Science.gov

Sample records for magnetospheric radio emissions

  1. Phenomenology of magnetospheric radio emissions

    NASA Technical Reports Server (NTRS)

    Carr, T. D.; Desch, M. D.; Alexander, J. K.

    1983-01-01

    Jupiter has now been observed over 24 octaves of the radio spectrum, from about 0.01 MHz to 300,000 MHz. Its radio emissions fill the entire spectral region where interplanetary electromagnetic propagation is possible at wavelengths longer than infrared. Three distinct types of radiation are responsible for this radio spectrum. Thermal emission from the atmosphere accounts for virtually all the radiation at the high frequency end. Synchrotron emission from the trapped high-energy particle belt deep within the inner magnetosphere is the dominant spectral component from about 4000 to 40 MHz. The third class of radiation consists of several distinct components of sporadic low frequency emission below 40 MHz. The decimeter wavelength emission is considered, taking into account the discovery of synchrotron emission, radiation by high-energy electrons in a magnetic field, and the present status of Jovian synchrotron phenomenology. Attention is also given to the decameter and hectometer wavelength emission, and emissions at kilometric wavelengths.

  2. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  3. Radio emission observed by Galileo in the inner Jovian magnetosphere during orbit A-34

    NASA Astrophysics Data System (ADS)

    Menietti, J. Douglas; Gurnett, Donald A.; Groene, Joseph B.

    2005-10-01

    The Galileo spacecraft encountered the inner magnetosphere of Jupiter on its way to a flyby of Amalthea on November 5, 2002. During this encounter, the spacecraft observed distinct spin modulation of plasma wave emissions. The modulations occurred in the frequency range from a few hundred hertz to a few hundred kilohertz and probably include at least two distinct wave modes. Assuming transverse EM radiation, we have used the swept-frequency receivers of the electric dipole antenna to determine the direction to the source of these emissions. Additionally, with knowledge of the magnetic field some constraints are placed on the wave mode of the emission based on a comparative analysis of the wave power versus spin phase of the different emissions. The emission appears in several bands separated by attenuation lanes. The analysis indicates that the lanes are probably due to blockage of the freely propagating emission by high density regions of the Io torus near the magnetic equator. Radio emission at lower frequencies (<40 kHz) appears to emanate from sources at high latitude and is not attenuated. Emission at f>80kHz is consistent with O-mode and Z-mode. Lower frequency emissions could be a mixture of O-mode, Z-mode and whistler mode. Emission for f<5kHz shows bands that are similar to upper hybrid resonance bands observed near the terrestrial plasmapause, and also elsewhere in Jovian magnetosphere. Based on the observations and knowledge of similar terrestrial emissions, we hypothesize that radio emission results from mode conversion near the strong density gradient of the inner radius of the cold plasma torus, similar to the generation of nKOM and continuum emission observed in the outer Jovian magnetosphere and in the terrestrial magnetosphere from source regions near the plasmapause.

  4. ORIGIN OF ELECTRON CYCLOTRON MASER INDUCED RADIO EMISSIONS AT ULTRACOOL DWARFS: MAGNETOSPHERE-IONOSPHERE COUPLING CURRENTS

    SciTech Connect

    Nichols, J. D.; Burleigh, M. R.; Casewell, S. L.; Cowley, S. W. H.; Wynn, G. A.; Clarke, J. T.; West, A. A.

    2012-11-20

    A number of ultracool dwarfs emit circularly polarized radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic-field-aligned currents. We thus apply ideas developed for Jupiter's magnetosphere, being a well-studied rotationally dominated analog in our solar system, to the case of fast-rotating UCDs. We explain the properties of the radio emission from UCDs by showing that it would arise from the electric currents resulting from an angular velocity shear in the fast-rotating magnetic field and plasma, i.e., by an extremely powerful analog of the process that causes Jupiter's auroras. Such a velocity gradient indicates that these bodies interact significantly with their space environment, resulting in intense auroral emissions. These results strongly suggest that auroras occur on bodies outside our solar system.

  5. On the Methods of Determining the Radio Emission Geometry in Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Rudak, B.; Harding, Alice K.

    2004-01-01

    We present a modification of the relativistic phase shift method of determining the radio emission geometry from pulsar magnetospheres proposed by Gangadhara & Gupta (2001). Our modification provides a method of determining radio emission altitudes which does not depend on the viewing geometry and does not require polarization measurements. We suggest application of the method to the outer edges of averaged radio pulse profiles to identify magnetic field lines associated with'the edges of the pulse and, thereby, to test the geometric method based on the measurement of the pulse width at the lowest intensity level. We show that another relativistic method proposed by Blaskiewicz et al. (1991) provides upper limits for emission altitudes associated with the outer edges of pulse profiles. A comparison of these limits with the altitudes determined with the geometric method may be used to probe the importance of rotational distortions of magnetic field and refraction effects in the pulsar magnetosphere. We provide a comprehensive discussion of the assumptions used in the relativistic methods.

  6. Observations of low-frequency radio emissions in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Filbert, Paul C.; Kellogg, Paul J.

    1989-01-01

    Electromagnetic radiation in the earth's magnetosphere was investigated for the frequency range between 10 kHz and 80 kHz, using data from the Minnesota Plasma Wave Experiment aboard the IMP 6 spacecraft. Two types of radio emissions were examined, the first being the nonthermal continuum radiation, and the second, much more impulsive, is the radiation which lies between 10 and 60 kHz. The first type of radiation was found to correlate with the enhancements of the magnetic substorm index AE and to follow the onset of the negative bay feature of the AU index by about 20 min. The second radiation was found to correlate with auroral kilometric radiation (AKR) on a time scale of about 1 min; this radiation was found to have a source direction very near that of the coincident AKR.

  7. Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates

    NASA Astrophysics Data System (ADS)

    Hess, S. L. G.; Echer, E.; Zarka, P.; Lamy, L.; Delamere, P. A.

    2014-09-01

    The influence of solar wind conditions on the Jovian auroral radio emissions has long been debated, mostly because it has always been difficult to get accurate solar wind and radio observations at the same time. We present here a study of Jupiter's radio emissions compared to solar wind conditions using radio (RPWS) and magnetic (MAG) data from the Cassini spacecraft from October to December 2000, just before its flyby of Jupiter. The spacecraft was then in the solar wind and could record both the radio emissions coming from the Jovian magnetosphere and the solar wind magnetic field (IMF). With these data, we found a good correspondence between the arrival of interplanetary shocks at Jupiter and the occurrence of radio storms. Our results confirm those from the previous studies showing that fast forward shocks (FFS) trigger mostly dusk emissions, whereas fast reverse shocks (FRS) trigger both dawn and dusk emissions. FFS-triggered emissions are found to occur 10-30 h after the shock arrival when the IMF is weak (below 2 nT), and quasi-immediately after shock arrival when the IMF is strong (above 2 nT). FRS-triggered emissions are found to occur quasi-immediately even when the IMF is weak. We show and discuss in depth the characteristic morphologies of the radio emissions related to each type of shock and their implications. We also used simultaneous radio observations from the ground-based Nançay decameter array and from the Galileo radio instrument (PWS). From the comparison of these measurements with Cassini's, we deduce the regions where the radio storms occur, as well as the radio source subcorotation rates. We show that FFS-triggered emissions onset happens in a sector of local time centered around 15:00 LT, and that all the shock-triggered radio sources sub-corotate with a subcorotation rate of ~50% when the IMF is below 2 nT and of ~80% when it is above 2 nT. These rates could correspond to the extended and compressed states of the Jovian magnetosphere.

  8. Magnetospheric radio and plasma wave research - 1987-1990

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  9. The implication for the presence of a magnetosphere on Uranus in the relationship of EUV and radio emission

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Smith, G. R.

    1986-01-01

    A report by Kaiser and Desch (1985) indicates that nonthermal radio emissions from Uranus were not detectable from the Voyager spacecraft at a range of less than 0.7 AU. This observation suggests that the planet may have significantly different magnetospheric characteristics than Jupiter and Saturn. The ratio of atomic to molecular emission in the hydrogenic atmospheres of the outer planets varies over a wide range depending on the nature of the exciting process and the altitude of the sources. The importance of the ratio of atomic to molecular emission is discussed along with the escape of atomic hydrogen. On the basis of an evaluation of the observations, the possibility is raised that the strong EUV radiation from Uranus may not be auroral in origin.

  10. Radio wave propagation in pulsar magnetospheres

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.; Lyubarskii, Yu. E.

    Pulsar magnetospheres are known to contain an ultrarelativistic highly magnetized plasma which streams along the open magnetic lines. The radio emission observed from pulsars is believed to originate sufficiently deep in the open field line tube, so that the characteristics of outgoing waves can be influenced by propagation in the magnetospheric plasma. Refraction of radio waves in pulsar magnetospheres appears to be efficient. The effect not only influences the observed pulse width and its frequency dependency. It can alter the apparent spatial structure of pulsar emission region which can be derived from the observations of pulsar interstellar scintillations. Transverse ray separation versus pulse longitude calculated allowing for magnetospheric refraction appears to be in qualitative agreement with that observed. In particular, the nonmonotonic character of the curve can be attributed to nonmonotonic distribution of the plasma number density across the open field line tube which makes the rays emitted at different spatial locations deviate in the opposite directions. Proceeding from the frequency dependence of refraction some predictions are made about the frequency evolution of the apparent spatial structure of pulsar emission region. Magnetospheric refraction can also determine the profile shape giving rise to ray grouping into separate components. It will be demonstrated that the salient features of profile morphology can be explained within the frame of a primordial hollow-cone emission model taking into account refraction of rays in pulsar plasma. Then the frequency evolution of profile structure is naturally interpreted as a consequence of frequency dependence of refraction. As the waves propagate in the magnetospheric plasma their polarization also evolves essentially. In the vicinity of the emission region normal waves are linearly polarized and propagate independently, with the polarization plane following the orientation of the local magnetic field. As

  11. Radio imaging of Jupiter's magnetosphere with LOFAR

    NASA Astrophysics Data System (ADS)

    Zarka, P.

    2003-04-01

    Jupiter emits intense decameter radio waves, detectable from the ground in the range ~10 to 40 MHz. They are produced by energetic electron precipitations in its auroral regions, as well as near the magnetic footprints of the galilean satellite Io. Radio imaging imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should give access to: - an improved mapping of the surface planetary magnetic field, deduced from the highest frequency of radio emission coming from a given point above the ionosphere (emission is produced at the local electron cyclotron frequency, proportional to the magnetic field amplitude) ; - detailed information on the Io-Jupiter electrodynamic interaction: imaging will allow to measure the angle between the field line instantaneously threading through Io and the one(s) emitting radio waves at that time, which is a strong constraint of the interaction mechanism (current circuit or Alfvèn waves) ; when performed at millisecond time resolution, imaging should allow to "see" the electron bunches thought to be at the origin of the sporadic drifting decameter bursts, and to follow them along magnetic field lines, measuring thus their speed and energy, and revealing possible electric potential drops along magnetic field lines ; - correlation of radio images with ultraviolet and infrared images of the aurora as well as of the galilean satellite footprints will provide complementary information on the precipitated energy and an interesting input to magnetospheric dynamics ; - imaging of decameter radio sources through the Io plasma torus will allow to probe for the first time the torus electron density as a function of longitude through analysis of the Faraday rotation of decameter waves crossing the torus ; diffraction effects that may be at the origin of observed fringe patterns could also be studied. Very fast imaging should be allowed by the very high intensity of Jovian decameter bursts, up to

  12. Excitation of a magnetospheric maser through modification of the Earth's ionosphere by high-power HF radio emission from a ground-based transmitter

    SciTech Connect

    Markov, G. A. Belov, A. S.; Frolov, V. L.; Rapoport, V. O.; Parrot, M.

    2010-01-15

    A method for controlled excitation of a magnetospheric maser through the production of artificial density ducts by high-power HF radio emission from the Earth's surface has been proposed and implemented in an in-situ experiment. Artificial density ducts allow one to affect the maser resonator system and the excitation and propagation of low-frequency electromagnetic waves in a disturbed magnetic flux tube. The experimental data presented here were obtained at the mid-latitude Sura heating facility. The characteristics of electromagnetic and plasma disturbances at outer-ionosphere altitudes were measured using the onboard equipment of the DEMETER satellite as it passed through the magnetic flux tube rested on the region of intense generation of artificial ionospheric turbulence.

  13. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  14. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  15. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence.

    PubMed

    Hallinan, G; Littlefair, S P; Cotter, G; Bourke, S; Harding, L K; Pineda, J S; Butler, R P; Golden, A; Basri, G; Doyle, J G; Kao, M M; Berdyugina, S V; Kuznetsov, A; Rupen, M P; Antonova, A

    2015-07-30

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs. PMID:26223623

  16. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    PubMed

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories. PMID:23349288

  17. Modeling of radio emissions from Neptune

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Curran, D. B.

    We have developed a plasma model of the Neptunian magnetosphere that includes a density cavity centered on the L=6 magnetic field line. Assuming the O8 magnetic field model, we have performed ray tracing of smooth radio emission from Neptune, and the results generally support the findings of Ladreiter et al. (1991), but differ in details of the source locations. In addition, we have examined source locations of bursty radio emission that are consistent with propagation at small wave normal angles as hypothesized for the temperature anisotropic beam instability (TABI) (Winglee et al., 1992). The source locations are adjacent (complementary) to the sources of the smooth radio emission. Using previously developed plasma and magnetic field models for Uranus, we have performed a similar study of bursty radio emissions. Again the source locations appear to be adjacent to the source regions of smooth radio emission, consistent with the TABI.

  18. Wave emissions from planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1989-01-01

    An important development in the Earth magnetosphere was the discovery of the boundary of the plasma sheet and its apparent role in the dynamics of the magnetotails. Three instabilities (negative energy mode, counterstreaming, and the Buneman instability) were investigated through analytical and numerical studies of their frequency and growth rate as a function of the angle of propagation.

  19. Plasma Density and Radio Echoes in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1995-01-01

    This project provided a opportunity to study a variety of interesting topics related to radio sounding in the magnetosphere. The results of this study are reported in two papers which have been submitted for publication in the Journal of Geophysical Research and Radio Science, and various aspects of this study were also reported at meetings of the American Geophysical Union (AGU) at Baltimore, Maryland and the International Scientific Radio Union (URSI) at Boulder, Colorado. The major results of this study were also summarized during a one-day symposium on this topic sponsored by Marshall Space Flight Center in December 1994. The purpose of the study was to examine the density structure of the plasmasphere and determine the relevant mechanisms for producing radio echoes which can be detected by a radio sounder in the magnetosphere. Under this study we have examined density irregularities, biteouts, and outliers of the plasmasphere, studied focusing, specular reflection, ducting, and scattering by the density structures expected to occur in the magnetosphere, and predicted the echoes which can be detected by a magnetospheric radio sounder.

  20. AN EMISSION MECHANISM EXPLAINING OFF-PULSE EMISSION ORIGINATING IN THE OUTER MAGNETOSPHERE OF PULSARS

    SciTech Connect

    Basu, Rahul; Mitra, Dipanjan; Melikidze, George I. E-mail: dmitra@ncra.tifr.res.in

    2013-08-01

    We have examined the cyclotron resonance instability developing in the relativistic outflowing plasma in the pulsar magnetosphere. The instability condition leads to radio emission in the subgigahertz frequency regime which is likely to be seen as off-pulse emission. Recent studies have shown the presence of off-pulse emission in long period pulsars, and we demonstrate this plasma process to be an energetically viable mechanism.

  1. Cyclotron side band emissions from magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1975-01-01

    Very low frequency emissions with subharmonic cyclotron frequency from magnetospheric electrons were detected by the S(3)-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions were observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere. During the event of these side-band emissions, the pitch angle distributions of high energy electrons (greater than 50 keV) and of energetic protons (greater than 100 keV) showed remarkable changes with time, whereas those of low energy electrons and protons remained approximately isotropic. In this type of event, emissions consist essentially of two bands, the one below the equatorial electron gyrofrequency, and the other above. The emissions below are whistler mode, and the emissions above are electrostatic mode.

  2. Stellar radio emission (Review)

    NASA Astrophysics Data System (ADS)

    Zhelezniakov, V. V.

    The current understanding of the radio-emission characteristics of 'ordinary' main sequence stars as well as giants and supergiants is examined. Particular consideration is given to radio emission from supergiants, Young T Tauri stars, magnetic Ap stars, flare stars of UV Ceti type, Alpha Sco, and RS CVn objects. It is noted that the study of stellar radio emission is in its initial stage. Further progress in this area depends on successes in finding new radio sources, associated, for example, with magnetic stars, and on an intensified investigation of the frequency spectra and polarization of already-discovered radio stars. It is also noted that, although the current knowledge of solar physics can help in understanding stellar radio emission, models and ideas developed for solar conditions should not be mechanically transferred to other stars by a simple change in scale.

  3. Radio emission physics in the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Eilek, Jean A.; Hankins, Timothy H.

    2016-06-01

    We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and -ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of time scales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as the source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.

  4. Radio emission physics in the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Eilek, Jean A.; Hankins, Timothy H.

    2016-06-01

    > We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and -ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of time scales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as the source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.

  5. Magnetospheric Radio Tomography: Observables, Algorithms, and Experimental Analysis

    NASA Technical Reports Server (NTRS)

    Cummer, Steven

    2005-01-01

    This grant supported research towards developing magnetospheric electron density and magnetic field remote sensing techniques via multistatic radio propagation and tomographic image reconstruction. This work was motivated by the need to better develop the basic technique of magnetospheric radio tomography, which holds substantial promise as a technology uniquely capable of imaging magnetic field and electron density in the magnetosphere on large scales with rapid cadence. Such images would provide an unprecedented and needed view into magnetospheric processes. By highlighting the systems-level interconnectedness of different regions, our understanding of space weather processes and ability to predict them would be dramatically enhanced. Three peer-reviewed publications and 5 conference presentations have resulted from this work, which supported 1 PhD student and 1 postdoctoral researcher. One more paper is in progress and will be submitted shortly. Because the main results of this research have been published or are soon to be published in refereed journal articles listed in the reference section of this document, we provide here an overview of the research and accomplishments without describing all of the details that are contained in the articles.

  6. Decimetric radio dot emissions

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Karlický, M.; Sawant, H. S.; Fernandes, F. C. R.; Cecatto, J. R.; de Andrade, M. C.

    2008-11-01

    Context: We study a rare type of solar radio bursts called decimetric dot emissions. Aims: In the period 1999-2001, 20 events of decimetric dot emissions observed by the Brazilian Solar Spectroscope (BSS) in the frequency range 950-2640 MHz are investigated statistically and compared with radio fine structures of zebras and fibers. Methods: For the study of the spectral characteristics of the dot emissions we use specially developed Interactive Data Language (IDL) software called BSSView and basic statistical methods. Results: We have found that the dm dot emissions, contrary to the fine structures of the type IV bursts (i.e. zebras, fibers, lace bursts, spikes), are not superimposed on any background burst emission. In the radio spectrum, in most cases the dot emissions form chains that appear to be arranged in zebra patterns or fibers. Because some zebras and fibers, especially those observed with high time and high spectral resolutions, also show emission dots (but superimposed on the background burst emission), we compared the spectral parameters of the dot emissions with the dots being the fine structure of zebras and fibers. For both these dots, similar spectral characteristics were found. Some similarities of the dot emissions can be found also with the lace bursts and spikes. For some events the dot emissions show structural evolution from patterns resembling fibers to patterns resembling zebras and vice versa, or they evolve into fully chaotic patterns. Conclusions: For the first time, we present decimetric dot emissions that appear to be arranged in zebra patterns or fibers. We propose that these emissions are generated by the plasma emission mechanism at the locations in the solar atmosphere where the double resonance condition is fulfilled.

  7. Stellar radio emission

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay A.

    1988-01-01

    This paper presents an overview of the various radiation mechanisms believed to play a role in stellar radio emission. The radio emission from most stars is nonthermal and is generally due to mildly relativistic electrons with energies from a few keV to over 10 MeV. Magnetic fields play a crucial role both in accelerating the electrons to the requisite energies and in mediating the emission mechanism. They also play a fundamental role in creating the velocity anisotropies that are necessary for the operation of some of the coherent emission mechanisms. Coherent emission is seen most commonly on the M dwarfs, rarely on the RS CVns, and has yet to be detected for any other class of star. These coherent processes are best studied by means of their dynamic spectra; such studies are now just getting underway.

  8. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  9. Control of Jovian Radio Emission by Ganymede

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. We present the results of a survey of the data for the frequency range 3.2 MHz to 5.6 MHz, the low-frequency decametric (DAM) emissions. While the control of a portion of the radio emission by the moon Io is well-known, we report that a small but significant portion of low-frequency DAM emission is seen to be correlated with the orbital phase of Ganymede. This result is in agreement with other recent results indicating a significant interaction of the magnetosphere of Ganymede with that of Jupiter.

  10. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  11. Possible radio emission mechanism for pulsars

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.

    1979-01-01

    A mathematical model is presented and discussed as a possible mechanism to describe radio emission from pulsars. The model determines that the magnetic field in the neutron proton electron (npe) layer of a neutron star results from a quasistationary eddy current of superconducting and normal protons relative to normal electrons, which generates radio emission by the Josephson effect. The radiation propagates in the magnetically active medium, from the optically thick npe layer to the magnetosphere through breaks in the crust. As a result, hot radio spots form on the surface of the star, and a radiation pattern forms near the magnetic poles, the cross section of which gives the observed pulse structure. Due to the specific properties of the mechanism, variations of the quasistationary current are converted to amplitude frequency variations of the radiation spectrum. Variations of the fine structure of the spectrum pulse amplitude and spectral index, as well as their correlation are discussed.

  12. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  13. Whistler emissions in the magnetosphere - satellite observations and numerical modeling

    NASA Astrophysics Data System (ADS)

    Chum, J.; Jiricek, F.; Shklyar, D. R.

    The investigation of ionospheric and magnetospheric wave phenomena related to lightning strokes began from classical research by Eckersley (Nature, Lond., 135, 104, 1935) and Storey (Phil. Trans. Roy. Soc. Lond., A246, 908, 113-141, 1953) among others, and it has continued up to the present. VLF spectrograms from the MAGION 4 and MAGION 5 satellites contain most of the known types of VLF emissions, as well as some new ones not discussed previously. A partial list of the observed emissions involving nonducted propagation includes: magnetospherically reflected (MR) whistlers (and their subclass, Nu whistlers) predicted by Kimura (Radio Sci., 1, 3, 269-283, 1966) and then found by Smith and Angerami in the spectrograms of wave data from OGO 1 and 3 (J. Geophys. Res., 73, 1, 1-20, 1968); lower hybrid resonance (LHR) noise bands; LHR whistlers and LHR spherics; and oblique noise bands above the local LHR frequency. Recently, a new line of investigation was initiated by numerical modeling of VLF spectrograms of nonducted emissions caused by lightning. For such emissions, as observed by a satellite in the magnetosphere, the spectrograms depend on several factors: the properties of the source, the geomagnetic field structure and the cold plasma distribution which jointly influence the wave propagation, and the resonant interactions of the waves with energetic particles. Therefore, numerical modeling of spectrograms and comparing them with real ones may serve as an indirect tool for investigating the factors mentioned above and any other processes that affect the spectrograms. This tool is especially effective when the source of the emission is known, in particular with lightning-induced emissions. The main features of our numerical method for modeling spectrograms include: a) representation of the wave field as the sum of wave packets treatable by geometrical optics; b) construction of a frequency-time plot based on the notion of a group front; c) calculation of the

  14. Control of Jovian Radio Emission by Callisto

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Christopher, I.

    2001-01-01

    Galileo has been in orbit around Jupiter since December 1995 and a large database has been collected. We present the results of a survey of the plasma wave data for the frequency range 2.0 MHz to 5.6 MHz, the low frequency decametric (DAM) emissions. While the control of a portion of the radio emission by the moon lo is well known, and Ganymede control has been more recently indicated, we report that a small but significant portion of DAM emission is seen to be correlated with the orbital phase of Callisto. While the occurrence rate of emission controlled by Ganymede and Callisto is considerably less than for lo, the power levels can be nearly the same. We estimate the power of the Callisto-dependent emission to be approx. 70% of the Io-dependent radio emission and about the same as the Ganymede-dependent radio emission. This result indicates an Alfven current system associated with Callisto, and thus a significant interaction of the magnetosphere of Callisto with that of Jupiter as is believed to exist for both lo and Ganymede.

  15. Prediction of radio frequency power generation of Neptune's magnetosphere from generalized radiometric Bode's law

    NASA Technical Reports Server (NTRS)

    Million, M. A.; Goertz, C. K.

    1988-01-01

    Magnetospheric radio frequency emission power has been shown to vary as a function of both solar wind and planetary values such as magnetic field by Kaiser and Desch (1984). Planetary magnetic fields have been shown to scale with planetary variables such as density and angular momentum by numerous researchers. This paper combines two magnetic scaling laws with the radiometric law to yield 'Bode's'-type laws governing planetary radio emissions. Further analysis allows the reduction of variables to planetary mass and orbital distance. These generalized laws are then used to predict the power otuput of Neptune to be about 1.6 x 10 to the 7th W; with the intensity peaking at about 3 MHz.

  16. Prediction of radio frequency power generation of Neptune's magnetosphere from generalized radiometric Bode's law

    NASA Astrophysics Data System (ADS)

    Millon, M. A.; Goertz, C. K.

    1988-01-01

    Magnetospheric radio frequency emission power has been shown to vary as a function of both solar wind and planetary values such as magnetic field by Kaiser and Desch. Planetary magnetic fields have been shown to scale with planetary variables such as density and angular momentum by numerous researchers. This paper combines two magnetic scaling laws (Busse's and Curtis Ness') with the radiometric law to yield "Bode's"-type laws governing planetary radio emission. Further analysis allows the reduction of variables to planetary mass and orbital distance. These generalized laws are then used to predict the power output of Neptune to be about 1.6×107W; with the intensity peaking at about 3 MHz.

  17. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  18. Magnetospheric Geometry in Pulsar B1929+10 from Radio/X-ray Phase Alignment

    NASA Astrophysics Data System (ADS)

    Somer, A. L.; Backer, D. C.; Halpern, J. P.; Wang, F. Y.-H.

    1998-05-01

    We have conducted a study of two rotation-powered pulsars that emit at both radio and x-ray wavelengths, PSR B0531+21 and PSR B1929+10. Using absolute phase information, we have phase-aligned x-ray and radio profiles from these pulsars. Observations were done using the Green Bank 140ft telescope, and ASCA. The 0531+21 x-ray profile is sharp and lines up well with the radio profile confirming that the x-ray emission from this pulsar is magnetospheric in origin. The 1929+10 profile is approximately sinusoidal (Wang & Halpern, ApJ 4 82, L159) with the peak of the emission arriving 67+/- 23 degrees after the maximum in the radio emission. The controversy to which the PSR B1929+10 result adds fuel, is whether this ``inter"-pulsar, is an ``aligned" or ``orthogonal" rotator - describing the alignment of the magnetic axis to the rotation axis. Do the two peaks in the radio profile (the pulse and interpulse) come from a double crossing of a thin hollow cone nearly aligned with rotation axis (as in Lyne & Manchester, 1988, MNRAS, 234, 477; Phillips, 1990, ApJL, 361, L57; Blaskiewicz et al, 1991, ApJ 370, 643), or alternatively (as in Rankin and Rathnasree, 1998 preprint) do they come from from opposite poles of an ``orthogonal" rotator where the spin axis is perpendicular to the magnetic axis? The radio to x-ray alignment we find favors the former explanation: if the x-ray hot spot is the result of return currents to the surface from the outward current that generates radio emission, then in the ``double-crossing" model, the hot spot phase is expected to lie between the main pulse and interpulse as observed.

  19. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    SciTech Connect

    Belov, A. S. Markov, G. A.; Ryabov, A. O.; Parrot, M.

    2012-12-15

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  20. On the detection of magnetospheric radio bursts from Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Maggs, J. E.

    1975-01-01

    Earth, Jupiter, and Saturn are sources of intense but sporadic bursts of electromagnetic radiation or magnetospheric radio bursts (MRB). The similarity of the differential power flux spectra of the MRB from all three planets is examined. The intensity of the MRB is scaled for the solar wind power input into a planetary magnetosphere. The possibility of detecting MRB from Uranus and Neptune is considered.

  1. Multi-instrument overview of the 1-hour pulsations in Saturn's magnetosphere and auroral emissions (invited)

    NASA Astrophysics Data System (ADS)

    Palmaerts, Benjamin; Roussos, Elias; Radioti, Aikaterini; Krupp, Norbert; Grodent, Denis; Kurth, William S.; Yates, Japheth N.

    2016-04-01

    The in-situ exploration of the magnetospheres of Jupiter and Saturn has revealed different periodic processes which differ from the rotation period. In particular, in the Saturnian magnetosphere, several studies have reported pulsations in the outer magnetosphere with a periodicity of about 1 hour in the measurements of charged particle fluxes, plasma wave, magnetic field strength and auroral emission brightness. We made a 10-year survey of the quasi-periodic 1-hour energetic electron injections observed in the Saturn's outer magnetosphere by the Low-Energy Magnetospheric Imaging Instrument (MIMI/LEMMS) on board Cassini. The signature of these injections is pulsations in the electron fluxes at energies between a hundred keV up to several MeV. We investigated the topology and the morphology of these pulsations, as well as the signatures of the electron injections in the radio emissions and the magnetic field, respectively, measured by the Radio and Plasma Wave Science (RPWS) instrument and the magnetometer (MAG) on board Cassini. The morphology of the pulsations (interpulse period, number of pulsations per event, growth and decay time) shows a weak local time dependence, which suggests a high-latitude source for the pulsed energetic electrons. This suggestion is reinforced by the observation of strong radio bursts in the auroral hiss coincident with the electron pulsations and by the higher growth rate and decay rate magnitudes at high latitudes. Moreover, since the morphological properties of the pulsations are similar at the various locations where the electron injections are observed, the acceleration mechanism of the electrons is likely common for all the events and may be directly or indirectly involving magnetic reconnection. The auroral emissions, which display the ionospheric response to magnetospheric dynamics, exhibit some quasi-periodic 1-hour pulsations as well. Some pulsed auroral brightenings are observed while Cassini detects several electron

  2. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Lazarus, P.; Kaspi, V. M.; Dib, R.; Champion, D. J.; Hessels, J. W. T.

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  3. Amalthea's Modulation of Jovian Decametric Radio Emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.

    2006-08-01

    Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, Ukraine Amalthea is the largest body after Galilean satellites near Jupiter. An anomaly in Jovian synchrotron radiation has been found just on the Amalthea magnetic shell (de Pater, Schulz & Brecht 1997). It has been suggested that Amalthea's motion through Jupiter's magnetic field induces Alfvén or whistler wings or electrostatic high-frequency waves which lead to the pitch angle scattering. It is reasonable to search for another effect of these processes: magnetospheric inhomogeneities which could be found via scattering of Jovian decametric radio emission (DAM). Such scattering on field-aligned inhomogeneities in the Io plasma torus is known as "modulation lanes" in DAM dynamic spectra. To search for analogous Amalthea's modulation, the positions and frequency drift of about 600 lanes are measured on the UFRO spectra of DAM. The special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that about 4% of the lanes are clustered near Amalthea's magnetic shell. There are two such clusters near longitudes of 123°≤λ[III]≤140° and 284°≤λ[III]≤305°, which coincide with the regions of maximum compression of fresh plasma due to rotating magnetic field of Jupiter (where ∂(B^2)/∂λ[III]) is maximal). The Amalthea modulation could explain the enigmatic "hf-lanes" (Genova, Aubier & Lecacheux 1981). The found magnetospheric formations are a new argument for the ice nature of Amalthea which has the density less than that of water (Anderson et al. 2005). Anderson J.D. et al. 2005, Science, 308, 5726, pp. 1291-1293. de Pater I., Schulz M., Brecht S.H. 1997, J. Geophys. Res., 102, A10, pp. 22043-22064. Genova F., Aubier M.G., Lecacheux A. 1981, Astron. and Astrophys. 104, 2, pp. 229-239.

  4. Zebra spectral structures in Jovian decametric radio emissions

    NASA Astrophysics Data System (ADS)

    Rošker, S.; Panchenko, M.; Rucker, H. O.; Brazhenko, A. I.

    2015-10-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radiation in a wide frequency range. This emission is a result of complicated interactions between the dynamic Jovian magnetosphere and energetic particles supplying free energy from planetary rotation and the interaction between Jupiter and the Galilean moon Io. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from a few MHz up to 40 MHz. Depending on the time scales the Jovian DAM exhibits different complex spectral structures. Recent observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN-2 (Poltava, Ukraine) enabled the detection of fine spectral structures, specifically zebra stripe-like patterns, never reported before in the Jovian decametric wavelength regime (Figure 1). In this presentation we describe and analyse these new observations by investigating the characteristics of the Jovian decametric zebra patterns. On basis of these findings the possible mechanism of wave generation is discussed and in particular the value of the determination of local plasma densities within the Jovian magnetosphere by remote radio sensing is emphasized.

  5. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  6. Laboratory Reproduction of Auroral Magnetospheric Radio Wave Sources

    NASA Astrophysics Data System (ADS)

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Bingham, R.; Robertson, C. W.; Whyte, C. G.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.; He, W.

    2008-10-01

    Auroral Kilometric Radiation, AKR, occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emissions and radiation is emitted in the X-mode. In the laboratory a 75-85kV electron beam of 5-40A was magnetically compressed by a system of solenoids. Results are presented for an electron beam gyrating at cyclotron frequencies of 4.42GHz and 11.7GHz resonating with near cut-off TE01 and TE03 modes respectively. Measurements of the electron transport combined with numerical simulations demonstrated that a horseshoe distribution function was formed in electron velocity space. Analysis of the experimental measurements allowed the inference of the 1D number density as a function of the electron beam pitch angle. The total power emitted experimentally was ~19-35 kW with a maximum RF emission efficiency of ~2%. These results were compared to those obtained numerically using a 2D PiC code KARAT with a maximum efficiency of 2% predicted for the same mode and frequency, consistent with astrophysical and theoretical results.

  7. Laboratory Reproduction of Auroral Magnetospheric Radio Wave Sources

    SciTech Connect

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Bingham, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2008-10-15

    Auroral Kilometric Radiation, AKR, occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emissions and radiation is emitted in the X-mode. In the laboratory a 75-85kV electron beam of 5-40A was magnetically compressed by a system of solenoids. Results are presented for an electron beam gyrating at cyclotron frequencies of 4.42GHz and 11.7GHz resonating with near cut-off TE01 and TE03 modes respectively. Measurements of the electron transport combined with numerical simulations demonstrated that a horseshoe distribution function was formed in electron velocity space. Analysis of the experimental measurements allowed the inference of the 1D number density as a function of the electron beam pitch angle. The total power emitted experimentally was {approx}19-35 kW with a maximum RF emission efficiency of {approx}2%. These results were compared to those obtained numerically using a 2D PiC code KARAT with a maximum efficiency of 2% predicted for the same mode and frequency, consistent with astrophysical and theoretical results.

  8. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  9. Fast radio imaging of Jupiter's magnetosphere at low-frequencies with LOFAR

    NASA Astrophysics Data System (ADS)

    Zarka, P.

    2004-12-01

    Jupiter emits intense decameter (DAM) radio waves, detectable from the ground in the range ˜10-40 MHz. They are produced by energetic electron precipitations in its auroral regions (auroral-DAM), as well as near the magnetic footprints of the Galilean satellite Io (Io-DAM). Radio imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should provide: an improved mapping of the surface planetary magnetic field, via imaging of instantaneous cyclotron sources of highest frequency; measurements of the beaming angle of the radiation relative to the local magnetic field, as a function of frequency; detailed information on the Io-Jupiter electrodynamic interaction, in particular the lead angle between the Io flux tube and the radio emitting field line; direct information on the origin of the sporadic drifting decameter S-bursts, thought to be electron bunches propagating along magnetic field lines, and possibly revealing electric potential drops along these field lines; direct observation of DAM emission possibly related to the Ganymede-Jupiter, Europa-Jupiter and/or Callisto-Jupiter interactions, and their energetics; information on the magnetospheric dynamics, via correlation of radio images with ultraviolet and infrared images of the aurora as well as of the Galilean satellite footprints, and study of their temporal variations; an improved mapping of the Jovian plasma environment (especially the Io torus) via the propagation effects that it induces on the radio waves propagating through it (Faraday rotation, diffraction fringes, etc.); possibly on the long-term a better accuracy on the determination of Jupiter's rotation period. Fast imaging should be permitted by the very high intensity of Jovian decameter bursts. LOFAR's capability to measure the full polarization of the incoming waves will be exploited. The main limitation will come from the maximum angular resolution reachable. We discuss several approaches for

  10. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  11. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  12. Escaping radio emission from pulsars: Possible role of velocity shear

    SciTech Connect

    Mahajan, S.M. |; Machabeli, G.Z.; Rogava, A.D. |

    1997-01-01

    It is demonstrated that the velocity shear, intrinsic to the e{sup +}e{sup {minus}} plasma present in the pulsar magnetosphere, can efficiently convert the nonescaping longitudinal Langmuir waves (produced by some kind of a beam or stream instability) into propagating (escaping) electromagnetic waves. It is suggested that this shear induced transformation may be the basic mechanism needed for the eventual generation of the observed pulsar radio emission.

  13. Magnetospheric electrostatic emissions and cold plasma densities

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1978-01-01

    A synoptic study of electric wave, magnetometer, and plasma data from IMP-6 was carried out for times when banded electrostatic waves are observed between harmonics of the electron gyrofrequency in the earth's outer magnetosphere. Four separate classes of such waves were previously identified. The spatial and temporal occurrences of waves in each class are summarized here, as are correlations of occurrence with geomagnetic activity. Most importantly, associations between the observations of waves of different classes and the relative portions of cold and hot electrons present at the position of the spacecraft are established. Finally, evidence for the signature of the loss cone is sought in the plasma data.

  14. On Io's control of Jovian decametric radio emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1986-01-01

    Io's control of Jovian decametric radio emission (DAM) has been attributed to Io distorting the electron distribution in the inner Jovian magnetosphere. Observations of Faraday rotation in DAM are used to determine the properties of the electron distribution before and after its interaction with Io. It is shown that there is an enhancement in the density of the energetic component in the Io plasma torus correlated with certain Jovian longitude. Io's interaction with this energetic component can produce heating of this component. The Io-controlled emission is attributed to enhanced emission from the heated electrons moving down the field lines to Jupiter.

  15. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Milan, S. E.

    2016-09-01

    We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbital distance and magnetic field strength. We include saturation of the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present power-law approximations for the convection potentials, radio powers and spectral flux densities. We specifically consider a solar-age system and a young (1 Gyr) system. We show that the radio power increases with magnetic field strength for magnetospheres with saturated convection potential, and broadly decreases with increasing orbital distance. We show that the magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the full available incident Poynting flux, such that the magnetic Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio powers for hot Jupiters. Our radio powers for hot Jupiters are ˜5-1300 TW for hot Jupiters with field strengths of 0.1-10 BJ orbiting a Sun-like star, while we find that competing effects yield essentially identical powers for hot Jupiters orbiting a young Sun-like star. However, in particular, for planets with weaker magnetic fields, our powers are higher at larger orbital distances than given by the RBL, and there are many configurations of planet that are expected to be detectable using SKA.

  16. Venus - Global surface radio emissivity

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Pettengill, G. H.

    1983-01-01

    Observations of thermal radio emission from the surface of Venus, made by the Pioneer Venus radar mapper at a wavelength of 17 cm, show variations that are dominated by changes in surface emissivity. The regions of lowest emissivity (0.54 + or - 0.05 for the highland areas of Aphrodite Terra and Theia Mons) correspond closely to regions of high radar reflectivity reported earlier. These results support the inference of inclusions of material with high electrical conductivity in the surface rock of these areas.

  17. ON THE ORIGIN OF RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz

    2015-02-10

    Magnetars are the most magnetized objects in the known universe. Powered by the magnetic energy, and not by the rotational energy as in the case of radio pulsars, they have long been regarded as a completely different class of neutron stars. The discovery of pulsed radio emission from a few magnetars weakened the idea of a clean separation between magnetars and normal pulsars. We use the partially screened gap (PSG) model to explain radio emission of magnetars. The PSG model requires that the temperature of the polar cap is equal to the so-called critical value, i.e., the temperature at which the thermal ions outflowing from the stellar surface screen the acceleration gap. We show that a magnetar has to fulfill the temperature, power, and visibility conditions in order to emit radio waves. First, in order to form PSG, the residual temperature of the surface has to be lower than the critical value. Second, since the radio emission is powered by the rotational energy, it has to be high enough to enable heating of the polar cap by backstreaming particles to the critical temperature. Finally, the structure of the magnetic field has to be altered by magnetospheric currents in order to widen a radio beam and increase the probability of detection. Our approach allows us to predict whether a magnetar can emit radio waves using only its rotational period, period derivative, and surface temperature in the quiescent mode.

