Science.gov

Sample records for magnetron sputter deposition

  1. On the evolution of film roughness during magnetron sputtering deposition

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; De Hosson, J. Th. M.

    2010-11-15

    The effect of long-range screening on the surface morphology of thin films grown with pulsed-dc (p-dc) magnetron sputtering is studied. The surface evolution is described by a stochastic diffusion equation that includes the nonlocal shadowing effects in three spatial dimensions. The diffusional relaxation and the angular distribution of the incident particle flux strongly influence the transition to the shadowing growth regime. In the magnetron sputtering deposition the shadowing effect is essential because of the configuration of the magnetron system (finite size of sputtered targets, rotating sample holder, etc.). A realistic angular distribution of depositing particles is constructed by taking into account the cylindrical magnetron geometry. Simulation results are compared with the experimental data of surface roughness evolution during 100 and 350 kHz p-dc deposition, respectively.

  2. Magnetron Sputtering Deposits Corrosion-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Thakoor, A. P.; Williams, R. M.

    1986-01-01

    Dense, amorphous, metallic film resists corrosion attack by acid. Coatings thermally stable up to 800 degrees C and made corrosion resistant by proper choice of sputtering deposition conditions. Protective, corrosionresistant coatings applied to process equipment that comes in contact with aqueous, neutral, or acidic solutions in chemical, petroleum, and paper industries, in wastewater treatment, and in heat exchangers.

  3. Liner conformality in ionized magnetron sputter metal deposition processes

    SciTech Connect

    Hamaguchi, S.; Rossnagel, S.M.

    1996-07-01

    The conformality of thin metal films (liners) formed on high-aspect-ratio trench structures in ionized magnetron sputter deposition processes is studied numerically and experimentally. The numerical simulator (SHADE) used to predict the surface topography is based on the shock-tracking method for surface evolution. The simulation results are in good agreement with experimentally observed thin-film topography. It is shown that combination of direct deposition and trench-bottom resputtering results in good conformality of step coverages and the amount of the resputtering needed for the good conformality is almost independent of trench aspect ratios. {copyright} {ital 1996 American Vacuum Society}

  4. Effect of sputtering power on the growth of Ru films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jhanwar, Prachi; Kumar, Arvind; Verma, Seema; Rangra, K. J.

    2016-04-01

    Ruthenium is deposited by DC magnetron sputtering at different powers and is characterized. The effect of sputtering power on the electrical and structural properties of the film is investigated experimentally. High resolution X-ray diffraction is used to characterize the microstructure of Ru films deposited on SiO2 surface. The peak (002) is more sharp and intense with full width at half maximum (FWHM) of 0.37° at 250W. The grain size increases with increase in sputtering power improving the crystallinity of the film. The film deposited at high sputtering power also showed lower resistivity (12.40 µΩ-cm) and higher mobility (4.82 cm2/V.s) as compared to the film deposited at low power. The surface morphology of the film is studied by atomic force microscopy (AFM).

  5. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications.

    PubMed

    Marot, L; De Temmerman, G; Oelhafen, P; Covarel, G; Litnovsky, A

    2007-10-01

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 microm were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper. PMID:17979419

  6. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications

    SciTech Connect

    Marot, L.; De Temmerman, G.; Oelhafen, P.; Covarel, G.; Litnovsky, A.

    2007-10-15

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 {mu}m were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper.

  7. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NASA Astrophysics Data System (ADS)

    van Hattum, E. D.

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology, where the SiOx layer is used as the charge retention layer on the drums for copying and printing devices. The thesis describes investigations of the plasma and of processes taking place on the sputter target and on the SiOx growth surface in the room temperature, RF reactive magnetron plasma sputter deposition technology. The sputtering target consists of silicon and the reactive atmosphere consists of an Ar/O2 mixture. The composition of the grown SiOx layers has been varied between x=0 and x=2 by variation of the O2 partial pressure. The characteristics of the growth process have been related to the nanostructural properties of the grown films. The deposition system enables the characterisation of the plasma (Langmuir probe, energy resolved mass spectrometer) and of the growing film (Elastic Recoil Detection (ERD), Fourier transform infrared absorption spectroscopy) and is connected to a beamline of a 6MV tandem van de Graaff accelerator. Also Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy have been applied. It is shown how ERD can be used as a real-time in-situ technique. The thesis presents spatially resolved values of the ion density, electron temperature and the quasi-electrostatic potential, determined using a Langmuir probe. The plasma potential has a maximum about 2 cm from the cathode erosion area, and decreases (more than 200 V typically) towards the floating sputter cathode. The potential decreases slightly in the direction towards the grounded growth surface and the positive, mainly Ar+, ions created in the large volume of the plasma closest to the substrate are accelerated towards the growth surface. These ions obtain a few eV of

  8. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Chudinova, E.; Surmeneva, M.; Koptioug, A.; Scoglund, P.; Surmenev, R.

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds.

  9. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  10. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  11. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  12. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  13. Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics

    SciTech Connect

    Anders, Andre

    2009-11-22

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase of the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes to due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes of the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction of the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits considered.

  14. Deposition rates of high power impulse magnetron sputtering: Physics and economics

    SciTech Connect

    Anders, Andre

    2010-07-15

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered.

  15. Tungsten coatings deposited on CFC tiles by the combined magnetron sputtering and ion implantation technique

    NASA Astrophysics Data System (ADS)

    Ruset, C.; Grigore, E.; Maier, H.; Neu, R.; Li, X.; Dong, H.; Mitteau, R.; Courtois, X.

    2007-03-01

    Combined magnetron sputtering and ion implantation (CMSII) is a deposition technique involving simultaneous magnetron sputtering and high energy ion bombardment of the coating during its growth. A high voltage pulse discharge (U=40 kV, τ=20 μs, f=25 Hz) is superposed over the magnetron deposition and in this way, positive ions are accelerated to the components to be coated, bombarding initially the substrate and then the coating itself. In the framework of the ITER-like wall project this method was applied to produce nanostructured W coatings on the carbon fibre composite (CFC) substrate. These coatings have been characterized in terms of adhesion, thickness, structure and resistance to high thermal loads (up to 23.5 MW m-2). Based on the results of these tests, which are presented in this paper, CMSII technology was selected for coating about 1100 tiles with a 10 μm tungsten layer for the JET first wall and divertor.

  16. Magnetic thin film deposition with pulsed magnetron sputtering: deposition rate and film thickness distribution

    NASA Astrophysics Data System (ADS)

    Ozimek, M.; Wilczyński, W.; Szubzda, B.

    2016-02-01

    The goal of conducted study was an experimental determining the relations between technological parameters of magnetron sputtering process on deposition rate (R) and thickness uniformity of magnetic thin films. Planar Ni79Fei6Mo5 target with a diameter of 100 mm was sputtered in argon (Ar) atmosphere. Deposition rate was measured in a function of gas pressure, target power and target-substrate distance. The highest value of R≈280 nmmin-1. The obtained results in deposition rate of magnetic film were compared to deposition rate of cooper (Cu), aluminum (Al), titanium (Ti) and titanium oxide (TiOx) and the deposition rate of Ni-Fe alloy were higher that Al and Ti. The film thickness distribution was measured for radial distance from the target centre ranging up to 60 mm and target-substrate distance ranging form 70 to 115 mm. Among others it was stated that for the larger value of target-substrate distance the larger uniform of film thickness are obtained.

  17. Low target power wafer sputtering regime identified during magnetron tantalum barrier physical vapor deposition

    SciTech Connect

    Stout, Phillip J.; Denning, Dean J.; Michaelson, Lynne M.; Bagchi, Sandeep; Zhang Da; Ventzek, Peter L. G.

    2005-07-15

    A wafer sputtering regime has been identified during tantalum barrier deposition using a magnetron physical vapor deposition (MPVD) tool. The MPVD tools are designed to operate at high target powers (tens of kW) where the highly directed energetic metal (athermal metal) is the dominant metal species incident on the wafer. Although athermal metal gives better coverage than neutral metal (thermal) due to the narrower range of incident strike angles to the wafer, shadowing by the feature geometries is still a concern. Having available a wafer sputter regime or 'resputter' regime in a PVD tool allows for redistribution of metal from horizontal surfaces in the feature exposed to the plasma to vertical surfaces in the feature. The key in obtaining a wafer sputter regime is the operation of the plasma source in a range that the wafer bias power is effective at generating a sufficient self-bias for sputtering to occur. Discussed are modeling results which predict the wafer sputtering regime and the experimental confirmation that the low target power wafer sputter regime exists. The identified sputter regime in MPVD is such that there is a net deposition of metal at the field. Metal thickness reduction does occur at the trench and via bottoms where much of the unionized metal is being shadowed yielding a lower deposition to sputtering ratio compared to the field.

  18. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    SciTech Connect

    Crăciunescu, Corneliu M. Mitelea, Ion Budău, Victor; Ercuţa, Aurel

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  19. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Crǎciunescu, Corneliu M.; Mitelea, Ion; Budǎu, Victor; ErcuÅ£a, Aurel

    2014-11-01

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  20. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    SciTech Connect

    Purandare, Yashodhan Ehiasarian, Arutiun; Hovsepian, Papken; Santana, Antonio

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  1. Measuring the energy flux at the substrate position during magnetron sputter deposition processes

    SciTech Connect

    Cormier, P.-A.; Thomann, A.-L.; Dussart, R.; Semmar, N.; Mathias, J.; Balhamri, A.; Snyders, R.; Konstantinidis, S.

    2013-01-07

    In this work, the energetic conditions at the substrate were investigated in dc magnetron sputtering (DCMS), pulsed dc magnetron sputtering (pDCMS), and high power impulse magnetron sputtering (HiPIMS) discharges by means of an energy flux diagnostic based on a thermopile sensor, the probe being set at the substrate position. Measurements were performed in front of a titanium target for a highly unbalanced magnetic field configuration. The average power was always kept to 400 W and the probe was at the floating potential. Variation of the energy flux against the pulse peak power in HiPIMS was first investigated. It was demonstrated that the energy per deposited titanium atom is the highest for short pulses (5 {mu}s) high pulse peak power (39 kW), as in this case, the ion production is efficient and the deposition rate is reduced by self-sputtering. As the argon pressure is increased, the energy deposition is reduced as the probability of scattering in the gas phase is increased. In the case of the HiPIMS discharge run at moderate peak power density (10 kW), the energy per deposited atom was found to be lower than the one measured for DCMS and pDCMS discharges. In these conditions, the HiPIMS discharge could be characterized as soft and close to a pulsed DCMS discharge run at very low duty cycle. For the sake of comparison, measurements were also carried out in DCMS mode with a balanced magnetron cathode, in the same working conditions of pressure and power. The energy flux at the substrate is significantly increased as the discharge is generated in an unbalanced field.

  2. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  3. Deposition of Tungsten Thin Films on Flexible Polymer Substrates by Direct-Current Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Huo, Zhenxuan; Jiao, Xiangquan; Zhong, Hui; Shi, Yu

    2015-11-01

    We have investigated thin tungsten films deposited on polymer substrates by direct-current magnetron sputtering under different conditions. Unlike tungsten films deposited on rigid substrates, films on polymer substrates grew at appropriate sputtering power, low sputtering pressure, and low substrate temperature. High sputtering power results in tungsten films with good crystal orientation, compact microstructure, and low electrical resistivity. However, high-power sputtering damages the polymer substrates. Enhancing sputtering pressure substantially degrades tungsten orientation and increases electrical resistivity. Furthermore, a slight increase in substrate temperature results in tungsten films with good crystal orientation, a dense microstructure, and low electrical resistivity. Nonetheless, a high substrate temperature results in soft and deformed polymer substrates; this degrades tungsten crystal orientation and substantially roughens tungsten films. On the basis of this study, compact and flat tungsten films with low electrical resistivity can be obtained at a sputtering power of 69 W, a sputtering pressure of 1 Pa, a substrate temperature of 100°C, and a distance between target and substrate of 60 mm.

  4. Texture evolution in nanocrystalline iron films deposited using biased magnetron sputtering

    SciTech Connect

    Vetterick, G.; Taheri, M. L.; Baldwin, J. K.; Misra, A.

    2014-12-21

    Fe thin films were deposited on sodium chloride (NaCl) substrates using magnetron sputtering to investigate means of texture control in free standing metal films. The Fe thin films were studied using transmission electron microscopy equipped with automated crystallographic orientation microscopy. Using this technique, the microstructure of each film was characterized in order to elucidate the effects of altering deposition parameters. The natural tendency for Fe films grown on (100) NaCl is to form a randomly oriented nanocrystalline microstructure. By careful selection of substrate and deposition conditions, it is possible to drive the texture of the film toward a single (100) orientation while retaining the nanocrystalline microstructure.

  5. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    SciTech Connect

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  6. Integration of in situ RHEED with magnetron sputter deposition for atomic layer controlled growth

    NASA Astrophysics Data System (ADS)

    Podkaminer, Jacob P.

    Epitaxial thin films continue to be one of the most promising topics within electronic materials research. Sputter deposition is one process by which these films can be formed and is a widely used growth technique for a large range of technologically important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages associated with sputter deposition, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the strong permanent magnets in magnetron sputter sources and their effect on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer by layer control during sputter deposition by in situ RHEED. A novel growth chamber that can seamlessly change between pulsed laser deposition and sputtering with RHEED for the growth of complex heterostructures has been designed and implemented. Epitaxial thin films of LaAlO3, La1-xSrxMnO3, and SrRuO3 have all been deposited by sputtering and shown to exhibit clear and extended RHEED oscillations. To solve the magnet issue, a finite element model has been

  7. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  8. Deposition of ultrahard Ti-Si-N coatings by pulsed high-current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Zakharov, A. N.; Rabotkin, S. V.; Solov'ev, A. A.

