluid ALE code for modeling HEDP. A 1D/2D resistive MHD capability is implemented within FLAG to provide a predictive tool for modeling the driver and loads of pulsed power experiments that measure material properties in intense conditions. An overview of the FLAG MHD model is presented with verification results. Mimetic differencing schemes are methods that create discrete versions of PDE operators while preserving physical and geometric properties of the continuous operators. Results are demonstrated for a Mimetic differencing approach to magnetic field diffusion and Joule heating.
NASA Technical Reports Server (NTRS)
Sovie, R. J.
1976-01-01
A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes.
Global magnetohydrodynamic simulations on multiple GPUs
NASA Astrophysics Data System (ADS)
Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui
2014-01-01
Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1997-01-01
Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.
Mass concentration phenomenon in compressible magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Du, Lili; Wang, Yongfu
2015-08-01
In this paper, we investigate the singularity formulation and blow-up mechanism to the compressible magnetohydrodynamic (MHD) flows in two dimensions. It is essentially shown that the mass of the compressible MHD fluid will concentrate in some spatial points, even if the initial density contains vacuum states, provided that the strong or smooth solution develops singularity in finite time. The result indicates that there is no possibility of formulating the other kinds of singularities, such as the vanishing of vacuum states, the appearance of vacuum states in the non-vacuum region or even milder ones, before the density concentrates at some point. It also implies the global regularity of the strong solution to the compressible MHD system, provided that the density remains bounded.
Nuclear magnetohydrodynamic EMP, solar storms, and substorms
Rabinowitz, M. (Electric Power Research Inst., Palo Alto, CA (United States)); Meliopoulous, A.P.S.; Glytsis, E.N. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering); Cokkinides, G.J. (Electrical Engineering Dept., Univ. of South Carolina, Columbia, SC (United States))
1992-10-20
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.
Computation of Multi-region Relaxed Magnetohydrodynamic Equilibria
Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; von Nessi, G.; Lazerson, S.
2013-03-29
We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.
Magnetohydrodynamic flow at microelectrodes
NASA Astrophysics Data System (ADS)
Ragsdale, Steven Ronald
1998-12-01
Voltammetric reduction of nitrobenzene (NB) at a 12.5 ?m-radius Pt microdisk electrode in acetonitrile solutions containing 0.001/le x NB/le 0.999 is reported (x NB is the mole fraction of NB). The voltammetric response displays a reversible, sigmoidalshape wave, corresponding to the one-electron reduction of NB. The maximum limiting current occurs in solutions containing intermediate redox concentrations, x NB/le0.2. Voltammetric currents are analyzed using the Cullinan-Vignes model to describe the interdiffusion of the redox species and solvent. Mutual diffusivities are corrected for activity effects using isothermal liquid-vapor equilibrium data. Application of the activity-corrected diffusivities in the Cullinan- Vignes model yields reasonably accurate predictions of the dependence of the voltammetric current on solution composition. The influence of an external magnetic field (0-1 Tesla) on the voltammetric response of Pt and Au microdisk electrodes (0.1, 6.4, 12.5 and 25 ?m radius) is described. Magnetohydrodynamic (MHD) flow within a microscopic volume element adjacent to the microdisk surface results from the magnetic force generated by the flux of electrogenerated ions through the magnetic field. An analytic expression is presented for the magnetic force generated during steady-state voltammetry at a hemispherical microelectrode immersed in a uniform magnetic field. The magnetic volume force, F/bf mag (N/m3), is shown to decrease as r-2 (where r is the distance from the center of the electrode). The dependence of F/bf mag on r-2 confines the MHD flow to small volumes very close to the electrode surface (e.g., ~2×10-9 L for a 12.5 ?m-radius electrode). Scanning electrochemical microscopy (SECM) is used to map MHD flows at a 25 ?m-radius Pt microdisk electrode during the one-electron reduction of NB. Unidirectional lateral flow is observed when the magnetic field is aligned parallel to the electrode surface; rotational or cyclotron flow is observed when the magnetic field is aligned normal to the electrode surface. The earth's gravitational field is demonstrated to enhance or diminish the magnetic field-induced convective flow, depending on the relative directions of the magnetic and buoyancy forces. The voltammetric current response for NB reduction at microdisk electrodes in the presence of both very large (<=9.4 Tesla) and non-uniform magnetic fields is reported. A magnetic field gradient force, F/bf/nabla B, is generated in the non-uniform field as electrogenerated paramagnetic ions are accelerated to regions of higher magnetic field strength. When the magnetic field is aligned normal to the surface of the electrode, the net MHD force, F/bf mag/bf net, is zero, allowing F/bf/nabla B to be observed without interference from MHD flows.
Low-frequency circuit analysis of MHD-EMP-induced transients on three-phase distribution systems
Mayhall, D.J.; Yee, J.H.
1992-07-01
The magnetohydrodynamic electromagnetic pulse (MHD-EMP) generated by a nuclear explosion in the earth's ionosphere is believed by a number of researchers to pose a potentially severe threat to long electric utility transmission and distribution systems in the United States. The disturbances caused by MHD-EMP are similar to the electromagnetic transients caused by solar-induced geomagnetic storms, but are generally expected to be more intense with shorter durations. Recent solar-induced storms have caused appreciable damage to electric utility equipment in Canada and the northern United States. In March of 1989, a solar-induced geomagnetic storm caused a blackout of the Hydro-Quebec power system in the province of Quebec, failure of step-up power transformers at the Salem Nuclear Generating Plant of the Public Service Electric and Gas Company, and a number of less severe power disruptions in the United States. Since the amplitudes of MHD-EMP induced transients are expected to be stronger than those produced by solar-induced geomagnetic storms, unprotected electric utility power systems may be quite vulnerable to MHD-EMP.
Low-frequency circuit analysis of MHD-EMP-induced transients on three-phase distribution systems
Mayhall, D.J.; Yee, J.H.
1992-07-01
The magnetohydrodynamic electromagnetic pulse (MHD-EMP) generated by a nuclear explosion in the earth`s ionosphere is believed by a number of researchers to pose a potentially severe threat to long electric utility transmission and distribution systems in the United States. The disturbances caused by MHD-EMP are similar to the electromagnetic transients caused by solar-induced geomagnetic storms, but are generally expected to be more intense with shorter durations. Recent solar-induced storms have caused appreciable damage to electric utility equipment in Canada and the northern United States. In March of 1989, a solar-induced geomagnetic storm caused a blackout of the Hydro-Quebec power system in the province of Quebec, failure of step-up power transformers at the Salem Nuclear Generating Plant of the Public Service Electric and Gas Company, and a number of less severe power disruptions in the United States. Since the amplitudes of MHD-EMP induced transients are expected to be stronger than those produced by solar-induced geomagnetic storms, unprotected electric utility power systems may be quite vulnerable to MHD-EMP.
An iterative study of time independent induction effects in magnetohydrodynamics.
and fields are computed explicitly with real boundary con- ditions. We validate our approach on the well, known as the magnetohydrodynamic (MHD) dynamo instability, is thought to be the source of cosmic bodies been produced by the controlled motion of solid metal rotors. The setup designed by Lowes and Wilkinson
Implicit Adaptive Mesh Refinement for 2D Reduced Resistive Magnetohydrodynamics
Bobby Philip; Luis Chacon; Michael Pernice
2007-01-01
An implicit structured-adaptive-mesh-refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal \\
Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet
NASA Astrophysics Data System (ADS)
Fang, Tie-Gang; Zhang, Ji; Yao, Shan-Shan
2010-12-01
The magnetohydrodynamic (MHD) flow under slip conditions over a shrinking sheet is solved analytically. The solution is given in a closed form equation and is an exact solution of the full governing Navier-Stokes equations. Interesting solution behavior is observed with multiple solution branches for certain parameter domain. The effects of the mass transfer, slip, and magnetic parameters are discussed.
Local Radiative Hydrodynamic and Magnetohydrodynamic Instabilities in Optically Thick Media
Omer Blaes; Aristotle Socrates
2003-01-01
We examine the local conditions for radiative damping and driving of short-wavelength, propagating hydrodynamic and magnetohydrodynamic (MHD) waves in static, optically thick, stratified equilibria. We show that so-called strange modes in stellar oscillation theory and magnetic photon bubbles are intimately related and are both fundamentally driven by the background radiation flux acting on compressible waves. We identify the necessary criteria
Suppression MHD instabilities by IBW heating in HT-7 Tokamak
C. M. Qin; Y. P. Zhao; X. J. Zhang; P. Xu; Y. Yang; the HT-7 team
2010-01-21
In HT-7 tokamak, the m= 2/1 tearing mode can be effectively suppressed by the ion bernstein wave (IBW) when the location of power deposition is near the q=2 rational surface. Off-axis electron heating and greatly increase of electron density was observed, in the meantime, the particle confinement appears to be improved with the increased of the central line averaged electron density and the drop of Da emission. Induced large ne gradients and pressures were spatially correlated with the IBW deposition profile by theoretical calculation >. It is suggested that off-axis IBW heating modifies the electron pressure profile, and so the current density profile could be redistributed resulting in the suppression of the magnetohydrodynamics (MHD) instability. It provides an integrated way for making combined effects on both the stabilization of tearing modes and controlling of pressure profile.
Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability
Ahedo, Eduardo [Universidad Politecnica de Madrid, 28040 Madrid (Spain); Ramos, Jesus J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2012-07-15
An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number.
THE SIGNATURE OF INITIAL CONDITIONS ON MAGNETOHYDRODYNAMIC TURBULENCE
Dallas, V.; Alexakis, A. E-mail: alexakis@lps.ens.fr
2014-06-20
We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our computational domain, dominating the scaling of the energy spectrum, which follows a E?k {sup –2} power law. As the Reynolds number increases, the curling of the current sheets due to Kelvin-Helmholtz-type instabilities and reconnection modifies the scaling of the energy spectrum from k {sup –2} toward k {sup –5/3}. This transition occurs due to the decorrelation of the velocity and the current density which is proportional to Re{sub ?}{sup ?3/2}. Finite Reynolds number behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of Re{sub ?} ? 440 with 2048{sup 3} grid points. This behavior demonstrates that even state-of-the-art numerical simulations of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical observations are discussed.
Structure Formation through Magnetohydrodynamical Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Noguchi, K.; Tajima, T.; Horton, W.
2000-12-01
The shear flow instabilities under the presence of magnetic fields in the protoplanetary disk can greatly facilitate the formation of density structures that serve as seeds prior to the onset of the gravitational Jeans instability. Such a seeding process may explain several outstanding puzzles in the planetary genesis that are further compounded by the new discoveries of extrasolar planets and a new insight into the equation of state of dense matter. This puzzle also includes the apparent narrow window of the age difference of the Sun and the Earth. We evaluate the effects of the Parker, magnetorotational(Balbus-Hawley), and kinematic dynamo instabilities by comparing the properties of these instabilities. We calculate the mass spectra of aggregated density structures by the above mechanism in the radial direction for an axisymmetric magnetohydrodynamic(MHD) torus equiblium and power-law density profile models. The mass spectrum of the magnetorotational instability may describe the origin of giant planets away from the central star such as Jupiter. Our local three-dimentional MHD simulation indicates that the coupling of the Parker and magnetorotational instabilities creates spiral arms and gas blobs in the accretion disk, reinforcing the theory and model.
Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields
Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2014-04-01
We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ?0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ?m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.
NASA Astrophysics Data System (ADS)
Chuvatin, Alexandre S.; Rudakov, Leonid I.; Kokshenev, Vladimir A.; Aranchuk, Leonid E.; Huet, Dominique; Gasilov, Vladimir A.; Krukovskii, Alexandre Yu.; Kurmaev, Nikolai E.; Fursov, Fiodor I.
2002-12-01
This work introduces an inductive energy storage (IES) scheme which aims pulsed-power conditioning at multi- MJ energies. The key element of the scheme represents an additional plasma volume, where a magnetically accelerated wire array is used for inductive current switching. This plasma acceleration volume is connected in parallel to a microsecond capacitor bank and to a 100-ns current ruse-time useful load. Simple estimates suggest that optimized scheme parameters could be reachable even when operating at ultra-high currents. We describe first proof-of-principle experiments carried out on GIT12 generator [1] at the wire-array current level of 2 MA. The obtained confirmation of the concept consists in generation of a 200 kV voltage directly at an inductive load. This load voltage value can be already sufficient to transfer the available magnetic energy into kinetic energy of a liner at this current level. Two-dimensional modeling with the radiational MHD numerical tool Marple [2] confirms the development of inductive voltage in the system. However, the average voltage increase is accompanied by short-duration voltage drops due to interception of the current by the low-density upstream plasma. Upon our viewpoint, this instability of the current distribution represents the main physical limitation to the scheme performance.
MHD simulation studies of z-pinch shear flow stabilization
I. Paraschiv; B. S. Bauer; V. I. Sotnikov; V. Makhin; R. E. Siemon
2003-01-01
The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The
MHD processes in the outer heliosphere
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1984-01-01
The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.
Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1
NASA Technical Reports Server (NTRS)
Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.
1997-01-01
This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.
Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2
NASA Technical Reports Server (NTRS)
Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.
1997-01-01
This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.
MHD Flow Control of Oblique Shock Waves Around Ramps in Low-temperature Supersonic Flows
Su Changbing; Li Yinghong; Cheng Bangqin; Wang Jian; Cao Jun; Li Yiwen
2010-01-01
This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic(MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma
Optimal Control for a Stationary MHD System in Velocity-Current Formulation
Roland Griesse; Karl Kunisch
2006-01-01
An optimal control problem for the equations governing the sta- tionary problem of magnetohydrodynamics (MHD) is considered. Control mechanisms by external and injected currents and magnetic fields are treated. An optimal control problem is formulated. First order necessary and second order sufficient conditions are developed. An operator splitting scheme for the numerical solution of the MHD state equations is analyzed.
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
Myrabo, L.N.; Rosa, R.J.
2004-03-30
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves.
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
NASA Astrophysics Data System (ADS)
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
Diffusive Acceleration of Particles at Oblique, Relativistic, Magnetohydrodynamic Shocks
NASA Astrophysics Data System (ADS)
Summerlin, Errol J.; Baring, Matthew G.
2012-01-01
Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering, and the level of field turbulence.
RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE
Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.
2012-10-20
The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.
Zaininger, H.W.
1984-08-01
A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP) - high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. The purpose of this project was first to define typical electrical power system characteristics for EMP analysis, and second, to determine reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms.
Weakly nonlinear magnetohydrodynamic wave interactions
Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.
1999-06-01
Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}
Not Available
1985-01-01
Two Senate bills would establish a federal effort to develop and demonstrate magnetohydrodynamics (MHD) for power generation (S. 1278) and a national engineering development program for coal technology (S. 1925). A hearing on the two bills brought testimony from the coal and MHD interests, the Electric Power Research Institute, DOE, various university research groups, and others. The hearing record includes the text of each bill, two appendices with additional responses and material submitted for the record, and the testimony of the 19 witnesses. Support for the MHD bill notes both private and public sector interest in commercialization as a way to enhance the health, safety, and environmental aspects of power generation. In support of a national coal program, witnesses noted the poor progress made during the 23 years of the Office of Coal Research and the need to improve coal combustion technology.
Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
Fitzpatrick, Richard
A drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in the pedestals of helical magnetic island equilibria in the pedestals of H-mode tokamak plasmas R. Fitzpatrick and F. L-magnetohydrodynamical MHD fluid model is developed for an isolated, steady-state, helical magnetic island chain, embedded
Broken Symmetry and Coherent Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Absolute equilibrium ensemble theory for ideal homogeneous magnetohydrodynamic (MHD) turbulence is fairly well developed. Theory and Simulation indicate that ideal MHD turbulence non-ergodic and contains coherent structure. The question of applicability real (i.e., dissipative) MHD turbulence is examined. Results from several very long time numerical simulations on a 64(exp 3) grid are presented. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection with inverse spectral cascades and selective decay will also be discussed.
Barnes, P.R.; Vance, E.F.