  18. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  19. High Energy Emission from Pulsar Magnetospheres and Winds

    NASA Astrophysics Data System (ADS)

    Spitkovsky, Anatoly

    Recent gamma-ray observations of pulsars and their nebulae suggest an important role played by magnetic reconnection in determining the structure of the magnetosphere and the wind and in the acceleration of particles that lead to the high energy emission. Strong current sheets that are susceptible to magnetic dissipation are found near the light cylinder of the pulsar and persist throughout the wind. This proposal investigates the processes that occur in these current sheets, and determines their structure and particle acceleration properties. A suite of relativistic MHD and particle-in-cell kinetic simulations will be used to obtain the global 3D geometry of the magnetosphere, flow geometry in the current sheet, and calculate the dissipation of the current both near the pulsar and in the termination shock of the pulsar wind. The results will be applied to modeling the beaming in pulsar gamma-ray light curves, and to understanding particle acceleration in broadband and flaring nebular emission.

  20. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-02-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  1. High Energy Emission in Pulsar Magnetospheres: Modeling in the FERMI Era

    NASA Astrophysics Data System (ADS)

    Kalapotharakos, Constantinos; Kust Harding, Alice; Kazanas, Demosthenes; Brambilla, Gabriele

    2016-01-01

    Our study of pulsar high-energy emission in dissipative pulsar magnetospheres provides meaningful constraints on the macroscopic parameters of the global pulsar magnetosphere solutions through the extensive comparison of model light curves and their spectra with those provided by multi-wavelength observations of real pulsars. These state-of-the-art solutions, by their nature, provide both the field geometry, and the necessary particle accelerating electric fields. Using these solutions, we generate model gamma-ray light curves by calculating the trajectories and the Lorentz factors of the radiating particles, under the influence of both the accelerating electric components and curvature radiation-reaction. I will show how this study leads to the construction of model magnetospheres that successfully reproduce the observed light-curve phenomenology as depicted in the radio-lag vs peak-separation diagram obtained by Fermi. These models allow the calculation of phase-averaged and phase-resolved spectra and the total gamma-ray luminosities as well. I will show that the corresponding photon cut-off energies and total gamma-ray luminosities are within the observed ranges for both standard and millisecond pulsars. A direct and detailed comparison with the Fermi data reveals the dependence of the macroscopic conductivity parameter on the spin down rate, constraining the physical mechanisms underlying the observed pulsar high-energy emission.

  2. Detection of 610-MHz radio emission from hot magnetic stars

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Wade, G. A.; Sundqvist, J. O.; Oberoi, D.; Grunhut, J. H.; ud-Doula, A.; Petit, V.; Cohen, D. H.; Oksala, M. E.; David-Uraz, A.

    2015-09-01

    We have carried out a study of radio emission from a small sample of magnetic O- and B-type stars using the Giant Metrewave Radio Telescope, with the goal of investigating their magnetospheres at low frequencies. These are the lowest frequency radio measurements ever obtained of hot magnetic stars. The observations were taken at random rotational phases in the 1390 and the 610 MHz bands. Out of the eight stars, we detect five B-type stars in both the 1390 and the 610 MHz bands. The three O-type stars were observed only in the 1390 MHz band, and no detections were obtained. We explain this result as a consequence of free-free absorption by the free-flowing stellar wind exterior to the confined magnetosphere. We also study the variability of individual stars. One star - HD 133880 - exhibits remarkably strong and rapid variability of its low-frequency flux density. We discuss the possibility of this emission being coherent emission as reported for CU Vir by Trigilio et al.

  3. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and γ ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from

  4. Radio emission from AM Herculis

    NASA Technical Reports Server (NTRS)

    Bastian, T. S.; Dulk, G. A.; Chanmugam, G.

    1985-01-01

    Observations of the quiescent microwave emission of the magnetic cataclysmic variable AM Herculis are presented. The emission, which declined from a mean value of 0.58 mJy at 4.9 GHz to about 0.3 mJy, in rough coincidence with the entry of AM Herculis into an optical low state (mid-1983), is explained in terms of optically thick gyrosynchrotron emission. It is noted that the observation of a coherent outburst at 4.9 GHz, interpreted as the result of a cyclotron maser on the red dwarf secondary, indicates that the secondary is magnetized. Possible implications are briefly explored. Comparisons between this system and other stellar continuum radio sources are made.

  5. X-ray and radio core emission in radio quasars

    NASA Technical Reports Server (NTRS)

    Kembhavi, A.; Feigelson, E. D.; Singh, K. P.

    1986-01-01

    In order to investigate the physical relationship between X-ray and radio core emission in radio-selected quasars, 35 radio quasars have been observed with the VLA at 6 and 20 cm. The sample was chosen from a list of radio quasars with known X-ray luminosity but poorly known radio properties. Including data gathered from the literature, radio core detections or upper limits at 6 cm have been obtained for 127 radio quasars which have published Einstein X-ray data. A statistical association is sought between radio core luminosity and X-ray luminosity, and it is found that there is a strong correlation. The slope of the relation of L(x) to L(Gamma)-alpha is alpha = 0.71 + or - 0.07 for unresolved quasars with flat radio spectra. The slope decreases as quasars with extended radio regions are considered. This is traced to the presence of radio emission which is unrelated to the X-ray emission, in the presently unresolved cores of quasars.

  6. Multi-parameter Correlation of Jovian Radio Emissions with Solar Wind and Interplanetary Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Golla, T.; Reiner, M. J.; Farrell, W. M.

    2015-12-01

    Variability of the numerous varieties of Jovian radio emission has been associated with aspects of solar wind (SW) and interplanetary magnetic field (IMF) parameters outside the magnetosphere. Here we demonstrate multiple-parameter correlations that relate each of several Jovian emissions, including bKOM and quasi-periodic bursts, to the SW and IMF impacting the Jovian magnetosphere. The data used are from the Ulysses spacecraft with radio data from the Unified Radio and Plasma wave (URAP) instrument, which provides high-quality remote radio observations of the Jovian emissions. The URAP observations are correlated with SW and IMF data from the relevant instruments on Ulysses, propagated to the nose of the Jovian magnetosphere with a sophisticated code. Because the aphelion of the Ulysses orbit was at the Jovian distance from the Sun, Ulysses spent ample time near Jupiter in 1991-1992 and 2003-2004, which are the intervals analyzed. Our results can be inverted such that radio observations by a Jovian orbiter, such as Cassini or Juno, are able to identify SW/IMF changes based on the behavior of the radio emissions.

  7. Controlled stimulation of magnetospheric electrons by radio waves Experimental model for lightning effects

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Curtis, S. A.; Barcus, J. R.; Siefring, C. L.; Kelley, M. C.

    1983-01-01

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung X-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the X-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes.

  8. Controlled stimulation of magnetospheric electrons by radio waves: experimental model for lightning effects.

    PubMed

    Goldberg, R A; Curtis, S A; Barcus, J R; Siefring, C L; Kelley, M C

    1983-03-18

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung x-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the x-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes. PMID:17735612

  9. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  10. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  11. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  12. Radio emission in peculiar galaxies

    NASA Technical Reports Server (NTRS)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  13. On the origin of radio emission in radio quiet quasars

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, Ehud

    The radio emission in radio loud quasars (RLQs) originates in a jet carrying relativistic electrons. In radio quiet quasars (RQQs) the radio emission is ˜ 103 times weaker, relative to other bands. Its origin is not clearly established yet, but it is often speculated to arise from a weak jet. Here we show that there is a tight relation between L_R and L_X for RQQs, with L_R/L_X˜ 10-5, based on the optically selected Palomar-Green (PG) quasars, with nearly complete X-ray and radio detections (avoiding biases and selection effects). Coronally active stars also show a tight relation between L_R and L_X with L_R/L_X˜ 10-5 (the Güdel & Benz relation), which together with correlated variability indicates that stellar coronae are magnetically heated. The X-ray emission of quasars most likely originates from a hot accretion disk corona, and since RQQs follow the Güdel & Benz relation, it is natural to associate their radio emission with coronal emission as well. The tight relation between L_R and L_X may simply reflect the equality of accretion disk coronal heating by magnetically generated relativistic electrons (producing L_R), and coronal cooling by Compton scattering (producing L_X). This suggestion can be tested by looking for correlated X-ray and radio variability patterns, such as the Neupert effect, displayed by stellar coronae.

  14. Radio emissions from RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrey; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Cummer, Steven

    2016-04-01

    The discovery of bursts of energetic photons coming out to space from the Earth's atmosphere, referred to as terrsetrial gamma-ray flashes (TGFs), has stimulated research activity investigating different aspects of the TGF generation and accompanying processes. Two models of the TGF production are nowadays competing to explain the observations of the TGFs and related phenomena. One of the models involves the feedback mechanism enhancing the production rate of the runaway electrons in the ambient electric field of a thundercloud. Another model considers runaway electrons accelerated in the strong local electric field in front of the upward propagating negative leader of the +IC. We performed a detailed analysis of RHESSI TGFs detected between August 2004 and September 2015. It was reported that the RHESSI satellite clock has a systematic error of ˜ 1.8 ms, but the exact value remained unknown, also it was unclear if this systematic clock error is changing with time or not. We compared RHESSI TGFs with the world wide lightning location network (WWLLN) database and found the distribution of the time delays between the TGF peak times and associated WWLLN detections. This distribution allowed us to find the value of the RHESSI systematic clock offset with the microsecond accuracy level. Also we found that this offset experienced two changes: in August 2005 and in October 2013, which was confirmed by two independent ways. We found that in case of double TGFs WWLLN detection corresponds to the second TGF of the pair. VLF magnetic field recordings from the Duke University also attribute radio sferics to the second TGF, exhibiting no detectable radio emission during the first TGFs of the TGF pairs. We have proposed a possible scenario that is consistent with the observations. This scenario supports the leader-based model of the TGF generation. Spectral characteristics of 77 sferics recorded by the Duke University VLF sensors and related to the RHEESI TGFs show that maximal

  15. AURORAL RADIO EMISSION FROM STARS: THE CASE OF CU VIRGINIS

    SciTech Connect

    Trigilio, Corrado; Leto, Paolo; Umana, Grazia; Buemi, Carla S.; Leone, Francesco

    2011-09-20

    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as a radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to a cyclotron maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in 2010 April with the Expanded Very Large Array in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of frequency. We interpret this behavior as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth, and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect 'markers' of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin-down of a star on or near the main sequence.

  16. Saturn radio emission and the solar wind - Voyager-2 studies

    SciTech Connect

    Desch, M.D.; Rucker, H.O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field. 10 references.

  17. Saturn radio emission and the solar wind - Voyager-2 studies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Rucker, H. O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field.

  18. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  19. Non-thermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1978-01-01

    Direct, strong evidence for non-thermal radio emission from Saturn exists in the hectometric data observed by Imp 6. The planet has been tentatively identified as a decametric source, but the most sensitive and most recent data fail to confirm this. At metric or decimetric wavelengths Saturn has no non-thermal emission like Jupiter's synchrotron sources. Finally, a comparative study of Earth and Jupiter radio emissions suggests lightning discharges.

  20. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations. PMID:25375713

  1. Backward Wave Cyclotron-Maser Emission in the Auroral Magnetosphere

    NASA Astrophysics Data System (ADS)

    Speirs, D. C.; Bingham, R.; Cairns, R. A.; Vorgul, I.; Kellett, B. J.; Phelps, A. D. R.; Ronald, K.

    2014-10-01

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  2. Coherent emission in fast radio bursts

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2014-05-01

    The fast (ms) radio bursts reported by Lorimer et al. Science 318, 777 (2007) and Thornton et al. Science 341, 53 (2013) have extremely high brightness temperatures if at the inferred cosmological distances. This implies coherent emission by "bunches" of charges. Fast radio bursts, like the giant pulses of the Crab pulsar, display banded spectra that may be harmonics of plasma frequency emission by plasma turbulence and are inconsistent with emission by charge distributions moving relativistically. We model the emission region as a screen of half-wave dipole radiators resonant around the frequencies of observation, the maximally bright emission mechanism of nonrelativistic charges, and calculate the implied charge bunching. From this we infer the minimum electron energy required to overcome electrostatic repulsion. If fast radio bursts are the counterparts of Galactic events, their Galactic counterparts may be detected from any direction above the horizon by radio telescopes in their far sidelobes or by small arrays of dipoles.

  3. Radio emission from AM Herculis-type binaries

    NASA Technical Reports Server (NTRS)

    Chanmugam, G.; Dulk, G. A.

    1982-01-01

    A VLA search for 4.9 GHz radiation from the magnetic cataclysmic variable AM Her, along with the similar EF Eri binary, has led to the discovery of AM Her radio emission having a flux density of 0.67 + or - 0.052 mJy, where 1 mJy is equal to 10 to the -29th W/sq m per Hz. Neither AM Her circular polarization nor EF Eri were detected. The AM Her data are shown to be consistent with a model in which radiation is due to geosynchrotron emission from electrons of energies of a few hundred keV, which are trapped in the magnetosphere of the white dwarf element of the cataclysmic variable.

  4. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  5. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  6. Gamma-ray emission in dissipative pulsar magnetospheres: from theory to Fermi observations

    SciTech Connect

    Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-10-01

    We compute the patterns of γ-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed γ-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model γ-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and γ-ray emission on the γ-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the γ-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  7. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  8. Quasar emission lines, radio structures and radio unification

    NASA Astrophysics Data System (ADS)

    Jackson, Neal; Browne, I. W. A.

    2013-02-01

    Unified schemes of radio sources, which account for different types of radio active galactic nucleus in terms of anisotropic radio and optical emission, together with different orientations of the ejection axis to the line of sight, have been invoked for many years. Recently, large samples of optical quasars, mainly from the Sloan Digital Sky Survey (SDSS), together with large radio samples, such as Faint Images of the Radio Sky at Twenty cm (FIRST), have become available. These hold the promise of providing more stringent tests of unified schemes but, compared to previous samples, lack high-resolution radio maps. Nevertheless, they have been used to investigate unified schemes, in some cases yielding results which appear inconsistent with such theories. Here we investigate using simulations how the selection effects to which such investigations are subject can influence the conclusions drawn. In particular, we find that the effects of limited resolution do not allow core-dominated radio sources to be fully represented in the samples, that the effects of limited sensitivity systematically exclude some classes of sources and the lack of deep radio data make it difficult to decide to what extent closely separated radio sources are associated. Nevertheless, we conclude that relativistic unified schemes are entirely compatible with the current observational data. For a sample selected from SDSS and FIRST which includes weak-cored triples we find that the equivalent width of the [O III] emission line decreases as core dominance increases, as expected, and also that core-dominated quasars are optically brighter than weak-cored quasars.

  9. Solar emission levels at low radio frequencies

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1990-01-01

    Solar radio emission could seriously interfere with observations made by a low frequency (1 to 10 MHz) array in space. International Sun-Earth Explorer (ISEE-3) radio data were used to determine solar emission level. The results indicate that solar emission should seriously disturb less than ten percent of the data, even during the years of solar maximum. Thus it appears that solar emission should not cause a disastrous loss of data. The information needed to design procedures to excise solar interference from the data produced by any low-frequency array is provided.

  10. Transient pulsed radio emission from a magnetar.

    PubMed

    Camilo, Fernando; Ransom, Scott M; Halpern, Jules P; Reynolds, John; Helfand, David J; Zimmerman, Neil; Sarkissian, John

    2006-08-24

    Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars. PMID:16929292

  11. Radio emissions and the heliospheric termination shock

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Cairns, I. H.; Donohue, D. J.; Matthaeus, W. H.

    1994-01-01

    With the Voyager spacecrafts' discovery of low-frequency radio emissions from the depths of the outer heliosphere has come the realization that the boundaries between our heliosphere and the local interstellar medium have been detected. A model is presented here that can account for the observed radio emissions, based upon a termination shock modified by the dynamical effect of galactic and anomalous cosmic rays. Frequency and time domain properties of both continuum and transient radio events are explained, and new estimates for the distance to the termination shock (approximately 60-70 astronomical units) and the heliopause (less than or approximately 90 AU) are given.

  12. Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment

    NASA Technical Reports Server (NTRS)

    Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard

    2004-01-01

    Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of

  13. Control of Jupiter's Radio Emission and Aurorae by the Solar Wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Zarka, P.; Lecacheux, A.; Bolton, S. J.; Desch, . D.; Farrell, W. W.; Kaiser, M. L.

    2002-01-01

    Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.

  14. Understanding pulsar magnetospheres with the SKA

    NASA Astrophysics Data System (ADS)

    Karastergiou, A.; Johnston, S.; Karastergiou, A.; Johnston, S.; Andersson, N.; Breton, R.; Brook, P.; Gwinn, C.; Lewandowska, N.; Keane, E.; Kramer, M.; Macquart, J. P.; Serylak, M.; Shannon, R.; Stappers, B.; van Leeuwen, J.; Verbiest, J.; Weltevrede, P.; Wright, G.

    The SKA will discover tens of thousands of pulsars and provide unprecedented data quality on these, as well as the currently known population, due to its unrivalled sensitivity. Here, we outline the state of the art of our understanding of magnetospheric radio emission from pulsars and how we will use the SKA to solve the open problems in pulsar magnetospheric physics.

  15. The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    The effect of the ionized regions of the earth's atmosphere on radio wave propagation is comprehensively treated. After an introductory consideration of the terrestrial ionosphere and magnetosphere, wave propagation in ion plasmas, and their disturbances, attention is given to basic equations for the consideration of propagation effects, such constitutive relations as the Lorentz polarization term and the Debye length, the roles of polarization and refractive index in magnetoionic theory, rays and group velocity, the Booker quartic in stratified media, and the 'WKB' solutions. Further topics encompass the Airy integral function and the Stokes phenomenon, ray tracing in a loss-free stratified medium, ray theory and full wave solution results for an isotropic ionosphere, and full wave methods for anisotropic stratified media and their applications.

  16. Possible radio emission from Uranus at 0.5 MHz

    NASA Technical Reports Server (NTRS)

    Brown, L. W.

    1976-01-01

    Radio emission from the direction of Uranus has been detected in data from the Goddard radio astronomy experiment on the IMP-6 spacecraft. Previously, emission from the direction of Jupiter and Saturn had been observed by IMP-6 at a number of frequencies near 1 MHz and were identified through an analysis of the phase of the observed modulated signal detected from the spinning dipole antenna. This technique was applied to the direction of Uranus with possible positive results. Over the approximately 500 days of data, three to six bursts with unique spectral characteristics have been found. The events persisted less than 3 minutes and are strongest in intensity near 0.5 MHz. Identification with Uranus is confused by the likely presence of low-level terrestrial and solar emission. Because of the unfavorable angular separation of earth and Uranus, there is a possibility that the bursts are atypical terrestrial magnetospheric phenomena, although the uniqueness of the set of events indicates the probable detection of radiation from Uranus.

  17. On the elliptical polarization of Jupiter's decametric radio emission

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Dulk, G. A.

    1991-01-01

    The origin of the 100 percent elliptical polarization of Jupiter's decametric radio emission is investigated. The transfer of polarized radiation when coupling of the Stokes parameters is important is studied, and it is found, in agreement with earlier authors, that the density in and near the source region must be so low that the polarization remains fixed along the ray path. The polarization of the cyclotron maser radiation in these circumstances is determined, and it is found that the dispersion relation of the rarefied plasma composed of energetic, anisotropic electrons is like that in the vacuum. It is also found that the growth rate is sufficient to saturate the maser and account for the observed brightness temperature. Possible sources of plasma in and near the source region in Jupiter's inner, polar magnetosphere are considered.

  18. Nonthermal Radio Emission and the HR Diagram

    NASA Technical Reports Server (NTRS)

    Gibson, D. M.

    1985-01-01

    Perhaps the most reliable indicator of non-radiative heating/momentum in a stellar atmosphere is the presence of nonthermal radio emission. To date, 77 normal stellar objects have been detected and identified as nonthermal sources. These stellar objects are tabulated herein. It is apparent that non-thermal radio emission is not ubiquitous across the HR diagram. This is clearly the case for the single stars; it is not as clear for the binaries unless the radio emission is associated with their late-type components. Choosing to make this association, the single stars and the late-type components are plotted together. The following picture emerges: (1) there are four locations on the HR diagram where non-thermal radio stars are found; (2) the peak incoherent 5 GHz luminosities show a suprisingly small range for stars within each class; (3) the fraction of stellar energy that escapes as radio emission can be estimated by comparing the integrated maximum radio luminosity to the bolometric luminosity; (4) there are no apparent differences in L sub R between binaries with two cool components, binaries with one hot and one cool component, and single stars for classes C and D; and (5) The late-type stars (classes B, C, and D) are located in parts of the HR diagram where there is reason to suspect that the surfaces of the stars are being braked with respect to their interiors.

  19. Search for Radio Emission from HD80606b: a Highly Eccentric Exoplanet

    NASA Astrophysics Data System (ADS)

    Knapp, M.; Winterhalter, D.; Lazio, J.; Majid, W.; Kuiper, T.; Farrell, W. M.; Spitler, L.

    2014-12-01

    Exoplanetary radio emission is a potential goldmine of information about a wider sample of planetary interiors, dynamos, and magnetospheres than our solar system provides. To date, however, radio searches for exoplanetary radio emission have been unsuccessful likely because the observing frequencies are too high. Using the relatively new Low Frequency Array (LOFAR), we present analyses of observations of the highly eccentric Jovian exoplanet HD80606b during five epochs before and after the planet's periastron. All of the gas giants in the solar system, as well as the Earth, exhibit magnetospheric radio emission due to the electron cyclotron maser instability. The power of this emission is modulated by the solar wind intensity. HD80606b is in a highly eccentric (e=0.93) orbit with a 111 day period. As the planet passes from apastron (0.88 AU) to periastron (0.03 AU), it experiences widely varying stellar wind conditions which should lead to variable radio emission with the highest power corresponding to periastron passage. HD80606b has been observed previously with the VLA at 325 MHz and 1425 MHz by Lazio et. al (2010), but LOFAR's lower frequency range (30-75 MHz) and high sensitivity is better suited to Jovian-type radio emissions. The LOFAR observations were made 48 hours and 18 hours pre-periastron, plus 18 and 48 hours post-periastron to capture the predicted strongest emission, and near apastron to provide a baseline level. The data are analyzed for both time-dependent and frequency dependent emission at each of the five observation epochs. This work presents the ongoing analysis of the data. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  20. Io control of Jovian radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1980-01-01

    The possibility of Io controlling Jovian decametric radio emission, particularly in the region below 22 MHz, is discussed. Results of a two-year survey at 26.3 at 26.3 MHz are presented which demonstrate the control of Io over a high-intensity storm component of the radio emission and the independence of a weak radio component from the phase of Io, as was observed at lower frequencies. It is thus hypothesized that Io control is a flux-dependent rather than a frequency-dependent phenomenon, and results of analyses at 18 and 10 MHz which support this hypothesis are presented. The apparent correlation between frequency and Io control is thus shown to result from a selection effect due to the increase of non-Io emission with decreasing frequency and relative antenna detection threshold. This result implies a contiguous Io-controlled source region extending out several Jovian radii along the Io flux tube.

  1. Physical Analysis of the Jovian Synchrotron Radio Emission

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  2. Radio emission from chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Drake, Stephen A.; Bastian, T. S.

    1992-01-01

    In five VLA observing runs the initial survey of radio emission from magnetic Bp-Ap stars by Drake et al. is extended to include a total of 16 sources detected at 6 cm out of 61 observed, giving a detection rate of 26 percent. Of these stars, three are also detected at 2 cm, four at 3.6 cm, and five at 20 cm. The 11 new stars detected as radio sources have spectral types B5-A0 and are He-weak and Si-strong. No classical (SrCrEu-type) Ap stars have yet been detected. The 16 detected sources show a wide range of radio luminosities with the early-B He-S stars on average 20 times more radio luminous than the late-B He-W stars and 1000 times more luminous than Theta Aurigae. Multifrequency observations indicate flat spectra in all cases. Four stars have a detectable degree of circular polarization at one or more frequencies. It is argued that the radio-emitting CP (chemically peculiar) stars form a distinct class of radio stars that differs from both the hot star wind sources and the active late-type stars. The observed properties of radio emission from these stars may be understood in terms of optically thick gyrosynchrotron emission from a nonthermal distribution of electrons produced in a current sheet far from the star. In this model the electrons travel along magnetic fields to smaller radii and higher magnetic latitudes where they mirror and radiate microwave radiation.

  3. Detection of radio continuum emission from Procyon

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Simon, Theodore; Brown, Alexander

    1993-01-01

    We have detected the F5 IV-V star Procyon as a weak and variable 3.6 cm radio continuum source using the VLA. The inferred radio luminosity is similar to, though some-what higher than, the X-band luminosity of the active and flaring sun. The 33 micro-Jy flux density level at which we detected Procyon on four of five occasions is close to the 36 micro-Jy radio flux density expected from a model in which the radio emission consists of two components: optically thick 'stellar disk' emission with a 3.6 cm brightness temperature of 20,000 K that is 50 percent larger than the solar value, and optically thin coronal emission with an emission measure the same as that indicated by Einstein and EXOSAT X-ray flux measurements in 1981 and 1983. The maximum mass-loss rate of a warm stellar wind is less than 2 x 10 exp -11 solar mass/yr. An elevated flux density of 115 micro-Jy observed on a single occasion provides circumstantial evidence for the existence of highly localized magnetic fields on the surface of Procyon.

  4. A search for radio emission from the 'nonmagnetic' chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.; Bookbinder, J. A.

    1994-01-01

    We have observed 23 members of the Am and HgMn subclasses of chemically peculiar (CP) stars with the Very Large Array (VLA) to search for nonthermal radio emission at levels comparable to those found for the Si and He peculiar subclasses of the CP stars by Linsky et al. (1992). This study was motivated by recent claims that magnetic fields of kilogauss strength are present in at least some of the Am and HgMn stars, contrary to previous beliefs, which would indicate that radio-emitting magnetospheres could be present in these stars. We detected none of the Am and HgMn stars as radio emitters with upper limits typically less than 0.20 mJy. Applying a correlation between radio luminosity, surface magnetic field, and effective temperature derived from previous radio studies of the Si and He peculiar CP stars, we find that the predicted radio luminosities of alpha And (an HgMn star) and Sirius (a hot Am star) are more than an order of magnitude larger than the observed upper limits, indicating that these stars lack magnetospheres, and, by inference, surface magnetic fields.

  5. Elliptically polarized bursty radio emissions from Jupiter

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Desch, M. D.; Kaiser, M. L.; Manning, R.; Fainberg, J.; Stone, R. G.

    1995-01-01

    We report a new component of Jovian radio emission observed by the Ulysses spacecraft when Ulysses was at high Jovigraphic latitudes (greater than or approximately = 30 deg north or south of the Jovian magnetic equator). This bursty high-latitude emission is elliptically polarized in the right-hand sense when observed from northern latitudes and in the left-hand sense when observed from southern latitudes, consistent with extraordinary mode. The orientation of the polarization ellipse is observed to systematically vary with time relative to the observer. It is argued that the elliptically-polarized nature of the emission is intrinsic to the source region.

  6. PSR J0737-3039B: A PROBE OF RADIO PULSAR EMISSION HEIGHTS

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Lomiashvili, D.; Gourgouliatos, K. N.; Lyutikov, M.

    2012-05-10

    In the double pulsar system PSR J0737-3039A/B, the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well-defined geometrical parameters of the system, we determine the minimum emission height to be {approx}20R{sub NS} in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be {approx}2500R{sub NS}. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.

  7. Cross-Correlations in Quasar Radio Emission

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    The main factors forming the complex evolution of the accretive astrophysical systems are nonlinearity, intermittency, nonstationarity and also collective phenomena. To discover the dynamic processes in these objects and to detain understanding their properties we need to use all the applicable analyzing methods. Here we use the Flicker-Noise Spectroscopy (FNS) as a phenomenological approach to analyzing and parameterizing the auto- and cross-correlations in time series of astrophysical objects dynamics. As an example we consider the quasar flux radio spectral density at frequencies 2.7 GHz and 8.1 GHz. Data have been observed by Dr. N. Tanizuka (Laboratory for Complex Systems Analysis, Osaka Prefecture University) in a period of 1979 to 1988 (3 309 days). According to mental habits quasar is a very energetic and distant active galactic nucleus containing a supermassive black hole by size 10-10,000 times the Schwarzschild radius. The quasar is powered by an accretion disc around the black hole. The accretion disc material layers, moving around the black hole, are under the influence of gravitational and frictional forces. It results in raising the high temperature and arising the resonant and collective phenomena reflected in quasar emission dynamics. Radio emission dynamics of the quasar 0215p015 is characterized by three quasi-periodic processes, which are prevalent in considering dynamics. By contrast the 1641p399's emission dynamics have not any distinguish processes. It means the presence of high intermittency in accretive modes. The second difference moment allows comparing the degree of manifesting of resonant and chaotic components in initial time series of the quasar radio emission. The comparative analysis shows the dominating of chaotic part of 1641p399's dynamics whereas the radio emission of 0215p015 has the predominance of resonant component. Analyzing the collective features of the quasar radio emission intensity demonstrates the significant

  8. Calculation of the radio emission from EAS

    NASA Technical Reports Server (NTRS)

    Allan, H. R.; Sun, M. P.; Crannell, C. J.; Hough, J. H.; Shutie, P. F.

    1975-01-01

    Time-varying features of an electron-photon cascade are considered, particularly those associated with radio emission. The cosmic ray shower is represented as a superposition of collinear 10 GeV electron-photon cascades launched at different heights in the atmosphere. Actual simulations are performed for only 10 cascades at each of 40 heights and the results are scaled to represent the total number of cascades required. The apparent angular motions of the cascade particles as detected by antennas located at various positions up to 300 m from the shower axis are simulated. The radio pulse waveform and the corresponding frequency spectrum are obtained from these motions.

  9. Electrostatic and electromagnetic gyroharmonic emissions due to energetic electrons in magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Wu, C. S.

    1979-01-01

    The paper derives the growth rates and growth lengths of the electrostatic emission for spatially homogeneous and inhomogeneous energetic electrons, and numerically evaluates the growth rate and growth length spectra for several parameter sets representative of magnetospheric plasmas. In addition, the growth rates are derived for the case of electromagnetic emission modeled by the ordinary mode. The numerical results of the electromagnetic and electrostatic cases are compared with observations made by satellites in the earth's magnetosphere. It is concluded that the electrostatic gyroharmonic excitation is possible without the cold composition of plasma which is often postulated in the existing literature.

  10. Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Fairfield, D. H.; Wu, C. S.

    1979-01-01

    Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.

  11. Steady-State Models of X-ray Emission from Massive-Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Townsend, Richard D.

    2016-01-01

    In the subset of OB stars with large-scale, organized magnetic fields, the stellar wind is forced to flow along magnetic field lines and is trapped within a magnetosphere corotating with its host star. As the wind turns on itself, shocks heat the plasma to millions of degrees and produce X-ray emission. Such magnetospheres are typically classified with the "wind magnetic confinement parameter", a simplified ratio between the magnetic energy density and the wind kinetic energy density. This parameter is often used to estimate magnetosphere properties, such as size, mass-loss rate, and spin-down time. Unfortunately, the strong magnetic fields in magnetospheres (polar strength: 100 G - 10 kG) and resulting Alfven velocities make magnetohydrodynamics simulations computationally difficult due to very small timesteps. To get around this issue, we approximate a massive-star magnetosphere as a series of one-dimensional flows along magnetic dipole field lines and develop a steady-state model from the resulting hydrodynamic equations. With this model, we derive scaling relations for the stellar mass-loss rate as a function of surface colatitude and find agreement with previous scaling results derived from simulations. These relations are further extended to include the effects of rigid-body rotation within the magnetosphere. Additionally, we develop an X-ray emission model from this steady-state analysis and compare it against both the "XADM" model for X-ray emission from massive star magnetospheres and observations of massive magnetic stars. Finally, we discuss improvements to the traditional wind magnetic confinement parameter to take into account the effect of a magnetic field on the wind kinetic energy density.

  12. Radio Emissions from the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.

    1996-01-01

    For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz. Two major events have been observed, the first in 1983-84 and the second in 1992-93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May-June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f(sub p)) and at twice the plasma frequency (2f(sub p)). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.

  13. Models of Neptune's smooth recurrent radio emission

    NASA Technical Reports Server (NTRS)

    Sawyer, Constance

    1993-01-01

    The quantitative response of the Planetary Radio Astronomy (PRA) instrument to a wave with polarization ellipse of arbitrary shape and orientation, arriving at the antennas from any direction, can be determined. This capability is used to model the time variation of intensity and circular polarization over a range of radio frequencies for proposed radio-source locations and emission characteristics at Neptune. At frequencies below 400 kHz the observed variation of intensity, polarization, and phase are closely simulated in an offset tilted dipole magnetic field by conjugate sources at midlatitude with filled emission cones. The phase of emission at higher frequencies is reproduced by sources at lower latitude. Modeled wide-cone emission does not reach the spacecraft at the observed phase nor have the polarization sense observed before closest approach. Source-surface maps of apparent polarization for the period before closest approach when instrumental response is especially sensitive to source location is presented. The method is capable of extension to more realistic models of the magnetic field.

  14. DIFFUSE RADIO EMISSION IN ABELL 754

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.in

    2009-07-10

    We present a low-frequency study of the diffuse radio emission in the galaxy cluster A754. We present a new 150 MHz image of the galaxy cluster A754 made with the Giant Metrewave Radio Telescope and discuss the detection of four diffuse features. We compare the 150 MHz image with the images at 74, 330, and 1363 MHz; one new diffuse feature is detected. The flux density upper limits at 330 and 1363 MHz imply a synchrotron spectral index, {alpha}>2 (S {proportional_to} {nu}{sup -{alpha}}), for the new feature. The 'west relic' detected at 74 MHz is not detected at 150 MHz and is thus consistent with its nondetection at 1363 MHz and 330 MHz. Integrated spectra of all the diffuse features are presented. The fourth diffuse feature is located along the proposed merger axis in A754 and 0.7 Mpc away from the peak of X-ray emission; we refer to it as a relic. We have made use of the framework of the adiabatic compression model to obtain spectra. We show that the spectrum of the fourth diffuse feature is consistent with that of a cocoon of a radio galaxy lurking for about 9 x 10{sup 7} yr; no shock compression is required. The other three diffuse emission have spectra steeper than 1.5 and could be cocoons lurking for longer time. We discuss other possibilities such as shocks and turbulent reacceleration being responsible for the diffuse emission in A754.

  15. AGN coronal emission models - I. The predicted radio emission

    NASA Astrophysics Data System (ADS)

    Raginski, I.; Laor, Ari

    2016-06-01

    Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.

  16. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-05-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123°≤λ_III≤140° (north) and 284°≤λ_III≤305° (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189° to 236°) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  17. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-08-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123 to 140 deg. (north; III 1965 system) and 284 to 305 deg. (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189 to 236 deg.) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  18. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  19. Coronal Mass Ejections and Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2010-01-01

    Coronal mass ejections (CMEs) have important connections to various types of radio emissions from the Sun. The persistent noise storm radiation (type I storm at metric wavelengths, type III storms at longer wavelengths) can be clearly interrupted by the occurrence of a CME in the active region that produces the storm. Sometimes the noise storm completely disappears and other times, it reappears in the active region. Long-lasting type III bursts are associated with CME eruption, thought to be due to the reconnection process taking place beneath the erupting CME. Type II bursts are indicative of electron acceleration in the CME-driven shocks and hence considered to be the direct response of the CME propagation in the corona and interplanetary medium. Finally type IV bursts indicate large-scale post-eruption arcades containing trapped electrons that produce radio emission. This paper summarizes some key results that connect CMEs to various types of radio emission and what we can learn about particle acceleration in the corona) and interplanetary medium. Particular emphasis will be placed on type If bursts because of their connection to interplanetary shocks detected in situ.

  20. Polarization model applied to Uranian radio emission

    NASA Astrophysics Data System (ADS)

    Sawyer, C. B.; Neal, K. L.; Warwick, J. W.

    1991-04-01

    The total power and the degree of circular polarization as measured by the Planetary Radio Astronomy experiments on the Voyager spacecraft are modeled. For a source near the electron cyclotron frequency, the degree of circular polarization is determined by the angle between the wave vector and the field. It is shown that the observed strong circular polarization of Uranian smooth low-frequency (SLF) can be modeled as emission that is beamed along the direction of the magnetic field in a filled cone. The main observational constraints of SLF emission from Uranus are met by conjugate sources at about 21 deg from the magnetic equator.

  1. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  2. Time monitoring of radio jets and magnetospheres in the nearby young stellar cluster R Coronae Australis

    SciTech Connect

    Liu, Hauyu Baobab; Takami, Michihiro; Yan, Chi-Hung; Karr, Jennifer; Chou, Mei-Yin; Ho, Paul T.-P.; Galván-Madrid, Roberto; Costigan, Gráinne; Manara, Carlo Felice; Forbrich, Jan; Rodríguez, Luis F.; Zhang, Qizhou

    2014-01-10

    We report Karl G. Jansky Very Large Array 8-10 GHz (λ = 3.0-3.7 cm) monitoring observations toward the young stellar object (YSO) cluster R Coronae Australis (R CrA), taken from 2012 March 15 to 2012 September 12. These observations were planned to measure the radio flux variabilities in timescales from 0.5 hr to several days, to tens of days, and up to ∼200 days. We found that among the YSOs detectable in individual epochs, in general, the most reddened objects in the Spitzer observations show the highest mean 3.5 cm Stokes I emission, and the lowest fractional variabilities on <200 day timescales. The brightest radio flux emitters in our observations are the two reddest sources IRS7W and IRS7E. In addition, by comparing our observations with observations taken from 1996 to 1998 and 2005, we found that the radio fluxes of these two sources have increased by a factor of ∼1.5. The mean 3.5 cm fluxes of the three Class I/II sources, IRSI, IRS2, and IRS6, appear to be correlated with their accretion rates derived by a previous near-infrared line survey. The weakly accreting Class I/II YSOs, or those in later evolutionary stages, present radio flux variability on <0.5 hr timescales. Some YSOs were detected only during occasional flaring events. The source R CrA went below our detection limit during a few fading events.

  3. Discovery of radio emission from AE Aquarii

    SciTech Connect

    Bookbinder, J.A.; Lamb, D.Q.

    1987-12-01

    VLA 1.4-GHz and 4.9-GHz observations of six DQ Her cataclysmic variables, obtained in the C/D hybrid configuration with 50-MHz bandwidth, 7-sec time resolution, and limiting flux density about 200 microJy on July 21, 1984, are reported. Variable radio emission with time scale less than 5 min, circular polarization less than 15 percent, and flux density 3-5 mJy at 1.4 GHz and 8-16 mJy at 4.9 GHz is detected from AE Aqr. This emission is tentatively attributed to synchrotron emission from mildly relativistic electrons, powered by the MHD torque coupling the magnetic white dwarf to either (1) a secondary with a strong magnetic field or (2) an accretion disk. 20 references.

  4. Discovery of radio emission from AE Aquarii

    NASA Technical Reports Server (NTRS)

    Bookbinder, J. A.; Lamb, D. Q.

    1987-01-01

    VLA 1.4-GHz and 4.9-GHz observations of six DQ Her cataclysmic variables, obtained in the C/D hybrid configuration with 50-MHz bandwidth, 7-sec time resolution, and limiting flux density about 200 microJy on July 21, 1984, are reported. Variable radio emission with time scale less than 5 min, circular polarization less than 15 percent, and flux density 3-5 mJy at 1.4 GHz and 8-16 mJy at 4.9 GHz is detected from AE Aqr. This emission is tentatively attributed to synchrotron emission from mildly relativistic electrons, powered by the MHD torque coupling the magnetic white dwarf to either (1) a secondary with a strong magnetic field or (2) an accretion disk.

  5. DETECTION OF RADIO EMISSION FROM FIREBALLS

    SciTech Connect

    Obenberger, K. S.; Taylor, G. B.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Stovall, K.; Hartman, J. M.; Ellingson, S. W.; Helmboldt, J. F.; Wilson, T. L.; Kavic, M.; Simonetti, J. H.

    2014-06-20

    We present the findings from the Prototype All-Sky Imager, a back end correlator of the first station of the Long Wavelength Array, which has recorded over 11,000 hr of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long-duration (10 s of seconds) transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.

  6. Updated modeling of Io and non-Io Radio Auroral Emissions of Jupiter

    NASA Astrophysics Data System (ADS)

    Louis, C.; Lamy, L.; Zarka, P.; Cecconi, B.; Hess, S.

