Science.gov

Sample records for magnetometer towed array

  1. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    SciTech Connect

    Cochran, J.R.; McDonald, J.R.; Russell, R.J.; Robertson, R.; Hensel, E.

    1995-10-01

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

  2. A surface-towed vector magnetometer

    NASA Astrophysics Data System (ADS)

    Gee, J. S.; Cande, S. C.

    2002-07-01

    We have tested the feasibility of using a commercial motion sensor as a vector magnetometer that can be towed at normal survey speeds behind a research vessel. In contrast to previous studies using a shipboard mounted vector magnetometer, the towed system is essentially unaffected by the magnetization of the towing vessel. Results from a test deployment compare favorably with an earlier vector aeromagnetic survey, indicating that the towed instrument can resolve horizontal and vertical anomalies with amplitudes >30-50 nT. This instrument should be particularly useful in equatorial regions, where the vector anomalies are substantially greater than the corresponding total field anomalies.

  3. Towed and Shipboard Vector Magnetometers in Marine Geophysics

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Engels, M.

    2011-12-01

    The use of vector magnetometer components in geomagnetics has many advantages compared to the use of total field magnetometers. However, in marine geophysics the robust and easy-to-use Proton Precession magnetometers are still the standard instruments. Most of the few vector magnetometers in use work on multi instrument deep submersible platforms. Here we present some new instrumental and methodological aspects of surface towed fluxgate vector magnetometers which we use in a combination with Overhauser sensors. Processed fluxgate total field data are practically identical to the Overhauser reference and even provide a reliable gradient when combined with one Overhauser.The vertical component derived from the vector data constrains 2-D modelling much better than the total field alone. Although towed vector magnetometers typically provide no independent estimate of yaw, we illustrate that a numerical yaw (bandpass filtered magnetic heading) can provide reasonable estimates of the horizontal field components. These component data open additional analysis tools: the strike direction of magnetic lineations can be estimated from single profiles by either magnetic boundary strike ellipses in the space domain or by coherences between vertical and horizontal components in the wavenumber domain. Auto power spectra of the total field provide an approximate depth to the anomaly source or, if in obvious contradiction to the bathymetric depth, allow the detection of distortions, for example, by external temporal geomagnetic variations. A more common application is the use of vector magnetometers as shipboard instruments where the sensor's orientation can easily be resolved with data from the ship's positioning systems. We present some comparisons of shipboard and towed vector data. The quality of the magnetic data recorded onboard the ship can be surprisingly good after a thorough compensation for the ship's magnetic field.

  4. Optical magnetometer array for fetal magnetocardiography

    PubMed Central

    Wyllie, Robert; Kauer, Matthew; Wakai, Ronald T.; Walker, Thad G.

    2012-01-01

    We describe an array of spin-exchange-relaxation-free optical magnetometers designed for detection of fetal magnetocardiography (fMCG). The individual magnetometers are configured with a small volume with intense optical pumping, surrounded by a large pump-free region. Spin-polarized atoms that diffuse out of the optical pumping region precess in the ambient magnetic field and are detected by a probe laser. Four such magnetometers, at the corners of a 7 cm square, are configured for gradiometry by feeding back the output of one magnetometer to a field coil to null uniform magnetic field noise at frequencies up to 200 Hz. We present the first measurements of fMCG signals using an atomic magnetometer. PMID:22739870

  5. Fetal Magnetocardiography with an Atomic Magnetometer Array

    NASA Astrophysics Data System (ADS)

    Sulai, Ibrahim; Deland, Zack; Wahl, Colin; Wakai, Ronald; Walker, Thad

    2014-05-01

    Fetal magnetocardiography (fMCG) is a powerful technique for analyzing the heartbeat patterns of inutero fetuses. We present results from our array of four Spin-Exchange Relaxation-Free (SERF) rubidium-87 atomic magnetometers which has been used to detect and create these magnetocardiograms. We have demonstrated a magnetic noise sensitivity of < 10 fT /√{ Hz} , limited by the Johnson noise of the magnetically-shielded room. We discuss new design features and experimental practices that have increased our sensitivity and allowed us to successfully measure an fMCG at a gestational age of only 21 weeks. We hope to eventually apply these techniques to the detection and diagnosis of heartbeat arrhythmias, which, if detected early enough, can be treated inutero . This work is supported by the National Institutes of Health.

  6. Sensor evaluation study for use with towed arrays for UXO site characterization

    SciTech Connect

    McDonald, J.R.; Robertson, R.

    1996-11-01

    The Naval Research Laboratory is developing a Multi-sensor Towed Array Detection System (MTADS) with support from the DOD Environmental Security Technology Certification Program (ESTCP). In this effort we seek to extend and refine ordnance detection technology to more efficiently characterize OEW sites, identifying nonferrous and smaller items, distinguishing ordnance from clutter and analyzing clustered targets to identify and locate individual targets within complex target fields. Our evaluation shows that these goals are best met by combining magnetic and electromagnetic sensors. We report on field studies at a prepared test range of commercial sensors in arrays in various configurations and including; Cesium vapor magnetometers in single sensor and gradiometric configurations, fluxgate gradiometers, proton procession magnetometers, and electromagnetic pulsed induction sensors. The advantages and disadvantages of each technology and their applicability based upon survey requirements is discussed. We also discuss recommended data densities including horizontal sensor spacings, survey speeds, sensor heights and make recommendations about the appropriate use of gradiometers and active sensors.

  7. Adaptive beamforming of a towed array during maneuvering

    NASA Astrophysics Data System (ADS)

    Gong, Zaixiao; Lin, Peng; Guo, Yonggang; Zhang, Renhe; Li, Fenghua

    2012-11-01

    During maneuvering, the performance of Minimum Variance Distortion-less Response (MVDR) beamforming for a towed hydrophone array will greatly degrade due to shape error. Under the assumption that the shape of a towed array changes in a known way during the observation interval, an improved MVDR method is proposed. A static array with average shape during the observation interval is taken as a reference array shape. The phase difference of the cross spectral density matrix (CSDM) between the time-varying array and the reference array is compensated on each azimuth. A coherent CSDM accumulation can then be achieved. Experimental results show that the improved MVDR method can yield better performance than conventional MVDR with a time-varying array. This helps to resolve the problems of left-right target ambiguity and weak signal detection for time-varying arrays.

  8. Fetal MCG with Atomic Magnetometer Array

    NASA Astrophysics Data System (ADS)

    Deland, Zack; Bulatowicz, Michael D.; Sulai, Ibrahim A.; Wahl, Colin P.; Wakai, Ronald T.; Walker, Thad G.

    2016-05-01

    We present results on the development of 87Rb atomic magnetometers for the detection of a fetal magnetocardiogram (fMCG). Operating in the spin-exchange relaxation free (SERF) regime, the magnetometers' sensitivities are reported at the 1 fT /√{ Hz } level. Environmental common-mode noise, including the field from the maternal heart, can be suppressed by operating the magnetometers in a gradiometric configuration. We report on schemes from implementing such gradiometers along with recent fMCG measurements. This work is supported by the National Institutes of Health.

  9. The World's Largest Real Time Magnetometer Array: MAGDAS

    NASA Astrophysics Data System (ADS)

    Maeda, G.; Yumoto, K.; Abe, S.; Uozumi, T.

    2009-12-01

    This poster briefly out lines the current situation of the world's largest real time magnetometer array: MAGDAS. This array was conceived by Professor K. Yumoto of the Space Environment Research Center (SERC) based at Kyushu University in Japan. The first phase of MAGDAS deployment coincided with IHY (Years 2005-2009) and about 50 units were installed all over the world. The second phase of MAGDAS deployment is set to occur during ISWI (Intl. Space Weather Initiative, Years 2010-2012) using a new set of 50 magnetometers. MAGDAS stations are concentrated in three chains: (1) the 210 deg. MM chain through Asia, (2) the 96 deg. MM chain through Africa, and (3) the Dip Equator Chain. Data from MAGDAS is available to the scientific community but some conditions are attached to the data. We explain those conditions.

  10. All-weather vehicle classification using magnetometer arrays

    NASA Astrophysics Data System (ADS)

    Casalegno, James W.

    2002-08-01

    Arrays of vector magnetometers employing matched field processing have demonstrated the ability to accurately detect, track, and characterize the magnetic signature of vehicles traveling within range of the sensor field, regardless of weather conditions. This processing works on all types of vehicles, including passenger cars, light trucks, tractor-trailers, tanks, armored personnel carriers, etc. Consistency among the magnetic dipole estimates from similar vehicles has led to investigations of the ability to classify using magnetic information obtained from this process. Preliminary results suggest that separation of the permanent and induced portions of a vehicle's magnetic moment can provide the basis for an accurate, all-weather vehicle classifier.

  11. Deep water towed array measurements at close range.

    PubMed

    Heaney, Kevin D; Campbell, Richard L; Murray, James J; Baggeroer, Arthur B; Scheer, Eddie K; Stephen, Ralph A; D'Spain, Gerald L; Mercer, James A

    2013-10-01

    During the North Pacific Acoustic Laboratory Philippine Sea 2009 experiment, towed array receptions were made from a towed source as the two ships transited from a separation of several Convergence Zones through a Closest Point of Approach at 3 km. A combination of narrowband tones and broadband pulses were transmitted covering the frequency band 79-535 Hz. The received energy arrives from two general paths-direct path and bottom bounce. Bearing-time records of the narrowband arrivals at times show a 35° spread in the angle of arrival of the bottom bounce energy. Doppler processing of the tones shows significant frequency spread of the bottom bounce energy. Two-dimensional modeling using measured bathymetry, a geoacoustic parameterization based upon the geological record, and measured sound-speed field was performed. Inclusion of the effects of seafloor roughness and surface waves shows that in-plane scattering from rough interfaces can explain much of the observed spread in the arrivals. Evidence of out-of-plane scattering does exist, however, at short ranges. The amount of out-of-plane scattering is best observed in the broadband impulse-beam response analysis, which in-plane surface roughness modeling cannot explain. PMID:24116519

  12. Real-time threat detection using magnetometer arrays

    NASA Astrophysics Data System (ADS)

    Prouty, Mark D.; Tchernychev, Mikhail

    2016-05-01

    In this paper we present a discussion of using an array of atomic magnetometers to locate the presence of ferrous materials, such as concealed weapons, in real time. Ferrous materials create magnetic field anomalies. In order to determine the location of such objects, readings from many positions must be analyzed. This field inversion is typically done in post processing, once readings over a survey area or region of interest have been gathered. With the recent development of small and low power sensors, the dozen or so sensors required to provide information for magnetic field inversion may be deployed. We have built such an array and present here the results of using a realtime inversion algorithm. The inversion algorithm accurately determines target properties at a rate of 10 times per second as objects move past the array. Accuracies are as good as those obtained with target inversion methods used in analyzing data for unexploded ordnance detection. While those methods are typically applied in post processing, we show here those methods work even better when applied in real-time. We further present some analyses of the predicted performance of arrays in various geometries to address issues in security, such as crowd or perimeter monitoring. Target inversion methods may be accurately simulated, allowing for the development and testing of algorithms in an efficient manner. Additional processing may be done using the time history of the inversion results to remove false alarms and enhance detection. The key step is to start with an inversion method, utilizing the mathematical properties of magnetic fields and the known geometry of the measurements.

  13. MAGNETOMETER

    DOEpatents

    Leavitt, M.A.

    1958-11-18

    A magnetometer ls described, partlcularly to a device which accurately indicates the polarity and intensity of a magnetlc field. The main feature of the invention is a unique probe construction in combinatlon wlth a magnetic fleld detector system. The probe comprises two coils connected in series opposition for energization with an a-c voltage. The voltage lnduced in a third coll on the probe, a pick-up coil, is distorted by the presence of an external field to produce even harmonic voltages. A controlled d-c current is passed through the energized coils to counter the dlstortlon and reduce tbe even harmonic content to a null. When the null point is reached, the d-c current is a measure of the external magnetic field strength, and the phase of the pickup coil voltage indicates tbe field polarlty.

  14. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array.

    PubMed

    Wyllie, R; Kauer, M; Smetana, G S; Wakai, R T; Walker, T G

    2012-05-01

    We present a portable four-channel atomic magnetometer array operating in the spin-exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design and fibre-coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6-11 fT Hz(-1/2) single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room. PMID:22504066

  15. Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array

    PubMed Central

    Wyllie, R; Kauer, M; Smetana, G S; Wakai, R T; Walker, T G

    2012-01-01

    We present a portable four-channel atomic magnetometer array operating in the spin exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design and fibre coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6–11 fT Hz−1/2 single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room. PMID:22504066

  16. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain...

  17. Effect of towed array stability on instantaneous localization of marine mammals.

    PubMed

    von Benda-Beckmann, A M; Beerens, S P; van Ijsselmuide, S P

    2013-09-01

    Reliable localization of marine mammals using towed arrays is often required for mitigation, population density estimates, and bioacoustics research. The accuracy of the range estimates using towed arrays is often not well quantified. Triangulation methods using multiple hydrophones allow for fast range estimates but are sensitive to the species type, location of the animal with respect to the array, sound propagation conditions, and array stability. A simple model is presented that is used to estimate the range accuracy of towed arrays for different vocalizations and is compared to measured range accuracies of sperm whale clicks recorded with a 15 m baseline towed array. The ranging performance is particularly sensitive to hydrophone position errors which are found to dominate. Hydrophone position errors could be estimated using heading sensors placed in the array and are taken into account in the model. A good agreement is found between the empirical range errors and theoretically predicted ones. Extrapolation of the model to other species suggests that species emitting high frequency clicks and calls can be localized from distances out to a few kilometers with a baseline of 15 m, but baleen whales transmitting low frequency calls require longer baselines to obtain range estimates. PMID:23968038

  18. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys.

  19. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array.

    PubMed

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys. PMID:15295984

  20. Calibration and Thermal Analysis of a Conformal SERF Magnetometer Array for MEG Applications

    NASA Astrophysics Data System (ADS)

    Alexander, Elizabeth V.

    In magnetoencephalography (MEG), a measurement of the magnetic field produced by the brain, it is critical for the distance between the magnetometers and the brain to be small and unchanging. Limitations of SQUIDs, the magnetometers used in most MEG systems, make this requirement difficult to meet. SERF magnetometers have been proposed as an alternative technology for use in more portable and flexible MEG systems. This research considers two of the challenges associated with an array of SERF magnetometers attached to a conformal cap. First, for meaningful measurements in MEG, it is important for the locations and orientations of magnetometers to be known. This information can be estimated using the magnetometers' measurements of a known magnetic field produced by a configuration of magnetic dipoles, but the estimation algorithm is extremely sensitive to the dipole configuration. This thesis introduces a graphical tool to assess the quality of a configuration of magnetic dipoles. Second, the core of SERF magnetometers has a high operating temperature. This work finds a thermal insulation layout that allows for a small overall magnetometer package size while maintaining proper operation temperature and preventing thermal injury to a patient.

  1. The development of a multichannel atomic magnetometer array for fetal magnetocardiography

    NASA Astrophysics Data System (ADS)

    Wylie, Robert, IV

    Biomagnetic signals can provide important information about electrical processes in the human body. Because of the small signal sizes, magnetic detection is generally used where other detection methods are incomplete or insufficiently sensitive. One important example is fetal magnetocardiography (fMCG), where the detection of magnetic signals is currently the only available technique for certain clinical applications, such as the detection of cardiac arrhythmia. Until now, magnetometers based on superconducting quantum interference devices (SQUIDs), which can operate at sensitivities down to 1 fT Hz-1/2 have been the only option. The low Tc superconductors and associated cryogenics required for the most sensitive devices has led to interest in alternative technologies. In the last decade, atomic magnetometers operating in the spin-exchange relaxation-free (SERF) regime have demonstrated a higher sensitivity than SQUIDs while operating near room temperature. Though large SERF magnetometer arrays have not yet been built, smaller arrays should be sufficient for applications such as fMCG. In this thesis, we present the design and characterization of a portable four-channel SERF atomic magnetometer array with a 5-10 fT Hz-1/2 single channel baseline sensitivity. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically fMCG, such as a compact modular design and large, flexible channel spacing from 5-15 cm. The modular design allows for easily adding units to the array and the independent positioning and orientation of each magnetometer, in principle allowing for non-planar array geometries. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms and, for the first time with a SERF magnetometer, fMCG. We also investigate the use of different operational modes of the magnetometer to extend its functionality, specifically modulation methods for additional directional

  2. A simple deep-towed vertical array for high-resolution reflection seismic profiling

    NASA Astrophysics Data System (ADS)

    Herber, R.; Nuppenau, V.; Weigel, W.; Wong, H. K.

    1986-06-01

    A simple, low cost, deep-towed system for high-resolution reflection seismic profiling is described. It consists of a vertical array with two hydrophones having a separation of 2.2 m and rigidly mounted onto streamlined tow bodies. Improvement of the signal-to-noise ratio is attained by simple stacking of the hydrophone outputs after signal conditioning and travel time corrections. The suppression of side echoes and surface reflections is achieved by an analog procedure which in effect improves the directional characteristics of the array. A circuit for automatic gain control is included to enhance weak signals as well as to suppress ringing. Results in Kiel Bay and over the crest of the Jan Mayen Ridge (northern Atlantic) suggest that this simple vertical array may supplement air gun systems better than conventional, surface pinger-type equipment.

  3. Subarray partitions of large aperture planar towed arrays

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer A.; Baggeroer, Arthur B.; Zurk, Lisa M.; Tracey, Brian H.