1992-01-01
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
Magnetohydrodynamic Propulsion for the Classroom
NASA Astrophysics Data System (ADS)
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Magnetohydrodynamics of Chiral Relativistic Fluids
Alexey Boyarsky; Jurg Frohlich; Oleg Ruchayskiy
2015-04-19
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Investigations of MHD Inner Magnetosphere Plasma Temperature
NASA Astrophysics Data System (ADS)
Welling, D. T.; Ridley, A. J.
2008-05-01
Magnetohydrodynamic (MHD) simulations of the Earth's magnetosphere have become an important research tool and can successfully reproduce many large and small scale features of the near-Earth environment. A common, persistent issue has been the discrepancy between measured plasma characteristics from the inner magnetosphere and magnetotail regions and the modeled plasma characteristics: MHD simulations yield a colder, denser plasma population than what is observed. In this study, environmental and numerical drivers of plasma density and temperature are examined during simulations of idealized and real events using the BATSRUS MHD code. Dayside and tail reconnection rates are investigated to determine their impact on the modeled plasma. The effects of simulation resolution and coupling with the Rice Convection Model are explored. Model results are compared to in-situ observations from LANL geosynchronous, Wind, GOES, and Geotail spacecraft.
A cosmological AMR MHD module for Enzo
Hao Xu; David C. Collins; Michael L. Norman; Shengtai Li; Hui Li
2008-04-08
Magnetic fields play an important role in almost all astrophysical phenomena including star formation. But due to the difficulty in analytic modeling and observation, magnetic fields are still poorly studied and numerical simulation has become a major tool. We have implemented a cosmological magnetohydrodynamics package for Enzo which is an AMR hydrodynamics code designed to simulate structure formation. We use the TVD solver developed by S. Li as the base solver. In addition, we employ the constrained transport(CT) algorithm as described by D. Balsara. For interpolation magnetic fields to fine grids we used a divergence free quadratic reconstruction, also described by Balsara. We present results from several test problems including MHD caustics, MHD pancake and galaxy cluster formation with magnetic fields. We also discuss possible applications of our AMR MHD code to first star research.
Robust Preconditioners for Incompressible MHD Models
Ma, Yicong; Hu, Xiaozhe; Xu, Jinchao
2015-01-01
In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is not only applicable to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preli...
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
J. D. Gibbon; A. Gupta; G. Krstulovic; R. Pandit; H. Politano; Y. Ponty; A. Pouquet; G. Sahoo; J. Stawarz
2015-08-22
We build on recent developments in the study of fluid turbulence [Gibbon \\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-$m$ moments, $D_m^{\\pm}$, of $\\omega^\\pm= \\omega \\pm j$, where $\\omega$ and $j$ are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number $P_M$, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for $D_m^{\\pm}$ and $D_1^{\\pm}$. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \\textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents $q^{\\pm}$ that characterize the power-law dependences of the energy spectra $\\mathcal{E}^{\\pm}(k)$ on the wave number $k$, in the inertial range of scales. We also comment on (a) the generalization of our results to the case $P_M \
NASA Astrophysics Data System (ADS)
Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.
2015-04-01
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k?-1.3 . The kinetic code shows a spectral slope of k?-1.5 for smaller simulation domain, and k?-1.3 for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.
ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA
Goossens, M.; Soler, R. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Arregui, I. [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2012-12-01
Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.
MHD--Developing New Technology to Meet the Energy Crisis
ERIC Educational Resources Information Center
Fitch, Sandra S.
1978-01-01
Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)
Transparent Boundary Conditions for MHD Simulations in Stratified Atmospheres
A. Dedner; D. Kröner; I. L Sofronov; M. Wesenberg
2001-01-01
In this paper we discuss a method of deriving artificial nonreflecting boundary conditions for systems of conservation laws. We focus on an application from solar physics. The governing equations are the equations of ideal compressible magnetohydrodynamics (MHD), which are solved in a gravitationally stratified atmosphere. We derive the necessary equations, discuss implementational aspects, and show the effectiveness and efficiency of
A 3D Global MHD Simulation of the Saturnian Magnetosphere
K. C. Hansen; D. L. Dezeeuw; T. I. Gombosi; C. P. T. Groth; K. G. Powell
1998-01-01
The recent launch of the Cassini spacecraft and the continued planning of its tour of the Saturnian system makes the development of predictive models and analysis tools very important. We present the results of a 3D global magnetohydrodynamic (MHD) model of the magnetosphere of Saturn as a first step in developing a detailed model which can be used for both
Laser production and heating of plasma for MHD application
Jalufka, N.W.
1988-03-01
Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO/sub 2/ laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO/sub 2/ laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO/sub 2/ laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.
Formation of relativistic MHD jets: stationary state solutions & numerical simulations
Fendt, Christian
2008-01-01
We discuss numerical results of relativistic magnetohydrodynamic (MHD) jet formation models. We first review some examples of stationary state solutions treating the collimation and acceleration process of relativistic MHD jets. We provide an a posteriori check for the MHD condition in highly magnetized flows, namely the comparison of particle density to Goldreich-Julian density. Using the jet dynamical parameters calculated from the MHD model we show the rest-frame thermal X-ray spectra of the jet, from which we derive the overall spectrum taking into account a variation of Doppler boosting and Doppler shift of emission lines along the outflow. Finally, we present preliminary results of relativistic MHD simulations of jet formation demonstrating the acceleration of a low velocity (0.01c) disk wind to a collimated high velocity (0.8c).
Formation of relativistic MHD jets: stationary state solutions & numerical simulations
Christian Fendt; Elisabetta Memola
2008-11-20
We discuss numerical results of relativistic magnetohydrodynamic (MHD) jet formation models. We first review some examples of stationary state solutions treating the collimation and acceleration process of relativistic MHD jets. We provide an a posteriori check for the MHD condition in highly magnetized flows, namely the comparison of particle density to Goldreich-Julian density. Using the jet dynamical parameters calculated from the MHD model we show the rest-frame thermal X-ray spectra of the jet, from which we derive the overall spectrum taking into account a variation of Doppler boosting and Doppler shift of emission lines along the outflow. Finally, we present preliminary results of relativistic MHD simulations of jet formation demonstrating the acceleration of a low velocity (0.01c) disk wind to a collimated high velocity (0.8c).
Particle Acceleration by MHD Turbulence
Jungyeon Cho; A. Lazarian
2005-10-21
Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We compare the results with the acceleration rate that arises from resonance scattering and Transit-Time Damping (TTD). We establish that fast modes accelerate particles more efficiently than slow modes. We find that particle acceleration by pitch-angle scattering and TTD dominates acceleration by slow or fast modes when the spatial diffusion rate is small. When the rate of spatial diffusion of particles is high, we establish an enhancement of the efficiency of particle acceleration by slow and fast modes in weak turbulence. We show that highly supersonic turbulence is an efficient agent for particle acceleration. We find that even incompressible turbulence can accelerate particles on the scales comparable with the particle mean free path.
Efficient Acceleration of Relativistic Magnetohydrodynamic Jets
Toma, Kenji
2013-01-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...
Ramrus, A.
1986-02-01
Objective of the study was to create conceptual designs of high voltage pulsers capable of simulating two types of electromagnetic pulses (EMPs) caused by a high-altitude nuclear burst; the slow rise time magnetohydrodynamic (MHD-EMP) and the fast rise time high-altitude EMP (HEMP). The pulser design was directed towards facilities capable of performing EMP vulnerability testing of components used in the national electric power system.
NASA Astrophysics Data System (ADS)
Ghehsareh, Hadi Roohani; Abbasbandy, Saeid; Kutbi, Marwan A.; Zaghian, Ali
2014-06-01
In this paper, two efficient and powerful explicit and minimal approaches based on the Hankel- Padé method and Laplace Adomian decomposition method coupled with Padé approximation, respectively, are discussed and employed to obtain approximate results of similarity solutions for the magnetohydrodynamical (MHD) Falkner-Skan boundary layer flow over a permeable wall. The values of skin friction coefficients of the problem are computed with high accuracy. The presented results through tables and figures show the efficiency, reliability, and accuracy of the two presented approaches. Finally, the effects of various model parameters on the boundary layer flow are investigated graphically
On the question of hysteresis in Hall magnetohydrodynamic reconnection
Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin
2010-11-15
Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more »which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY (United States); Samtaney, Ravi, E-mail: samtaney@pppl.go [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Brandt, Achi [Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot (Israel)
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
The complete set of Casimirs in Hall-magnetohydrodynamics
Kawazura, Yohei [Graduate School of Frontier Sciences, University of Tokyo Kashiwa, Chiba 277-8561 (Japan); Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2012-08-15
A procedure for determining all the Casimir constants of motion in magnetohydrodynamics (MHD) [E. Hameiri, Phys. Plasmas 11, 3423 (2004)] is extended to Hall-MHD. We obtain and solve differential equations for the variational derivatives of all the Casimirs, which must be satisfied for any dynamically accessible motion in Hall-MHD. In an extension of the more commonly considered Hall-MHD model, we also include the electron fluid entropy. The most interesting case for plasma confinement, which is usually true for axisymmetric configurations but desirable in general, is when both the magnetic field and the ion velocity field form the two separate families of nested toroidal surfaces. The Casimirs are then three functionals for each surface, involving the fluxes of certain vector fields and the number of particles contained in each. We also determine a family of independent Casimirs in a general configuration.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Thermodynamics of magnetohydrodynamic flows with axial symmetry.
Leprovost, N; Dubrulle, B; Chavanis, P-H
2005-03-01
We present strategies based upon optimization principles in the case of the axisymmetric equations of magnetohydrodynamics (MHD). We derive the equilibrium state by using a minimum energy principle under the constraints of the MHD axisymmetric equations. We also propose a numerical algorithm based on a maximum energy dissipation principle to compute in a consistent way the nonlinearly dynamically stable equilibrium states. Then, we develop the statistical mechanics of such flows and recover the same equilibrium states giving a justification of the minimum energy principle. We find that fluctuations obey a Gaussian shape and we make the link between the conservation of the Casimirs on the coarse-grained scale and the process of energy dissipation. We contrast these results with those of two-dimensional hydrodynamical turbulence where the equilibrium state maximizes a H function at fixed energy and circulation and where the fluctuations are nonuniversal. PMID:15903578
Magnetohydrodynamic Shallow Water Waves: Linear Analysis
NASA Astrophysics Data System (ADS)
Heng, Kevin; Spitkovsky, Anatoly
2009-10-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincaré modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes." We obtain analytical functions for the velocity, height, and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
MAGNETOHYDRODYNAMIC SHALLOW WATER WAVES: LINEAR ANALYSIS
Heng, Kevin [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Spitkovsky, Anatoly, E-mail: heng@ias.ed, E-mail: anatoly@astro.princeton.ed [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)
2009-10-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them 'magnetostrophic modes'. We obtain analytical functions for the velocity, height, and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
Advected Invariants in Magnetohydrodynamics and Gas Dynamics
NASA Astrophysics Data System (ADS)
Webb, G. M.; Hu, Q.; McKenzie, J. F.; Dasgupta, B.; Zank, G. P.
2014-05-01
In this paper we discuss conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics associated with advected invariants. The invariants in some cases, can be related to fluid relabelling symmetries associated with the Lagrangian map. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. We discuss the gauge condition required for the magnetic helicity to be advected with the flow. The conditions for the cross helicity to be an invariant are discussed. We discuss the different variants of helicity in fluid dynamics and in MHD, including: fluid kinetic helicity, cross helicity, magnetic helicity, Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant for special flows for which the magnetic helicity is zero.
NASA Astrophysics Data System (ADS)
Kisiel, T.; Soida, M.
2007-12-01
The rocket technology dates back as far as medieval China. Used initially for entertainment and religious practices over time rockets evolved into weapons and finally into means of transportation. Today, we are nearing the top of the rockets' capabilities. Although, for now they are the only way for us to send anything into space we are becoming more and more aware of the limitations of this technology. It is essential that we invent other means of propelling probes and other interplanetary vehicles through space. The authors had performed a series of magnetohydrodynamic simulations using the University of Chicago's Flash package to find out whether the interactions between the Solar Wind and the conducting ring with the electric current would occur. The MHD simulations gave the results similar to the monte-carlo calculations performed by dr Charles Danforth from the University of Colorado. It is the authors' conclusion that the promising results should encourage further study of the phenomenon and the possibility of using it in practice.
Ng, C S; 10.1063/1.2778956
2011-01-01
The solar wind and the interstellar medium are permeated by large-scale magnetic fields that render magnetohydrodynamic (MHD) turbulence anisotropic. In the weak-turbulence limit in which three-wave interactions dominate, analytical and high-resolution numerical results based on random scattering of shear-Alfv\\'en waves propagating parallel to a large-scale magnetic field, as well as direct simulations demonstrate rigorously an anisotropic energy spectrum that scales as $k^{-2}_\\perp$, instead of the famous Iroshnikov-Kraichnan (IK) spectrum of $k^{-3/2}$ for the isotropic case. Even in the absence of a background magnetic field, anisotropy is found to develop with respect to the local magnetic field, although the energy spectrum is globally isotropic and is found to be consistent with a $k^{-3/2}$ scaling. It is also found in direct numerical simulations that the energy cascade rate is much closer to IK scaling than a Kolmogorov scaling. Recent observations in the solar wind on cascade rates (as functions of...
Reass, W.A.; Wurden, G.A.
1997-10-06
The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 {micro}H saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency.
Hall magnetohydrodynamics and its applications to laboratory and cosmic plasma
NASA Astrophysics Data System (ADS)
Witalis, E. A.
1986-12-01
With early critical views by Lighthill (1960) as the starting point, a revision is performed of the classical magnetohydrodynamic (MHD) theory for the magnetized plasma properties. The importance of retaining the Hall term and using a two-fluid plasma description is stressed. The plasma Hall Magnetohydrodynamics (HMHD) description is derived by accounting for the noncentral character of the internal particle-particle forces sustaining the plasma charge neutrality. Plasma properties with similarities to the Meissner effect are predicted. The HMHD model and its extension to a current-tube plasma description are used to explain experimentally observed characteristics of magnetic confinement plasmas, with application also to cosmic plasmas.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to ?-1 / 2, ? being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Accurate, Meshless Methods for Magneto-Hydrodynamics
Hopkins, Philip F
2015-01-01
Recently, we developed a pair of meshless finite-volume Lagrangian methods for hydrodynamics: the 'meshless finite mass' (MFM) and 'meshless finite volume' (MFV) methods. These capture advantages of both smoothed-particle hydrodynamics (SPH) and adaptive mesh-refinement (AMR) schemes. Here, we extend these to include ideal magneto-hydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains div*B~0 to high accuracy. We implement these in the code GIZMO, together with a state-of-the-art implementation of SPH MHD. In every one of a large suite of test problems, the new methods are competitive with moving-mesh and AMR schemes using constrained transport (CT) to ensure div*B=0. They are able to correctly capture the growth and structure of the magneto-rotational instability (MRI), MHD turbulence, and the launching of magnetic jets, in some cases converging more rapidly than AMR codes. Compared to SPH, the MFM/MFV methods e...
NASA Technical Reports Server (NTRS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2014-01-01
There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al., (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst approx. = -1600 nT.
NASA Astrophysics Data System (ADS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2014-06-01
There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.
Simulations of Incompressible MHD Turbulence
Jason Maron; Peter Goldreich
2001-03-07
We simulate incompressible MHD turbulence in the presence of a strong background magnetic field. Our major conclusions are: 1) MHD turbulence is most conveniently described in terms of counter propagating shear Alfven and slow waves. Shear Alfven waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfven waves, as does a passive scalar. 2) MHD turbulence is anisotropic with energy cascading more rapidly along k_perp than along k_parallel, where k_perp and k_parallel refer to wavevector components perpendicular and parallel to the local magnetic field. Anisotropy increases with increasing k_perp. 3) MHD turbulence is generically strong in the sense that the waves which comprise it suffer order unity distortions on timescales comparable to their periods. Nevertheless, turbulent fluctuations are small deep inside the inertial range compared to the background field. 4) Decaying MHD turbulence is unstable to an increase of the imbalance between the flux of waves propagating in opposite directions along the magnetic field. 5) Items 1-4 lend support to the model of strong MHD turbulence by Goldreich & Sridhar (GS). Results from our simulations are also consistent with the GS prediction gamma=2/3. The sole notable discrepancy is that 1D power law spectra, E(k_perp) ~ k_perp^{-alpha}, determined from our simulations exhibit alpha ~ 3/2, whereas the GS model predicts alpha = 5/3.