    2015-10-01

    The radio auroral emissions produced by the Jupiter's magnetosphere between a few kHz and 40MHz, the most intense of our Solar System, are known since half a century, but they still drive many questions, and their deepened study is one of the main aim of the JUNO missions (arrival in July 2016). Jovian auroral radio emissions are thought to be produced through the Cyclotron Maser Instability (CMI), from non-maxwellian weakly relativistic electrons gyrating along high-latitude magnetic fields lines (Zarka, 1998). These emissions divide in different spectral components, driven or not by the moon Io. The origin and the relationship between kilometric, hectometric and decametric non-Io emissions in particular remains poorly understood. To investigate these emissions, we simulated numerical dynamic spectra with the most recent version of the ExPRES code - Exoplanetary and Planetary Radio Emission Simulator, available at http://maser.obspm.fr - already used to successfully model Io decametric and Saturn's kilometric arcshaped emissions (Hess et al., 2008, Lamy et al., 2008) and predict exoplanetary radio emissions (Hess et al., 2011). Such simulations bring direct constraints on the locus of active magnetic field lines and on the nature of CMI-unstable electrons (Hess et al., submitted). We validated the new theoretical calculation of the beaming angle used by ExPRES, which now includes refraction at the source. We then built updated simulations of Io and non-Io emissions which were compared to the radio observations acquired by the Cassini spacecraft (Jupiter flyby in 2000) and the Nançay decameter array (routines observations of Jupiter).

  7. Modelling auroral currents at hot Jupiters: implications for auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Milan, S. E.

    2014-04-01

    Recently, the radio emissions of exoplanets have come under focus due to the commencement of observations using new radio telescopes such as LOFAR. A class of planet which has attracted significant attention in this respect is the close-orbiting 'hot Jupiter', several of which, according to previous estimates, may produce detectable radio emissions driven by stellar windmagnetosphere interactions. However, this expectation rests on the accuracy over many orders of magnitude of the 'Radiometric Bode's Law', an empirical relation between the solar wind energy input and radio power output of a variety of bodies in the solar system, some of which (e.g. Jupiter) are known to be dominated instead by internal processes such as planetary rotation. In this presentation we calculate the expected radio luminosity generated by a Dungey cycle-like stellar wind interaction with a hot Jupiter's magnetosphere. Specifically, we adapt the Milan (2013) model of the terrestrial twin-vortical ionospheric plasma flow and resulting field-aligned currents to the case of hot Jupiters, and we compute the total auroral and radio luminosities for various parameters and compare with previous empirical estimates.

  8. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  9. Study of sub-auroral radio emissions observed by ICE experiment onboard DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Mogilevski, M. M.; Sawas, S.; Blecki, J.; Berthelier, J. J.; Voller, W.

    2012-04-01

    We report on the terrestrial kilometric and hectometric radio emissions recorded by the DEMETER/ICE (Instrument Champ Electrique) experiment. This instrument measures the electric field components of electromagnetic and electrostatic waves in the frequency range from DC to 3.25 MHz. Despite the limited satellite invariant latitude (data acquisition below about 65°), specific events have been observed, close to the sub-auroral region, in the frequency range from 100 kHz to about 1 MHz. This range covers the well-known auroral kilometric radiation (AKR), the terrestrial kilometric continuum, and the sub-auroral terrestrial emission at higher frequency up to 3 MHz. The high spectral capability of the experiment leads us to distinguish between the bursty and the continuum emissions. Selected events have been found to principally occur in the late evening and early morning sectors of the magnetosphere (22 MLT - 02 MLT) but others have been observed on the dayside. Our first results are compared to previous radio observations performed on board INTERBALL-1 (Kuril'chik et al, Cosmic Research, 43, 2005) and GEOTAIL (Hashimoto et al., JGR, 104, 1999) satellites. We also discuss the common and different features of the Earth and Jovian radio emissions. We emphasis on the observational parameters: the occurrence probability, the emission beam and the spectral emission types. We show that the physical interpretation of the auroral phenomena needs a good knowledge of the geometric configuration of the source and observer and the reception system (antenna beam and receivers).

  10. Source of O mode radio emissions from the dayside of Uranus

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    During the inbound trajectory toward Uranus, the Planetary Radio Astronomy instrument on Voyager 2 observed narrow-band smooth (n-smooth) emission at frequencies centered near 60 kHz and O-mode emission (the dayside source) in a frequency range narrowly confined around 160 kHz. Assuming empirical models of the plasma density for the dayside magnetosphere of Uranus, and using cold plasma theory together with observational constraints, ray-tracing calculations are performed to determine the source location of the O-mode emission. The dayside source appears to originate along magnetic field lines with a footprint near the north magnetic pole. Sources of nightside high-frequency broadband smooth (b-smooth) emission observed by Voyager after encounter are believed to exist near the conjugate footprint of these same field lines. This would indicate that the particle population supplying the free energy source has energies at least as high as a few keV.

  11. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  12. Equatorial Emissions Events in the Inner Magnetosphere from THEMIS Observations

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chen, R.; Tam, W. Y.; Chen, L.; Jan, Y.; Yang, Y.

    2013-12-01

    Two specific emission events near equator are found by analyzing wave data from SCM (Search Coil Magnetometer) and EFI (Electric Field Instrument) of THEMIS mission in the local afternoon sector for the year of 2008. These events are both with emissions of frequencies at about 70Hz and 110Hz, between the local proton gyrofrequency fcH+ and the lower hybrid frequency flhr, around 5RE. The analyzed wave vectors are shown to be nearly perpendicular to the ambient geomagnetic fields. The observed ion velocity distributions at the same time exhibit ring features at about 3600 km/sec in perpendicular velocity, which is larger than the local Alfvén velocity. Wave growth rates over different frequencies are calculated to compare with the emission intensity at different frequencies based on dispersion relation of magnetosonic waves.

  13. The Radio Wave Emission from Sgr A*

    NASA Astrophysics Data System (ADS)

    Beaklini, Pedro Paulo Bonetti

    2008-10-01

    SgrA* is a compact radio source, with radius smaller than 1 AU. Its position is coincident with the dynamic center of a star cluster that orbits the 4 million solar mass supermassive black hole found in the center of the Milky Way. SgrA* is surrounded by a complex of HII regions, with complex morphology, named SgrA. The variability of the SgrA* emission was observed at different wavelengths, as radio, infrared and X-rays, with timescales that range from hours to months. Recent observations using interferometric techniques have detected a quasiperiodicity in the radio light curve from SgrA*. In our work, we present the result of 43 GHz observations obtained with the Itapetinga radiotelescope, located in Atibaia, which aimed to detect this variability and verify the existence of a periodicity. Sgr B2, an HII complex near SgrA*, was used as a calibrator to eliminate any extrinsic variability. The obtained light curve is consistent with previous results reported in the literature, confirming the increase in the amplitude of the variability with frequency. Particularly, daily variability was found that is compatible with what was reported at 7 mm using VLBI techniques. The expected 106 days periodicity was not found in our data by the Jurkevich statistic method, which instead indicated the existence of a 90 day period. However, the superposition of the 7 mm data on a 106 day look similar to what was found from the 1.3 cm observations. Considering that the observations at 7 mm do not cover all the phases in the full cycle, more observations are needed to confirm the existence of a periodicity in the light curve.

  14. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  15. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  16. A parametric study of the propagation of auroral radio emissions through auroral cavities

    NASA Astrophysics Data System (ADS)

    Gautier, A.; Hess, S.; Cecconi, B.; Zarka, P. M.

    2013-12-01

    Auroral Kilometric Radiation is the radio counterpart of the Earth's auroral radiations, observed in a large domain of wavelength, from Infrared to UV and obviously in visible. It is generated at high latitude (~70°), mostly along the nightside magnetic field lines connecting to the Earth's magnetospheric tail. In-situ observations by numerous spacecraft show that the radio sources are embedded inside depleted cavities. The auroral cavities contain a hot tenuous plasma (ne~1 cm-3, Te~5 keV) in a strong ambient magnetic field (fp/fc < 0.1). The mechanism of emission, the Cyclotron Maser Instability (CMI), predicts an intense X mode emission near gyromagnetic frequency preferentially perpendicular to the local magnetic field. But as the radio waves are generated inside a depleted cavity, they are refracted. The apparent beaming of the source is different from that predicted by the CMI. The characteristics of the apparent beaming of the source outside of the cavity depends on several geometrical and physical parameters of the surrounding medium, as well as the frequency of the radio wave. A ray tracing code (ARTEMIS-P), which computes the trajectories of electromagnetic waves in magnetized plasma, is use to compute the path of radio ray from the source inside the hot tenuous plasma of the cavity to the outside. We model a cylindrical plasma cavity characterized by a few parameters (width, edge and parallel gradients) and we study the effect of the cavity geometry on the beaming of AKR for several frequencies. We draw conclusions about the deterministic nature of the beaming angle of the radio emissions generated in cavities. We then extend our study to emissions from giant planets.

  17. U. radio emission from quiescent filaments

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1989-01-01

    Full-disk Very Large Array (VLA) synthesis maps of the quiet Sun indicate that filaments can be seen in emission at 91.6 cm wavelength; they are detected in absorption at shorter microwave wavelengths. The 91.6 cm emission has a brightness temperature of T sub B = 3 x 10(exp 5) K. It is hotter, wider and longer than the underlying filament detected at H alpha wavelengths, but the similarity between the shape, position, elongation and orientation of the radio and optical features suggests their close association. The 91.6 cm emission is attributed to the thermal-bremsstrahlung of a hot transition sheath that envelopes the H alpha filament and acts as an interface between the cool, dense H alpha filament and the hotter, rarefied corona. The transition sheath is seen in emission because of the lower optical depth of the corona at 90 cm wavelength, and the width of this sheet is 10(exp 9) cm. A power law gradient in pressure provides a better match to the observations than a constant pressure model; definitive tests of theoretical models await simultaneous multi-wavelength studies of filaments at different observing angles. When the thermal bremsstrahlung is optically thin, the magnetic field strength in the transition sheath can be inferred from the observed circular polarization. Variable physical parameters of the sheath, such as width, electron density, and electron temperature, can explain controversial reports of the detection of, or the failure to detect, the meter-wavelength counterpart of H alpha filaments.

  18. Continuum radiation in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.

  19. Uranus as a radio source

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.; Zarka, P.; Lecacheux, A.; Leblanc, Y.; Aubier, M.; Ortega-Molina, A.

    1991-01-01

    The complex nature of the Uranus radio emissions, both magnetospheric and atmospheric, is reviewed, with emphasis on the identification of distinct components and the determination of their source locations. Seven radii components were discovered in addition to the RF signature of lightning in the planet's atmosphere. Six of the seven magnetospheric components are freely propagating emissions; one component, the nonthermal continuum, is trapped in the density cavity between the magnetopause and the dense inner magnetosphere. The radio components are divided into two types according to their emission signature: bursty emission and smooth emission. The inferred source location for the dominant nightside emission is above the nightside magnetic pole, largely overlapping the UV auroral region and the magnetic polar cap. The N-burst component appears to be associated with solar-wind enhancements at Uranus, consistent with the idea that the solar wind was triggering magnetospheric substormlike activity during the encounter.

  20. Neptune's non-thermal radio emissions - Phenomenology and source locations

    NASA Technical Reports Server (NTRS)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  1. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  2. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  3. Magnetospheric Science Objectives of the Juno Mission

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Adriani, A.; Allegrini, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Gladstone, G. R.; Hansen, C. J.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Paranicas, C. P.; Santos-Costa, D.; Thorne, R. M.; Valek, P.; Waite, J. H.; Zarka, P.

    2014-02-01

    In July 2016, NASA's Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter's magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter's poles and ducking under the radiation belts. We show how Juno's view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter's radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno's instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.

  4. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  5. On the proposed triggering of Jovian radio emissions

    NASA Astrophysics Data System (ADS)

    Desch, M. D.; Kaiser, M. L.

    1985-09-01

    Calvert (1985) has proposed that solar type III radio bursts can trigger the onset of certain Jovian hectometer wavelength emissions. The authors show, using the data obtained by the Voyager Planetary Radio Astronomy experiment, that this triggering hypothesis is not supported statistically. Furthermore, the authors question the causality of this proposed triggering because much of the Jovian hectometer emission is due to a quasi-continuous radio source rotating, in lighthouse fashion, with Jupiter. Thus, an observed "onset" of emission is simply a function of the observer's position in local time around Jupiter.

  6. On the proposed triggering of Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1985-01-01

    Calvert (1985) has proposed that a solar type III radio bursts can trigger the onset of certain Jovian hectometer wavelength emissions. It is shown, using the data obtained by the Voyager Planetary Radio Astronomy experiment, that this triggering hypothesis is not supported statistically. Furthermore, the causality of this proposed triggering is questioned because much of the Jovian hectometer emission is due to a quasi-continuous radio source rotating, in lighthouse fashion, with Jupiter. Thus, an observed 'onset' of emission is simply a function of the observer's position in local time around Jupiter.

  7. Correlation of radio and gamma emissions in lightning initiation.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Thu, W M; Vildanova, L I; Zybin, K P

    2013-10-18

    The results of simultaneous radio and gamma emission measurements during thunderstorms are presented. A gamma detector situated at the height 3840 m and two radio detectors of Tien-Shan Mountain Scientific Station (altitude 3340 m) registered intensive gamma flashes and radio pulses during the time of lightning initiation. The radio-gamma correlation grows abruptly at the initial moment (a few hundred microseconds), and the correlation coefficient reaches 0.9-0.95. The gamma-energy spectrum measured during lightning initiation is close to the characteristic spectrum of runaway breakdown. Radio pulses observed at the same time have highest amplitudes. Combined observation of gamma and radio emissions confirm the conception of lightning initiation due to multiple simultaneous electric discharges at hydrometeors stimulated and synchronized by low-energy electrons generated in the runaway breakdown process. PMID:24182272

  8. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  9. A search for geographic control on the occurrence of magnetospheric ELF emissions

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Church, S. R.; Thorne, R. M.

    1979-01-01

    Search coil magnetometer data obtained in the magnetosphere on Ogo 5 and Ogo 6 were studied for evidence of man-induced stimulation of the two dominant electromagnetic emissions, chorus and plasmaspheric hiss. Variability of chorus with geographic longitude and enhancements, onsets, and quantum jumps in chorus emissions at frequencies related to harmonics of the earth's transmission lines are discussed. The enhancement of weak emissions in the 340-360 deg dipole longitude region during quiet geomagnetic conditions is present only when ELF hiss is weak, and will not contribute to the non-adiabatic dynamics of radiation belt electrons. It is concluded that the data analyzed is consistent with a predominantly natural origin for chorus and plasmaspheric hiss, and that triggered waves do not play a major role in the non-adiabatic dynamics of geomagnetically trapped electrons.

  10. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  11. Analysis of Jovian decamteric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Arias, T. A.; Garnavich, P. N.; Hammerschlag, R.

    1986-01-01

    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA).

  12. Radio emissions from terrestrial planets around white dwarfs

    NASA Astrophysics Data System (ADS)

    Willes, A. J.; Wu, K.

    2005-03-01

    Terrestrial planets in close orbits around magnetic white dwarf stars are potential electron-cyclotron maser sources, by analogy to planetary radio emissions generated from the electrodynamic interaction between Jupiter and the Galilean moons. We present predictions of radio flux densities and the number of detectable white-dwarf/terrestrial-planet systems, and discuss a scenario for their formation.

  13. Evidence for solar wind control of Saturn radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1982-01-01

    Using data collected by the Voyager 1 and 2 spacecraft in 1980 and 1981, strong evidence is presented for a direct correlation between variations in the solar wind at Saturn and the level of activity of Saturn's nonthermal radio emission. Correlation coefficients of 57 to 58% are reached at lag times of 0 to 1 days between the arrival at Saturn of high pressure solar wind streams and the onset of increased radio emission. The radio emission exhibits a long-term periodicity of 25 days, identical to the periodicity seen in the solar wind at this time and consistent with the solar rotation period. The energy coupling efficiency between the solar wind with the Saturn radio emission is estimated and compared with that for Earth.

  14. Satellite Emission Radio Interferometric Earth Surveying (SERIES). [astrometry

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1980-01-01

    Existing satellite radio emissions of the global positioning system were exploited as a resource for cost effective high accuracy geodetic measurements. System applications were directed toward crustal dynamics and earthquake research.

  15. Near Earth space sporadic radio emission busts occurring during sunrise

    NASA Technical Reports Server (NTRS)

    Dudnik, A. V.; Zaljubovsky, I. I.; Kartashev, V. M.; Lasarev, A. V.; Shmatko, E. S.

    1985-01-01

    During the period of low solar activity at sunrise the effect of sporadic high frequency near Earth space radio emission was experimentally discovered at middle latitudes. The possible mechanism of its origin is discussed.

  16. Evidence for extended radio emission surrounding RX Puppis

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Oliversen, R. J.; Michalitsianos, A. G.; Kafatos, M.

    1986-01-01

    Evidence for an approximately 1-arcsec extended structure in 6 cm continuum emission emanating from the symbiotic star system RX Puppis is reported. Hourly continuum flux changes were not detected as suggested in previous radio experiments by others. The observations indicate that the predominant nature of the radio emission is thermal and consistent with an optically thick stellar wind emanating from the symbiotic star system. The results presented here are discussed with regard to other similar stellar binary systems.

  17. The Radio Emission Of Radio Quiet Quasars - A New Working Hypothesis

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, E.

    2009-12-01

    What is the origin of radio emission in radio quiet Active Galactic Nuclei? In radio loud AGN the answer is clear, jet emission. In RQ AGN, which are 103 times weaker, the answer is not established yet, but it is commonly thought to originate in a weak jet. RQ AGN display a significant correlation between the radio luminosity (LR) and X-ray luminosity (LX), with LR 10-5 LX. A very similar correlation, known as the Guedel-Benz relation, holds for coronally active stars. The Guedel-Benz relation strongly suggests that stellar coronae are magnetically heated. In AGN the X-ray emission is also thought to originate in a magnetically heated corona, and thus it is natural to associate their radio emission with coronal activity as well. The radio emission may thus serve as a probe for physical processes in AGN coronae, as it does in stellar coronae. I will discuss some predictions, based on this hypothesis, on the likely radio spectrum, its variability, and its relation to the X-ray variability.

  18. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  19. Characterizing the radio continuum emission from intense starburst galaxies

    NASA Astrophysics Data System (ADS)

    Galvin, T. J.; Seymour, N.; Filipović, M. D.; Tothill, N. F. H.; Marvil, J.; Drouart, G.; Symeonidis, M.; Huynh, M. T.

    2016-09-01

    The intrinsic thermal (free-free) and non-thermal (synchrotron) emission components that comprise the radio continuum of galaxies represent unique, dust-free measures of star formation rates (SFR). Such high SFR galaxies will dominate the deepest current and future radio surveys. We disentangle the thermal and non-thermal emission components of the radio continuum of six ultraluminous infrared galaxies (LFIR > 1012.5 L⊙) at redshifts of 0.2 ≤ z ≤ 0.5 and 22 IR selected galaxies. Radio data over a wide frequency range (0.8 < ν < 10 GHz) are fitted with a star-forming galaxy model comprising of thermal and non-thermal components. The luminosities of both radio continuum components are strongly correlated to the 60 μm luminosity across many orders of magnitude (consistent with the far-IR to radio correlation). We demonstrate that the spectral index of the radio continuum spectral energy distribution is a useful proxy for the thermal fraction. We also find that there is an increase in mean and scatter of the thermal fraction with FIR to radio luminosity ratio which could be influenced by different time-scales of the thermal and non-thermal emission mechanisms.

  20. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Arias, T. A.; Garnavich, P. M.; Rosenkranz, P. W.

    1985-01-01

    The Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) have produced the finest set of Jovian decametric radio emission data ever obtained. Jovian decametric L-burst and S-burst arcs were characterized and the data reconciled with models for the radio emission geometry and mechanisms. The first major results involve comparisons of the distribution of arc separations with longitudes. The identification and analyses of systematic variations in the PRA data have yielded interesting results, but only the most obvious features of the data were examined. Analyses of the PRA data were extended with the use of new 6-Sec formats that are more sensitive to the S-bursts.

  1. The role of the magnetosphere in satellite and radio-star scintillation

    NASA Technical Reports Server (NTRS)

    Booker, H. G.

    1975-01-01

    A theory is developed to account for the scintillation phenomenon observed in equatorial regions when using communications satellites in the SHF band. The same theory is also used qualitatively to explain strong scintillations in the VHF band. Instead of confining irregularities to a narrow interval of height in the F-region and assuming that they are strong, the alternative hypothesis is used that the irregularities are weak but extend from the F-region upwards into the magnetosphere. It is suggested that the irregularities are field-aligned and extend at least up to an L-shell of 1.3 and possibly up to 2 or more.

  2. Observations of a low-frequency cutoff in magnetospheric radio noise received on Imp 6

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Frankel, M. S.

    1975-01-01

    The quasi-continuous component of the magnetospheric noise observed by Imp 6, lying between 30 and 110 kHz, often exhibits a low-frequency cutoff when the spacecraft is in the interplanetary medium or the magnetosheath. A hypothesis is considered in which this low-frequency cutoff, f-co, is caused by overdense plasma situated somewhere along the noise-source-to-satellite path. The plasma is assumed to have a plasma frequency approximately equal to f-co, thus cutting off propagation below f-co.

  3. Diffuse Radio Emission in the Galaxy Cluster Abell 754

    NASA Astrophysics Data System (ADS)

    Kale, R.; Dwarakanath, K. S.

    2009-09-01

    We present a low frequency (<1.4GHz) study of the diffuse radio halo and relic emission in the galaxy cluster Abell 0754. Images at 150 MHz made using the Giant Metrewave Radio Telescope (GMRT) revealed 4 diffuse features; 3 of which are new. Images at 330 and 1363 MHz were created using archival data from the GMRT and the VLA respectively. These yield synchrotron spectral indices, α (S ∝ν-α), steeper than 2 for the new features. Adiabatic compression of fossil radio galaxy cocoon by shocks can lead to the formation of radio relics (Ensslin & Gopal-Krishna, 2001). In the framework of this model we find that the relic in A754 can be explained as a lurking cocoon of a radio galaxy; no shock compression is required to produce this emission. The implications of this result to the merger scenario in A754 are discussed.

  4. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  5. On the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, Ehud

    2008-10-01

    The radio emission in radio-loud quasars originates in a jet carrying relativistic electrons. In radio-quiet quasars (RQQs) the relative radio emission is ~103 times weaker, and its origin is not established yet. We show here that there is a strong correlation between the radio luminosity (LR) and X-ray luminosity (LX) with LR ~ 10-5 LX, for the radio-quiet Palomar-Green (PG) quasar sample. The sample is optically selected, with nearly complete radio and X-ray detections, and thus this correlation cannot be due to direct selection biases. The PG quasars lie on an extension of a similar correlation noted by Panessa et al., for a small sample of nearby low-luminosity type 1 active galactic nuclei (AGN). A remarkably similar correlation, known as the Güdel-Benz relation, where LR/LX ~ 10-5, holds for coronally active stars. The Güdel-Benz relation, together with correlated stellar X-ray and radio variability, implies that the coronae are magnetically heated. We therefore raise the possibility that AGN coronae are also magnetically heated, and that the radio emission in RQQ also originates in coronal activity. If correct, then RQQ should generally display compact flat cores at a few GHz due to synchrotron self-absorption, while at a few hundred GHz we should be able to see directly the X-ray emitting corona, and relatively rapid and large amplitude variability, correlated with the X-ray variability, is likely to be seen. We also discuss possible evidence that the radio and X-ray emission in ultraluminous X-ray sources and Galactic black holes may be of coronal origin as well.

  6. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Schneider, D. P.; Wu Jianfeng; Gibson, R. R.; Steffen, A. T. E-mail: niel@astro.psu.edu E-mail: jfwu@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2011-01-01

    We present the results of an investigation into the X-ray properties of radio-intermediate and radio-loud quasars (RIQs and RLQs, respectively). We combine large, modern optical (e.g., SDSS) and radio (e.g., FIRST) surveys with archival X-ray data from Chandra, XMM-Newton, and ROSAT to generate an optically selected sample that includes 188 RIQs and 603 RLQs. This sample is constructed independently of X-ray properties but has a high X-ray detection rate (85%); it provides broad and dense coverage of the l-z plane, including at high redshifts (22% of objects have z = 2-5), and it extends to high radio-loudness values (33% of objects have R* = 3-5, using logarithmic units). We measure the 'excess' X-ray luminosity of RIQs and RLQs relative to radio-quiet quasars (RQQs) as a function of radio loudness and luminosity, and parameterize the X-ray luminosity of RIQs and RLQs both as a function of optical/UV luminosity and also as a joint function of optical/UV and radio luminosity. RIQs are only modestly X-ray bright relative to RQQs; it is only at high values of radio loudness (R* {approx}> 3.5) and radio luminosity that RLQs become strongly X-ray bright. We find no evidence for evolution in the X-ray properties of RIQs and RLQs with redshift (implying jet-linked IC/CMB emission does not contribute substantially to the nuclear X-ray continuum). Finally, we consider a model in which the nuclear X-ray emission contains both disk/corona-linked and jet-linked components and demonstrate that the X-ray jet-linked emission is likely beamed but to a lesser degree than applies to the radio jet. This model is used to investigate the increasing dominance of jet-linked X-ray emission at low inclinations.

  7. Magnetospheric Imaging of EUV Emissions at 83.4 and 30.4 NM Wavelengths

    NASA Astrophysics Data System (ADS)

    Garrido, Dante Espino

    Magnetospheric images are constructed from resonant scattering of emissions by He^+ 30.4-nm and O^+ 83.4-nm ions from different spatial locations to study the structure of the intensities and its relation to the distribution of He ^+ and O^+ ions around the Earth. The image intensities at these EUV wavelengths were obtained from a knowledge of ion scattering rates and available data on ion densities. This particular approach is called forward modelling and consists of the calculation of simulated EUV images of the magnetosphere. Different regions in the magnetosphere have been considered in this study to determine the dependence of the image intensities on ion energies and ion drift speeds with respect to the Sun-Earth line. Hot O^+ ions in the energy range from 1 keV to 50 keV are present in the plasma sheet with typical densities of the order of 0.1 ions cm^{-3} arising during disturbed times. Image intensities of the order of a few millirayleighs were obtained in our simulations for these densities. During quiet times the densities are of the order of 0.05 ions cm^{-3}. The reduction of the image intensities as a result of Doppler shifts caused by ion motion relative to the Sun-Earth line is discussed in detail and the effects of ion dynamics (particle acceleration) in the polar cap on the image intensities have also been analyzed for both He^+ and O^+ ions. The possibility of detecting polar outflows may also depend on the location of the imager. Simulated images of the plasmasphere and trough regions in both 30.4-nm and 83.4-nm wavelengths have been obtained to reflect the relative abundance of the ions in these regions. Photometric intensities of He^+ at 30.4 nm were obtained from a spinning rocket at an altitude of 435 km. The different viewing angles covered a wide range of regions in the magnetosphere, and this particular rocket geometry offered the possibility of obtaining the He^+ ion distribution from the measured intensities. This method (forward

  8. Spontaneous Radio Frequency Emissions from Natural Aurora. Chapter 4

    NASA Technical Reports Server (NTRS)

    LaBelle, J.

    2009-01-01

    At high latitudes, suitably sensitive radio experiments tuned below 5 MHz detect up to three types of spontaneous radio emissions from the Earth s ionosphere. In recent years, ground-based and rocket-borne experiments have provided strong evidence for theoretical explanations of the generation mechanism of some of these emissions, but others remain unexplained. Achieving a thorough understanding of these ionospheric emissions, accessible to ground-based experiments, will not only bring a deeper understanding of Earth s radio environment and the interactions between waves and particles in the ionosphere but also shed light on similar spontaneous emissions occurring elsewhere in Earth s environment as well as other planetary and stellar atmospheres.

  9. Compositional Impact of Io Volcanic Emissions on Jupiter's Magnetosphere and the Icy Galilean Moons

    NASA Technical Reports Server (NTRS)

    Cooper, John; Fegley, Bruce; Lipatov, Alexander; Richardson, John; Sittler, Edward

    2011-01-01

    measured throughout the jovian magnetosphere and in the local moon environments can act as tracers if we know from direct measurements and models the distributions at the mostly likely sources, i.e. at IO. However, our knowledge of these abundances are very limited from earlier in-situ and remote measurements, mainly confined to major (S, O) and some minor (Na, K, Cl) species with abundances at or above a few percent relative to O. Future in-situ plasma measurements by the planned Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions should extend the abundance coverage to minor and even trace elemental species. For Europa astrobiological investigations it is also important to specify iogenic inputs and surface processing of isotopic species. We discuss the range of abundance distributions arising from models for IO hot volcanic emissions, and from the subsequent dynamics of ion injection, magnetospheric transport, and icy moon surface bombardment.

  10. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  11. Dynamic Spectra Predicted for 2-3 Khz Radio Emission

    NASA Astrophysics Data System (ADS)

    Mitchell, Jeremy J.; Cairns, Iver H.; Robinson, Peter A.

    Radio emissions observed at 2-3 kHz by the Voyager spacecraft occur when global merged interaction regions (GMIRs) reach the heliopause. The radiation is thought to occur when a GMIR enters a region close to the heliopause where the electron speed distribution is primed with a superthermal tail produced by lower hybrid drive. Previously this priming mechanism was combined with a theory for type II solar radio bursts to predict the flux of radio emission in the outer heliosphere. Here this theory is extended in two ways. First theoretical arguments regarding the availability of Langmuir and ion sound waves are used to determine whether emission occurs via three wave processes or processes involving wave scattering off thermal ions (STI). New expressions for conversion efficiencies into radio emission associated with STI are then implemented where appropriate. Second dynamic spectra are calculated for the radio emission generated by shock from the inner solar wind to beyond the heliopause. The results are then compared with existing Voyager observations.

  12. On Polarization of the Zebra Pattern in Solar Radio Emission

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Y.; Zaitsev, V. V.; Altyntsev, A. T.

    2014-01-01

    The problem of strong polarization of the zebra-type fine structure in solar radio emission is discussed. In the framework of the plasma mechanism of radiation at the levels of the double plasma resonance, the polarization of the observed radio emission may be due to a difference in rates of plasma wave conversion into ordinary and extraordinary waves or different conditions of escaping of these waves from the source. In a weakly anisotropic plasma which is a source of the zebra-pattern with rather large harmonic numbers, the degree of polarization of the radio emission at twice the plasma frequency originating from the coalescence of two plasma waves is proportional to the ratio of the electron gyrofrequency to the plasma frequency, which is a small number and is negligible. Noticeable polarization can therefore arise only if the observed radio emission is a result of plasma wave scattering by ions (including induced scattering) or their coalescence with low-frequency waves. In this case, the ordinary mode freely leaves the source, but the extraordinary mode gets into the decay zone and does not exit from the source. As a result, the outgoing radio emission can be strongly polarized as the ordinary mode. Possible reasons for the polarization of the zebra pattern in the microwave region are discussed.

  13. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  14. E.l.f./v.l.f. emissions observed on Ariel 4. [wave-particle phenomena in magnetosphere

    NASA Technical Reports Server (NTRS)

    Bullough, K.; Denby, M.; Gibbons, W.; Hughes, A. R. W.; Kaiser, T. R.; Tatnall, A. R. L.

    1975-01-01

    The Ariel 4 satellite was designed to study wave-particle phenomena in the magnetosphere by measuring the electromagnetic wave fields over a wide frequency range and the fluxes and pitch angle distributions of energetic particles. We describe here the results of a preliminary study of the various v.l.f./e.l.f. electromagnetic wave phenomena which are observed. These include man-made signals from v.l.f. transmitters, impulsive noise originating in thunderstorms and emissions arising from magnetospheric energetic charged particles.

  15. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  16. The relation between infrared and radio emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1991-01-01

    A remarkable correlation between the far infrared and the radio continuum emission of star forming galaxies was one of the early results based on IRAS data, and has remained one of the most intriguing. Recent work has extended the correlation to early type galaxies, revealing a slightly different ratio in lenticulars. When radio and infrared maps of disk galaxies are compared, the radio disks appear systematically more diffuse. This has been interpreted as a manifestation of the diffusion of cosmic-ray electrons, and has allowed a fresh look at the behavior of magnetic fields and cosmic rays in spiral galaxies, and at their relation to the rest of the interstellar medium.

  17. Source localization of Jupiter's Io dependent radio emissions

    NASA Technical Reports Server (NTRS)

    Aubier, Monique G.; Genova, Francoise; Calvert, Wynne

    1988-01-01

    The peak frequencies of the Io-dependent part of the Jovian emissions are compared with the surface gyrofrequency determined from Jovian magnetic models in order to localize the source of Jovian radio emissions. The bulk of the Io-controlled emissions was found to be delayed by up to 70 deg of equatorial longitude from the predicted instantaneous position of the Io flux tube, with the L and S emissions both displaying this same unexpected behavior. It is suggested that the source of these emissions is delayed substantially with respect to Io either as an Alfven-wave delay or because of errors in the magnetic field models.

  18. Analysis of Uranian radio emissions, Uranus Data Analysis Program (UDAP)

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1991-01-01

    Progress under this grant has included identifying certain new radio emission components and determining the source location of both these and the two major Uranian radio emission (the SHF and bursty components) by a unique new statistical minimization technique. This new source location technique has subsequently also been applied at Neptune, with considerable success. New radio spectrograms have been prepared to clarify the behavior of such emissions, using both the usual 48-second, log-averaged data and the original 6-second PRA data, the latter showing a number of interesting new features. Also, a plasmasphere was discovered at Uranus, auroral plasma cavities were discovered at both Uranus and Neptune, and it was found that the currently-accepted rotation period for Uranus is in error by a small amount.

  19. Possible radio emission from Uranus at 0.5 MHz

    NASA Technical Reports Server (NTRS)

    Brown, L. W.

    1975-01-01

    Radio emission from the direction of Uranus was detected in data from the radio astronomy experiment on the IMP-6 spacecraft. Previously, emission from the direction of Jupiter and Saturn was observed by the IMP-6 at a number of frequencies near 1 MHz during the period April 1971 to October 1972. These radio bursts were identified in the IMP-6 data through an analysis of the phase of the observed modulated signal detected from the spinning dipole antenna. This technique was applied to the direction of the planet Uranus with possible positive results. Over the approximately 500 days of data, three to six bursts with unique spectral characteristics were found. Identification with Uranus is confused by the likely presence of low level terrestrial and solar emission. The observed events persisted less than three minutes and are strongest in intensity near 0.5 MHz.

  20. A model for radio emission from solar coronal shocks

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  1. STEADY AND TRANSIENT RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Osten, Rachel A.; Phan-Bao, N.; Hawley, Suzanne L.; Reid, I. Neill; Ojha, Roopesh E-mail: pbngoc@asiaa.sinica.edu.tw E-mail: inr@stsci.edu

    2009-08-01

    We present the results of multi-frequency radio observing campaigns designed to elucidate the nature of radio emission from very low mass stars. We detect radio emission in an additional two epochs of the ultracool dwarf binary LP 349-25, finding that the observed emission is broad band and steady on timescales between 10 s and 10.7 hr, as well as on timescales of 0.6 and 1.6 years. This system is unusual for ultracool dwarfs with detectable radio emission, in exhibiting a lack of any large-scale variability, particularly the bursting (periodic or aperiodic) behavior exhibited by the other objects with detectable levels of radio emission. We explore the constraints that the lack of variability on long- and short-timescales, and flat spectral index, imply about the radio-emitting structures and mechanism. The temporal constraints argue for a high latitude emitting region with a large inclination so that it is always in view, and survives for at least 0.6 years. Temporal constraints also limit the plasma conditions, implying that the electron density be n{sub e} < 4 x 10{sup 5} cm{sup -3} and B< 130 G in order not to see time variations due to collisional or radiative losses from high-energy particles. The observations and constraints provided by them are most compatible with a nonthermal radio emission mechanism, likely gyrosynchrotron emission from a spatially homogeneous or inhomogeneous source. This indicates that, similar to behaviors noted for chromospheric, transition region, and coronal plasmas in ultracool dwarfs, the magnetic activity patterns observed in active higher mass stars can survive to the substellar boundary. We also present new epochs of multi-frequency radio observations for the ultracool dwarfs 2MASS 05233822-140322 and 2MASS14563831-2809473(=LHS 3003); each has been detected in at least one previous epoch but are not detected in the epochs reported here. The results here suggest that magnetic configurations in ultracool dwarfs can be long

  2. 3D modelling of stellar auroral radio emission

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  3. Detection of exomoons through observation of radio emissions

    SciTech Connect

    Noyola, J. P.; Satyal, S.; Musielak, Z. E. E-mail: ssatyal@uta.edu

    2014-08-10

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect it to Jupiter's polar regions. The currents generate and modulate radio emissions along their paths via the electron-cyclotron maser instability. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. A model explaining the modulation mechanism in the Jupiter-Io system is extrapolated and used to define criteria for exomoon detectability. A cautiously optimistic scenario of the possible detection of such exomoons around Epsilon Eridani b and Gliese 876 b is provided.

  4. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  5. Radio Emissions from Plasma with Electron Kappa-Distributions

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  6. Mean and extreme radio properties of quasars and the origin of radio emission

    SciTech Connect

    Kratzer, Rachael M.; Richards, Gordon T.

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  7. Source of O mode radio emissions from the dayside of Uranus

    SciTech Connect

    Menietti, J.D.; Curran, D.B. )

    1990-09-01

    During the inbound trajectory toward Uranus the Planetary Radio Astronomy instrument on board the Voyager 2 spacecraft observed narrowband smooth (n-smooth) emission at frequencies centered near 60 kHz and O mode emission (the dayside source) in a frequency range narrowly confined around 160 kHz. By assuming empirical models of the plasma density for the dayside magnetosphere of Uranus, and by using cold plasma theory together with observational constraints, the authors have performed ray-tracing calculations to determine the source lcoation of the O mode emission. The dayside source appears to originate along magnetic field lines with a footprint near the north magnetic pole. Sources of nightside, high-frequency, broadband smooth (b-smooth) emission observed by Voyager after encounter are believed to exist near the conjugate footprint of these same field lines. This would indicate that the particle population supplying the free energy source has energies at least as high as a few keV and the density in the source region satisfies the condition 0.3 < f{sub p}/f{sub ce} < 1.0 where f{sub p} and f{sub ce} are the electron plasma frequency and gyrofrequency, respectively.

  8. Magnetospheres of Jupiter, Saturn, and Uranus

    SciTech Connect

    Connerney, J.E.P.

    1987-04-01

    The results published by U.S. scientists during 1983-1986 from studies related to the magnetospheres of Jupiter, Saturn, and Uranus are discussed. Consideration is given to the magnetic fields of these planets, charged particle environments, the interactions between the planetary rings and planetary satellites, the solar wind interactions, radio emissions, and auroras. Special attention is given to observations of (1) a small flux of energetic electrons and protons in the otherwise radiation-free environment in the magnetosphere under the rings of Saturn (interpreted as interactions of Galactic cosmic rays with the rings), (2) spokes, and (3) Saturn ring erosion.

  9. Magnetospheric structure of rotation powered pulsars

    SciTech Connect

    Arons, J. California Univ., Livermore, CA . Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  10. Helium Emission from Classical T Tauri Stars: Dual Origin in Magnetospheric Infall and Hot Wind

    NASA Astrophysics Data System (ADS)

    Beristain, Georgina; Edwards, Suzan; Kwan, John

    2001-04-01

    High-resolution emission-line profiles of He I and He II in 31 classical T Tauri stars are analyzed with the aim of probing the environs of the star-disk interface in accreting low-mass young stars. The diagnostic power of the helium lines lies in their high-excitation potentials, which restrict their formation to a region either of high temperature or close proximity to a source of ionizing radiation. The He I profiles are decomposed into kinematic components that support the paradigm of magnetically controlled accretion from the disk onto the stellar surface but also require a significant contribution from a hot wind. A narrow component, seen in 28/31 stars, is characterized by relatively uniform line widths and centroid velocities among all the helium lines. Our analysis supports previous conclusions that this feature is consistent with formation in the decelerating postshock gas at the magnetosphere footpoint. A broad component, seen in 22/31 stars, displays a diversity of kinematic properties. Our analysis suggests that in many stars the He I broad component is itself composite. At one extreme are stars where the broad component is redshifted in excess of 8 km s-1, as would occur if helium emission arises primarily from polar angles less than 54.7d in the funnel flow. At the other extreme are stars where the broad component is blueshifted in excess of -30 km s-1, requiring an origin in outflowing gas. The additional occurrence of maximum blue wing velocities exceeding -200 km s-1 in 14 stars leads us to argue that hot winds are present in about half of our sample. The relation between the narrow component and the optical veiling differs between the stars with or without a hot helium wind, suggesting that when the hot wind is present the luminosity and temperature of the accretion shock are reduced. A comparison of broad component helium emission with standard outflow indicators leads us to suggest that there are two sources of inner wind in T Tauri accretion

  11. Multi-Spacecraft Observations of Saturn Kilometric Radio Emission

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Hess, R. A.

    2011-01-01

    Saturn kilometric radiation (SKR) is the auroral radio emission of Saturn, which has been observed by Voyager 1 & 2, Cassini, and Ulysses. Ulysses is able to detect the intense intervals of SKR from distances up to 10 AU, because of its long antennas (72 m tip-to-tip) and sensitive radio receivers. Studies of SKR by A. Lecacheux gave the surprising result that the periodicity of SKR varied with time; it was not locked to a planetary rotation of Saturn. This result has been confirmed by Cassini radio observations. Here, we compare Ulysses and Cassini observations of SKR to constrain a mode! for the SKR emission geometry. SpecifIcally, we examine the question - are the brighter sources of 5KR fixed in Saturn longitude or local time? The results have significant consequences for our understanding of SKR and its varying periodicity

  12. CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION

    SciTech Connect

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-10-01

    The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.