    2002-05-01

    The current focus of passive detection and localization is in littoral regions where acoustic propagation becomes complicated by severe bottom interaction. The resultant high-transmission loss motivates the need for high-array gain for effective performance over long ranges. Large planar seismic arrays, with aperture dimensions upwards of 3 km×0.5 km, have potential to achieve high gain and good resolution when using matched field processing. In realistic environments, however, large arrays are suceptible to signal gain degradation mechanisms, particularly due to spatial decorrelation of the signal and non-stationary environments. One approach to overcoming this is partitioning the array. Subarray processing reduces stationarity requirements and extracts optimum coherent gain, thus achieving higher gain than that of smaller arrays. This work examines criteria for partitioning planar arrays to perform localization using MFP. Trade-offs between spatial resolution, array gain, and resilience to motion will be quantified and discussed. Performance of different subarray geometries will be presented using adaptive and conventional MFP. [Work sponsored by DARPA under Air Force Contract No. F1962800-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense. AB's work was supported by ONR through the SECNAV CNO Chair.

  4. An efficient method for tracking a magnetic target using scalar magnetometer array.

    PubMed

    Fan, Liming; Kang, Chong; Zhang, Xiaojun; Zheng, Quan; Wang, Ming

    2016-01-01

    The position of a magnetic target can be obtained through magnetic anomaly which is measured by a magnetic sensor. Comparing with vector magnetic sensor, the measurement value of the scalar magnetic sensor is almost not influenced by its orientation in measurement coordinate axes. Therefore, scalar magnetic sensors can be easily assembled into an array. Based on analysis of the total scalar magnetic anomaly measured by scalar magnetometer, we present an efficient method for tracking a magnetic target using scalar magnetometer array. In this method, we separate the position information and magnetic moment information of magnetic target by matrix transformation. Then, we can obtain the position of the magnetic target in real time by a scalar magnetometer array and a particle swarm optimization algorithm. In addition, the magnetic moment of the target can be estimated when the target's position had been calculated. The simulation shows that the position of the target can be calculated accurately and the relative error of the position is <5 %. The calculated magnetic moment of the target is close to the theoretical value. In addition, execution time of each calculation is <1 s. Thus, the position of the magnetic target can be obtained in real-time through this method. PMID:27186466

  5. Geophysical Institute Magnetometer Array: Magnetic Field Data in Real-Time for Researchers

    NASA Astrophysics Data System (ADS)

    Wolf, V. G.; Hampton, D. L.

    2012-12-01

    Magnetometer data from eight remote stations across Alaska have been collected continuously since the early 1980's by the Geophysical Institute Magnetometer Array (GIMA). These three-axis, 1Hz data, with ~ 1 nT precision, are used to determine the currents associated with auroral activity in the Alaska polar regions. A primary function of the GIMA is to supply magnetic field deflection data in real time to researchers so they can determine when to launch a sub-orbital sounding rocket from the Poker Flat Research Range into the proper auroral conditions. The aurora is a key coupling mechanism between the Earth's magnetosphere and ionosphere, and the magnetometers are used to remotely sense the ionospheric currents associated with aurora. The real-time magnetometer data are displayed through a web-based interface that functions on desktop and mobile devices. The displays are highly configurable to allow researchers the flexibility to interpret the magnetic signature they need to make a successful launch decision. The data are also available for download within 24 hours of collection. The existence of real-time data has been and will continue to be critical for successful rocket launches, however the real-time system needs to improve to meet the ever growing needs of the user community. Planned upgrades will improve the reliability and resolution of the displays as well as the ease of data download, and integration into NASA virtual observatories.

  6. Comparing passive source localization and tracking approaches with a towed horizontal receiver array in an ocean waveguide.

    PubMed

    Gong, Zheng; Tran, Duong D; Ratilal, Purnima

    2013-11-01

    Approaches for instantaneous passive source localization using a towed horizontal receiver array in a random range-dependent ocean waveguide are examined. They include: (1) Moving array triangulation, (2) array invariant, (3) bearings-only target motion analysis in modified polar coordinates via the extended Kalman filter, and (4) bearings-migration minimum mean-square error. These methods are applied to localize and track a vertical source array deployed in the far-field of a towed horizontal receiver array during the Gulf of Maine 2006 Experiment. The source transmitted intermittent broadband pulses in the 300 to 1200 Hz frequency range. A nonlinear matched-filter kernel designed to replicate the acoustic signal measured by the receiver array is applied to enhance the signal-to-noise ratio. The source localization accuracy is found to be highly dependent on source-receiver geometry and the localization approach. For a relatively stationary source drifting at speeds much slower than the receiver array tow-speed, the mean source position can be estimated by moving array triangulation with less than 3% error near broadside direction. For a moving source, the Kalman filter method gives the best performance with 5.5% error. The array invariant is the best approach for localizing sources within the endfire beam of the receiver array with 7% error. PMID:24180781

  7. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers

    NASA Astrophysics Data System (ADS)

    Alem, Orang; Sander, Tilmann H.; Mhaskar, Rahul; LeBlanc, John; Eswaran, Hari; Steinhoff, Uwe; Okada, Yoshio; Kitching, John; Trahms, Lutz; Knappe, Svenja

    2015-06-01

    Following the rapid progress in the development of optically pumped magnetometer (OPM) technology for the measurement of magnetic fields in the femtotesla range, a successful assembly of individual sensors into an array of nearly identical sensors is within reach. Here, 25 microfabricated OPMs with footprints of 1 cm3 were assembled into a conformal array. The individual sensors were inserted into three flexible belt-shaped holders and connected to their respective light sources and electronics, which reside outside a magnetically shielded room, through long optical and electrical cables. With this setup the fetal magnetocardiogram of a pregnant woman was measured by placing two sensor belts over her abdomen and one belt over her chest. The fetal magnetocardiogram recorded over the abdomen is usually dominated by contributions from the maternal magnetocardiogram, since the maternal heart generates a much stronger signal than the fetal heart. Therefore, signal processing methods have to be applied to obtain the pure fetal magnetocardiogram: orthogonal projection and independent component analysis. The resulting spatial distributions of fetal cardiac activity are in good agreement with each other. In a further exemplary step, the fetal heart rate was extracted from the fetal magnetocardiogram. Its variability suggests fetal activity. We conclude that microfabricated optically pumped magnetometers operating at room temperature are capable of complementing or in the future even replacing superconducting sensors for fetal magnetocardiography measurements.

  8. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers.

    PubMed

    Alem, Orang; Sander, Tilmann H; Mhaskar, Rahul; LeBlanc, John; Eswaran, Hari; Steinhoff, Uwe; Okada, Yoshio; Kitching, John; Trahms, Lutz; Knappe, Svenja

    2015-06-21

    Following the rapid progress in the development of optically pumped magnetometer (OPM) technology for the measurement of magnetic fields in the femtotesla range, a successful assembly of individual sensors into an array of nearly identical sensors is within reach. Here, 25 microfabricated OPMs with footprints of 1 cm(3) were assembled into a conformal array. The individual sensors were inserted into three flexible belt-shaped holders and connected to their respective light sources and electronics, which reside outside a magnetically shielded room, through long optical and electrical cables. With this setup the fetal magnetocardiogram of a pregnant woman was measured by placing two sensor belts over her abdomen and one belt over her chest. The fetal magnetocardiogram recorded over the abdomen is usually dominated by contributions from the maternal magnetocardiogram, since the maternal heart generates a much stronger signal than the fetal heart. Therefore, signal processing methods have to be applied to obtain the pure fetal magnetocardiogram: orthogonal projection and independent component analysis. The resulting spatial distributions of fetal cardiac activity are in good agreement with each other. In a further exemplary step, the fetal heart rate was extracted from the fetal magnetocardiogram. Its variability suggests fetal activity. We conclude that microfabricated optically pumped magnetometers operating at room temperature are capable of complementing or in the future even replacing superconducting sensors for fetal magnetocardiography measurements. PMID:26041047

  9. Operational field evaluation of the PAC-MAG man-portable magnetometer array

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan

    2013-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.

  10. Enhanced Processing for a Towed Array Using an Optimal Noise Canceling Approach

    SciTech Connect

    Sullivan, E J; Candy, J V

    2005-07-21

    Noise self-generated by a surface ship towing an array in search of a weak target presents a major problem for the signal processing especially if broadband techniques are being employed. In this paper we discuss the development and application of an adaptive noise canceling processor capable of extracting the weak far-field acoustic target in a noisy ocean acoustic environment. The fundamental idea for this processor is to use a model-based approach incorporating both target and ship noise. Here we briefly describe the underlying theory and then demonstrate through simulation how effective the canceller and target enhancer perform. The adaptivity of the processor not only enables the ''tracking'' of the canceller coefficients, but also the estimation of target parameters for localization. This approach which is termed ''joint'' cancellation and enhancement produces the optimal estimate of both in a minimum (error) variance sense.

  11. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Chi, Peter

    2016-07-01

    , acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.

  12. Detection and Analysis of Low-Frequency Sperm Whale Vocalizations with a Towed Array

    NASA Astrophysics Data System (ADS)

    Bohn, Alexander

    Sperm whale vocalizations recorded during a sea test and calibration experiment in the Gulf of Maine on a single towed, horizontal, densely sampled, low-frequency (< 2500 Hz), coherent hydrophone array system are detected and analyzed for signal energy level and other characteristics. The vocalizing individuals are localized in bearing, range, and depth. An algorithm is developed to achieve automatic detection of vocalizations. This analysis is shown to have potential utility despite restriction to only the low-frequency component of the vocalizations by sampling theory. In addition, transmission loss in the New England continental shelf and slope environment is accounted for with an ocean waveguide-acoustic propagation model. Multiple averaged realizations of this model are used to estimate transmission loss as a function of range and depth for transects between the receiver array and vocalizing whales. Comparison of the vocalizations and background noise levels and the estimated transmission loss suggests the sperm whale detection range after coherent array processing exceeds 60 km in low-to-moderate sea states. Low-frequency source levels of vocalizations are estimated using the received levels and the estimated transmission loss, and applications of both this estimate and the receiver-side statistics are discussed.

  13. ULTIMA: Array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.

    2012-12-01

    ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.

  14. Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints

    NASA Astrophysics Data System (ADS)

    Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.

    2002-05-01

    Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.

  15. The 2011 Tohoku Tsunami observed by an array of ocean bottom electro-magnetometers

    NASA Astrophysics Data System (ADS)

    Utada, H.; Zhang, L.; Baba, K.; Liang, P.; Shimizu, H.

    2014-12-01

    Previous studies have claimed that EM sensors can be used as a type of tsunami sensor. In fact, recent studies have reported the observation of EM field variations possibly caused by devastating tsunamis including the 2011 Tohoku Tsunami. During the period from June 2010 to November 2011, we deployed a small array consisting of 4 ocean bottom electro-magnetometers (OBEMs) in the northwestern Pacific basin, about 1,000 km to the east from the epicenter, to explore the mantle structure. This array successfully recorded EM signals associated with the 2011 Tohoku Tsunami.We found that the observed EM signal propagated in the array as a wave with a phase velocity approximately equal to that of an oceanic long wave. Also, we estimated the motional impedance and tipper corresponding to the propagation direction at each site from the major components of observed EM signals and found that they were approximately equal to the phase velocities of the tsunami propagation as suggested by a simple theory. Besides, ocean bottom seismograms and tilt data show that observed EM variations were not produced by instrumental shaking. These results gave us a clear proof that observed EM signals were generated by the motional induction of the 2011 Tohoku Tsunami and therefore can be used to estimate tsunami parameters such as wave height, arrival time, and propagation direction.Then, we estimated the tsunami propagation direction from observed tsunami-induced EM fields at four seafloor sites through several methods (both single station and array analyses). Resulting frequency dependence of the propagation direction was found consistent with a source model of the 2011 Tohoku earthquake and tsunami. We also estimated the tsunami height from EM data recorded at each site, and obtained the tsunami amplitude in the array to be approximately 1 m. The same set of parameters (propagation direction and wave height) was calculated from EM signals simulated by using a tsunami flow model with a

  16. Investigating dynamical complexity in the time series of the upgraded ENIGMA magnetometer array using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Melis, Nikolaos; Giannakis, Omiros; Kontoes, Charalampos

    2016-04-01

    The HellENIc GeoMagnetic Array (ENIGMA) is a network of 3 ground-based magnetometer stations in the areas of Trikala, Attiki and Lakonia in Greece that provides measurements for the study of geomagnetic pulsations, resulting from the solar wind - magnetosphere coupling. ENIGMA magnetometer array enables effective remote sensing of geospace dynamics and the study of space weather effects on the ground (i.e., Geomagnetically Induced Currents - GIC). ENIGMA contributes data to SuperMAG, a worldwide collaboration of organizations and national agencies that currently operate more than 300 ground-based magnetometers. ENIGMA is currently extended and upgraded receiving financial support through the national funding KRIPIS project and European Commission's BEYOND project. In particular, the REGPOT project BEYOND is an FP7 project that aims to maintain and expand the existing state-of-the-art interdisciplinary research potential, by Building a Centre of Excellence for Earth Observation based monitoring of Natural Disasters in south-eastern Europe, with a prospect to increase its access range to the wider Mediterranean region through the integrated cooperation with twining organizations. This study explores the applicability and effectiveness of a variety of computable entropy measures to the ENIGMA time series in order to investigate dynamical complexity between pre-storm activity and magnetic storms.

  17. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system.

    PubMed

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper. PMID:24689606

  18. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system

    NASA Astrophysics Data System (ADS)

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  19. A small towed beamforming array to identify vocalizing resident killer whales ( Orcinus orca) concurrent with focal behavioral observations

    NASA Astrophysics Data System (ADS)

    Miller, Patrick J.; Tyack, Peter L.

    Investigations of communication systems benefit from concurrent observation of vocal and visible behaviors of individual animals. A device has been developed to identify individual vocalizing resident killer whales ( Orcinus orca) during focal behavioral observations. The device consists of a 2-m, 15-element hydrophone array, which is easily towed behind a small vessel, on-board multi-channel recorders, and real-time signal processing equipment. Acoustic data from the hydrophones are digitized and processed using broadband frequency-domain beamforming to yield frequency-azimuth (FRAZ) and "directo-gram" displays of arriving sounds. Based upon statistical analysis of independent portions of typical killer whale calls, the precision of the angle-of-arrival estimate ranges from ±0° to ±2.5° with a mean precision of ±1.5°. Echolocation clicks also are resolved precisely with a typical -6 dB mainlobe width of ±2.0°. Careful positioning of the array relative to the animals minimizes the effects of depth ambiguities and allows identification of individual sources in many circumstances. Several strategies for identifying vocalizing individuals are discussed and an example of a successful identification is described. Use of the array with resident killer whales did not interfere with vessel maneuverability, animal tracking, or behavioral sampling of focal individuals. This localization technique has promise for advancing the abilities of researchers to conduct unbiased behavioral and acoustic sampling of individual free-ranging cetaceans.

  20. Passive acoustic monitoring using a towed hydrophone array results in identification of a previously unknown beaked whale habitat.

    PubMed

    Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon

    2013-09-01

    Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region. PMID:23968056

  1. Effects of surveillance towed array sensor system (SURTASS) low frequency active sonar on fish

    NASA Astrophysics Data System (ADS)

    Popper, Arthur N.; Halvorsen, Michele B.; Miller, Diane; Smith, Michael E.; Song, Jiakun; Wysocki, Lidia E.; Hastings, Mardi C.; Kane, Andrew S.; Stein, Peter

    2005-04-01

    We investigated the effects of exposure to Low Frequency Active (LFA) sonar on rainbow trout (a hearing non-specialist related to several endangered salmonids) and channel catfish (a hearing specialist), using an element of the standard SURTASS LFA source array. We measured hearing sensitivity using auditory brainstem response, effects on inner ear structure using scanning electron microscopy, effects on non-auditory tissues using general pathology and histopathology, and behavioral effects with video monitoring. Exposure to 193 dB re 1 microPa (rms received level) in the LFA frequency band for 324 seconds resulted in a TTS of 20 dB at 400 Hz in rainbow trout, with less TTS at 100 and 200 Hz. TTS in catfish ranged from 6 to 12 dB at frequencies from 200 to 1000 Hz. Both species recovered from hearing loss in several days. Inner ears sensory tissues appeared unaffected by acoustic exposure. Gross pathology indicated no damage to non-auditory tissues, including the swim bladder. Both species showed consistent startle responses at sound onsets and changed their position relative to the sound source during exposures. There was no fish death attributable to sound exposure even up to four days post-exposure. [Work supported by Chief of Naval Operations.

  2. Small Magnetometer

    NASA Technical Reports Server (NTRS)

    Kuhnke, Falko; Musmann, Gunter; Glassmeier, K. H.; Tsurutani, Bruce

    1995-01-01

    Small, lightweight, low-power magnetometer measures three-dimensional magnetic field. Includes three toroidal cores - one for each dimension. Exhibits high sensitivity, low zero-point drift, and low noise. Magnetometer circuit includes driver circuit and three analog signal-processing circuits. Output of analog signal-processing circuit proportional to one of components of external magnetic field.

  3. MAVEN Magnetometer

    NASA Video Gallery

    MAVEN’s dual magnetometers will allow scientists to study the interactionbetween the solar wind and the Martian atmosphere, giving us a betterunderstanding of how Mars has evolved from a warm, ...

  4. Rebecca's Magnetometer.

    NASA Astrophysics Data System (ADS)

    Hossfield, Casper H.

    I describe a McWilliams torsion-balance magnetometer I helped Arkansas high school senior Rebecca Ragat build as a science fair project. Rebecca won awards at the regional fair which qualified her to enter her magnetometer in the Arkansas State Science Fair, where she won awards from the United States Geological Survey and the United States Navy. For those interested in building a McWilliams torsion-balance magnetometer similar to Rebecca's, I have created a kit that is available through the AAVSO Solar Division. I also describe my experience as a judge at the orange County Regional Science Fair in Florida, and encourage other scientists to participate in programs that help students learn about science through hands-on experience. Offering to be a judge at your local science fair is a good way to do this.