S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team
2004-03-15
MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and toroidal beta. A proper accounting of energetic ion loss is therefore important for accurate analysis of power balance and transport in plasmas exhibiting MHD-induced energetic ion loss.
Magnetohydrodynamic waves and coronal seismology: an overview of recent results.
De Moortel, Ineke; Nakariakov, Valery M
2012-07-13
Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares. PMID:22665899
NASA Technical Reports Server (NTRS)
Smith, M.; Nichols, L. D.; Seikel, G. R.
1974-01-01
Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Recent progress and future plan of MHD in Japan
Shioda, S.
1994-12-31
Research for open, closed and liquid metal MHD power generation are continued in Japan. Most of them are basic and conducted in an academic sector, while for closed cycle MHD power generation, which is now called ICD power generation (Inert-gas Cycle Direct power generation), industries participate in designing, construction and operation of the experimental facility FUJI-1 of Tokyo Institute of Technology (TIT). Research for open cycle MHD are conducted in Hokkaido University, Kyoto University, Toyohashi University of Technology and others.
Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy
Schaffner, D. A.; Brown, M. R.; Lukin, V. S.
2014-08-01
The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.
An MHD Model of the Major Solar Flare on 2006 December 13
NASA Astrophysics Data System (ADS)
Kusano, K.; Inoue, S.; Shiota, D.; Yamamoto, T. T.
2010-12-01
Solar storm caused by major solar flare is the source of heliospheric and geo-magnetospheric disturbance. However, the onset mechanism of flare is not well understood yet. Aiming at revealing the initiation mechanism of solar storm, we have recently developed a new realistic magnetohydrodynamic (MHD) model of the major solar flare on 2006 December 13, based on the observation by Solar Optical Telescope (SOT) onboard Hinode solar physics satellite. We first calculated the nonlinear force-free field (NLFFF) of active region NOAA 10930 using the vector magnetogram observed by Hinode/SOT. Second, we carried out the three-dimensional MHD simulation by imposing photospheric variation which corresponds to the magnetic flux emerging activity seen prior to the onset of the flare. As a result, we have successfully simulated a solar eruption, in which magnetic reconnection drives super Alfvenic plasma jet from the flaring site. The comparative analysis with the spectroscopic observation by an EUV imaging spectrometer (EIS) on Hinode indicates that both the structure and the speed of jet in the numerical simulation are well consistent with the observation. The results encourage us that the MHD model driven by the magnetogram observation is able to be a powerful tool to understand the initiation process of solar flare.
Phurbas: An Adaptive, Lagrangian, Meshless, Magnetohydrodynamics Code. II. Implementation and Tests
McNally, Colin P; Mac Low, Mordecai-Mark
2011-01-01
We present the parallel implementation and test problem results for Phurbas, an implementation of an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured mesh represented by sample particles. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is required for stability, and gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. We have parallelized the code by adapting the framework provided by Gadget-2 (Springel 2005). A set of standard test problems, including 1e-6 amplitude linear MHD waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities yield results that appear competitive with third order grid codes. Finally we demonstrate good agreement with analytic predictions of linear growth rates for magnetorot...
Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Bitteker, L. J.; Jones, J. E.
2001-01-01
Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.
Efficient acceleration of relativistic magnetohydrodynamic jets
NASA Astrophysics Data System (ADS)
Toma, Kenji; Takahara, Fumio
2013-08-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.
NASA Astrophysics Data System (ADS)
Simcic, V. J.; Crowley, T. P.; Schoch, P. M.; Aydemir, A. Y.; Yang, X. Z.; Connor, K. A.; Hickok, R. L.; Wootton, A. J.; McCool, S. C.
1993-05-01
A heavy ion-beam probe has been used to make the first internal measurements of magnetic fluctuations in a hot tokamak. The magnetic vector potential fluctuation, Ã?s, is measured during magnetohydrodynamic (MHD) activity and is in reasonable agreement with the prediction of a three-dimensional, resistive, compressible, nonlinear MHD code. Associated density and potential fluctuation measurements and magnetic island widths are also presented.
L. Chacón
2008-01-01
The conceptual development and implementation of a scalable nonlinear solver for the time-dependent three-dimensional (3D) compressible resistive magnetohydrodynamics model (MHD) is discussed. The approach is based on Jacobian-free Newton-Krylov technology, preconditioned with multigrid methods for algorithmic scalability. The key to the approach is the reformulation of the hyperbolic MHD system into a parabolic one, which is amenable to multigrid techniques.
L. Chaco´n
2008-01-01
The conceptual development and implementation of a scalable nonlinear solver for the time-dependent three-dimensional (3D) compressible resistive magnetohydrodynamics model (MHD) is discussed. The approach is based on Jacobian-free Newton–Krylov technology, preconditioned with multigrid methods for algorithmic scalability. The key to the approach is the reformulation of the hyperbolic MHD system into a parabolic one, which is amenable to multigrid techniques.
Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow
NASA Astrophysics Data System (ADS)
Fomichev, V. P.; Yadrenkin, M. A.
2013-01-01
New data on experimental implementation of the magnetohydrodynamic (MHD) parachute configuration in an air flow with Mach number M = 6 about a flat plate are considered. It is shown that MHD interaction near a flat plate may transform an attached oblique shock wave into a normal detached one, which considerably extends the area of body-incoming flow interaction. This effect can be employed in optimizing return space vehicle deceleration conditions in the upper atmosphere.
Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics
Bobby Philip; Luis Chacón; Michael Pernice
2008-01-01
An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton–Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal “physics-based” approach developed in [L. Chacón, D.A.
Solar-driven liquid metal magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Lee, J. H.; Hohl, F.
1981-05-01
A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.
Solar-driven liquid metal magnetohydrodynamic generator
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.
1981-01-01
A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.
Computational Methods for Ideal Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency. All results are given for Cartesian grids, but the algorithms are implemented for a general geometry on a unstructured grids.
MHD Turbulence and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.
MHD Integrated Topping Cycle Project
Not Available
1992-01-01
The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.
Transition from Kinetic to MHD Behavior in a Collisionless Plasma
NASA Astrophysics Data System (ADS)
Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.; Wan, Minping
2015-10-01
The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the question of interest by examining several different indicators of MHD-like behavior.
Three Dimensional Simulations of Compressible Hall MHD Plasmas
Shaikh, Dastgeer; Shukla, P. K.
2008-10-15
We have developed three dimensional, time dependent, compressible, non-adiabatic, driven and massively parallelized Hall magnetohydrodynamic (MHD) simulations to investigate turbulent spectral cascades in a regime where characteristic lengthscales associated with plasma fluctuations are smaller than ion gyro radii. Such regime is ubiquitously present in solar wind and many other collisionless space plasmas. Particularly in the solar wind, the high time resolution databases identify a spectral break at the end of MHD inertial range spectrum that corresponds to a high frequency regime. In the regime, turbulent cascades cannot be explained by the usual MHD models. With the help of our 3D Hall MHD code, we find that characteristic turbulent interactions in the high frequency regime evolve typically on kinetic Alfven time scales. The turbulent fluctuation associated with kinetic Alfven interactions are compressive and anisotropic and possess equipartition of kinetic and magnetic energies.
Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M
2004-03-23
Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.
Barnes, P.R.; Vance, E.F.
1992-03-01
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth`s magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it`s global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
Agee, F.J.; Baca, G.; Chama, D.; Lehr, F.M.; Englert, T.
1997-10-01
The field of High Power Microwaves (HPM) has evolved as a result of advances in the field of pulsed power, which has made pulses of electrical energy available that can drive HPM sources to gigawatt levels. One of the most compact forms of pulsed power involves the storage of chemical energy in the form of explosive charges. Explosive magnetohydrodynamic (MHD) generators are electrical power sources, which convert the kinetic energy of moving plasma into useful electrical energy through the magnetic portion of the Lorentz force. This report describes research conducted by the Air Force Research Laboratory to test specific designs of explosively driven magnetohydrodynamic generators. The goal of the research was to investigate the use of gigawatt generators in driving reactive loads appropriate to diode, and ultimately HPM applications. Two test series were performed, the first of which consisted of experiments on a low voltage generator and the second of which had the goal of scaling the existing design to higher voltage while retaining the reactive-type load. The complex problem of diagnostics of the plasma in this explosive test was addressed using fast, temporally resolved, plasma measurements, as well as spectroscopic plasma constituent measurements.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Global invariants in ideal magnetohydrodynamic turbulence
Shebalin, John V.
2013-10-15
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
Imbalanced relativistic force-free magnetohydrodynamic turbulence
Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Lazarian, A., E-mail: jcho@cnu.ac.kr [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)
2014-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub ?}{sup 2}?(?{sub +}/?{sub ?}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.
Energy dissipation in magnetohydrodynamic turbulence: coherent structures or 'nanoflares'?
Zhdankin, Vladimir; Boldyrev, Stanislav [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); Perez, Jean Carlos [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Tobias, Steven M. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)
2014-11-10
We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power-law tail with an index very close to the critical value of –2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both coherent structures and nanoflares previously conjectured as a coronal heating mechanism.
MHD shocks in coronal mass ejections
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).
Globus, Noemie; Levinson, Amir [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)
2014-11-20
We construct a semi-analytic model for magnetohydrodynamic (MHD) flows in Kerr geometry that incorporates energy loading via neutrino annihilation on magnetic field lines threading the horizon. We compute the structure of the double-flow established in the magnetisphere for a wide range of energy injection rates and identify the different operation regimes. At low injection rates, the outflow is powered by the spinning black hole via the Blandford-Znajek mechanism, whereas at high injection rates, it is driven by the pressure of the plasma deposited on magnetic field lines. In the intermediate regime, both processes contribute to the outflow formation. The parameter that quantifies the load is the ratio of the net power injected below the stagnation radius and the maximum power that can be extracted magnetically from the black hole.
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Pak Shing Li; Christopher F. McKee; Richard I. Klein; Robert T. Fisher
2008-05-05
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
The generation and damping of propagating MHD kink waves in the solar atmosphere
Morton, R. J. [Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Hillier, A., E-mail: richard.morton@northumbria.ac.uk, E-mail: g.verth@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Kwasan and Hida Observatories, Kyoto University, 17 Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto City, Kyoto 607-8471 (Japan)
2014-03-20
The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Klein, R I; Li, P S; McKee, C F; Fisher, R
2008-04-10
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
Magnetohydrodynamics in full general relativity: Formulation and tests
Shibata, Masaru; Sekiguchi, Yu-ichirou [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan)
2005-08-15
A new implementation for magnetohydrodynamics (MHD) simulations in full general relativity (involving dynamical spacetimes) is presented. In our implementation, Einstein's evolution equations are evolved by a Baumgarte-Shapiro-Shibata-Nakamura formalism, MHD equations by a high-resolution central scheme, and induction equation by a constraint transport method. We perform numerical simulations for standard test problems in relativistic MHD, including special relativistic magnetized shocks, general relativistic magnetized Bondi flow in stationary spacetime, and a long-term evolution for self-gravitating system composed of a neutron star and a magnetized disk in full general relativity. In the final test, we illustrate that our implementation can follow winding-up of the magnetic field lines of magnetized and differentially rotating accretion disks around a compact object until saturation, after which magnetically driven wind and angular momentum transport inside the disk turn on.
Application of magnetohydrodynamic actuation to continuous flow chemistry.
West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen
2002-11-01
Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry. PMID:15100815
Performance of Combustion Disk MHD Generators.
NASA Astrophysics Data System (ADS)
Jenkins, Marion Karl
Results of an experimental and analytical study of radial flow disk magnetohydrodynamic generators are presented. The overall goal of the study was to investigate disk generators for application to baseload power generation. The experimental work consisted of a series of combustion-driven steady state experiments with a hot-wall channel operated in a superconducting magnet. Channel operating characteristics were examined under a variety of plasma temperatures, velocities, and magnetic field strengths. The channel was operated continuously in tests lasting several hours, with plasma temperatures ranging up to 2800(DEGREES)K and magnetic fields up to 5.5 Tesla. Voltage -current characteristics showed the expected linear behavior, and the expected dependence on channel operating conditions such as magnetic field strength and velocity was observed. Plasma conditions were inferred from the electrical conductivity, which was measured parallel to the applied magnetic field in the channel inlet nozzle. Steady voltage and current distributions on the segmented ring cathode were fairly uniform, with the largest deviations occurring as expected near open and short circuit conditions. Statistical analysis of fluctuating voltage signals showed strong positive correlations between probes mounted at different locations within the channel, indicating the absence of spoke-type plasma nonuniformities that have been observed in shock tube-driven disk experiments. Measured values of voltages and currents were less than expected, indicating the presence of substantial loss mechanisms in the channel. These losses were postulated to be caused by insulator wall current leakage and electrode voltage drop. Radial voltage profiles and open circuit voltage measurements verified the presence of these effects. An ideal homogeneous plasma model was developed to account for the losses, and values obtained for the loss terms are in agreement with relevant linear generator results. Limiting values of Hall fields were investigated using external voltage augmentation, and electric fields of 9 KV/m were observed in the channel with no evidence of breakdown. The analytical work consisted of the development of a two-dimensional computer program to predict boundary layer phenomena in disk generators, including the effects of turbulence, variable gas properties and MHD interaction. The numerical results show the effect of the variable MHD body force across the insulating wall boundary layer, giving rise to boundary layer velocities higher than those in the core. This leads to greater skin friction and heat transfer losses than what would be predicted with a quasi -one dimensional model. Calculations carried out for baseload -sized generators show the expected dependence of boundary layer behavior on channel operating conditions such as wall temperature, swirl, magnetic field strength and channel loading.
Observation of MHD Instabilities Driven by Energetic Electrons in the Large Helical Device
NASA Astrophysics Data System (ADS)
Mitsutaka, Isobe; Kunihiro, Ogawa; Akihiro, Shimizu; Masaki, Osakabe; Shin, Kubo; Toi, K.; LHD Experiment Group
2015-04-01
Coherent magnetic fluctuations in an acoustic range of frequency have been regularly observed in low-density (ne < 0.2×1019 m?3) plasmas with strong second harmonic electron cyclotron resonance heating (ECRH) on the Large Helical Device. Hard X-ray measurements indicated that energetic electrons are generated in these ECRH discharges. The magnetic fluctuations are suppressed in higher density discharges where energetic electrons are not present. The ECRH power modulation experiment indicated that the observed magnetohydrodynamic (MHD) mode has an acoustic nature rather than an Alfvénic nature. supported by the Grant-in-Aid for Encouragement of Scientists from the Japan Society for the Promotion of Science (No. 20656150). This work was also partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328 and NRF: No. 2012K2A2A6000443)
Athena: A New Code for Astrophysical MHD
James M. Stone; Thomas A. Gardiner; Peter Teuben; John F. Hawley; Jacob B. Simon
2008-04-02
A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.
An Implicit, Nonlinear Reduced Resistive MHD Solver
NASA Astrophysics Data System (ADS)
Chacón, L.; Knoll, D. A.; Finn, J. M.
2002-05-01
Implicit time differencing of the resistive magnetohydrodynamic (MHD) equations can step over the limiting time scales-such as Alfvén time scales-to resolve the dynamic time scales of interest. However, nonlinearities present in these equations make an implicit implementation cumbersome. Here, viable paths for an implicit, nonlinear time integration of the MHD equations are explored using a 2D reduced viscoresistive MHD model. The implicit time integration is performed using the Newton-Raphson iterative algorithm, employing Krylov iterative techniques for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix). Convergence in Krylov techniques is accelerated by preconditioning the initial problem. A “physics-based” preconditioner, based on a semi-implicit approximation to the original set of partial differential equations, is employed. The preconditioner employs low-complexity multigrid techniques to invert approximately the resulting elliptic algebraic systems. The resulting 2D reduced resistive MHD implicit algorithm is shown to be successful in dealing with large time steps (on the order of the dynamical time scale of the problem) and fine grids. The algorithm is second-order accurate in time and scalable under grid refinement. Comparison of the implicit CPU time with an explicit integration method demonstrates CPU savings even for moderate (64×64) grids, and close to an order of magnitude in fine grids (256×256).