  13. ON THE EVOLUTION OF THE CORES OF RADIO SOURCES AND THEIR EXTENDED RADIO EMISSION

    SciTech Connect

    Yuan Zunli; Wang Jiancheng

    2012-01-10

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  14. On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng

    2012-01-01

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  15. Coincident bursts of auroral kilometric radiation and VLF emissions associted with a type 3 solar radio noise event

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Singh, S.; Wu, C. S.; Labelle, J.; Treumann, R. A.; Inan, U. S.; Lanzerotti, L. J.

    1995-01-01

    This paper examines an isolated magnetospheric VLF/radio noise event that is highly suggestive of the triggering of terrestrial auroral kilometric radiation (AKR) bu solar type III radio emission and of a close relation between AKR and broadband hiss. The solar type III burst was measured on polar HF riometers and was coincident with local dayside VLF/LF noise emission bursts at South Pole station. It was also coincident with AKR bursts detected onthe AMPTE/IRM satellite, at the same magnetic local time as South Pole. On the basis of the close association of AKR and VLF bursts, and from geometric considerations relating to wave propagation, it is likely that the AKR source was on the dayside and on field lines near South Pole station. The general level of geomagnetic activity was very low. However, an isolated magnetic impulse event (MIE) accompanied by a riometer absorption pulse was in progress when all of the VLF/radio noise bursts occurred. The very close association of the typew III burst at HF with the AKR is consistent with external stimulation of the AKR, is different, more immediate,triggering process than that implied by Calvert (1981) is invoked. It is suggested here that some of the HF solar radiant energy may decay into waves with frequences comparable to those of the AKR by paraetric excitation or some other process, thus providing the few background photons required for the generation of AKR by the WU and Lee (1979) cyclotron maser instability. The AKR, perhaps by modifying the magnetospheric electron velocity distribution, might have produced the observed VLF emissions. Alternatively, the VLF emissions may have arisen from the same anisotropic and unstable electron distribution function responsible for the AKR.

  16. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  17. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  18. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  19. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1994-01-01

    The magnetic field geometries of Uranus and Neptune are superficially similar, and are similarly unlike those of other planets: the field strengths are similar, and they contain extraordinarily large non-dipolar components. As a corollary, the best dipolar field models of each of the two planets comprises a dipole that is considerably offset from the planetary center and tilted away from the rotational axis. However, in other respects the best field models of the two planets are quite different. Uranus has a quadrupole model in which all the terms are well determined and in which none of the higher order terms is determined. To represent the magnetometer data acquired during Voyager's Neptune encounter requires a model of order 8 (instead of Uranus' order 2), yet many of the coefficients are poorly determined. A second model, an octupole model comprising the terms up to order three of the order 8 model, has been suggested by the magnetometer team as being useful; its use, however, is limited only to the region outside of about 2R(exp N), whereas planetary radio emissions have their sources well inside this surface. Computer code has been written that permits an analysis of the detailed motion of low energy charged particles moving in general planetary magnetic fields. At Uranus, this code reveals the existence of an isolated region of the inner magnetosphere above the day side in which particles may be trapped, separate from the more general magnetospheric trapping. An examination of the so-call ordinary mode uranian radio emissions leads us to believe that these emissions are in fact extraordinary mode emissions coming from particles trapped in this isolated region. A similar attempt to discover trapping regions at Neptune has proved, unfortunately, to be impossible. This arises from three factors: (1) the computation needed to track particles in an eighth order field is more than an order of magnitude greater than that needed to perform a similar calculation in a

  20. New observations of the low frequency interplanetary radio emissions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Recent Voyager 1 observations reveal reoccurrences of the low frequency interplanetary radio emissions. Three of the new events are weak transient events which rise in frequency from the range of 2-2.5 kHz to about 3 kHz with drift rates of approximately 1.5 kHz/year. The first of the transient events begins in mid-1989 and the more recent pair of events both were first detected in late 1991. In addition, there is an apparent onset of a 2-kHz component of the emission beginning near day 70 of 1991. The new transient emissions are barely detectable on Voyager 1 and are below the threshold of detectability on Voyager 2, which is less sensitive than Voyager 1. The new activity provides new opportunities to test various theories of the triggering, generation, and propagation of the outer heliospheric radio emissions and may signal a response of the source of the radio emissions to the increased solar activity associated with the recent peak in the solar cycle.

  1. Radio emission from AM Herculis - The quiescent component and an outburst

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Bastian, T. S.; Chanmugam, G.

    1983-01-01

    The VLA has been used to search for radio emission from the AM Her-type binaries VV Pup, EF Eri, PG 1550 + 191, CW 1103 + 354, and AN UMa, at 4.9 GHz. A remarkable 10-min outburst was detected from AM Her at 4.9 GHz, which was about 20 times more intense than the quiescent emission and was essentially 100 percent circularly polarized. It is suggested that the quiescent emission of AM Her can be accounted for by 500-keV electrons trapped in the magnetosphere of the white dwarf, provided that the electron energy spectrum is quite hard and that the spectral hardness or number density of energetic electrons increases with radius, while the outburst is probably due to an electron-cyclotron maser operating near the surface of the red dwarf companion. The implied existence of a 1000-gauss localized magnetic field and a corona on the red dwarf has consequences for mass transfer, field line interactions, and variable activity.

  2. Merger Activity and Radio Emission Within A2061

    NASA Astrophysics Data System (ADS)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2015-01-01

    Abell 2061 is a galaxy cluster located in the Corona Borealis Supercluster that boasts radio and X-ray structures indicative of a merger. A2061 is located at a redshift z = .0784, contains two brightest cluster galaxies, and has another cluster (A2067) about 2.5 Mpc to the NE, falling towards it. Within A2061, there exists an elongated structure of soft X-ray emission extending to the NE of cluster's center (referred to as the 'Plume') along with a hard X-ray shock region (the 'Shock') located just NE of the cluster's center. Previous observations in the radio have indicated the presence of a extended, central radio halo/relic accompanying the cluster's main X-ray emission but with slight NE displacement and further NE extension. Also emitting in the radio, to the SW of A2061, is a radio relic. The X-ray structures of A2061 were previously examined in 2009 by a Chandra observation. Here we present the results of an August 2013 XMM-Newton observation of the cluster. This XMM-Newton observation, imaged by three detectors, covers a greater field of view with a longer exposure (48.6 ks) than the previous Chandra observation. We will present images and spectra of various regions of the cluster. In addition, we will discuss the dynamics of the cluster, the nature of the Plume, Shock and other features, and origin of the central diffuse radio halo/relic and SW radio relic. These X-ray observations will also be compared to a numerical simulation from the Simulation Library of Astrophysics cluster Mergers (SLAM).

  3. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  4. Shocks in nova outflows. II. Synchrotron radio emission

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey; Vurm, Indrek; Metzger, Brian D.

    2016-08-01

    The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a timescale of months with a brightness temperature which is too high to result from freely expanding photo-ionized gas. Paper I developed a one dimensional model for the thermal emission from nova shocks. This work concluded that the shock-powered radio peak cannot be thermal if line cooling operates in the post-shock gas at the rate determined by collisional ionization equilibrium. Here we extend this calculation to include non-thermal synchrotron emission. Applying our model to three classical novae, we constrain the amplification of the magnetic field ɛB and the efficiency ɛe of accelerating relativistic electrons of characteristic Lorentz factor γ ˜ 100. If the shocks are radiative (low velocity v_sh ≲ 1000 km s-1) and cover a large solid angle of the nova outflow, as likely characterize those producing gamma-rays, then values of ɛe ˜ 0.01 - 0.1 are required to achieve the peak radio brightness for ɛB = 10-2. Such high efficiencies exclude secondary pairs from pion decay as the source of the radio-emitting particles, instead favoring the direct acceleration of electrons at the shock. If the radio-emitting shocks are instead adiabatic (high velocity), as likely characterize those responsible for the thermal X-rays, then much higher brightness temperatures are possible, allowing the radio-emitting shocks to cover a smaller outflow solid angle.

  5. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  6. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  7. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  8. Radio emission from magnetic exoplanets: GMRT observations and results

    NASA Astrophysics Data System (ADS)

    Majid, W.; Winterhalter, D.; Kuiper, T.; Lazio, J.

    2011-10-01

    Massive extrasolar planets are expected to emit, in analogy with Jupiter and Saturn, detectable radio emission at low frequencies. We have carried out a series of observations of known extrasolar planetary systems at 150 MHz with the Giant Meterwave Radio Telescope (GMRT) in both interferometric and phased array modes. We will describe our observing campaign, target list, and preliminary results from studies of dynamic spectra. As low frequency observations are plagued with RFI, we will focus on observing strategies and analysis techniques to minimize, identify and remove RFI effects from dynamic spectra. We will also briefly discuss prospects for similar searches with future instruments such as LOFAR, the LWA, and the SKA instruments.

  9. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  10. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Yu, S.; Doyle, J. G.; Kuznetsov, A.; Hallinan, G.; Antonova, A.; MacKinnon, A. L.; Golden, A.

    2012-06-10

    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70{nu}{sub pe} ({nu}{sub pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600{nu}{sub pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.

  11. Unknown radio emission at about 3 MHz recorded in Norway

    NASA Astrophysics Data System (ADS)

    Farges, T.; Blanc, E.; Strand, E.

    2012-04-01

    A wideband electric field antenna has been installed in Norway (at Hessdalen, 62°41' North and 11°12' East). A signal of 50 ms is automatically recorded every 5 s in order to monitor the spectral variations from 1 kHz to 5 MHz. Signals have been acquired during more than one year from September 2010 to December 2011. The measured electromagnetic spectrum is very similar to other spectra commonly measured in other places in the World. It shows emissions in numerous bands at fixed frequencies corresponding to radio transmissions in VLF, LF, MF and HF bands. However, one emission is quite different and arouses our curiosity. We find a quasi-continuous radio emission at a frequency varying from 2.7 to more than 3.4 MHz with a mean value of 3.0 MHz. The bandwidth is quite large (about 40 kHz) while it is about 9 kHz for all the other radio emissions at frequencies higher than 100 kHz. During the night, the frequency is relatively stable at about 3.1 MHz while during day-time a frequency shift of 200-300 kHz is often observed. These variations can be quick (few tens of minutes) or slow (several hours). Moreover, the emission disappears during day-time, the disappearance duration depending on the daylight duration. From November to the end of March, there is almost no disappearance while in April disappearances are more frequent and longer. From May to July, the emission disappears systematically during day-time from 6:00 UT to 20:00 UT. At the sunrise time the emission frequency suddenly decreases and systematically disappears when it reaches a threshold value (from 2.7 to 2.85 MHz). The emission (frequency and duration) is not influenced by the magnetic storms. We will show in the paper statistical results and some hypothesis on the mechanism which can produce this radio emission.

  12. Io's wobbling flux tube and nonuniform surface conductivity - Longitude control of decametric emission and other magnetospheric interactions

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1979-01-01

    Study of systematic relations between Io's flux tube orientation, decametric emission control, and areal surface properties suggest a model that can account for longitude control of principal Io-associated decametric emissions and other observed Io/magnetosphere interactions. The model is based on the fact that Jupiter's magnetic field structure is dominated by a tilted dipole rotating at a different angular velocity than Io's orbital motion. This caused Io's flux tube near Io to wobble (precess) with respect to Io's rotational axis. Discrete contact junctions are invoked between the active current-sheet regions in the flux tube and Io's surface.

  13. Virtual Observatory tools and Amateur Radio Observations Supporting Scientific Analysis of Jupiter Radio Emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S. L. G.; Le Sidaner, P.; Savalle, R.; Erard, S.; Coffre, A.; Thétas, E.; André, N.; Génot, V.; Thieman, J.; Typinski, D.; Sky, J.; Higgins, C.

    2015-10-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol. Amateur radio data from the RadioJOVE project is also available. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets. A preliminary study based on January-February 2014 data will also be presented

  14. Jovian longitudinal control of Io-related radio emissions

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Hill, T. W.

    1979-01-01

    A theoretical model is proposed to explain the control of Io-related radio emissions by Jupiter's rotational phase. The model is based on the hypothesis that the radio emissions are generated by Birkeland currents flowing between Io and the Jovian ionosphere. Specifically, it is suggested that the precipitation of radiation-belt electrons within a certain range of Jovian longitudes produces a restricted region of enhanced ionization and correspondingly enhanced conductivity in Jupiter's ionosphere and that the Io-Jupiter Birkeland current and the associated radio emissions are dramatically increased when Io's flux tube encounters this sector of enhanced ionization in Jupiter's ionosphere. The magnitude of the current is found to be about 100,000 A at most Jovian longitudes because of ionospheric resistance. It is estimated that within the favored longitudinal sector electron precipitation produces an enhancement of this current by one to three orders of magnitude. The model predictions are compared with observations made during the Pioneer 10 and 11 flybys, and satisfactory agreement is obtained.

  15. Radio emission from the magnetic equator of Uranus

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1989-01-01

    The major observational characteristics of the smooth, narrow bandwidth component of Uranus' radio emissions are well described by sources radiating near the local electron gyrofrequency, confined to the magnetic equatorial plane and encircling the planet at radial distances of approximately 2 to 3 R(U). The most intense emission appears to be generated in association with the epsilon ring at 2.0 R(U) radial distance. A cold electron density of less than or equal to 4/cu cm are inferred in this region.

  16. Radio emission from the magnetic equator of Uranus

    SciTech Connect

    Kaiser, M.L.; Desch, M.D.; Connerney, J.E.P. )

    1989-03-01

    The major observational characteristics of the smooth, narrow bandwidth component of Uranus' radio emissions are well described by sources radiating near the local electron gyrofrequency, confined to the magnetic equatorial plane and encircling the plant at radial distances of approximately 2 to 3 R{sub v}. The most intense emission appears to be generated in association with the {var epsilon} ring at 2.0 R{sub v} radial distance. The authors infer a cold electron density of {le} 4 cm{sup {minus}3} in this region.

  17. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  18. X-ray emission from the giant magnetosphere of the magnetic O-type star NGC 1624-2

    NASA Astrophysics Data System (ADS)

    Petit, V.; Cohen, D. H.; Wade, G. A.; Nazé, Y.; Owocki, S. P.; Sundqvist, J. O.; ud-Doula, A.; Fullerton, A.; Leutenegger, M.; Gagné, M.

    2015-11-01

    We observed NGC 1624-2, the O-type star with the largest known magnetic field (Bp ˜ 20 kG), in X-rays with the Advanced CCD Imaging Spectrometer (ACIS-S) camera on-board the Chandra X-ray Observatory. Our two observations were obtained at the minimum and maximum of the periodic Hα emission cycle, corresponding to the rotational phases where the magnetic field is the closest to equator-on and pole-on, respectively. With these observations, we aim to characterize the star's magnetosphere via the X-ray emission produced by magnetically confined wind shocks. Our main findings are as follows. (i) The observed spectrum of NGC 1624-2 is hard, similar to the magnetic O-type star θ1 Ori C, with only a few photons detected below 0.8 keV. The emergent X-ray flux is 30 per cent lower at the Hα minimum phase. (ii) Our modelling indicated that this seemingly hard spectrum is in fact a consequence of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a large amount of local absorption (˜1-3× 1022 cm-2). This combination is necessary to reproduce both the prominent Mg and Si spectral features, and the lack of flux at low energies. NGC 1624-2 is intrinsically luminous in X-rays (log L^{em}_X˜ 33.4) but 70-95 per cent of the X-ray emission produced by magnetically confined wind shocks is absorbed before it escapes the magnetosphere (log L^{ISMcor}_X˜ 32.5). (iii) The high X-ray luminosity, its variation with stellar rotation, and its large attenuation are all consistent with a large dynamical magnetosphere with magnetically confined wind shocks.

  19. Radio emission from the nova-like variable AC Cancri and the symbiotic variable AG Draconis

    SciTech Connect

    Torbett, M.V.; Campbell, B.

    1987-07-01

    Radio emission at 6 cm has been detected from the nova-like cataclysmic variable AC Cnc and the symbiotic variable AG Dra. The AC Cnc observation constitutes the first radio detection in this class of objects. The AG Dra source is probably resolved and appears to show asymmetric, extended structure. The radio emission can best be explained by thermal bremsstrahlung. 26 references.

  20. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J. L.; Bruzzone, L.; Kofman, W.

    2011-10-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5MHz and 50MHz. Part of this frequency range overlaps with that of the natural Jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  1. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  2. RELATIVISTIC MODEL ON PULSAR RADIO EMISSION AND POLARIZATION

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2012-02-20

    We have developed a relativistic model for pulsar radio emission and polarization by taking into account a detailed geometry of emission region, rotation, and modulation. The sparks activity on the polar cap leads to plasma columns in the emission region and modulated emission. By considering relativistic plasma bunches streaming out along the rotating dipolar field lines as a source of curvature radiation, we have deduced the polarization state of the radiation field in terms of the Stokes parameters. We have simulated a set of typical pulse profiles and analyzed the role of viewing geometry, rotation, and modulation in the pulsar polarization profiles. Our simulations explain most of the diverse behaviors of polarization generally found in pulsar radio profiles. We show that both the 'antisymmetric' and 'symmetric' types of circular polarization are possible within the framework of curvature radiation. We also show that the 'kinky' nature in the polarization position angle traverses might be due to the rotation and modulation effects. The phase lag of the polarization position angle inflection point relative to the phase of core peak depends upon the rotationally induced asymmetry in the curvature of source trajectory and modulation.

  3. Radio Emission from Red-Giant Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  4. Radio Emission from Red-giant Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  5. Predicting Changes in the Radio Emission Fluxes of Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Sukharev, A. L.; Ryabov, M. I.; Donskikh, G. I.

    2016-06-01

    Data from long-term monitoring with the 26-m University of Michigan radio telescope at a frequency of 14.5 GHz (1974-2011) is used to predict changes in the radio emission fluxes from the extragalactic sources 3C273, 3C120, 3C345, 3C446, 3C454.3, OJ287, OT081, and BLLac. The predictions are based on data on the major periods of variability and their durations obtained by wavelet analysis. The radio emission fluxes from the sources 3C345, 3C446, and 3C454.3, which have complicated variabilities, are predicted using an autoregression linear prediction method. This yields a forecast of the flux variations extending up to 5 years. Harmonic prediction is used for another group of sources, BLLac, OJ287, and OT081, with rapid variability. This approach yielded forecasts extending 4-9 years. For the sources 3C273 and 3C120, which have stable long periods, the harmonic method was also used and yielded a forecast extending up to 16 years. The reliability of the prediction was confirmed by independent observational data from the MOJAVE program for 2011-2015.

  6. Rotational modulation of Saturn's radio emissions after equinox

    NASA Astrophysics Data System (ADS)

    Ye, Shengyi; Fischer, Georg; Kurth, William; Gurnett, Donald

    2016-04-01

    The modulation rate of Saturn kilometric radiation (SKR), originally thought to be constant, was found to vary with time by comparing the Voyager and Ulysses observations. More recently, Cassini RPWS observations of SKR revealed two different modulation rates, one associated with each hemisphere of Saturn, and it was proposed that the rotation rates are subject to seasonal change. The almost continuous observations of SKR, Saturn narrowband emission, and auroral hiss by RPWS provide a good method of tracking the rotation rates of the planet's magnetosphere. We will show that the rotation rate of the northern SKR is slower than that of the southern SKR in 2015. Auroral hiss provides another unambiguous method of tracking the rotation signals from each hemisphere because the whistler mode wave cannot cross the equator. Rotation rates of auroral hiss are shown to agree with those of SKR when both are observed at high latitudes. The dual rotation rates of 5 kHz narrowband emissions reappeared after a long break since equinox and they agree with those of auroral hiss in 2013.

  7. Cloud-to-stratosphere lightning discharges - A radio emission model

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Desch, M. D.

    1992-01-01

    Recent observations of rare cloud-to-stratospheric lightning discharges suggest the events are inherently 'slow-rising', with the emitted energy reaching peak values in about 10 milliseconds. Applying a dipole radiation model, it is demonstrated that the emitted radio wave energy from such slow-rising events is strongest below about 50 Hz, and possesses a significant rolloff at higher frequencies. In the analysis, various current distributions are considered in order to determine the effect on the radio spectrum. Near 10 kHz, the emission from cloud-to-stratospheric lightning is significantly reduced as compared to the typical cloud-to-ground return stroke, with amplitudes as much as 50 dB lower. This result may explain the lack of detection of VLF signals from recently observed long-lasting discharge events.

  8. Chromospheric evaporation and decimetric radio emission in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.

    1995-01-01

    We have discovered decimetric signatures of the chromospheric evaporation process. Evidence for the radio detection of chromospheric evaporation is based on the radio-inferred values of (1) the electron density, (2) the propagation speed, and (3) the timing, which are found to be in good agreement with statistical values inferred from the blueshifted Ca XIX soft X-ray line. The physical basis of our model is that free-free absorption of plasma emission is strongly modified by the steep density gradient and the large temperature increase in the upflowing flare plasma. The steplike density increase at the chromospheric evaporation front causes a local discontinuity in the plasma frequency, manifested as almost infinite drift rate in decimetric type III bursts. The large temperature increase of the upflowing plasma considerably reduces the local free-free opacity (due to the T(exp -3/2) dependence) and thus enhances the brightness of radio bursts emitted at the local plasma frequency near the chromospheric evaporation front, while a high-frequency cutoff is expected in the high-density regions behind the front, which can be used to infer the velocity of the upflowing plasma. From model calculations we find strong evidence that decimetric bursts with a slowly drifting high-frequency cutoff are produced by fundamental plasma emission, contrary to the widespread belief that decimetric bursts are preferentially emitted at the harmonic plasma level. We analyze 21 flare episodes from 1991-1993 for which broadband (100-3000 MHz) radio dynamic spectra from Pheonix, hard X-ray data from (BATSE/CGRO) and soft X-ray data from Burst and Transient Source Experiment/Compton Gamma Ray Observatory (GOES) were available.

  9. Radio emission from dusty galaxies observed by AKARI

    NASA Astrophysics Data System (ADS)

    Pepiak, A.; Pollo, A.; Takeuchi, T. T.; Solarz, A.; Jurusik, W.

    2014-10-01

    We probe radio-infrared correlation for two samples of extragalactic sources from the local Universe from the AKARI All-Sky Catalogue. The first, smaller sample (1053 objects) was constructed by the cross-correlation of the AKARI/FIS All-Sky Survey Bright Source Catalogue, the AKARI IRC All-Sky Survey Point Source Catalogue and the NRAO VLA Sky Survey, i.e. it consists of sources detected in the mid- and far-infrared by AKARI, and at the 1.4 GHz radio frequency by NRAO. The second, larger sample (13,324 objects) was constructed by the cross-correlation of only the AKARI/FIS All-Sky Survey Bright Source Catalogue and the NRAO VLA Sky Survey, i.e. it consists of sources detected in the far-infrared and radio, without a condition to be detected in the mid-infrared. Additionally, all objects in both samples were identified as galaxies in the NED and/or SIMBAD databases, and a part of them is known to host active galactic nuclei (AGNs). For the present analysis, we have restricted our samples only to sources with known redshift z. In this paper, we analyse the far-infrared-radio correlation for both of these samples. We compare the ratio of infrared and radio emission from normal star-forming dusty galaxies and AGNs in both samples. For the smaller sample we obtained =2.14 for AGNs and =2.27 for normal galaxies, while for the larger sample =2.15 for AGNs and =2.22 for normal galaxies. An average value of the slope in both samples is ~2.2, which is consistent with the previous measurements from the literature.

  10. The Jovian magnetosphere - A post-Voyager view

    NASA Astrophysics Data System (ADS)

    Hill, T. W.

    1981-01-01

    Results of observational and theoretical work presented at the Rice University Conference on the Physics of the Jovian Magnetosphere (February 27-29, 1980) are summarized and used to elucidate the post-Voyager status of the understanding of Jovian magnetosphere dynamics. Works considered treat earth-based and Voyager observations of the Io torus, decametric and kilometric radio emissions, corotation of magnetospheric plasma with the magnetic field, and theoretical studies of mechanisms of particle acceleration, diffusion and loss in the magnetosphere and interplanetary space. Issues remaining to be resolved by future research are also indicated, particularly questions of the discrepancy between plasma flow measurements obtained on the two plasma experiments on each Voyager spacecraft, and the localization of the source of torus plasma.

  11. Confirmation of Pulsed Radio Emission from the Pulsar J1907+0919 (Shitov Radio Pulsar, SGR 1900+14)

    NASA Astrophysics Data System (ADS)

    Glushak, A. P.; Losovsky, B. Ya.; Dumsky, D. V.

    2015-10-01

    Observations at a frequency of 111 MHz with the Large Phased Array at the Pushchino Radio Astronomy Observatory of the Astro Space Center of the P.N. Lebedev Physical Institute confirm the pulsed radio emission of the X-ray pulsar J1907+0919 that is a counterpart of the magnetar SGR 1900+14. Its pulsed radio emission was discovered earlier by Shitov (1999). A flux density periodogram is built. A new spin period P = 5.22756(42) s and flux density 50± 5~mJy are measured at the Epoch 56834.6 MJD. A value of the pulsar radio emission spectral index is estimated as < -4.3. This radio spectrum is one of the steepest among the spectra of known pulsars.

  12. Comparison of Natural Narrow-banded Emissions and Sounder Stimulated Resonances In The Magnetospheres of Jupiter and The Earth (ulysses and Image Spacecraft)

    NASA Astrophysics Data System (ADS)

    Osherovich, V. A.; Fainberg, J.; Benson, R. F.; MacDowall, R.

    The sounder stimulated resonances observed by Ulysses in JupiterSs Io torus re- vealed a spectrum of frequencies which has been interpreted in terms of Dn reso- nances together with electron plasma frequency fpe and Bernstein Qn resonances in order to determine the electron density and magnetic field strength (Osherovich et al. 1993; Benson et al. 1997). The presence of Dn resonances (cylindrical eigen- modes with frequencies proportional sqrtn, n = 1, 2, ...) has been predicted for the Io torus on the basis of the classification of the EarthSs Ionospheric sounder stim- ulated resonances (Osherovich 1987, 1989; Osherovich and Benson 1991; Benson and Osherovich 1992). The magnetic field strength measured by the Ulysses mag- netometer confirmed the values found from resonances to within a few percent. An alternative interpretation suggested that the Ulysses relaxation sounder did not excite Dn in JupiterSs magnetosphere( Le Sagre et al. 1998) and the topic has been subject to a recent debate (Canu 2001a; Benson et al. 2001; Canu 2001b) . We show that Dn resonances are present in both sounder stimulated spectra and in natural emissions ob- served by Ulysses during the inbound and outbound part of the trajectory inside the Io torus. The natural emissions (no sounding) have the same frequencies as their sounder stimulated counterparts. IMAGE/RPI observations, which confirm the specific rela- tion between Dn, fp and fce and for the subsidiary resonances Dn+ and Dn-, will also be presented. References: Benson, R.F. and V.A. Osherovich, Canu, J. Geophys. Res., 97, 19413, 1992. Benson, R.F. et al., Radio Sci., 32, 1127, 1997. Benson, R.F. et al., Radio Sci., 36, 1649, 2001. Canu, P., Radio Sci., 36, 171, 2001a. Canu, P., Radio Sci., 36, 1645, 2001b. Le Sagre, P. et al., J. Geophys. Res., 103, 26667, 1998. 1 Osherovich, V. A., J. Geophys. Res., 92, 316, 1987. Osherovich, V. A., J. Geophys. Res., 94, 5530, 1989. Osherovich, V. A. and R.F. Benson, ., J. Geophys. Res., 96

  13. DARK MATTER AND SYNCHROTRON EMISSION FROM GALACTIC CENTER RADIO FILAMENTS

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S{sub v} {proportional_to}{nu}{sup -0.1{+-}0.4}) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light ({approx}5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs are consistent with those required to explain the excess {gamma}-ray emission observed from the Galactic center by the Fermi Large Area Telescope, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  14. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  15. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  16. Kinetic Simulations of Solar Type II Radio Burst Emission Processes

    SciTech Connect

    Ganse, Urs; Burkart, Thomas; Spanier, Felix; Vainio, Rami

    2010-03-25

    Using our kinetic Particle-in-Cell simulation code, we have examined the behavior of different plasma modes in the environment close to a CME shock front, with special focus on the modes that may contribute to the formation of type II radio bursts. Apart from electron velocity spectra, numerical dispersion plots obtained from simulation data allow for analysis of wave modes in the simulated plasma, especially showing growth and damping of these modes over time. These plots reveal features at 2omega{sub p} which are not predicted by linear wave theory, that may be results of nonlinear three wave interaction processes as theoretically predicted for type II emission processes.

  17. Pulsed Radio Emission from PSR J1119-6127 disappeared

    NASA Astrophysics Data System (ADS)

    Burgay, M.; Possenti, A.; Kerr, M.; Esposito, P.; Rea, N.; Zelati, F. Coti; Israel, G. L.; Johnston, S.

    2016-07-01

    We have searched for pulsed radio emission from the direction of the known high magnetic field pulsar PSR J1119-6127 (spin period of 409 ms, magnetic field intensity at surface of about 4 x 10^13 G, spin-down age of about 1700 yr, embedded in the supernova remnant SNR G292.2-0.5), which showed bursts similar to those typical of the Soft Gamma Repeaters (SGR) at 13:02:07.91 UT on 27 July 2016 (Younes et al,GCN Circular #19735) and at 01:27:51 UT on 28 July 2016 (Kennea et al,Atel #9274).

  18. Diffuse radio emission from clusters in the MareNostrum Universe simulation

    NASA Astrophysics Data System (ADS)

    Hoeft, M.; Brüggen, M.; Yepes, G.; Gottlöber, S.; Schwope, A.

    2008-12-01

    Large-scale diffuse radio emission is observed in some clusters of galaxies. There is ample of evidence that the emission has its origin in synchrotron losses of relativistic electrons that have been accelerated in cluster mergers. In a cosmological simulation, we estimate the radio emission of structure formation shocks as follows: introducing a novel approach to identify strong shock fronts in an smoothed particle hydrodynamics (SPH) simulation, we determine the Mach number as well as the downstream density and temperature in the MareNostrum Universe simulation which has 2 × 10243 particles in a 500h-1Mpc box. Then, we estimate the radio emission using the formalism derived in Hoeft & Brüggen to produce artificial radio maps of massive clusters and to derive a luminosity function of diffuse radio sources. Several of our clusters show radio objects with similar morphology to observed large-scale radio relics, whereas about half of the clusters show only very little radio emission. In agreement with observational findings, the maximum diffuse radio emission of our clusters depends strongly on their X-ray temperature. We find that the so-called accretion shocks cause only very little radio emission. We conclude that a moderate efficiency of shock acceleration, namely ξe = 0.005, and moderate magnetic fields in the region of the relics, namely 0.07-0.8μG are sufficient to reproduce the number density and luminosity of radio relics.

  19. Correlation of pulsar radio emission spectrum with peculiarities of particle acceleration in a polar gap

    SciTech Connect

    Kontorovich, V. M. Flanchik, A. B.

    2013-01-15

    The analytical expression for the frequency of radio emission intensity maximum in pulsars with free electron emission from the stellar surface has been found. Peculiarities of the electron acceleration in a polar gap are considered. The correlation between the high-frequency cutoff and low-frequency turnover in the radio emission spectrum of pulsars known from observations has been explained.

  20. Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.

    1995-01-01

    We have discovered decimetric signatures of the chromospheric evaporation process. Evidence for the radio detection of chromospheric evaporation is based on the radio-inferred values of (1) the electron density, (2) the propagation speed, and (3) the timing, which are found to be in good agreement with statistical values inferred from the blueshifted Ca xix soft X-ray line. The physical basis of our model is that free-free absorption of plasma emission is strongly modified by the steep density gradient and the large temperature increase in the upflowing flare plasma. The steplike density increase at the chromospheric evaporation front causes a local discontinuity in the plasma frequency, manifested as almost infinite drift rate in decimetric type III bursts. The large temperature increase of the upflowing plasma considerably reduces the local free-free opacity (due to the T-(exp -3/2) dependence) and thus enhances the brightness of radio bursts emitted at the local plasma frequency near the chromospheric evaporation front, while a high-frequency cutoff is expected in the high-density regions behind the front, which can be used to infer the velocity of the upflowing plasma. From model calculations we find strong evidence that decimetric bursts with a slowly drifting high-frequency cutoff are produced by fundamental plasma emission, contrary to the widespread belief that decimetric bursts are preferentially emitted at the harmonic plasma level. We analyzed 21 flare episodes from 1991-1993 for which broadband (100-3000 MHz) radio dynamic spectra from Phoenix, hard X-ray data from BATSE/CGRO, and soft X-ray data from GOES were available. We detected slowly drifting high-frequency cutoffs between 1.1 and 3.0 GHz, with drift rates of -41 +/- 32 MHz/s, extending over time intervals of 24 +/- 23 s. Developing a density model for type III-emitting flare loops based on the statistically observed drift rate of type III bursts by Alvarez & Haddock, we infer velocities of up to

  1. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  2. Radio continuum and far-infrared emission of spiral galaxies: Implications of correlations

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.; Iyengar, K. V. K.

    1990-01-01

    Researchers present a study extending the correlation seen between radio continuum and far-infrared emissions from spiral galaxies to a lower frequency of 408 MHz and also as a function of radio spectral index. The tight correlation seen between the two luminosities is then used to constrain several parameters governing the emissions such as the changes in star formation rate and mass function, frequency of supernovae that are parents of the interstellar electrons and factors governing synchrotron radio emission.

  3. The sources of Uranus' dominant nightside radio emissions

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Curtis, S. A.

    1987-01-01

    The broad-bandwidth radio emission detected by Voyager 2 over the nightside of Uranus is examined. It is concluded that the source location of the smooth component is consistent with emission originating near the electron gyrofrequency from a small set of field lines whose foot points lie near the Uranomagnetic southern (dark) pole. The source centroid is at L = 11.5, and extends in latitude between about L = 8 and L = 25. This deduced source region is primarily on closed field lines that pass through the outer radiation belt and have their opposite foot points near the Uranomagnetic northern pole (near the present epoch terminator). The source location of the bursty component is less well defined but is consistent with the set of open field lines which map down to the region surrounding the planet's south magnetic dipole tip.

  4. Optical emission study of radio-frequency excited toluene plasma.

    PubMed

    Lee, Szetsen; Liu, Shiao-Jun; Liang, Rui-Ji

    2008-12-25

    UV-visible emission spectra of radio-frequency (rf) excited toluene plasma were studied. Benzyl radicals as well as toluene monomer and excimer were observed in toluene plasma. It was found that the intensities, peak positions, and linewidths of monomer and excimer emission bands exhibit strong dependence on rf power and plasma processing time. This can be ascribed to photochemical reactions in plasma. Gas-chromatographic analysis of the deposition products from toluene plasma indicated that the main component was bibenzyl. Spectroscopic evidence has shown that the bibenzyl molecule was formed by the coupling reaction between two benzyl radicals in plasma. The spectroscopic characteristics of toluene monomer and excimer are correlated with a kinetic model in plasma. PMID:19049320

  5. Considerations on the radio emission from extended air showers

    NASA Astrophysics Data System (ADS)

    Conti, E.; Sartori, G.

    2016-05-01

    The process of radio emission from extended air showers produced by high energy cosmic rays has reached a good level of comprehension and prediction. It has a coherent nature, so the emitted power scales quadratically with the energy of the primary particle. Recently, a laboratory measurement has revealed that an incoherent radiation mechanism exists, namely, the bremsstrahlung emission. In this paper we expound why bremsstrahlung radiation, that should be present in showers produced by ultra high energy cosmic rays, has escaped detection so far, and why, on the other side, it could be exploited, in the 1–10 GHz frequency range, to detect astronomical γ-rays. We propose an experimental scheme to verify such hypothesis, which, if correct, would deeply impact on the observational γ-ray astronomy.

  6. Real-Time Detection and Constraining Pulsar Emission Physics through Radio/Gamma-Ray Correlation of Crab Giant Pulses

    NASA Astrophysics Data System (ADS)

    Mickaliger, Mitchell B.; Ransom, S.; Langston, G.; McLaughlin, M.; Lorimer, D.; Bilous, A.; Kondratiev, V.; Lyutikov, M.

    2010-01-01

    Giant pulses are rare, short, bright bursts of radio emission. Although giant pulses are well documented, the physical processes behind them are not well known. To determine these processes, certain properties of giant pulses need to be constrained. Among these constraints are the rate of giant pulses and the number of giant pulses as a function of intensity. Data have been taken with the 43-m telescope at Green Bank over a time span of several months and reduced in real time to search for giant pulses. We have developed a real time detection algorithm to search the data for pulses, ruling out periodic signal. When a pulse is found, the intensity vs time profile, frequency vs time plot, and raw data within a second of the burst are saved. This real time detection algorithm allows us to take a large amount of data on the Crab with minimal disk space and human intervention. Another way we are trying to determine emission processes is by correlating Fermi data with giant pulse data from the 100-m Green Bank Telescope and the 43-m telescope. The main purpose of this is to test whether giant pulses are due to changes in the coherence of the radio emission mechanism, variations in the pair creation rate in the pulsar magnetosphere, or changes in the beaming direction. Also being tested is a specific giant pulse emission model proposed by Lyutikov, in which Crab giant pulses are generated on closed magnetic field lines near the light cylinder via anomalous cyclotron resonance of the ordinary mode. This model gives a clear prediction that radio giant pulses should be accompanied by gamma-ray photons.

  7. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  8. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Le Sidaner, P.; Erard, S.; Coffre, A.; Thétas, E.; André, N.; Jacquey, C.

    2013-09-01

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  9. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Le Sidaner, P.; Coffre, A.; Thetas, E.; andre, N.

    2013-12-01

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  10. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Le Sidaner, Pierre; Hess, Sebastien; Girard, Julien; Thetas, Emmanuel; Coffre, Andree; Malapert, Jean-Christophe; Genot, Vincent

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  11. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Erard, Stéphane; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Jacquey, Christian

    2013-04-01

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  12. In situ observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Pfaff, R. F.; Parrot, M.; Yan, X.; Burchill, J. K.

    2013-12-01

    The auroral ionosphere is a region rich with plasma waves that can be studied both in space and on the ground. These waves may mediate energy exchange between particle populations and provide information about the local plasma properties and boundaries. Auroral medium frequency (MF) burst is an impulsive radio emission observed at ground-level from 1.3-4.5 MHz that is associated with local substorm onset. There have been two recent reports of impulsive, broadband, MF waves at high latitudes. Burchill and Pfaff [2005] reported observations from the FAST satellite of impulsive, broadband, MF and low frequency (LF) radio waves. Using data from the DEMETER satellite, Parrot et al. [2009] surveyed MF waves caused by lightning. This study did show a high-latitude population of MF waves. We investigate whether the waves observed by these two satellites are related to auroral MF burst. Using FAST satellite burst mode electric field data from high-latitude (> 60 degrees magnetic), low-altitude (< 1000 km) intervals of moderate to large geomagnetic activity (Kp > 3) from 1996-2002, we have found forty-four examples of impulsive MF waves, all of which are associated with impulsive LF waves. Although MF burst and the waves observed by FAST have similar spectral signatures, they have different magnetic local time dependencies, which suggests that they may be unrelated. A study of MF waves observed at high latitude by DEMETER is ongoing. In situ observations of MF burst could provide crucial information about this heretofore unexplained natural radio emission.

  13. Are supernovae radio sources - A search for radio emission from young supernova remnants

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Marscher, A. P.

    1978-01-01

    A search has been conducted for radio emission at 11 and 3.7 cm from 46 recent supernovae having accurately determined positions and ages of a few months to 79 years. None of these supernovae was detected at a flux density greater than 5-10 mJy. These negative results cannot be explained by internal absorption and are thus due to intrinsically weak synchrotron emission in young supernova remnants. There are two possibilities: either (1) relativistic particles are accelerated not by the supernova outburst but by processes occurring much later (at least about 75 years) in the remnant or (2) the magnetic field in the young remnants evolves very slowly, in proportion to the inverse square root of time, so that its value in the remnants observed was no more than about 0.002 gauss. The constraints the observations place on these possibilities and on the energy in cosmic rays in young remnants are discussed. Gamma-ray observations at times of no more than about 1 year following an outburst will allow one to discriminate between the two alternative explanations of the radio results.

  14. Jupiter and Io - A binary magnetosphere

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Coroniti, F. V.; Kennel, C. F.; Gurnett, D. A.

    1981-01-01

    A qualitative assessment is presented of Voyager 1 and 2 data analysis and theoretical interpretation, regarding the Io torus and Jovian aurora, dominant magnetospheric components, plasma waves and radio emissions, with emphasis on the difficulty of accounting for either the Jupiter aurora or Io torus EUV emission luminosities in energetic terms. Jupiter's middle atmosphere is also considered, with attention to observations of corotating ions, their ambiguities and their implications. After a discussion of the question of Jupiter's interaction with the solar wind, as manifested by its magnetic tail, terrestrial magnetospherics are invoked in the construction of a tentative unification of observed phenomena which is within the latitude afforded by the current state of data reduction.