  5. A Near-real-time Data Transport System for Selected Stations in the Magnetometer Array for Cusp and Cleft Studies (MACCS)

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Valentic, T. A.; Stehle, R. H.; Hughes, W. J.

    2004-05-01

    The Magnetometer Array for Cusp and Cleft Studies (MACCS) is a two-dimensional array of eight fluxgate magnetometers that was established in 1992-1993 in the Eastern Canadian Arctic from 75° to over 80° MLAT to study electrodynamic interactions between the solar wind and Earth's magnetosphere and high-latitude ionosphere. A ninth site in Nain, Labrador, extends coverage down to 66° between existing Canadian and Greenland stations. Originally designed as part of NSF's GEM (Geospace Environment Modeling) Program, MACCS has contributed to the study of transients and waves at the magnetospheric boundary and in the near-cusp region as well as to large, cooperative, studies of ionospheric convection and substorm processes. Because of the limitations of existing telephone lines to each site, it has not been possible to economically access MACCS data promptly; instead, each month's collected data is recorded and mailed to the U.S. for processing and eventual posting on a publicly-accessible web site, http://space.augsburg.edu/space. As part of its recently renewed funding, NSF has supported the development of a near-real-time data transport system using the Iridium satellite network, which will be implemented at two MACCS sites in summer 2004. At the core of the new MACCS communications system is the Data Transport Network, software developed with NSF-ITR funding to automate the transfer of scientific data from remote field stations over unreliable, bandwidth-constrained network connections. The system utilizes a store-and-forward architecture based on sending data files as attachments to Usenet messages. This scheme not only isolates the instruments from network outages, but also provides a consistent framework for organizing and accessing multiple data feeds. Client programs are able to subscribe to data feeds to perform tasks such as system health monitoring, data processing, web page updates and e-mail alerts. The MACCS sites will employ the Data Transport Network

  6. Atomic magnetometer

    DOEpatents

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  7. Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment

    SciTech Connect

    Mark D. McKay; Matthew O. Anderson

    2011-08-01

    Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly

  8. Development of autonomous magnetometer rotorcraft for wide area assessment

    SciTech Connect

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  9. 13. VIEW NORTHNORTHEAST OF TOW TANK FROM TOW CARRIAGE. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW NORTH-NORTHEAST OF TOW TANK FROM TOW CARRIAGE. NOTE FRAME CONSTRUCTION OF STEEL TUBING AND LEFT FRONT WHEEL DRIVE MOTOR. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  10. Kinetic inductance magnetometer

    NASA Astrophysics Data System (ADS)

    Luomahaara, Juho; Vesterinen, Visa; Grönberg, Leif; Hassel, Juha

    2014-09-01

    Sensing ultra-low magnetic fields has various applications in the fields of science, medicine and industry. There is a growing need for a sensor that can be operated in ambient environments where magnetic shielding is limited or magnetic field manipulation is involved. To this end, here we demonstrate a new magnetometer with high sensitivity and wide dynamic range. The device is based on the current nonlinearity of superconducting material stemming from kinetic inductance. A further benefit of our approach is of extreme simplicity: the device is fabricated from a single layer of niobium nitride. Moreover, radio frequency multiplexing techniques can be applied, enabling the simultaneous readout of multiple sensors, for example, in biomagnetic measurements requiring data from large sensor arrays.

  11. Electron-Tunneling Magnetometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Waltman, Steven B.

    1993-01-01

    Electron-tunneling magnetometer is conceptual solid-state device operating at room temperature, yet offers sensitivity comparable to state-of-art magnetometers such as flux gates, search coils, and optically pumped magnetometers, with greatly reduced volume, power consumption, electronics requirements, and manufacturing cost. Micromachined from silicon wafer, and uses tunneling displacement transducer to detect magnetic forces on cantilever-supported current loop.

  12. Multi-sensor magnetoencephalography with atomic magnetometers

    PubMed Central

    Johnson, Cort N; Schwindt, P D D; Weisend, M

    2014-01-01

    The authors have detected magnetic fields from the human brain with two independent, simultaneously operating rubidium spin-exchange-relaxation-free magnetometers. Evoked responses from auditory stimulation were recorded from multiple subjects with two multi-channel magnetometers located on opposite sides of the head. Signal processing techniques enabled by multi-channel measurements were used to improve signal quality. This is the first demonstration of multi-sensor atomic magnetometer magnetoencephalography and provides a framework for developing a non-cryogenic, whole-head magnetoencephalography array for source localization. PMID:23939051

  13. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    SciTech Connect

    Roelof Versteeg; Mark McKay; Matt Anderson; Ross Johnson; Bob Selfridge; Jay Bennett

    2007-09-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area scanning is a multi-level one, in which medium altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry followed by surface investigations using either towed geophysical sensor arrays or man portable sensors. In order to be effective for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements means that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus, other systems are needed allowing for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it would be safer for the operators, cheaper in initial and O&M costs, and more effective in terms of site characterization. However, while UAV data acquisition from fixed wing platforms for large (> 200 feet) stand off distances is relatively straight forward, a host of challenges exist for low stand-off distance (~ 6 feet) UAV geophysical data acquisition. The objective of SERDP SEED 1509:2006 was to identify the primary challenges

  14. Automated real-time monitoring of the plasmasphere by means of ground-based magnetometer arrays in Europe and South Africa

    NASA Astrophysics Data System (ADS)

    Neska, M.; Collier, A.; Heilig, B.; Jozwiak, W.; Raita, T.; Vellante, M.

    2013-12-01

    The EMMA (Europe) / SANSA (South Africa) magnetometer network created in the frame of the PLASMON project serves for determining the plasmasphere's mass distribution basing on the FLR (field line resonance) technique. This determination shall be done in a fully automated way and in real time. Current data from all stations are delivered to the PLASMON center within ca. 10 minutes. The central server performs a detection of FLR frequencies for appropriate magnetometer pairs according to the FLRID algorithm. Subsequently, the plasmasphere's mass is determined by the FLRINV algorithm. First results of the whole system's working are presented.

  15. Magnetic Gradiometer and Vector Magnetometer Survey of the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Granot, R.

    2014-12-01

    Some of the fundamental tectonic problems of the Eastern Mediterranean remain unresolved due to the extremely thick sedimentary cover (~15 km) and the lack of accurate magnetic anomaly data. We conducted a magnetic survey of the Herodotus and Levant Basins (Eastern Mediterranean) to study the nature and age of the underlying igneous crust. The towed magnetometer array consisted of two Overhauser sensors recording the total magnetic field in a longitudinal gradiometer mode, and a marine vector magnetometer. Accurate navigation together with the gradiometer data allows the separation of the magnetic signature of the lithosphere from the contributions of the external magnetic field and the geomagnetic field. Total field data in the Herodotus Basin reveal a sequence of long-wavelength NE-SW lineated anomalies (~80 nT) suggesting a deep (~20 km) 2D magnetic source layer. Analysis of the vector data shows a steady azimuth of lineations that is generally consistent with the total field anomalies. The sequence of anomalies is rather short and does not allow a unique identification. However, the continuous northward motion of the African Plate during the Paleozoic and Mesozoic result in predictable anomaly skewness patterns for the different time periods. Forward magnetic modeling best fit the observed anomalies when using Early Permian remanence directions. Altogether, these observations and analysis suggest that a Neo-Tethyan Permian oceanic crust underlies the Herodotus Basin. Two short-wavelengths and strong (~400 nT) anomalies are found in the Levant Basin, proposing rather shallow (~7 km) magnetic sources there. These anomalies spatially coincide with Mesozoic uplifted continental structures (Eratosthenes and Jonah Highs).

  16. The MASCOT Magnetometer

    NASA Astrophysics Data System (ADS)

    Herčík, David; Auster, Hans-Ulrich; Blum, Jürgen; Fornaçon, Karl-Heinz; Fujimoto, Masaki; Gebauer, Kathrin; Güttler, Carsten; Hillenmaier, Olaf; Hördt, Andreas; Liebert, Evelyn; Matsuoka, Ayako; Nomura, Reiko; Richter, Ingo; Stoll, Bernd; Weiss, Benjamin P.; Glassmeier, Karl-Heinz

    2016-01-01

    The Mobile Asteroid Scout (MASCOT) is a small lander on board the Hayabusa2 mission of the Japan Aerospace Exploration Agency to the asteroid 162173 Ryugu. Among the instruments on MASCOT is a fluxgate magnetometer, the MASCOT Magnetometer (MasMag). The magnetometer is a lightweight ( ˜280 g) and low power ( ˜0.5 W) triaxial fluxgate magnetometer. Magnetic field measurements during the landing period and during the surface operational phase shall provide information about any intrinsic magnetic field of the asteroid and its remanent magnetization. This could provide important constraints on planet formation and the thermal and aqueous evolution of primitive asteroids.

  17. Tow Tank #1

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Digging the channel for the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' The tank was dedicated on May 27, 1931. In 1936 the tank was extended to a total length of 2,960 feet. In 1959 the facility was turned over to the U.S. Navy.Published in NACA TR No. 470, 'The N.A.C.A. Tank: A High-Speed Towing Basin for Testing Models of Seaplane Floats,' by Starr Truscott, 1933.

  18. Tuned cavity magnetometer sensitivity.

    SciTech Connect

    Okandan, Murat; Schwindt, Peter

    2009-09-01

    We have developed a high sensitivity (magnetometer that utilizes a novel optical (interferometric) detection technique. Further miniaturization and low-power operation are key advantages of this magnetometer, when compared to systems using SQUIDs which require liquid Helium temperatures and associated overhead to achieve similar sensitivity levels.

  19. Atomic magnetometer for human magnetoencephalograpy.

    SciTech Connect

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.

  20. Tow Tank #1

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Digging the channel for the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' The tank was dedicated on May 27, 1931. In 1936 the tank was extended to a total length of 2,960 feet. In 1959 the facility was turned over to the U.S. Navy.

  1. Microfabricated Optically-Pumped Magnetometers for Biomagnetic Applications

    NASA Astrophysics Data System (ADS)

    Knappe, Svenja; Alem, Orang; Sheng, Dong; Kitching, John

    2016-06-01

    We report on the progress in developing microfabricated optically-pumped magnetometer arrays for imaging applications. We have improved our sensitivities by several orders of magnitude in the last ten years. Now, our zero-field magnetometers reach noise values below 15 fT/Hz1/2. Recently, we have also developed gradiometers to reject ambient magnetic field noise. We have built several imaging arrays and validated them for biomedical measurements of brain and heart activity.

  2. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  3. Magnetometer uses bismuth-selenide

    NASA Technical Reports Server (NTRS)

    Woollman, J. A.; Spain, I. L.; Beale, H.

    1972-01-01

    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported.

  4. Hall effect magnetometer

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Beale, H. A.; Spain, I. L. (Inventor)

    1974-01-01

    A magnetometer which uses a single crystal of bismuth selenide is described. The rhombohedral crystal structure of the sensing element is analyzed. The method of construction of the magnetometer is discussed. It is stated that the sensing crystal has a positive or negative Hall coefficient and a carrier concentration of about 10 to the 18th power to 10 to the 20th power per cubic centimeter.

  5. NACA Tow Tank

    NASA Technical Reports Server (NTRS)

    1930-01-01

    L4695 shows the interior view of construction of the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' This picture shows the tank before the coving was added. This brought the rails for the carriage closer together and helped suppress waves produced by the models. The finished tank would be filled with approximately 4 million gallons of salt water pumped in from the Back River. The tank was covered by a shelter which protected the water surface. The tank was dedicated on May 27, 1931. In 1936 the tank was extended to a total length of 2,960 feet. In 1959 the facility was turned over to the U.S. Navy.

  6. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    SciTech Connect

    Chesca, Boris John, Daniel; Mellor, Christopher J.

    2015-10-19

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S{sub Φ}{sup 1/2} decreases as 1/N{sup 1/2}. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa{sub 2}Cu{sub 3}O{sub 7}. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S{sub Φ}{sup 1/2} between (0.25 and 0.44) μΦ{sub 0}/Hz{sup 1/2} for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  7. The UOSAT magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1982-01-01

    The magnetometer aboard the University of Surrey satellite (UOSAT) and its associated electronics are described. The basic fluxgate magnetometer employed has a dynamic range of plus or minus 8000 nT with outputs digitized by a 12-bit successive approximation A-D converter having a resolution of plus or minus 2 nT. Noise in the 3-13 Hz bandwidth is less than 1 nT. A bias field generator extends the dynamic range to plus or minus 64,000 nT with quantization steps of 8000 nT. The magnetometer experiment is expected to provide information on the secular variation of the geomagnetic field, and the decay rate of the dipole term. Special emphasis will be placed on the acquisition of real time and memory data over the poles which can be correlated with that from Magsat.

  8. Detection of brain magnetic fields with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Hoffman, Dan; Baranga, Andrei; Romalis, Michael

    2006-05-01

    We report detection of magnetic fields generated by evoked brain activity with an atomic magnetometer. The measurements are performed with a high-density potassium magnetometer operating in a spin-exchange relaxation free regime. Compared to SQUID magnetometers which so far have been the only detectors capable of measuring the magnetic fields from the brain, atomic magnetometers have the advantages of higher sensitivity and spatial resolution, simple multi-channel recording, and no need for cryogenics. Using a multi-channel photodetector array we recorded magnetic fields from the brain correlated with an audio tone administered with a non-magnetic earphone. The spatial map of the magnetic field gives information about the location of the brain region responding to the auditory stimulation. Our results demonstrate the atomic magnetometer as an alternative and low cost technique for brain imaging applications, without using cryogenic apparatus.

  9. Tuned optical cavity magnetometer

    DOEpatents

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  10. A Web Server for MACCS Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Engebretson, Mark J.

    1998-01-01

    NASA Grant NAG5-3719 was provided to Augsburg College to support the development of a web server for the Magnetometer Array for Cusp and Cleft Studies (MACCS), a two-dimensional array of fluxgate magnetometers located at cusp latitudes in Arctic Canada. MACCS was developed as part of the National Science Foundation's GEM (Geospace Environment Modeling) Program, which was designed in part to complement NASA's Global Geospace Science programs during the decade of the 1990s. This report describes the successful use of these grant funds to support a working web page that provides both daily plots and file access to any user accessing the worldwide web. The MACCS home page can be accessed at http://space.augsburg.edu/space/MaccsHome.html.

  11. THOR Fluxgate Magnetometer (MAG)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Valavanoglou, Aris; Carr, Christopher M.; O'Brien, Helen L.; Narita, Yasuhito; Delva, Magda; Chen, Christopher H. K.; Plaschke, Ferdinand; Soucek, Jan

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The goal of the Fluxgate Magnetometer (MAG) is to measure the DC to low frequency ambient magnetic field. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy.

  12. The Magnetospheric Multiscale Magnetometers

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; Means, J. D.; Moldwin, M. B.; Nakamura, R.; Pierce, D.; Plaschke, F.; Rowe, K. M.; Slavin, J. A.; Strangeway, R. J.; Torbert, R.; Hagen, C.; Jernej, I.; Valavanoglou, A.; Richter, I.

    2016-03-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University's Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored on board so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  13. The Voyager magnetometer boom

    NASA Technical Reports Server (NTRS)

    Miller, D. C.

    1979-01-01

    The Voyager spacecraft magnetometer experiment utilizes two sensors on a deployable boom. The boom is an Astromast. The implementation of the Astromast into the Voyager design is described along with the hardware used to hold, latch, and deploy the mast and the tests to demonstrate damping, deployment, and alignments. Several problems encountered are discussed and their solutions are given. Flight deployment and preliminary alignment results are presented. Finally, the design is evaluated in retrospect.

  14. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  15. The IRM fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.

    1985-01-01

    This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.

  16. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.

  17. Dynamic Tow Maneuver Orbital Launch Technique

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  18. Towed and AUV Technologies for Arctic Operations

    NASA Astrophysics Data System (ADS)

    Singh, H.; Eustice, R.; Humphris, S.; Jakuba, M.; Kunz, C.; Murphy, C.; Nakamura, K.; Reves-Sohn, R.; Roman, C.; Sato, T.; Shank, T.; Willis, C.

    2007-12-01

    equipped with a 230 kHz multibeam, a digital still camera and strobe, a magnetometer and an Eh sensor. Several drift dives were carried out with the CAMPER towed vehicle at two different sites on the Gakkel Ridge this summer and yielded considerable high definition and video imagery as well as geological and biological samples. Several dives were also carried for mapping the mid-water column and the seafloor with the two AUVs and these successfully returned water column CTD, Eh, optical backscatter, magnetic and multibeam data.

  19. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  20. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  1. Precessing Ferromagnetic Needle Magnetometer.

    PubMed

    Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry

    2016-05-13

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics. PMID:27232012

  2. Precessing Ferromagnetic Needle Magnetometer

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, Derek F.; Sushkov, Alexander O.; Budker, Dmitry

    2016-05-01

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, N ℏ≫I Ω (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin N ℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t-3 /2. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.