MHD simulation of the planetary magnetospheres by using various scalar type supercomputer systems
NASA Astrophysics Data System (ADS)
Fukazawa, Keiichiro; Umeda, Takayuki; Ogino, Tatsuki; Walker, Raymond; Yumoto, Kiyohumi
Currently more than 85% of the "top 500" supercomputer systems in the world have adopted the "64-bit x86" processor architecture. However it is often mentioned that the performance of electromagnetic fluid codes is not as good on the scalar type computers (often less than 10% of peak performance efficiency) as compared to vector type computers. For instance our planetary magnetospheric magnetohydrodynamic code reached over 50% of performance efficiency on vector supercomputers. In this study we have carried out performance tuning and other measurements on massively parallel supercomputer systems with various types of scalar processors. We use the T2K open supercomputer at University of Tokyo (AMD Opteron processors), SR16000 at Kyushu University (IBM POWER6 processors), and FX1 (Fujitsu SPARC64VI processors) and HX600 (AMD Opteron processors) at Nagoya University. In this presentation, as a tuning technique, the MHD simulation model was run by using three decomposition methods for parallelization and one cache tuning method to find out which method is best for the MHD code. As a result we have obtained over 10% of peak performance efficiency using the T2K open supercomputer and we obtained much better performances with SR16000 and FX1, HX600 (over 20%). In particular we found that the two-dimensional decom-position of the MHD model is suitable for the T2K system and while for the SR16000 and FX1 cache tuned three-dimensional decomposition achieved the best performance. In this study we will show and compare the results of performance measurements and tuning techniques for MHD simulation codes of the planetary magnetospheres with scalar type supercomputers in detail. Finally we will present the latest simulation results of global planetary magnetosphere with high spatial resolution (three times the resolution of our current Saturn's model) using the result of performance tuning.
NASA Astrophysics Data System (ADS)
Sozzi, C.; Galperti, C.; Alessi, E.; Nowak, S.; Apruzzese, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Bruschi, A.; Buratti, P.; Calabrò, G.; Esposito, B.; Figini, L.; Garavaglia, S.; Granucci, G.; Grosso, L. A.; Marchetto, C.; Marinucci, M.; Marocco, D.; Mazzotta, C.; Mellera, V.; Minelli, D.; Mosconi, M.; Moro, A.; Piergotti, V.; Pucella, G.; Ramogida, G.; Romano, A.; Tudisco, O.
2015-08-01
Experiments on real time control of magneto-hydrodynamic (MHD) instabilities using injection of electron cyclotron waves (ECW) are being performed with a control system based on only three real time key items: an equilibrium estimator based on a statistical regression, a MHD instability marker (SVDH) using a three-dimensional array of pick-up coils and a fast ECW launcher able to poloidally steer the EC absorption volume with d?/dt = 0.1/30?ms maximum radial speed. The MHD instability, usually a tearing mode with poloidal mode number m and toroidal mode number n such that m/n = 2/1 or 3/2 is deliberately induced either by neon gas injection or by a density ramp hitting the density limit. No diagnostics providing the radial localization of the instabilities have been used. The sensitivity of the used MHD marker allows to close the control loop solely on the effect of the actuator’s action with little elaboration. The nature of the instability triggering mechanism in these plasma prevents that the stabilization lasts longer than the ECW pulse. However when the ECW power is switched on, the instability amplitude shows a marked sensitivity to the position of the absorption volume with an increase or decrease of its growth rate. Moreover the suppression of the dominant mode by ECRH performed at high plasma density even at relatively low power level facilitates the development of a secondary mode. This minimized set of control tools aim to explore some of the difficulties which can be expected in a fusion reactor where reduced diagnostic capabilities and reduced actuator flexibility can be expected.
NASA Technical Reports Server (NTRS)
Curtis, Steven
1999-01-01
Global MHD (magnetohydrodynamic) simulations have shown a remarkable ability to describe the global dynamics of geospace. The limitations of the physical approximations underlying MHD would seem to limit the effectiveness of these codes, since kinetic and hybrid effects should manifest themselves by cross-scale coupling from microscales to mesoscales to global scales. However three effects appear to allow the codes to operate much more successfully than one would at first believe. They are:(l) the globally self-consistent nature of the codes with very well defined exterior boundary conditions (the solar wind) which allows the proper intercommunication between magnetospheric regions on MHD scales, (2) the control by global dynamics of the boundary layer locations where micro and meso scale processes operate, and (3) the critical role of numerical diffusion and with a sufficiently high resolution grid, the use of an empirical resistivity term, which if set at a level where the major magnetosphere boundaries properly calibrate against their observed locations, appear to well represent the effects of kinetic and hybrid processes on the global dynamics. The effectiveness of the global MHD codes, which have been developed under the ISTP mission, in describing Wind, Polar and Geotail observations, as well as ground-based observations are described. Particular emphasis is placed upon the Polar imaging data which when combined with ground-based data and global MHD-based synthetic aurora and convection patterns provide a powerful tool in understanding the final link in the solar-terrestrial chain: coupling into the atmosphere and ionosphere.
Computation of multi-region relaxed magnetohydrodynamic equilibria S. R. Hudson,1,a)
Hudson, Stuart
, Research School of Physics & Engineering, The Australian National University, Canberra ACT 0200, Australia-fluid magnetohydrodynam- ics (MHD) is commonly used for modeling the global, long- time-scale state of plasmas to the force-balance condition rp ¼ j Â B; (3) where j ¼ r Â B is the current density (here, and hereafter, l0
Landau fluid models of collisionless magnetohydrodynamics P. B. Snyder and G. W. Hammett
Hammett, Greg
Landau fluid models of collisionless magnetohydrodynamics P. B. Snyder and G. W. Hammett Princeton 1997 A closed set of fluid moment equations including models of kinetic Landau damping is developed fluid MHD simulations which could ben- efit from being extended into lower collisionality regimes
MAGNETOHYDRODYNAMICS Vol. 46 (2010), No. 1, pp. 99111 NUMERICAL AND EXPERIMENTAL STUDIES
Abdou, Mohamed
2010-01-01
rectangular duct made of stainless steel with the FCI made of epoxy for two cases: FCI with the PES thermal efficiency is strongly dependent on the FCI insulating properties (electrical and thermal the magnetohydrodynamic (MHD) pressure drop, and as a thermal insulator to minimize heat losses into the cooling helium
McCormick, Steve
Magnetohydrodynamics J. Adler1 , T. Manteuffel1 , S. McCormick1 , J. Nolting1 , J. Ruge1 , and L. Tang University of work needed to solve the MHD systems. #12;2 Adler, Manteuffel, McCormick, Nolting, Ruge, and Tang 2
Slip Effects on the Magnetohydrodynamic Peristaltic Flow of a Maxwell Fluid
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Hina, Sadia; Hendi, Awatif A.
2010-12-01
The influence of slip on the magnetohydrodynamic (MHD) peristaltic flow in a planar channel with compliant walls is examined. An incompressible Maxwell fluid saturates the porous medium. An established solution is valid for small wave number. The mathematical expression of the stream function is presented. Several interesting flow parameters are sketched and examined.
A Magnetohydrodynamic Test of the Wang-Sheeley Model S. A. Ledvina
Abbett, Bill
A Magnetohydrodynamic Test of the Wang-Sheeley Model S. A. Ledvina£ , J. G. Luhmann£ and W. P. The Wang-Sheeley relationship relates the solar wind speed at the Earth to the divergence rate of open a three-dimensional MHD model of the solar corona to further investigate the implications of the Wang
Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamic Taylor Richard Fitzpatrick
Fitzpatrick, Richard
to greatly accelerate the rate of magnetic reconnection. In the linear Hall-MHD regime, the peak. Plasmas 21, 020703 (2014); 10.1063/1.4865378 Gyro-induced acceleration of magnetic reconnection PhysScaling of forced magnetic reconnection in the Hall-magnetohydrodynamic Taylor problem Richard
Contributions from space technology to central power generation
NASA Technical Reports Server (NTRS)
Dicks, J. B., Jr.
1972-01-01
The central power crisis, and the present and relatively near-time contributions that aerospace technology is making to help solve this crisis are discussed. The principal emphasis is placed on the prospects of aerospace derived magnetohydrodynamic (MHD) large scale power generation. The strides that the Soviet Union is making in this field with the startup of the new U-25 plant near Moscow, having a total power capability of 75 MW, are reviewed. A much smaller program in the U.S. is outlined, and prospects of future benefits are discussed.
Two-dimensional MHD simulations of a neon Z pinch on Hawk
Joseph W. Schumer; David Mosher; Bryan Moosman; Bruce V. Weber; Robert J. Commisso; Niansheng Qi; Jochen Schein; Mahadevan Krishnan
2002-01-01
Two-dimensional magnetohydrodynamic (MHD) simulations using MACH2 are benchmarked against laser shearing interferometer (LSI) images of the evolving electron-density sheath during 250-ns neon gas-puff Z pinch implosions on the Naval Research Laboratory Hawk generator. The initial density distribution for the MHD simulations is calculated using a ballistic-flow-model fit to the measured initial gas-density distributions. The implosion is modeled using an applied
Pressure-gradient-induced Alfvén eigenmodes: I. Ideal MHD and finite ion Larmor radius effects
Andreas Bierwage; Liu Chen; Fulvio Zonca
2010-01-01
In the second magnetohydrodynamic (MHD) ballooning stable domain of a high-beta tokamak plasma, the Schrödinger equation for ideal MHD shear Alfvén waves has discrete solutions corresponding to standing waves trapped between pressure-gradient-induced potential wells. Our goal is to understand how these so-called alpha-induced toroidal Alfvén eigenmodes (alphaTAE) are modified by the effects of finite Larmor radii (FLR) and kinetic compression
D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod'ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij
2002-10-15
A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.
Joachim Birn; Michael Hesse
1994-01-01
The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV\\/m with integrated voltages across the tail of up to approximately 200
Coupling of a global MHD code and an inner magnetospheric model: Initial results
Darren L. De Zeeuw; Stanislav Sazykin; Richard A. Wolf; Tamas I. Gombosi; Aaron J. Ridley; Gabor Tóth
2004-01-01
This paper describes the coupling of BATS-R-US (Block Adaptive Tree Solar-wind Roe-type Upwind Scheme), a magnetohydrodynamics (MHD) code representing the Earth's global magnetosphere and its coupling to the ionosphere and solar wind, and the Rice Convection Model (RCM), which represents the inner magnetosphere and its coupling to the ionosphere. The MHD code provides a time-evolving magnetic field model for the
NASA Astrophysics Data System (ADS)
Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N.
2015-03-01
The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.
Global MHD Simulation of the Inner Accretion Disk in a Pseudo-Newtonian Potential
John F. Hawley; Julian H. Krolik
2000-09-28
We present a detailed three dimensional magnetohydrodynamic (MHD) simulation describing the inner region of a disk accreting onto a black hole. To avoid the technical complications of general relativity, the dynamics are treated in Newtonian fashion using the pseudo-Newtonian Pacz\\'ynski-Wiita potential. The disk evolves due to angular momentum transport which is produced naturally from MHD turbulence generated by the magnetorotational instability. We find that the resulting stress is continuous across the marginally stable orbit, in contradiction with the widely-held assumption that the stress should go to zero there. As a consequence, the specific angular momentum of the matter accreted into the hole is smaller than the specific angular momentum at the marginally stable orbit. The disk exhibits large fluctuations in almost every quantity, both spatially and temporally. In particular, the ratio of stress to pressure (the local analog of the Shakura-Sunyaev $\\alpha$ parameter) exhibits both systematic gradients and large fluctuations; from $\\sim 10^{-2}$ in the disk midplane at large radius, it rises to $\\sim 10$ both at a few gas density scaleheights above the plane at large radius, and near the midplane well inside the plunging region. Driven in part by large-amplitude waves excited near the marginally stable orbit, both the mass accretion rate and the integrated stress exhibit large fluctuations whose Fourier power spectra are smooth "red" power-laws stretching over several orders of magnitude in timescale.
Excitation of MHD waves in magnetized anisotropic cosmologies
A Kuiroukidis; K Kleidis; D B Papadopoulos; L Vlahos
2007-05-15
The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic field was studied, using the resistive magnetohydrodynamic (MHD) equations. We have shown that fast-magnetosonic modes, propagating normal to the magnetic field grow exponentially and saturated at high values, due to the resistivity. We also demonstrate that the jeans-like instabilities are enhanced inside a resistive and the formation of condensations formed within an anisotropic fluid influence the growing magnetosonic waves.
In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles
NASA Astrophysics Data System (ADS)
Ali, H. K.; Braun, R. D.
2014-06-01
This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.
Burke, B. J. [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Kruger, S. E. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C. [General Atomics, San Diego, California 92186 (United States)
2010-03-15
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
NASA Astrophysics Data System (ADS)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.
2010-03-01
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n =1-20). The results use the compressible MHD model and depend on a precise representation of "ideal-like" and "vacuumlike" or "halo" regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 108 and 103 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 105, which is much larger than experimentally measured values using Te values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
A solution of two-dimensional magnetohydrodynamic flow using the finite element method
Verardi, S.L.L.; Cardoso, J.R. [Escola Politecnica, Sao Paulo (Brazil)] [Escola Politecnica, Sao Paulo (Brazil); Motta, C.C. [CTMSP, Sao Paulo (Brazil)] [CTMSP, Sao Paulo (Brazil)
1998-09-01
The problem of magnetohydrodynamic flow through channels has become important because of several engineering applications such as design of nuclear reactor cooling systems, electromagnetic pumps, MHD flowmeters, MHD generators, blood flow measurements, etc. A numerical code based on the Finite Element Method (FEM) was developed to solve the two-dimensional, steady-state magnetohydrodynamic (MHD) flow in a rectangular channel. In order to apply the FEM, the Galerkin Weak Formulation was used. In this analysis, in contrast with the previous works, the thickness of the duct wall is taken into account and the results are compared to those obtained in the limit case when the thickness is much smaller than a characteristic dimension of the duct. In this case, convergence behavior of several iterative methods, for high Hartmann numbers, was also investigated.
A Numerical Method for General Relativistic Magnetohydrodynamics
Jean-Pierre De Villiers; John F. Hawley
2002-10-23
This paper describes the development and testing of a general relativistic magnetohydrodynamic (GRMHD) code to study ideal MHD in the fixed background of a Kerr black hole. The code is a direct extension of the hydrodynamic code of Hawley, Smarr, and Wilson, and uses Evans and Hawley constrained transport (CT) to evolve the magnetic fields. Two categories of test cases were undertaken. A one dimensional version of the code (Minkowski metric) was used to verify code performance in the special relativistic limit. The tests include Alfv\\'en wave propagation, fast and slow magnetosonic shocks, rarefaction waves, and both relativistic and non-relativistic shock tubes. A series of one- and two-dimensional tests were also carried out in the Kerr metric: magnetized Bondi inflow, a magnetized inflow test due to Gammie, and two-dimensional magnetized constant-$l$ tori that are subject to the magnetorotational instability.
On the equations of thermally radiative magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Guo, Boling
2014-11-01
An initial-boundary value problem is considered for the viscous compressible thermally radiative magnetohydrodynamic (MHD) flows coupled to self-gravitation describing the dynamics of gaseous stars in a bounded domain of R3. The conservative boundary conditions are prescribed. Compared to Ducomet-Feireisl [13] (also see, for instance, Feireisl [18], Feireisl-Novotný [20]), a rather more general constitutive relationship is given in this paper. The analysis allows for the initial density with vacuum. Every transport coefficient admits a certain temperature scaling. The global existence of a variational (weak) solution with any finite energy and finite entropy data is established through a three-level approximation and methods of weak convergence.