  15. Search for Cyclotron-maser Radio Emission from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Dulk, G. A.; Leblanc, Y.; Bastian, T. S.

    1997-07-01

    There is reason to believe that extrasolar planets and/or brown dwarfs of mass about 1 to 50 M_J have magnetic fields, that they emit extremely intense cyclotron-maser radiation at metric wavelengths, and that this radiation may be detectable with sensitive radio telescopes like the VLA. The radiation is emitted at the electron cyclotron frequency, and has been detected from Earth, Jupiter, Saturn, Uranus and Neptune, from the Sun, from flare stars, and close binaries. The frequency range of cyclotron maser radiation is fixed by the magnetic field strength on the object. To be detected at, say 0.33 GHz, the required field strength is 118 G, which is intermediate between the 14 G field of Jupiter and the ~ 1000 G field of stellar active regions. An estimation of the flux density of the expected radiation can be made from an interpolation between Jupiter's radio emission (10(10) mJy at 5 AU) and that of nearby red dwarf stars ( ~ 100 mJy at 3 pc). Thus the flux from a planet or brown dwarf 3 to 30 times massive than Jupiter is plausibly 1 to 10 mJy, easily detectable with the VLA. If emission is detected, several important parameters about the planet can be deduced: the strength of its magnetic field, the period of its rotation, and the possible existence of a moon such as Jupiter's Io. Possible means of distinguishing stellar maser emissions from those of planets include: 1) Temporal variations and spectra differ from stars to planets. 2) The polarization is likely to be 100% circular or elliptical for planets, but not for stars. We have searched for exoplanet radio emission with 60 hours of observations with the VLA during November 1996. The observed stars with giant planets or brown dwarfs included 51 Peg, 70 Vir, 47 UMa, 55 CnC, Tau Boo, Gl 229, and HD 114762. We will present the method of observation, the limitations due to confusion and background noise, and the results.

  16. Jupiter's Polar Magnetosphere: Outstanding Issues to be Addressed By Juno

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Connerney, J. E. P.; McComas, D. J.; Mauk, B.; Gladstone, R.; Adriani, A.; Bagenal, F.; Bolton, S. J.

    2014-12-01

    Juno is on course to enter polar orbit at Jupiter on July 4, 2016. After a small number of preliminary orbits during which the orbital period is reduced, approximately 30 science orbits will be executed to explore the interior of Jupiter, hence, its origin. A second primary objective of the mission, and the subject of this talk, is to carry out the first exploration of Jupiter's polar magnetosphere. All previous missions to Jupiter, including Ulysses, remained at low Jovian latitudes at close range, hence, our knowledge of Jupiter's polar magnetosphere is a composite of remote sensing (such as radio emissions in the hectometric and decametric bands as well as IR and UV images); application of observations of Earth's auroral and polar cap particles, fields, and auroral emissions; and modeling. While these likely inform our expectations of what Juno will actually measure qualitatively, Juno will provide the first in depth exploration of auroral processes at another planet, other than a small number of very brief encounters of Saturn's kilometric radio source region by Cassini. With a reasonably complete suite of in situ magnetospheric measurements coupled with remote sensing, Juno will enable us to compare Jupiter's polar magnetosphere with those expectations. Certainly, understanding the nature of auroral currents and mechanisms for particle acceleration are high on the list of priorities for these studies. In addition, it is expected that Juno will greatly improve our understanding of the mapping of auroral processes from high latitudes and low altitudes to the middle and outer magnetosphere.

  17. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  18. THE ION-INDUCED CHARGE-EXCHANGE X-RAY EMISSION OF THE JOVIAN AURORAS: MAGNETOSPHERIC OR SOLAR WIND ORIGIN?

    SciTech Connect

    Hui Yawei; Schultz, David R.; Kharchenko, Vasili A.; Stancil, Phillip C.; Cravens, Thomas E.; Lisse, Carey M. E-mail: schultzd@ornl.gov E-mail: stancil@physast.uga.edu E-mail: carey.lisse@jhuapl.edu

    2009-09-10

    A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions ({approx}0.7-2 MeV u{sup -1}), but infer a different relative sulfur-to-oxygen abundance ratio for these Chandra observations.

  19. The Ion-induced Charge-exchange X-ray Emission of the Jovian Auroras: Magnetospheric or Solar Wind Origin?

    SciTech Connect

    Hui, Yawei; Schultz, David Robert; Kharchenko, Vasili A; Stancil, Phillip C.; Cravens, Thomas E. E.; Lisse, Carey M.; Dalgarno, A.

    2009-01-01

    A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions ( 0.7-2 MeV/u), but infer a different relative sulfur to oxygen abundance ratio for these Chandra observations.

  20. Two component model for X-ray emission of radio selected QSO's

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity.

  1. The ATCA REXCESS Diffuse Emission Survey (ARDES) - I. Detection of a giant radio halo and a likely radio relic

    NASA Astrophysics Data System (ADS)

    Shakouri, S.; Johnston-Hollitt, M.; Pratt, G. W.

    2016-07-01

    We present the results of the radio halo survey of 16 REXCESS southern clusters up to a redshift of 0.2 with the Australia Telescope Compact Array (ATCA) at 1.4 and 2.1 GHz. This cluster sample called the ATCA REXCESS Diffuse Emission Survey (ARDES) includes clusters in a wide range of X-ray luminosities and is morphologically unbiased. We find two diffuse radio sources in the clusters RXCJ2234.5-3744 (Abell 3888) and RXCJ0225.1-2928. The diffuse radio emission in RXCJ2234.5-3744 is a giant radio halo and the diffuse emission in RXCJ0225.1-2928 is a peculiar radio relic candidate. The radio halo has a spectral index of α = -1.48 ± 0.14 and the K-corrected P1.4 is 1.9 ± 0.2 × 1024 W Hz-1. The properties of the detected halo are consistent with both the current P1.4-LX and P1.4-YSZ correlations. The putative radio relic is located approximately 1 Mpc from the cluster in a filament and has a physical extent of 346 ± 20 kpc and a power of P1.4 = 3.3 ± 0.8 × 1023 W Hz-1, which places it in the lower power region of currently known relics.

  2. Using Radio Emissions to Understand Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cane, H. V.; Richardson, I. G.; Erickson, W.

    2014-12-01

    Streams of low energy electrons propagating from the low corona out along open field lines into the heliosphere produce radio emissions that drift rapidly to successively lower frequencies (type III bursts). The presence of type III bursts allows particles detected in situ to be traced back to their associated solar events. This includes high energy ions which are nearly always accompanied by low energy electrons that generate type III bursts. By examining hundreds of type III radio bursts observed by the WAVES instrument on WIND that accompany energetic particle increases, a number of insights into the origins of these particle increases and particle propagation have been obtained and will be discussed. These insights include the presence of flare particles in the majority of particle events and the existence of cross-field transport in the interplanetary medium. A new result is that there are small Fe-rich increases observed by the EPACT instrument on WIND that are not associated with co-temporal flares (i.e., there are no accompanying type III bursts) meaning that the association rate of Fe-rich "impulsive" events with coronal mass ejections is more than 90%.

  3. Factors controlling the occurrence of the Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Shaposhnikov, V. E.; Rucker, H. O.

    The statistical analysis of occurrence of Io-related Jovian decametric radio (DAM) emission shows that the occurrence of the emission increase when Io is in the longitude range 120° -300° (Io's longitude in the frame III). Another result of the statistical analysis is a predominance of DAM emission sources in the northern hemisphere of Jupiter. We show that these phenomena are the result of the joint effect of two factors - the variation of the efficiency of particle acceleration in the ionosphere of the satellite Io and the variation of the broadening of the angular spectrum of accelerated particles during their pass through Io's plasma torus depending on Io's longitude. The planes of the rotational, magnetic and centrifugal (for Io's torus) equators do not coincide. As a result the magnetic field near the satellite Io, which determines the accelerated particle efficiency [1], changes periodically. The most effective acceleration takes place in the longitude range 120° ≤ λIo ≤ 300° . Just in this longitude range the satellite Io appears to be "screened" by the plasma torus of the southern hemisphere. Making their way to the southern hemisphere, the particles are scattered in the torus plasma 2° , within which they and withdrawn from a narrow range of pitch-angles ∆θ0 can reach the southern hemisphere [2]. Therefore in the mentioned longitude range northern sources of DAM emission should be concentrated. At the same time in the longitude range, where the "screening" effect of the plasma torus in the southern direction is negligible, the efficiency of the accelerated mechanism is essentially smaller due to the decrease of the magnetic field near Io. Therefore the southern sources turn to be weaker and are located mainly outside the longitude range, where the emission from the northern sources predominates. Since the emission from the northern sources predominates, the active longitudes are determined basically by this emission and are in the range 120

  4. Type II solar radio bursts predicted by 3-D MHD CME and kinetic radio emission simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2014-01-01

    Impending space weather events at Earth are often signaled by type II solar radio bursts. These bursts are generated upstream of shock waves driven by coronal mass ejections (CMEs) that move away from the Sun. We combine elaborate three-dimensional (3-D) magnetohydrodynamic predictions of realistic CMEs near the Sun with a recent analytic kinetic radiation theory in order to simulate two type II bursts. Magnetograms of the Sun are used to reconstruct initial solar magnetic and active region fields for the modeling. STEREO spacecraft data are used to dimension the flux rope of the initial CME, launched into an empirical data-driven corona and solar wind. We demonstrate impressive accuracy in time, frequency, and intensity for the two type II bursts observed by the Wind spacecraft on 15 February 2011 and 7 March 2012. Propagation of the simulated CME-driven shocks through coronal plasmas containing preexisting density and magnetic field structures that stem from the coronal setup and CME initiation closely reproduce the isolated islands of type II emission observed. These islands form because of a competition between the growth of the radio source due to spherical expansion and a fragmentation of the radio source due to increasingly radial fields in the nose region of the shock and interactions with streamers in the flank regions of the shock. Our study provides strong support for this theory for type II bursts and implies that the physical processes involved are understood. It also supports a near-term capability to predict and track these events for space weather predictions.

  5. Jovian radio emission below 5 mHz

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1983-01-01

    The GS2 and GS3 operational modes of the planetary radio astronomy experiment on the Voyager 1 spacecraft are described as well as the dynamic spectra obtained. Repeated pulses of unpolarized emission (P bursts) recorded by GS2 were studied and attempts were made to correlate their occurrences, which have sudden onset and conclusion, with features in the GS3 dynamic spectra. The influence of the phase of any of the Galilean satellites or the subspacecraft system 3 longitude on P bursts was also investigated. Tables show Voyage 1 GS2 frequencies, high quality Jovian P bursts, and the geometry and pulse repetition frequency of the P burst groups. Plotted bursts are included.

  6. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Arias, T. A.

    1985-01-01

    Data gathered by the Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) are unique in many ways including their frequency range, time resolution, polarization information and geometric characteristics. Studies of rapidly varying phenomena have thus far been hampered by paper display techniques which require large amounts of paper to exploit the full PRA time resolution. A software package capable of effectively displaying full 6s resolution PRA dynamic spectra on a high quality video monitor while compensating for the aforementioned variations was developed. The most striking phenomena revealed by the new display techniques is called Modulated Spectral Activity (MSA) because of its appearance in dynamic spectra as a series at least two parallel emission bands which drift back and forth in frequency on time scales of tens of seconds. In an attempt to locate and understand the MSA source mechanism, a catalogue has been compiled of the start and end of all known MSA events.

  7. The relationship of storm severity to directionally resolved radio emissions

    NASA Technical Reports Server (NTRS)

    Johnson, R. O.; Bushman, M. L.; Sherrill, W. M.

    1980-01-01

    Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity.

  8. The magnetoionic modes and propagation properties of auroral radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, Wynne; Hashimoto, Kozo

    1990-01-01

    The nature of the magnetoionic wave modes which accompany the aurora is clarified here by a detailed analysis, using multiple techniques, of DE 1 auroral radio observations. All four of the possible magnetoionic wave modes are found to occur, apparently emitted from two different source regions on the same auroral field line. AKR originates primarily in the X mode near the electron cyclotron frequency, and is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency.

  9. Solar wind control of Jupiter's decametric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Genova, F.; Desch, M. D.

    1986-01-01

    Observations of the solar wind close to Jupiter are compared with the decametric radio emission (DAM), using data recorded by Voyager 1 and Voyager 2 during 1979. The Non-Io DAM, recorded by both spacecraft and combined using the superposed epoch technique, is found to correlate with the solar wind density and velocity, as well as with the interplanetary magnetic field (IMF) magnitude. In agreement with earlier work using ground-based observations, there are indications that the Non-Io DAM is somehow associated with magnetic sector structure although the precise details of the relationship are still not known and it is not clear if this is a fundamental effect or some secondary effect of intercorrelation.

  10. Radio emission signature of Saturn immersions in Jupiter's magnetic tail

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1983-01-01

    During the interval from about May through August 1981, when Voyager 2 was inbound to Saturn, the Planetary Radio Astronomy instrument measured repeated, dramatic decreases in the intensity of the Saturn Kilometric Radiation (SKR). The emission dropouts averaged two orders of magnitude below mean energy levels and varied from about 1 to 10 Saturn rotations in duration. Comparison with pre-Saturn encounter Voyager 1 observations (June to November, 1980) shows that the SKR dropouts were unique to the Voyager 2 observing interval, consistent with the closer proximity of Saturn to Jupiter's distant magnetotail in 1981. Further, the dropouts occurred on the average at times when Voyager 2 is known to have been within or near Jupiter's magnetic tail.

  11. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  12. Radio detections of southern ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.

    2016-04-01

    We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.

  13. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Barrow, C. H.

    1984-01-01

    Observations of the solar wind close to Jupiter by the Voyager 1 and Voyager 2 spacecraft in 1978 and 1979 are compared with the hectometer-wavelength radio emission from the planet. A significant positive correlation is found between variations in the solar wind plasma density at Jupiter and the level of Jovian radio emission output. During the 173-day interval studied for the Voyager 2 data the radio emission displayed a long-term periodicity of about 13 days, identical to that shown by the solar wind density at Jupiter and consistent with the magnetic sector structure association already proposed for ground-based observations of the decameter-wavelength emission.

  14. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Barrow, C. H.

    1984-01-01

    Observations of the solar wind close to Jupiter, by the Voyager 1 and Voyager 2 spacecraft in 1978 and 1979, are compared with the hectometer wavelength radio emission from the planet. A significant positive correlation is found between variations in the solar wind plasma density at Jupiter and the level of Jovian radio emission output. During the 173-day interval studied for the Voyager 2 data, the radio emission displayed a long term periodicity of about 13 days, identical to that shown by the solar wind density at Jupiter and consistent with the magnetic sector structure association already proposed for groundbased observations of the decameter wavelength emission.

  15. The source location of certain Jovian decametric radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1983-01-01

    Evidence is presented which supports the concept that certain of the Jovian decametric radio waves originate as northern hemisphere extraordinary mode cyclotron emissions. The wave signals received by Voyager 1 near 10 MHz shortly after the closest approach to Jupiter were found to exhibit cusps in the fringe pattern which can be attributed to Faraday rotation in the Io plasma torus. At nearly the same time, the wave polarization near 1 MHz was found to exhibit a sudden reversal of its rotation sense, indicating that the wave path for those frequencies had also become perpendicular to the magnetic field at the spacecraft. It was determined that the waves came from the northern hemisphere at progressively lower altitudes with increasing frequency, and if the source is assumed to be associated with an L = 6 field line, the emission appears to have occurred near the source cyclotron frequency somewhere in the local midnight sector. The evidence indicates that the source is at the Io flux tube and that the emitted wave mode must have been extraordinary. In addition, the emitted wave polarization must have been substantially noncircular which would require a low plasma density near the source, much like that which occurs with auroral kilometric radiation at the earth.

  16. Modeling of the Intracloud Lightning Discharge Radio Emission

    NASA Astrophysics Data System (ADS)

    Iudin, D. I.; Iudin, F. D.; Hayakawa, M.

    2015-08-01

    This paper aims at analyzing the broadband part of electromagnetic emission from thunderclouds in a frequency range of tens of kilohertz to hundreds of megahertz. A model of the intracloud lightning discharge formation is presented. The lightning formation is described as a stochastic growth of the branching discharge channels, which is determined by the electrostatic field. The dynamics of the electric field and of the charge distribution over the lightning structure is calculated deterministically. The effect of the initial charge density in the cloud and the parameters of the conducting channels on spatio-temporal characteristics of the currents and structure of the lightning discharge is studied. The discharge radio emission is calculated by summing up the radiation fields of each channel at the observation point. The standard model for a separate discharge current is adopted, and the electromagnetic radiation in the far zone is estimated. It is found that the obtained frequency spectra exhibit a universal power-law behavior. The results of the modeling agree with known experimental data.

  17. Outer heliospheric radio emissions. II - Foreshock source models

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  18. Wave observations in outer planet magnetospheres

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1985-01-01

    The first measurements of plasma waves and wave-particle interactions in the magnetospheres of the outer planets were provided by instruments on Voyager 1 and 2. At Jupiter, the observations yielded new information on upstream electrons and ions, bow shock dissipation processes, trapped radio waves in the magnetospheres and extended Jovian magnetotail, pitch angle diffusion mechanisms and whistlers from atmospheric lightning. Many of these same emissions were detected at Saturn. In addition, the Voyager plasma wave instruments detected dust particles associated with the tenuous outer rings of Saturn as they impacted the spacecraft. Most of the plasma wave activity at Jupiter and Saturn is in the audio range, and recordings of the wave observations have been useful for analysis.

  19. Offset, tilted dipole models of Uranian smooth high-frequency radio emission

    NASA Technical Reports Server (NTRS)

    Schweitzer, Andrea E.; Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Warwick, James W.

    1990-01-01

    The smooth high-frequency (SHF) component of the radio emission detected during the Voyager 2 encounter with Uranus (January 1986) is studied. An offset tilted dipole (OTD) investigation of the SHF emission at L shells is carried out within the range of the bursty source locations. A viable high L shell model is presented. It is suggested that Miranda, which reaches a minimum L shell at L = 5, may be related to the timing of several types of radio emissions.

  20. Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM-Newton observations

    NASA Astrophysics Data System (ADS)

    Whittaker, Ian C.; Sembay, Steve; Carter, Jennifer A.; Read, Andrew M.; Milan, Steve E.; Palmroth, Minna

    2016-05-01

    An MHD-based model of terrestrial solar wind charge exchange (SWCX) is created and compared to 19 case study observations in the 0.5-0.7 keV emission band taken from the European Photon Imaging Cameras on board XMM-Newton. This model incorporates the Global Unified Magnetosphere-Ionosphere Coupling Simulation-4 MHD code and produces an X-ray emission datacube from O7+ and O8+ emission lines around the Earth using in situ solar wind parameters as the model input. This study details the modeling process and shows that fixing the oxygen abundances to a constant value reduces the variance when comparing to the observations, at the cost of a small accuracy decrease in some cases. Using the ACE oxygen data returns a wide ranging accuracy, providing excellent correlation in a few cases and poor/anticorrelation in others. The sources of error for any user wishing to simulate terrestrial SWCX using an MHD model are described here and include mask position, hydrogen to oxygen ratio in the solar wind, and charge state abundances. A dawn-dusk asymmetry is also found, similar to the results of empirical modeling. Using constant oxygen parameters, magnitudes approximately double that of the observed count rates are returned. A high accuracy is determined between the model and observations when comparing the count rate difference between enhanced SWCX and quiescent periods.

  1. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  2. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    SciTech Connect

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing E-mail: r.x.xu@pku.edu.cn

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  3. Radio Emissions Precursors of Impulsive Phase of Solar Flares Recorded by CALLISTO-BR

    NASA Astrophysics Data System (ADS)

    Fernandes, Francisco; Cunha-Silva, Rafael; Galdino, Marcela; Sodré, Zuleika

    2016-07-01

    A solar flare consists in an eruptive process and involves a sudden release of energy generated by processes carried on from instabilities in the magnetic configuration at solar atmosphere, generating emissions at different wavelengths. Usually, the pre-flare phase presents an increasing of soft X-ray, ultraviolet and radio emissions. In this work, we present a survey of solar radio emission recorded in metric wavelengths (45 - 250 MHz) by CALLISTO-BR spectrograph, belong to the e-Callisto network, associated with pre-flare phase of solar X-rays flares. A sample of 281 radio emissions was analyzed, and 120 were identified as precursor emissions of X-rays flares. The main results of the statistics can be summarized as: (a) 55% of the precursor radio emissions start less than 60 minutes before the beginning of the associated X-ray flare and about 20% start less than 20 minutes before the X-ray emission; (b) 27% of flares with precursor emissions are classified as B class, 61% of C class, and less than 22% of M class. No precursors radio emissions were associated with X class flare; (c) about 42% of radio precursor emissions are of type III bursts and 33% have complex morphology, as drifting pulsating structures. Analysis of global emission trends recorded during the precursor phase of the C4.8 flare of February 15, 2011 (14:32-14:51 UT) is also presented. The occurrence of radio emission during the pre-impulsive phase of a solar flare suggests the presence of plasma turbulence in the active region, since during the impulsive phase, when the energy is released, occur the heating of the plasma and increasing of soft X-ray emission as identified in the event analyzed. The results are presented and discussed.

  4. WFPC2 LRF Imaging of Emission-Line Nebulae in 3CR Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Privon, G. C.; O'Dea, C. P.; Baum, S. A.; Axon, D. J.; Kharb, P.; Buchanan, C. L.; Sparks, W.; Chiaberge, M.

    2008-04-01

    We present Hubble Space Telescope WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [O II], [O III], or H α + [N II]) in 80 3CR radio sources. We overlay the emission-line images on high-resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission-line structures are consistent with weak alignment at low redshift (z < 0.6) except in the compact steep-spectrum (CSS) radio galaxies where both the radio source and the emission-line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission-line nebulae to be more luminous and for the emission-line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission-line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission-line gas. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555. These observations are associated with program 5957.

  5. The connection between the 15 GHz radio and gamma-ray emission in blazars

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.; King, O. G.; Reeves, R.

    2015-03-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope (OVRO 40m). One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.

  6. EMISSION PATTERNS OF SOLAR TYPE III RADIO BURSTS: STEREOSCOPIC OBSERVATIONS

    SciTech Connect

    Thejappa, G.; Bergamo, M.; MacDowall, R. J. E-mail: mbergamo@umd.edu

    2012-02-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft R{sub j} = I{sub j} /{Sigma}I{sub j} (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of {approx}2 Degree-Sign and (2) bursts emitting into a wider cone with angular width spanning from {approx} - 100 Degree-Sign to {approx}100 Degree-Sign . The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  7. Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with γ-ray and radio emission geometries

    NASA Astrophysics Data System (ADS)

    Pierbattista, M.; Harding, A. K.; Gonthier, P. L.; Grenier, I. A.

    2016-04-01

    Thanks to the huge amount of γ-ray pulsar photons collected by the Fermi Large Area Telescope since its launch in June 2008, it is now possible to constrain γ-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole (VRD) pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC) and Slot Gap (SG), and one pole emission geometries, traditional Outer Gap (OG) and One Pole Caustic (OPC). Radio core plus cone emission was assumed for the pulsars of the simulated sample. We compared simulated and observed recurrence of class shapes and peak multiplicity, peak separation, radio-lag distributions, and trends of peak separation and radio lag as a function of observable and non-observable pulsar parameters. We studied how pulsar morphological characteristics change in multi-dimensional observable and non-observable pulsar parameter space. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed γ-ray peak multiplicity and shape classes. The OPC and SG models describe the observed γ-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC geometry best explains the single-peak structure but does not manage to describe the widely separated peaks predicted in the framework of the SG model as the emission from the two magnetic hemispheres. The OPC radio-lag distribution shows higher agreement with observations suggesting that assuming polar radio emission, the γ-ray emission regions are likely to be located in the outer magnetosphere. Alternatively, the radio emission altitude could be higher that we assumed. We compared simulated non-observable parameters with the same parameters estimated for LAT pulsars in the framework of the same models. The larger agreement between

  8. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  9. Upper limits on gravitational wave emission from 78 radio pulsars

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  10. Constraining the Vela Pulsar's Radio Emission Region Using Nyquist-limited Scintillation Statistics

    NASA Astrophysics Data System (ADS)

    Johnson, M. D.; Gwinn, C. R.; Demorest, P.

    2012-10-01

    Using a novel technique, we achieve ~100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  11. CONSTRAINING THE VELA PULSAR'S RADIO EMISSION REGION USING NYQUIST-LIMITED SCINTILLATION STATISTICS

    SciTech Connect

    Johnson, M. D.; Gwinn, C. R.; Demorest, P. E-mail: cgwinn@physics.ucsb.edu

    2012-10-10

    Using a novel technique, we achieve {approx}100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  12. Search for X-ray emission from the radio lobes of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Geldzahler, Barry; Hertz, Paul

    1987-11-01

    Images obtained with the low-energy imaging telescope on board the European X-Ray Astronomy Satellite have been searched for X-ray emission from the radio lobes of Sco X-1. After the scattered photons from the image of the central X-ray source in Sco X-1 are taken into account, no significant additional X-ray flux from the radio lobes can be detected above the background. The 3 sigma upper limit is less than 0.7 micro-Jy for the northeast radio lobe and less than 1.0 micro-J for the southwest radio lobe. This eliminates the embedded source model of Kundt and Gopal-Krishna as a viable model of the radio emission. These limits are three orders of magnitude too high to constrain models of synchrotron or inverse Compton X-ray emission.

  13. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder. Final report

    SciTech Connect

    Haines, D.M.; Reinisch, B.W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N{sub e}) as a function of height (the N{sub e} profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year. The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N{sub e} profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al.), has never been put into space. NASA`s 1990 Space Physics Strategy Implementation Study `The NASA Space Physics Program from 1995 to 2010` suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R{sub e} (Reiff et al.; Calvert et al.).

  14. NEW LIMITS ON RADIO EMISSION FROM X-RAY DIM ISOLATED NEUTRON STARS

    SciTech Connect

    Kondratiev, V. I.; McLaughlin, M. A.; Lorimer, D. R.; Burgay, M.; Possenti, A.; Turolla, R.; Popov, S. B.; Zane, S. E-mail: maura.mclaughlin@mail.wvu.edu E-mail: burgay@ca.astro.it E-mail: roberto.turolla@pd.infn.it E-mail: sergepolar@gmail.com

    2009-09-01

    We have carried out a search for radio emission at 820 MHz from six X-ray dim isolated neutron stars (XDINSs) with the Robert C. Byrd Green Bank Radio Telescope. No transient or pulsed emission was found using fast folding, fast Fourier transform, and single-pulse searches. The corresponding flux limits are about 0.01 mJy for pulsed emission, depending on the integration time for the particular source and assuming a duty cycle of 2%, and 20 mJy for single dispersed pulses. These are the most sensitive limits to date on radio emission from XDINSs. There is no evidence for isolated radio pulses, as seen in a class of neutron stars known as rotating radio transients. Our results imply that either the radio luminosities of these objects are lower than those of any known radio pulsars, or they could simply be long-period nearby radio pulsars with high magnetic fields beaming away from the Earth. To test the latter possibility, we would need around 40 similar sources to provide a 1{sigma} probability of at least one of them beaming toward us. We also give a detailed description of our implementation of the Fast Folding Algorithm.

  15. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  16. Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support.

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Savalle, R.; Zarka, P. M.; Anderson, M.; Andre, N.; Coffre, A.; Clarke, T.; Denis, L.; Ebert, R. W.; Erard, S.; Genot, V. N.; Girard, J. N.; Griessmeier, J. M.; Hess, S. L.; Higgins, C. A.; Hobara, Y.; Imai, K.; Imai, M.; Kasaba, Y.; Konovalenko, A. A.; Kumamoto, A.; Kurth, W. S.; Lamy, L.; Le Sidaner, P.; Misawa, H.; Nakajo, T.; Orton, G. S.; Ryabov, V. B.; Sky, J.; Thieman, J.; Tsuchiya, F.; Typinski, D.

    2015-12-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  17. Radio emission from extensive air showers as a method for cosmic-ray detection

    SciTech Connect

    Kalmykov, N. N.; Konstantinov, A. A.; Engel, R.

    2010-07-15

    At the present time, radio emission from extensive air showers (EASs) is being considered as a new promising method for detecting cosmic rays of energy in the region E{sub 0} > 5 x 10{sup 16} eV. Radio emission from an EAS whose development is simulated by the Monte Carlo method is calculated here. The field of radio emission from an EAS is calculated on the basis of two representations of a shower: that as a set of individual particles and that as a continuous set of currents. The sensitivity of radio emission to EAS parameters in the frequency range 10-100 MHz is investigated. The results can be used to analyze experiments that being presently performed (CODALEMA and LOPES) and those that are being planned for the future.

  18. Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2009-01-01

    We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.

  19. Radio-Quiet Quasars in the VIDEO Survey: Evidence for AGN-powered radio emission below 1 mJy

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Haeussler, Boris; Maddox, Natasha

    2015-01-01

    Several lines of evidence suggest that the interaction between active galactic nucleus (AGN) activity and star formation is responsible for the co-evolution of black hole mass with galaxy bulge mass. Therefore studying this interplay is crucial to our understanding of galaxy formation and evolution. The new generation of radio surveys are able to play a key role in this area, as both processes produce radio emission.We use a combination of optical and near-infrared photometry to select a sample of 72 quasars from the VISTA Deep Extragalactic Observations (VIDEO) Survey, over 1 deg2. The depth of VIDEO allows us to study very low accretion rates and/or lower-mass black holes. 26% of the candidate quasar sample has been spectroscopically confirmed using the Southern African Large Telescope and the VIMOS VLT Deep Survey. We then use a radio-stacking technique to sample below the nominal flux-density threshold of existing Very Large Array data at 1.4 GHz. In agreement with other work, we show that a power-law fit to the radio number counts is inadequate, with an upturn in the counts being observed at these faint luminosities. Previous authors attribute this to an emergent star-forming population. However, by comparing radio emission from our quasars with that from a control sample of galaxies, we suggest that this emission is predominantly caused by accretion activity. Further support for an AGN origin is provided by a comparison of two independent estimates of star formation rate. These findings have important implications for modelling radio populations below 1 mJy, which is necessary for the development of the Square Kilometre Array.

  20. Searches for correlated X-ray and radio emission from X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Catura, R. C.; Lamb, P. A.; White, N. E.; Sanford, P. W.; Hoffman, J. A.; Lewin, W. H. G.; Jernigan, J. G.

    1978-01-01

    The NRAO Green Bank interferometer has been used to monitor MXB 1730-335 and MXB 1837+05 during periods when 68 X-ray bursts were detected by X-ray observations. No significant radio emission was detected from these objects, or from MXB 1820-30 and MXB 1906+00, which emitted no bursts throughout the simultaneous observations. The data place upper limits on radio emission from these objects in the 2695 and 8085 MHz bands.

  1. Magnetospheric Periodicities at Saturn Equinox

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Mitchell, D. G.; Roelof, E.; Paranicas, C.; Krimigis, S. M.; Krupp, N.; Hamilton, D. C.; Dougherty, M. K.

    2010-12-01

    For several years before equinox, the energetic charged and neutral particles in Saturn’s magnetosphere displayed strong periodicities near 10.8 hours, the same period observed in radio emissions and magnetic fields. These particle periodicities have now been observed at equinox in electrons, protons, oxygen ions, and neutral hydrogen and oxygen atoms at all energies greater than ~3 keV, the lowest energies measured by the Magnetospheric IMaging Instrument (MIMI) on the Cassini spacecraft. The equinoctial electrons exhibit a very strong period at 10.72 hours, while the protons have essentially no periodicity at all. Water group ions display a notable period at 10.73 hours. Both the electrons and the ions have curious overtones in their spectral structure that may be related to solar wind modulation. The energetic neutral hydrogen and oxygen atoms have strong periods of 10.79 hours at equinox. Within the uncertainties of the measurements, the ENA periods are slightly longer than the charged particle periods, although they cover a somewhat different time interval. For comparison, the Cassini magnetometer observed periodicities in Saturn’s magnetic field of 10.65 hours during the same equinoctial interval. These observations will be interpreted in terms of a wavy magnetodisk model.

  2. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  3. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  4. The earth as a radio source. [noting auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1975-01-01

    The primary characteristics of radio emission from the earth's magnetosphere are summarized, the origins of these missions are considered and similarities to other astronomical radio sources discussed. The auroral kilometric radiation has features very similar to Io-related decametric radiation from Jupiter and from Saturn. The radiation at fp and 2 fp upstream of the bow shock appears to be generated by the same mechanism as type III solar radio bursts. The beaming of the auroral kilometric radiation into a cone shaped region over the polar cap has some similarity to the angular distribution of radiation from Io and to the beaming of radio emission from pulsars.

  5. A Review of the Low-Frequency Waves in the Giant Magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2016-02-01

    The giant magnetospheres harbor a plethora of low-frequency waves with both internal (i.e., moons) and external (i.e., solar wind) source mechanisms. This chapter summarizes the observation of low-frequency waves at Jupiter and Saturn and postulates the underlying physics based on our understanding of magnetodisc generation mechanisms. The source mechanisms of ULF pulsations at the giant magnetospheres are numerous. The satellite-magnetosphere interactions and mass loading of corotational flows generate many low-frequency waves. Observations of low-frequency bursts of radio emissions serve as an excellent diagnostic for understanding satellite-magnetosphere interactions. The outward radial transport of plasma through the magnetodisc and related magnetic flux circulation is a significant source of ULF pulsations; however, it is uncertain how the radial transport mechanism compares with solar wind induced perturbations.

  6. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  7. Systematic Search of the Nearest Stars for Exoplanetary Radio Emission: Preliminary results from LOFAR

    NASA Astrophysics Data System (ADS)

    Winterhalter, Daniel; Knapp, Mary

    2016-04-01

    Radio observations have been used as a tool to search for exoplanets since before the confirmed discovery of the first extrasolar planet. To date, neither targeted observations of known exoplanets nor surveys have produced definitive detections of exoplanetary radio emission. We present the framework for, and initial results from, a blind radio survey of the nearest star systems for exoplanetary radio emission. The very closest stars were chosen to minimize the dilution of potential radio signals by distance and thereby increase the probability of a detection. The goal of this survey is to obtain, at minimum, physically meaningful upper limits on radio emission from (or modulated by) substellar companions of the nearest stars. The target selection criteria for this survey are restricted to distance, observability for LOFAR and the VLA, and data quality metrics only. Stellar properties are not considered because preconceptions about the types of systems most likely to exhibit radio emission have not been observationally confirmed and may be incorrect. Two survey targets, GJ 411 and GJ 725A/B, have been observed with the LOFAR telescope LBA (30-75 MHz) system. A series of 4 2-hour integrations and 1 3-hour integration were made for each target of a period of approximately 2 weeks. Additional observations are underway with LOFAR as well as the VLA. Preliminary results from the first LOFAR observations are presented.

  8. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  9. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  10. Driving Saturn's magnetospheric periodicities from the upper atmosphere/ionosphere

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Gombosi, Tamas I.

    2012-04-01

    Saturn's magnetospheric structure and the intensity of radio frequency emissions from its immediate surroundings are modulated at close to the planet's rotation period. Analogous rotation-modulated variations at Jupiter are readily interpreted as effects of the non-axisymmetric intrinsic magnetic field. At Saturn, to the contrary, the high level of axial symmetry in the intrinsic field suggests that the periodicity is not internally imposed. A number of mechanisms have been proposed to account for the observations. Each model explains a subset of the observations in a qualitative manner, but no quantitative models yet exist. Here, using a magnetohydrodynamic simulation, we investigate the magnetospheric perturbations that arise from a localized vortical flow structure in the ionosphere near 70° S-latitude that rotates at roughly the rate of planetary rotation. The model reproduces nearly quantitatively a host of observed magnetospheric periodicities associated with the period of the dominant (southern) radio frequency emissions during the Cassini epoch including rotating, quasi-uniform magnetic perturbations in the equatorial plane, rotating mass density perturbations, periodic plasmoid releases that we associate with observed bursts of energetic neutral atoms (ENAs), periodic oscillations of magnetospheric boundaries, current sheet flapping, and periodic modulation of the field-aligned currents linked to Saturn's kilometric radiation (SKR). The model is not unique but is representative of a class of models in which asymmetric flows in the (as yet unmeasured) upper atmosphere couple to the ionosphere and generate currents that flow into the magnetosphere. It can be extended to include the second periodicity that has been associated with SKR emissions in the northern hemisphere.

  11. The birthplace of planetary radio astronomy: The Seneca, Maryland observatory 50 years after Burke and Franklin's Jupiter radio emission discovery.

    NASA Astrophysics Data System (ADS)

    Garcia, L. N.; Thieman, J. R.; Higgins, C. A.

    2004-12-01

    Burke and Franklin's discovery of radio emissions from Jupiter in 1955 effectively marked the birth of the field of planetary radio astronomy. The discovery was made near Seneca, Maryland using the Department of Terrestrial Magnetism/Carnegie Institution of Washington's Mills Cross Array. Fifty years later there is very little evidence of this 96-acre X-shaped array of dipoles still in existence, nor evidence of any of the other antennas used at this site. The site, now known as the McKee Besher Wildlife Management Area, is owned by the State of Maryland Department of Natural Resources. Radio Jove, a NASA/GSFC education and public outreach project, will recognize the 50th anniversary of this discovery through an historic reenactment using their receiver and dual-dipole array system. Our search through the DTM/CIW archives, our visit to the site to look for evidence of this array, and other efforts at commemorating this anniversary will be described.

  12. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  13. Frequency variations of quasi-periodic ELF-VLF emissions: A possible new ground-based diagnostic of the outer high-latitude magnetosphere

    SciTech Connect

    Alford, J.; Engebretson, M.; Arnoldy, R.; Inan, U.

    1996-01-01

    Magnetic pulsations and quasi-periodic (QP) amplitude modulations of ELF-VLF waves at Pc 3-4 frequencies (15-50 mHz) are commonly observed simultaneously in cusp-latitude data. The naturally occurring ELF-VLF emissions are believed to be modulated within the magnetosphere by the compressional component of geomagnetic pulsations formed external to the magnetosphere. The authors have examined data from South Pole Station (L {approximately} 14) to determine the occurrence and characteristics of QP emissions. On the basis of 14 months of data during 1987 and 1988 they found that QP emissions typically appeared in both the 0.5-1 kHz and 1-2 kHz receiver channels at South Pole Station and ocassionally in the 2-4 kHz channel. The QP emission frequency appeared to depend on solar wind parameters and interplanetary magnetic field (IMF) direction, and the months near fall equinox in both 1987 and 1988 showed a significant increase in the percentage of QP emissions only in the lowest-frequency channel. The authors present a model consistent with these variations in which high-latitude (nonequatorial) magnetic field minima near the magnetopause play a major role, because the field magnitude governs both the frequency of ELF-VLF emissions and the whistler mode propagation cutoffs. Because the field in these regions will be strongly influenced by solar wind and IMF parameters, variations in the frequency of such emissions may be useful in providing ground-based diagnostics of the outer high-latitude magnetosphere. 32 refs., 13 figs.

  14. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Chomiuk, Laura; Linford, Justin D.; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P.; Walter, Frederick M.

    2016-08-01

    Since the Fermi discovery of γ-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 Nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: (1) a shock-powered, non-thermal flare; and (2) weak thermal emission from 10-5 M⊙ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies 4 kpc away (3.2-4.6 kpc). The shock-powered flare dominated the radio light curve at low frequencies before day 100. The spectral evolution of the radio flare, its high radio brightness temperature, the presence of unusually hard (kTx > 33 keV) X-rays, and the ratio of radio to X-ray flux near radio maximum all support the conclusions that the flare was shock-powered and non-thermal. Unlike most other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to the unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of γ-rays.

  15. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Chomiuk, Laura; Linford, Justin D.; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P.; Walter, Frederick M.

    2016-08-01

    Since the Fermi discovery of $\\gamma$-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: 1) a shock-powered, non-thermal flare; and 2) weak thermal emission from $10^{-5}$ M$_\\odot$ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies 4 kpc away (3.2-4.6 kpc). The shock-powered flare dominated the radio light curve at low frequencies before day 100. The spectral evolution of the radio flare, its high radio brightness temperature, the presence of unusually hard ($kT_x > 33$ keV) X-rays, and the ratio of radio to X-ray flux near radio maximum all support the conclusions that the flare was shock-powered and non-thermal. Unlike most other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to the unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of $\\gamma$-rays.

  16. Understanding of particle acceleration and loss in Jupiter's magnetosphere from Juno mission

    NASA Astrophysics Data System (ADS)

    Bolton, Scott

    2016-07-01

    Juno is the first Jupiter polar mission. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. Juno's extensive suite of fields and particle experiments along with the UV and IR imagers will provide the first detailed investigation of Jupiter's polar magnetosphere. The set of six microwave radiometers on Juno provide an unprecedented view of Jupiter's synchrotron emission from inside Jupiter's powerful radiation belts. The Juno mission design, science goals, and measurements related to the magnetosphere and radiation belts of Jupiter will be presented.