  3. Vulcan: A deep-towed CSEM receiver

    NASA Astrophysics Data System (ADS)

    Constable, Steven; Kannberg, Peter K.; Weitemeyer, Karen

    2016-03-01

    We have developed a three-axis electric field receiver designed to be towed behind a marine electromagnetic transmitter for the purpose of mapping the electrical resistivity in the upper 1000 m of seafloor geology. By careful adjustment of buoyancy and the use of real-time monitoring of depth and altitude, we are able to deep-tow multiple receivers on arrays up to 1200 m long within 50 m of the seafloor, thereby obtaining good coupling to geology. The rigid body of the receiver is designed to reduce noise associated with lateral motion of flexible antennas during towing, and allows the measurement of the vertical electric field component, which modeling shows to be particularly sensitive to near-seafloor resistivity variations. The positions and orientations of the receivers are continuously measured, and realistic estimates of positioning errors can be used to build an error model for the data. During a test in the San Diego Trough, offshore California, inversions of the data were able to fit amplitude and phase of horizontal electric fields at three frequencies on three receivers to about 1% in amplitude and 1° in phase and vertical fields to about 5% in amplitude and 5° in phase. The geological target of the tests was a known cold seep and methane vent in 1000 m water depth, which inversions show to be associated with a 1 km wide resistor at a depth between 50 and 150 m below seafloor. Given the high resistivity (30 Ωm) and position within the gas hydrate stability field, we interpret this to be massive methane hydrate.

  4. Optically transduced MEMS magnetometer

    SciTech Connect

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  5. Miniature Laser Magnetometer

    NASA Technical Reports Server (NTRS)

    Slocum, Robert; Brown, Andy

    2011-01-01

    A conceptual design has been developed for a miniature laser magnetometer (MLM) that will measure the scalar magnitude and vector components of near-Earth magnetic fields. The MLM incorporates a number of technical innovations to achieve high-accuracy and high-resolution performance while significantly reducing the size of the laser-pumped helium magnetometer for use on small satellites and unmanned aerial vehicles (UAVs). and electronics sections that has the capability of measuring both the scalar magnetic field magnitude and the vector magnetic field components. Further more, the high-accuracy scalar measurements are used to calibrate and correct the vector component measurements in order to achieve superior vector accuracy and stability. The correction algorithm applied to the vector components for calibration and the same cell for vector and scalar measurements are major innovations. The separate sensor and electronics section of the MLM instrument allow the sensor to be installed on a boom or otherwise located away from electronics and other noisy magnetic components. The MLM s miniaturization will be accomplished through the use of advanced miniaturized components and packaging methods for the MLM sensor and electronics. The MLM conceptual design includes three key innovations. The first is a new non-magnetic laser package that will allow the placement of the laser pump source near the helium cell sensing elements. The second innovation is the design of compact, nested, triaxial Braunbek coils used in the vector measurements that reduce the coil size by a factor of two compared to existing Helmholtz coils with similar field-generation performance. The third innovation is a compact sensor design that reduces the sensor volume by a factor of eight compared to MLM s predecessor.

  6. The Magsat precision vector magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1980-01-01

    This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).

  7. 46 CFR 11.482 - Assistance towing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mate (pilot) of towing vessels or master or mate endorsements authorizing service on inspected vessels... license or MMC for master, mate, or operator endorsed for assistance towing is authorized to engage...

  8. Magnetoencephalography with a two-color pump probe atomic magnetometer.

    SciTech Connect

    Johnson, Cort N.

    2010-07-01

    The authors have detected magnetic fields from the human brain with a compact, fiber-coupled rubidium spin-exchange-relaxation-free magnetometer. Optical pumping is performed on the D1 transition and Faraday rotation is measured on the D2 transition. The beams share an optical axis, with dichroic optics preparing beam polarizations appropriately. A sensitivity of <5 fT/{radical}Hz is achieved. Evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer. Recordings were validated by comparison with those taken by a commercial magnetoencephalography system. The design is amenable to arraying sensors around the head, providing a framework for noncryogenic, whole-head magnetoencephalography.

  9. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Deans, Cameron; Marmugi, Luca; Hussain, Sarah; Renzoni, Ferruccio

    2016-03-01

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  10. 46 CFR 15.910 - Towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Towing vessels. 15.910 Section 15.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Equivalents § 15.910 Towing vessels. No person may serve as a master or mate (pilot) of any towing...

  11. 46 CFR 15.910 - Towing vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Towing vessels. 15.910 Section 15.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Equivalents § 15.910 Towing vessels. No person may serve as a master or mate (pilot) of any towing...

  12. 46 CFR 15.910 - Towing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Towing vessels. 15.910 Section 15.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Equivalents § 15.910 Towing vessels. No person may serve as a master or mate (pilot) of any towing...

  13. 46 CFR 15.910 - Towing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Towing vessels. 15.910 Section 15.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Equivalents § 15.910 Towing vessels. No person may serve as a master or mate (pilot) of any towing...

  14. 46 CFR 15.910 - Towing vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Towing vessels. 15.910 Section 15.910 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Equivalents § 15.910 Towing vessels. No person may serve as a master or mate (pilot) of any towing...

  15. Lunar surface magnetometer design review

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Design and fabrication parameters of a lunar surface magnetometer are discussed. Drawings and requirements for mechanical design, electronic packaging design, thermal design, quality assurance and systems testing are included.

  16. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  17. Tracking sperm whales with a towed acoustic vector sensor.

    PubMed

    Thode, Aaron; Skinner, Jeff; Scott, Pam; Roswell, Jeremy; Straley, Janice; Folkert, Kendall

    2010-11-01

    Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions. PMID:21110564

  18. Microfabricated Spin Polarized Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Jimenez Martinez, Ricardo

    Spin polarized atomic magnetometers involve the preparation of atomic spins and their detection for monitoring magnetic fields. Due to the fact that magnetic fields are ubiquitous in our world, spin polarized atomic magnetometers are used in a wide range of applications from the detection of magnetic fields generated by the human heart and brain to the detection of nuclear magnetic resonance. In this thesis we developed microfabricated spin polarized atomic magnetometers. These sensors are based on optical pumping and spin-exchange collisions between alkali atoms and noble gases contained in microfabricated millimeter-scale vapor cells. In the first part of the thesis, we improved different features of current microfabricated optical magnetometers. Specifically, we improved the bandwidth of these devices, without degrading their magnetic field sensitivity, by broadening their magnetic resonance through spin-exchange collisions between alkali atoms. We also implemented all-optical excitation techniques to avoid problems, such as the magnetic perturbation of the environment, induced by the radio-frequency fields used in some of these sensors. In the second part of the thesis we demonstrated a microfluidic chip for the optical production and detection of hyperpolarized Xe gas through spin-exchange collisions with optically pumped Rb atoms. These devices are critical for the widespread use of spin polarized atomic magnetometers in applications requiring simple, compact, low-cost, and portable instrumentation.

  19. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  20. Aircraft towing feasibility study. Final report

    SciTech Connect

    Not Available

    1980-09-01

    Energy costs and availability are major concerns in most parts of the world. Many ways of increasing energy supply and reducing consumption are being proposed and investigated. One that holds considerable promise is the extended towing of aircraft between airport runways and terminal gate areas with engines shut down. This study provides a preliminary assessment of the constraints on and feasibility of extended aircraft towing. Past aircraft towing experience and the state-of-the-art in towing equipment are reviewed. Safety and operational concerns associated with aircraft towing are identified, and the benefits and costs of implementing aircraft towing at 20 major US airports are analyzed. It was concluded that extended aircraft towing is technically feasible and that substantial reductions in aircraft fuel consumption and air pollutant emissions can be achieved through its implementation. It was also concluded that, although capital and operating costs associated with towing would be increased, net savings could generally be attained at these airports. Because of the lack of past experience and the necessity of proving the cost effectiveness of the towing concept, a demonstration of the feasibility of large-scale aircraft towing is necessary. The study evaluates the suitability of the 20 study airports as potential demonstration sites and makes recommendations for the first demonstration project.

  1. Digital fluxgate magnetometer: design notes

    NASA Astrophysics Data System (ADS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-12-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

  2. 33 CFR 163.20 - Bunching of tows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bunching of tows. 163.20 Section... AND WATERWAYS SAFETY TOWING OF BARGES § 163.20 Bunching of tows. (a) In all cases where tows can be bunched, it should be done. (b) Tows navigating in the North and East Rivers of New York must be...

  3. Continuous, linearly intermixed fiber tows and composite molded article thereform

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    2000-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  4. Noiseless Coding Of Magnetometer Signals

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Lee, Jun-Ji

    1989-01-01

    Report discusses application of noiseless data-compression coding to digitized readings of spaceborne magnetometers for transmission back to Earth. Objective of such coding to increase efficiency by decreasing rate of transmission without sacrificing integrity of data. Adaptive coding compresses data by factors ranging from 2 to 6.

  5. A subfemtotesla multichannel atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Kominis, I. K.; Kornack, T. W.; Allred, J. C.; Romalis, M. V.

    2003-04-01

    The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1fTHz-1/2 (1fT = 10-15T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54fTHz-1/2 with a measurement volume of only 0.3cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01fTHz-1/2. We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2mm.

  6. A subfemtotesla multichannel atomic magnetometer.

    PubMed

    Kominis, I K; Kornack, T W; Allred, J C; Romalis, M V

    2003-04-10

    The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm. PMID:12686995

  7. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening

    SciTech Connect

    Jiménez-Martínez, R.; Knappe, S.; Kitching, J.

    2014-04-15

    We demonstrate an optically pumped {sup 87}Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the {sup 87}Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

  8. Towed Twin-Fuselage Glider Launch System (CGI Animation)

    NASA Video Gallery

    The towed glider is an element of the novel rocket-launching concept of the Towed Glider Air-Launch System (TGALS). The TGALS demonstration’s goal is to provide proof-of-concept of a towed, airborn...

  9. Process for preparing tows from composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A continuous, substantially uniform tow useful in forming composite molded articles is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber two to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, and continuosuly withdrawing the intermixed tow.

  10. Observational magnetometer calibration with the Hubble Space Telescope's new magnetometers

    NASA Technical Reports Server (NTRS)

    Broude, Sidney M.

    1995-01-01

    The two magnetometers recently replaced on the Hubble Space Telescope during the STS-61 Servicing Mission are now being used successfully for Coarse Attitude Determination during spacecraft vehicle safemode recovery operation. The magnetometer alignments relative to the spacecraft's vehicle's reference frame and the magnetic coupling of the sensors to the four magnetic torquer bars were determined. Coarse Attitude determination errors are now reduced to an average of 0.6 deg. Magnetometer Sensing System calibration and Coarse Attitude determination testing with the new calibration parameters is a geometrical problem. Telemetered earth magnetic field data was collected at twenty-six different vehicle attitudes. The spacecraft attitudes selected were distributed as widely apart as possible throughout the Geocentric Inertial Coordinate reference frame. It is also desirable to sample the Earth's magnetic field over as many different locations of the spacecraft's passage over the Earth as possible, within the limitation of the +/- 28.5 deg orbital inclination. A full range of magnetic moment outputs from the torquer bars needs to be sampled, +/- 3600 ampmeters squared, as well as data when the torquer bars have zero current. Graphic utilities were also developed to visually aid in optimizing the data collection process. Finally, a brief discussion of a method for collecting data for future calibrations is suggested.

  11. Towed Subsurface Optical Communications Buoy

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert C.; Farr, William H.

    2013-01-01

    The innovation allows critical, high-bandwidth submarine communications at speed and depth. This reported innovation is a subsurface optical communications buoy, with active neutral buoyancy and streamlined flow surface veins for depth control. This novel subsurface positioning for the towed communications buoy enables substantial reduction in water-absorption and increased optical transmission by eliminating the intervening water absorption and dispersion, as well as by reducing or eliminating the beam spread and the pulse spreading that is associated with submarine-launched optical beams.

  12. 46 CFR 11.482 - Assistance towing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... The endorsement applies to all MMCs except master and mate (pilot) of towing vessels and master or mate authorizing service on inspected vessels over 200 gross tons. Holders of any of these endorsements... assistance towing safety, equipment, and procedures. (c) The holder of a license or MMC for master, mate,...

  13. 46 CFR 11.482 - Assistance towing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... The endorsement applies to all MMCs except master and mate (pilot) of towing vessels and master or mate authorizing service on inspected vessels over 200 gross tons. Holders of any of these endorsements... assistance towing safety, equipment, and procedures. (c) The holder of a license or MMC for master, mate,...

  14. 46 CFR 11.482 - Assistance towing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... The endorsement applies to all MMCs except master and mate (pilot) of towing vessels and master or mate authorizing service on inspected vessels over 200 gross tons. Holders of any of these endorsements... assistance towing safety, equipment, and procedures. (c) The holder of a license or MMC for master, mate,...

  15. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed

  16. 77 FR 40891 - Towing Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Docket... SECURITY Coast Guard Towing Safety Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Open Teleconference Federal Advisory Committee Meeting. SUMMARY: The Towing...

  17. 46 CFR 11.482 - Assistance towing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Assistance towing. 11.482 Section 11.482 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Deck Officers § 11.482 Assistance towing. (a) This section...

  18. 46 CFR 45.185 - Tow limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Tow limitations. 45.185 Section 45.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.185 Tow limitations. (a) Barges must not be manned. (b) No more...

  19. 46 CFR 45.185 - Tow limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Tow limitations. 45.185 Section 45.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.185 Tow limitations. (a) Barges must not be manned. (b) No more...

  20. 46 CFR 45.185 - Tow limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Tow limitations. 45.185 Section 45.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.185 Tow limitations. (a) Barges must not be manned. (b) No more...

  1. 46 CFR 45.185 - Tow limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tow limitations. 45.185 Section 45.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.185 Tow limitations. (a) Barges must not be manned. (b) No more...

  2. 46 CFR 45.185 - Tow limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Tow limitations. 45.185 Section 45.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.185 Tow limitations. (a) Barges must not be manned. (b) No more...

  3. Radiation source for helium magnetometers

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E. (Inventor)

    1991-01-01

    A radiation source (12) for optical magnetometers (10) which use helium isotopes as the resonance element (30) includes an electronically pumped semiconductor laser (12) which produces a single narrow line of radiation which is frequency stabilized to the center frequency of the helium resonance line to be optically pumped. The frequency stabilization is accomplished using electronic feedback (34, 40, 42, 44) to control a current sources (20) thus eliminating the need for mechanical frequency tuning.

  4. THEMIS Ground-based Magnetometers

    NASA Astrophysics Data System (ADS)

    Pierce, D.; Means, J. D.; Dearborn, D.; Russell, C. T.; Strangeway, R. J.; Mende, S.; Craig, N.; Angelopoulos, V.

    2004-05-01

    This paper describes the design and development of a fluxgate suitable for full earth's field ground measurements and to be used for the ground-based segment of the THEMIS project.. The operation of the electronics is based on a 2nd order sigma-delta technique that yields a 24 bit/axis vector value with 4ppm measurement resolution at 2Hz without the use of analog to digital converters. This digital design produces superior noise performance over more conventional techniques while dramatically increasing the resolution of the magnetic field measurement. The magnetometer system is equipped with a DAC offsetting system which by program control can offset the Earth's field in any sensor orientation. Time and position data are maintained to an accuracy of 100usec and 40 meters with a dedicated Trimble Acutime2000 GPS receiver. The magnetometer may be powered from any un-regulated DC source capable of delivering 300ma. @ +10-24VDC. All data are output via USB or RS-232 interface to LabView host software which has been developed to support either Windows or Linux operating systems.Interrogation and control of the magnetometer is available via TCP protocol through a host internet connection.

  5. HTS magnetometers for fetal magnetocardiography.

    PubMed

    Li, Z; Wakai, R T; Paulson, D N; Schwartz, B

    2004-01-01

    High temperature superconducting (HTS) SQUID sensors have adequate magnetic field sensitivity for adult magnetocardiography (MCG) measurements, but it remains to be seen how well they perform for fetal MCG (fMCG), where the heart signals are typically ten times smaller than the adult signals. In this study, we assess the performance of a prototype HTS SQUID system; namely, a three-SQUID gradiometer formed from three vertically-aligned HTS dc-SQUID magnetometers integrated into a fiberglass liquid nitrogen dewar of diameter 12.5 cm and height 30 cm. Axial gradiometers with short or long baseline, as well as a second order gradiometer, can be formed out of these magnetometers via electronic subtraction. The calibrated magnetometer sensitivities at 1 kHz are 109 fT/square root of Hz, 155 fT/square root of Hz and 51 fT/square root of Hz. Direct comparison is made between the HTS SQUID system and a LTS SQUID system by making recordings with both systems during the same session on adult and fetal subjects. Although the fMCG could be resolved with the HTS SQUID system in most near-term subjects, the signal-to-noise ratio was relatively low and the system could not be operated outside of a shielded room. PMID:16012655

  6. Magnetoencephalography with Optically Pumped Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Schwindt, Peter; Colombo, Anthony; Jau, Yuan-Yu; Carter, Tony; Berry, Christopher; Young, Amber; McKay, Jim; Weisend, Michael

    2015-05-01

    We are working to develop a 36-channel array of optically pumped atomic magnetometers (AMs) to perform magnetoencephalography (MEG) with the goal of localizing magnetic sources within the human brain. The 36-channel array will consist of nine 4-channel sensor modules where the channels within each sensor will be spaced by 18 mm and each sensor will cover a 40 mm by 40 mm area of the head. In a previous 4-channel AM prototype, we demonstrated the measurement of evoked responses in both the auditory and somatosensory cortexes. This prototype had a 5 fT/Hz1/2 sensitivity. In the current version of the AM under development we are maintaining the previous sensitivity while implementing several improvements, including increasing the bandwidth from 20 Hz to more than 100 Hz, reducing the separation of the active volume of the AM from exterior of the sensor from 25 mm to 10 mm or less, and reducing the active sensor volume by a factor >10 to ~15 mm3. We will present results on the performance of our most recent AM prototype and progress toward developing a complete MEG system including a person-sized magnetic shield to provide a low-noise magnetic environment for MEG measurements.