Statistics of passive tracers in three-dimensional magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Busse, Angela; Müller, Wolf-Christian; Homann, Holger; Grauer, Rainer
2007-12-01
Magnetohydrodynamic (MHD) turbulence is studied from the Lagrangian viewpoint by following fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD turbulence, two-particle relative dispersion in the MHD case differs significantly from the Navier-Stokes behavior. This observation is linked to the local anisotropy of MHD turbulence which is clearly reflected by quantities measured in a Lagrangian frame of reference. In the MHD case the Lagrangian structure functions display a lower level of intermittency as compared to the Navier-Stokes case contrasting Eulerian results. This is not only true for short time increments [H. Homann, R. Grauer, A. Busse, and W.-C. Müller, J. Plasma Phys. 73, 821 (2007)] but also holds for increments up to the order of the integral time scale. The apparent discrepancy can be explained by the difference in the characteristic shapes of fluid particle trajectories in the vicinity of most singular dissipative structures.
Statistics of passive tracers in three-dimensional magnetohydrodynamic turbulence
Busse, Angela; Mueller, Wolf-Christian; Homann, Holger; Grauer, Rainer
2007-12-15
Magnetohydrodynamic (MHD) turbulence is studied from the Lagrangian viewpoint by following fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD turbulence, two-particle relative dispersion in the MHD case differs significantly from the Navier-Stokes behavior. This observation is linked to the local anisotropy of MHD turbulence which is clearly reflected by quantities measured in a Lagrangian frame of reference. In the MHD case the Lagrangian structure functions display a lower level of intermittency as compared to the Navier-Stokes case contrasting Eulerian results. This is not only true for short time increments [H. Homann, R. Grauer, A. Busse, and W.-C. Mueller, J. Plasma Phys. 73, 821 (2007)] but also holds for increments up to the order of the integral time scale. The apparent discrepancy can be explained by the difference in the characteristic shapes of fluid particle trajectories in the vicinity of most singular dissipative structures.
SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE
Perez, Jean Carlos [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Mason, Joanne [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Boldyrev, Stanislav [Department of Physics, University of Wisconsin at Madison, 1150 University Avenue, Madison, WI 53706 (United States); Cattaneo, Fausto, E-mail: jeanc.perez@unh.edu, E-mail: j.mason@exeter.ac.uk, E-mail: boldyrev@wisc.edu, E-mail: cattaneo@flash.uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)
2014-09-20
Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.
A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.
2012-08-01
This thesis presents an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. The code has been parallelized by adapting the framework provided by Gadget-2. A set of standard test problems, including one part in a million amplitude linear MHD waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities are presented. Finally we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. We provide a rigorous methodology for verifying a numerical method on two dimensional Kelvin-Helmholtz instability. The test problem was run in the Pencil Code, Athena, Enzo, NDSPHMHD, and Phurbas. A strict comparison, judgment, or ranking, between codes is beyond the scope of this work, although this work provides the mathematical framewor! k needed for such a study. Nonetheless, how the test is posed circumvents the issues raised by tests starting from a sharp contact discontinuity yet it still shows the poor performance of Smoothed Particle Hydrodynamics. We then comment on the connection between this behavior and the underlying lack of zeroth-order consistency in Smoothed Particle Hydrodynamics interpolation. In astrophysical magnetohydrodynamics (MHD) and electrodynamics simulations, numerically enforcing the divergence free constraint on the magnetic field has been difficult. We observe that for point-based discretization, as used in finite-difference type and pseudo-spectral methods, the divergence free constraint can be satisfied entirely by a choice of interpolation used to define the derivatives of the magnetic field. As an example we demonstrate a new class of finite-difference type derivative operators on a regular grid which has the divergence free property. This principle clarifies the nature of magnetic monopole errors. The principles and techniques demonstrated in this chapter are particularly useful for the magnetic field, but can be applied to any vector field. Finally, we examine global zoom-in simulations of turbulent magnetorotationally unstable flow. We extract and analyze the high-current regions produced in the turbulent flow. Basic parameters of these regions are abstracted, and we build one dimensional models including non-ideal MHD, and radiative transfer. For sufficiently high temperatures, an instability resulting from the temperature dependence of the Ohmic resistivity is found. This instability concentrates current sheets, resulting in the possibility of rapid heating from temperatures on the order of 600 Kelvin to 2000 Kelvin in magnetorotationally turbulent regions of protoplanetary disks. This is a possible local mechanism for the melting of chondrules and the formation of other high-temperature materials in protoplanetary disks.
Collisionless magnetic reconnection under anisotropic MHD approximation
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{?}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{?})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Selective decay in fluids with advected quantities: MHD and Hall MHD
Gay-Balmaz, François
2013-01-01
Modifications of the equations of ideal fluid dynamics with advected quantities are introduced for either the energy $h$ or the Casimir quantities $C$ in the Lie-Poisson formulation. The dissipated quantity (energy or Casimir, respectively) is shown to decrease in time until the modified system reaches a state that holds for ideal energy-Casimir equilibria, namely $\\delta(h+C)=0$. The result holds for Lie-Poisson equations in general, independently of the Lie algebra and the choice of Casimir. This process is illustrated with a number of selected decay examples that pass to stable energy-Casimir equilibria for magnetohydrodynamics (MHD) and Hall MHD in 2D and 3D by decay of either the energy or the Casimirs.
Nonlinear magnetohydrodynamic stability
NASA Technical Reports Server (NTRS)
Bauer, F.; Betancourt, O.; Garabedian, P.
1981-01-01
The computer code developed by Bauer et al. (1978) for the study of the magnetohydrodynamic equilibrium and stability of a plasma in toroidal geometry is extended so that the growth rates of instabilities may be estimated more accurately. The original code, which is based on the variational principle of ideal magnetohydrodynamics, is upgraded by the introduction of a nonlinear formula for the growth rate of an unstable mode which acts as a quantitative measure of instability that is important in estimating numerical errors. The revised code has been applied to the determination of the nonlinear saturation, ballooning modes and beta limits for tokamaks, stellarators and torsatrons.
High Resolution Simulations of Relativistic Hydrodynamic and MHD Turbulence
NASA Astrophysics Data System (ADS)
Zrake, Jonathan; MacFadyen, A.
2013-01-01
We present a program of simulations designed to investigate the basic properties of relativistic hydrodynamic and magnetohydrodynamic (MHD) turbulence. We employ a well-tested 5th-order accurate numerical scheme at resolutions of up to 2048^3 zones for hydrodynamic turbulence, and a minimally diffusive 2nd-order scheme at resolutions of up to 1024^3 in the case of relativistic MHD. For the hydrodynamic case, we simulate a relativistically hot gas in a cubic periodic domain continuously driven at large scales with Lorentz factor of about 3. We find that relativistic turbulent velocity fluctuations with ? ? > 1 persist from the driving scale down to scales an order of magnitude smaller, demonstrating the existence of a sustained relativistic turbulent cascade. The power spectrum of the fluid 4-velocity is broadly Kolmogorov-like, roughly obeying a power law with 5/3 index between scales 1/10 and 1/100 of the domain. Departures from 5/3 scaling are larger for the power spectrum of 3-velocity. We find that throughout the inertial interval, 25% of power is in dilatational modes, which obey strict power law scaling between 1/2 and 1/100 of the domain with an index of 1.88. Our program also explores turbulent amplification of magnetic fields in the conditions of merging neutron stars, using a realistic equation of state for dense nuclear matter (? ˜ 10^13 g/cm^3). We find that very robustly, seed fields are amplified to magnetar strength (? 4 * 10^16 Gauss) within ˜1 micro-second for fluid volumes near the size of the NS crust thickness <10 meters. We present power spectra of the kinetic and magnetic energy taken long into the fully stationary evolution of the highest resolution models, finding the magnetic energy to be in super-equipartition (4 times larger) with the kinetic energy through the inertial range. We believe that current global simulations of merging NS binaries are insufficiently resolved for studying field amplification via turbulent processes. Larger magnetic fields, as found in our high resolution local simulations, may have consequences for gravitational wave signals, GRB precursor events, radio afterglows, and optical afterglows due to emission from ejected radioactive r-process material.
Picologlou, B F; Batenin, V M [eds.
1980-07-01
A description of the modifications made to improve the plasma parameters of the U-25B Facility is presented. The oxygen enrichment system was modified to allow oxygen enrichment of up to 50% (by volume) ahead of the preheaters. Optimum design and operating conditions of the seed injection system were defined as a result of experimental investigations. An account of the extensive diagnostic studies performed and a description of the measurement techniques and of the new submillimeter laser interferometer are given. The performance of the MHD generator is analyzed for different operating modes. Studies of fluctuations and nonuniformities, current take-off distributions, local electrical analysis, overall heat transfer history of the MHD channel, and an extensive parametric study of the generator are presented. A detailed account of the complete disassembly and inspection of channel No. 1 after more than 100 hours of operation with the combustor, and of the condition of its various elements is also given.
Gao, Feng; Kreidermacher, Adam; Fritsch, Ingrid; Heyes, Colin D.
2013-01-01
Redox magnetohydrodynamics (MHD) is a promising technique for developing new electrochemical-based microfluidic flow devices with unique capabilities, such as easily switching flow direction, adjusting flow speeds and flow patterns as well as avoiding bubble formation. However, a detailed description of all the forces involved and predicting flow patterns in confined geometries is lacking. In addition to redox-MHD, density gradients caused by the redox reactions also play important roles. Flow in these devices with small fluid volumes has mainly been characterized by following microbead motion by optical microscopy either by particle tracking velocimetry (PTV) or by processing the microbead images by particle image velocimetry (PIV) software. This approach has limitations in spatial resolution and dimensionality. Here we use fluorescence correlation spectroscopy (FCS) to quantitatively and accurately measure flow speeds and patterns in the ~5-50 ?m/s range in redox-MHD-based microfluidic devices, from which 3D flow maps are obtained with a spatial resolution down to 2 ?m. The 2 ?m spatial resolution flow speeds map revealed detailed flow profiles during redox-MHD in which the velocity increases linearly from above the electrode, and reaches a plateau across the center of the channel. By combining FCS and video-microscopy (with PTV and PIV processing approaches), we are able to quantify a vertical flow of ~10 ?m/s above the electrodes as a result of density gradients caused by the redox reactions and follow convection flow patterns. Overall, combining FCS, PIV and PTV analysis of redox-MHD is a powerful combination to more thoroughly characterize the underlying forces in these promising microfluidic devices. PMID:23537496
Broken Ergodicity in MHD Turbulence in a Spherical Domain
NASA Technical Reports Server (NTRS)
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Picologlou, B F; Batenin, V M
1981-01-01
A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6?5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
Outline of fast analyzer for MHD equilibrium FAME
NASA Astrophysics Data System (ADS)
Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto
1994-02-01
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments.
Inclusion of parallel fluid flow in the KITES 3D MHD equilibrium code
NASA Astrophysics Data System (ADS)
Raburn, Daniel
2014-10-01
The KITES (Kyoto ITerative Equilibrium Solver) code is being developed for the calculation of flowing MHD (magnetohydrodynamic) equilibria in nonsymmetric devices. [Daniel Raburn and Atsushi Fukuyama, Plasma and Fusion Research: Regular Articles 7, 240381 (2012).] An update on the code is presented, including preliminary results on the calculation of equilibria with purely parallel flow.
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
Roman Samulyak; Jian Du; James Glimm; Zhiliang Xu
2007-01-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic–elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic
Abdou, Mohamed
number. Part I: On a rectangular collocated grid system Ming-Jiu Ni a,c,*, Ramakanth Munipalli b , Neil B by solving the electrical potential equation for magnetohydrodynamics (MHD) at low magnetic Reynolds numbers and high Hartmann numbers on a finite-volume structured collocated grid. In this collocated grid, velocity
A PRACTICAL OPTIMAL CONTROL APPROACH TO THE STATIONARY MHD SYSTEM IN VELOCITY{CURRENT FORMULATION
ROLAND GRIESSE; KARL KUNISCH
An optimal control problem for the equations governing the sta- tionary problem of magnetohydrodynamics (MHD) is considered. Control mechanisms by external and injected currents and magnetic elds are treated. Motivated by practical applications, an optimal control problem is formulated. First order necessary and second order sucien t conditions are developed. An operator splitting scheme for the numerical solution of the
NASA Astrophysics Data System (ADS)
Khater, A. H.; Callebaut, D. K.; Abdelhameed, T. N.; Hady, A.
In this paper, we apply the general theory of Arnold (1965, 1966) and Moffatt et al. (1997). We search sufficient conditions for the linear stability of steady three-dimensional incompressible gravitating flows in ideal magnetohydrodynamics (MHD). The results suggest that the solar and the stellar convection zones must be sensitive to the density stratification.
MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979
Dicks, J. B.; Chapman, J. N.; Crawford, L. W.
1980-02-01
In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.
MHD wave modes resolved in fine-scale chromospheric magnetic structures
Verth, G
2015-01-01
Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magnetohydrodynamic (MHD) wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromospheric magnetic structures, including spicules, fibrils and mottles. Next we go on to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux. This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magnetoseismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmospher...
Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation
Xu, Siyao; Lazarian, A
2015-01-01
We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
NASA Technical Reports Server (NTRS)
Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.
2000-01-01
Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.
Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Mehta, Unmeel B.
2003-01-01
A new parabolized Navier-Stokes (PNS) algorithm has been developed to efficiently compute magnetohydrodynamic (MHD) flows in the low magnetic Reynolds number regime. In this regime, the electrical conductivity is low and the induced magnetic field is negligible compared to the applied magnetic field. The MHD effects are modeled by introducing source terms into the PNS equation which can then be solved in a very efficient manner. To account for upstream (elliptic) effects, the flowfields are computed using multiple streamwise sweeps with an iterated PNS algorithm. Turbulence has been included by modifying the Baldwin-Lomax turbulence model to account for MHD effects. The new algorithm has been used to compute both laminar and turbulent, supersonic, MHD flows over flat plates and supersonic viscous flows in a rectangular MHD accelerator. The present results are in excellent agreement with previous complete Navier-Stokes calculations.
Tensor magnetohydrodynamics: Quasi-kinetic description of rarefied plasma
Laptukhov, A. I.
2009-05-15
A power-series method for solving the kinetic equation is proposed. A simple procedure for deriving equations for arbitrary moments of the distribution function is described. An analysis of wave propagation in a stationary uniform hot magnetoactive plasma shows that allowance for tensors of ranks up to n and omission of higher rank tensors in the equations of tensor magnetohydrodynamics corresponds to taking into account waves at cyclotron harmonics with numbers up to n inclusive and ignoring higher harmonics. Thus, from the standpoint of accuracy and complexity of plasma description, tensor magnetohydrodynamics occupies an intermediate position between the kinetic approach and the conventional magnetohydrodynamics with a scalar pressure.
Athena: A New Code for Astrophysical MHD
Stone, James M; Teuben, Peter; Hawley, John F; Simon, Jacob B
2008-01-01
A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results...
Cosmic ray transport in MHD turbulence
Huirong Yan; A. Lazarian
2007-12-23
Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perpendicular transport of CRs. Perpendicular transport depends on the comparison of parallel mean free path and the injection scale of the turbulence, as well as the Alfv\\'enic Mach number. Normal turbulence does not allow subdiffusion unless there are slab waves. The critical scale below which subdiffusion applies is provided. These results can be used to compare with the numerical calculations, provided that these calculations use the structure of magnetic field which is consistent with the numerical studies of MHD turbulence.
Magneto-hydrodynamically stable axisymmetric mirrorsa)
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Large-scale quasi-geostrophic magnetohydrodynamics
Balk, Alexander M., E-mail: balk@math.utah.edu [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States)
2014-12-01
We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.