  17. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  18. Dione's Magnetospheric Interaction

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Hospodarsky, G. B.; Schippers, P.; Moncuquet, M.; Lecacheux, A.; Crary, F. J.; Khurana, K. K.; Mitchell, D. G.

    2015-12-01

    Cassini has executed four close flybys of Dione during its mission at Saturn with one additional flyby planned as of this writing. The Radio and Plasma Wave Science (RPWS) instrument observed the plasma wave spectrum during each of the four encounters and plans to make additional observations during the 17 August 2015 flyby. These observations are joined by those from the Cassini Plasma Spectrometer (CAPS), Magnetospheric Imaging Instrument (MIMI), and the Magnetometer instrument (MAG), although neither CAPS nor MAG data were available for the fourth flyby. The first and fourth flybys were near polar passes while the second and third were near wake passes. The second flyby occurred during a time of hot plasma injections which are not thought to be specifically related to Dione. The Dione plasma wave environment is characterized by an intensification of the upper hybrid band and whistler mode chorus. The upper hybrid band shows frequency fluctuations with a period of order 1 minute that suggest density variations of up to 10%. These density variations are anti-correlated with the magnetic field magnitude, suggesting a mirror mode wave. Other than these periodic density fluctuations there appears to be no local plasma source which would be observed as a local enhancement in the density although variations in the electron distribution are apparent. Wake passages show a deep density depletion consistent with a plasma cavity downstream of the moon. Energetic particles show portions of the distribution apparently absorbed by the moon leading to anisotropies that likely drive both the intensification of the upper hybrid band as well as the whistler mode emissions. We investigate the role of electron anisotropies and enhanced hot electron fluxes in the intensification of the upper hybrid band and whistler mode emissions.

  19. Anticipating Juno Observations of the Magnetosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Bunnell, E.; Fowler, C. M.; Bagenal, F.; Bonfond, B.

    2012-12-01

    The Juno spacecraft will arrive at Jupiter in 2016 and will go into polar orbit. Juno will make the first exploration of the polar regions of Jupiter's vast magnetosphere, combining in situ particles and fields measurements with remote sensing of auroral emissions in the UV, IR and radio. The primary science period comprises ~30 orbits with 11-day periods with a~1.06Rj perijove, allowing Juno to duck under the hazardous synchrotron radiation belts. Apojove is at ~38Rj. The oblateness of the planet causes the orbit to precess with the major axis moving progressively south at about 1 degree per orbit, eventually bringing the spacecraft into the radiation belts. This orbit allows unprecedented views of the aurora and exploration of the auroral acceleration regions. We present an overview of anticipated Juno observations based on models of the Jovian magnetosphere. On approach to Jupiter and over a capture orbit that extends to ~180Rj on the dawn flank, Juno will traverse the magnetosheath, magnetopause and boundary layer regions of the magnetosphere. Due to the high plasma pressures in the magnetospheric plasmasheet the magnetosphere of Jupiter is known to vary substantially with the changes in the solar wind dynamic pressure. We use Ulysses solar wind data obtained around 5 AU to predict the conditions that Juno will observe over the several months it will spend in these boundary regions.

  20. Highlighting the history of French radio astronomy. 1: Nordmann's attempt to observe solar radio emission in 1901

    NASA Astrophysics Data System (ADS)

    Débarbat, Suzanne; Lequeux, James; Orchiston, Wayne

    2007-03-01

    Soon after the discovery of radio waves by Hertz in 1886 the idea that the Sun must emit this radiation was suggested. A number of scientists from different nations then attempted to detect this emission, and one of these was the French astronomer, Charles Nordmann. This paper provides biographical Information an Nordmann before discussing his attempt to detect solar emisson in 1901 and the reasons he was unsuccessful.

  1. Solar Radio Emission as a Prediction Technique for Coronal Mass Ejections' registration

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Fridman, Vladimir

    2016-07-01

    The concept of solar Coronal Mass Ejections (CMEs) as global phenomenon of solar activity caused by the global magnetohydrodynamic processes is considered commonly accepted. These processes occur in different ranges of emission, primarily in the optical and the microwave emission being generated near the surface of the sun from a total of several thousand kilometers. The usage of radio-astronomical data for CMEs prediction is convenient and promising. Actually, spectral measurements of solar radio emission cover all heights of solar atmosphere, sensitivity and accuracy of measurements make it possible to record even small energy changes. Registration of the radio emission is provided by virtually all-weather ground-based observations, and there is the relative cheapness to obtain the corresponding information due to a developed system of monitoring observations. On the large statistical material there are established regularities of the existence of sporadic radio emission at the initial stage of CMEs' formation and propagation in the lower layers of the solar atmosphere during the time interval from 2-3 days to 2 hours before registration of CMEs on coronagraph. In this report we present the prediction algorithm and scheme of short-term forecasting developed on the base of statistical analysis regularities of solar radio emission data prior to "isolated" solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.

  2. Is lightning a possible source of the radio emission on HAT-P-11b?

    NASA Astrophysics Data System (ADS)

    Hodosán, G.; Rimmer, P. B.; Helling, Ch.

    2016-09-01

    Lightning induced radio emission has been observed on Solar system planets. There have been many attempts to observe exoplanets in the radio wavelength, however, no unequivocal detection has been reported. Lecavelier des Etangs et al. carried out radio transit observations of the exoplanet HAT-P-11b, and suggested that a small part of the radio flux can be attributed to the planet. Here, we assume that this signal is real, and study if this radio emission could be caused by lightning with similar energetic properties like in the Solar system. We find that a lightning storm with 3.8 × 106 times larger flash densities than the Earth-storms with the largest lightning activity is needed to produce the observed signal from HAT-P-11b. The optical emission of such thunderstorm would be comparable to that of the host star. We show that HCN produced by lightning chemistry is observable 2-3 yr after the storm, which produces signatures in the L (3.0-4.0 μm) and N (7.5-14.5 μm) infrared bands. We conclude that it is unlikely that the observed radio signal was produced by lightning, however, future, combined radio and infrared observations may lead to lightning detection on planets outside the Solar system.

  3. Long-duration Coherent Radio Emission from the dMe Star Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Slee, O. B.; Willes, A. J.; Robinson, R. D.

    The Australia Telescope and Anglo-Australian Telescope were used in May 2000 to record the radio and optical emissions from the dMe flare star Proxima Centauri. Eight bright optical flares over a two-day interval resulted in no detectable excess short-term radio emission at 1.38 and 2.50GHz. However, a slowly declining 1.38GHz emission over the two-day interval was nearly 100% right circular polarised and was restricted to a relatively narrow bandwidth with total intensity (I) and circular polarisation (V) varying significantly over the 104MHz receiver bandwidth. These are the first observations to show that highly-polarised narrowband flare star emission can persist for several days. This signature is attributed to sources of coherent radio emission in the star's corona. Similarities with various solar radio emissions are discussed; however, it is not possible with the existing observations to distinguish between fundamental plasma emission and electron-cyclotron maser emission as the responsible mechanism.

  4. COMPARATIVE ANALYSIS OF TWO FORMATION SCENARIOS OF BURSTY RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Kuznetsov, A. A.; Doyle, J. G.; Yu, S.; Hallinan, G.; Antonova, A.; Golden, A.

    2012-02-10

    Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the solar system. We simulate the dynamic spectra of radio emission from ultracool dwarfs. The emission is assumed to be generated due to the electron-cyclotron maser instability. We consider two source models: the emission caused by interaction with a satellite and the emission from a narrow sector of active longitudes; the stellar magnetic field is modeled by a tilted dipole. We have found that for the dwarf TVLM 513-46546, the model of the satellite-induced emission is inconsistent with observations. On the other hand, the model of emission from an active sector is able to reproduce qualitatively the main features of the radio light curves of this dwarf; the magnetic dipole seems to be highly tilted (by about 60 Degree-Sign ) with respect to the rotation axis.

  5. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  6. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  7. A comparison of the radio data and model calculations of Jupiter's synchrotron radiation. I - The high energy electron distribution in Jupiter's inner magnetosphere. II - East-west asymmetry in the radiation belts as a function of Jovian longitude

    NASA Technical Reports Server (NTRS)

    De Pater, I.

    1981-01-01

    A comparison has been made between detailed model calculations of Jupiter's synchrotron radiation and the radio data at wavelengths of 6, 21, and 50 cm. The calculations were performed for a Jovian longitude of 200 deg and were based on the multipole field configurations as derived from the Pioneer data. The electron distribution in the inner magnetosphere was derived as a function of energy, pitch angle, and spatial coordinates. In addition, the hot region or east-west asymmetry in the radiation belts is investigated. It is suggested that this asymmetry is due to the combined effect of an overabundance of electrons at jovicentric longitudes of 240-360 deg and the existence of a dusk-to-dawn directed electric field over the inner magnetosphere generated by the wind system in the upper atmosphere.

  8. A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.

    1999-01-01

    The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.

  9. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  10. On the nature of a "typical" pulsar radio emission.

    NASA Astrophysics Data System (ADS)

    Kazbegi, A. Z.; Machabeli, G. Z.; Melikidze, G. I.; Usov, V. V.

    1989-01-01

    The possibility of the excitation of electromagnetic (t) as well as of longitudinal-transverse (lt) waves in the magnetosphere of a "typical" pulsar is discussed. Two mechanisms of the t-waves excitation exist. The first mechanism is connected with the cyclotron resonance between t-waves and high-energy particles of both: the "tail" of the distribution function and the primary beam. The second mechanism is conditioned by the particles drift motion and needs to satisfy a Cherenkov resonance condition. Due to the second mechanism the lt-waves excitation is also possible. The waves excited due to the cyclotron instability cause the diffusion of particles across the magnetic field. For the sufficiently large pitch angles the additional possibility of t-waves excitation appears.

  11. On the nature of a typical pulsars radio emission

    NASA Astrophysics Data System (ADS)

    Kazbegi, A. Z.; Machabeli, G. Z.; Melikidze, G. I.; Usov, V. V.

    1989-01-01

    The possibility of the excitation of electromagnetic (t) as well as of longitudinal-transverse (lt) waves in the magnetosphere of a typical pulsar is discussed. Two mechanisms of the t-wave excitation exist. The first is connected with the cyclotron resonance between t-waves and high-energy particles of both the tail of the distribution function and the primary beam. The second mechanism is conditioned by particle drift motion and needs to satisfy a Cherenkov resonance condition. Due to the second mechanism lt-wave excitation is also possible. The waves excited due to the cyclotron instability cause the diffusion of particles across the magnetic field. For sufficiently large pitch angles, t-wave excitation is also possible.

  12. RADIO-TO-TeV PHASE-RESOLVED EMISSION FROM THE CRAB PULSAR: THE ANNULAR GAP MODEL

    SciTech Connect

    Du, Y. J.; Wang, W.; Qiao, G. J.

    2012-04-01

    The Crab pulsar is a quite young, famous pulsar that radiates multi-wavelength pulsed photons. The latest detection of GeV and TeV pulsed emission with an unprecedented signal-to-noise ratio, supplied by the powerful telescopes Fermi, MAGIC, and VERITAS, challenges the current popular pulsar models, and can be a valuable discriminator to justify the pulsar high-energy-emission models. Our work is divided into two steps. First, taking reasonable parameters (the magnetic inclination angle {alpha} = 45 Degree-Sign and the view angle {zeta} = 63 Degree-Sign ), we use the latest high-energy data to calculate radio, X-ray, {gamma}-ray, and TeV light curves from a geometric view to obtain crucial information on emission locations. Second, we calculate the phase-averaged spectrum and phase-resolved spectra for the Crab pulsar and take a theoretical justification from a physical view for the emission properties as found in the first step. It is found that a Gaussian emissivity distribution with the peak emission near the null charge surface in the so-called annular gap (AG) region gives the best modeled light curves. The pulsed radio, X-ray, {gamma}-ray, and TeV emission are mainly generated from the emission of primary particles or secondary particles with different emission mechanisms in the nearly similar region of the AG located in the only magnetic pole, which leads to the nearly 'phase-aligned' multi-wavelength light curves. The emission of peak 1 and peak 2 originates from the AG region near the null charge surface, while the emission of the bridge primarily originates from the core gap (CG) region. The charged particles cannot co-rotate with the pulsar and escape from the magnetosphere, which determines the original flowing primary particles. The acceleration electric field and potential in the AG and CG are huge enough and are in the several tens of neutron star radii. Thus, the primary particles are accelerated to ultra-relativistic energies and produce numerous

  13. Low-Altitude Emission of Energetic Neutral Atoms from Precipitating Magnetospheric Ions: IMAGE/HENA Mission-Long Survey

    NASA Astrophysics Data System (ADS)

    Vievering, J. T.; Roelof, E. C.; Nair, H.; Sotirelis, T.

    2012-12-01

    Remote sensing of ring current losses should be of considerable utility to the RBSP mission. Low-altitude emission (LAE) of energetic neutral atoms (ENAs) yields a sensitive measurement of the precipitation of magnetospheric energetic ions into the dense monatomic oxygen (O) exosphere at altitudes ˜350 km. LAE is the brightest source of ENAs with energies 1magnetosphere. It is much brighter than ring-current emission (RCE) of ENAs produced by the same energetic ion population directly by charge exchange with the neutral hydrogen atom (H) geocorona. LAE has been detected by many spacecraft (including the NASA TWINS spacecraft now in orbit), but the HENA imager on the IMAGE spacecraft (operating during 2000-2005) had the highest angular resolution (6o×6opixels) and sensitivity (G=1.6 cm2 sr) over the energy range of the bulk of the ring current (20

  14. Quantitative prediction of type II solar radio emission from the Sun to 1 AU

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-01-01

    Coronal mass ejections (CMEs) are frequently associated with shocks and type II solar radio bursts. Despite involving fundamental plasma physics and being the archetype for collective radio emission from shocks, type II bursts have resisted detailed explanation for over 60 years. Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst from ≈4 MHz to 30 kHz (harmonic), including an intensification when the CME-driven shock reached STEREO A. We demonstrate the first accurate and quantitative simulation of a type II burst from the high corona (near 11 solar radii) to 1 AU for this event with a combination of a data-driven three-dimensional magnetohydrodynamic simulation for the CME and plasma background and an analytic quantitative kinetic model for the radio emission.

  15. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  16. An Analysis of Interplanetary Solar Radio Emissions Associated with a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Kruparova, O.; Santolik, O.; Soucek, J.; Magdalenić, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Martínez Oliveros, J. C.; Bale, S. D.

    2016-05-01

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  17. On Using Solar Radio Emission to Probe Interiors of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Gary, D. E.; Sahr, J. D.; Asphaug, E. I.

    2015-12-01

    Asteroids, comets and other primitive solar system bodies are key sources of information on the early solar system, on volatiles and organics delivered to the terrestrial planets, and on processes of planetary formation now observed in operation around other stars. Whether asteroids (in various size classes) are rubble piles or monolithic, and whether any porosity or internal voids contain volatiles, are first-order questions for understanding the delivery of volatiles to the early Earth, and for assessing impact hazards. Information on bulk composition aids discrimination between types and origins of primitive bodies, .e.g., the degree of aqueous alteration and bound-water content of carbonaceous chondrite bodies, and the volatile mass fraction of comets. Radar and radio methods can provide direct information on bulk composition, micro- and macro-porosity, body-scale internal structure, and on whether voids in rocky materials are volatile- or vacuum-filled. Such methods therefore figure prominently in current missions to primitive bodies (e.g., CONSERT) and in a variety of proposed missions. Radio transmitters necessary for conventional methods, however, add considerably to spacecraft mass and power requirements. Moreover, at many wavelengths most useful for radio sounding, powerful radio emission from the Sun strongly interferes with conventional signals. Here we present initial results from an investigation of how solar radio emission could serve as a natural resource for probing interiors of primitive bodies, rather than as interference. We briefly review methods for using stochastic radio illumination (aka noise radar methods), and illustrate the characteristics of solar radio emission relevant to mission design (e.g., observed intervals between emission events of specified intensity for different points in the solar cycle). We then discuss methods for selecting and interpreting observations in terms of interior properties, for bodies is different size classes

  18. ON THE ORIGIN OF THE RADIO EMISSION OF Sw 1644+57

    SciTech Connect

    Barniol Duran, Rodolfo; Piran, Tsvi E-mail: tsvi.piran@mail.huji.ac.il

    2013-06-20

    We apply relativistic equipartition synchrotron arguments to the puzzling radio emission of the tidal disruption event candidate Sw 1644+57. We find that regardless of the details of the equipartition scenario considered, the energy required to produce the observed radio (i.e., energy in the magnetic field and radio emitting electrons) must increase by a factor of {approx}20 during the first 200 days. It then saturates. This energy increase cannot be alleviated by a varying geometry of the system. The radio data can be explained by the following. (1) An afterglow like emission of the X-ray emitting narrow relativistic jet. The additional energy can arise here from a slower moving material ejected in the first few days that gradually catches up with the slowing down blast wave. However, this requires at least {approx}4 Multiplication-Sign 10{sup 53} erg in the slower moving outflow. This is much more than the energy of the fast moving outflow that produced the early X-rays and it severely constrains the overall energy budget. (2) Alternatively, the radio may arise from a mildly relativistic and quasi-spherical outflow. Here, the energy available for radio emission increases with time, reaching at least {approx}10{sup 51} erg after 200 days. This scenario requires, however, a second separate X-ray emitting collimated relativistic component. Given these results, it is worthwhile to consider alternative models in which the energy of the magnetic field and/or of the radio emitting electrons increases with time without having a continuous energy supply to the blast wave. This can happen, for example, if the energy is injected initially mostly in one form (Poynting flux or baryonic) and it is gradually converted to the other form, leading to a strong time-varying deviation from equipartition. Another intriguing possibility is that a gradually decreasing inverse Compton cooling modifies the synchrotron emission and leads to an increase of the available energy in the radio

  19. Radio Monitoring of the Periodically Variable IR Source LRLL 54361: No Direct Correlation between the Radio and IR Emissions

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A.; Muzerolle, James; Gutermuth, Robert A.

    2015-11-01

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  20. Nonthermal Radio Emission from Hot Star Winds: Its Origin and Physical Implications

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1994-01-01

    Nonthermal radio emission has been observed from some of the most luminous hot star winds. It is understood to be synchrotron radiation of the relativistic electrons in the winds. To understand how the electrons are accelerated to such high energies and to correctly explain the observed radio flux and spectra require an exhaustive investigation of all the relevant physical processes involved and possibly point to a complex wind structure. In this paper we discuss the logical path toward a comprehensive model of the nonthermal radio emission from hot star winds. Based on the available observational data and fundamental theoretical considerations, we found that the only physically viable and self-consistent scenario is: the nonthermal radio emission is synchrotron radiation of relativistic electrons (left right harpoon) the electrons are accelerated by shocks via the first-order Fermi mechanism (left right harpoon) the acceleration has to be in situ in the radio emitting region (left right harpoon) the shocks formed at the base of the winds have to propagate to beyond the radio photosphere.

  1. Nonthermal radio emission from hot star winds: Its origin and physical implications

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1994-01-01

    Nonthermal radio emission has been observed from some of the most luminous hot star winds. It is understood to be synchrotron radiation of the relativistic electrons in the winds. To understand how the electrons are accelerated to such high energies and to correctly explain the observed radio flux and spectra require an exhaustive investigation of all the relevant physical processes involved and possibly point to a complex wind structure. In this paper we discuss the logical path toward a comprehensive model of the nonthermal radio emission from hot star winds. Based on the available observational data and fundamental theoretical considerations, we found that the only physically viable and self-consistent scenario is: the nonthermal radio emission is synchrotron radiation of relativistic electrons the electrons are accelerated by shocks via the first-order Fermi mechanism the acceleration has to be in situ in the radio emitting region and the shocks formed at the base of the winds have to propagate to beyond the radio photosphere.

  2. Sampling Studies Of Quasars, Radio-loud Galaxies, & Radio-quiet Galaxies -- Searching For The Cause Of Radio Emission

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Salois, Amee; Soechting, I.; Smith, M.

    2011-01-01

    Comparing the environments of Radio-Loud Galaxies, Radio-Quiet Galaxies, and Quasars offers an opportunity to study the evolution of these objects. Our samples have been carefully chosen from Data Release 7 of the Sloan Digital Sky Survey, which also includes samples studied in the FIRST survey, and have been cut to determine the best possible results. Our study includes three samples. The Quasar sample currently contains 69 objects, the Radio-Loud Galaxy (RLG) sample has 1,335 objects, and the Radio-Quiet Galaxy (RQG) sample contains 2,436 objects (any updates will be given at the meeting). A number of trims were made to produce (smaller) samples with characteristics suited for precise results. By comparing the environments of these three samples we will be able to see any similarities or differences between them. If similarities are detected it suggests that the central object has evolved according to 'nature' - in an isolated manner with little environmental feedback, which may or may not have an effect on its evolution, as supposed by Coldwell et al. (2009). If differences are detected it suggests that the central object has evolved according to `nurture’ and that the environment may have played an important role in the development of their properties. We employ similar procedures used by Coldwell et al. (2009) in their study of blue and red AGNs. Upon the completion of an accurate sample, future work will be pursued studying a number of properties of the environments including studies of: the stellar masses, star formation rates, sersic morphologies, as well as densities and ages of the environments.

  3. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  4. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission. PMID:23235823

  5. Time-scales of close-in exoplanet radio emission variability

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.

    2015-07-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.

  6. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10‑3 cm‑3 for the interstellar medium and A * < 5 × 10‑4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  7. Radio-continuum Emission from Magellanic Clouds Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Filipovic, Miroslav

    2015-08-01

    Comparison of recent Australia Telescope Compact Array (ATCA) / Parkes mosaic surveys of the Magellanic Clouds (MCs) with positions of known planetary nebulae (PNe) have revealed a total of about 50 radio counterparts. Six (15) Small Magellanic Cloud (SMC) candidates were found in 5~GHz surveys, while ~35 were found in the Large Magellanic Cloud (LMC). Followup high resolution ATCA observations at 6 and 3 cm (4" and 2" beams, respectively) reveal that these sources are located within 1" of their optical counterparts. They are extended with higher than expected flux densities. Complimentary optical PNe spectra have typical electron temperatures and densities. Estimates of nebular ionized mass, based on these elevated radio flux densities, suggest they may be the result of significant circumstellar envelopes. These envelopes may have been formed from winds ejected from high mass (up to 8 solar) progenitor stars.

  8. Variable Radio Emission from Nova V5588 Sgr

    NASA Astrophysics Data System (ADS)

    Krauss, M. I.; Chomiuk, L.; Sokoloski, J. L.; Rupen, M. P.; Mioduszewski, A. J.; Roy, N.; O'Brien, T. J.; Bode, M. F.; Eyres, S. P. S.

    2011-08-01

    The EVLA Nova Team reports additional radio flux measurements of the classical nova V5588 Sgr (IAUC #9203, CBET #2707) which indicate significant variability. Observations taken 66 days after the initial discovery of this nova yield non-detections at 5.9 and 33.1 GHz; the derived upper limits are significantly lower than our previously reported detections on day 48 (ATel #3397).

  9. Searching towards the Galactic Centre region for pulsed radio emission

    NASA Astrophysics Data System (ADS)

    Toomey, Lawrence; Johnston, Simon; Hobbs, George; Bhat, Ramesh; Shannon, Ryan

    2014-10-01

    A search of archival Parkes survey data has uncovered a source similar to that of a radio pulsar, however the detection DM indicates that it may be either the closest pulsar ever discovered, or simply a case of mistaken identity and is in fact an RFI event that closely mimics that of a pulsar signal. We would like to propose a grid search of the location of this source, at 3 available frequency bands, in order to determine its nature.

  10. Searches for gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.

    1983-01-01

    Searches were made for pulsed high energy (E 35 MeV) gamma radiation from 43 pulsars using the SAS-2 data base and radio parameters. No positive results were found, and the upper limits are consistent with the concept that gamma ray production efficiency increases with increasing apparent age. Two limits suggest that efficiency cannot be a simple function of apparent age beyond 10,000,000 years.

  11. Radio emission evolution of nonstationary sources in the Hedgehog model

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.; Mikhaylutsa, V. P.

    1980-01-01

    Correlations are obtained for numerical calculation of flux F sub v and polarized radiation intensity of a cloud of arbitrary geometry, consisting of ultrarelativistic electrons that dissipate in a radial magnetic field of the nucleus at a random angle to the observer. It is possible that some of the variable extragalactic objects that were previously described by the Shklovskiy model are young formations in the examined model. Radio astronomical observations would permit a determination of their distance, age, and lifetime.

  12. Detection of Nonthermal Radio Emission from a Polar coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Reiner, Mike J.; Makela, Pertti; Yashiro, Seiji; Akiyama, Sachiko

    2016-07-01

    High-latitude coronal mass ejections from the polar crown region are generally of low energy and hence thought to be not responsible for driving shocks. However, the eruption of such CMEs are associated with weak post eruption arcades suggesting that particle acceleration does happen in the reconnection region beneath the erupting filaments. An unusually fast CME erupted from the southern polar crown on 1999 June 14 observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) mission. The post eruption arcade was observed by the Soft X-ray Telescope on board the Yohkoh mission and the Extreme-ultraviolet imaging Telescope (EIT) on board SOHO. A diffuse radio emission was observed below 1 MHz by the Radio and Plasma Wave experiment (WAVES) on board the Wind spacecraft. The good temporal association between the radio burst and the CME suggests that the CME must be the source of energy for the radio emission. The drift rate of the radio burst was much smaller than that of a typical interplanetary type II burst. We suggest that the radio burst is produced by a flank of the CME-driven shock passing through a streamer located close to the east limb of the Sun. Such an interaction is likely to have caused the slow drift of the burst because the shock flank passes roughly parallel to the solar surface in the flank region. The enhanced density in the streamer makes the local Alfven speed lower, making the shock sufficiently strong to accelerate a few keV electrons that lead to the radio emission. The diffuse feature also contains a series of spikes, which suggest possible escape of nonthermal electrons along open field lines. We use the radio direction finding to confirm the results. This result has important implications for particle acceleration by shock flanks, where the geometry is expected to be quasi-perpendicular.

  13. Plasma Magnetosphere of Oscillating and Rotating Neutron Stars in General Relativity

    NASA Astrophysics Data System (ADS)

    Ahmedov, Bobomurat; Morozova, Viktoriya; Zanotti, Olindo

    2016-07-01

    We discuss a number of analytical studies, aimed at adding the influence of oscillations experienced by a pulsar/magnetar on its plasma magnetopshere. We show that particular modes of oscillations may considerably increase the pulsar/magnetar luminosity and apply the obtained theoretical results on the plasma magnetosphere of oscillating and rotating neutron stars i) to propose a qualitative model for the explanation of the phenomenology of intermittent part time pulsars, ii) to study the conditions for radio emission in rotating and oscillating magnetars by focusing on the main physical processes determining the position of their death lines, i.e. of those lines that separate the regions where the neutron star may be radio loud or radio quiet, iii) to explain the subpulse drift phenomena adopting the space-charge limited flow model and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with the observed velocity of drifting subpulses.

  14. The ATLAS3D Project - XXXI. Nuclear radio emission in nearby early-type galaxies

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Young, Lisa M.; Wrobel, Joan M.; Sarzi, Marc; Morganti, Raffaella; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2016-05-01

    We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the ATLAS3D survey of early-type galaxies (ETGs). We find that 51 ± 4 per cent of the ETGs in our sample contain nuclear radio emission with luminosities as low as 1018 W Hz-1. Most of the nuclear radio sources have compact (≲25-110 pc) morphologies, although ˜10 per cent display multicomponent core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the ATLAS3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at subarcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in contrast to popular assumptions in the literature that the presence of a compact, unresolved, nuclear radio continuum source universally signifies the presence of an AGN. Additionally, we examine the relationships between the 5 GHz luminosity and various galaxy properties including the molecular gas mass and - for the first time - the global kinematic state. We discuss implications for the growth, triggering, and fuelling of radio AGNs, as well as AGN-driven feedback in the continued evolution of nearby ETGs.

  15. COMPLEX DIFFUSE RADIO EMISSION IN THE MERGING PLANCK ESZ CLUSTER A3411

    SciTech Connect

    Van Weeren, R. J.; Fogarty, K.; Jones, C.; Forman, W. R.; Kraft, R. P.; Murray, S. S.; Clarke, T. E.; Brueggen, M.; Lal, D. V.; Roettgering, H. J. A.

    2013-06-01

    We present Very Large Array (VLA) radio and Chandra X-ray observations of the merging galaxy cluster A3411. For the cluster, we find an overall temperature of 6.4{sup +0.6}{sub -1.0} keV and an X-ray luminosity of 2.8 {+-} 0.1 Multiplication-Sign 10{sup 44} erg s{sup -1} between 0.5 and 2.0 keV. The Chandra observation reveals the cluster to be undergoing a merger event. The VLA observations show the presence of large-scale diffuse emission in the central region of the cluster, which we classify as a 0.9 Mpc size radio halo. In addition, a complex region of diffuse, polarized emission is found in the southeastern outskirts of the cluster along the projected merger axis of the system. We classify this region of diffuse emission as a radio relic. The total extent of this radio relic is 1.9 Mpc. For the combined emission in the cluster region, we find a radio spectral index of -1.0 {+-} 0.1 between 74 MHz and 1.4 GHz. The morphology of the radio relic is peculiar, as the relic is broken up into five fragments. This suggests that the shock responsible for the relic has been broken up due to interaction with a large-scale galaxy filament connected to the cluster or other substructures in the intracluster medium. Alternatively, the complex morphology reflects the presence of electrons in fossil radio bubbles that are re-accelerated by a shock.

  16. The Connection between the Radio Jet and the Gamma-ray Emission in the Radio Galaxy 3C 120

    NASA Astrophysics Data System (ADS)

    Casadio, Carolina; Gómez, José L.; Grandi, Paola; Jorstad, Svetlana G.; Marscher, Alan P.; Lister, Matthew L.; Kovalev, Yuri Y.; Savolainen, Tuomas; Pushkarev, Alexander B.

    2015-08-01

    We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged γ-ray activity detected by the Fermi satellite between 2012 December and 2014 October. We find a clear connection between the γ-ray and radio emission, such that every period of γ-ray activity is accompanied by the flaring of the millimeter very long baseline interferometry (VLBI) core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with γ-ray events detectable by Fermi. Clear γ-ray detections are obtained only when components are moving in a direction closer to our line of sight. This suggests that the observed γ-ray emission depends not only on the interaction of moving components with the millimeter VLBI core, but also on their orientation with respect to the observer. Timing of the γ-ray detections and ejection of superluminal components locate the γ-ray production to within ∼0.13 pc from the millimeter VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the γ-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed γ-rays by Compton scattering.

  17. Radio imaging of synchrotron emission associated with a CME on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, H. M.; Krucker, S.; Raftery, C. L.; Saint-Hilaire, P.

    2012-12-01

    Radio observations can be used to identify sources of electron acceleration within flares and CMEs. In a small number of events, radio imaging has revealed the presence of synchrotron emission from nonthermal electrons in the expanding loops of the CME (Bastian et al. (2001), Maia et al. (2007) and Démoulin et al. (2012)). Events in which the synchrotron emission is sufficiently bright to be identified in the presence of plasma emission from radio bursts, which are prevalent at meter wavelengths, are infrequent. Using radio images from the Nançay Radioheliograph (NRH) we present observations of synchrotron emission associated with a CME which occurred on the 14th of August 2010. Using context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, the SWAP instrument onboard Proba2, the LASCO coronograph onboard SOHO and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we follow the propagation of the CME out to 2-3 solar radii and characterize the associated electron distribution. We find that the synchrotron emission is cospatial with the CME core.

  18. Beamed and Unbeamed X-Ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    2000-01-01

    The research exploited ROSAT's sensitivity, together with its spatial and spectral resolution, to separate X-ray emission components in the sources. Prior to ROSAT, the dominant X-ray emission mechanism in radio galaxies as a class was unclear, with correlations between the X-ray and radio emission used on one hand to argue for a nuclear origin for the X-rays, and on the other hand for a thermal origin. Our observations (normally between 10 and 25 ks in length) routinely detected the target sources, and demonstrated that both resolved (thermal) and unresolved X-ray emission are typically present. Highlights of our work included two of the first detections of high-power radio galaxies at high redshift, 3C 280 and 3C 220.1. When combined with the work of two other groups, we find that of the 38 radio galaxies at z > 0.6 in the 3CRR sample, 12 were observed in ROSAT pointed observations and 9 were detected with the four most significant detections exhibiting source extent, including 3C 280 and 3C 220.1. Moreover, we discovered extended emission around five 3CRR quasars at redshift greater than about 0.4, one of which is at z > 0.6. Unification predicts that the X-ray environments of powerful radio galaxies and quasars should be similar, and our results show that powerful radio sources are finding some of the highest-redshift X-ray clusters known to date, pointing to deep gravitational potential wells early in the Universe.

  19. DETECTION OF RADIO EMISSION FROM THE HYPERACTIVE L DWARF 2MASS J13153094-2649513AB

    SciTech Connect

    Burgasser, Adam J.; Melis, Carl; Zauderer, B. Ashley; Berger, Edo

    2013-01-01

    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370 {+-} 50 {mu}Jy, corresponding to a radio luminosity of L{sub rad} = {nu}L{sub {nu}} = (9 {+-} 3) Multiplication-Sign 10{sup 23} erg s{sup -1} and log{sub 10} L{sub rad}/L{sub bol} = -5.44 {+-} 0.22. No detection is made at 9.0 GHz to a 5{sigma} limit of 290 {mu}Jy, consistent with a power-law spectrum S{sub {nu}}{proportional_to}{nu}{sup -{alpha}} with {alpha} {approx}> 0.5. The emission is quiescent, with no evidence of variability or bursts over three hours of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent H{alpha} and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, make 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.

  20. Beamed and Unbeamed X-ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1997-01-01

    There is good evidence for X-ray emission associated with AGN jets which are relativistically boosted towards the observer. But to what jet radius does such X-ray emission persist? To attempt to answer this question one can look at radio galaxies; their cores are sufficiently X-ray faint that any unbeamed X-ray emission in the vicinity of the central engine must be obscured. The jets of such sources are at unfavourable angles for relativistic boosting, and so their relatively weak X-ray emission must be carefully separated from the plateau of resolved X-ray emission from a hot interstellar, intragroup, or intracluster medium on which they are expected to sit. This paper presents results arguing that jet X-ray emission is generally detected in radio galaxies, even those of low intrinsic power without hot spots. The levels of emission suggest an extrapolated radio to soft X-ray spectral index, alpha(sub tao x) of about 0.85 at parsec to perhaps kiloparsec distances from the cores.

  1. Lightning as a possible source of the radio emission on HAT-P-11b

    NASA Astrophysics Data System (ADS)

    Hodosán, G.; Rimmer, P. B.; Helling, Ch.

    2016-04-01

    Lightning induced radio emission has been observed on Solar System planets. There have been many attempts to observe exoplanets in the radio wavelength, however, no unequivocal detection has been reported. Lecavelier des Etangs et al. (2013, A&A, 552, A65) carried out radio transit observations of the exoplanet HAT-P-11b, and suggested that a small part of the radio flux can be attributed to the planet. In the current letter, we assume that this signal is real, and study if this radio emission could be caused by lightning in the atmosphere of the planet. We find that a lightning storm with 530 times larger flash densities than the Earth-storms with the largest lightning activity is needed to produce the observed signal from HAT-P-11b. The optical counterpart would nevertheless be undetectable with current technology. We show that HCN produced by lightning chemistry of such thunderstorms is observable 2-3 years after the storm, which produces signatures in the L (3.0μm - 4.0μm) and N (7.5μm - 14.5μm) infrared bands. We conclude that future, combined radio and infrared observations may lead to lightning detection on planets outside the Solar System.

  2. Clumped X-ray emission around radio galaxies in Abell clusters

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Rhee, George; Owen, Frazer N.; Pinkney, Jason

    1994-01-01

    We have made a comparison of the X-ray and radio morphologies for a sample of 41 rich cluster fields using Einstein Observatory Imaging Proportional Counter (IPC) and Very Large Array (VLA) 20 cm images. Surprisingly, we find that 75% of the radio galaxies have a statistically significant X-ray peak or subclump within 5 min of the radio galaxy position. The X-ray luminosity and the generally extended nature of the X-ray subclumps suggest that these subclumps are overdense regions emitting free-free radiation, although there is also evidence for Active Galactic Nuclei (AGN) X-ray emission coming from some of the more compact, high surface brightness X-ray peaks. Some interesting correlations with radio morphology were also discovered. For clusters which contain wide-angle-tailed radio sources associated with centrally dominant galaxies, there are significant elongations or clumps in the central X-ray emission which are unusual for this type of cluster. We suggest that cluster radio galaxies are pointers to particular clusters or regions within clusters that have recently undergone mergers between cluster subsystems.

  3. Discovery of radio emission from the brown dwarf LP944-20.

    PubMed

    Berger, E; Ball, S; Becker, K M; Clarke, M; Frail, D A; Fukuda, T A; Hoffman, I M; Mellon, R; Momjian, E; Murphy, N W; Teng, S H; Woodruff, T; Zauderer, B A; Zavala, R T

    2001-03-15

    Brown dwarfs are not massive enough to sustain thermonuclear fusion of hydrogen at their centres, but are distinguished from gas-giant planets by their ability to burn deuterium. Brown dwarfs older than approximately 10 Myr are expected to possess short-lived magnetic fields and to emit radio and X-rays only very weakly from their coronae. An X-ray flare was recently detected on the brown dwarf LP944-20, whereas previous searches for optical activity (and one X-ray search) yielded negative results. Here we report the discovery of quiescent and flaring radio emission from LP944-20, with luminosities several orders of magnitude larger than predicted by the empirical relation between the X-ray and radio luminosities that has been found for many types of stars. Interpreting the radio data within the context of synchrotron emission, we show that LP944-20 has an unusually weak magnetic field in comparison to active M-dwarf stars, which might explain the previous null optical and X-ray results, as well as the strength of the radio emissions compared to those at X-ray wavelengths. PMID:11268202

  4. Search for radio emission from the nearby binary brown dwarf system ɛ Indi Bab

    NASA Astrophysics Data System (ADS)

    Blank, D. L.

    2004-11-01

    We have observed the nearest known brown dwarfs, the binary system ɛ Indi Bab (d= 3.626 pc), for 8.6- and 4.8-GHz radio emission with the Australia Telescope Compact Array. If either brown dwarf emits radio flares, then they are respectively at least 5.5 and 1.2 times weaker than LP 944-20, the nearest brown dwarf with detected radio emission. We associate the ROSAT source 1WGA J2203.9 - 5647 with ɛ Indi Bab since the separation was about 30 arcsec at the time of the ROSAT observation. Assuming the association, then ɛ Indi Bab has an L0.4-2.4keV X-ray luminosity of 5.6 × 1025 erg s-1 which makes it roughly a factor of 2 less luminous than LP 944-20. The radio non-detections imply that ɛ Indi Bab does not violate, or at least does not violate as strongly as LP 944-20, the Güdel-Benz relationship of X-ray and radio emission.

  5. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    SciTech Connect

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  6. Advanced digital self-triggering of radio emission of cosmic rays

    NASA Astrophysics Data System (ADS)

    Ruehle, Christoph; Pierre Auger Collaboration

    2012-01-01

    Radio detection provides information about the electromagnetic part of an air shower in the atmosphere complementary to that obtained by water-Cherenkov detectors predominantly sensitive to the muonic content of an air shower at ground. For the measurement of ultra-high-energy cosmic rays (UHECR) by the detection of their coherent radio emission, several test setups have been developed and deployed at the Pierre Auger Observatory in Argentina. However, these UHECR radio pulses are significantly polluted by man-made radio frequency interferences (RFI). This requires a special design of antennas, analog, data acquisition (DAQ), and communication electronics, which are under investigation at the Pierre Auger Observatory. In large-scale detector arrays sophisticated self-triggering methods are necessary, to use the limited available communication data rate efficiently. This paper gives an overview of the electronics and self-triggering methods used in the test setups at the Pierre Auger Observatory and describes the experiences gained so far.

  7. Models relating the radio emission and ionised gas in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Pedlar, A.; Unger, S. W.; Axon, D. J.; Dyson, J. E.

    1987-01-01

    Possible models are discussed in which the radio emitting components in Seyfert II nuclei can compress and accelerate the ambient nuclear medium to produce the characteristics of the narrow line region. A first order model, which considers only the expansion of the radio components, is briefly described. However, in many Seyfert nuclei it appears that the linear motion of the radio components is also important. This can result in shock heating of the ambient medium, and if the cooling time is long enough, can lead to a displacement between the radio component and the associated emission lines. This effect may be present in NGC 1068 and NGC 5929 and by considering ram pressure balance and the cooling length it is possible to estimate lobe velocities and ambient densities.