  7. 33 CFR 401.34 - Vessels in tow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Vessels in tow. 401.34 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.34 Vessels in tow. No vessel that is not self-propelled (including but not limited to tug/tows and/or deadship/tows) shall be...

  8. Controlling iceberg roll/stability during towing around drillships

    SciTech Connect

    Benedict, C.P.; Lewis, J.C.; Dinn, G.J.; Learning, F.R.

    1981-01-01

    Field iceberg survey data were collected and on the basis of Lagrangian computer analysis, a large sample of simulated bergs were towed from random stable floating positions. This paper presents: the results on instrumenting iceberg tow forces on the Aquitaine site during the 1980 drilling program, and an operational procedure for predicting critical tow forces on the basis of pre-tow surveys.

  9. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  10. Free-Flying Magnetometer Data System

    NASA Technical Reports Server (NTRS)

    Blaes, B.; Javadi, H.; Spencer, H.

    2000-01-01

    The Free-Flying Magnetometer (FFM) is an autonomous "sensorcraft" developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy sounding rocket mission. This mission was a collaborative project between the University of New Hampshire, Cornell University and JPL. The science goal of the mission was the study of current filamentation phenomena in the northern auroral region through multipoint measurements of magnetic field. The technical objective of the mission was the proof of concept of the JPL FFM design and the demonstration of an in-situ multipoint measurement technique employing many free-flying spacecraft. Four FFMs were successfully deployed from a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. These hockey-puck-sized (80 mm diameter, 38 mm. height, 250 gram mass) free flyers each carry a miniature 3-axis flux-gate magnetometer that output +/- 2 V signals corresponding to a +/- 60,000 nT measurement range for each axis. The FFM uses a synchronized four-channel Sigma(Delta) Analog-to-Digital Converter (ADC) having a dynamic range of +/- 2.5V and converting at a rate of 279 samples/second/channel. Three channels are used to digitize the magnetometer signals to 17-bit (1.144 nT/bit) resolution. The fourth ADC channel is multiplexed for system monitoring of four temperature sensors and two battery voltages. The FFM also contains two sun sensors, a laser diode which emits a fan-shaped beam, a miniature S-band transmitter for direct communication to the ground station antennas, an ultra-stable Temperature Compensated Crystal Oscillator (TCXO) clock, an integrated data subsystem implemented in a Field-Programmable Gate Array (FPGA), a 4 Mbit Static Random Access Memory (SRAM) for data storage and Lithium Thionyl Chloride batteries for power. Communicating commands to the FFM prior to deployment is achieved with an infrared (IR) link. The FFM IR receiver responds to 9-bit pulse coded signals that are generated by an IR Light Emitting

  11. Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.

    2011-12-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this

  12. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... towing fittings and must act parallel to the ground. In addition— (1) A vertical load factor equal to 1.0...) A reaction with a maximum value equal to the vertical reaction must be applied at the axle of...

  13. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... towing fittings and must act parallel to the ground. In addition— (1) A vertical load factor equal to 1.0...) A reaction with a maximum value equal to the vertical reaction must be applied at the axle of...

  14. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... towing fittings and must act parallel to the ground. In addition— (1) A vertical load factor equal to 1.0...) A reaction with a maximum value equal to the vertical reaction must be applied at the axle of...

  15. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... towing fittings and must act parallel to the ground. In addition— (1) A vertical load factor equal to 1.0...) A reaction with a maximum value equal to the vertical reaction must be applied at the axle of...

  16. Helicopter attempts tow of Liberty Bell 7

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Marine helicopter appears to have Liberty Bell 7 in tow after Virgil I. Grissom's successful flight of 305 miles down the Atlantic Missile Range. Minutes after 'Gus' Grissom got out of the spacecraft, it sank.

  17. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The prescribed towing loads are as follows:...

  18. Computational Analysis of Towed Ballute Interactions

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Anderson, Brian P.

    2002-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Ballutes may be directly attached to a vehicle, increasing its cross-sectional area upon inflation, or towed behind the vehicle as a semi-independent device that can be quickly cut free when the requisite change in velocity is achieved. The aerothermodynamics of spherical and toroidal towed ballutes are considered in the present study. A limiting case of zero towline length (clamped system) is also considered. A toroidal system can be designed (ignoring influence of the tethers) such that all flow processed by the bow shock of the towing spacecraft passes through the hole in the toroid. For a spherical ballute, towline length is a critical parameter that affects aeroheating on the ballute being towed through the spacecraft wake. In both cases, complex and often unsteady interactions ensue in which the spacecraft and its wake resemble an aero spike situated in front of the ballute. The strength of the interactions depends upon system geometry and Reynolds number. We show how interactions may envelope the base of the towing spacecraft or impinge on the ballute surface with adverse consequences to its thermal protection system. Geometric constraints to minimize or eliminate such adverse interactions are discussed. The towed, toroidal system and the clamped, spherical system show greatest potential for a baseline design approach.

  19. A Complete Cubesat Magnetometer System Project

    NASA Technical Reports Server (NTRS)

    Zesta, Eftyhia

    2014-01-01

    The objective of this work is to provide the center with a fully tested, flexible, low cost, miniaturized science magnetometer system applicable to small satellite programs, like Cubesats, and to rides of opportunity that do not lend themselves to the high integration costs a science magnetometer on a boom necessitates.

  20. Construction of an alternating gradient magnetometer

    NASA Technical Reports Server (NTRS)

    Garland, Michael M.

    1988-01-01

    A magnetometer is described which was constructed to facilitate the study and characterization of the magnetic properties of high transition temperature superconductors. This instrument was used to measure the dc magnetic susceptibility of several superconducting compounds as a function of temperature. The construction of the magnetometer and the operating parameters are discussed in detail.

  1. High Sensitivity Optically Pumped Quantum Magnetometer

    PubMed Central

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716

  2. Four-channel optically pumped atomic magnetometer for magnetoencephalography.

    PubMed

    Colombo, Anthony P; Carter, Tony R; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N; Dagel, Amber L; Schwindt, Peter D D

    2016-07-11

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816

  3. Towed body measurements of flow noise from a turbulent boundary layer under sea conditions.

    PubMed

    Abshagen, J; Nejedl, V

    2014-02-01

    Results from an underwater experiment under sea conditions on flow noise beneath a flat-plate turbulent boundary layer are presented. The measurements were performed with a towed body at towing speeds U=2.3,…,6.1 m/s and depths h=-150,…,-100 m. Flow noise is measured with a linear array of equally spaced hydrophones (Δx=70 mm) that is orientated in streamwise direction and embedded within a laterally attached flat plate. In order to separate flow noise from ocean ambient noise and other acoustical noise sources wavenumber-frequency filtering is applied. The (nondimensionalized) spectral power density of flow noise Φ(ω) ⟨U∞⟩/ (⟨δ(∗)⟩ (1/2ρ ⟨U∞⟩)(2)) is found to scale like (ω⟨δ(∗)⟩/⟨U∞⟩)(-4.3) in a wide frequency range at higher towing speeds. Here, ω, ⟨δ(∗)⟩, and ⟨U∞⟩ denote frequency, boundary layer displacement thickness, and potential flow velocity in the array region, respectively. Potential flow velocity is estimated from numerical simulations around a symmetrical, two-dimensional body with a semi-elliptical nose. Evidence is given that a χ(2)-(Tsallis) superstatistics provides a reasonable representation of the probability distribution function of flow noise at higher towing speeds. PMID:25234873

  4. Optical fiber feedback SQUID magnetometer

    SciTech Connect

    Naito, S.; Sampei, Y.; Takahashi, T. )

    1989-04-01

    This paper describes an optical fiber feedback superconducting quantum interference device (SQUID) magnetometer which was developed to improve electromagnetic interference characteristics. The SQUID consists of an RF SQUID probe, an RF amplifier, two multimode fibers, and a SQUID control unit. Phase-locked pulse width modulation (PWM) was used to construct a flux locked loop (FLL) circuit in the SQUID control unit. The operation of the optical fiber feedback SQUID is stable when a common mode voltage of ac 100 V/50 Hz is applied. It has an energy resolution of 1 x 10/sup -28/ J/Hz. This paper also describes the measurement of an auditory evoked field from the human brain in a magnetically shielded room using the fiber feedback SQUID with a gradiometer type pickup coil.

  5. Micromachined magnetoflexoelastic resonator based magnetometer

    NASA Astrophysics Data System (ADS)

    Hatipoglu, Gokhan; Tadigadapa, Srinivas

    2015-11-01

    In this paper, we demonstrate the performance of a magnetoflexoelastic magnetometer consisting of a micromachined ultra-thin (7.5 μm) quartz bulk acoustic resonator on which 500 nm thick magnetostrictive Metglas® (Fe85B5Si10) film is deposited. The resonance frequency of the unimorph resonator structure is sensitively affected by the magnetostrictively induced flexoelastic effect in quartz and is exploited to detect low frequency (<100 Hz) and nanoTesla magnetic fields. The resonance frequency shift is measured by tracking the at-resonance admittance of the resonator as a function of the applied magnetic field. The frequency shifts are linearly correlated to the magnetic field strength. A minimum detectable magnetic flux density of ˜79 nT has been measured for 10 Hz modulated magnetic field input signals which corresponds to a frequency sensitivity of 0.883 Hz/μT.

  6. 46 CFR 15.610 - Master and mate (pilot) of towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (1) To operate a towing vessel with tank barges, or a tow of barges carrying hazardous materials... without barges, or a tow of uninspected barges, an officer in charge of the towing vessel must...

  7. Advanced tow placement of composite fuselage structure

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Grant, Carroll G.

    1992-01-01

    The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.

  8. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  9. Fiber-integrated diamond-based magnetometer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Cui, Jinming; Sun, Fangwen; Song, Xuerui; Feng, Fupan; Wang, Junfeng; Zhu, Wei; Lou, Liren; Wang, Guanzhong

    2013-09-01

    We demonstrated a fiber-integrated diamond-based magnetometer in this paper. In the system, the fluorescence of nitrogen vacancy (NV) centers in nanodiamonds deposited on a tapered fiber was coupled to the tapered fiber effectively and detected at the output end of the fiber. By using this scheme, optically detected electron spin resonance spectra were recorded for single NV centers. The results confirmed that such a tapered fiber-nanodiamond system can act as a magnetometer. Featured with excellent portability, convenient fabrication, and potential for further integration, the constructed system has been demonstrated to be a practical magnetometer prototype.

  10. Lunar magnetic permeability studies and magnetometer sensitivity

    NASA Technical Reports Server (NTRS)

    King, J. H.; Ness, N. F.

    1977-01-01

    A regression of quiet magnetic field components simultaneously measured by the two Explorer 35 magnetometers reveals uncertainties in effective sensitivity factors of up to a few percent in one or both of these instruments. Given this, the validity of previous lunar permeability studies based on Explorer 35/ALSEP regressions, wherein inferences are drawn from regression line slopes differing from unity by the order of one percent, is called into question. We emphasize the need to critically address the question of small deviations in magnetometer sensitivity factors from nominal values as a part of any two-magnetometer lunar permeability study.

  11. 49 CFR 393.70 - Coupling devices and towing methods, except for driveaway-towaway operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that tows it. (b) Fifth wheel assemblies—(1) Mounting—(i) Lower half. The lower half of a fifth wheel... equipped with a tow-bar and a means of attaching the tow-bar to the towing and towed vehicles. The tow-bar... strength and rigidity of the frame to prevent its undue distortion. (d) Safety devices in case of...

  12. 11. VIEW NORTH OF REAR OF TOW VEHICLE. NOTE CURRENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW NORTH OF REAR OF TOW VEHICLE. NOTE CURRENT COLLECTORS AT TOP LEFT AND OVERHEAD TROLLEY WIRES FOR POWER TRANSMISSION TO DRIVE MOTORS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  13. Customized ATP towpreg. [Automated Tow Placement

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  14. ATS-6 - UCLA fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Coleman, P. J., Jr.; Snare, R. C.

    1975-01-01

    A summary of the design of the University of California at Los Angeles' fluxgate magnetometer is presented. Instrument noise in the bandwidth 0.001 to 1.0 Hz is of order 85 m gamma. The DC field of the spacecraft transverse to the earth-pointing axis is 1.0 + or - 21 gamma in the X direction and -2.4 + or - 1.3 gamma in the Y direction. The spacecraft field parallel to this axis is less than 5 gamma. The small spacecraft field has made possible studies of the macroscopic field not previously possible at synchronous orbit. At the 96 W longitude of Applications Technology Satellite-6 (ATS-6), the earth's field is typically inclined 30 deg to the dipole axis at local noon. Most perturbations of the field are due to substorms. These consist of a rotation in the meridian to a more radial field followed by a subsequent rotation back. The rotation back is normally accompanied by transient variations in the azimuthal field. The exact timing of these perturbations is a function of satellite location and the details of substorm development.

  15. Sensitivity of double-resonance alignment magnetometers

    SciTech Connect

    Di Domenico, Gianni; Saudan, Herve; Bison, Georg; Knowles, Paul; Weis, Antoine

    2007-08-15

    We present an experimental study of the intrinsic magnetometric sensitivity of an optical or rf-frequency double-resonance magnetometer in which linearly polarized laser light is used in the optical pumping and detection processes. We show that a semiempirical model of the magnetometer can be used to describe the magnetic resonance spectra. Then, we present an efficient method to predict the optimum operating point of the magnetometer, i.e., the light power and rf Rabi frequency providing maximum magnetometric sensitivity. Finally, we apply the method to investigate the evolution of the optimum operating point with temperature. The method is very efficient to determine relaxation rates and thus allowed us to determine the three collisional disalignment cross sections for the components of the alignment tensor. Both first and second harmonic signals from the magnetometer are considered and compared.

  16. The Pioneer XI high field fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. A.; Ness, N. F.

    1975-01-01

    The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.

  17. 33 CFR 86.15 - Towing vessel whistles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Towing vessel whistles. 86.15... NAVIGATION RULES ANNEX III: TECHNICAL DETAILS OF SOUND SIGNAL APPLIANCES Whistles § 86.15 Towing vessel whistles. A power-driven vessel normally engaged in pushing ahead or towing alongside may, at all...

  18. 78 FR 60890 - Towing Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... SECURITY Coast Guard Towing Safety Advisory Committee; Vacancies AGENCY: Coast Guard. ACTION: Request for applications. SUMMARY: The Coast Guard seeks applications for membership on the Towing Safety Advisory... relating ] to shallow-draft inland and coastal waterway navigation and towing safety. Applicants...

  19. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  20. X-34 and HSTV tow vehicle on lakebed prior to tow test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Following initial captive flight tests last year at NASA's Dryden Flight Research Center, Edwards Air Force Base, California, the X-34 technology demonstrator began a new series of tests last week in which it is being towed behind a semi-truck and released to coast on the Edwards dry lakebed. On July 20, 2000, it was towed and released twice at speeds of five and 10 miles per hour. On July 24, 2000, it was towed and released twice at 10 and 30 miles per hour. Twelve tests are planned during which the X-34 will be towed for distances up to 10,000 feet and released at speeds up to 80 miles per hour. The test series is expected to last at least six weeks.

  1. Development of marine magnetic vector measurement system using AUV and deep-towed vehicle

    NASA Astrophysics Data System (ADS)

    Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.; Nishimura, K.; Baba, H.

    2012-04-01

    Marine magnetic survey is one of useful methods in order to investigate the nature of the oceanic crust. Most of the data are, however, intensity of the geomagnetic field without its direction. Therefore we cannot properly apply a physical formula describing the relation between magnetic field and magnetization to analyses of the data. With this problem, Isezaki (1986) developed a shipboard three-component magnetometer which measures the geomagnetic vector at the sea. On the other hand, geophysical surveys near the seafloor have been more and more necessary in order to show the details of the oceanic crust. For instance, development of seabed resources like hydrothermal deposits needs higher resolution surveys compared with conventional surveys at the sea for accurate estimation of abundance of the resources. From these viewpoints, we have been developing a measurement system of the deep-sea geomagnetic vector using AUV and deep-towed vehicle. The measurement system consists of two 3-axis flux-gate magnetometers, an Overhauser magnetometer, an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this measurement system can measure three components and intensity of the geomagnetic field in the deep-sea. In 2009, the first test of the measurement system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the measurement system was tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was

  2. The Chromosphere and Prominence Magnetometer

    NASA Astrophysics Data System (ADS)

    de Wijn, Alfred; Bethge, Christian; McIntosh, Scott; Tomczyk, Steven; Burkepile, Joan

    2013-04-01

    The Chromosphere and Prominence Magnetometer (ChroMag) is a synoptic instrument with the goal of quantifying the intertwined dynamics and magnetism of the solar chromosphere and in prominences through imaging spectro-polarimetry of the full solar disk in a synoptic fashion. The picture of chromospheric magnetism and dynamics is rapidly developing, and a pressing need exists for breakthrough observations of chromospheric vector magnetic field measurements at the true lower boundary of the heliospheric system. ChroMag will provide measurements that will enable scientists to study and better understand the energetics of the solar atmosphere, how prominences are formed, how energy is stored in the magnetic field structure of the atmosphere and how it is released during space weather events like flares and coronal mass ejections. An essential part of the ChroMag program is a commitment to develop and provide community access to the `inversion' tools necessary to interpret the measurements and derive the magneto-hydrodynamic parameters of the plasma. Measurements of an instrument like ChroMag provide critical physical context for the Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS) as well as ground-based observatories such as the future Advanced Technology Solar Telescope (ATST). A prototype is currently under construction at the High Altitude Observatory of the National Center for Atmospheric Research in Boulder, CO, USA. The heart of the ChroMag instrument is an electro-optically tunable wide-fielded narrow-band birefringent six-stage Lyot filter with a built-in polarimeter. We will present a progress update on the ChroMag design, and present results from the prototype instrument.