MHD Integrated topping cycle project
NASA Astrophysics Data System (ADS)
1989-10-01
The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MWt power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana, will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scale up of the prototypical designs to the next development level. This Progress Report covers the period February 1, 1989 to April 30, 1989. A number of test and evaluation activities provided data to support the prototypical design efforts. Phase 1 of the 20 MWt power train testing at Avco was completed, providing a baseline for upcoming coal-fired power train testing in the Mark VI facility. Gas-side corrosion tests of candidate combustor materials and brazing and explosion bonding tests on Glidcop were used to obtain information on prototypical combustor design and fabrication details. Evaluation of CDIF test data on the performance of the 50 MWt power train with iron oxide addition indicated that while specific benefits (such as increased channel life) can be derived from iron oxide addition, it has yet to be demonstrated that iron oxide addition improves power output.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
Magneto-hydrodynamically stable axisymmetric mirrors
NASA Astrophysics Data System (ADS)
Ryutov, Dmitri
2010-11-01
The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.
Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013
NASA Astrophysics Data System (ADS)
Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.
2015-08-01
Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.
A Global Magnetohydrodynamic Model of Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Sharber, James (Technical Monitor)
2001-01-01
The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a new MHD model that will be able to compute solutions in the wide parameter regime of the Jovian magnetosphere.
A Global Magnetohydrodynamic Model of Jovian Magnetosphere
NASA Astrophysics Data System (ADS)
Walker, Raymond J.
2001-01-01
The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5RJ. The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by Cmax)(Delta)t/(Deltax less than 1 where Cmax is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is Cw and the flow speed is Cf, Cmax = Cw + Cf. Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a new MHD model that will be able to compute solutions in the wide parameter regime of the Jovian magnetosphere.
A pressure-based high resolution numerical method for resistive MHD
NASA Astrophysics Data System (ADS)
Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.
2014-10-01
In the paper we describe in detail a numerical method for the resistive magnetohydrodynamic (MHD) equations involving viscous flow and report the results of application to a number of typical MHD test cases. The method is of the finite volume type but mixes aspects of pressure-correction and density based solvers; the algorithm arrangement is patterned on the well-known PISO algorithm, which is a pressure method, while the flux computation makes use of the AUSM-MHD scheme, which originates from density based methods. Five groups of test cases are addressed to verify and validate the method. We start with two resistive MHD cases, namely the Shercliff and Hunt flow problems, which are intended to validate the method for low-speed resistive MHD flows. The remaining three test cases, namely the cloud-shock interaction, the MHD rotor and the MHD blast wave, are standard 2D ideal MHD problems that serve to validate the method under high-speed flow and complex interaction of MHD shocks. Finally, we demonstrate the method with a more complex application problem, and discuss results of simulation for a quasi-bi-dimensional self-field magnetoplasmadynamic (MPD) thruster, for which we study the effect of cathode length upon the electromagnetic nozzle performance.
Particle Acceleration by Magnetohydrodynamic Turbulence
Jungyeon Cho; A. Lazarian
2006-01-01
Recent advances in understanding of MHD turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure-dominated (low beta) and gaseous pressure-dominated (high beta) plasmas. We consider the acceleration by
NASA Astrophysics Data System (ADS)
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2014-03-01
Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler-Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem.
NASA Astrophysics Data System (ADS)
Miranda, O. G.; Peña-Garay, C.; Rashba, T. I.; Semikoz, V. B.; Valle, J. W. F.
The analysis of the resonant spin-flavour (RSF) solutions to the solar neutrino problem in the framework of simplest analytic solutions to the solar magneto-hydrodynamics (MHD) equations is presented. We performed the global fit of the recent solar neutrino data, including event rates as well as zenith angle distributions and recoil electron spectra induced by solar neutrino interactions in SuperKamiokande. We compare quantitatively our simplest MHD-RSF fit with vacuum oscillation (VAC) and MSW-type (SMA, LMA and LOW) solutions to the solar neutrino problem using a common well-calibrated theoretical calculation and fit procedure and find MHD-RSF fit to be somewhat better than those obtained for the favored neutrino oscillation solutions. We made the predictions for future experiments to disentangle the MHD-RSF scenario from other scenarios.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
STATISTICAL ANALYSIS OF CURRENT SHEETS IN THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE
Zhdankin, Vladimir; Boldyrev, Stanislav [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado, Boulder, CO 80309 (United States); Perez, Jean C., E-mail: zhdankin@wisc.edu, E-mail: boldyrev@wisc.edu, E-mail: uzdensky@colorado.edu, E-mail: jcperez@wisc.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)
2013-07-10
We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.
Radiation Transfer Analysis on Heating Mechanism of Magnetohydrodynamic Emerging Magnetic Flux Tube
NASA Astrophysics Data System (ADS)
Kato, Y.; Magara, T.; Shimizu, T.
2009-12-01
In spite of the large number of magnetohydrodynamic (MHD) simulations of emerging flux tubes in the solar atmosphere, radiation properties of the phenomenon remain poorly understood. This is because heating at the footpoints of the emerging magnetic field lines is significant and the effects associated with heat conduction and evaporation have largely been neglected. In this study, we have performed three-dimensional (3-D) multi-wavelength radiation transfer calculations on a MHD model of an emerging flux tube in order to examine the MHD model and also to identify a possible heating mechanism for explaining the properties of observed X-ray coronal loops. It is found that the current dissipation model is difficult for reproducing the structure of X-ray loops observed by Hinode XRT and Yohkoh SXT. This suggests that alternative models of the heating process should be incorporated into our MHD models. We left unresolved issues of the heating process as future work.
Statistical Analysis of Current Sheets in Three-dimensional Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Perez, Jean C.; Boldyrev, Stanislav
2013-07-01
We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.
On the Analytic Solution for a Steady Magnetohydrodynamic Equation
NASA Astrophysics Data System (ADS)
Soltanalizadeh, Babak; Ghehsareh, Hadi Roohani; Y?ld?r?m, Ahmet; Abbasbandy, Saeid
2013-07-01
The purpose of this study is to apply the Laplace-Adomian Decomposition Method (LADM) for obtaining the analytical and numerical solutions of a nonlinear differential equation that describes a magnetohydrodynamic (MHD) flow near the forward stagnation point of two-dimensional and axisymmetric bodies. By using this method, the similarity solutions of the problem are obtained for some typical values of the model parameters. For getting computational solutions, we combined the obtained series solutions by LADM with the Padé approximation. The method is easy to apply and gives high accurate results. The presented results through tables and figures show the efficiency and accuracy of the proposed technique.
The role of magnetohydrodynamics in heliospheric space plasma physics research
NASA Technical Reports Server (NTRS)
Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan
1988-01-01
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.
Ring current instabilities in the magnetohydrodynamic frequency range
NASA Technical Reports Server (NTRS)
Hasegawa, A.; Chen, L.
1992-01-01
This report summarizes recent theoretical developments in ring current plasma instabilities in the magnetohydrodynamic (MHD) frequency range but with the effect of finite Larmor radius, and discusses its relevance to satellite-based observations. Possible instabilities are the bounce resonant instabilities caused by a humped energy distribution, the drift mirror instability caused by an anisotropic pressure and the drift wave type instability caused by a combination of drift-bounce resonance and reduced Alfven frequency due to a high beta loading of the flux tube. Here, beta is proportional to plasma/magnetic pressures. Mechanisms leading to turbulence are also discussed.
A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions
John F. Hawley; Steven A. Balbus; James M. Stone
2001-03-30
We present a global magnetohydrodynamic (MHD) three dimensional simulation of a nonradiative accretion flow originating in a pressure supported torus. The evolution is controlled by the magnetorotational instability which produces turbulence. The flow forms a nearly Keplerian disk. The total pressure scale height in this disk is comparable to the vertical size of the initial torus. Gas pressure dominates only near the equator; magnetic pressure is more important in the surrounding atmosphere. A magnetically dominated bound outflow is driven from the disk. The accretion rate through the disk exceeds the final rate into the hole, and a hot torus forms inside 10 r_g. Hot gas, pushed up against the centrifugal barrier and confined by magnetic pressure, is ejected in a narrow, unbound, conical outflow. The dynamics are controlled by magnetic turbulence, not thermal convection, and a hydrodynamic alpha model is inadequate to describe the flow. The limitations of two dimensional MHD simulations are also discussed.
Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence
Linkmann, Moritz F; McKay, Mairi E; Jäger, Julia
2015-01-01
Spectral transfer processes in magnetohydrodynamic (MHD) turbulence are investigated analytically by decomposition of the velocity and magnetic fields in Fourier space into helical modes. Steady solutions of the dynamical system which governs the evolution of the helical modes are determined, and a stability analysis of these solutions is carried out. The interpretation of the analysis is that unstable solutions lead to energy transfer between the interacting modes while stable solutions do not. From this, a dependence of possible interscale energy and helicity transfers on the helicities of the interacting modes is derived. As expected from the inverse cascade of magnetic helicity in 3D MHD turbulence, mode interactions with like helicities lead to transfer of energy and magnetic helicity to smaller wavenumbers. However, some interactions of modes with unlike helicities also contribute to an inverse energy transfer. As such, an inverse energy cascade for nonhelical magnetic fields is shown to be possible. Fu...
Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics
Simakov, Andrei N [Los Alamos National Laboratory
2008-01-01
Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.
MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283
Jiang Chaowei; Feng Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, S. T.; Hu Qiang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2013-07-10
Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.
Observations of `wisps' in magnetohydrodynamic simulations of the Crab Nebula
NASA Astrophysics Data System (ADS)
Camus, N. F.; Komissarov, S. S.; Bucciantini, N.; Hughes, P. A.
2009-12-01
In this paper, we describe results of new high-resolution axisymmetric relativistic magnetohydrodynamic (MHD) simulations of pulsar wind nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind-termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well-known images of the Crab Nebula obtained by Chandra and the Hubble Space Telescope. In addition to the jet-torus structure, these maps reproduce the Crab's famous moving wisps whose speed and rate of production agree with the observations. The variability is then analysed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5-3years and MHD turbulence on scales below 1year. The full account of this study will be presented in a follow-up paper.
Magnetic fluctuations and Hall magnetohydrodynamic turbulence in the solar wind
NASA Astrophysics Data System (ADS)
Krishan, V.; Mahajan, S. M.
2004-11-01
It is shown that the framework of Hall magnetohydrodynamics (Hall-MHD), which can support three quadratic invariants and allows nonlinear states to depart fundamentally from the Alfvénic, is capable of reproducing in the inertial range the three branches of the observed solar wind magnetic fluctuation spectrum: the Kolmogorov branch f-5/3, steepening to ? with ?1 ? 3-4 on the high-frequency side and flattening to f-1 on the low-frequency side. These fluctuations are found to be associated with the nonlinear Hall-MHD shear Alfvén waves. The spectrum of the concomitant whistler-type fluctuations is very different from the observed one. Perhaps the relatively stronger damping of the whistler fluctuations may cause their unobservability. The issue of the anisotropy of the turbulence is addressed briefly.
Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Theory
Andreussi, T. [Alta S.p.A., Pisa 56121 (Italy)] [Alta S.p.A., Pisa 56121 (Italy); Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)] [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1060 (United States); Pegoraro, F. [Università di Pisa, Dipartimento di Fisica E. Fermi, Pisa 56127 (Italy)] [Università di Pisa, Dipartimento di Fisica E. Fermi, Pisa 56127 (Italy)
2013-09-15
Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian variable energy principle is described and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the energy-Casimir principle is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e., variations that explicitly preserve invariants of the system, are introduced and the respective energy principle is considered. General criteria for stability are obtained, along with comparisons between the three different approaches.
ELECTRON BEAM GENERATED PLASMAS IN HYPERSONIC MHD CHANNELS
Sergey O. Macheret; Mikhail N. Shneider; Richard B. Miles; Ronald J. Lipinski
The paper analyzes a novel concept of hypersonic cold-air MHD power generators and accelerators with ionization by electron beams. Ionization processes are considered in detail. Strong coupling between hypersonic boundary layers and electrode sheaths is demonstrated, and anode voltage fall in hypersonic MHD channels is shown to be very high. A potential anode sheath instability and ways to suppress it
Statistical Theory of the Ideal MHD Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.
MHD Augmentation of Rocket Engines Using Beamed Energy
NASA Astrophysics Data System (ADS)
Lineberry, John T.; Chapman, James N.; Litchford, Ron J.; Jones, Jonathan
2003-05-01
MHD technology and fundamental relations that pertain to accelerating a working fluid for propulsion of space vehicles are reviewed. Previous concepts on MHD propulsion have considered use of an on-board power supply to provide the electric power for the MHD thruster which is accompanied by an obvious weight penalty. In this study, an orbiting power station that beams microwave or laser power to the spacecraft is considered which eliminates this penalty making the thruster significantly more effective from the thrust-to-weight viewpoint. The objective of the study was to investigate augmenting a rocket motor to increase the ISP into the 2,500 seconds range using MHD acceleration. Mission scenarios are presented to parametrically compare the MHD augmented motor. Accelerator performance is calculated for an array of cases which vary the mass throughput, magnetic field strength and MHD interaction level. Performance improved with size, magnetic field strength and interaction level, although lower interaction levels can also produce attractive configurations. Accelerator efficiencies are typically 80-90%. The results display a large regime for improved performance in which the extent of the regime is critically dependent upon the weight of the power receiving equipment (rectenna). It is concluded that this system has potential when used with an orbiting power station that transmits power to the space vehicle by microwave radiation or laser beams. The most critical technology improvement needed is a reduced weight rectenna system but more development is also needed on the MHD accelerator, which is currently underway with NASA sponsorship.
Neoclassical viscosity effects on resistive magnetohydrodynamic modes in toroidal geometry
Yang, J.G.; Oh, Y.H.; Choi, D.I. ); Kim, J.Y.; Horton, W. )
1992-03-01
The flux-surface-averaged linearized resistive magnetohydrodynamic (MHD) boundary-layer equations including the compressibility, diamagnetic drift, and neoclassical viscosity terms are derived in toroidal geometry. These equations describe the resistive layer dynamics of resistive MHD modes over the collisionality regime between the banana plateau and the Pfirsch--Schlueter. From the resulting equations, the effects of neoclassical viscosity on the stability of the tearing and resistive ballooning modes are investigated numerically. Also, a study is given for the problem of how the neoclassical resistive MHD mode is generated as the collisionality is reduced. It is shown that the neoclassical viscosity terms give a significant destabilizing effect for the tearing and resistive ballooning modes. This destabilization comes mainly from the reduction of the stabilizing effect of the parallel ion sound compression by the ion neoclassical viscosity. In the banana-plateau collisionality limit, where the compressibility is negligible, the dispersion relations of the tearing and resistive ballooning modes reduce to the same form, with the threshold value of the driving force given by {Delta}{sub {ital c}}=0. On the other hand, with the finite neoclassical effect it is found that the neoclassical resistive MHD instability is generated in agreement with previous results. Furthermore, it is shown that this later instability can be generated in a wide range of the collisionality including near the Pfirsch--Schlueter regime as well as the banana-plateau regime, suggesting that this mode is a probable cause of anomalous transport.
Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics
Giorgio Krstulovic; Marc-Etienne Brachet; Annick Pouquet
2011-01-05
We investigate numerically the dynamics of two-dimensional Euler and ideal magnetohydrodynamics (MHD) flows in systems with a finite number of modes, up to $4096^2$, for which several quadratic invariants are preserved by the truncation and the statistical equilibria are known. Initial conditions are the Orszag-Tang vortex with a neutral X-point centered on a stagnation point of the velocity field in the large scales. In MHD, we observe that the total energy spectra at intermediate times and intermediate scales correspond to the interactions of eddies and waves, $E_T(k)\\sim k^{-3/2}$. Moreover, no dissipative range is visible neither for Euler nor for MHD in two dimensions; in the former case, this may be linked to the existence of a vanishing turbulent viscosity whereas in MHD, the numerical resolution employed may be insufficient. When imposing a uniform magnetic field to the flow, we observe a lack of saturation of the formation of small scales together with a significant slowing-down of their equilibration, with however a cut-off independent partial thermalization being reached at intermediate scales.