    2016-02-01

    We report on the results of investigation of properties of ultrahard Ti-Si-N coatings deposited by pulsed high-current magnetron reactive sputtering (discharge pulse voltage is 300-900 V, discharge pulse current is up to 200 A, pulse duration is 10-100 μs, and pulse repetition rate is 20-2000 Hz). It is shown that for a short sputtering pulse (25 μs) and a high discharge current (160 A), the films exhibit high hardness (66 GPa), wear resistance, better adhesion, and a lower sliding friction coefficient. The reason is an enhancement of ion bombardment of the growing coating due to higher plasma density in the substrate region (1013 cm-3) and a manifold increase in the degree of ionization of the plasma with increasing peak discharge current (mainly due to the material being sputtered).

  9. Structural and optical properties of CdO thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Kumar, G. Anil Reddy, M. V. Ramana; Reddy, Katta Narasimha

    2014-04-24

    Cadmium oxide (CdO) thin films were deposited on glass substrate by r.f. magnetron sputtering technique using a high purity (99.99%) Cd target of 2-inch diameter and 3 mm thickness in an Argon and oxygen mixed atmosphere with sputtering power of 50W and sputtering pressure of 2×10{sup −2} mbar. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM). The XRD analysis reveals that the films were polycrystalline with cubic structure. The visible range transmittance was found to be over 70%. The optical band gap increased from 2.7 eV to2.84 eV with decrease of film thickness.

  10. Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications

    NASA Astrophysics Data System (ADS)

    Merie, Violeta; Pustan, Marius; Negrea, Gavril; Bîrleanu, Corina

    2015-12-01

    Titanium nitride can be used among other materials as diffusion barrier for MEMS (microelectromechanical systems) applications. The aim of this study is to elaborate and to characterize at nanoscale titanium nitride thin films. The thin films were deposited by reactive magnetron sputtering on silicon substrates using a 99.99% purity titanium target. Different deposition parameters were employed. The deposition temperature, deposition time, substrate bias voltage and the presence/absence of a titanium buffer layer are the parameters that were modified. The so-obtained films were then investigated by atomic force microscopy. A significant impact of the deposition parameters on the determined mechanical and tribological characteristics was highlighted. The results showed that the titanium nitride thin films deposited for 20 min at room temperature without the presence of a titanium buffer layer when a negative bias of -90 V was applied to the substrate is characterized by the best tribological and mechanical behavior.

  11. Structural and nanomechanical characterization of niobium films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, X.; Cao, W. H.; Tao, X. F.; Ren, L. L.; Zhou, L. Q.; Xu, G. F.

    2016-05-01

    Nb thin films were deposited onto Si wafers by direct current (DC) magnetron sputtering at different deposition pressures. The microstructure and nanomechanical properties of Nb films were investigated by scanning electron microscope, X-ray diffractometer, transmission electron microscope, atomic force microscope and nanoindenter. The results revealed that the grain size, thickness, surface roughness, the reduced elastic modulus ( Er) and hardness ( H) values of Nb thin films increased at the pressure range of 0.61-0.68 Pa. Meanwhile, the porosity of Nb films decreased with the increase in deposition pressure. The lattice deformation of Nb thin films changed from negative to positive with the increase in deposition pressure. It is concluded that deposition pressure influences the microstructure and nanomechanical properties of Nb films.

  12. Ex situ and in situ catalyst deposition for CNT synthesis by RF-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Scalese, S.; Scuderi, V.; Simone, F.; Pennisi, A.; Privitera, V.

    2008-05-01

    Radio frequency magnetron sputtering has been used for the synthesis of aligned carbon nanotubes (CNTs) on SiO 2/Si substrate. The results were obtained by depositing catalytic nano-particles in advance (ex situ) or simultaneously to the C deposition (in situ), which have been compared showing that the oxidation of the metal catalyst deposited in advance is detrimental for the good outcome of the CNTs growth. An in situ catalyst deposition allows to get rid of the contamination problem and to grow aligned CNTs on a substrate, as shown by scanning electron microscopy. Transmission electron microscopy shows that the so-achieved CNTs own a bamboo-like structure and the catalytic Ni nanoparticle is on the tip of the CNTs. Our method allows to perform catalyst deposition and growth of CNT on a SiO 2/Si substrate simultaneously and its use can be extended to a variety of catalytic elements and substrates, in principle without many efforts.

  13. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  14. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Surmeneva, M. A.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Prymak, O.; Epple, M.; Chaikina, M. V.; Surmenev, R. A.

    2016-01-01

    As a measure of the prevention of implant associated infections, a number of strategies have been recently applied. Silver-containing materials possessing antibacterial activity as expected might have wide applications in orthopedics and dentistry. The present work focuses on the physico-chemical characterization of silver-containing hydroxyapatite (Ag-HA) coating obtained by radio frequency (RF) magnetron sputtering. Mechanochemically synthesized Ag-HA powder (Ca10-xAgx(PO4)6(OH)2-x, x = 1.5) was used as a precursor for sputtering target preparation. Morphology, composition, crystallinity, physico-mechanical features (Young's modulus and nanohardness) of the deposited Ag-HA coatings were investigated. The sputtering of the nanostructured multicomponent target at the applied process conditions allowed to deposit crystalline Ag-HA coating which was confirmed by XRD and FTIR data. The SEM results revealed the formation of the coating with the grain morphology and columnar cross-section structure. The EDX analysis confirmed that Ag-HA coating contained Ca, P, O and Ag with the Ca/P ratio of 1.6 ± 0.1. The evolution of the mechanical properties allowed to conclude that addition of silver to HA film caused increase of the coating nanohardness and elastic modulus compared with those of pure HA thin films deposited under the same deposition conditions.

  15. Resputtering effect during MgO buffer layer deposition by magnetron sputtering for superconducting coated conductors

    SciTech Connect

    Xiao, Shaozhu; Shi, Kai; Deng, Shutong; Han, Zhenghe; Feng, Feng Lu, Hongyuan; Qu, Timing; Zhu, Yuping; Huang, Rongxia

    2015-07-15

    In this study, MgO thin films were deposited by radio-frequency magnetron sputtering. The film thickness in the deposition area directly facing the target center obviously decreased compared with that in other areas. This reduction in thickness could be attributed to the resputtering effect resulting from bombardment by energetic particles mainly comprising oxygen atoms and negative oxygen ions. The influences of deposition position and sputtering pressure on the deposition rate were investigated. Resputtering altered the orientation of the MgO film from (111) to (001) when the film was deposited on a single crystal yttria-stabilized zirconia substrate. The density distribution of energetic particles was calculated on the basis of the measured thicknesses of the MgO films deposited at different positions. The divergence angle of the energetic particle flux was estimated to be approximately 15°. The energetic particle flux might be similar to the assisting ion flux in the ion beam assisted deposition process and could affect the orientation of the MgO film growth.

  16. Raman spectroscopy of copper oxide films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Levitskii, V. S.; Shapovalov, V. I.; Komlev, A. E.; Zav'yalov, A. V.; Vit'ko, V. V.; Komlev, A. A.; Shutova, E. S.

    2015-11-01

    Raman spectroscopy has been used to study the influence of partial oxygen pressure during deposition and isothermal treatment on the chemical composition of copper oxide films deposited by reactive dc magnetron sputtering of copper target in a reactive gaseous medium. Three series of films deposited at various partial oxygen pressures (from 0.06 to 0.16 mTorr) possessed different chemical compositions. The subsequent thermal treatment of all samples was performed for 30 min in air at a constant temperature in a 300?500°C interval. An increase in the annealing temperature led to chemical changes in the films. After isothermal treatment at 450°C, the films in all series acquired stoichiometric CuO composition.

  17. Microstructure and optoelectronic properties of galliumtitanium-zinc oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Shou-bu; Lu, Zhou; Zhong, Zhi-you; Long, Hao; Gu, Jin-hua; Long, Lu

    2016-07-01

    Gallium-titanium-zinc oxide (GTZO) transparent conducting oxide (TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic properties of GTZO thin films on Ar gas pressure were observed. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increment of Ar gas pressure, the microstructure and optoelectronic properties of GTZO thin films will be changed. When Ar gas pressure is 0.4 Pa, the deposited films possess the best crystal quality and optoelectronic properties.

  18. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  19. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  20. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  1. Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Chu

    1998-02-01

    A series of metal-aluminium nitride (M-AlN) cermet materials for solar selective coatings was deposited by a novel direct current (d.c.) magnetron sputtering technology. Aluminium nitride was used as the ceramic component in the cermets, and stainless steel (SS), nickel-based alloy 0022-3727/31/4/003/img1 (NiCr), molybdenum-based alloy 0022-3727/31/4/003/img2 (TZM) and tungsten were used as the metallic components. The aluminium nitride ceramic and metallic components of the cermets were deposited by simultaneously running both an aluminium target and another metallic target in a gas mixture of argon and nitrogen. The ceramic component was deposited by d.c. reactive sputtering and the metallic component by d.c. non-reactive sputtering. The total sputtering gas pressure was 0.8-1.0 Pa and the partial pressure of reactive nitrogen gas was set at 0.020-0.025 Pa which is sufficiently high to ensure that a nearly pure AlN ceramic sublayer was deposited by d.c. reactive sputtering. Because of the excellent nitriding resistance of stainless steel and the other alloys and metal, a nearly pure metallic sublayer was deposited by d.c. sputtering at this low nitrogen partial pressure. A multilayered system, consisting of alternating metallic and AlN ceramic sublayers, was deposited by substrate rotation. This multisublayer system can be considered as a macrohomogeneous cermet layer with metal volume fraction determined by controlling the thicknesses of metallic and ceramic sublayers. Following this procedure, M-AlN cermet solar selective coatings with a double cermet layer structure were deposited. The films of these selective surfaces have the following structure: a low metal volume fraction cermet layer is placed on a high metal volume fraction cermet layer which in turn is placed on an aluminium metal infrared reflection layer. The top surface layer consists of an aluminium nitride antireflection layer. A solar absorptance of 0.92-0.96 and a normal emittance of 0.03-0.05 at

  2. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering

    SciTech Connect

    Iriarte, G. F.

    2010-03-15

    Aluminum nitride (AlN) thin films deposited on high-vacuum systems without substrate heating generally exhibit a poor degree of c-axis orientation. This is due to the nonequilibrium conditions existing between the energy of the sputtered particles and the energy at the substrate surface. The application of substrate bias or substrate temperature is known to improve the adatom mobility by delivering energy to the substrate; both are hence well-established crystal growth promoting factors. It is well known that low sputtering pressures can be used as a parameter improving the growth of highly c-axis oriented aluminum nitride films at room temperature even without applying bias voltage to the substrate. Generally, the use of high pressures implies thermalization of particles within the gas phase and is considered to increase the energy gap between these and the substrate surface. However, in later experiments we have learned that the use of high processing pressures does not necessarily implies a detriment of crystallographic orientation in the films. By measuring (for the first time to the author's knowledge) the full width at half maximum value of the rocking curve of the 0002-AlN peak at several positions along the 100 mm diameter (100)-silicon wafers on which aluminum nitride thin films were deposited by reactive sputtering, a new effect was observed. Under certain processing conditions, the growth of the AlN thin films is influenced by the target magnetron. More precisely, their degree of c-axis orientation varies at wafer areas locally coincident under the target magnetron. This effect should be considered, especially where large area substrates are employed such as in silicon wafer foundry manufacturing processes.

  3. Antireflection coatings for deep ultraviolet optics deposited by magnetron sputtering from Al targets.

    PubMed

    Liao, Bo-Huei; Lee, Cheng-Chung

    2011-04-11

    We introduce an innovative technique for the deposition of fluorine doped oxide (F:Al(2)O(3)) films by DC pulse magnetron sputtering from aluminum targets at room temperature. There was almost no change in transmittance even after the film was exposed to air for two weeks. Its refractive index was around 1.69 and the extinction coefficient was smaller than 1.9 × 10(-4) at 193 nm. An AlF(3)/F:Al(2)O(3) antireflection coating was deposited on both sides of a quartz substrate. A high transmittance of 99.32% was attained at the 193 nm wavelength. The cross-sectional morphology showed that the surface of the multilayer films was smooth and there were no columnar or porous structures. PMID:21503058

  4. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed. PMID:25852353

  5. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  6. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  7. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Aji, A. S.; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-01

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  8. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S. Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  9. Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications

    NASA Astrophysics Data System (ADS)

    Fortier, Jean-Philippe

    "Smart" windows are a perfect innovative example of technology that reduces our energy dependence and our impact on the environment while saving on the economical point of view. With the use of vanadium dioxide (VO2), a thermochromic compound, and this, as a thin coating, it would in fact be possible to control the sun's transmission of infrared light (heat) as a function of the surrounding environment temperature. In other words, its optical behavior would allow a more effective management of heat exchanges between a living venue and the outdoor environment. However, this type of window is still in a developmental stage. First, the oxide's deposition is not simple in nature. Based on a conventional deposition technique called magnetron sputtering mainly used in the fenestration industry, several factors such as the oxygen concentration and the substrate temperature during deposition can affect the coating's thermochromic behavior, and this, by changing its composition and crystallinity. Other control parameters such as the deposition rate, the pressure in the sputtering chamber and the choice of substrate may also modify the film microstructure, thereby varying its optical and electrical properties. In addition, several issues still persist as to its commercial application. For starters, the material's structural transition, related to the change of its optical properties, only occurs around 68°C. In addition, its low transparency and natural greenish colour are not visually appealing. Then, to this day, the deposition temperature required to crystallize and form the thermochromic oxide remains an obstacle for a possible large-scale application. Ultimately, although the material's change in temperature has been shown to be advantageous in situations of varying climate, the existing corrective solutions to these issues generate a deterioration of the thermochromic behavior. With no practical expertise on the material, this project was undertaken with certain

  10. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    SciTech Connect

    Hunter, C. N.; Check, M. H.; Muratore, C.; Voevodin, A. A.