  3. SEADYN Analysis of a Tow Line for a High Altitude Towed Glider

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1996-01-01

    The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation.

  4. Towed Articulated Housing For Geophysical Measurements

    NASA Technical Reports Server (NTRS)

    Burke, James D.; Cantrell, James

    1992-01-01

    Snakelike articulated string of rigid shells towed by helicopter, boat, kite or balloon, carries scientific instruments over land and sea surfaces. Nested shells connected to internal chain by bolt covered by preceding cone. String articulates readily to negotiate obstacles, but locally stiff to lie across a narrow crevasse.

  5. 78 FR 49543 - Towing Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Docket... Discharges Incidental to the Normal Operation of a Vessel-- NPDES Vessel General Permit (VGP) (78 FR 21938... SECURITY Coast Guard Towing Safety Advisory Committee AGENCY: Coast Guard, DHS. ACTION:...

  6. 76 FR 49975 - Inspection of Towing Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... notice regarding our public dockets in the January 17, 2008 issue of the Federal Register (73 FR 3316). D... Administration FR Federal Register FRA Federal Railroad Administration GAO Government Accountability Office gpm... public meetings titled ``Inspection of Towing Vessels'' in the Federal Register (69 FR 78471). The...

  7. Simplified method of deep-tow seismic profiling

    USGS Publications Warehouse

    Robb, James M.; Sylwester, Richard E.; Penton, Ronald

    1981-01-01

    To improve resolution of seismic-reflection profiles in continental slope water depths of 900 to 1500 m, a single hydrophone was towed about 150 m off the bottom to receive reflected signals from a surface-towed sparker sound source. That deep-towed hydrophone data show that valleys which appear V-shaped in records from a surface-towed hydrophone are flat-bottomed, and that subbottom reflections from an erosional unconformity can be much better resolved. The data produced by this technique are very hepful when used in conjunction with records from conventional surface-towed seismic-profiling equipment.

  8. A phaseonium magnetometer: A new optical magnetometer based on index enhanced media

    NASA Technical Reports Server (NTRS)

    Scully, Marlan O.; Fleischauer, Michael; Graf, Martin

    1993-01-01

    An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.

  9. The Magnetometer Instrument on MESSENGER

    NASA Astrophysics Data System (ADS)

    Anderson, Brian J.; Acuña, Mario H.; Lohr, David A.; Scheifele, John; Raval, Asseem; Korth, Haje; Slavin, James A.

    2007-08-01

    The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R {M/3} (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s-1 to 20 s-1. Continuous measurement of fluctuations is provided with a digital 1-10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and

  10. Automatic magnetometer calibration with small space coverage

    NASA Astrophysics Data System (ADS)

    Wahdan, Ahmed

    The use of a standalone Global Navigation Satellite System (GNSS) has proved to be insufficient when navigating indoors or in urban canyons due to multipath or obstruction. Recent technological advances in low cost micro-electro-mechanical system (MEMS) -- based sensors (like accelerometers, gyroscopes and magnetometers) enabled the development of sensor-based navigation systems. Although MEMS sensors are low-cost, lightweight, small size, and have low-power consumption, they have complex error characteristics. Accurate computation of the heading angle (azimuth) is one of the most important aspects of any navigation system. It can be computed either by gyroscopes or magnetometers. Gyroscopes are inertial sensors that can provide the angular rate from which the heading can be calculated, however, their outputs drift with time. Moreover, the accumulated errors due to mathematical integration, performed to obtain the heading angle, lead to large heading errors. On the other hand, magnetometers do not suffer from drift and the calculation of heading does not suffer from error accumulation. They can provide an absolute heading from the magnetic north by sensing the earth's magnetic field. However, magnetometer readings are usually affected by magnetic fields, other than the earth magnetic field, and by other error sources; therefore magnetometer calibration is required to use magnetometer as a reliable source of heading in navigation applications. In this thesis, a framework for fast magnetometer calibration is proposed. This framework requires little space coverage with no user involvement in the calibration process, and does not need specific movements to be performed. The proposed techniques are capable of performing both 2-dimensional (2D) and 3-dimensional (3D) calibration for magnetometers. They are developed to consider different scenarios suitable for different applications, and can benefit from natural device movements. Some applications involve tethering the

  11. The AUTUMNX magnetometer meridian chain in Québec, Canada

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Schofield, Ian; Reiter, Kyle; Chi, Peter J.; Rowe, Kathryn M.; Russell, Christopher T.

    2016-01-01

    The AUTUMNX magnetometer array consists of 10 THEMIS-class ground-based magnetometers deployed to form a meridian chain on the eastern coast of Hudson Bay in eastern Canada, a second partial chain one hour of magnetic local time further east, and one magnetometer at an intermediate midlatitude site. These instruments, augmented by those of other arrays, permit good latitudinal coverage through the auroral zone on two meridians, some midlatitude coverage, and detection of magnetic field changes near the sensitive infrastructure of the Hydro-Québec power grid. Further, they offer the possibility for conjugate studies with Antarctica and the GOES East geosynchronous satellite, and complement the Chinese International Space Weather Meridian Circle Program. We examine current world distribution of magnetometers to show the need for AUTUMNX, and describe the instrumentation which allows near-real-time monitoring. We present magnetic inversion results for the disturbed day February 17, 2015, which showed classic signatures of the substorm current wedge, and developed into steady magnetospheric convection (SMC). For a separate event later that day, we examine a large and rapid magnetic field change event associated with an unusual near-Earth transient. We show GOES East conjugacy for these events.

  12. Magnetic induction imaging with optical atomic magnetometers: towards applications to screening and surveillance

    NASA Astrophysics Data System (ADS)

    Marmugi, Luca; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio

    2015-10-01

    We propose a new approach, based on optical atomic magnetometers and magnetic induction tomography (MIT), for remote and non-invasive detection of conductive targets. Atomic magnetometers overcome the main limitations of conventional MIT instrumentation, in particular their poor low-frequency sensitivity, their large size and their limited scalability. Moreover, atomic magnetometers have been proven to reach extremely high sensitivities, with an improvement of up to 7 orders of magnitude in the 50 MHz to DC band, with respect to a standard pick-up coil of the same size. In the present scheme, an oscillating magnetic field induces eddy currents in a conductive target and laser-pumped atomic magnetometers, either stand-alone or in an array, detect the response of the objects. A phase-sensitive detection scheme rejects the background, allowing remote detection of the secondary field and, thus, mapping of objects, hidden in cargos, underwater or underground. The potential for extreme sensitivity, miniaturization, dynamic range and array operation paves the way to a new generation of non-invasive, active detectors for surveillance, as well as for real-time cargo screening.

  13. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  14. MAGDAS I and II Magnetometers in Peru

    NASA Astrophysics Data System (ADS)

    Choque, Ed.; Ishitsuka, J.; Yumoto, K.; Veliz, O.; Rosales, D.

    2014-01-01

    The Department of Terrestrial Magnetism of the Car negie Institution of Washington founded in 1919 the Huancayo Observatory, in Peru (Lat. -12.060, Long - 75.210) and installed a classical magnetometer which has provided a long standing flow of data since March 1st, 1922. Today, there are 10 magnetometers in operation in Peru. On October 13th, 2006, Space Environment Research Center - SERC of Kyushu University installed a new Magnetic Dat a Acquisition System MAGDAS I (PI; Prof. K. Yumoto) at Ancon Observatory (Geographic Latitude: -11.790, Longitude: - 77.160 and Geomagnetic Latitude (2000): 3.100 and Longitude (2000): 354.660). On July 13th, 2011, SERC installed a MAGDAS II at Ica Solar Station (Geographic Latitude: - 140 04' Longitude: -750 44'). Details of the magnetometer that we are hosting will be explained in this presentation.

  15. MULTI-SENSOR TOWED ARRAY DETECTION SYSTEM (MTADS)

    EPA Science Inventory

    UXO is a serious and prevalent environmental problem currently facing DoD facility managers. Mitigation and remediation activities are often hindered by the fact that UXO is colocated with other environmental threats including ordnance explosives wastes (OEW), chemical wastes, an...

  16. Low-cost dipole hydrophone for use in towed arrays

    SciTech Connect

    Abraham, B.M.

    1996-04-01

    The design, fabrication, and testing of a low-cost acoustic particle velocity sensor are described. The primary design parameters for the dipole hydrophone are low-cost, low-mass, and small size. The sensor uses commercially available geophones to locally measure one or more components of the acoustic particle velocity field. The geophones are encapsulated in a syntactic foam to reduce their average density and hence increase their acoustic sensitivity. This method of fabrication greatly reduces costs compared to conventional methods which use machined cases. The on-axis voltage sensitivity was measured experimentally using two methods. The first used a uniaxial vibration shaker to estimate the intrinsic velocity sensitivity of the encapsulated geophone with the case fixed to the shaker head. The second measured the {ital in} {ital situ} acoustic sensitivity in water. Theoretical models of the voltage sensitivity for these two cases are developed and the results compare very well with the experimental data. Additionally, rotator tests were performed at frequencies of 100, 500, 600, and 1000 Hz to measure the quality of the dipole directivity pattern in water. Near-theoretical dipole patterns, with nulls better than 30 dB, were measured. {copyright} {ital 1996 American Institute of Physics.}

  17. Vector magnetometer as an attitude determining instrument

    NASA Technical Reports Server (NTRS)

    Pietila, R.; Dunn, W. R., Jr.

    1974-01-01

    The solid state vector magnetometer sensor system is presented for the accuracy and reliability of existing systems, and for providing independent measures of attitude. Since a large number of aircraft heading reference systems depend on measurement of the earth's magnetic field, it can be shown that by substituting a 3-axis magnetometer for the remote sensing unit, both heading and attitude measurement functions can be derived using common elements. Sample calculations are made using the earth's magnetic field data acquired during actual flight conditions.

  18. Design and simulation of MEMS capacitive magnetometer

    NASA Astrophysics Data System (ADS)

    Jyoti, Aditi, Tripathi, C. C.; Gopal, Ram

    2016-04-01

    This paper presents the design and simulation of a MEMS Capacitive Magnetometer using FEM (Finite Element Method) tool COMSOL Multiphysics 4.3b and results from this simulation are closely matched with analytically calculated results. A comb drive structure is used for actuation purpose which operates at resonant frequency of device is 11.791 kHz to achieve maximum displacement. A magnetic field in z-axis can be detected by this comb drive structure. Quality factor of MEMS capacitive magnetometer obtained is 18 and it has good linear response in the magnetic field range of 100 µT.

  19. Cassini magnetometer measurements in the Jovian environment

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.

    2001-05-01

    M. K. Dougherty, and the Cassini magnetometer team The recent Cassini flyby of Jupiter had the spacecraft flying along the dusk flank of the magnetosphere, a region which has only been visited very briefly before during the Ulysses outbound pass. The unique Cassini flyby resulted in the spacecraft making numerous entries into the magnetosheath region as well as into the magnetosphere itself. Initial results from the magnetometer instrument will be described including information concerning the solar wind IMF, the large amount of mirror mode activity measured within the magnetosheath and incursions into the magnetosphere proper.

  20. Magnetometer deployment mechanism for Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Townsend, W. L.

    1977-01-01

    A three segment, 15-foot boom mechanism was developed to deploy magnetometers from the Pioneer Venus orbiter spinning shelf. The stowage mechanism is designed to contain the magnetometers during launch and to deploy these instruments by centrifugal force upon pyrotechnic release. Unique graphite-epoxy boom segments are used for a lightweight design with sufficient strength to withstand a 7.5 g orbit insertion force while extended. The detailed design is described along with the test methods developed for qualification in a one-g field.

  1. Magnetometer deployment mechanism for Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Townsend, W. L.

    1977-01-01

    A three segment, 15-foot boom mechanism was developed to deploy magnetometers from the Pioneer Venus orbiter spinning shelf. The stowage mechanism is designed to contain the magnetometers during launch and to deploy these instruments by centrifugal force upon pyrotechnic release. Unique graphite-epoxy boom segments are used for a lightweight design with sufficient strength to withstand a 7.5 g orbit insertion force while extended. The detailed design is described, along with the test methods developed for qualification in a one-g field.

  2. Digital flux-gate magnetometer structural analysis

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Berkman, Rikhard

    1999-08-01

    Analogue and digital structures of the flux-gate magnetometer are compared. The main disturbing factors in digital circuit were singled out and the additional errors associated with the digital structure are estimated. The reader's attention is drawn to some specific problems associated with digital circuits - the special influence of the unbalanced voltage amplitude at the flux-gate-sensor output and ADC-DAC switching-time instabilities. The given analytical results could be useful for the designer when it is necessary to make a choice of the structural type of magnetometer.

  3. Parametric modulation of an atomic magnetometer

    PubMed Central

    Li, Zhimin; Wakai, Ronald T.; Walker, Thad G.

    2012-01-01

    The authors report on a rubidium atomic magnetometer designed for use in a shielded environment. Operating in the spin-exchange relaxation-free regime, the magnetometer utilizes parametric modulation of the z-magnetic field to suppress noise associated with airflow through the oven and to simultaneously detect x- and y-field components, using a single probe beam, with minimal loss of sensitivity and bandwidth. A white noise level of 60 fT/(Hz)1/2 was achieved. PMID:22942436

  4. Aircraft attitude measurement using a vector magnetometer

    NASA Technical Reports Server (NTRS)

    Peitila, R.; Dunn, W. R., Jr.

    1977-01-01

    The feasibility of a vector magnetometer system was investigated by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.

  5. Parametric modulation of an atomic magnetometer.

    PubMed

    Li, Zhimin; Wakai, Ronald T; Walker, Thad G

    2006-01-01

    The authors report on a rubidium atomic magnetometer designed for use in a shielded environment. Operating in the spin-exchange relaxation-free regime, the magnetometer utilizes parametric modulation of the z-magnetic field to suppress noise associated with airflow through the oven and to simultaneously detect x- and y-field components, using a single probe beam, with minimal loss of sensitivity and bandwidth. A white noise level of 60 fT/(Hz)(1/2) was achieved. PMID:22942436

  6. Deep-tow geophysical survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Sauter, D.; Carlut, J.; Searle, R.; Cannat, M.

    2012-04-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the easternmost part of the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining multibeam bathymetric data, magnetic data, geology mapping from sidescan sonar (TOBI) images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the sidescan sonar images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. We investigate the possibility that magnetic anomalies are either caused by serpentinized peridotites and/or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may result from fluid-rock interactions along the detachment faults as well as from the occurrence of small sized and thin volcanic patches and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in

  7. Microsatellite Digital Magnetometer SMILE - Present State and Future Trends

    NASA Astrophysics Data System (ADS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2010-05-01

    The fluxgate magnetometers (FGM) are probably the most widespread instruments used onboard spacecrafts for both scientific and service purposes. The recent trend to decrease the weight and size of the spacecrafts requires creating as small as possible but enough sensitive FGM. A joint Swedish-Ukrainian team made the development of such a magnetometer and as the result the Small Magnetometer In Low mass Experiment (SMILE) - a digital fluxgate microsatellite magnetometer - was created [1]. Majority of electronic units of this FGM were combined in a digital integrated circuit - a Field Programmable Gate Array (FPGA). The FPGA provides full processing (determined by a digital correlation algorithm) of amplified and digitized fluxgate sensor output signals and provides both FGM output data and feedback signals. Such digital design makes the instrument very flexible, reduces power consumption and opens possibilities for customization of the operation modes. It allows miniaturizing the electronic unit and, together with the smallest in the world low noise three-component fluxgate sensor with the side dimension of 20 mm and weight about 20 grams only, the small but enough sensitive space qualified FGM is created. SMILE magnetometer was successfully flown onboard the NASA Cascades-2 sounding rocket, and is to fly in the LAPLander package onboard the ESA REXUS-8 student sounding rocket [2]. Unfortunately, such a design of electronic circuit does not allow us to realize all possibilities of the miniature sensor. The separate tests of the sensor with highest-class analog electronics showed that its noise level may be reduced to as low value as 10…15 picoTesla at 1 Hz. Also the use of volume compensation in the sensor provides high geometrical stability of the axes and improved performance compared to component compensated sensors. The measured parameters appear to be comparable or even better than these of best stationary FGM and, if realized in small enough volume and

  8. Paresev 1 in Flight on Tow

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Pilot with Paresev 1 (Paraglider Research Vehicle) on tow in 1962. A normal flight was a takeoff on the dry lakebed at Edwards Air Force Base and a circling flight path skirting the lake edges to insure a landing on the lakebed in the event of a towline failure. Release altitude was normally 10,000 to 13,000 feet. Data was obtained on the glide part of the flight.

  9. M2-F1 in Tow

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 lifting body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric re-entry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle.

  10. M2-F1 In Tow Flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 lifting body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 feet where free flights back to Rogers Dry Lake began.

  11. The DE magnetometer preprocessor users guide

    NASA Technical Reports Server (NTRS)

    Salter, L. M.; Byrnes, J. B.

    1982-01-01

    A users guide for the Dynamics Explorer magnetometer preprocessor computer program is provided. This program is written in Xerox Extended FORTRAN IV and is used to process telemetry data in order to provide data files for use in analysis programs. This preprocessor is designed to operate on the Sigma 9 and the IBM 4341.

  12. Magnetometer networks during the International Magnetosphere Study

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Regan, R. D.; Sugiura, M.; Williams, D. J.