  8. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  9. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-04-20

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M{sub K} < -24 early-type galaxies, the distribution of radio powers at fixed absolute magnitude spans four orders of magnitude and the median radio power is proportional to K-band luminosity to the power 2.78 {+-} 0.16. The measured flux densities of M{sub K} < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  10. Exploring Dual and Binary AGN via Radio Emission

    NASA Astrophysics Data System (ADS)

    Burke Spolaor, Sarah; Lazio, J.

    2012-05-01

    Dual and binary supermassive black holes (SMBHs) are thought to form as a direct result of a major galaxy merger. The discovery of late-stage SMBH pairs could critically inform upcoming gravitational wave science and cosmological formation models, and could provide fascinating studies of post-merger dynamics and merger-induced SMBH growth. However, it has been notoriously difficult to identify clear electromagnetic markers for dual and binary SMBHs in late-stage merger systems. Accordingly, few definitive discoveries of paired SMBHs have yet been made, with only a handful of known systems at projected separations below 1kpc. We will review the unique contributions that radio imaging observations can make to this field: particularly in the search for new systems, the confirmation of candidate small-orbit binary systems, and the potential for multi-messenger gravitational wave science when combined with pulsar timing methods. We will also provide an update on recent radio searches for binary AGN. We acknowledge that a portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  11. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  12. High-Latitude Radio Emission in a Sample of Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Judith A.; English, Jayanne; Sorathia, Barkat

    1999-05-01

    We have mapped 16 edge-on galaxies at 20 cm using the Very Large Array in its C configuration, and a subset of these galaxies in the D configuration at 6 and/or 20 cm, in a search for extended (>~1 kpc) radio continuum emission above and below the plane. For five galaxies, we could form spectral index, energy, and magnetic field maps (assuming minimum energy). While the galaxies were partly chosen by radio flux density, they span a variety of star formation rates (SFRs), and only six might be considered ``starburst'' galaxies. A range of Hubble type and degree of isolation are also represented. The galaxies largely fall on the FIR-radio continuum correlation. They also display a correlation between IR surface brightness and warmth, extending the previously observed relation of Lehnert & Heckman to galaxies with lower star formation rates. We find that all but one galaxy show evidence for nonthermal high-latitude radio continuum emission, suggesting that cosmic-ray (CR) halos are common in star-forming galaxies. Of these, eight galaxies are new detections. The high-latitude emission is seen over a variety of spatial scales and in discrete and/or smooth features. In some cases, discrete features are seen on large scales, suggesting that smooth radio halos may consist, in part, of discrete features combined with low spatial resolution. In general, the discrete features emanate from the disk, but estimates of CR diffusion lengths suggest that diffusion alone is insufficient to transport the particles to the high latitudes seen (>15 kpc in one case). Thus CRs likely diffuse through low-density regions and/or are assisted by other mechanisms (e.g., winds). We searched for correlations between the prevalence of high-latitude radio emission and a number of other properties, including the global SFR, supernova input rate per unit star-forming area, E_A, and environment, and do not find clear correlations with any of these properties. A subset of the data allows, at best

  13. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. III. ANALYSIS OF 3CRR OBJECTS

    SciTech Connect

    Dicken, D.; Axon, D.; Robinson, A.; Kharb, P.; Tadhunter, C.; Morganti, R. E-mail: djasps@rit.ed E-mail: c.tadhunter@sheffield.ac.u

    2010-10-20

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z< 0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid- to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN power (indicated by [O III]{lambda}5007 emission line luminosity) and 24 {mu}m luminosity. This result is consistent with the 24 {mu}m thermal emission originating from warm dust heated directly by AGN illumination. Applying the same correlation test for 70 {mu}m luminosity against [O III] luminosity we find this relation to suffer from increased scatter compared to that of 24 {mu}m. In line with our results for the higher-radio-frequency-selected 2 Jy sample, we are able to show that much of this increased scatter is due to heating by starbursts that boost the far-infrared emission at 70 {mu}m in a minority of objects (17%-35%). Overall this study supports previous work indicating AGN illumination as the dominant heating mechanism for MFIR emitting dust in the majority of low-to-intermediate redshift radio galaxies (0.03 < z < 0.7), with the advantage of strong statistical evidence. However, we find evidence that the low-redshift broad-line objects (z < 0.1) are distinct in terms of their positions on the MFIR versus [O III] correlations.

  14. Radio emission of RRAT-pulsars at a frequency of 111 MHz

    NASA Astrophysics Data System (ADS)

    Losovsky, Boris; Dmitry Dumsky, Mr/.

    We will report about our resalts concerning the observations of a number of Rotating Radio Transient (RRAT) pulsars .These observations have been carried out at Large Phased Array of P.N. Lebedev Physical Institute at 111 MHz during 2010-2013 years. RRAT- pulsars were first discovered in archive Parkes Multibeam Pulsar Survey [1,2]and Arecibo Pulsar Survey[3] at higher frequency 1400 MHz and some pulsars were discovered at frequency of 350 MHz with Green Bank Telescope[4]. A characteristic feature of these pulsars is sporadic radio emission in rare active phase and no radio emission for a long time making it difficult to find periodicity .Fast Folding Algorithm processing of observations at 111 MHz shows that even in passive phase RRAT-pulsars generate weak radio emission with the period corresponding to the period of sporadic radio pulses observed in the active phase. The flux density of the radio emission of these pulsars in passive phase is rather small even at low frequency 111 MHz, that greatly complicates its registration at high frequencies since flux density of the RRAT- pulsars decreases with increasing frequency.\\ ȩnterline{References}\\ 1.McLaughlin M.A., Lyne A.G., Lorimer D.R. et al., 2006, Nature,439,817. 2.Keane E.F., Ludovici D.A., Eatough E.P. et al., 2010, MNRAS,401,1057. 3.Deneva J.S., Cordes J.M., McLaughlin M.A. et al., 2009,ApJ,703,2259. 4.Keane E.F.,McLaughlin M.A., Bull.Astr.Soc.India, 2011,39,1.

  15. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  16. Radio emission of extensive air showers at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2016-05-01

    It is found that the power of the incoherent radiation of ionization electrons of an extensive air shower in the frequency range of 150 GHz is more than 10-24 W/m2Hz, with the shower energy ~1018 eV at a distance of 5 km from its axis. This means that, unlike fluorescent detectors, a radio telescope with an effective area of more than 300 m2 can monitor the trajectory of showers with an energy higher than 1018 eV at any time of the day regardless of the weather. The spectrum maximum near the frequency of 150 GHz is roughly three orders of magnitude higher than the value experimentally measured in the characteristic band (~5-10 GHz).

  17. Physical properties of conventional explosives deduced from radio frequency emissions

    SciTech Connect

    Harlin, Jeremiah D; Nemzek, Robert

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  18. Detection of nonthermal continuum radiation in Saturn's magnetosphere

    SciTech Connect

    Kuth, W.S.; Scarf, F.L.; Sullivan, J.D.; Gurnett, D.A.

    1982-08-01

    A detailed analysis of high resolution wideband data from the Voyager 1 and 2 plasma wave receivers has revealed the presence of heretofore undiscovered nonthermal continuum radiation trapped within the Saturnian magnetosphere. The discovery of Saturnian trapped continuum radiation fills a disturbing void in the Saturnian radio spectrum. On the basis of observations at both the Earth and Jupiter it was expected that continuum radiation should be a pervasive signature of planetary magnetospheres in general. Special processing of the Voyager 1 plasma wave data at Saturn has now confirmed the existence of weak emissions that have a spectrum characteristic of trapped continuum radiation. Similar radiation was also detected by Voyager 2; however, in this case it is not certain that Saturn was the only source. Considerable evidence exists which suggests that Saturn may have been immersed in the Jovian tail during the Voyager 2 encounter, so that Jupiter may provide an additional source of the continuum radiation detected by Voyager 2.

  19. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L. E-mail: panagia@stsci.edu E-mail: mrupen@nrao.edu E-mail: clmw@mit.edu

    2011-10-20

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of {lambda}{lambda}1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at {lambda}2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  20. On the Radio Detection of Multiple-exomoon Systems due to Plasma Torus Sharing

    NASA Astrophysics Data System (ADS)

    Noyola, J. P.; Satyal, S.; Musielak, Z. E.

    2016-04-01

    The idea of single exomoon detection due to the radio emissions caused by its interaction with the host exoplanet is extended to multiple-exomoon systems. The characteristic radio emissions are made possible in part by plasma from the exomoon’s own ionosphere. In this work, it is demonstrated that neighboring exomoons and the exoplanetary magnetosphere could also provide enough plasma to generate a detectable signal. In particular, the plasma-torus-sharing phenomenon is found to be particularly well suited to facilitate the radio detection of plasma-deficient exomoons. The efficiency of this process is evaluated, and the predicted power and frequency of the resulting radio signals are presented.

  1. Auroral Radio Emission Direction of Arrival Studies of Simultaneous Medium Frequency Burst and Auroral Hiss

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.

    2010-12-01

    The auroral zone is the source of multiple kinds of radio emissions that can be observed on the ground. The study of radio emissions offers a way to remotely sense space plasma processes and, in the case of auroral emissions, to use the auroral ionosphere as a large-scale plasma physics laboratory. Medium frequency (MF) burst is an impulsive radio emission at 1.5-4.5 MHz observed on the ground. Its generation mechanism is unknown, and it is often associated with the onset of substorms. Auroral hiss is an impulsive emission observed on the ground at frequencies up to 1 MHz and is also associated with substorm onset. LaBelle et al. [1997] reported a temporal relationship between MF burst and auroral hiss. Multiple impulses of both MF burst and auroral hiss occurred simultaneously over a time period that in certain cases lasted tens of minutes. While the temporal relationship on the timescale of seconds is well established, the spatial relationship between MF burst and auroral hiss has yet to be investigated. Dartmouth College currently operates a broadband (0-5 MHz) four-element radio interferometer at Toolik Field Station in Alaska (68° 38' N, 149° 36' W, 68.5° magnetic latitude) in order to study the direction of arrival (DOA) of radio emissions. Since the antenna spacing is 50 meters, the interferometer is optimized for DOA measurements of MF bursts. However, in certain cases, it can provide the DOA for the high-frequency portion of impulsive auroral hiss. We present two case studies that represent the first simultaneous DOA measurements of impulsive auroral hiss and MF burst. On March 4, 2010, the DOA of MF burst was predominantly from 30 degrees south of east, an observation consistent with the statistical work performed by Bunch et al. [2009]. Simultaneous DOA measurements of the high-frequency portion of auroral hiss also showed the DOA as approximately 30 degrees south of east but with greater scatter in the data. The second case study, which involved an

  2. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NASA Astrophysics Data System (ADS)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  3. Search for non-thermal radio emission from Eta Carina's outer blast wave with ATCA

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan; Urquhart, James; Skilton, Joanna Lucy; Hinton, Jim; Domainko, Wilfried

    2010-10-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) gamma-ray emission in the direction of Eta Carina has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission can be either interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "Great Eruption". The detection of a radio shell at the location of the shock would support the latter scenario and confirm Eta Carina as prime example of a new source type, namely, an LBV star whose massive ejecta accelerates electrons to non-thermal energies. While Fermi and INTEGRAL do not provide sufficient angular resolution to resolve the blast wave, high resolution radio observations using ATCA will be able to test non-thermal radio emission from this acceleration site. The current sensitivity of ATCA is such that a relatively modest observation time of 12 hours will be sufficient to image the synchrotron emission from the blast region down to magnetic field strengths well below typical ISM values and hence prove or reject our blast-wave hypothesis for the high energy emission.

  4. Radio detection of formaldehyde emission from Comet Halley

    NASA Technical Reports Server (NTRS)

    Snyder, Lewis E.; Palmer, Patrick; De Pater, Imke

    1989-01-01

    The J(K-1 K1) = -1(11) -10(10) transition of H2CO was detected in emission at 4829.659 MHz from Comet Halley. The H2CO emission line had a peak intensity of 2.66 + or - 0.78 mJy/beam with a small blueshift of -0.76 + or - 0.40 km/s, which is consistent with the anisotropic outgassing of the nucleus in the solar direction found for other cometary species. Data analysis suggests that cometary H2CO was produced from an extended source in the coma as well as directly from the nucleus and that it was not refrigerated as in interstellar dark nebulae. The derived H2CO production rate of 1.5 x 10 to the 28th molecules/s is obtained which is consistent with observational and theoretical findings.

  5. Long-term changes in Jovian synchrotron radio emission - Intrinsic variations or effects of viewing geometry?

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    1993-04-01

    Possible causes of the observed long-term variation of Jovian synchrotron radio emission, including both intrinsic changes in the Jovian radiation belts and apparent changes due to variations in the Jovigraphic declination of the earth, DE, are investigated. An increase in diffusion rate with other parameters held constant results in an inward displacement of the peak emission radial distance that is not observed. Effects of viewing geometry changes are examined. The possible importance of such effects is suggested by a correlation between the total decimetric radio flux and DE, which varies between -3.3 and +3.3 deg during one Jovian orbital period. Because the Jovian central meridian longitudes where the magnetic latitude passes through zero during a given Jovian rotation change substantially with DE and since significant longitudinal asymmetries exist in both the volume emissivity and the latitudinal profile of the beam, the total intensity should be at least a partial function of D sub E.

  6. MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES

    SciTech Connect

    Mossessian, George; Fleishman, Gregory D.

    2012-04-01

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

  7. Non-thermal radio emission from colliding flows in classical nova V1723 Aql

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Metzger, Brian D.; Zheng, Yong; Chomiuk, Laura; Krauss, Miriam I.; Linford, Justin D.; Nelson, Thomas; Mioduszewski, Amy J.; Rupen, Michael P.; Finzell, Tom; Mukai, Koji

    2016-03-01

    The importance of shocks in nova explosions has been highlighted by Fermi's discovery of γ-ray-producing novae. Over three years of multiband Very Large Array radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within the ejecta led to the acceleration of particles and the production of synchrotron radiation. Soon after the start of the eruption, shocks in the ejecta produced an unexpected radio flare, resulting in a multipeaked radio light curve. The emission eventually became consistent with an expanding thermal remnant with mass 2 × 10-4 M⊙ and temperature 104 K. However, during the first two months, the ≳106 K brightness temperature at low frequencies was too high to be due to thermal emission from the small amount of X-ray-producing shock-heated gas. Radio imaging showed structures with velocities of 400 km s-1 (d/6 kpc) in the plane of the sky, perpendicular to a more elongated 1500 km s-1 (d/6 kpc) flow. The morpho-kinematic structure of the ejecta from V1723 Aql appears similar to nova V959 Mon, where collisions between a slow torus and a faster flow collimated the fast flow and gave rise to γ-ray-producing shocks. Optical spectroscopy and X-ray observations of V1723 Aql during the radio flare are consistent with this picture. Our observations support the idea that shocks in novae occur when a fast flow collides with a slow collimating torus. Such shocks could be responsible for hard X-ray emission, γ-ray production, and double-peaked radio light curves from some classical novae.

  8. Radio synchrotron emission from secondary electrons in interaction-powered supernovae

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Kamble, A.; Sironi, L.

    2016-07-01

    Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For an SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radial profiles of the CSM density and of the shock velocity, υ0. The relevant transition time at the peak frequency is {˜ } {190} d K_ep,-3^{-1} A_{w, 16}{/β _{0, -1.5}^2}, where Aw is the wind mass-loading parameter, β0 = υ0/c and Kep are the electron-to-proton ratio of accelerated particles. We explicitly show that late peak times at 5 GHz (i.e. tpk ≳ 300-1000 d) suggest a shock wave propagating in a dense wind (Aw ≳ 1016-1017 gr cm-1), where secondary electrons are likely to power the observed peak emission.

  9. Radio synchrotron emission from secondary electrons in interaction-powered supernovae

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Kamble, A.; Sironi, L.

    2016-04-01

    Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For a SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radial profiles of the CSM density and of the shock velocity, υ0. The relevant transition time at the peak frequency is ˜ {190} d K_ep,-3^{-1} A_{w, 16}{/β _{0, -1.5}^2}, where Aw is the wind mass-loading parameter, β0 = υ0/c and Kep is the electron-to-proton ratio of accelerated particles. We explicitly show that late peak times at 5 GHz (i.e., tpk ≳ 300 - 1000 d) suggest a shock wave propagating in a dense wind (Aw ≳ 1016 - 1017 gr cm-1), where secondary electrons are likely to power the observed peak emission.

  10. Source location of the smooth high-frequency radio emissions from Uranus

    SciTech Connect

    Farrell, W.M.; Calvert, W. )

    1989-05-01

    The source location of the smooth high-frequency (SHF) radio emissions from Uranus has been determined using a technique differing from those applied previously. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center for the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56{degree} S, 219{degree} W. The half-angle for the hollow portion of the emission pattern was found to be 13{degree}.

  11. Maps of Jovian radio emission at 1412 MHz

    NASA Technical Reports Server (NTRS)

    Pater, I. D.

    1978-01-01

    Jupiter was observed with the Westerbork Radio Telescope at a frequency of 1412 MHz in December 1977 when it was at its most northerly opposition to the earth. Pictures were obtained of Jupiter in all four Stokes parameters at 24 different rotational aspects of the planet, each integrated over 15 degrees of Jovian rotation. The maps clearly indicate the presence of higher order terms in the dipolar field of Jupiter at distances of approximately 2 Rj from the center. They also show a displacement of the main dipole of 0.119 plus or minus 0.009 Rj from the center of the disk towards longitude 135-145 degree and a displacement of 0.04 plus or minus 0.04 Rj towards the north in agreement with the displacement found by the Pioneer spacecraft. From the data it is estimated that the thermal disk temperature at this frequency is more than 300 K but less than 340 K, which implies an ammonia mixing ratio of approximately 0.0005.

  12. The spectrum and variability of radio emission from AE Aquarii

    NASA Technical Reports Server (NTRS)

    Abada-Simon, Meil; Lecacheux, Alain; Bastian, Tim S.; Bookbinder, Jay A.; Dulk, George A.

    1993-01-01

    The first detections of the magnetic cataclysmic variable AE Aquarii at millimeter wavelengths are reported. AE Aqr was detected at wavelengths of 3.4 and 1.25 mm. These data are used to show that the time-averaged spectrum is generally well fitted by a power law S(nu) varies as nu exp alpha, where alpha is approximately equal to 0.35-0.60, and that the power law extends to millimeter wavelengths, i.e., the spectral turnover is at a frequency higher than 240 GHz. It is suggested that the spectrum is consistent with that expected from a superposition of flarelike events where the frequency distribution of the initial flux density is a power law f (S0) varies as S0 exp -epsilon, with index epsilon approximately equal to 1.8. Within the context of this model, the high turnover frequency of the radio spectrum implies magnetic field strengths in excess of 250 G in the source.

  13. SCATTERING OF PULSAR RADIO EMISSION BY THE INTERSTELLAR PLASMA

    SciTech Connect

    Coles, W. A.; Rickett, B. J.; Gao, J. J.; Hobbs, G.; Verbiest, J. P. W.

    2010-07-10

    We present simulations of scattering phenomena which are important in pulsar observations, but which are analytically intractable. The simulation code, which has also been used for solar wind and atmospheric scattering problems, is available from the authors. These simulations reveal an unexpectedly important role of dispersion in combination with refraction. We demonstrate the effect of analyzing observations which are shorter than the refractive scale. We examine time-of-arrival fluctuations in detail: showing their correlation with intensity and dispersion measure, providing a heuristic model from which one can estimate their contribution to pulsar timing observations, and showing that much of the effect can be corrected making use of measured intensity and dispersion. Finally, we analyze observations of the millisecond pulsar J0437-4715, made with the Parkes radio telescope, that show timing fluctuations which are correlated with intensity. We demonstrate that these timing fluctuations can be corrected, but we find that they are much larger than would be expected from scattering in a homogeneous turbulent plasma with isotropic density fluctuations. We do not have an explanation for these timing fluctuations.

  14. Galactic Synchrotron Emission and the Far-infrared–Radio Correlation at High Redshift

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR–radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR–radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  15. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    NASA Astrophysics Data System (ADS)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  16. Radio continuum detection in blue early-type weak-emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.

    2016-06-01

    The star formation rates (SFRs) in weak-emission-line (WEL) galaxies in a volume-limited (0.02 < z < 0.05) sample of blue early-type galaxies (ETGs) identified from the Sloan Digital Sky Survey, are constrained here using 1.4-GHz radio continuum emission. The direct detection of 1.4-GHz radio continuum emission is made in eight WEL galaxies and a median stacking is performed on 57 WEL galaxies using Very Large Array (VLA) Faint Images of Radio Sky at Twenty-cm (FIRST) images. The median stacked 1.4-GHz flux density and luminosity are estimated as 79 ± 19 μJy and 0.20 ± 0.05 × 1021 W Hz-1, respectively. The radio far-infrared correlation in four WEL galaxies suggests that the radio continuum emission from WEL galaxies is most likely a result of star formation activities. The median SFR for WEL galaxies is estimated as 0.23 ± 0.06 M⊙ yr-1, which is much less than SFRs (0.5-50 M⊙ yr-1) in purely star-forming blue ETGs. The SFRs in blue ETGs are found to be correlated with their stellar velocity dispersions (σ) and decreasing gradually beyond σ of ˜100 km s-1. This effect is most likely linked to the growth of a black hole and the suppression of star formation via active galactic nucleus (AGN) feedback. The colour differences between star-forming and WEL subtypes of blue ETGs appear to be driven to a large extent by the level of current star formation activities. In a likely scenario of an evolutionary sequence between subtypes, the observed colour distribution in blue ETGs can be explained best in terms of fast evolution through AGN feedback.

  17. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  18. The VLA Survey of Chandra Deep Field South. V. Evolution and Luminosity Functions of Sub-millijansky Radio Sources and the Issue of Radio Emission in Radio-quiet Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Miller, N.; Kellermann, K. I.; Mainieri, V.; Rosati, P.; Tozzi, P.

    2011-10-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ~5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P >~ 3 × 1024 W Hz-1) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ~30% of the sample and ~60% of all AGNs, and outnumbering radio-loud AGNs at <~ 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  19. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  20. Narrowband Radio Emission As A Possible Feature of Before CMEs Onset Processes

    NASA Astrophysics Data System (ADS)

    Fridman, V.; Sheiner, O.; Grechin, S.

    The narrow band events in microwave radio emission were discovered during the ob- servations by RT-22 CrAO on August 12, 1989 before CMEs registration has been done. The observations were carried out using the sweeping spectrograph in 13-17 GHz range with frequency resolution of 100 MHz and sweeping time of less then 1 sec. It is well known that the period preceding the CMEs formation is characterized by sporadic radio emission of different types. We have found the existence of fast changes in temporal behavior of radio emission during the burst. They are character- ized by consistent origin of narrow-band (<1 GHz) components of emission with flux amplitude of about 1 sfu, moving from high to low frequencies in 1-3 seconds. We detected the shift of spectral maximum to short waves and appearance of narrow-band (<800 MHz) features during the CMEs formation. The results are being discussed within the framework of known models of radioemission of active region and bursts. Their application to possible conditions in formation of CMEs is also addressed in this research. This work is being supported by the Federal Science and Technology Programme "Astronomy" and the Russian Foundation for Fundamental Research.

  1. Low frequency radio emission from magnetic exoplanets and RFI combating strategies

    NASA Astrophysics Data System (ADS)

    Majid, W.

    2012-09-01

    Massive extrasolar planets are expected to emit, in analogy with Jupiter and Saturn, detectable radio emission at low frequencies. A number of radio campaigns have been undertaken focusing in particular on nearby hot Jupiters. As of yet, no confirmed detection has been reported in the literature. One of the potential issues limiting instrument sensitivity is the presence of radio frequency interference (RFI). Low frequency observations are plagued with RFI and a considerable amount of effort is needed to "clean" the data before attempting to search for presence of astrophysical signals. In this talk we present some strategies for combating RFI with analysis techniques to minimize, identify and remove RFI effects from dynamic spectra. We will discuss the implementation of these techniques in the context of observations carried out at the GMRT and LOFAR.

  2. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  3. The earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1976-01-01

    The following aspects of the earth's magnetosphere were discussed: general structure, magnetic field merging and magnetospheric convection, time-varying convection and magnetospheric substorms, magnetic storms, and comparative magnetospheres. Solar flares and the magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, and Uranus were also described.

  4. SPECTRAL INDEX STUDIES OF THE DIFFUSE RADIO EMISSION IN ABELL 2256: IMPLICATIONS FOR MERGER ACTIVITY

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.i

    2010-08-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies, Abell 2256 (A2256). We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over a {approx}1.2 Mpc{sup 2} extent. Using this 150 MHz image and the images made using archival observations from the Very Large Array (VLA; 1369 MHz) and the Westerbrok Synthesis Radio Telescope (WSRT; 330 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S {proportional_to} {nu}{sup {alpha}}, {alpha} in the range -0.7 to -0.9) plasma in the region NW of the cluster center. Regions showing steep spectral indices ({alpha} in the range -1.0 to -2.3) are toward the SE of the cluster center. These spectral indices indicate synchrotron lifetimes for the relativistic plasmas in the range 0.08-0.4 Gyr. We interpret this spectral behavior as resulting from a merger event along the direction SE to NW within the last 0.5 Gyr or so. A shock may be responsible for the NW relic in A2256 and the megaparsec scale radio halo toward the SE is likely to be generated by the turbulence injected by mergers. Furthermore, the diffuse radio emission shows spectral steepening toward lower frequencies. This low-frequency spectral steepening is consistent with a combination of spectra from two populations of relativistic electrons created at two epochs (two mergers) within the last {approx}0.5 Gyr. Earlier interpretations of the X-ray and the optical data also suggested that there were two mergers in Abell 2256 in the last 0.5 Gyr, consistent with the current findings. Also highlighted in this study is the futility of correlating the average temperatures of thermal gas and the average spectral indices of diffuse radio emission in the respective clusters.

  5. Weathering the Largest Storms in the Universe : Understanding environmental effects on extended radio emission in clusters

    NASA Astrophysics Data System (ADS)

    Dehghan, S.

    2014-05-01

    This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg2 area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS). Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies. It is believed that tailed radio galaxies reside in the dense

  6. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  7. The Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Birmingham, T. J.

    1983-03-01

    Research on Jovian magnetospheric physics from 1979 through 1982 is surveyed, with a focus on the observations of Voyagers 1 and 2. Jovian fields and plasmas are characterized in the order of their distance from the planet, and special emphasis is given to the Io plasma torus (IPT) in the 4.9-8-Jovian-radius region and to the extended Jovian magnetotail. Topics reviewed include synchrotron radiation, magnetic-field models, Na and S emissions in the IPT, aurora, the magnetic-anomaly model, IPT plasma diffusion-convection, Io-generated Alfven wave, plasma configuration beyond the IPT, low-energy charged particles, cosmic-ray-energy particles, particle acceleration, magnetic configuration, tail current sheet and plasma disc, magnetopause and magnetosheath, interplanetary ions of Jovian origin, and the Jovian magnetosphere at Saturnian distances.

  8. Adaptive-array Electron Cyclotron Emission diagnostics using data streaming in a Software Defined Radio system

    NASA Astrophysics Data System (ADS)

    Idei, H.; Mishra, K.; Yamamoto, M. K.; Hamasaki, M.; Fujisawa, A.; Nagashima, Y.; Hayashi, Y.; Onchi, T.; Hanada, K.; Zushi, H.; the QUEST team

    2016-04-01

    Measurement of the Electron Cyclotron Emission (ECE) spectrum is one of the most popular electron temperature diagnostics in nuclear fusion plasma research. A 2-dimensional ECE imaging system was developed with an adaptive-array approach. A radio-frequency (RF) heterodyne detection system with Software Defined Radio (SDR) devices and a phased-array receiver antenna was used to measure the phase and amplitude of the ECE wave. The SDR heterodyne system could continuously measure the phase and amplitude with sufficient accuracy and time resolution while the previous digitizer system could only acquire data at specific times. Robust streaming phase measurements for adaptive-arrayed continuous ECE diagnostics were demonstrated using Fast Fourier Transform (FFT) analysis with the SDR system. The emission field pattern was reconstructed using adaptive-array analysis. The reconstructed profiles were discussed using profiles calculated from coherent single-frequency radiation from the phase array antenna.

  9. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  10. Relationship of Solar Radio Emission at λ=1.43m and Optical Processes in the Sun

    NASA Astrophysics Data System (ADS)

    Makandarashvili, Sh.; Oghrapishvili, N.; Japaridze, D.; Maghradze, D.

    2016-09-01

    Radio frequency observations supplement optical studies and in some cases they are the only way of obtaining information on the physical conditions for radio waves and their propagation. Solar radio emission appears in two forms, "quiescent" and "sporadic." Their distinctive features are well known. Solar radio observations at meter wavelengths (λ = 1.43 m, ν = 210 MHz) have been made at the Abastumani Astrophysical Observatory using a solar radio telescope throughout five solar cycles (since 1957). This article is a study of the long-term observations of solar radio bursts and sunspots. It is found that there is a correlation between the amplitudes of the radio bursts, the number of spots, and the regions of the spots.

  11. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  12. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields. PMID:25955053

  13. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    SciTech Connect

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano; Rudnick, Lawrence

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  14. Radio continuum emission and HI gas accretion in the NGC 5903/5898 compact group of galaxies

    NASA Astrophysics Data System (ADS)

    Wiita, Paul; Gopal-Krishna; Mhaskey, Mukul

    2012-03-01

    We investigate the nature of the multi-component radio continuum and HI emission associated with the nearby galaxy group comprised of two dominant ellipticals, NGC 5898 and NGC 5903 and a dwarf lenticular ESO514-G003. Striking new details of radio emission come from the ongoing TIFR.GMRT.SKY.SURVEY (TGSS) which provides images with a resolution of ˜24^'' x18^'' and rms noise of 5 mJy at 150 MHz. Previous observations of this compact triplet include images at higher frequencies of the radio continuum as well as huge HI trails originating from the vicinity of NGC 5903. The TGSS 150 MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf SO galaxy ESO514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum (α˜-1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the HI trails. Both its radio loud members are also the only galaxies that are seen to be connected to an HI filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.

  15. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    NASA Astrophysics Data System (ADS)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  16. The effect of magnetic topography on high-latitude radio emission at Neptune

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; Warwick, James W.; Romig, J. H.

    1992-01-01

    Occultation by a local elevation on the surface of constant magnetic field is proposed as a new interpretation for the unusual properties of Neptune high-latitude emission. Abrupt changes in intensity and polarization of this broadband smooth radio emission were observed as the Voyager 2 spacecraft passed near the north magnetic pole before closest approach. The observed sequence of cutoffs with polarization reversal would not occur during descent of the spacecraft through regular surfaces of increasing magnetic field. The sequence can be understood in terms of constant-frequency (constant-field) surfaces that are not only offset from the planet center but are locally highly distorted by an elevation that occults the outgoing extraordinary-mode beam. The required occulter is similar to the field enhancement observed directly by the magnetometer team when Voyager reached lower altitude farther to the west. Evidence is presented that the sources of the high-altitude emission are located near the longitude of the minimum-B anomaly associated with the dipole offset and that the local elevation of constant-B surfaces extends eastward from the longitude where it is directly measured by the magnetometer to the longitude where occultation of the remote radio source is observed. Together, the radio and magnetometer experiments indicate that the constant-frequency surfaces are distorted by an elevation that extends 0.3 rad in the longitudinal direction.

  17. Modeling Bright γ-Ray and Radio Emission at Fast Cloud Shocks

    NASA Astrophysics Data System (ADS)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Raymond, John C.; Nagataki, Shigehiro; Slane, Patrick O.; Ellison, Donald C.

    2015-06-01

    Recent observations by the Large Area Telescope on board the Fermi satellite have revealed bright γ-ray emission from middle-aged supernova remnants (SNRs) inside our Galaxy. These remnants, which also possess bright non-thermal radio shells, are often found to be interacting directly with surrounding gas clouds. We explore the non-thermal emission mechanism at these dynamically evolved SNRs by constructing a hydrodynamical model. Two scenarios of particle acceleration, either a re-acceleration of Galactic cosmic rays or an efficient nonlinear diffusive shock acceleration (NLDSA) of particles injected from downstream, are considered. Using parameters inferred from observations, our models are contrasted with the observed spectra of SNR W44. For the re-acceleration case, we predict a significant enhancement of radio and GeV emission as the SNR undergoes a transition into the radiative phase. If sufficiently strong magnetic turbulence is present in the molecular cloud, the re-acceleration scenario can explain the observed broadband spectral properties. The NLDSA scenario also succeeds in explaining the γ-ray spectrum but fails to reproduce the radio spectral index. Efficient NLDSA also results in a significant post-shock non-thermal pressure that limits the compression during cooling and prevents the formation of a prominent dense shell. Some other interesting differences between the two models in hydrodynamical behavior and resulting spectral features are illustrated.

  18. The relationship between the carbon monoxide intensity and the radio continuum emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Lo, K. Y.; Allen, Ronald J.

    1991-01-01

    The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.

  19. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  20. THE ABSENCE OF RADIO EMISSION FROM THE GLOBULAR CLUSTER G1

    SciTech Connect

    Miller-Jones, J. C. A.; Wrobel, J. M.; Sivakoff, G. R.; Heinke, C. O.; Miller, R. E.; Plotkin, R. M.; Di Stefano, R.; Greene, J. E.; Ho, L. C.; Joseph, T. D.; Maccarone, T. J.; Kong, A. K. H.

    2012-08-10

    The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 {+-} 0.5) Multiplication-Sign 10{sup 4} M{sub Sun} at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L{sub X} = 1.74{sup +0.53}{sub -0.44} Multiplication-Sign 10{sup 36} (d/750 kpc){sup 2} erg s{sup -1} in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3{sigma} upper limit of 4.7 {mu}Jy beam{sup -1}. Our favored explanation for the previous radio detection is flaring activity from a black hole low-mass X-ray binary (LMXB). We performed a new regression of the 'Fundamental Plane' of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M{sub BH} = (1.638 {+-} 0.070)log L{sub R} - (1.136 {+-} 0.077)log L{sub X} - (6.863 {+-} 0.790), with an empirically determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9.7 Multiplication-Sign 10{sup 3} M{sub Sun} at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.

  1. A search for slowly varying radio continuum emission from UV Ceti stars

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Shawhan, S. D.

    1976-01-01

    The paper presents results of a search conducted at the Arecibo Observatory for variable 430-MHz emission from the active flare stars EQ Peg, YZ CMi, and AD Leo. No statistically significant evidence for slowly varying emission is found to a level of 0.05 Jy for AD Leo, 0.018-0.021 Jy for YZ CMi, and 0.009-0.018 Jy for EQ Peg. Upper limits of about 10 trillion K are determined for the brightness temperature of active radio regions on these stars at the time of the observations.

  2. Spectral selective radio frequency emissions from laser induced breakdown of target materials

    SciTech Connect

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2014-08-11

    The radio frequency emissions scanned over broad spectral range (30 MHz–1 GHz) from single shot nanosecond (7 ns) and picosecond (30 ps) laser induced breakdown (LIB) of different target materials (atmospheric air, aluminum, and copper) are presented. The dominant emissions from ns-LIB, compared to those from the ps-LIB, indicate the presence and importance of atomic and molecular clusters in the plasma. The dynamics of laser pulse-matter interaction and the properties of the target materials were found to play an important role in determining the plasma parameters which subsequently determine the emissions. Thus, with a particular laser and target material, the emissions were observed to be spectral selective. The radiation detection capability was observed to be relatively higher, when the polarization of the input laser and the antenna is same.

  3. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2016-06-01

    The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30-1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin2θ/r2 dependence of the electric dipole radiation. The normalized RF emissions were observed to vary with incident laser intensity (Iλ2), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.

  4. Phasing the Very Large Array on Galileo in the presence of Jupiter's strong radio emission

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1991-01-01

    Work is in progress to determine the feasibility of using the Very Large Array (VLA) radio telescope to receive telemetry from Galileo during its close encounter with Io on 7 Dec. 1995. The VLA was used previously to receive telemetry from Voyager 2 at Neptune. However, Jupiter's strong radio emission is an additional complication in the case of the Galileo encounter. This article analyzes the effect of Jupiter's radio emission on the phase-adjustment procedure ('autophasing') used to maintain coherence among the 27 VLA antennas. Results of an experiment designed to mimic the Io encounter are presented. As expected, Jupiter's strong radio emission has a considerable effect on the autophasing procedure. A simple emission model is found to give a good approximation to the fringe-visibility plots derived from the VLA data, and that successful model is used to estimate the VLA's ability to autophase on Galileo during the Io encounter. The effect of Jupiter should be small for projected baselines longer than approximately 800 m and completely negligible for projected baselines longer than approximately 1.1 km. The most extended configuration of the VLA (the A configuration) probably can be used successfully for telemetry reception during the Io encounter. Further analysis and testing of the effect of correlated noise from Jupiter is necessary before a final decision can be made about the feasibility of using the second largest (B) configuration of the VLA for reception of Galileo telemetry. Use of the B configuration could simplify the upgrades needed to support the Io encounter. Tests to help choose the preferred VLA configuration could be performed by using the VLA to observe the Magellan spacecraft at Venus during Jul. and Oct. 1991. Examination of the effects of planet noise on the VLA have implications beyond the use of that telescope for supporting the Io encounter. The effects of planet radio emission on spacecraft data received by antenna arrays are relevant to

  5. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array

    NASA Astrophysics Data System (ADS)

    Chomiuk, Laura; Soderberg, Alicia M.; Chevalier, Roger A.; Bruzewski, Seth; Foley, Ryan J.; Parrent, Jerod; Strader, Jay; Badenes, Carles; Fransson, Claes; Kamble, Atish; Margutti, Raffaella; Rupen, Michael P.; Simon, Joshua D.

    2016-04-01

    Searches for circumstellar material around Type Ia supernovae (SNe Ia) are some of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here, we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt ({{Δ }}t≲ 1 years) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as an SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5–216 days after explosion, implying \\dot{M}/{v}w≲ 5× {10}-9 \\tfrac{{M}ȯ {{{yr}}}-1}{100 {km} {{{s}}}-1}, assuming {ε }B = 0.1 and {ε }e = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits in the range of \\dot{M}≲ {10}-9-{10}-4 {M}ȯ yr‑1, assuming a wind velocity of vw = 100 km s‑1. We compare our radio constraints with measurements of Galactic symbiotic binaries to conclude that ≲10% of thermonuclear SNe have red giant companions.

  6. Electromagnetic and Radiative Properties of Neutron Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Li, Jason G.

    2014-05-01

    Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic

  7. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  8. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  9. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    SciTech Connect

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Broderick, Jess W.; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  10. A Model of Jupiter's Decametric Radio Emissions as a Searchlight Beam

    NASA Astrophysics Data System (ADS)

    Imai, K.; Garcia, L.; Reyes, F.; Imai, M.; Thieman, J. R.

    It has long been recognized that there is a marked long-term periodic variation in Jupiter's integrated radio occurrence probability. The period of the variation is on the order of a decade. Carr et al. [1970] showed that such variations are closely correlated with Jovicentric declination of the Earth (DE). The range of the smoothed variation of DE is from approximately +3.3 to -3.3 degrees. This DE effect was extensively studied and confirmed by Garcia [1996]. It shows that the occurrence probability of the non-Io-A source is clearly controlled by DE at 18, 20, and 22 MHz during the 1957-1994 apparitions. We propose a new model to explain the DE effect. This new model shows that the beam structure of Jupiter radio emissions, which has been thought of like a hollow-cone, has a narrow beam like a searchlight, which can be explained by assuming that the three dimensional shape of the radio source expands along the line of the magnetic field. If we consider the sizes of the radio coherent region are 1000 m along Jupiter's magnetic field line and 200 m along the latitudinal direction, the equivalent beam pattern is 1 degree wide along Jupiter's magnetic field line and 5 degrees in latitude. As the searchlight beam is fixed with Jupiter's magnetic field, the pure geometrical effect of DE can be explained by this searchlight beam model.

  11. Detection techniques of radio emission from ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Morris, Chad M.

    We discuss recent and future efforts to detect radio signals from extended air showers at the Pierre Auger Observatory in Malargue, Argentina. With the advent of low-cost, high-performance digitizers and robust digital signal processing software techniques, radio detection of cosmic rays has resurfaced as a promising measurement system. The inexpensive nature of the detector media (metallic wires, rods or parabolic dishes) and economies of scale working in our favor (inexpensive high-quality C-band amplifiers and receivers) make an array of radio antennas an appealing alternative to the expense of deploying an array of Cherenkov detector water tanks or 'fly's eye' optical telescopes for fluorescence detection. The calorimetric nature of the detection and the near 100% duty cycle gives the best of both traditional detection techniques. The history of cosmic ray detection detection will be discussed. A short review on the astrophysical properties of cosmic rays and atmospheric interactions will lead into a discussion of two radio emission channels that are currently being investigated.

  12. Concerning mechanisms for the zebra pattern formation in the solar radio emission

    SciTech Connect

    Laptukhov, A. I.; Chernov, G. P.