    2010-05-15

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  11. Structure and properties of uranium oxide thin films deposited by pulsed dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Dahan, Isaac; Valderrama, Billy; Manuel, Michele V.

    2014-05-01

    Crystalline uranium oxide thin films were deposited in an unbalanced magnetron sputtering system by sputtering from a depleted uranium target in an Ar + O2 mixture using middle frequency pulsed dc magnetron sputtering. The substrate temperature was constantly maintained at 500 °C. Different uranium oxide phases (including UO2-x, UO2, U3O7 and U3O8) were obtained by controlling the percentage of the O2 flow rate to the total gas flow rate (f) in the chamber. The crystal structure of the films was characterized using X-ray diffraction and the microstructure of the films was studied using transmission electron microscopy and atom probe tomography. When the f was below 10%, the film contains a mixture of metallic uranium and UO2-x phases. As the f was controlled in the range of 10-13%, UO2 films with a (2 2 0) preferential orientation were obtained. The oxide phase rapidly changed to a mixture of U3O7 and U3O8 as the f was increased to the range of 15-18%. Further increasing the f to 20% and above, polycrystalline U3O8 thin films with a (0 0 1) preferential orientation were formed. The hardness and Young's modulus of the uranium oxide films were evaluated using nanoindentation. The film containing a single UO2 phase exhibited the maximum hardness of 14.3 GPa and a Young's modulus of 195 GPa. The UO2 thin film also exhibited good thermal stability in that no phase change was observed after annealing at 600 °C in vacuum for 104 h.

  12. Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-xian; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; Liu, Jin-long; Wei, Jun-jun

    2015-10-01

    Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite-ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.

  13. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries. PMID:26381359

  14. Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Jiang, Fan; Liu, Lian; Yu, Zhou; Zhang, Yong; Zhao, Yong

    2016-01-01

    A growth method is presented to control the preferred orientation in chalcopyrite CuIn x Ga1- x Se2 (CIGS) thin films grown by magnetron sputtering. Films with (220/204) and (112) preferred orientation as well as randomly oriented films were prepared. The effects of an In2Se3 wetting layer and the working pressure on the texture transition phenomena were examined. A large-grained CIGS film with (220/204) texture was formed at 400°C with the inclusion of a thin (80 nm) In2Se3 layer and liquid phase (excess copper selenide phase) formation, and the reaction mechanism is proposed. The device deposited at 2.0 Pa on an In2Se3 layer exhibited the optimal electrical properties. [Figure not available: see fulltext.

  15. Size-dependent electrical conductivity of indium zinc oxide deposited by RF magnetron sputtering.

    PubMed

    Heo, Young-Woo; Pearton, S J; Norton, D P

    2012-04-01

    We investigated the size-dependent electrical conductivities of indium zinc oxide stripes with different widths from 50 nm to 4 microm and with the same thickness of 50 nm deposited by RF magnetron sputtering. The size of the indium zinc oxide stripes was controlled by e-beam lithography. The distance of the two Ti/Au Ohmic electrodes along the indium zinc oxide stripes was kept constant at 25 microm. The electrical conductivity decreased as the size of the indium zinc oxide stripes decreased below a critical width (80 nm). The activation energy, derived from the electric conductivity versus temperature measurement, was dependent on the dimensions of indium zinc oxide stripes. These results can be understood as stemming from surface charge trapping from the absorption of oxygen and/or water vapor, which leads to an increase in the energy difference between the conduction energy band and the Fermi energy. PMID:22849102

  16. Investigation on low thermal emittance of Al films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ning, Yuping; Wang, Wenwen; Sun, Ying; Wu, Yongxin; Liu, Yingfang; Man, Hongliang; Wang, Cong; Zhang, Yong; Zhao, Shuxi; Tomasella, Eric; Bousquet, Angélique

    2016-03-01

    A series of Al films with different thicknesses were deposited on polished stainless steel by direct current (DC) magnetron sputtering as a metal IR-reflector layer in solar selective absorbing coating (SSAC). The effects of the film thickness and the temperature on the thermal emittance of the Al films are studied. An optimal thickness 78 nm of the Al film for the lowest total thermal emittance is obtained. The thermal emittance of the optimal Al film keeps close to 0.02 from 25 °C to 400 °C, which are low enough to satisfy the optical requirements in SSAC. The optical constants of the Al film are deduced by fitting the reflectance and transmission spectra using SCOUT software.

  17. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  18. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  19. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wang, Yubao; Du, Jinfang; Yang, Hua; Hao, Junying

    2016-08-01

    The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp3 carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10-7 mm3/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  20. Helium-Charged La-Ni-Al Thin Films Deposited by Magnetron Sputtering

    SciTech Connect

    Shi Liqun; Chen Deming; Xu Shilin; Liu Chaozhu; Hao Wanli; Zhou Zhuyin

    2005-07-15

    An advanced implantation of low energy helium-4 atoms during the La-Ni-Al film growth by adopting magnetron sputtering with Ar/He mixture gases is discussed. Both proton backscattering spectroscopy (PBS) and elastic recoil detection (ERD) analyses were adopted to measure helium concentration of the films and distribution in the near-surface region. Helium atoms with a high concentration incorporate evenly in deposited film. The introduction of the helium with no extra irradiation damage is expected by choosing suitable deposition conditions. It was found that amorphous and crystalline LaNi{sub 5}-type structures can be achieved when sputtered with pure Ar and Ar/He mixture gases at room temperature, respectively. Thermal desorption experiments proposes that a part of hydrogen atoms are bound to trapped helium at crystal and releases together with helium. Only a small fraction of helium is released from the helium-vacancy clusters in lower temperature range and most of helium is released from small size helium bubbles in the high temperature range.

  1. Compositional analysis of diamond like carbon and carbon nitride films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kayani, Asghar; Ingram, David

    2003-03-01

    The growing influence of the amorphous carbon not only as mechanical protective coating , but also of its possible use as electronic semiconducting material have made this material an important one. Incorporation of Nitrogen in a-C:H is believed to improve the semiconducting properties[1]. Moreover Carbon-Nitrogen films are a possible candidate for dielectric, insulating and passivating layers in a variety gallium nitride based device applications. Thin films amorphous carbon, non-hydrogenated, hydrogenated and nitrogenated were deposited on glassy carbon, silicon and quartz using magnetron sputtering of graphite target. Argon and Nitrogen were used as a sputtering gases. For Elemental concentration, films deposited on glassy carbon were used. 2.2 Mev of He++ beam is extracted from accelerator and in directed to the target films. Back and Forward scattered He++ particles were detected by solid-state detectors. The number and the energy of the particles striking the detector is stored electronically. The areal density in atoms per cm2, on the substrate surface was obtained from the shift in the substrate edge and area of carbon and other elements signals in Rutherford Backscattering Spectrum (RBS). Total Hydrogen content of the films were measured with Elastic Recoil Spectroscopy (ERS). Spectrum were simulated using Rutherford Universal Manipulation Program (RUMP).

  2. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  3. Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications

    NASA Astrophysics Data System (ADS)

    Fortier, Jean-Philippe

    "Smart" windows are a perfect innovative example of technology that reduces our energy dependence and our impact on the environment while saving on the economical point of view. With the use of vanadium dioxide (VO2), a thermochromic compound, and this, as a thin coating, it would in fact be possible to control the sun's transmission of infrared light (heat) as a function of the surrounding environment temperature. In other words, its optical behavior would allow a more effective management of heat exchanges between a living venue and the outdoor environment. However, this type of window is still in a developmental stage. First, the oxide's deposition is not simple in nature. Based on a conventional deposition technique called magnetron sputtering mainly used in the fenestration industry, several factors such as the oxygen concentration and the substrate temperature during deposition can affect the coating's thermochromic behavior, and this, by changing its composition and crystallinity. Other control parameters such as the deposition rate, the pressure in the sputtering chamber and the choice of substrate may also modify the film microstructure, thereby varying its optical and electrical properties. In addition, several issues still persist as to its commercial application. For starters, the material's structural transition, related to the change of its optical properties, only occurs around 68°C. In addition, its low transparency and natural greenish colour are not visually appealing. Then, to this day, the deposition temperature required to crystallize and form the thermochromic oxide remains an obstacle for a possible large-scale application. Ultimately, although the material's change in temperature has been shown to be advantageous in situations of varying climate, the existing corrective solutions to these issues generate a deterioration of the thermochromic behavior. With no practical expertise on the material, this project was undertaken with certain

  4. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I. N.

    2004-04-01

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N 2. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 °C. The initially amorphous PLD thin films were annealed at 550 °C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were ˜1 μm and ˜350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  5. Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering

    SciTech Connect

    Khan, Majid; Islam, Mohammad

    2013-12-15

    Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thin films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.

  6. Surface roughness and interface width scaling of magnetron sputter deposited Ni/Ti multilayers

    SciTech Connect

    Maidul Haque, S.; Biswas, A.; Tokas, R. B.; Bhattacharyya, D.; Sahoo, N. K.; Bhattacharya, Debarati

    2013-09-14

    Using an indigenously built r.f. magnetron sputtering system, several single layer Ti and Ni films have been deposited at varying deposition conditions. All the samples have been characterized by Grazing Incidence X-ray Reflectivity (GIXR) and Atomic Force Microscopy to estimate their thickness, density, and roughness and a power law dependence of the surface roughness on the film thickness has been established. Subsequently, at optimized deposition condition of Ti and Ni, four Ni/Ti multilayers of 11-layer, 21-layer, 31-layer, and 51-layer having different bilayer thickness have been deposited. The multilayer samples have been characterized by GIXR and neutron reflectivity measurements and the experimental data have been fitted assuming an appropriate sample structure. A power law correlation between the interface width and bilayer thickness has been observed for the multilayer samples, which was explained in the light of alternate roughening/smoothening of multilayers and assuming that at the interface the growth “restarts” every time.

  7. Carbon film deposition on SnO{sub 2}/Si(111) using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S.; Darma, Y.

    2013-09-09

    In this paper, carbon deposition on SnO{sub 2} layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature at 300 °C. SnO{sub 2} were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO{sub 2} on Si(111) and the characteristic of carbon thin film on SnO{sub 2} were analized by mean XRD, FTIR and Raman spectra. XRD analysis shows that SnO{sub 2} film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO{sub 2}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.

  8. Deposition and characterization of TiZrV-Pd thin films by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhang, Bo; Xu, Yan-Hui; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-12-01

    TiZrV film is mainly applied in the ultra-high vacuum pipes of storage rings. Thin film coatings of palladium, which are added onto the TiZrV film to increase the service life of nonevaporable getters and enhance H2 pumping speed, were deposited on the inner face of stainless steel pipes by dc magnetron sputtering using argon gas as the sputtering gas. The TiZrV-Pd film properties were investigated by atomic force microscope (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-Ray Diffraction (XRD). The grain size of TiZrV and Pd films were about 0.42-1.3 nm and 8.5-18.25 nm respectively. It was found that the roughness of TiZrV films is small, about 2-4 nm, but for Pd film it is large, about 17-19 nm. The PP At. % of Pd in TiZrV/Pd films varied from 86.84 to 87.56 according to the XPS test results. Supported by National Natural Science Funds of China (11205155) and Fundamental Research Funds for the Central Universities (WK2310000041)

  9. Properties of All-Solid Lithium-Ion Rechargeable Batteries Deposited by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, R. J.; Ren, Y.; Geng, L. Q.; Chen, T.; Li, L. X.; Yuan, C. R.

    2013-08-01

    Amorphous V2O5, LiPON and Li2Mn2O4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge-discharge characteristic in the voltage range of 0.3-3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.