    1976-01-01

    The paper describes the geographical layout of the planned North American IMS magnetometer network and outlines some plans regarding instrumentation and data transmission services. The network consists of three meridional high-latitude chains, an east-west chain along the auroral zone, and a network of stations at mid-latitudes. In addition, the Air Force Cambridge Research Laboratories will have their own network with an east-west chain along geomagnetic latitude 54 N and some other mid-latitude stations. The preliminary magnetometer specifications require that the three-component flux gate magnetometer be accurate to within 0.25 gamma and that each axis be sampled every 10 sec. A block diagram is presented showing the proposed magnetometer station, of which the most complex piece of equipment will be the interface controller. The SMS-GOES satellite telemetry relay capability will be used for transmission of data from a selected network of magnetic stations to the Space Environment Laboratory in Boulder.

  13. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  14. 33 CFR 83.24 - Towing and pushing (Rule 24).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Towing and pushing (Rule 24). 83.24 Section 83.24 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Lights and Shapes § 83.24 Towing and pushing (Rule 24). (a) A power-driven vessel when towing astern. A power-driven...

  15. Investigations and Tests in the Towing Basin at Guidonia

    NASA Technical Reports Server (NTRS)

    Cremona, C

    1939-01-01

    The experimental methods at the Guidonia towing basin are discussed including specifications. Some of the components examined are the bridge towing carriage, side towing carriage, catapult installation, and dynamometer systems. Tests were performed on hulls and floats, as well as motor boats and torpedo shaped bodies. Theoretical investigations were also performed to determine pressure distributions on geometrically simple bodies, propagation of small wave motions, and planing and submerged surfaces.

  16. 33 CFR 83.24 - Towing and pushing (Rule 24).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Towing and pushing (Rule 24). 83.24 Section 83.24 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Lights and Shapes § 83.24 Towing and pushing (Rule 24). (a) A power-driven vessel when towing astern. A power-driven...

  17. Magnetic Gradiometer and Vector Magnetometer Survey of the Galapagos Triple Junction

    NASA Astrophysics Data System (ADS)

    Gee, J.; Cande, S. C.; Parker, R. L.; Lonsdale, P. F.; Bowles, J.

    2004-05-01

    Several fundamental tectonic problems of the equatorial Pacific remain unsolved due to the lack of magnetic anomaly data. A basic limitation encountered with the use of the standard proton precession magnetometer (or any total field instrument) is that total field anomalies over approximately N/S striking bodies are very small at low magnetic latitudes. Another problem encountered with magnetic surveys near the magnetic equator are the diurnal variations associated with the external field. Measurements of the vector anomalous field and total field gradient offer ways to overcome these limitations. Total field gradiometer data allow recognition and removal of time dependent external field variations. Vector magnetic anomalies provide two distinct advantages over total field measurements. Although the total field anomalies are small (typically 50 nT) over most of the equatorial Pacific, the vertical and horizontal components of the anomalous field are 2-5 times larger. In addition, vector anomaly data can be used to evaluate the two dimensionality of the magnetic source since the along track and vertical anomalies are related by a 90o phase shift for a perfectly two dimensional source. To evaluate the advantages of these systems, we conducted a survey of the trails of the Galapagos triple junction using both a high resolution total field gradiometer and a vector magnetometer. The longitudinal gradiometer system consists of two Overhauser sensors (0.01 nT sensitivity) towed 350 and 450m behind the survey vessel. The towed vector magnetometer utilizes a commercial motion reference sensor (0.02o orientation accuracy with three fluxgate sensors) suitable for measuring horizontal and vertical anomalies as small as 30-50 nT. Vector anomalies across Cocos-Nazca crust corroborate the high degree of linearity of these E/W lineations; horizontal and vertical anomalies exhibit high coherence (>0.9) and the expected 90o phase relationship at wavelengths longer than ~8km. Vector

  18. Method of performing MRI with an atomic magnetometer

    DOEpatents

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2012-11-06

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  19. Method of performing MRI with an atomic magnetometer

    SciTech Connect

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  20. Effects of interparticle dipole interaction on permalloy thin film arrays

    NASA Astrophysics Data System (ADS)

    Lai, Jun-Yang; Lai, Mei-Feng; Chang, Ching-Ray; Wei, Zung-Hang; Wu, J. C.; Lo, I. C.; Kuo, J. H.; Chang, Y. C.; Hsu, Jen-Hwa; Huang, Jia-Rui

    2005-05-01

    The magnetic structures and hysteresis loops of permalloy thin film arrays are investigated here using magnetic force microscopy and vibrating sample magnetometer. The strength of interparticle dipole interaction can be revealed by the number of single-domain pairs with antiparallel magnetizations when the array is relaxed from a strong hard-axis field. Besides, hysteresis loops obtained by vibrating sample magnetometer measurements show that arrays with narrower interparticle spacings have lower coercivities and remanences. The results obtained from vibrating sample magnetometer are in very good agreement with magnetic force microscopy imaging.

  1. Towed Twin-Fuselage Glider Launch System (CGI Animation Version 2)

    NASA Video Gallery

    The towed glider is an element of the novel rocket-launching concept of the Towed Glider Air-Launch System (TGALS). The TGALS demonstration’s goal is to provide proof-of-concept of a towed, airborn...

  2. A plateau in the sensitivity of a compact optically pumped atomic magnetometer

    SciTech Connect

    Mizutani, Natsuhiko Okano, Kazuhisa; Ban, Kazuhiro; Ichihara, Sunao; Terao, Akira; Kobayashi, Tetsuo

    2014-05-15

    In a compact optically pumped atomic magnetometer (OPAM), there is a plateau in the sensitivity where the dependence of the sensitivity on pumping power is small compared with that predicted by the uniform polarization model. The mechanism that generates this plateau was explained by numerical analysis. The distribution of spin polarization in the alkali metal cell of an OPAM was modeled using the Bloch equation incorporating a diffusion term and an equation for the attenuation of the pump beam. The model was well-fitted to the experimental results for a module with a cubic cell with 20 mm sides and pump and probe beams with 8 mm diameter. On the plateau, strong magnetic response was generated at the regions that were not illuminated directly by the intense pump beam, while at the same time spin polarization as large as 0.5 was maintained due to diffusion of the spin-polarized atoms. Thus, the sensitivity of the magnetometer monitored with a probe beam decreases only slightly with increasing pump beam intensity because the spin polarization under an intense pump beam is saturated. This plateau, which is characteristic of this type of magnetometer using a narrow pump and probe beams, can be used in arrays of magnetometers because it enables stable operation with little sensitivity fluctuation from changes in pump beam power.

  3. Super-light Magnetometers For Nanosatellites

    NASA Astrophysics Data System (ADS)

    Berkman, R.; Korepanov, V.; Marussenkov, A.; Sukhynyuk, A.

    The modern tendency to decrease the weight and dimensions of the space vehicles, especially for scientific research, imply corresponding requirements to the scientific payload too. A correlation between metrological parameters (particularly sensitivity and own noise level) and mass, dimensions and power consumption of search-coil (SC) and flux gate (FG) magnetometers was studied. In this abstract both these prob- lems are considered. In order to decrease the SC weight it appeared to be necessary to derive the common equations, which describe minimum mass criterion for search- coil sensors in different frequency bands. The corresponding algorithm, based upon "generalized" SC parameters was introduced and a set of stable combinations, rela- tively independent on dimensions, number of turns and intended frequency band was developed. It was also revealed that the preamplifier connected to SC has to be charac- terized by extended set of 8 known noise parameters. As a result, the new approach of calculation and design of minimum-weight of SC magnetometers was proposed. All that allowed to manufacture first model of space qualified SC magnetometers with the following parameters: weight - 75 g, noise level density - 2 fT/sqrt(Hz) at 50 kHz. The most important problem for super-light FG magnetometers creation with low power consumption is to reduce the FG sensor (FGS) excitation power. Based on earlier de- veloped ferroresonance excitation mode a new study in this direction was made. The relations allowing to estimate the minimally possible FGS excitation power were de- rived, which allow for the given FGS dimensions and given mumetal saturation level to determine the required power. It was obtained that if we diminish the FGS volume in n^3 times, the possible power drop is only n times. Using new methodology a set of super-light FG magnetometers was manufactured with the sensor about 12 x 5 x 5 mm, consumed power about 2 mW and noise level density about 100 pT/sqrt(Hz) at

  4. Aerodynamics modeling of towed-cable dynamics

    SciTech Connect

    Kang, S.W.; Latorre, V.R.

    1991-01-17

    The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.

  5. Development of Geomagnetic Monitoring System Using a Magnetometer for the Field

    NASA Astrophysics Data System (ADS)

    Lee, Young-Cheol; Kim, Sung-Wook; Choi, Eun-Kyeong; Kim, In-Soo

    2014-05-01

    Three institutes including KMA (Korea Meteorological Administration), KSWC (Korean Space Weather Center) of NRRA (National Radio Research Agency) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are now operating magnetic observatories. Those observatories observe the total intensity and three components of geomagnetic element. This paper comes up with a magnetic monitoring system now under development that uses a magnetometer for field survey. In monitoring magnetic variations in areas (active faults or volcanic regions), more reliable results can be obtained when an array of several magnetometers are used rather than a single magnetometer. In order to establish and operate a magnetometer array, such factors as expenses, convenience of the establishment and operation of the array should be taken into account. This study has come up with a magnetic monitoring system complete with a magnetometer for the field survey of our own designing. A magnetic monitoring system, which is composed of two parts. The one is a field part and the other a data part. The field part is composed of a magnetometer, an external memory module, a power supply and a set of data transmission equipment. The data part is a data server which can store the data transmitted from the field part, analyze the data and provide service to the web. This study has developed an external memory module for ENVI-MAG (Scintrex Ltd.) using an embedded Cortex-M3 board, which can be programmed, attach other functional devices (SD memory cards, GPS antennas for time synchronization, ethernet cards and so forth). The board thus developed can store magnetic measurements up to 8 Gbytes, synchronize with the GPS time and transmit the magnetic measurements to the data server which is now under development. A monitoring system of our own developing was installed in Jeju island, taking measurements throughout Korea. Other parts including a data transfer module, a server and a power supply using solar

  6. 33 CFR 83.24 - Towing and pushing (Rule 24).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... line above the sternlight; and (5) When the length of the tow exceeds 200 meters, a diamond shape where... exceeds 200 meters, a diamond shape where it can best be seen. (f) Vessels being towed alongside or pushed... alongside each other shall be lighted as one vessel or object; (4) A diamond shape at or near the...

  7. 33 CFR 83.24 - Towing and pushing (Rule 24).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... line above the sternlight; and (5) When the length of the tow exceeds 200 meters, a diamond shape where... exceeds 200 meters, a diamond shape where it can best be seen. (f) Vessels being towed alongside or pushed... alongside each other shall be lighted as one vessel or object; (4) A diamond shape at or near the...

  8. 33 CFR 83.24 - Towing and pushing (Rule 24).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... line above the sternlight; and (5) When the length of the tow exceeds 200 meters, a diamond shape where... exceeds 200 meters, a diamond shape where it can best be seen. (f) Vessels being towed alongside or pushed... alongside each other shall be lighted as one vessel or object; (4) A diamond shape at or near the...

  9. 75 FR 7615 - Towing Safety Advisory Committee; Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ...The Towing Safety Advisory Committee and its working group on the Revision of Navigation and Vessel Inspection Circular 04-01 will meet in New Orleans, LA. The Committee will also discuss various issues relating to shallow-draft inland and coastal waterway navigation and towing safety. All meetings will be open to the...

  10. 78 FR 20684 - Towing Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... SECURITY Coast Guard Towing Safety Advisory Committee; Vacancies AGENCY: United States Coast Guard. ACTION... Safety Advisory Committee (TSAC). TSAC advises the Coast Guard on matters relating to shallow- draft inland and coastal waterway navigation and towing safety. DATES: Applications for TSAC membership...

  11. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way: Towing vessels. (a) The owner, master,...

  12. 15. VIEW NORTHNORTHEAST OF TOW TANK No. 2, DEWATERED. ENCLOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW NORTH-NORTHEAST OF TOW TANK No. 2, DEWATERED. ENCLOSED AREAS AT BACK OF TUNNEL IS A HOUSING FOR CONDUCTING PERFORMANCE TESTING ON AIRCRAFT MODELS IN A VORTEX. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  13. 77 FR 12863 - Towing Safety Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Register (73 FR 3316). For access to the docket to read background documents or comments received in... Towing Vessels notice of proposed rulemaking (76 FR 49976, August 11, 2011), the committee is... SECURITY Towing Safety Advisory Committee; Meeting AGENCY: Coast Guard, DHS. ACTION: Notice of...

  14. 77 FR 31631 - Towing Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... city with large towing centers of commerce and populated by high concentrations of towing industry and... discriminate in employment on the basis of race, color, religion, sex, national origin, political affiliation, sexual orientation, gender identity, marital status, disability and genetic information, age,...

  15. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  16. Science Highlights from the Cassini magnetometer instrument

    NASA Astrophysics Data System (ADS)

    Dougherty, Michele

    2014-05-01

    The Cassini dual technique magnetometer instrument has been taking data in the Saturn system for the last 10 years. Science highlights encompass topics including the magnetosphere and its aurora, the internal dynamo magnetic field of Saturn, the icy satellites and Enceladus in particular, as well as the large moon Titan. The science discoveries will be described as well as important science observations yet to be made in the remaining 4 years of the mission.

  17. High temperature superconductive flux gate magnetometer

    SciTech Connect

    Gershenson, M. )

    1991-03-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal.

  18. Superconducting Nanobridge SQUID Magnetometers for Spin Sensing

    NASA Astrophysics Data System (ADS)

    Antler, Natania

    As the cutting edge of science and technology pushes towards smaller length scales, sensing technologies with nanoscale precision become increasingly important. In this thesis I will discuss the optimization and application of a 3D nanobridge SQUID magnetometer for studying solid state spin systems, in particular for sensing impurity spins in diamond. Solid state spins have proposed applications in memory and computation for both classical and quantum computing. Isolated spins typically have longer coherence times, making them attractive qubit candidates, but necessitating the development of very sensitive detectors for readout. This 3D nanobridge SQUID combines the exquisite spatial sensitivity of a traditional nanoSQUID with a large non-linearity on par with a tunnel junction SQUID. This allows us to build a highly sensitive magnetometer which can act as both an efficient flux transducer as well as a nearly quantum limited lumped Josephson Parametric Amplifier. We show that the device has a minimum flux noise of 17 +/- 0.9 nphi0/Hz1/2 with only a factor of ˜2.5 increase in flux noise up to 61 mT. A second generation device with a smaller capacitor achieves field tolerance up to 75 mT. The maximal bandwidth values range from 25-40 MHz in the parametric amplification regime to 70 MHz in the linear regime. This combination of large bandwidth, low flux noise, large flux coupling and field tolerance make this sensor a promising candidate for near-single-spin dynamics measurements. In the last part of this thesis we begin to demonstrate the utility of a nanobridge SQUID magnetometer for characterizing spin systems in the solid state. We use the magnetometer to measure the decay characteristics of P1 centers in diamond. We find that the spin-lattice relaxation time varies with temperature, with an order of magnitude decrease in the decay time between 25 mK and 370 mK.

  19. Fluxgate magnetometers for outer planets exploration

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1974-01-01

    The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.

  20. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.

    2013-01-01

    Toughening and other property enhancements of composite materials are typically implemented by-modifying the bulk properties of the constituents, either the fiber or matrix materials. This often leads to difficulties in processing and higher material costs. Many composites consist of tows or yarns (thousands of individual fibers) that are either filament wound or processed into a fabric by weaving or braiding. The matrix material can be added to the tow or fabric before final processing, resulting in a prepreg material, or infused into the fiber material during final processing by a variety of methods. By using a direct electrospun deposition method to apply thermoplastic nanofiber to the surface of the tows, the tow-tow interface in the resulting composite can be modified while using otherwise conventional materials and handling processes. Other materials of interest could also be incorporated into the electrospun precursor.

  1. Integration of micro-fabricated atomic magnetometers on military systems

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Mhaskar, Rahul; Prouty, Mark; Miller, Jonathan

    2016-05-01

    A new generation of ultra-high sensitivity magnetic sensors based on innovative micro-electromechanical systems (MEMS) are being developed and incorporated into military systems. Specifically, we are currently working to fully integrate the latest generation of MicroFabricated Atomic Magnetometers (MFAMs) developed by Geometrics on defense mobility systems such as unmanned systems, military vehicles and handheld units. Recent reductions in size, weight, and power of these sensors has enabled new deployment opportunities for improved sensitivity to targets of interest, but has also introduced new challenges associated with noise mitigation, mission configuration planning, and data processing. Our work is focused on overcoming the practical aspects of integrating these sensors with various military platforms. Implications associated with utilizing these combined sensor systems in working environments are addressed in order to optimize signal-to-noise ratios, detection probabilities, and false alarm mitigation. Specifically, we present collaborative work that bridges the gap between commercial specialists and operation platform integration organizations including magnetic signature characterization and mitigation as well as the development of simulation tools that consider a wide array of sensor, environmental, platform, and mission-level parameters. We discuss unique deployment concepts for explosive hazard target geolocation, and data processing. Applications include configurations for undersea and underground threat detection - particularly those associated with stationary or mobile explosives and compact metallic targets such as munitions, subsea threats, and other hazardous objects. We show the potential of current and future features of miniaturized magnetic sensors including very high magnetic field sensitivities, bandwidth selectivity, and array processing.

  2. Broadband performance of a moving time reversing array

    NASA Astrophysics Data System (ADS)

    Sabra, Karim G.; Dowling, David R.