    2009-02-15

    The nature of the zebra patterns in continuous type-IV solar radio bursts is discussed. The most comprehensively developed models of such patterns involve mechanisms based on the double plasma resonance and plasma wave-whistler interaction. Over the last five years, there have appeared a dozen papers concerning the refinement of the mechanism based on the double plasma resonance, because, in its initial formulation, this mechanism failed to describe many features of the zebra pattern. It is shown that the improved model of this mechanism with a power-law distribution function of hot electrons within the loss cone is inapplicable to the coronal plasma. In recent papers, the formation of the zebra pattern in the course of electromagnetic wave propagation through the solar corona was considered. In the present paper, all these models are estimated comparatively. An analysis of recent theories shows that any types of zebra patterns can form in the course of radio wave propagation in the corona, provided that there are plasma inhomogeneities of different scales on the wave path. The superfine structure of zebra stripes in the form of millisecond spikes with a strict period of {approx}30 ms can be attributed to the generation of continuous radio emission in the radio source itself, assuming that plasma inhomogeneities are formed by a finite-amplitude wave with the same period.

  13. How Else Can We Detect Fast Radio Bursts?

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-06-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr‑1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  14. Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines

    NASA Technical Reports Server (NTRS)

    Dressel, L. L.; Bania, T. M.; Oconnell, R. W.

    1982-01-01

    An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.

  15. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    NASA Astrophysics Data System (ADS)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  16. X-ray inverse Compton emission from the radio halo of M87

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.

    1984-01-01

    A significant fraction of known galaxies contain an active galactic nucleus (AGN) at their cores, the site of violent activity and non-stellar radiation seen across the entire electromagnetic spectrum. This activity is thought to be due to the accretion of gas onto a massive black hole. A fraction of AGNs also eject collimated beams of energetic material, usually seen by virtue of its synchrotron emission in the radio band. Efforts to study these jets from AGNs in the X-ray band with the Einstein Observatory has led to several detections, most notably the jets in the nearby radio galaxies Centaurus A and Virgo A = M87. In their study of M87, Schreier, Gorenstein and Feigelson (1982) noted that, in addition to the synchrotron jet 10"-20" from the nucleus, X-rays appear to be generated in the diffuse radio halo 2'-5' from the nucleus. This finding may be particularly important as it may constitute the first known case of X-ray inverse Compton emission from AGN ejecta, allowing for the first time direct determination of the magnetic field strengths.

  17. Emissive sheath measurements in the afterglow of a radio frequency plasma

    SciTech Connect

    Sheehan, J. P. Hershkowitz, N.; Barnat, E. V.; Weatherford, B. R.; Kaganovich, I. D.

    2014-01-15

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  18. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  19. Experimental tests of the generation mechanism of auroral medium frequency burst radio emissions

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J.; Weatherwax, A. T.; Hughes, J. M.; Lummerzheim, D.

    2009-09-01

    Medium frequency (MF) burst is an impulsive auroral radio emission at 1.3-4.5 MHz commonly detected by ground-based instruments for a few minutes at substorm onsets. It is thought to arise from mode conversion radiation. The Dartmouth College MF radio interferometer at Toolik Field Station, Alaska (68.51° invariant latitude), measured spectra, amplitudes, and directions of arrival (DOA) of 47 MF burst events during 2006-2007 and 49 events during 2007-2008. Statistical analysis of these events shows that they come predominantly from the south and east of Toolik, as expected because propagation conditions are more favorable poleward and westward of the active auroral arcs than equatorward or eastward during premidnight (westward moving) substorm onset activity. Case studies of a selected MF burst event on 20 November 2007 show that motions of the radio emissions qualitatively track the motions of auroral arcs simultaneously observed with all-sky camera. Case studies of DOA data of selected MF burst events on 31 January and 20 November 2007 show that higher-frequency components of MF burst arrive at higher elevation angles than lower-frequency components. Statistical studies confirm this trend. Ray-tracing analysis shows that this trend implies that sources of the higher-frequency components of the MF burst are at higher altitudes than those of the lower-frequency components. The analysis also shows that the MF burst comes from the bottomside F region ionosphere. These observations are consistent with a mechanism of MF burst emission whereby the emissions originate from mode conversion of Langmuir or upper hybrid waves excited over a range of altitudes in the bottomside F region.

  20. Radio imaging of the very-high-energy gamma-ray emission region in the central engine of a radio galaxy.

    PubMed

    Acciari, V A; Aliu, E; Arlen, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Walker, R C; Davies, F; Hardee, P E; Junor, W; Ly, C; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göhring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, M C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; Becerra González, J; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Borla Tridon, D; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; De los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García López, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hsu, C C; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V

    2009-07-24

    The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole. PMID:19574351

  1. First dynamic computations of synchrotron emission from the cygnus a radio cavity: Evidence for electron pair plasma in cavity

    SciTech Connect

    Mathews, William G.

    2014-03-01

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  2. Progress and problems in the theory of type III solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.

    1983-01-01

    The experimental and theoretical status of type III solar radio emission is considered in detail. Very recent developments which are relevant to the underlying plasma physics are emphasized. In particular, the identity of the submegahertz emissions as fundamental, or second harmonic, the degree of correlation between emissivities, electron streams, and plasma (Langmuir) waves, paradoxes concerned with the time-ordering of these phenomena, and the role of background density irregularities and ion-acoustic turbulence in the solar wind, are discussed. From the theoretical point of view, the current picture of the underlying Langmuir turbulence, including such effects as the interaction between Langmuir waves and stream electrons, induced scatter off ions, and strong turbulence effects such as modulational instability and soliton collapse, is discussed.

  3. Direction finding of half-gyrofrequency VLF emissions in the off-equatorial region of the magnetosphere and their generation and propagation

    SciTech Connect

    Muto, H.; Hayakawa, M. ); Parrot, M.; Lefeuvre, F. )

    1987-07-01

    The spectra of VLF/ELF emissions in the off-equatorial region in the outer magnetosphere are, on occasion, found to consist of upper and lower bands with a frequency gap between them. The wave normal directions of the upper band VLF emissions have been determined by means of wave distribution function analyses based first on the measurement of three magnetic field components only, and then with the additional use of an electric field component. It is found that the wave distribution functions are composed of two peaks whose central wave normal angles {theta} with respect to the magnetic field at a geomagnetic latitude of {approximately} 17{degree} are close to the local oblique resonance cone {theta}{sub res} but whose values of {theta} are always about 15{degree}-20{degree} less than {theta}{sub res} at a higher latitude of {approximately}26{degree}. This observed wave normal behavior is compared with the theoretical prediction from direct ray tracing studies using the hypothesis deduced from a previous investigation that the waves are generated at the equator with wave normals close to {theta}{sub res}. A combination of this comparison and inverse ray tracing in which the initial wave normal directions are those determined from the wave distribution analysis has yielded the results that the {theta} values of the upper band VLF emissions are very close to {theta}{sub res} at the equator and that the normalized frequency there, {Lambda}{sub eq}, is above 0.5. Hence the upper band VLF emissions are identified as being half-gyrofrequency VLF emissions generated in the vicinity of the magnetic equator, with their wave normals close to {theta}{sub res}. The characteristics of propagation between the equatorial source region and the observing positions have been investigated by direct ray tracing. The generation mechanism is also discussed.

  4. Postmidnight chorus - A substorm phenomenon. [outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.

    1974-01-01

    The ELF emissions were detected in the midnight sector of the magnetosphere in conjunction with magnetospheric substorms. The emissions were observed at local midnight and early morning hours and are accordingly called 'post-midnight chorus.' The characteristics of these emissions such as their frequency time structure, emission frequency with respect to the local equatorial electron gyrofrequency, intensity-time variation, and the average intensity were investigated. The occurrence of the chorus in the nightside magnetosphere was investigated as a function of local time, L shell, magnetic latitude, and substorm activity, and the results of this analysis are presented. Specific features of postmidnight chorus are discussed in the context of possible wave-particle interactions occurring during magnetospheric substorms.

  5. MODELING THE RADIO EMISSION FROM Cyg OB2 NO. 5: A QUADRUPLE SYSTEM?

    SciTech Connect

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M. E-mail: sean.dougherty@nrc.c E-mail: pmw@roe.ac.u

    2010-02-01

    Fifty observations at frequencies between 1.4 GHz and 43 GHz of the 6.6 day O6.5-7+O5.5-6 binary Cyg OB2 No. 5 using the Very Large Array over 20 years are re-examined. The aim is to determine the location and character of the previously detected variable radio emission. The radio emission from the system consists of a primary component that is associated with the binary, and a non-thermal source (NE), 0.''8 to the NE of the binary that has been ascribed to a wind-collision region (WCR) between the stellar winds of the binary and that of a B-type star (Star D) to the NE. Previous studies have not accounted for the potential contribution of NE to the total radio emission, most especially in observations where the primary and NE sources are not resolved as separate sources. NE shows no evidence of variation in 23 epochs where it is resolved separately from the primary radio component, demonstrating that the variable emission arises in the primary component. Since NE is non-variable, the radio flux from the primary can now be well determined for the first time, most especially in observations that do not resolve both the primary and NE components. The variable radio emission from the primary component has a period of 6.7 +- 0.3 years which is described by a simple model of a non-thermal source orbiting within the stellar wind envelope of the binary. Such a model implies the presence of a third, unresolved stellar companion (Star C) orbiting the 6.6 day binary with a period of 6.7 years and independent of Star D to the NE. The variable non-thermal emission arises from either a WCR between Star C and the binary system, or possibly from Star C directly. The model gives a mass-loss rate of 3.4 x 10{sup -5} M{sub sun} yr{sup -1} for Cyg OB2 No. 5, unusually high for an Of supergiant and comparable to that of WR stars, and consistent with an unusually strong He I 1.083 mum emission line, also redolent of WR stars. An examination of radial velocity observations available

  6. Strange doings on Io. [Jupiter radio emission modification, sodium cloud, ionized sulfur and extreme brightness

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1978-01-01

    Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.

  7. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaš, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; Falco, E. E.

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 1046 erg s-1. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  8. Influence of short gravity waves on thermal radio emission of water surface

    NASA Astrophysics Data System (ADS)

    Ilin, V. A.; Naumov, A. A.; Rayzer, V. Y.; Filonovich, S. R.; Etkin, V. S.

    1985-06-01

    An experimental study is presented of the thermal radio emission caused by short waves, accompanied by a quantitative interpretation of the data obtained. Emphasis is on an analysis of the variation in radio brightness contrast as a function of steepness of the short gravity waves, measured by means of a high-frequency radiometer operating in the lambda = 0.8 cm range. Waves were artificially generated in a small channel, wavelength 8 to 40 cm, height 0.6 to 3 cm. Due to the high sensitivity of the radiometric apparatus used, effects were recorded which were related to the influence of the profile and steepness of the short gravity waves. The possibility of using the geometrical optics approximation for quantitative interpretation of the experimental data is demonstrated. The model is based on essentially non-Gaussian statistics of slopes corresponding to quasimonochromatic waves of finite amplitude.

  9. Collisional quenching of OH radio emission from comet Hale-Bopp.

    PubMed

    Schloerb, F P; Devries, C H; Lovell, A J; Irvine, W M; Senay, M; Wootten, H A

    1997-01-01

    Observations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state A-doublet in the coma. Analysis of the total radio OH flux and maps of its radial brightness distribution indicate a quenched region on the order of approximately 500,000 km during March and April 1997. This large value is generally consistent with previous observations of radio OH quenching in lower production rate comets when the high production rate of comet Hale-Bopp is considered. PMID:11543323

  10. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  11. Collisional quenching of OH radio emission from comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Schloerb, F. P.; Devries, C. H.; Lovell, A. J.; Irvine, W. M.; Senay, M.; Wootten, H. A.; Ferris, J. P. (Principal Investigator)

    1997-01-01

    Observations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state A-doublet in the coma. Analysis of the total radio OH flux and maps of its radial brightness distribution indicate a quenched region on the order of approximately 500,000 km during March and April 1997. This large value is generally consistent with previous observations of radio OH quenching in lower production rate comets when the high production rate of comet Hale-Bopp is considered.

  12. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  13. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    SciTech Connect

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  14. NRAO 12-Meter Radio Telescope Detects Molecular Emission from Comet Hyakutake

    NASA Astrophysics Data System (ADS)

    1996-05-01

    Observations of Comet Hyakutake with the National Science Foundation's millimeter-wave radio telescope in Arizona have revealed new information about our Solar System's original material, including the first detection of the Carbonyl Sulfide (OCS) molecule in a comet. Since mid-March, the 12-Meter telescope, part of the National Radio Astronomy Observatory (NRAO) and located on Kitt Peak in Arizona, has been used by four separate research teams to measure the emission from primordial molecular species within the bright Comet Hyakutake (C/1996 B2). Results obtained near the comet's closest approach on March 25th have yielded a wealth of information about the primordial composition of this comet. Comets are thought to be remnants from the formation of our Solar System, and as such, can provide valuable information about the early stages of our Solar System's chemical and physical development. Especially important is the study of cometary "parent molecules" -- molecules which have been present since the comet's birth, but have not been disturbed by chemical processing. Studying these molecules gives radio astronomers a very accurate "snapshot" of the material from which our Solar System, including Earth, was formed. The 12-Meter Telescope allows astronomers to observe what scientists call "millimeter waves," electromagnetic waves with wavelengths of just a few millimeters. These waves are shorter than radio microwaves and longer than infrared waves. Numerous molecules emit radiation at these wavelengths and thus can be detected by the 12-Meter telescope. The 12-Meter telescope, more than 25 years old, inaugurated the science of millimeter-wavelength molecular astronomy and is the instrument responsible for the discovery of dozens of molecules in space. Observations by Maria Womack (Pennsylvania State University), Michel C. Festou (Observatoire Midi Pyrenees, Toulouse), and Alan Stern (Southwest Research Institute) have measured the abundances of a number of suspected

  15. Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung

    2015-04-01

    In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ∝ r^{-n} in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volume-integrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7μG, at the shock age of ˜ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from α_{inj} to α_{inj}+0.5 over 0.1-10 GHz, where α_{inj} is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1$ GHz.

  16. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    SciTech Connect

    Maeda, Keiichi

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  17. Self-consistent particle-in-cell simulations of fundamental and harmonic plasma radio emission mechanisms

    NASA Astrophysics Data System (ADS)

    Thurgood, J. O.; Tsiklauri, D.

    2015-12-01

    Aims: The simulation of three-wave interaction based plasma emission, thought to be the underlying mechanism for Type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some studies indicate that no such processes occur. Methods: We self-consistently simulate three-wave based plasma emission through all stages by using 2D, fully kinetic, electromagnetic particle-in-cell simulations of relaxing electron beams using the EPOCH2D code. Results: Here we present the results of two simulations; Run 1 (nb/n0 = 0.0057, vb/ Δvb = vb/Ve = 16) and Run 2 (nb/n0 = 0.05, vb/ Δvb = vb/Ve = 8), which we find to permit and prohibit plasma emission respectively. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to frequency conservation requirements. In resolving this apparent contradiction through a comprehensive analysis, in this paper we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses emission. Comparison of our results also indicates that, contrary to the suggestions of previous authors, an alternative plasma emission mechanism based on two counter-propagating beams is unnecessary in an astrophysical context. Finally, we also consider the action of the Weibel instability which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that

  18. Modelling the multi-wavelength emission of flat-spectrum radio quasar 3C 279

    NASA Astrophysics Data System (ADS)

    Zheng, Y. G.; Yang, C. Y.

    2016-04-01

    We employ a length-dependent conical jet model for the jet structure and emission properties of flat-spectrum radio quasar 3C 279 in the steady state. In the model, ultra-relativistic leptons are injected at the base of the jet and propagate along the jet structure. Non-thermal photons are produced by both synchrotron emission and inverse Compton scattering off synchrotron photons and external soft photons at each segment of the jet. We derive the total energy spectra contribution through integrating every segment. We apply the model to the quasi-simultaneous multi-wavelength observed data of two quiescent epochs. Using the observed radio data of the source, we determine the length of the jet L ˜ 100 pc and the magnetic field B0 ˜ 0.1-1 G at the base of the jet. Assuming a steady geometry of the jet structure and suitable physical parameters, we reproduce the multi-wavelength spectra during two quiescent observed epochs. Our results show that the initial γ-ray emission site is ˜0.5 pc from the black hole.

  19. FREE-FREE EMISSION AND RADIO RECOMBINATION LINES FROM PHOTOEVAPORATING DISKS

    SciTech Connect

    Pascucci, I.; Gorti, U.; Hollenbach, D.

    2012-06-01

    Recent infrared observations have demonstrated that photoevaporation driven by high-energy photons from the central star contributes to the dispersal of protoplanetary disks. Here, we show that photoevaporative winds should produce a detectable free-free continuum emission given the range of stellar ionizing photons and X-ray luminosities inferred for young Sun-like stars. We point out that Very Large Array observations of the nearby disk around TW Hya might have already detected this emission at centimeter wavelengths and calculate the wind electron density and mass flow rate. We also estimate the intensities of H radio recombination lines tracing the wind and discuss which ones could be detected with current instrumentation. The detection and profiles of these recombination lines would unambiguously prove our inference of free-free emission from photoevaporating disks like TW Hya. In addition, radio/millimeter data can help constraining wind parameters such as temperature and electron density that are fundamental in measuring mass flow rates.

  20. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    SciTech Connect

    Hallinan, G.; Bourke, S.; Sirothia, S. K.; Ishwara-Chandra, C. H.; Antonova, A.; Doyle, J. G.; Hartman, J.; Golden, A.

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  1. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  2. Jet emission in young radio sources: A Fermi large area telescope gamma-ray view

    SciTech Connect

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-10

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (≲10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ∼10{sup 46}-10{sup 48} erg s{sup –1} depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ∼4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L {sub jet,} {sub kin}/L {sub disk} > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (≲ 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  3. Ion Precipitation: Loss Cone State and Low-Altitude Emission Response Time to Solar Wind Pressure Pulse-Driven Magnetospheric Compression

    NASA Astrophysics Data System (ADS)

    Llera, K.; Goldstein, J.; Valek, P. W.; McComas, D. J.

    2013-12-01

    We analyze low-altitude Energetic Neutral Atom (ENA) emissions triggered by solar wind pressure pulse-driven magnetospheric compression during a mild disturbance which occurred between 30 June through 3 July 2011. The dual-spacecraft Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) captures ENA images of Low-Altitude Emissions (LAEs) produced by ions precipitating into the ionosphere from the ring current. The National Oceanographic and Atmospheric Administration (NOAA) Polar-orbiting Operational Environmental Satellites (POES) system captures low-altitude energetic charged particle intensities. With different look directions, the NOAA/POES low-altitude ion data provides two or three-point sampling of ion pitch-angle distributions (PADs), from which we produce an interpolated fit to describe the loss-cone state; i.e., whether or not there is significant ion flux in the loss cone. Following earlier work, we compare low-altitude NOAA ion flux and pitch angle information with TWINS-observed LAEs during times of conjunction, when NOAA obtained data inside the global LAE region. We examine the degree to which response time for LAE intensification following a solar wind pressure pulse depends on the loss cone state. When there are no LAEs observed by TWINS, the NOAA-derived PAD will indicate whether the loss cone is empty.

  4. Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.

    2009-05-01

    Aims: The extensive observations of the supernova SN 1993J at radio wavelengths make this object a unique target for the study of particle acceleration in a supernova shock. Methods: To describe the radio synchrotron emission we use a model that couples a semianalytic description of nonlinear diffusive shock acceleration with self-similar solutions for the hydrodynamics of the supernova expansion. The synchrotron emission, which is assumed to be produced by relativistic electrons propagating in the postshock plasma, is worked out from radiative transfer calculations that include the process of synchrotron self-absorption. The model is applied to explain the morphology of the radio emission deduced from high-resolution VLBI imaging observations and the measured time evolution of the total flux density at six frequencies. Results: Both the light curves and the morphology of the radio emission indicate that the magnetic field was strongly amplified in the blast wave region shortly after the explosion, possibly via the nonresonant regime of the cosmic-ray streaming instability operating in the shock precursor. The amplified magnetic field immediately upstream from the subshock is determined to be Bu ≈ 50 (t/1 { day})-1 G. The turbulent magnetic field was not damped behind the shock but carried along by the plasma flow in the downstream region. Cosmic-ray protons were efficiently produced by diffusive shock acceleration at the blast wave. We find that during the first 8.5 years after the explosion, about 19% of the total energy processed by the forward shock was converted to cosmic-ray energy. However, the shock remained weakly modified by the cosmic-ray pressure. The high magnetic field amplification implies that protons were rapidly accelerated to energies well above 1015 eV. The results obtained for this supernova support the scenario that massive stars exploding into their former stellar wind are a major source of Galactic cosmic-rays of energies above 1015 eV. We

  5. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    NASA Technical Reports Server (NTRS)

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  6. Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Schellart, P.; Buitink, S.; Corstanje, A.; de Vries, K. D.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bregman, J.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Deller, A.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Garrett, M. A.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; Mevius, M.; Norden, M. J.; Paas, H.; Pandey-Pommier, M.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Tagger, M.; Tang, Y.; Tasse, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2015-05-01

    Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼ 100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110-190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.

  7. From Radio with Love: an overview of the role of radio observations in understanding high-energy emission from active galaxies

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh

    2012-03-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe is presented here.

  8. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    NASA Technical Reports Server (NTRS)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  9. Development of a moon-based magnetospheric and coronal imager using a large broadband array

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1991-01-01

    The 'Missions to and from Planet Earth' mandated by President Bush in 1989 provide a unique opportunity for magnetospheric and coronal plasma physicists to cooperate with low frequency radio astronomers in the development of an advanced experiment designed for the lunar surface. A large active lunar based array would sound the Earth's magnetosphere at VLF frequencies and the solar corona at decametric wavelengths allowing plasma physicists to map both the Earth's magnetosphere and those regions in the solar corona that trigger precursors to solar flares. With the transmitter silent, the array would become the ideal low frequency radio telescope, examining both geospace emissions such as auroral kilometric radiation and extraterrestrial signals from the planets, pulsars, supernova remnants, and active galactic nuclei. Both experiments satisfy requirements mandated in both 'Mission to Planet Earth' and in 'Mission from Planet Earth.' By proposing a cooperative effort both communities (plasma physicists and radio astronomers) stand to benefit. Jim Green, Director of the NASA Space Science Data Center (NSSDC) at GSFC; Tony Phillips, Research Fellow at California Institute of Technology; T. D. Carr, Director of the University of Florida Radio Observatory (UFRO) and the author are enlisting the cooperation of the scientific community in defining the system specifications. Some components, such as the receivers, will be standard 'off-the-shelf' items, and hence will require little developmental research. However, the individual antenna elements and the phasing and matching networks will require some R&D to satisfy the frequency requirements (20 KHz-40 MHz). By flying the experiment in Earth orbit first, Dr. Green proposes to gather valuable magnetospheric data as well as to prove the principle of the large moon based experiment. He claims that funding for the preliminary ground based studies at the UFRO may be available as early as FY-92.

  10. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  11. POLARIZED EXTENDED Ly{alpha} EMISSION FROM A z = 2.3 RADIO GALAXY

    SciTech Connect

    Humphrey, A.; Vernet, J.; Fosbury, R. A. E.; Villar-Martin, M.; Di Serego Alighieri, S.; Cimatti, A.

    2013-05-01

    We present spatially resolved spectropolarimetric measurements of the 100 kpc scale gaseous environment of the z = 2.34 radio galaxy TXS 0211-122. The polarization level of the narrow Ly{alpha} emission is low centrally (P < 5%), but rises to P = 16.4% {+-} 4.6% in the eastern part of the nebula, indicating that the nebula is at least partly powered by the scattering of Ly{alpha} photons by H I. Not only is this the first detection of polarized Ly{alpha} around a radio-loud active galaxy, it is also the second detection to date for any kind of Ly{alpha} nebula. We also detect a pair of diametrically opposed UV continuum sources along the slit, at the outer edges of the Ly{alpha} nebula, which we suggest may be the limb of a dusty shell, related to the large-scale H I absorbers often associated with high-z radio galaxies.

  12. Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events

    NASA Astrophysics Data System (ADS)

    Croft, S.; Kaplan, D. L.; Tingay, S. J.; Murphy, T.; Bell, M. E.; Rowlinson, A.; for the MWA Collaboration; Adrián-Martínez, S.; Ageron, M.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; for the ANTARES Collaboration; Klotz, A.; Boer, M.; Le Van Suu, A.; for the TAROT Collaboration; Akerlof, C.; Zheng, W.; for the ROTSE Collaboration

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼1037 erg s‑1 for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  13. Discovery of Radio Emission From Transient Anomalous X-Ray Pulsar XTE J1810-197

    SciTech Connect

    Halpern, J P; Gotthelf, E V; Becker, R H; Helfand, D J; White, R L

    2005-10-25

    We report the first detection of radio emission from any anomalous X-ray pulsar (AXP). Data from the Very Large Array (VLA) MAGPIS survey with angular resolution 6'' reveals a point-source of flux density 4.5 {+-} 0.5 mJy at 1.4 GHz at the precise location of the 5.54 s pulsar XTE J1810-197. This is greater than upper limits from all other AXPs and from quiescent states of soft gamma-ray repeaters (SGRs). The detection was made in 2004 January, 1 year after the discovery of XTE J1810-197 during its only known outburst. Additional VLA observations both before and after the outburst yield only upper limits that are comparable to or larger than the single detection, neither supporting nor ruling out a decaying radio afterglow related to the X-ray turn-on. Another hypothesis is that, unlike the other AXPs and SGRs, XTE J1810-197 may power a radio synchrotron nebula by the interaction of its particle wind with a moderately dense environment that was not evacuated by previous activity from this least luminous, in X-rays, of the known magnetars.

  14. Temporal frequency of radio emissions for the April 25, 1984 flare

    NASA Technical Reports Server (NTRS)

    Wells, G. D.; Hausman, B. A.; Kroehl, H. W.

    1986-01-01

    The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends.

  15. Horizon-scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87

    NASA Astrophysics Data System (ADS)

    Broderick, Avery E.; Tchekhovskoy, Alexander

    2015-08-01

    It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87. This mechanism fails to adequately fill a putative jet from Sagittarius A* with relativistic leptons, which may explain the lack of an obvious radio jet in the Galactic center. Finally, this process implies a relationship between the kinetic jet power and the gamma-ray luminosity of blazars, produced during the post-gap cascade.

  16. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  17. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  18. Quiescent Radio Emission from Southern Late-Type M Dwarfs and a Spectacular Radio Flare from the M8 Dwarf DENIS 1048-3956

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Putman, Mary E.

    2005-06-01

    We report the results of a radio monitoring program conducted at the Australia Telescope Compact Array to search for quiescent and flaring emission from seven nearby Southern late-type M and L dwarfs. Two late-type M dwarfs, the M7 V LHS 3003 and the M8 V DENIS 1048-3956, were detected in quiescent emission at 4.80 GHz. The observed emission is consistent with optically thin gyrosynchrotron emission from mildly relativistic (~1-10 keV) electrons with source densities ne<~109 cm-3 in B>~10 G magnetic fields. DENIS 1048-3956 was also detected in two spectacular, short-lived flares, one at 4.80 GHz (peak fν=6.0+/-0.8 mJy) and one at 8.64 GHz (peak fν=29.6+/-1.0 mJy) approximately 10 minutes later. The high brightness temperature (TB>~1013 K), short emission period (~4-5 minutes), high circular polarization (~100%), and apparently narrow spectral bandwidth of these events imply a coherent emission process in a region of high electron density (ne~1011-1012 cm-3) and magnetic field strength (B~1 kG). If the two flare events are related, the apparent frequency drift in the emission suggests that the emitting source either moved into regions of higher electron or magnetic flux density or was compressed, e.g., by twisting field lines or gas motions. This emission may be related to a recent optical flare from this source that exhibited indications of chromospheric mass motion. The quiescent fluxes from the radio-emitting M dwarfs are too bright to support the Güdel-Benz empirical radio/X-ray relations, confirming a trend previously noted by Berger et al. The violation of these relations is symptomatic of a divergence in magnetic emission trends at and beyond spectral type M7/M8, where relative X-ray and Hα emission drops precipitously while relative radio emission appears to remain constant or possibly increases. With an apparent decline in chromospheric/coronal heating, the origin of hot coronal plasmas around ultracool dwarfs remains uncertain, although external

  19. Emission-line properties of optically and radio-selected complete quasar samples

    NASA Technical Reports Server (NTRS)

    Baldwin, J. A.; Wampler, E. Joseph; Gaskell, C. Martin

    1989-01-01

    Spectrophotometry of two complete samples of quasars, one obtained from the flat radio spectra of the objects and the other from their optical colors, is presented. It is confirmed that the equivalent widths of the major UV emission lines decrease with increasing continuum luminosity (the Baldwin effect) and that the (Ly-alpha + N V)/C IV and 1909 A/C IV intensity ratios are also luminosity-dependent by virtue of the C IV luminosity dependence. It is shown that the Mg II/C IV intensity ratio and possibly the strengths of the blue Fe II emission features and the FWHM of the 1909 A blend are luminosity-dependent. These results generally support the Mushotzky and Ferland (1984) interpretation of the Baldwin effect in terms of a weak inverse correlation between the continuum luminosity and ionization parameter.

  20. PERIODIC RADIO EMISSION FROM THE M7 DWARF 2MASS J13142039+1320011: IMPLICATIONS FOR THE MAGNETIC FIELD TOPOLOGY

    SciTech Connect

    McLean, M.; Berger, E.; Irwin, J.; Forbrich, J.; Reiners, A.

    2011-11-01

    We present multi-epoch radio and optical observations of the M7 dwarf 2MASS J13142039+1320011. We detect a {approx}1 mJy source at 1.43, 4.86, 8.46, and 22.5 GHz, making it the most luminous radio emission over the widest frequency range detected from an ultracool dwarf to date. A 10 hr Very Large Array observation reveals that the radio emission varies sinusoidally with a period of 3.89 {+-} 0.05 hr, and an amplitude of {approx}30% at 4.86 GHz and {approx}20% at 8.46 GHz. The periodicity is also seen in circular polarization, where at 4.86 GHz the polarization reverses helicity from left- to right-handed in phase with the total intensity. An archival detection in the Faint Images of the Radio Sky at Twenty Centimeters survey indicates that the radio emission has been stable for at least a decade. We also detect periodic photometric variability in several optical filters with a period of 3.79 hr and measure a rotation velocity of vsin i = 45 {+-} 5 km s{sup -1}, in good agreement with the radio and optical periods. The subtle difference in radio and optical periods may be due to differential rotation, with {Delta}{Omega} {approx} 1 rad day{sup -1} between the equation and poles. The period and rotation velocity allow us to place a lower limit on the radius of the source of {approx}> 0.13R{sub sun}, about 30% larger than theoretical expectations. The properties of the radio emission can be explained with a simple model of a magnetic dipole misaligned relative to the stellar rotation axis, with the sinusoidal variations and helicity reversal due to the rotation of the magnetic poles relative to our line of sight. The long-term stability of the radio emission indicates that the magnetic field (and hence the dynamo) is stable on a much longer timescale than the convective turnover time of {approx}0.2 yr. If the radio emission is due to gyrosynchrotron emission the inferred magnetic field strength is {approx}0.1 kG, while the electron cyclotron maser process requires a

  1. Evidence for the charge-excess contribution in air shower radio emission observed by the CODALEMA experiment

    NASA Astrophysics Data System (ADS)

    Bellétoile, A.; Dallier, R.; Lecacheux, A.; Marin, V.; Martin, L.; Revenu, B.; Torres, D.

    2015-09-01

    CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.

  2. Simultaneous observations of changes in coronal bright point emission at the 20 cm radio and He Lambda 10830 wavelengths

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Harvey, Karen L.

    1986-01-01

    Preliminary results of observations of solar coronal bright points acquired simultaneously from ground based observatories at the radio wavelength of 20 cm and in the He I wavelength 10830 line on September 8, 1985, are reported. The impetus for obtaining simultaneous radio and optical data is to identify correlations, if any, in changes of the low transition-coronal signatures of bright points with the evolution of the magnetic field, and to distinguish between intermittent heating and changes in the magnetic field topology. Although simultaneous observations of H alpha emission and the photospheric magnetic field at Big Bear were also made, as well as radio observations from Owen Valley Radio Interferometer and Solar Maximum Mission (SSM) (O VIII line), only the comparison between He 10830 and the Very Large Array (VLA) radio data are presented.

  3. Low-frequency radio emission in the massive galaxy cluster MACS J0717.5 + 3745

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Richard, J.; Combes, F.; Dwarakanath, K. S.; Guiderdoni, B.; Ferrari, C.; Sirothia, S.; Narasimha, D.

    2013-09-01

    Aims: To investigate the nonthermal emission mechanism and their interaction during cluster mergers, we analyze multiple low-frequency radio data for the X-ray luminous massive galaxy cluster MACS J0717.5 + 3745, located at z = 0.5548. Large-scale structure-formation models in the Universe suggest that galaxy clusters grow via constant accretion of gas and the merger of galaxy groups and smaller clusters. Low-frequency radio observations trace these mergers in the form of relics and halos. The dual frequency observations were performed on MACS J0717.5 + 3745 to investigate the spectral index pattern of the nonthermal emission and its interaction within the intracluster medium (ICM), during merger process. Methods: Continuum observations were carried out using GMRT at 0.235 and 0.61 GHz on MACS J0717.5 + 3745 and archival data from the VLA (0.074 and 1.42 GHz) and WSRT (0.325 GHz) was used to complement the results. Furthermore, to explore the thermal and nonthermal interactions within the ICM and the morphological distribution, Chandra X-ray and HST data were used. Results: A highly complex nonthermal radio emission distribution is seen in the cluster at very low frequencies, with a global spectral index α0.2350.61˜-1.17±0.37. We have detected a giant radio halo within the cluster system with a linear size of 1.58 Mpc and a "Chair-shaped" filament structure between the merging subclusters of linear size 853 kpc at 0.235 GHz. This is the most powerful halo ever observed with P1.4 = 9.88 × 1025 WHz-1 and an equipartition magnetic field estimate of ~6.49 μG. The bright filament structure is well located in the central merging region of subclusters with enhanced temperature, as shown by Chandra and HST data analysis, further indicating the formation of this structure due to shock waves encountered within the ICM during the merger events.

  4. Natural radio lasing at Jupiter

    NASA Technical Reports Server (NTRS)

    Calvert, W.; Leblanc, Y.; Ellis, G. R. A.

    1988-01-01

    Like the comparable AKR radio emissions from earth's magnetosphere, the well-known decametric radio S-bursts from Jupiter, observed in France and Australia at frequencies from 10 to 26 MHz, have been found to exhibit equally spaced discrete spectral components which can be attributed to the adjacent longitudinal oscillation modes of natural radio lasers. Implying sizes of only a few kilometers for the individual radio lasers producing the S-bursts, the frequency spacing of these modes was roughly constant with frequency and about 30 to 50 kHz. Their corresponding temporal spacings, however, varied inversely proportional to the observing frequency, suggesting that the radio lasers producing the S-bursts were expanding uniformly at a rate of about 4 km/s. Presumably caused by the projected motion of Io with respect to the planet, this expansion of the S-burst radio lasers would account for the downward frequency drifts of the S-bursts without the energetic electron bunches which have heretofore always been assumed necessary to account for such behavior.

  5. Magnetospheric Interaction of the Galilean Satellites with Jupiter: Auroral Emissions from the Satellites and their Magnetic Footprints

    NASA Astrophysics Data System (ADS)

    Clarke, J. T.

    2003-12-01

    Each of the Galilean satellites of Jupiter has an electrodynamic interaction with Jupiter's magnetic field, due to their motion with respect to the corotating field which sweeps past each satellite. With the exception of Callisto, these interactions can be observed via auroral emissions from the magnetic footprints of each satellite in Jupiter's atmosphere, and also via auroral emissions produced in the satellite's atmosphere. Remote sensing observations from the JIMO spacecraft could provide measurements of these auroral emissions with excellent spatial resolution and time coverage, strongly complementing in situ plasma and field measurements near each satellite. The measurement of the auroral emissions at both ends of the field lines threading each satellite would provide important constraints on the nature and strength of the interaction. Extended time series made possible by remote sensing would reveal the variations of these emissions with the location of each satellite in Jupiter's field and the corotating plasma. The time coverage would also provide a baseline for the interpretation of the in situ measurements, which measure one location at a time. The prospects for this remote sensing by JIMO will be explored based on information from the Hubble Space Telescope measurements of Jupiter's auroral emissions.

  6. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angélica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2008-07-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. cosmic microwave background experiments have focused on frequencies >~10GHz, whereas 21-cm tomography of the high-redshift universe will mainly focus on <~0.2GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.42-GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multifrequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 and 408 MHz and 1.42, 2.326, 23, 33, 41, 61, 94 GHz) to an accuracy around 1-10 per cent depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm.

  7. Electron cyclotron maser emission in coronal arches and solar radio type V bursts

    SciTech Connect

    Tang, J. F.; Wu, D. J.; Tan, C. M.

    2013-12-10

    Solar radio type V bursts were classified as a special spectral class based on their moderately long duration, wide bandwidth, and sense of polarization opposite of associated type III bursts. However, type V bursts are also closely related to the preceding type III bursts. They have an approximately equal source height and the same dispersion of position with frequency. Electron cyclotron maser (ECM) instability driven by beam electrons has been used to explain type III bursts in recent years. We propose ECM emission as the physical process of type V solar radio bursts. According to the observed properties of type V and III bursts, we propose that energetic electrons in excited type V continuum are trapped in coronal loops, which are adjacent to the open field lines traced by type III electrons. With the proposed magnetic field configuration and the ECM emission mechanism, the observed properties of type V bursts, such as long duration, wide bandwidth, and opposite sense of polarization can be reasonably explained by our model.

  8. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  9. Overview of the Cassini in-situ magnetosphere measurements and solar wind modelling during the 2013 Saturn Aurora Campaign

    NASA Astrophysics Data System (ADS)

    Bunce, E. J.; Badman, S. V.; Cowley, S. W. H.; Jinks, S. L.; Provan, G.; Burton, M.; Crary, F. J.; Dougherty, M. K.; Kurth, W. S.; Luhmann, J.; Mitchell, D. G.; Zheng, Y.

    2013-09-01

    The Saturn Aurora Campaign 2013 is a coordinated effort to provide a clearer understanding of Saturn's auroral emissions at multiple wavelengths in the upper atmosphere, and their associated magnetospheric signatures and dynamics. In addition, modelling and Earth-based observations of the solar wind conditions throughout the campaign provide an important insight to the way in which Saturn's magnetosphere responds to the changing conditions in interplanetary space. Structures such as Corotating Interaction Regions (CIRs) are thought to play a significant role in the modulation of Saturn's auroral emissions via abrupt changes in the dynamic pressure associated with forward shocks at the start of the CIR compression regions. Recent observations from the Cassini spacecraft at Saturn have also taught us that the "magnetosphere oscillations" observed in magnetic field perturbations in the northern and southern hemispheres, which are associated with the SKR modulations in each hemisphere, significantly affect the magnetosphere and auroral emissions. During April and May 2013 a combination of the Hubble Space Telescope (HST) ultraviolet (UV) instrument the Advanced Camera for Surveys (ACS), and ground-based infrared (IR) telescopes observed the northern hemisphere auroras, whilst the Cassini spacecraft's remote sensing instruments (the Ultraviolet Imaging Spectrograph-UVIS, the Visual and Infrared Mapping Spectrometer-VIMS, and the Imaging Science SubSystem-ISS) made simultaneous (or near-simultaneous) observations of the UV, IR and visible auroras respectively, in one or other hemisphere. At the same time, the "in situ" instruments on board Cassini measured the magnetic field, plasma populations, and radio plasma wave emissions in Saturn's magnetosphere. Here we present an overview of the in situ magnetosphere measurements during the campaign, along with an overview of the predicted solar wind conditions upstream of Saturn from modeling work. We will discuss the evidence

  10. Correlation of far-infrared emission and radio continuum emission along the major axis of edge-on spiral galaxies

    NASA Technical Reports Server (NTRS)

    Heikkila, Bryant; Webber, William R.

    1994-01-01

    Using new High Resolution far-infrared (FIR) images we have determined FIR flux densities, the FIR luminosity, and intensity profiles along the major axis for eight nearby edge-on spiral galaxies. We present spatial comparisons between the FIR profiles in three of the four IRAS Bands (25, 60, 100 microns). We also present direct spatial comparisons between the 60 micron intensity profiles and intensity profiles from 20 cm radio continuum maps with identical resolution (approx. 60 sec) obtained from J. J. Condon. Using these profiles we have evaluated the 60 micron-to-20 cm ratio Q(sub 60) along the major axis for each galaxy and have compared the results to global Q(sub 60) values. This analysis reveals that a considerable amount of complicated structure exists within the disk of spiral galaxies. Closer examination of this disk structure will make it possible to place further constraints on the well known global far-infrared and radio continuum emission correlation.

  11. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  12. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schmid, J.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.

    2016-07-01

    We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be \\lt 14% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ˜0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the \\gt 100 {{MeV}} γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ˜2–3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton–proton collisions of cosmic rays with thermal plasma within the radio lobes.

  13. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Malde