USING FARADAY ROTATION TO PROBE MAGNETOHYDRODYNAMIC INSTABILITIES IN INTRACLUSTER MEDIA
Bogdanovic, Tamara; Reynolds, Christopher S.; Massey, Richard
2011-04-10
It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM) and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed three-dimensional models of a magnetized cooling-core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction-driven MHD instabilities to that where it is determined by isotropic turbulent motions. We find that future high-sensitivity spectropolarimetric measurements of RM, such as will be enabled by the Expanded Very Large Array and Square Kilometer Array, can distinguish between these two cases with plausible exposure times. Such observations will test the existence of conduction-driven MHD instabilities in dynamically relaxed cooling-core clusters. More generally, our findings imply that observations of Faraday RM should be able to discern physical mechanisms that result in qualitatively different magnetic field topologies, without a priori knowledge about the nature of the processes.
Magnetic Discontinuities in Magnetohydrodynamic Turbulence and in the Solar Wind
Vladimir Zhdankin; Stanislav Boldyrev; Joanne Mason; Jean Carlos Perez
2012-04-19
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Delta theta, across fixed spatial increments Delta x in direct numerical simulations of MHD turbulence with an imposed uniform guide field B_0. A large region of the probability density function (pdf) for Delta theta is found to follow an exponential decay, proportional to exp(-Delta theta/theta_*), with characteristic angle theta_* ~ (14 deg) (b_rms/B_0)^0.65 for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b_rms/B_0. We also observe an excess of small angular discontinuities when Delta x becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from near-dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests
Brian D. Farris; Tsz Ka Li; Yuk Tung Liu; Stuart L. Shapiro
2008-02-21
Many systems of current interest in relativistic astrophysics require a knowledge of radiative transfer in a magnetized gas flowing in a strongly-curved, dynamical spacetime. Such systems include coalescing compact binaries containing neutron stars or white dwarfs, disks around merging black holes, core collapse supernovae, collapsars, and gamma-ray burst sources. To model these phenomena, all of which involve general relativity, radiation (photon and/or neutrino), and magnetohydrodynamics, we have developed a general relativistic code capable of evolving MHD fluids and radiation in dynamical spacetimes. Our code solves the coupled Einstein-Maxwell-MHD-Radiation system of equations both in axisymmetry and in full 3+1 dimensions. We evolve the metric by integrating the BSSN equations, and use a conservative, high-resolution shock-capturing scheme to evolve both the MHD and radiation moment equations. In this paper, we implement our scheme for optically thick gases and grey-body opacities. Our code gives accurate results in a suite of tests involving radiating shocks and nonlinear waves propagating in Minkowski spacetime. In addition, to test our code's ability to evolve the relativistic radiation-MHD equations in strong-field dynamical spacetimes, we study "thermal Oppenheimer-Snyder collapse" to a black hole, and find good agreement between analytic and numerical solutions.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.
1999-01-01
Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.
Resistive jet simulations extending radially self-similar magnetohydrodynamic models
Miljenko Cemeljic; Jose Gracia; Nektarios Vlahakis; Kanaris Tsinganos
2008-06-20
Numerical simulations with self-similar initial and boundary conditions provide a link between theoretical and numerical investigations of jet dynamics. We perform axisymmetric resistive magnetohydrodynamic (MHD) simulations for a generalised solution of the Blandford & Payne type, and compare them with the corresponding analytical and numerical ideal-MHD solutions. We disentangle the effects of the numerical and physical diffusivity. The latter could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We conclude that while the classical magnetic Reynolds number $R_{\\rm m}$ measures the importance of resistive effects in the induction equation, a new introduced number, $\\rbeta=(\\beta/2)R_{\\rm m}$ with $\\beta$ the plasma beta, measures the importance of the resistive effects in the energy equation. Thus, in magnetised jets with $\\beta<2$, when $\\rbeta \\la 1$ resistive effects are non-negligible and affect mostly the energy equation. The presented simulations indeed show that for a range of magnetic diffusivities corresponding to $\\rbeta \\ga 1$ the flow remains close to the ideal-MHD self-similar solution.
W. Lyra; A. Johansen; H. Klahr; N. Piskunov
2008-02-11
We present global 3D MHD simulations of disks of gas and solids, aiming at developing models that can be used to study various scenarios of planet formation and planet-disk interaction in turbulent accretion disks. A second goal is to show that Cartesian codes are comparable to cylindrical and spherical ones in handling the magnetohydrodynamics of the disk simulations, as the disk-in-a-box models presented here develop and sustain MHD turbulence. We investigate the dependence of the magnetorotational instability on disk scale height, finding evidence that the turbulence generated by the magnetorotational instability grows with thermal pressure. The turbulent stresses depend on the thermal pressure obeying a power law of 0.24+/-0.03, compatible with the value of 0.25 found in shearing box calculations. The ratio of stresses decreased with increasing temperature. We also study the dynamics of boulders in the hydromagnetic turbulence. The vertical turbulent diffusion of the embedded boulders is comparable to the turbulent viscosity of the flow. Significant overdensities arise in the solid component as boulders concentrate in high pressure regions.
MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate
NASA Astrophysics Data System (ADS)
Mirzaei Nejad, Mehrzad; Javaherdeh, K.; Moslemi, M.
2015-09-01
Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors.
THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE
Nakamura, Masanori; Asada, Keiichi, E-mail: nakamura@asiaa.sinica.edu.tw, E-mail: asada@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)
2013-10-01
The structure and dynamics of the M87 jet from sub-milliarcsec to arcsecond scales are continuously examined. We analyzed the Very Long Baseline Array archival data taken at 43 and 86 GHz to measure the size of very long baseline interferometry (VLBI) cores. Millimeter/sub-millimeter VLBI cores are considered as innermost jet emissions, which has been originally suggested by Blandford and Königl. Those components fairly follow an extrapolated parabolic streamline in our previous study so that the jet has a single power-law structure with nearly 5 orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 Schwarzschild radius (r{sub s}). We further inspect the jet parabolic structure as a counterpart of the magnetohydrodynamic (MHD) nozzle in order to identify the property of a bulk acceleration. We interpret that the parabolic jet consists of Poynting-flux dominated flows, powered by large-amplitude, nonlinear torsional Alfvén waves. We examine the non-relativistic MHD nozzle equation in a parabolic shape. The nature of trans-fast magnetosonic flow is similar to the one of transonic solution of Parker's hydrodynamic solar wind; the jet becomes super-escape as well as super-fast magnetosonic at around ?10{sup 3} r{sub s}, while the upstream trans-Alfvénic flow speed increases linearly as a function of the distance at ?10{sup 2}-10{sup 3} r{sub s}. We here point out that this is the first evidence to identify these features in astrophysical jets. We propose that the M87 jet is magnetically accelerated, but thermally confined by the stratified interstellar medium inside the sphere of gravitational influence of the SMBH potential, which may be a norm in active galactic nucleus jets.
The Parabolic Jet Structure in M87 as a Magnetohydrodynamic Nozzle
NASA Astrophysics Data System (ADS)
Nakamura, Masanori; Asada, Keiichi
2013-10-01
The structure and dynamics of the M87 jet from sub-milliarcsec to arcsecond scales are continuously examined. We analyzed the Very Long Baseline Array archival data taken at 43 and 86 GHz to measure the size of very long baseline interferometry (VLBI) cores. Millimeter/sub-millimeter VLBI cores are considered as innermost jet emissions, which has been originally suggested by Blandford & Königl. Those components fairly follow an extrapolated parabolic streamline in our previous study so that the jet has a single power-law structure with nearly 5 orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 Schwarzschild radius (r s). We further inspect the jet parabolic structure as a counterpart of the magnetohydrodynamic (MHD) nozzle in order to identify the property of a bulk acceleration. We interpret that the parabolic jet consists of Poynting-flux dominated flows, powered by large-amplitude, nonlinear torsional Alfvén waves. We examine the non-relativistic MHD nozzle equation in a parabolic shape. The nature of trans-fast magnetosonic flow is similar to the one of transonic solution of Parker's hydrodynamic solar wind; the jet becomes super-escape as well as super-fast magnetosonic at around ~103 r s, while the upstream trans-Alfvénic flow speed increases linearly as a function of the distance at ~102-103 r s. We here point out that this is the first evidence to identify these features in astrophysical jets. We propose that the M87 jet is magnetically accelerated, but thermally confined by the stratified interstellar medium inside the sphere of gravitational influence of the SMBH potential, which may be a norm in active galactic nucleus jets.
Lagrangian statistics of Navier-Stokes and MHD turbulence
NASA Astrophysics Data System (ADS)
Homann, H.; Grauer, R.; Busse, A.; Müller, W. C.
2007-12-01
We report on a comparison of high-resolution numerical simulations of Lagrangian particles advected by incompressible turbulent hydro- and magnetohydrodynamic (MHD) flows. Numerical simulations were performed with up to 10243 collocation points and 10 million particles in the Navier-Stokes case and 5123 collocation points and 1 million particles in the MHD case. In the hydrodynamics case our findings compare with recent experiments from Mordant et al. (2004 New J. Phys. 6, 116) and Xu et al. (2006 Phys. Rev. Lett. 96, 024503). They differ from the simulations of Biferale et al. (2004 Phys. Rev. Lett. 93, 064502) due to differences of the ranges chosen for evaluating the structure functions. In Navier-Stokes turbulence intermittency is stronger than predicted by the multifractal approach of Biferale et al. (2004 Phys. Rev. Lett. 93, 064502) whereas in MHD turbulence the predictions from the multifractal approach are more intermittent than observed in our simulations. In addition, our simulations reveal that Lagrangian Navier-Stokes turbulence is more intermittent than MHD turbulence, whereas the situation is reversed in the Eulerian case. Those findings can not consistently be described by the multifractal modeling. The crucial point is that the geometry of the dissipative structures have different implications for Lagrangian and Eulerian intermittency. Application of the multifractal approach for the modeling of the acceleration probability density functions works well for the Navier-Stokes case but in the MHD case just the tails are well described.
Etienne, Zachariah B.; Liu, Yuk Tung [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Shapiro, Stuart L.
2010-10-15
We have written and tested a new general relativistic magnetohydrodynamics code, capable of evolving magnetohydrodynamics (MHD) fluids in dynamical spacetimes with adaptive-mesh refinement (AMR). Our code solves the Einstein-Maxwell-MHD system of coupled equations in full 3+1 dimensions, evolving the metric via the Baumgarte-Shapiro Shibata-Nakamura formalism and the MHD and magnetic induction equations via a conservative, high-resolution shock-capturing scheme. The induction equations are recast as an evolution equation for the magnetic vector potential, which exists on a grid that is staggered with respect to the hydrodynamic and metric variables. The divergenceless constraint {nabla}{center_dot}B=0 is enforced by the curl of the vector potential. Our MHD scheme is fully compatible with AMR, so that fluids at AMR refinement boundaries maintain {nabla}{center_dot}B=0. In simulations with uniform grid spacing, our MHD scheme is numerically equivalent to a commonly used, staggered-mesh constrained-transport scheme. We present code validation test results, both in Minkowski and curved spacetimes. They include magnetized shocks, nonlinear Alfven waves, cylindrical explosions, cylindrical rotating disks, magnetized Bondi tests, and the collapse of a magnetized rotating star. Some of the more stringent tests involve black holes. We find good agreement between analytic and numerical solutions in these tests, and achieve convergence at the expected order.
NASA Astrophysics Data System (ADS)
Aiba, N.; Hirota, M.
2015-08-01
In a rotating toroidal plasma surrounded by a resistive wall, it is shown that linear magnetohydrodynamic (MHD) instabilities can be excited by interplay between the resistive wall mode (RWM) and stable ideal MHD modes, where the RWM can couple with not only a stable external kink mode but also various stable Alfvén eigenmodes that abound in a toroidal plasma. The RWM growth rate is shown to peak repeatedly as the rotation frequency reaches specific values for which the frequencies of the ideal MHD modes are Doppler-shifted to the small RWM frequency. Such destabilization can be observed even when the RWM in a static plasma is stable. A dispersion relation clarifies that the unstable mode changes from the RWM to the ideal MHD mode destabilized by wall resistivity when the rotation frequency passes through these specific values. The unstable mode is excited at these rotation frequencies even though plasma rotation also tends to stabilize the RWM from the combination of the continuum damping and the ion Landau damping.
ELECTROOSMOSIS AND THERMAL EFFECTS IN MAGNETOHYDRODYNAMIC (MHD) MICROPUMPS USING 3D MHD
Kassegne, Samuel Kinde
in electrically conductive liquid in the presence of a magnetic field where a body force called "Lorentz Force framework developed, the thesis reports effect such as non uniform magnetic and electric fields, Joule of Mathematics and Statistics ______________________________ Approval Date #12;iii Copyright © 2007 by Vaibhav D
Maximal energies of the particles accelerated by the system of converging magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Gladilin, P. E.; Bykov, A. M.; Osipov, S. M.
2014-12-01
We have shown that maximal energies of the charged particles accelerated in the system of converging magnetohydrodynamic (MHD) flows can reach ? 1017 eV. The scheme of magnetic field amplification (MFA) applied to the previous non-linear model of particle acceleration in the colliding shocks allowed to make proper estimates for the value of turbulent magnetic field. The efficiency of the particle acceleration on the energy range larger than the "knee" in the cosmic rays spectrum (? 1014 – 1015 eV) makes the systems of colliding MHD flows important contributors to the overall high-energy cosmic rays population in the Galaxy.
Variational integration for ideal magnetohydrodynamics with built-in advection equations
Zhou, Yao; Burby, J. W.; Bhattacharjee, A.; Qin, Hong
2014-10-15
Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Andreussi, T. [Alta S.p.A., Pisa 56121 (Italy); Morrison, P. J. [Institute for Fusion Studies and Department of Physics, University of Texas at Austin, Austin, Texas 78712-1060 (United States); Pegoraro, F. [Dipartimento di Fisica E. Fermi, Pisa 56127 (Italy)
2012-05-15
The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct variational principles for continuously symmetric equilibrium configurations of magnetized plasma, including flow. In particular, helical symmetry is considered, and results on axial and translational symmetries are retrieved as special cases of the helical configurations. The symmetry condition, which allows the description in terms of a magnetic flux function, is exploited to deduce a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir principle and reduced forms of this variational principle are obtained by the elimination of algebraic constraints.
Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks
Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.
1989-01-01
The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs.
Beresnyak, A.; Lazarian, A. E-mail: lazarian@astro.wisc.edu
2009-09-10
We performed a series of high-resolution (up to 1024{sup 3}) direct numerical simulations of hydro and magnetohydrodynamic (MHD) turbulence. Our simulations correspond to the 'strong' MHD turbulence regime that cannot be treated perturbatively. We found that for simulations with normal viscosity the slopes for energy spectra of MHD are similar to ones in hydro, although slightly more shallower. However, for simulations with hyperviscosity the slopes were very different, for instance, the slopes for hydro simulations showed a pronounced and well defined bottleneck effect, while the MHD slopes were relatively much less affected. We believe that this is indicative of MHD strong turbulence being less local than the Kolmogorov turbulence. This calls for revision of MHD strong turbulence models that assume local 'as-in-hydro case' cascading. Nonlocality of MHD turbulence casts doubt on numerical determination of the slopes with currently available (512{sup 3}-1024{sup 3}) numerical resolutions, including simulations with normal viscosity. We also measure various so-called alignment effects and discuss their influence on the turbulent cascade.
Observational Tests of Recent MHD Turbulence Perspectives
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)
2001-01-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
Observational Tests of Recent MHD Turbulence Perspectives
NASA Astrophysics Data System (ADS)
Ghosh, Sanjoy
2001-06-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
General Relativistic MHD Simulations of Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.
2005-01-01
We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.
Carter, Jonathan; Oliker, Leonid
2006-01-09
The last decade has witnessed a rapid proliferation of superscalarcache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on such platforms has become major concern in high performance computing. The latest generation of custom-built parallel vector systems have the potential to address this concern for numerical algorithms with sufficient regularity in their computational structure. In this work, we explore two and three dimensional implementations of a lattice-Boltzmann magnetohydrodynamics (MHD) physics application, on some of today's most powerful supercomputing platforms. Results compare performance between the vector-based Cray X1, Earth Simulator, and newly-released NEC SX-8, with the commodity-based superscalar platforms of the IBM Power3, IntelItanium2, and AMD Opteron. Overall results show that the SX-8 attains unprecedented aggregate performance across our evaluated applications.