  10. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  11. Titanium Aluminum Nitride Films Deposited by AC Reactive Magnetron Sputtering: Study of Positioning Effect in an Inverted Cylindrical Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Vandross, George Clinton, II

    TiAlN films were deposited on glass substrates by AC magnetron sputtering at 2 kW with constant Argon and Nitrogen gas flow rates to study the effects of positioning on the deposited films. The deposition system used was an ICM-10 IsoFlux cylindrical magnetron sputtering chamber. The samples were placed in different positions and tilts with respect to the location of the Titanium and Aluminum targets in the chamber. It was found that with change in position and application of tilts, deposited films acquired different physical and chemical properties. It is believed that the differences in these properties were caused by to the change in the incident angle of bombardment of the samples, and the change in surface areas of the samples presented to the targets at each location. As related to the physical traits of the samples, analysis using Scanning Electron Microscopy of the samples displayed variations in the topography, where differences in grain density could be noted as well as structure formations. The chemical properties were also noted to be affected by the variation of tilt and position applied to the sample. X-ray Diffraction Spectroscopy analysis of the samples showed the intensity of the TiAlN characteristic peak of the samples to differ from sample to sample. Results from the XRD analysis of this work showed a 157% and 176% increase in peak intensity of the 0° tilt sample of the Bottom Plate from the 45° tilt sample and 60° tilt sample respectively of the same plate. The results from the XRD analysis of this work also showed a 74% and 151% increase of the peak intensity for the 0° tilt sample of the Middle Plate when compared to the 45° tilt sample and 60° tilt sample respectively of the same plate. Whereas results for this work showed a 54% and 41% decrease in peak intensity of the 0° tilt sample of the Top Plate from the 45° tilt sample and 60° tilt sample respectively of the same plate. Energy Dispersive X-ray Spectroscopy was also performed

  12. Molybdenum Oxides Deposited by Modulated Pulse Power Magnetron Sputtering: Stoichiometry as a Function of Process Parameters

    NASA Astrophysics Data System (ADS)

    Murphy, Neil R.; Sun, Lirong; Grant, John T.; Jones, John G.; Jakubiak, Rachel

    2015-10-01

    Molybdenum oxide films were deposited using modulated pulse power magnetron sputtering (MPPMS) from a molybdenum target in a reactive environment where the flow rate of oxygen was varied from 0 sccm to 2.00 sccm. By varying the amount of reactive oxygen available during deposition, the composition of the films ranged from metallic Mo to fully stoichiometric MoO3, when the molybdenum target became poisoned, due to the formation of a dielectric surface oxide coating. Film compositions were verified using high energy resolution x-ray photoelectron spectroscopy. Target poisoning occurred at an oxygen flow rate of 1.25 sccm and reversed when the flow rate decreased to about 1.00 sccm. MoO3 films deposited via MPPMS had densities of 3.8 g cm-3, 81% of the density of crystalline α-MoO3 as determined by x-ray reflectivity (XRR). In addition, XRR and atomic force microscopy data showed sub-nanometer surface roughness values. From spectroscopic ellipsometry, the measured refractive index of the MoO3 films at 589 nm was 1.97 with extinction coefficient values <0.02 at wavelengths above the measured absorption edge of 506 nm (2.45 eV).

  13. Stress anisotropy and stress gradient in magnetron sputtered films with different deposition geometries

    SciTech Connect

    Zhao, Z.B.; Yalisove, S.M.; Bilello, J.C.

    2006-03-15

    Mo films were deposited via magnetron sputtering with two different deposition geometries: dynamic deposition (moving substrate) and static deposition (fixed substrate). The residual stress and structural morphologies of these films were investigated, with particular focus on in-plane anisotropy of the biaxial stress and stress gradient across the film thickness. The results revealed that the Mo films developed distinct states of residual stress, which depended on both deposition geometry and film thickness. With the dynamic geometry, the Mo films generally exhibited anisotropic stress. Both the degree of anisotropy and the magnitude of stress varied as functions of film thickness. The variation of stress was linked to the evolution of anisotropic microstructures in the films. The Mo films from the static geometry developed isotropic residual stress, which was more compressive and noticeably larger in magnitude than that of the Mo films from the dynamic geometry. Aside from these disparities, the two types of Mo films (i.e., anisotropic and isotropic) exhibited notably similar trends of stress variation with film thickness. Depth profiling indicated the presence of large stress gradients for the Mo films, irrespective of the deposition geometries. This observation seems to be consistent with the premise that Mo films develop a zone T structure, which is inherently inhomogeneous along the film thickness. Moreover, the largest stress gradient for both types of deposition geometries arises at roughly the same film depth ({approx}240 nm from substrate), where the stresses sharply transits from highly compressive to less compressive or even tensile. This appears to correspond to the boundary region that separates two distinct stages of microstructural evolution, a feature unique to zone T-type structure.

  14. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2013-08-01

    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar + O2) flow rate ratio Γ between 0% and 100%. With increasing oxygen flow ratio a substoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable dc glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. In contrast, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable dc glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at Γ = 100% either a high target current (Im ⩾ 1 A) or a low magnetic field strength (B ⩽ 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films.

  15. Photocatalytic activity of bipolar pulsed magnetron sputter deposited TiO2/TiWOx thin films

    NASA Astrophysics Data System (ADS)

    Weng, Ko-Wei; Hu, Chung-Hsuan; Hua, Li-Yu; Lee, Chin-Tan; Zhao, Yu-Xiang; Chang, Julian; Yang, Shu-Yi; Han, Sheng

    2016-08-01

    Titanium oxide films were formed by sputtering and then TiWOx films were deposited by bipolar pulsed magnetron sputtering with pure titanium and tungsten metal targets. The sputtering of titanium oxide with tungsten enhanced the orientation of the TiO2 (1 0 1) plane of the specimen assemblies. The main varying parameter was the tungsten pulse power. Titanium oxide sputtered with tungsten using a pulsing power of 50 W exhibited a superior hydrophilic property, and a contact angle of 13.1°. This fabrication conditions maximized the photocatalytic decomposition of methylene blue solution. The mechanism by which the titanium oxide was sputtered with tungsten involves the photogeneration of holes and electron traps, inhibiting the hole-electron recombination, enhancing hydrophilicity and reducing the contact angle.

  16. Development of mid-frequency AC reactive magnetron sputtering for fast deposition of Y2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Xiong, Jie; Xia, Yudong; Xue, Yan; Zhang, Fei; Guo, Pei; Zhao, Xiaohui; Tao, Bowan

    2014-02-01

    A reel-to-reel magnetron sputtering system with mid-frequency alternating current (AC) power supply was used to deposit double-sided Y2O3 seed layer on biaxially textured Ni-5 at.%W tape for YBa2Cu3O7-δ coated conductors. A reactive sputtering process was carried out using two opposite symmetrical sputtering guns with metallic yttrium targets and water vapor for oxidizing the sputtered metallic atoms. The voltage control mode of the power supply was used and the influence of the cathode voltage and ArH2 pressure were systematically investigated. Subsequently yttrium-stabilized zirconia (YSZ) barrier and CeO2 cap layers were deposited on the Y2O3 buffered substrates in sequence, indicating high quality and uniform double-sided structure and surface morphology of such the architecture.

  17. Highly phosphorus-doped crystalline Si layers grown by pulse-magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Fenske, Frank; Gorka, Benjamin

    2009-04-01

    The electrical properties of highly phosphorus-doped crystalline silicon films deposited by pulse-magnetron sputtering were studied. The films were grown, 450 nm thick, on Si(100) and Si(111) wafers at low substrate temperatures Ts of 450-550 °C and post-treated by rapid thermal annealing (RTA) and plasma hydrogenation (PH). In the case of films grown on Si(100), at all values of Ts postgrowth treatment by RTA resulted in an increase in the dopant activation up to 100% and of the Hall mobility to about bulklike values of 50 cm2 V-1 s-1. This result suggests high structural quality of the films on Si(100). The Si(111) films, which are typically more defective, exhibit a completely different behavior with a strong dependence of the electrical dopant activation and the Hall mobility on Ts. By post-treatment a maximum P donor activation level of 22% could be obtained. The variation in the post-treatment procedure (RTA+PH and PH+RTA) for the films deposited at high Ts showed that PH results only in minor changes in the film properties. The different influence of RTA and PH is discussed in terms of the different defect structure of the films. These investigations reveal that high Ts and after-treatment by RTA are the main preconditions for optimal electrical film properties.

  18. Mechanical Characterization of CrN/CrAlN Multilayer Coatings Deposited by Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Kaouther, Khlifi; Hafedh, Dhiflaoui; Lassaad, Zoghlami; Ahmed, Ben Cheikh Larbi

    2015-10-01

    Chromium-based coatings are deposited on a 100Cr6 (AISI 52100) substrate by a physical vapor deposition magnetron sputtering system. The coatings have different structures, such as a CrN monolayer and CrAlN multilayer. The structural and morphological compositions of the coatings were evaluated using glow discharge optical emission spectroscopy, atomic force microscopy, and cross-sectional scanning electron microscopy. Nano-indentation tests were performed to investigate the mechanical properties. Domes and craters are shown to be uniformly distributed over the entire surfaces of the two coatings. Additionally, the CrN/CrAlN multilayer coating exhibits a rough surface, attractive mechanical properties, a high compressive stress, and a high plastic and elastic deformation resistance. The improvement of the mechanical properties of the CrN/CrAlN coating is mainly attributed to a reduction in the crystallite size. We found that this reduction was related to three factors: (1) the compositional change resulting from the substitution of aluminum for chromium, which can produce a decrease in the interatomic distance; (2) the structure of CrN/CrAlN, which was characterized by grain size refinement; and (3) the high number of interfaces, which explains the widely accepted concept of dislocation blocking by the layer interfaces.

  19. Oxygen partial pressure dependent optical properties of glancing angle deposited (GLAD) Ta2O5 films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Haque, S. Maidul; Rao, K. Divakar; Misal, J. S.; Pratap, C.; Sahoo, N. K.

    2016-05-01

    Experiments were carried out on Ta2O5 oxide thin films by asymmetric bipolar pulsed DC magnetron sputtering using a new hybrid combination of conventional (normal incidence) deposition and glancing angle deposition (GLAD) geometries. The films were prepared with varying O2 partial pressure. The ellipsometry characterization reveals a systematic variation in refractive index, which decreased from 2.2 in the normal films to an average 1.78 in the GLAD films. The bandgap of these GLAD films is slightly higher as compared to normal films. Overall transmission of the GLAD films is increased is by ~ 15 % implying a reduction in the refractive index for potential optical filtering device applications. The results were further supported by X-ray reflectivity measurements which show an effective double layer structure in GLAD consisting of layers with different densities of the same Ta2O5 material.

  20. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, M.-C.; Chang, L.-S.; Lin, H. C.

    2008-03-01

    Titanium oxynitride (TiN xO y) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN xO y films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm 2 to 7 W/cm 2. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN xO y films deposited at power densities above 4 W/cm 2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN xO y films reach values as low as 0.98 g/m 2-day-atm and 0.60 cm 3/m 2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al 2O 3 barrier films. Therefore, TiN xO y films are potential candidates to be used as a gas permeation barrier for PET substrate.

  1. Deposition and properties of yttria-stabilized zirconia thin films using reactive direct current magnetron sputtering

    SciTech Connect

    Thiele, E.S.; Wang, L.S.; Mason, T.O.; Barnett, S.A. . Dept. of Materials Science Northwestern Univ., Evanston, IL . Materials Research Center)

    1991-11-01

    Yttria-stabilized zirconia (YSZ) thin films were deposited by reactive magnetron sputter deposition from a composite Zr--Y target in Ar--O{sub 2} mixtures. Hysteresis was observed as a function of oxygen flow rate {ital f}. For a discharge current of 0.4 A and a total pressure {ital P} of 5 mTorr, for example, the target oxidized at {ital f}{gt}2.3 ml/min, with the reverse transition from an oxidized to a metallic target surface occurring at 1.95 ml/min. The deposition rate was 2.7 {mu}m/h in the metallic mode and 0.1 {mu}m/h in the oxide mode. Fully oxidized (Y{sub 2}O{sub 3}){sub 0.1}(ZrO{sub 2}){sub 0.9} was obtained for {ital f}{gt}2.0 ml/min, even in the metallic mode. While films deposited with {ital P}=3--20 mTorr were continuous, for {ital P}{gt}20 mTorr crazing was apparent as expected for a ceramic film in a tensile stress state. For {ital P}{lt}3 mTorr, the films delaminated due to excessive compressive stress. X-ray diffraction and electron microscopy results showed that the films were polycrystalline cubic YSZ with a columnar structure and an average grain diameter of 15 nm. Fully dense films were obtained at a deposition temperature of 350 {degree}C. Temperature-dependent impedance spectroscopy analysis of YSZ films with Ag electrodes showed that the oxygen ion conductivity was as expected for YSZ.

  2. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Shen, Zhigang

    2009-09-01

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  3. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate

  4. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  5. Microstructure and tribological properties of Ti-contained amorphous carbon film deposited by DC magnetron sputtering

    SciTech Connect

    Li, R. L.; Tu, J. P.; Hong, C. F.; Liu, D. G.; Zhou, D. H.; Sun, H. L.

    2009-12-15

    Pure amorphous carbon (a-C) film and that with a small amount of Ti were deposited on high speed steel (W18Cr4V) substrates by means of dc closed field unbalanced magnetron sputtering. The chemical composition and microstructure of the a-C films were performed using x-ray photoelectron spectroscopy, x-ray diffraction, Raman spectra, and transmission electron microscopy. The mechanical and tribological properties were evaluated using a nanoindentor, Rockwell and scratch tests, and a conventional ball-on-disk tribometer, respectively. The pure a-C film showed the high hardness (53 GPa), elastic modulus (289 GPa), but the poor adhesive strength. When adding a small amount of Ti to the a-C film, both the adhesive strength and the tribological properties were improved. The Ti contained a-C film had the low wear rate (1.9x10{sup -17} m{sup 3} N{sup -1} m{sup -1}) and friction coefficient in humid air.

  6. Mechanical and Tribological Behavior of VN and HfN Films Deposited via Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Escobar, C.; Villarreal, M.; Caicedo, J. C.; Esteve, J.; Prieto, P.

    2013-08-01

    HfN and VN thin films were deposited onto silicon and 4140 steel substrates with r.f. reactive magnetron sputtering by using Hf and V metallic targets with 4-inch diameter and 99.9% purity in argon/nitrogen atmosphere, applying a substrate temperature of 250°C and a pressure of 1.2 × 10-3 mbar. In order to evaluate the structural, chemical, morphological, mechanical and tribological properties, we used X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation, pin-on-disc and scratch tests. Film structure determined by XRD showed that FCC (NaCl-type) films are formed in both the cases by δ-HfN and δ-VN phases. Hardness and elastic modulus values obtained for both the films were 21 and 224 GPa for the HfN film and 19 and 205 GPa for the VN film, respectively. Additionally, the films showed low friction coefficient of 0.44 for HfN and 0.62 for VN when these films were evaluated against 100 Cr6 steel, and finally the critical load was found at 41 N for the HfN film and 34 N for the VN film.