    2003-09-01

    Acoustic time reversal exploits reciprocity between sources and receivers to generate backward propagating waves that automatically focus at their point of origin. In underwater acoustics, an array of transducers that can both transmit and receive, referred to as a time reversing array (TRA) or time reversal mirror (TRM), generates the back-propagating waves. Such arrays have been shown to spatially and temporally focus sound in unknown complicated multipath environments, and are therefore of interest for active sonar and underwater communication applications. Although stationary vertical linear TRAs have been favored in prior studies, practical applications of acoustic time reversal in underwater environments are likely to involve towed, tilted, horizontal, or bottom-mounted arrays. In particular, array motion introduces Doppler effects and eliminates source-receiver reciprocity, two factors that potentially impact the automatic focusing capability of TRAs. This paper presents the results from a theoretical and computational investigation into how array motion and orientation influence TRA retrofocusing in the shallow ocean. Here, the TRA tow speed is assumed constant, and the array is assumed to be straight and linear (vertical, horizontal, or tilted). And, for simplicity, the TRA is assumed to respond to a stationary point source emitting a broadband pulse. When a TRA moves, the retrofocus is predicted to shift in the direction of array motion due to the translation of the array between its reception and broadcast times. In addition, the performance of a towed horizontal TRA is predicted to degrade more rapidly with towing speed than that of an equivalent (but clearly idealized) towed vertical array because of range-dependent Doppler phase differences that do not influence the vertical array. However, short tilted arrays may approach vertical array performance and appear to be a potentially versatile compromise for implementing TRA concepts in active sonar or

  3. Broadband performance of a moving time reversing array.

    PubMed

    Sabra, Karim G; Dowling, David R

    2003-09-01

    Acoustic time reversal exploits reciprocity between sources and receivers to generate backward propagating waves that automatically focus at their point of origin. In underwater acoustics, an array of transducers that can both transmit and receive, referred to as a time reversing array (TRA) or time reversal mirror (TRM), generates the back-propagating waves. Such arrays have been shown to spatially and temporally focus sound in unknown complicated multipath environments, and are therefore of interest for active sonar and underwater communication applications. Although stationary vertical linear TRAs have been favored in prior studies, practical applications of acoustic time reversal in underwater environments are likely to involve towed, tilted, horizontal, or bottom-mounted arrays. In particular, array motion introduces Doppler effects and eliminates source-receiver reciprocity, two factors that potentially impact the automatic focusing capability of TRAs. This paper presents the results from a theoretical and computational investigation into how array motion and orientation influence TRA retrofocusing in the shallow ocean. Here, the TRA tow speed is assumed constant, and the array is assumed to be straight and linear (vertical, horizontal, or tilted). And, for simplicity, the TRA is assumed to respond to a stationary point source emitting a broadband pulse. When a TRA moves, the retrofocus is predicted to shift in the direction of array motion due to the translation of the array between its reception and broadcast times. In addition, the performance of a towed horizontal TRA is predicted to degrade more rapidly with towing speed than that of an equivalent (but clearly idealized) towed vertical array because of range-dependent Doppler phase differences that do not influence the vertical array. However, short tilted arrays may approach vertical array performance and appear to be a potentially versatile compromise for implementing TRA concepts in active sonar or

  4. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  5. 33 CFR 163.05 - Tows of seagoing barges within inland waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tows of seagoing barges within... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY TOWING OF BARGES § 163.05 Tows of seagoing barges within inland waters. (a) The tows of seagoing barges when navigating the inland waters of the United...

  6. 46 CFR 27.201 - What are the requirements for general alarms on towing vessels?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false What are the requirements for general alarms on towing vessels? 27.201 Section 27.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS TOWING VESSELS Fire-Protection Measures for Towing Vessels § 27.201 What are the requirements for general alarms on towing vessels? (a) You...

  7. Optimization of buffer gas pressure for Rb atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Chen, Chang; Liu, Xiaohu; Qu, Tianliang; Yang, Kaiyong

    2015-08-01

    The optimization of buffer gas pressure is very important to improve the performance of the rubidium (Rb) atomic magnetometer. In this paper we briefly introduce the basic principle and the experimental method of the rubidium magnetometer based on Faraday rotation effect, and describe the factors affecting the magnetometer sensitivity, then analyze and summarize the mechanism of the influence of spin-exchange, spin-destruction collisions, radiation trapping and the spin diffusion on spin relaxation of Rb atoms. Based on this, the relationship between the rubidium magnetometer sensitivity, the spin relaxation rate and the gas chamber conditions (buffer gas pressure, the bubble radius, measuring temperature) is established. Doing calculations by the simulation software, how the magnetometer sensitivity and the relaxation rate vary with the gas chamber conditions can be seen; finally, the optimal values of the buffer gas pressure under certain gas chamber conditions are obtained. The work is significant for the engineering development of rubidium magnetometer.

  8. The atomic magnetometer: A new era in biomagnetism

    NASA Astrophysics Data System (ADS)

    Wakai, Ronald T.

    2014-11-01

    The high cost and impracticality of SQUID (Superconducting QUantum Interference Device) magnetometers has limited the expansion of magnetoencephalography (MEG) and magnetocardiography (MCG), especially in countries where the cost of liquid helium is high. A recent breakthrough, however, has the potential to radically change this situation. In 2003, a group at Princeton University demonstrated an atomic magnetometer, known as the SERF (spin-exchange free relaxation) magnetometer, with unprecedented sensitivity. Since then, several research groups have utilized SERF magnetometers to record MEG, MCG, and fetal MCG signals. Despite some modest drawbacks, it now seems almost certain that SERF magnetometers can replace SQUIDs for many applications. With a price tag that is likely to be far less than that of SQUIDs, SERF magnetometers can propel the next wave of growth in biomagnetism.

  9. The atomic magnetometer: A new era in biomagnetism

    SciTech Connect

    Wakai, Ronald T.

    2014-11-07

    The high cost and impracticality of SQUID (Superconducting QUantum Interference Device) magnetometers has limited the expansion of magnetoencephalography (MEG) and magnetocardiography (MCG), especially in countries where the cost of liquid helium is high. A recent breakthrough, however, has the potential to radically change this situation. In 2003, a group at Princeton University demonstrated an atomic magnetometer, known as the SERF (spin-exchange free relaxation) magnetometer, with unprecedented sensitivity. Since then, several research groups have utilized SERF magnetometers to record MEG, MCG, and fetal MCG signals. Despite some modest drawbacks, it now seems almost certain that SERF magnetometers can replace SQUIDs for many applications. With a price tag that is likely to be far less than that of SQUIDs, SERF magnetometers can propel the next wave of growth in biomagnetism.

  10. International solar polar mission: The vector helium magnetometer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The functional requirements for the vector helium magnetometer (VHM) on the Solar Polar spacecraft are presented. The VHM is one of the two magnetometers on board that will measure the vector magnetic field along the Earth to Jupiter transfer trajectory, as well as in the vicinity of Jupiter and along the solar polar orbit following the Jupiter encounter. The interconnection between these two magnetometers and their shared data processing unit is illustrated.

  11. Aeroelastic Tailoring via Tow Steered Composites

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  12. Magnetometers for Geoscience (Christiaan Huygens Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Korepanov, V.

    2009-04-01

    Measuring the Earth's magnetic field is one of the first metrological actions of humankind, traceable till about 5000 years BC. It is remarkable that the interest in magnetic fields measurements still is growing and the scope of their applications is getting wider and wider. The progress in the recent 20-30 years in the development of magnetometers of different kinds is highly impressive. Currently practically all scales of the magnetic field values can be measured - from the huge magnetic fields of astronomical objects down to atto-Tesla levels. A modern flux-gate magnetometer (FGM) may cover an amazing dynamic range of the magnetic field, ranging from 10-4 down to 10-12 T, and even lower. The second most important parameter, the zero line drift, may reach below 10-5 of the full measurement scale per year. Development of state of the art FGMs requires profound research activity in various science disciplines: mathematics, metrology, electronics and material science to name a few. This talk reviews the principles of various types of existing magnetometers and their main performance aspects are compared. It is shown that the most suitable type of instrument for measurements of the magnetic fields in the range applicable for geosciences is the FGM. A few highlights of recent developments of FGMs, with record parameters concerning noise level and power consumption, are given. Techniques to lower the noise to a cutting edge level are described and a new physical phenomenon discovered during this development work is reported and explained. Advancement in flux-gate magnetometry is discussed and a few specific examples are presented: a) a one-second INTERMAGNET-compatible FGM, b) a super-low power FGM, c) the lowest available noise FGM and d) the smallest but sensitive FGM for nano-satellites. Finally some applications for FGM use in geosciences are given and envisaged progress in the future development in the field of magnetic observations is discussed.

  13. Thermal Testing of Tow-Placed, Variable Stiffness Panels

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Guerdal, Zafer

    2001-01-01

    Commercial systems for precise placement of pre-preg composite tows are enabling technology that allows fabrication of advanced composite structures in which the tows may be precisely laid down along curvilinear paths within a given ply. For laminates with curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight and parallel in each ply as in conventional composite laminates. Hence, the stiffness properties vary as a function of location in the laminate, and the associated composite structure is called a "variable stiffness" composite structure.

  14. Thermomechanical Behavior of Advanced SiC Fiber Multifilament Tows

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to relate single fiber behavior to multiple fiber behavior in composites, fast-fracture tensile strength, creep, and stress-rupture studies were conducted on advanced SiC fiber multifilament tows in the temperature range from 20 to 1400 C in air as well as in inert environments. For conditions of small fiber creep (short times and low temperatures), the tow results of this study confirm the ability of limited single fiber data to model the strength behavior of multiple fibers in a bundle. For conditions of high creep (long times and high temperatures), further studies are needed to explain tow rupture behavior being better than average single fiber behavior.

  15. Pulsed 3-Axis Vector SERF Magnetometer

    NASA Astrophysics Data System (ADS)

    Hedges, Morgan; Romalis, Michael

    2016-05-01

    We demonstrate a 3-axis atomic vector magnetometer operating in the SERF regime, using a single beam path, and capable of operating in Earth's field using field feedback. It has similar sensitivity along all 3 axes that is fundamentally limited by photon and atom shot noise. The scheme uses a high intensity pump pulse to polarize Rb atoms in ~ 1 μs and a sequence of magnetic field pulses applied while the atoms are monitored during free precession. The sequence used provides minimal sensitivity to pulse errors, while also allowing unambiguous discrimination between external magnetic fields and misalignment between laser and magnetic coil axes.

  16. Magnetometer Based on Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey

    2005-01-01

    proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The

  17. Postflight evaluation of the solar maximum spacecraft magnetometers

    NASA Technical Reports Server (NTRS)

    Dunham, W. D.

    1985-01-01

    The Solar Maximum Mission spacecraft was launched February 14, 1980 from Cape Kennedy. Attached to one side of the spacecraft was the Modular Attitude Control System (MACS). Two Schonstedt magnetometers were located within the MACS module. Although primarily used as a backup attitude determination system during the Solar Maximum Repair Mission, the magnetometers were instrumental in stabilizing the spacecraft. In October of 1984 the Solar Maximum magnetometers were returned to Schonstedt Instrument Company for postflight analysis, where they were subjected to the same electrical performance tests performed prior to use. In both instances the magnetometer performance was exceptional. Postflight test data nearly duplicated preflight test data.

  18. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  19. A Compact, High Performance Atomic Magnetometer for Biomedical Applications

    PubMed Central

    Shah, Vishal K.; Wakai, Ronald T.

    2013-01-01

    We present a highly sensitive room-temperature atomic magnetometer (AM), designed for use in biomedical applications. The magnetometer sensor head is only 2×2×5 cm3 and is constructed using readily available, low-cost optical components. The magnetic field resolution of the AM is <10 fT/√Hz, which is comparable to cryogenically cooled superconducting quantum interference device (SQUID) magnetometers. We present side-by-side comparisons between our AM and a SQUID magnetometer, and show that equally high quality magnetoencephalography (MEG) and magnetocardiography (MCG) recordings can be obtained using our AM. PMID:24200837

  20. Vectorial atomic magnetometer using electronic and nuclear

    NASA Astrophysics Data System (ADS)

    Zhou, Binquan; Chen, Linlin; Lei, Guanqun; Meng, Xiaofeng; Fang, Jiancheng

    2015-05-01

    We present an experimental study of a vectorial atomic magnetometer, which can measure three-dimensional magnetic field simultaneously. The experimental setup for magnetometer has been described in the literature. Where an external magnetic field is added parallel to the pumping light, that the goal is to switch the nuclear spin state form an undesired state to the desired state creating a gas whose atoms are completely aligned. A probe light is added perpendicular to the pumping light. When there is transverse alternating magnetic field, the probe light will be modulated by the spin procession. We obtain the two transverse magnetic fields signal through the in-phase and out-of-phase of a lock-in amplifier, At the same time, the external magnetic field held constant relative to the external frequency reference, two nuclear signals can be used to measure z vertical magnetic field by comparing the measured two nuclear signal to a second stable reference signal generated by the same external frequency. Once the output signal is feedbacked to the coil, the external three-dimensional magnetic field is measured in real-time. The dynamic range can be adjusted through the external magnetic field,so this method can be used both in the magnetic surveys and in the prospecting field range. This work was supported in part by the NSF of China (61227902,61374210,61121003).

  1. Juno Magnetometer Observations in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.

    2013-12-01

    The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.

  2. Magnetoresistive magnetometer for space science applications

    NASA Astrophysics Data System (ADS)

    Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.

    2012-02-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.

  3. Automated system for the calibration of magnetometers

    SciTech Connect

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel; Merayo, Jose M. G.

    2009-04-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used to evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.

  4. X-34 on lakebed prior to tow tests

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Following initial captive flight tests last year at NASA's Dryden Flight Research Center, Edwards Air Force Base, California, the X-34 technology demonstrator began a new series of tests last week in which it is being towed behind a semi-truck and released to coast on the Edwards dry lakebed. On July 20, 2000, it was towed and released twice at speeds of five and 10 miles per hour. On July 24, 2000, it was towed and released twice at 10 and 30 miles per hour. Twelve tests are planned during which the X-34 will be towed for distances up to 10,000 feet and released at speeds up to 80 miles per hour. The test series is expected to last at least six weeks.

  5. Composites from powder coated towpreg - Studies with variable tow sizes

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Part fabrication from composite materials usually costs less when larger fiber tow bundles are used. On the other hand, mechanical properties generally are lower for composites made using larger size tows. This situation gives rise to a choice between costs and properties in determining the best fiber tow bundle size to employ in preparing prepreg materials for part fabrication. To address this issue, unidirectional and eight harness satin fabric composite specimens were fabricated from 3k, 6k, and 12k carbon fiber reinforced LARC-TPI powder coated towpreg. Short beam shear strengths and longitudinal and transverse flexure properties were obtained for the unidirectional specimens. Tension properties were obtained for the eight harness satin woven towpreg specimens. Knowledge of the variation of properties with tow size may serve as a guide in material selection for part fabrication.

  6. NASA Dryden Towed Glider Air-Launch Concept

    NASA Video Gallery

    NASA Dryden Flight Research Center is developing a novel space access, rocket launching technique called the Towed Glider Air-Launch Concept. The idea is to build a relatively inexpensive, remotely...

  7. Method for Coating a Tow with an Electrospun Nanofiber

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W. (Inventor); Roberts, Gary D. (Inventor)

    2015-01-01

    Method and apparatus for enhancing the durability as well as the strength and stiffness of prepreg fiber tows of the sort used in composite materials are disclosed. The method involves adhering electrospun fibers onto the surface of such composite materials as filament-wound composite objects and the surface of prepreg fiber tows of the sort that are subsequently used in the production of composite materials of the filament-wound, woven, and braided sorts. The apparatus performs the methods described herein.

  8. Internet Access to ISEE-1 and 2 Magnetometer Data

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is reported that the entire ISEE-1 and -2 magnetometer data are placed on-line, using an 8 Gbyte disk drive. The data are stored at 4-s and 60-s resolution. Also, an interactive world wide web page, which allows to plot, on request, any interval for which magnetometer data are available, is developed.

  9. Magnetometers. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1992-11-01

    The bibliography contains citations of selected patents concerning magnetometer devices and equipment used in detection, control, and survey systems. The design, fabrication, and application of magnetometers using thin film, optical, nuclear, and electron beam technologies are discussed. Applications include navigation systems, vehicle direction control, and natural resource exploration. (Contains a minimum of 204 citations and includes a subject term index and title list.)

  10. A 16-channel high-Tc SQUID-magnetometer system for magnetocardiogram mapping

    NASA Astrophysics Data System (ADS)

    Yokosawa, Koichi; Tsukamoto, Akira; Suzuki, Daisuke; Kandori, Akihiko; Miyashita, Tsuyoshi; Ogata, Kuniomi; Seki, Yusuke; Tsukada, Keiji

    2003-12-01

    A compact, light and easy-to-handle magnetocardiograph (MCG) has been developed. The MCG consists of a sensor array with superconducting-quantum-interference-device magnetometers made of a high-critical temperature superconductor, arranged in a 4 × 4 matrix, and operated in a vertical magnetically shielding cylinder (1.7 m high and 1 m in diameter). Each magnetometer is paired with each of its adjacent magnetometers, and the difference between the respective outputs provides us with a measure of magnetic gradient. This configuration for the electronic gradiometers cancels out the environmental magnetic field noise within the shielding cylinder. We use the data from the multiple gradiometers to construct a current arrow map that describes the distribution of original current vectors in the area being measured. We used the fabricated MCG to record magnetocardiograms of healthy volunteers. The smallest signals, i.e., the P-waves, were clearly detected without averaging. The current arrow maps obtained from the single-beat magnetocardiograms indicate the feasibility of clinical application of this MCG.