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
Carl R. Sovinec
2008-02-15
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large nonlinear simulations, which has been publicized as a success story of SciDAC-fostered collaboration. Furthermore, the SuperLU software does not assume any mathematical symmetry, and its generality provides an important capability for extending the physical model beyond magnetohydrodynamics (MHD). With respect to algorithmic and model development, our most significant accomplishment is the development of a new method for solving plasma models that treat electrons as an independent plasma component. These ‘two-fluid’ models encompass MHD and add temporal and spatial scales that are beyond the response of the ion species. Implementation and testing of a previously published algorithm did not prove successful for NIMROD, and the new algorithm has since been devised, analyzed, and implemented. Two-fluid modeling, an important objective of the original NIMROD project, is now routine in 2D applications. Algorithmic components for 3D modeling are in place and tested; though, further computational work is still needed for efficiency. Other algorithmic work extends the ion-fluid stress tensor to include models for parallel and gyroviscous stresses. In addition, our hot-particle simulation capability received important refinements that permitted completion of a benchmark with the M3D code. A highlight of our applications work is the edge-localized mode (ELM) modeling, which was part of the first-ever computational Performance Target for the DOE Office of Fusion Energy Science, see http://www.science.doe.gov/ofes/performancetargets.shtml. Our efforts allowed MHD simulations to progress late into the nonlinear stage, where energy is conducted to the wall location. They also produced a two-fluid ELM simulation starting from experimental information and demonstrating critical drift effects that are characteristic of two-fluid physics. Another important application is the internal kink mode in a tokamak. Here, the primary purpose of the study has been to benchmark the two main code development lines of CEMM, NIMROD and M3D, on a relevant nonlinear problem. Results from the two
AstroBEAR: Adaptive Mesh Refinement Code for Ideal Hydrodynamics & Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Cunningham, Andrew J.; Frank, Adam; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W.
2011-04-01
AstroBEAR is a modular hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications. It uses the BEARCLAW package, a multidimensional, Eulerian computational code used to solve hyperbolic systems of equations. AstroBEAR allows adaptive-mesh-refinment (AMR) simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates. Parallel applications are supported through the MPI architecture. AstroBEAR is written in Fortran 90/95 using standard libraries. AstroBEAR supports hydrodynamic (HD) and magnetohydrodynamic (MHD) applications using a variety of spatial and temporal methods. MHD simulations are kept divergence-free via the constrained transport (CT) methods of Balsara & Spicer. Three different equation of state environments are available: ideal gas, gas with differing isentropic ?, and the analytic Thomas-Fermi formulation of A.R. Bell [2]. Current work is being done to develop a more advanced real gas equation of state.
MHD Integrated Topping Cycle Project
Not Available
1992-07-01
This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.
Magnetohydrodynamics of fractal media
Tarasov, Vasily E.
2006-05-15
The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.
NASA Astrophysics Data System (ADS)
Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula
2015-08-01
By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented.
Observational Diagnostics of Self-gravitating MHD Turbulence in Giant Molecular Clouds
NASA Astrophysics Data System (ADS)
Burkhart, Blakesley; Collins, David C.; Lazarian, Alex
2015-07-01
We study the observable signatures of self-gravitating magnetohydrodynamics (MHD) turbulence by applying the probability density functions (PDFs) and the spatial density power spectrum to synthetic column density maps. We find that there exists three characterizable stages of the evolution of the collapsing cloud which we term “early,” “intermediate,” and “advanced.” At early times, i.e., t\\lt 0.15{t}{ff}, the column density has a power spectral slope similar to nongravitating supersonic turbulence and a lognormal distribution. At an intermediate stage, i.e., 0.15{t}{ff}\\lt t?slant 0.35{t}{ff}, there exist signatures of the first cores in the shallower PDF and power spectrum power-law slopes. The column density PDF power-law tails at these times have line of sight averaged slopes ranging from ?2.5 to ?1.5 with shallower values belonging to simulations with lower magnetic field strength. The density power spectrum slope becomes shallow and can be characterized by P(k)={A}1{k}{? 2}{e}-k/{kc}, where A1 describes the amplitude, {k}{? 2} describes the classical power-law behavior, and the scale kc characterizes the turn over from turbulence dominated to self-gravity dominated. At advanced stages of collapse, i.e., ? t\\gt 0.35{t}{ff}, the power spectral slope is positive valued, and a dramatic increase is observed in the PDF moments and the Tsallis incremental PDF parameters, which gives rise to deviations between PDF-sonic Mach number relations. Finally, we show that the imprint of gravity on the density power spectrum can be replicated in non-gravitating turbulence by introducing a delta-function with amplitude equivalent to the maximum valued point in a given self-gravitating map. We find that the turbulence power spectrum restored through spatial filtering of the high density material.
BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation
NASA Astrophysics Data System (ADS)
Connor, J. W.
1998-06-01
This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of ?' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of global magnetic helicity. Some of the shortcomings of the Taylor theory in explaining details of real pinch experiments are used by the authors as a justification for a more phenomenological approach, described in detail in Chapter 4. They construct a `phenomenological model' that utilizes experimental information and linear stability properties; this is described authoritatively, since the authors have been very much involved in this work. The experimental evidence showing the presence of large scale instabilities in RFPs is used to provide support for the main thrust of the monograph, described in Chapter 5, namely that numerical computations of the non-linear evolution of MHD modes is the key to understanding the dynamical processes occurring in relaxation. These MHD processes give rise to a dynamo effect, analogous to that generating magnetic fields in the earth or stars, which overcomes the natural consequences of Spitzer resistivity and produces a reversed toroidal field. Chapter 5 begins with a general discussion of dynamo models and then moves on to the pioneering work of Sykes and Wesson on numerical simulation of relaxation, before launching into an authoritative account of more detailed and advanced simulations in which the authors themselves have played a major part. These calculations capture the basic features of relaxation in pinches and provide a demonstration of Taylor's theory. Chapters 6 and 7 describe some applications to RFPs of relaxation theory: the anomalous loop voltage, improving their performance by helicity injection, as well as sawteeth and thermal transport. The penultimate Chapter 8 proposes applications of this computational approach to relaxation, developed initially for laboratory pinches, to the solar corona. This is a stimulating discussion, drawing analogues between the two very different situations, ideal for broadening the perspectives of the fusion physicist. Specifically, the authors consider modelling of the evolution of active magnetic arcades, associated with sunspots, and coronal heating, both of which result from foot
J. Berchem; A. Marchaudon; M. Dunlop; C. P. Escoubet; J. M. Bosqued; H. Reme; I. Dandouras; A. Balogh; E. Lucek; C. Carr; Z. Pu
2008-01-01
This study uses two conjunctions between Cluster and Double Star TC-1 spacecraft together with global magnetohydrodynamic (MHD) simulations to investigate the large-scale configuration of magnetic reconnection at the dayside magnetopause. Both events involve southward interplanetary magnetic fields with significant By components. The first event occurred on 8 May 2004, while both spacecraft were exploring the dawn flank of the magnetosphere;
Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2004-01-01
Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.
Gas-side corrosion performance of superheater/ITAH tube alloys in MHD tests with high sulfur coal
White, M.
1993-06-01
Corrosion data have been obtained for tubes exposed for 600, 1500, and 2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility (the CFFF) to conditions representative of superheater and intermediate temperature air heater components. The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, developed predominantly oxide surface scales. Stainless steel alloy scales were not sufficiently protective to prevent internal oxidation/sulfidation of the subsurface metal. Corrosion resistance increased with chromium content. Low chromium alloys had thick scaling but no internal penetration. Although no liquid phases were present corrosion rates and scale morphologies were similar to those typical of conventional coal ash corrosion in the presence of molten alkali sulfates. Corrosion rates derived from scale thickness and penetration depth measurements are reported, along with scale morphologies and compositions. The implications of the results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.
Gas-side corrosion performance of superheater/ITAH tube alloys in MHD tests with high sulfur coal
White, M.
1993-01-01
Corrosion data have been obtained for tubes exposed for 600, 1500, and 2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility (the CFFF) to conditions representative of superheater and intermediate temperature air heater components. The tubes, coated with K[sub 2]SO[sub 4]-rich deposits, developed predominantly oxide surface scales. Stainless steel alloy scales were not sufficiently protective to prevent internal oxidation/sulfidation of the subsurface metal. Corrosion resistance increased with chromium content. Low chromium alloys had thick scaling but no internal penetration. Although no liquid phases were present corrosion rates and scale morphologies were similar to those typical of conventional coal ash corrosion in the presence of molten alkali sulfates. Corrosion rates derived from scale thickness and penetration depth measurements are reported, along with scale morphologies and compositions. The implications of the results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.
White, M.K.
1993-11-01
Corrosion data have been obtained for tub is exposed for 1500--2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility to conditions representative of superheater and intermediate temperature air heater (ITAH) components. The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, were corroded more than in most pulverized coal fired superheater service, but much less than the highly aggressive liquid phase attack encountered in conventional plants with certain coals and temperatures. Results indicated that, with parabolic corrosion kinetics, type 310 and 253MA stainless steels should be usable to 1400F at hot end of ITAH. At final superheater temperatures, 2.25 and 5 Cr steels were indicated to have parabolic corrosion rates generally below a 0.5 mm/yr criterion, based on corrosion scale thickness. However, unknown amounts of scale loss from spallation made this determination uncertain. Stainless steels 304H, 316H, and 321H had parabolic rates variably above the criterion, but may be servicable under less cyclic conditions. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. Implications of results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.
Analysis of MHD Pressure Drop in Liquid LiPb Flow in Chinese ITER DFLL-TBM with Insulating Coating
NASA Astrophysics Data System (ADS)
Chen, Hongli; Zhou, Tao; Wang, Hongyan
2008-08-01
Magnetohydrodynamic (MHD) pressure drop in the Chinese Dual Functional Liquid Lithium-lead Test Blanket Module (DFLL-TBM) proposed for ITER is discussed in this paper. Electrical insulation between the coolant channel surfaces and the liquid metal is required to reduce the MHD pressure drop to a manageable level. Insulation can be provided by a thin insulating coating, such as Al2O3, which can also serve as a tritium barrier layer, at the channel surfaces in contact with LiPb. The coating's effectiveness for reducing the MHD pressure drop is analysed through three-dimensional numerical simulation. A MHD-based commercial computational fluid dynamic (CFD) software FLUENT is used to simulate the LiPb flow. The effect on the MHD pressure drop due to cracks or faults in the coating layer is also considered. The insulating performance requirement for the coating material in DFLL-TBM design is proposed according to the analysis.
Performance optimization of an MHD generator with physical constraints
NASA Technical Reports Server (NTRS)
Pian, C. C. P.; Seikel, G. R.; Smith, J. M.
1979-01-01
A method to optimize the Faraday MHD generator performance under a prescribed set of electrical and magnet constraints is described. The results of generator performance calculations using this technique are presented for a very large MHD/steam plant. The differences between the maximum power and maximum net power generators are described. The sensitivity of the generator performance to the various operational parameters are presented.
Stabilization of global MHD instabilities by toroidal plasma rotation
Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States); Bondeson, A. [Uppsala Univ. (Sweden); Luetjens, H. [Ecole Polytechnique, Palaiseau (France); DeRidder, G.; Sauter, O. [CRPP/EPFL, Lausanne (Switzerland)
1995-07-01
Theoretical study and experimental observations suggest that rotation can play a crucial role in determining plasma stability. Since conventional magnetohydrodynamic (MHD) analysis ignores rotation, more advanced computational tools are being developed to confirm the theoretical understanding and to perform comparison between theory and experiment. In a previous work, the authors reported on the formulation and computation of MHD modes in plasmas with a small (subsonic) toroidal rotation. R.otation is found to have a substantial stabilizing effect under many circumstances. In this work, they extend the formulation in Ref. 4 to include an arbitrary (large) toroidal plasma rotation. It is the purpose of this work to examine the difference between these two formulations and report on results from computations using these formulations.
Bifurcation analysis of magnetic reconnection in Hall-MHD-systems
NASA Astrophysics Data System (ADS)
Homann, Holger; Grauer, Rainer
2005-08-01
The influence of the Hall-term on the width of the magnetic islands of the tearing-mode is examined. We applied the center manifold (CMF) theory to a magnetohydrodynamic (MHD)-system. The MHD-system was chosen to be incompressible and includes in addition to viscosity the Hall-term in Ohm’s law. For certain values of physical parameters the corresponding center manifold is two-dimensional and therefore the original partial differential equations could be reduced to a two-dimensional system of ordinary ones. This amplitude equations exhibit a pitchfork-bifurcation which corresponds to the occurrence of the tearing-mode. Eigenvalue-problems and linear equations due to the center manifold reduction were solved numerically with the Arpack++-library. An important result of this analysis is the growth of the tearing mode island width by increasing the Hall-parameter, a feature which has been observed in recent numerical simulations of collisionless reconnection.
Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sondak, David
The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.
Imbalanced Weak MHD Turbulence
Yoram Lithwick; Peter Goldreich
2002-08-02
MHD turbulence consists of waves that propagate along magnetic fieldlines, in both directions. When two oppositely directed waves collide, they distort each other, without changing their respective energies. In weak MHD turbulence, a given wave suffers many collisions before cascading. "Imbalance" means that more energy is going in one direction than the other. In general, MHD turbulence is imbalanced. A number of complications arise for the imbalanced cascade that are unimportant for the balanced one. We solve weak MHD turbulence that is imbalanced. Of crucial importance is that the energies going in both directions are forced to equalize at the dissipation scale. We call this the "pinning" of the energy spectra. It affects the entire inertial range. Weak MHD turbulence is particularly interesting because perturbation theory is applicable. Hence it can be described with a simple kinetic equation. Galtier et al. (2000) derived this kinetic equation. We present a simpler, more physical derivation, based on the picture of colliding wavepackets. In the process, we clarify the role of the zero-frequency mode. We also explain why Goldreich & Sridhar claimed that perturbation theory is inapplicable, and why this claim is wrong. (Our "weak" is equivalent to Goldreich & Sridhar's "intermediate.") We perform numerical simulations of the kinetic equation to verify our claims. We construct simplified model equations that illustrate the main effects. Finally, we show that a large magnetic Prandtl number does not have a significant effect, and that hyperviscosity leads to a pronounced bottleneck effect.
APPROXIMATE DECONVOLUTION MODELS FOR MAGNETOHYDRODYNAMICS
Trenchea, Catalin
fluids such as plasmas, liquid metals and salt water. The MHD model applies to astrophysics, geophysics confinement, liquid-metal cooling of nuclear reactors, electromagnetic casting, MHD sea water propulsion (see in metallurgical processes to control the flow of metallic melts: the electromagnetic stirring of molten metals [33
Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs
NASA Technical Reports Server (NTRS)
Holman, R. R.; Lippert, T. E.
1976-01-01
The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.
Magnetic control of magnetohydrodynamic instabilities in tokamaks
NASA Astrophysics Data System (ADS)
Strait, E. J.
2015-02-01
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( ?B /B ˜10-3 to 10-4 ) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( ? = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low beta and resistive wall modes at high beta. These and other scientific advances, and their application to control of MHD instabilities, will be reviewed with emphasis on the most recent results and their applicability to ITER.
Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas
NASA Astrophysics Data System (ADS)
Comer, Kathryn J.
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent convergence. The unexpected sensitivity to equilibrium (rather than wall) perturbations in the toroidal calculations is traced to the compressional Alfven wave energy contribution to the stability. Beyond a very small range of perturbations, second order terms in the expansion of compressional Alfven wave energy become large. We explored several methods of ameliorating these second order terms, but none improve results consistently or in a meaningful way.
NASA Astrophysics Data System (ADS)
L. Braga, F.
2013-10-01
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations
Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard
2015-01-01
Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.