  7. Structure, mechanical and tribological properties of HfCx films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shuo, Wang; Kan, Zhang; Tao, An; Chaoquan, Hu; Qingnan, Meng; Yuanzhi, Ma; Mao, Wen; Weitao, Zheng

    2015-02-01

    Hafnium carbide (HfC) films have been deposited on Si (1 0 0) substrates by direct current reactive magnetron sputtering. The microstructure, compressive stress, hardness and tribological behaviors show great dependence on carbon (C) concentration and chemical bonding state. With C content in HfCx films rising, phase transforms from hexagonal-close-packed (HCP) Hf(C) to face-centered-cubic (FCC) HfC, and nanocomposite structure consisting of HfCx nanocrystalline grains encapsulated by amorphous carbon (a-C) matrix forms at moderate C content. The hardness of HfCx films increases significantly from 10.4 GPa (14 at.% C) to 34.4 GPa (58 at.% C) and then keeps dropping with further increasing C content. a-C appears in HfCx films with more than 32 at.% C and it obviously lowers coefficient of friction (COF). The wear resistance can be remarkably worsened by high compressive stress. The film with 76 at.% C exhibits relatively high hardness and low compressive stress, good fracture toughness and self-lubrication transfer layer, showing great combination of the lowest COF of 0.10 and lowest wear rate of 1.10 × 10-6 mm3/Nm.

  8. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering.

    PubMed

    Almeida Alves, C F; Cavaleiro, A; Carvalho, S

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. PMID:26478293

  9. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  10. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    PubMed

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%. PMID:25627862

  11. Highly oriented polycrystalline Cu{sub 2}O film formation using RF magnetron sputtering deposition for solar cells

    SciTech Connect

    Noda, S.; Shima, H.; Akinaga, H.

    2014-02-20

    Room temperature sputtering deposition and re-crystallization of the deposited thin films by rapid thermal annealing have been evaluating in detail as a formation method of Cu{sub 2}O active layer for solar cells, which minimize thermal budget in fabrication processes. Single phase polycrystalline Cu{sub 2}O films were obtained by a magnetron rf sputtering deposition and its crystallinity and electrical characteristics were controlled by the annealing. Hall mobility was improved up to 17 cm{sup 2}V{sup −1}s{sup −1} by the annealing at 600°C for 30s. Since this value was smaller than 47 cm{sup 2}V{sup −1}s{sup −1} of the film deposited under thermal equilibrium state using pulsed laser deposition at 600°C, some contrivances were necessary to compensate the deficiency. It was understood that the sputter-deposited Cu{sub 2}O films on (111)-oriented Pt films were strongly oriented to (111) face also by the self-assembly and the crystallinity was improved by the annealing preserving its orientation. The sputter-deposited film quality was expected to become equivalent to the pulsed laser deposition film from the results of X-ray diffractometry and photoluminescence.

  12. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K.

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  13. Characteristics of Al doped zinc oxide (ZAO) thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kobayakawa, Satoshi; Tanaka, Yoshikazu; Ide-Ektessabi, Ari

    2006-08-01

    ZAO and ITO thin films were prepared by RF magnetron sputtering. In this study, three of the sputtering parameters, that is, substrate temperature, oxygen flow rate and RF discharge power were varied separately to fabricate samples. The range of variation of substrate temperature was from room temperature to 623 K. The relative concentration of O2 in the ambient gas in the chamber was 0% or 25%. The sputtering rate was changed by controlling the discharge power. The minimum surface resistivity of ZAO was 2.53 × 102 Ω/cm2 for samples sputtered at a substrate temperature of 373 K and that of ITO was 2.37 × 101 Ω/cm2 sputtered under standard conditions. Visible light transmittances of these samples were 89.9% and 90.2%, respectively. From these results, it is suggested that when sputtered with optimum sputtering parameters, ZAO is a potential material for practical use for transparent conducting electrodes (TCO) for PDPs.

  14. Mechanism of Hydrogenated Microcrystalline Si Film Deposition by Magnetron Sputtering Employing a Si Target and H2/Ar Gas Mixture

    NASA Astrophysics Data System (ADS)

    Fukaya, Kota; Tabata, Akimori; Sasaki, Koichi

    2009-03-01

    The mechanism of hydrogenated microcrystalline silicon (µc-Si:H) film deposition by magnetron sputtering employing a Si target and H2/Ar gas mixture has been investigated by measuring Si and H atom densities in the gas phase by laser-induced fluorescence spectroscopy. The crystalline volume fraction of the film correlated positively with H atom density. The variation in Si atom density indicated the increase in sputtering yield from the Si target in the H2/Ar discharge. The surface of the Si target immersed in the H2/Ar discharge was hydrogenated. Therefore, it is reasonable to expect the production of SiHx molecules (typically SiH4) from the hydrogenated Si target via reactive ion etching. Since SiHx molecules produced from the target may function as a deposition precursor, the mechanism of µc-Si:H film deposition is considered to be similar to that of plasma-enhanced chemical vapor deposition (PECVD) employing a SiH4/H2 gas mixture. The advantage of magnetron sputtering deposition over PECVD is the production of SiHx molecules without using toxic, explosive SiH4.

  15. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  16. Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering

    SciTech Connect

    Alfiadi, H. Aji, A. S. Darma, Y.

    2014-02-24

    Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX, XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.

  17. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D.; Crăciun, D.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Moura, C.; Cunha, L.

    2015-12-01

    Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N2/O2 ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of -50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N2 + O2). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N2 + O2) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the lower the density. Firstly, a dominant β-Ta structure is observed, for low P(N2 + O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2 + O2); thirdly, the films are amorphous for the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOy films are explained, with detail, in the text.

  18. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  19. Deposition of aluminum-doped zinc oxide thin films for optical applications using rf and dc magnetron sputter deposition

    SciTech Connect

    Sivakumar, Kousik; Rossnagel, S. M.

    2010-07-15

    Aluminum-doped zinc oxide films were deposited by dc and rf magnetron sputtering from ZnO(98%)Al{sub 2}O{sub 3}(2%) target at room temperature on silicon and glass substrates under a variety of process conditions with the goal of attaining the highest transmittance and lowest resistivity for photovoltaic applications. The magnetron power and pressure were varied. For many dielectric deposition systems, added oxygen is necessary to achieve the appropriate stoichiometry. The effect of oxygen on film properties was then studied by varying the oxygen partial pressure from 1.5x10{sup -5} to 4.0x10{sup -5} T at a constant Ar pressure, with the result that any added oxygen was deleterious. Films deposited under power, pressure, and low-oxygen conditions were then characterized for electrical and optical properties. Following this, the dc and rf sputtered films were annealed at up to 400 deg. C seconds using rapid thermal annealing (RTA), and the influence of annealing on resistivity, transmittance, band gap, as well as grain growth and stress was studied. The effect of RTA was immediate and quite significant on dc films while the effect on rf films was not as profound. As-deposited rf films had a higher average transmittance (87%) and lower resistivity (5.5x10{sup -4} {Omega} cm) compared to as-deposited dc films (84.2% and 8.9x10{sup -4} {Omega} cm). On the other hand, after RTA at 400 deg. C for 60 s, dc films exhibited better average transmittance (92.3%) and resistivity (2.9x10{sup -4} {Omega} cm) than rf films (90.7% and 4.0x10{sup -4} {Omega} cm). The band gap of dc films increased from 3.55 to 3.80 eV while that of rf films increased from 3.76 to 3.85 eV. Finally, dc and rf films were textured in 0.1% HCl and compared to U-type Asahi glass for resistivity and transmittance.

  20. Structural and optical characterization of high-quality ZnO thin films deposited by reactive RF magnetron sputtering

    SciTech Connect

    Zhang, X.L.; Hui, K.N.; Hui, K.S.; Singh, Jai

    2013-03-15

    Highlights: ► High-quality ZnO thin films were deposited at room temperature. ► Effect of O{sub 2} flow and RF sputtering voltages on properties of ZnO films were studied. ► O{sub 2}/Ar ratios played a key role in controlling optical properties of ZnO films. ► Photoluminescence intensity of the ZnO films strongly depended on O{sub 2}/Ar ratios. ► Crystallite size, stress and strain strongly depended on O{sub 2}/Ar ratios. - Abstract: ZnO thin films were deposited onto quartz substrates by radio frequency (RF) reactive magnetron sputtering using a Zn target. The structural and optical properties of the ZnO thin films were investigated comprehensively by X-ray diffraction (XRD), ultraviolet–visible and photoluminescence (PL) measurements. The effects of the oxygen content of the total oxygen–argon mixture and sputtering voltage in the sputtering process on the structural and optical properties of the ZnO films were studied systemically. The microstructural parameters, such as the lattice constant, crystallite size, stress and strain, were also calculated and correlated with the structural and optical properties of the ZnO films. In addition, the results showed that the crystalline quality of ZnO thin films improved with increasing O{sub 2}/Ar gas flow ratio from 2:8 to 8:2. XRD and PL spectroscopy revealed 800 V to be the most appropriate sputtering voltage for ZnO thin film growth. High-quality ZnO films with a good crystalline structure, tunable optical band gap as well as high transmittance could be fabricated easily by RF reactive magnetron sputtering, paving the way to obtaining cost-effective ZnO thin films transparent conducting oxides for optoelectronics applications.

  1. Effect of deposition pressure on the properties of magnetron-sputter-deposited molybdenum back contacts for CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Li, Weimin; Yan, Xia; Aberle, Armin G.; Venkataraj, Selvaraj

    2015-08-01

    Molybdenum (Mo) thin films were deposited onto soda-lime glass substrates by DC magnetron sputtering of a Mo target at various chamber pressures ranging from 1.5 × 10-3 to 7.5 × 10-3 mbar. The film properties were analysed with regards to their application as back electrode in copper indium gallium diselenide (CIGS) solar cells. It is observed that the resulting film morphology and microstructure were strongly affected by deposition pressure. Mo films deposited at a low pressure possess a high density and a low sheet resistance. These films also have a compact microstructure and a compressive strain, which lead to poor adhesion. The adhesion can be improved by increasing the chamber pressure, which has negative effects on the sheet resistance, optical reflection and porosity of the films. On the basis of these results, a method has been established to fabricate low-resistivity Mo films on soda-lime glass with very good adhesion for CIGS solar cell applications.

  2. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Malau, Viktor; Ilman, Mochammad Noer; Iswanto, Priyo Tri; Jatisukamto, Gaguk

    2016-03-01

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10-2 torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10-6 mbar, a fluence of 2 x 1017 ions/cm2, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  3. Nanoporous Ti-metal film deposition using radio frequency magnetron sputtering technique for photovoltaic application.

    PubMed

    Sung, Youl-Moon; Paeng, Sung-Hwan; Moon, Byung-Ho; Kwak, Dong-Joo

    2012-02-01

    Nanoporous Ti-metal film electrode was fabricated by radio frequency (rf) magnetron sputtering technique on nanoporous TiO2 layer prepared by sol-gel combustion method and investigated with respect to its photo-anode properties of TCO-less DSCs. The porous Ti layer (approximately 1 microm) with low sheet resistance (approximately 17 Omega/sq.) can collect electrons from the TiO2 layer and allows the ionic diffusion of I(-)/I(3-) through the hole. The porous Ti layer with highly ordered columnar structure prepared by 8 mTorr sputtering shows the good impedance characteristics. The efficiency of prepared TCO-less DSCs sample is about 4.83% (ff: 0.6, Voc: 0.65 V, Jsc: 11.2 mA/cm2). PMID:22629960

  4. Structural and optical characterization of terbium doped ZnGa2O4 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Somasundaram, K.; Girija, K. G.; Sudarsan, V.; Selvin, P. Christopher; Vatsa, R. K.

    2016-05-01

    Tb3+ doped ZnGa2O4 nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb3+ doped ZnGa2O4 nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa2O4 host emission band along with a strong terbium emission and the thin films showed only broad host emission band and there was no terbium ion emission.

  5. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  6. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    SciTech Connect

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony; Konstantinidis, Stephanos

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  7. Characterization of ZnO:SnO2 (50:50) thin film deposited by RF magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Cynthia, S. R.; Sivakumar, R.; Sanjeeviraja, C.; Ponmudi, S.

    2016-05-01

    Zinc oxide (ZnO) and tin oxide (SnO2) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO2 (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  8. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    SciTech Connect

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  9. Fiber textures of titanium nitride and hafnium nitride thin films deposited by off-normal incidence magnetron sputtering

    SciTech Connect

    Deniz, D.; Harper, J. M. E.

    2008-09-15

    We studied the development of crystallographic texture in titanium nitride (TiN) and hafnium nitride (HfN) films deposited by off-normal incidence reactive magnetron sputtering at room temperature. Texture measurements were performed by x-ray pole figure analysis of the (111) and (200) diffraction peaks. For a deposition angle of 40 deg. from substrate normal, we obtained TiN biaxial textures for a range of deposition conditions using radio frequency (rf) sputtering. Typically, we find that the <111> orientation is close to the substrate normal and the <100> orientation is close to the direction of the deposition source, showing substantial in-plane alignment. We also introduced a 150 eV ion beam at 55 deg. with respect to substrate normal during rf sputtering of TiN. Ion beam enhancement caused TiN to align its out-of-plane texture along <100> orientation. In this case, (200) planes are slightly tilted with respect to the substrate normal away from the ion beam source, and (111) planes are tilted 50 deg. toward the ion beam source. For comparison, we found that HfN deposited at 40 deg. without ion bombardment has a strong <100> orientation parallel to the substrate normal. These results are consistent with momentum transfer among adatoms and ions followed by an increase in surface diffusion of the adatoms on (200) surfaces. The type of fiber texture results from a competition among texture mechanisms related to surface mobilities of adatoms, geometrical, and directional effects.

  10. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Oezer, D.; Sanjines, R.; Ramirez, G.; Rodil, S. E.

    2012-12-01

    The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and

  11. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oezer, D.; Ramírez, G.; Rodil, S. E.; Sanjinés, R.

    2012-12-01

    The electrical and optical properties of TaxSiyNz thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-TaxSiyNz thin films were prepared: sub-stoichiometric TaxSiyN0.44, nearly stoichiometric TaxSiyN0.5, and over-stoichiometric TaxSiyN0.56. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the TaxSiyNz films due to variations in the stoichiometry of the fcc-TaNz system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-TaxSiyNz films can exhibit room temperature resistivity values ranging from 102 μΩ cm to about 6 × 104 μΩ cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the TaxSiyNz thin films provides a pertinent and consistent description of the evolution of the Ta-Si-N system from a solid solution to a nanocomposite material due to the addition of Si atoms.

  12. Influences of working pressure on properties for TiO2 films deposited by DC pulse magnetron sputtering.

    PubMed

    Zhang, Can; Ding, Wanyu; Wang, Hualin; Chai, Weiping; Ju, Dongying

    2009-01-01

    TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system. The crystalline structures, morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and ultraviolet spectrophotometer, respectively. The results indicated that working pressure was the key deposition parameter influencing the TiO2 film phase composition at room temperature, which directly affected its photocatalytic activity. With increasing working pressure, the target self-bias decreases monotonously. Therefore, low temperature TiO2 phase (anatase) could be deposited with high working pressure. The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution, which the degradation rate reached the maximum (35%) after irradiation by ultraviolet light for 1 h. PMID:19803076

  13. Measurement Of Hydrogen Capacities And Stability In Thin Films Of AlH Deposited By Magnetron Sputtering

    SciTech Connect

    Dissanayake, A.; AlFaify, S.; Garratt, E.; Nandasiri, M. I.; Taibu, R.; Tecos, G.; Kayani, A.; Hamdan, N. M.

    2011-06-01

    Thin, hydrogenated aluminum hydride films were deposited on silicon substrates using unbalanced magnetron (UBM) sputtering of a high purity aluminum target under electrically grounded conditions. Argon was used as sputtering gas and hydrogenation was carried out by diluting the growth plasma with hydrogen. The effect of hydrogen partial pressure on the final concentration of trapped elements including hydrogen has been studied using ion beam analysis (IBA) techniques. Moreover, in-situ thermal stability of trapped hydrogen in the film was carried out using Rutherford Backscattering Spectrometry (RBS), Non-Rutherford Backscattering Spectrometry (NRBS) and Elastic Recoil Detection Analysis (ERDA). Microstructure of the film was investigated by SEM analysis. Hydrogen content in the thin films was found decreasing as the films were heated above 110 deg. C in vacuum.

  14. Effects of the duty ratio on the niobium oxide film deposited by pulsed-DC magnetron sputtering methods.

    PubMed

    Eom, Ji Mi; Oh, Hyun Gon; Cho, Il Hwan; Kwon, Sang Jik; Cho, Eou Sik

    2013-11-01

    Niobium oxide (Nb2O5) films were deposited on p-type Si wafers and sodalime glasses at a room temperature using in-line pulsed-DC magnetron sputtering system with various duty ratios. The different duty ratio was obtained by varying the reverse voltage time of pulsed DC power from 0.5 to 2.0 micros at the fixed frequency of 200 kHz. From the structural and optical characteristics of the sputtered NbOx films, it was possible to obtain more uniform and coherent NbOx films in case of the higher reverse voltage time as a result of the cleaning effect on the Nb2O5 target surface. The electrical characteristics from the metal-insulator-semiconductor (MIS) fabricated with the NbOx films shows the leakage currents are influenced by the reverse voltage time and the Schottky barrier diode characteristics. PMID:24245329

  15. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering.

    PubMed

    Lee, Jang-Hoon; Lee, Seung-Hyu; Yoo, Kwang-Lim; Kim, Nam-Young; Hwangbo, Chang Kwon

    2002-06-01

    We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2[Ti]Ag] TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 ohms/square (where square stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR. PMID:12064381

  16. Dielectric properties of tetragonal tungsten bronze films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bodeux, Romain; Michau, Dominique; Josse, Michaël; Maglione, Mario

    2014-12-01

    Tetragonal tungsten bronze (TTB) films have been synthesised on Pt(111)/TiO2/SiO2/Si substrates from Ba2LnFeNb4O15 ceramics (Ln = La, Nd, Eu) by RF magnetron sputtering. X-ray diffraction measurements evidenced the multi-oriented nature of films with some degrees of preferential orientation along (111). The dependence of the dielectric properties on temperature and frequency has been investigated. The dielectric properties of the films are similar to those of the bulk, i.e., ɛ ˜150 and σ ˜10-6 Ω-1 cm-1 at 1 MHz and room temperature. The films exhibit two dielectric anomalies which are attributed to Maxwell Wagner polarization mechanism and relaxor behaviour. Both anomalies are sensitive to post-annealing under oxygen atmosphere and their activation energies are similar Ea ˜0.30 eV. They are explained in terms of electrically heterogeneous contributions in the films.

  17. C/CrC nanocomposite coating deposited by magnetron sputtering at high ion irradiation conditions

    SciTech Connect

    Zhou, Z.; Rainforth, W. M.; Gass, M. H.; Bleloch, A.; Ehiassarian, A. P.; Hovsepian, P. Eh.

    2011-10-01

    CrC with the fcc NaCl (B1) structure is a metastable phase that can be obtained under the non-equilibrium conditions of high ion irradiation. A nano-composite coating consisting of amorphous carbon embedded in a CrC matrix was prepared via the unbalanced magnetron sputtering of graphite and Cr metal targets in Ar gas with a high ionized flux (ion-to-neutral ratio Ji/Jn = 6). The nanoscale amorphous carbon clusters self-assembled into layers alternated by CrC, giving the composite a multilayer structure. The phase, microstructure, and composition of the coating were characterized using x-ray diffraction, transmission electron microscopy, and aberration corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy. The interpretation of the true coating structure, in particular the carbide type, is discussed.

  18. Mechanical and tribological properties of crystalline aluminum nitride coatings deposited on stainless steel by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Mishra, S. C.; Mishra, P.; Limaye, P. K.; Singh, K.

    2015-11-01

    Aluminum nitride (AlN) coating is a potential candidate for addressing the problems of MHD pressure drop, tritium permeation and liquid metal corrosion of the test blanket module of fusion reactor. In this work, AlN coatings were grown on stainless steel by magnetron sputtering. Grazing incidence X-ray diffraction measurement revealed that formation of mixed phase (wurtzite and rock salt) AlN was favored at low discharge power and substrate negative biasing. However, at sufficiently high discharge power and substrate bias, (100) oriented wurtzite AlN was obtained. Secondary ion mass spectroscopy showed presence of oxygen in the coatings. The highest value of hardness and Young's modulus were 14.1 GPa and 215 GPa, respectively. Scratch test showed adhesive failure at a load of about 20 N. Wear test showed improved wear resistance of the coatings obtained at higher substrate bias.

  19. Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Guojia; Lin, Guoqiang; Sun, Gang; Zhang, Huafang; Wu, Hongchen

    The purpose of this paper is to investigate metal doping effects on micro-structural, mechanical and corrosive behavior of the DLC film. Ti and Zr doped DLC films were prepared on NiTi alloys by reactive magnetron sputtering combined with plasma source ion implantation (PSII) technology used to improve the coherent strength, respectively. The mechanical properties of the doped DLC films were investigated by means of nano-indentation technique, microscratch and frictional wear testing. The potentiodynamic polarization measurement was employed to value the corrosion resistance of DLC with Ti and Zr films in Hank's simulated body fluid. It was found that Ti-doped DLC films embraced higher nano-hardness, somewhat lower coefficient of friction and better corrosion resistance than Zr-doped DLC films.

  20. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima; Tripathi, Shweta; Chakrabarti, P.

    2016-05-01

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application in optoelectronic and photonic devices.

  1. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering

    PubMed Central

    2013-01-01

    The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation. PMID:23799923

  2. Anisotropic TixSn1-xO2 nanostructures prepared by magnetron sputter deposition.

    PubMed

    Chen, Shutian; Li, Zhengcao; Zhang, Zhengjun

    2011-01-01

    Regular arrays of TixSn1-xO2 nanoflakes were fabricated through glancing angle sputter deposition onto self-assembled close-packed arrays of 200-nm-diameter polystyrene spheres. The morphology of nanostructures could be controlled by simply adjusting the sputtering power of the Ti target. The reflectance measurements showed that the melon seed-shaped nanoflakes exhibited optimal properties of antireflection in the entire visible and ultraviolet region. In addition, we determined their anisotropic reflectance in the direction parallel to the surface of nanoflakes and perpendicular to it, arising from the anisotropic morphology. PMID:21711849

  3. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Freudenberg, Norman; Nie, Man; van de Krol, Roel; Ellmer, Klaus

    2016-04-01

    Photoactive bismuth vanadate (BiVO4) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  4. Aluminium nitride piezoelectric thin films reactively deposited in closed field unbalanced magnetron sputtering for elevated temperature 'smart' tribological applications

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood

    "Smart" high temperature piezoelectric aluminum nitride (AlN) thin films were synthesized by reactive magnetron sputtering using DC; pulsed-DC, and deep oscillation modulated pulsed power (DOMPP) systems on variety of substrate materials. Process optimization was performed to obtain highly c-axis texture films with improved piezoelectric response via studying the interplay between process parameters, microstructure and properties. AlN thin films were sputtered with DC and pulsed-DC systems to investigate the effect of various deposition parameters such as reactive gas ratio, working pressure, target power, pulsing frequency, substrate bias, substrate heating and seed layers on the properties and performance of the film device. The c-axis texture, orientation, microstructure, and chemical composition of AlN films were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. Thin films with narrow AlN-(002) rocking curve of 2.5° were obtained with preliminary studies of DOMPP reactive sputtering. In-situ high temperature XRD showed excellent thermal stability and oxidation resistance of AlN films up to 1000 °C. AlN films with optimized processing parameters yielded an inverse piezoelectric coefficient, d33 of 4.9 pm/V close to 90 percent of its theoretical value.

  5. The nanocrystalline structure of TiO2 film deposited by DC magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jindong; Ding, Wanyu; Wang, Hualin; Liu, Shimin; Jiang, Weiwei; Liu, Chaoqian; Wang, Nan; Chai, Weiping

    2014-10-01

    At room temperature, titanium dioxide (TiO2) films were deposited by the direct current pulse magnetron sputtering technique. Varying O2/Ar flow ratio, TiO2 films with different nanocrystalline structures were obtained. The high resolution transmission electron microscopy results show that with O2/Ar = 6/14, the nanocrystalline in rutile phase appears in as-deposited film. Then X-ray diffraction patterns of annealed films revealed that with O2/Ar = 6/14, the higher weight fractions of rutile TiO2 appear in films. The optical emission spectroscopy results show that with O2/Ar < 6/14, O element was mainly existed as O-/O+ ions, instead of excited state of O atoms.

  6. Effect of growth rate on crystallization of HfO2 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dhanunjaya, M.; Manikanthababu, N.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2016-05-01

    Hafnium oxide (HfO2) is the potentially useful dielectric material in both; electronics to replace the conventional SiO2 as gate dielectric and in Optics as anti-reflection coating material. In this present work we have synthesized polycrystalline HfO2 thin films by RF magnetron sputtering deposition technique with varying target to substrate distance. The deposited films were characterized by X-ray Diffraction, Rutherford Backscattering Spectrometry (RBS) and transmission and Reflection (T&R) measurements to study the growth behavior, microstructure and optical properties. XRD measurement shows that the samples having mixed phase of monoclinic, cubic and tetragonal crystal structure. RBS measurements suggest the formation of Inter Layer (IL) in between Substrate and film

  7. Effect of duty cycle on the electrical and optical properties of VOx film deposited by pulsed reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Xu, Xiangdong; Wei, Xiongbang; Jiang, Yadong

    2013-12-01

    Vanadium oxide (VOx) films were deposited onto well cleaned glass substrates by bipolar pulsed reactive magnetron sputtering at room temperature. Dependence of the structure, composition, optical and electrical properties of the films on the pulsed power's duty cycle has been investigated. The results from the X-ray diffraction (XRD) analysis show that there was no remarkable change in the amorphous structure in the films with duty cycle can be observed. But chemical analysis of the surface evaluated with x-ray photoelectron spectroscopy (XPS) indicates that decrease the duty cycle favors to enhance the oxidation of the vanadium. The optical and electrical properties of the films were characterized by spectroscopic ellipsometry and temperature dependent resistivity measurements, respectively. The evolution of the transmittance, optical band gap, optical constants, resistivity and temperature coefficient of resistance (TCR) of the deposited films with duty cycle was analyzed and discussed. In comparison with conventional DC sputtering, under the same discharge atmosphere and power level, these parameters of the VOx films can be modified over a broad range by duty cycle. Therefore adjusting the duty cycle during deposition, which is an effective way to control and optimize the performances of the VOx film for various optoelectronic devices applications.

  8. Visible light-induced photocatalytic properties of WO{sub 3} films deposited by dc reactive magnetron sputtering

    SciTech Connect

    Imai, Masahiro; Kikuchi, Maiko; Oka, Nobuto; Shigesato, Yuzo

    2012-05-15

    The authors examined the photocatalytic activity of WO{sub 3} films (thickness 500-600 nm) deposited on a fused quartz substrate heated at 350-800 deg. C by dc reactive magnetron sputtering using a W metal target under the O{sub 2} gas pressure from 1.0 to 5.0 Pa. Films deposited at 800 deg. C under 5.0 Pa have excellent crystallinity of triclinic, P1(1) structure and a large surface area, as confirmed by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Exposure of acetaldehyde (CH{sub 3}CHO) adsorbed onto the film surface to ultraviolet, visible, or standard fluorescence light induces oxidative photocatalytic decomposition indicated by a decrease in CH{sub 3}CHO concentration and generation of CO{sub 2} gas. For all three types of irradiation, concentration ratio of decreased CH{sub 3}CHO to increased CO{sub 2} is about 1:1, suggesting the possible presence of intermediates. The sputter-deposited WO{sub 3} film can be a good candidate as a visible light-responsive photocatalyst.

  9. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper

    SciTech Connect

    Anders, Andre; Horwat, David; Anders, Andre

    2008-05-10

    The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

  10. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    PubMed

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders. PMID:26836256

  11. The model of calculation the adhesion force and energy for coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tkachenko, E. A.; Postnikov, D. V.; Blesman, A. I.; Polonyankin, D. A.

    2016-02-01

    The paper justifies the usefulness of preliminary ion implantation before forming the protective coating by magnetron sputtering in order to improve its adhesion and hence the coating durability. The important characteristics of coatings include the adhesion force and energy. To select the optimal modes of coatings formation, materials and equipment it is proposed the theoretical method of the adhesion force calculation in binary metallic systems. The adhesion force and energy depend on the elemental distribution in the depth of the coating and on the single bond force as in the substrate and in the coating. In addition the adhesion force is also determined by the coefficient taking into account the reduction of the possible bond number and depending on the surface purity and the structural defects presence. The developed model includes all of the above factors. The elements distribution over the depth of the coating was estimated using a kinetic model of mass transfer by vacancy mechanism. The paper presents the results of the adhesion force calculation for the chromium coating on the surface of A21382 steel.

  12. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    PubMed

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production. PMID:26005904

  13. Influences of annealing temperature on microstructure and properties for TiO2 films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shang, Jie-Ting; Chen, Chih-Ming; Cheng, Ta-Chih; Lee, Ying-Chieh

    2015-12-01

    Titanium dioxide films were deposited at 100 °C of substrate temperature with a DC magnetron sputtering system. The crystalline structures, morphological features, and photocatalytic activity of the TiO2 films were systematically studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and ultraviolet spectrophotometry. To obtain the crystalline structure of TiO2 film at a low annealing temperature, high-level DC power (600 W) was applied. The effect of the annealing treatments on the microstructure of the TiO2 films was investigated. The results indicated that the annealing process at 200 °C clearly caused the formation of a nanocrystalline anatase phase that directly affected photocatalytic activity. The dye removal efficiency of the nanostructured anatase attained 53 and 31% for UV and visible light radiation, respectively.

  14. Transparent conductive Nb-doped TiO2 films deposited by RF magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Wan, Guangmiao; Wang, Shenwei; Zhang, Xinwu; Huang, Miaoling; Zhang, Yanwei; Duan, Wubiao; Yi, Lixin

    2015-12-01

    In this work, Nb-doped TiO2 films were deposited on glass substrates utilizing RF magnetron co-sputtering with a TiO2 target and a Nb target. In order to study the effect of Nb concentration, four groups of films with different Nb concentration were prepared and annealed in N2 at 500 °C. Crystal structure, surface morphology, electrical and optical property of the films were characterized. The lowest resistivity was measured to be 1.2 × 10-3 Ω cm at the Nb concentration of 7.0 at.%. Meanwhile, Hall mobility and carrier density were 2.0 cm2/Vs and 2.6 × 1021 cm-3, respectively.

  15. Bimodal substrate biasing to control γ-Al{sub 2}O{sub 3} deposition during reactive magnetron sputtering

    SciTech Connect

    Prenzel, Marina; Kortmann, Annika; Stein, Adrian; Keudell, Achim von; Nahif, Farwah; Schneider, Jochen M.

    2013-09-21

    Al{sub 2}O{sub 3} thin films have been deposited at substrate temperatures between 500 °C and 600 °C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.8 dpa for a substrate temperature of 500 °C. This threshold shifts to 0.6 dpa for films grown at 550 °C.

  16. Tribological behavior of Ti-Al-Si-C-N hard coatings deposited by hybrid arc-enhanced magnetron sputtering

    SciTech Connect

    Wu Guizhi; Ma Shengli; Xu Kewei; Chu, Paul K

    2012-03-15

    Ti-Al-Si-C-N hard coatings are deposited on high speed steel by hybrid arc-enhanced magnetron sputtering, and the hardness, adhesion, and tribological behavior are studied. On account of the nanocomposite structure, the coatings possess hardness of more than 30 GPa. Failure of the coating during the scratch test is due to the buckling and wedge spallation failure mechanism. Compared to Ti-Al-Si-N, the presence of C in the Ti-Al-Si-C-N coatings leads to reduced friction coefficient and wear rate, indicating effective lubrication rendered by amorphous C. According to the wear tracks examined by scanning electron microscopy, the wear mechanism can be explained by plowing abrasion.

  17. Epitaxial growth and orientation of AlN thin films on Si(001) substrates deposited by reactive magnetron sputtering

    SciTech Connect

    Valcheva, E.; Birch, J.; Persson, P. O. A ring .; Tungasmita, S.; Hultman, L.

    2006-12-15

    Epitaxial domain formation and textured growth in AlN thin films deposited on Si(001) substrates by reactive magnetron sputtering was studied by transmission electron microscopy and x-ray diffraction. The films have a wurtzite type structure with a crystallographic orientation relationship to the silicon substrate of AlN(0001)(parallel sign)Si(001). The AlN film is observed to nucleate randomly on the Si surface and grows three dimensionally, forming columnar domains. The in-plane orientation reveals four domains with their a axes rotated by 15 deg. with respect to each other: AlN<1120>(parallel sign)Si[110], AlN<0110>(parallel sign)Si[110], AlN<1120>(parallel sign)Si[100], and AlN<0110>(parallel sign)Si[100] An explanation of the growth mode based on the large lattice mismatch and the topology of the substrate surface is proposed.

  18. Fabrication and Electrical Characterization of the Si/ZnO/ZnO:Al Structure Deposited by RF-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Alaya, A.; Djessas, K.; El Mir, L.; Khirouni, K.

    2016-06-01

    The electrical transport properties of the structures of Si(p)/ZnO(i)/ZnO: Al(3%) and Si(p)/PS/ZnO(i)/ZnO: Al(3%) deposited by radio-frequency-magnetron sputtering were investigated and compared by using current-voltage and impedance spectroscopy measurements in a wide temperature range of 80-300 K. Aluminum-doped ZnO is considered to be one of the most important transparent conducting oxide materials due to its high conductivity, good transparency and low cost. From the current-voltage-temperature (I-V-T) characteristics, it was found that both structures had a good rectifying behavior. This behavior decreases according to the porous silicon layer. The variation of the conductance with frequency indicates the semiconducting behavior and superposition of different conduction mechanisms. The insertion of the porous silicon layer results in a decrease of conductivity, which is attributed to reduced conductivity of defect-rich porous silicon.

  19. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  20. Evaluation of structure and material properties of RF magnetron sputter-deposited yttria-stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Piascik, Jeffrey Robert

    Over the past several decades, research has focused on utilizing ceramic materials in new technological applications. Their uses have been primarily in applications that involve high temperatures or corrosive environments. Unfortunately, ceramic materials have been limited especially since they can be brittle, failing in a sudden and catastrophic manner. A strong emphasis on understanding mechanical properties of ceramics and ways to improving their strength and toughness, has led to many new technologies. The present work is part of a larger research initiative that is aimed at using RF magnetron sputter deposition of yttria-stabilized zirconia to improve the fracture toughness of brittle substrates (more specifically dental ceramics). Partially-stabilized zirconia (PSZ) has been studied extensively, due to its high temperature stability and stress-induced tetragonal to monoclinic (T⇒M) martensitic phase transformation. RF magnetron sputtering was chosen as the deposition method because of its versatility, especially the ability to deposit oxides at low temperatures. Initial investigations focused on the development of process-structure-properties of YSZ sputtered deposited thin films. The YSZ thin films were deposited over a range of temperatures (22--300°C), pressures (5--25 mTorr), and gas compositions (Ar:O2 ratio). Initial studies characterized a select set of properties in relation to deposition parameters including: refractive index, structure, and film stress. X-ray Diffraction (XRD) showed that the films are comprised of mainly monoclinic and tetragonal crystal phases. The film refractive index determined by prism coupling, depends strongly on deposition conditions and ranged from 1.959 to 2.223. Wafer bow measurements indicate that the sputtered YSZ films can have initial stress ranging from 86 MPa tensile to 192 MPa compressive, depending on the deposition parameters. Exposure to ambient conditions (25°C, 75% relative humidity) led to large increase

  1. Physics of Plasma-Based Ion Implantation&Deposition (PBIID)and High Power Impulse Magnetron Sputtering (HIPIMS): A Comparison

    SciTech Connect

    Anders, Andre

    2007-08-28

    The emerging technology of High Power Impulse MagnetronSputtering (HIPIMS) has much in common with the more establishedtechnology of Plasma Based Ion Implantation&Deposition (PBIID):both use pulsed plasmas, the pulsed sheath periodically evolves andcollapses, the plasma-sheath system interacts with the pulse-drivingpower supply, the plasma parameters are affected by the power dissipated,surface atoms are sputtered and secondary electrons are emitted, etc.Therefore, both fields of science and technology could learn from eachother, which has not been fully explored. On the other hand, there aresignificant differences, too. Most importantly, the operation of HIPIMSheavilyrelies on the presence of a strong magnetic field, confiningelectrons and causing their ExB drift, which is closed for typicalmagnetron configurations. Second, at the high peak power levels used forHIPIMS, 1 kW/cm2 or greater averaged over the target area, the sputteredmaterial greatly affects plasma generation. For PBIID, in contrast,plasma generation and ion processing of the surface (ion implantation,etching, and deposition) are considered rela-tively independentprocesses. Third, secondary electron emission is generally considered anuisance for PBIID, especially at high voltages, whereas it is a criticalingredient to the operation of HIPIMS. Fourth, the voltages in PBIID areoften higher than in HIPIMS. For the first three reasons listed above,modelling of PBIID seems to be easier and could give some guidance forfuture HIPIMS models, which, clearly, will be more involved.

  2. Analysis of DC magnetron sputtered beryllium films

    SciTech Connect

    Price, C.W.; Hsieh, E.J.; Lindsey, E.F.; Pierce, E.L.; Norberg, J.C.

    1988-10-01

    We are evaluating techniques that alter the columnar grain structure in sputtered beryllium films on fused silica substrates. The films are formed by DC magnetron sputtering, and the columnar structure, which is characteristic of this and most other deposition techniques, is highly detrimental to the tensile strength of the films. Attempts to modify the columnar structure by using RF-biased sputtering combined with nitrogen pulsing have been successful, and this paper describes the analyses of these films. Sputtered beryllium films are quite brittle, and the columnar structure in particular tends to form a distinct intergranular fracture; therefore, the grain structure was analyzed in fractured specimens using the high-resolution capability of a scanning electron microscope (SEM) equipped with a field emission gun (FESEM). Ion microanalysis using secondary-ion mass spectroscopy (SIMS) was conducted on some specimens to determining relative contamination levels introduced by nitrogen pulsing. The capability to perform quantitative SIMS analyses using ion-implanted specimens as standards also is being developed. This work confirms that the structure of DC magnetron sputtered beryllium can be improved significantly with combined nitrogen pulsing and RF-biased sputtering. 8 refs.

  3. The effect of deposition parameters on the phase of TiO2 films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lim, Ji Chon; Song, Kyu Jeong; Park, Chan

    2014-12-01

    TiO2 thin films were deposited on Si substrates by using conventional radio-frequency (RF) magnetron sputtering with either metallic Ti or TiO2 targets, and the effect of the deposition parameters (substrate temperature ( T s ), RF sputtering power, gas flow ratio of O2/(Ar+O2) and deposition time) on the phase of the film was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to obtain information on the phase of the films and on the surface image/thickness of films, respectively. TiO2 films deposited at a T s higher than 300 °C by using a metallic Ti target showed the dominant presence of the rutile phase. For films grown at a constant T s of 300 °C with different gas flow ratios of O2/(Ar+O2), the amount of the rutile phase gradually decreased as the oxygen gas flow was decreased. The anatase phase, however, was formed when the O2/(Ar+O2) was 0.2. On the other hand, for TiO2 films deposited at T s 's between 50 °C and 200 °C with an O2/(Ar+O2) of 0.1 by using a TiO2 target, both the anatase and the rutile phases gradually decreased as the T s was increased. For TiO2 films deposited with various gas flow ratios of O2/(Ar+O2) between 0 and 0.4 at a constant T s of 200 °C by using a TiO2 target, the anatase phase gradually decreased, but the rutile phase gradually increased, as the gas flow ratio was increased.

  4. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  5. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-04-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  6. Quantitative analysis of sputter processes in a small magnetron system

    SciTech Connect

    Knittel, Ivo; Gothe, Marc; Hartmann, Uwe

    2005-11-15

    Sputter deposition of titanium in argon from a small circular magnetron is characterized. The dependence of the deposition rate on pressure, power, and target-substrate distance has been measured. A framework for the application of the analytic approach by Keller and Simmons of ballistic and diffusive transport to simple three-dimensional sputter geometries is developed and applied. The sputter yield and the pressure-distance product are determined from the data set as the only fit parameters of the model. For the entire range of operation of the magnetron, the sputter process can be described in terms of the relatively simple approach.

  7. Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A.

    2012-07-01

    A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Target-substrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.

  8. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Bethencourt, M.; Olaya, J. J.

    2015-02-01

    ZrOxNy/ZrO2 thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO2 was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrOxNy rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr2ON2 crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride-containing media.

  9. Thermally stimulated currents in amorphous barium titanate thin films deposited by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    El Kamel, F.; Gonon, P.; Jomni, F.; Yangui, B.

    2006-09-01

    Thermally stimulated currents (TSCs) are measured in amorphous barium titanate thin films deposited by the rf sputtering technique. The TSC global curve is composed of three overlapping peaks in the 0-200°C temperature range. At 50°C, a first TSC peak is observed that can be related to a shallow-trap level. A second peak due to a dipolar polarization process is observed at 95°C. Finally, a third peak appears at 140°C that is ascribed to the oxygen vacancy motion and their accumulation at electrodes. The different peaks constituting the global TSC spectrum are separately studied by the fractional polarization technique in order to analyze their fine structures and to determine their activation energies.

  10. Morphology and structure evolution of tin-doped indium oxide thin films deposited by radio-frequency magnetron sputtering: The role of the sputtering atmosphere

    SciTech Connect

    Nie, Man Mete, Tayfun; Ellmer, Klaus

    2014-04-21

    The microstructure and morphology evolution of tin-doped indium oxide (ITO) thin films deposited by radio-frequency magnetron sputtering in different sputtering atmospheres were investigated by X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The surface roughness w increases with increasing film thickness d{sub f}, and exhibits a power law behavior w ∼ d{sub f}{sup β}. The roughness decreases with increasing O{sub 2} flow, while it increases with increasing H{sub 2} flow. The growth exponent β is found to be 0.35, 0.75, and 0.98 for depositions in Ar/10%O{sub 2}, pure Ar, and Ar/10%H{sub 2} atmospheres, respectively. The correlation length ξ increases with film thickness also with a power law according to ξ ∼ d{sub f}{sup z} with exponents z = 0.36, 0.44, and 0.57 for these three different gas atmospheres, respectively. A combination of local and non-local growth modes in 2 + 1 dimensions is discussed for the ITO growth in this work.

  11. Magnetron sputtered boron films and Ti/B multilayer structures

    SciTech Connect

    Makowiecki, D.M.; Jankowski, A.F.

    1991-03-11

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor 5 deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity 10 from grazing to normal incidence.

  12. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  13. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  14. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  15. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  16. Effect of Duty Cycle on Characteristics of CrNx Thin Films Deposited by Pulsed Direct Current Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Lung; Wu, Bo-Yi; Chen, Pin-Hung; Chen, Wei-Chih; Ho, Chun-Ta; Wu, Wan-Yu

    2013-11-01

    CrNx thin films have been deposited on silicon wafer, 304 stainless steel, and tungsten carbide substrates using pulsed DC reactive magnetron sputtering. A 10 kHz unipolar mode and a N2/Ar ratio of 17.5% were used. During the deposition, the substrate was not biased and not heated during the entire deposition time of 30 min. The microstructure, crystalline phase, and mechanical properties of the obtained CrNx thin films were examined to investigate the effect of the duty cycle. The results show that the maximum current and power density increase with decreasing duty cycle from 100% (DC) to 5%. Although the thickness of the CrNx thin films decreases with decreasing duty cycle, the ratio of the thickness to the pulse on-time shows a maximum of 273.3 nm/min at the lowest duty cycle of 5%. The obtained CrNx thin films show a mixture of the Cr2N and CrN phases. Moreover, the Cr-N bonding state and the percentages of CrN and Cr2N vary with the duty cycle. The effects of the duty cycle on the hardness, coefficient of friction, and corrosion behavior of the CrNx thin films are also investigated in this study.

  17. Zr-ZrO2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Chu; Hadavi, M. S.; Lee, K.-D.; Shen, Y. G.

    2003-03-01

    High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80°C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80°C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80°C were achieved.

  18. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    SciTech Connect

    Sánchez-Hernández, Z.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Onofre-Bustamante, E.; Andraca Adame, J.; Dorantes-Rosales, H.

    2014-05-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.

  19. Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering

    SciTech Connect

    Marwoto, Putut; Made, D. P. Ngurah; Sugianto; Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya; Othaman, Zulkafli

    2013-09-03

    Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

  20. Spatial distribution of electrical properties for Al-doped ZnO films deposited by dc magnetron sputtering using various inert gases

    SciTech Connect

    Sato, Yasushi; Ishihara, Keita; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Spatial distribution of electrical properties of Al-doped ZnO (AZO) films deposited by magnetron sputtering was investigated. To adjust the intensity of bombardment by high-energy particles, the AZO films were deposited using Ar, Kr, or Xe gas with varying plasma impedance. The spatial distribution of the electrical properties clearly depends on the sputtering gas. In the case of using Kr or Xe, the resistivity of the films in front of the target center and erosion areas was significantly enhanced, in contrast with Ar. This was attributed to an enhancement in bombardment damage due to the increased sputtering voltages required for Kr or Xe discharges. The increase in plasma impedance was due to the smaller coefficients for secondary-electron emission of the target surface by Kr or Xe impingements, which leads to the larger sputtering voltage.

  1. Influence of working gas pressure on structure and properties of WO3 films reactively deposited by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Tanabe, J.; Yamada, N.; Nakabayashi, H.

    2003-07-01

    Tungsten trioxide (WO3) films with thickness of 0.9-6.7 μm have been deposited on glass-slide substrates, using rf magnetron sputtering in an atmosphere of mixture 80% Ar and 20% O2. The as-deposited films had a dark metallic color, like the W target, at a working gas pressure PW of 1 mTorr. Yellow films resulted at a PW of 3 mTorr. With a further increase of PW, the film color changed to pale yellow. From the x-ray diffraction patterns, the as-deposited films were polycrystalline crystallizing in the monoclinic crystal structure with high c-axis orientation perpendicular to the film plane. The optical transmittance of the films deposited at a PW of 1 mTorr is nearly zero. However, the transmittance of the films deposited at other PW are larger than 70% in the wavelength, λ, ranging from 500 to 900 nm. With decreasing λ to 400 nm, the transmittance decreases steeply to zero. The λ at this absorption edge is longer than that in TiO2 and comes in the visible region. The surface morphology of the films depends on PW. This different morphology may be attributed to the effect of the substrate heating by plasma emission because of the high plasma density at higher PW. The morphology of the films may also depend on the crystallinity of the WO3 films. As PW increased, the surfaces of the films became rougher but the grain sizes of the films did not always become larger. The WO3 films deposited in this study may be used for the underlayer of TiO2 photocatalyst.

  2. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  3. Deposition and Characterization of Tungsten Carbide Thin Films by DC Magnetron Sputtering for Wear-Resistant Applications

    NASA Astrophysics Data System (ADS)

    Tavsanoglu, Tolga; Begum, Ceren; Alkan, Murat; Yucel, Onuralp

    2013-04-01

    In this study, WC (tungsten carbide) thin films were deposited on high-speed steel (AISI M2) and Si (100) substrates by direct current magnetron sputtering of a tungsten carbide target having 7% cobalt as binding material. The properties of the coatings have been modified by the change in the bias voltages from grounded to 200 V. All the coatings were deposited at 250°C constant temperature. The microstructure and the thickness of the films were determined from cross-sectional field-emission gun scanning electron microscope micrographs. The chemical composition of the film was determined by electron probe micro analyzer. The x-ray diffractometer has been used for the phase analyses. Nanoindentation and wear tests were used to determine the mechanical and tribological properties of the films, respectively. It is found that the increase in the bias voltages increased drastically the hardness and elastic modulus, decreased the friction coefficient values and increased the wear resistance of tungsten carbide thin films by a phase transformation from metallic W (tungsten) to a nonstoichiometric WC1- x (tungsten carbide) phase.

  4. Effects of pressure and deposition time on the characteristics of In2Se3 films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Li, Shasha; Ou, Yufeng; Ji, Yaxin; Yu, Zhou; Liu, Lian; Yan, Chuanpeng; Zhang, Yong; Zhao, Yong

    2014-11-01

    Crystalline In2Se3 films were fabricated by magnetron sputtering from a sintered In2Se3-compound target and the effects of the deposition parameters, including the working pressure and deposition time, on the phase composition, structure, morphology, and optical properties were clarified. Single-phase κ-In2Se3 was prepared at 4.0 Pa, but γ-In2Se3 was recognized when the working pressure was lower than 4.0 Pa. The optical transmittance of the films decreased to 45% and the optical band gap varied from 2.9 to 2.0 eV with increasing film thickness from 80 to 967 nm. Metal-semiconductor-metal (MSM) photodetectors based on γ-In2Se3 thin films with various thicknesses were also fabricated. The result of photosensitivity research on such MSM photodetectors suggests that it may be impossible to fabricate wide-absorption-range MSM devices by just using a single material ( γ-In2Se3) because of spatial potential fluctuations in the layers. [Figure not available: see fulltext.

  5. ZnO:Al thin films deposited by RF-magnetron sputtering with tunable and uniform properties.

    PubMed

    Miorin, E; Montagner, F; Battiston, S; Fiameni, S; Fabrizio, M

    2011-03-01

    Nanostructured, high quality and large area Al-doped ZnO (ZnO:Al) thin films were obtained by radiofrequency (RF) magnetron sputtering. The sample rotation during deposition has resulted in excellent spatial distribution of thickness and electro-optical properties compared to that obtained under static conditions. ZnO:Al thin films are employed in a large number of devices, including thin film solar cells, where the uniformity of the properties is a key factor for a possible up-scaling of the research results to industrially relevant substrate sizes. A chemical post etching treatment was employed achieving tunable surface nanotextures to generate light scattering at the desired wavelength for improved cell efficiency. Since the film resistivity is only slightly increased by the etching, this post-deposition step allows separating the optimization of electro-optical properties from light scattering behavior. The thin films were characterized by FE-SEM, XRD, UV-VIS spectroscopy, four probe and van der Paw techniques. PMID:21449368

  6. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  7. Violet and blue-green luminescence from Ti-doped ZnO films deposited by RF reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Haixia; Ding, Jijun; Ma, Shuyi

    2011-02-01

    Pure and Ti-doped zinc oxide (TZO) films are deposited using radio frequency (RF) reactive magnetron sputtering at different RF powers. Micro-structural and optical properties in doped ZnO films are systematically investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electronic microscopy (SEM), and a fluorescence spectrophotometer. The results indicate that ZnO films show stronger preferred orientation toward the c-axis and smoother surface roughness after Ti doping. As for TZO films, the full width at half maxima (FWHM) of (002) diffraction peaks decreased first and then increased, reaching a minimum of about 0.92° at 150 W, while the residual compressive stress of the TZO film prepared at 150 W became the largest. The photoluminescent (PL) spectra measured at room temperature reveal a violet, a blue and two green emissions. Intense violet and blue-green luminescence is obtained for the sample deposited at higher RF power. The origin of these emissions is discussed.

  8. In situ deposition of PbTiO3 thin films by direct current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Iljinas, Aleksandras; Marcinauskas, Liutauras; Stankus, Vytautas

    2016-09-01

    The lead titanate thin films were deposited using in situ layer-by-layer reactive magnetron sputtering. The synthesis of films was performed on platinized silicon (Pt/Ti/SiO2/Si) substrates at 450-600 °C temperatures using Ti2O seed layer. The influence of the substrate temperature on the surface morphology, phase composition, and electrical properties of PbTiO3 films were investigated. Experimental results demonstrated that the deposition at higher substrate temperatures resulted in the formation of films with the lower surface roughness values. The increase of the substrate temperature has no effect on the tetragonality value of the films. The preferential orientation in the films was changed and the crystallites size slightly increased with the increased substrate temperature from 450 °C to 550 °C. Hysteresis measurements show that the films exhibit ferroelectric properties with a maximum coercive field of Ec = 150 kV/cm and of Pr = 60 μC/cm2. Coercive field dependence on the frequency measurements indicated that the creep regime of domain wall motions dominated till 1 kHz of frequency.

  9. Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    de Jong, M.; Kesteloo, W.; van der Kolk, E.

    2015-08-01

    Luminescent thin films were deposited using magnetron sputtering of a NaCl single crystal and Tm-metal. By using a combinatorial approach, a single film with a thickness ranging from 3.1 μm to 6.9 μm and a Tm to Na ratio varying from 0.05 to 0.26 was obtained. XRD shows the formation of the simple cubic NaCl structure and SEM images display a mix of 0.50-0.75 μm and 2-3 μm cubic and needle-like structures when the substrate is not rotating during deposition. NIR transmission spectra reveal narrow absorption lines at 1134 nm and 1218 nm caused by 4f-4f absorption of divalent and trivalent Tm, respectively. Photoluminescence excitation and UV-VIS transmission spectra show broad bands between 275 nm and 700 nm, caused by the Tm2+ 4f13 → 4f125d1 transitions. Excitation into these bands results in 2F5/2 → 2F7/2 line emission by Tm2+ at 1134 nm. The broad absorption range covering the entire UV and VIS part of the solar spectrum and the absence of self-absorption of the sharp emission line makes NaCl:Tm2+ a promising material for luminescent solar concentrators as thin films on glass provided light scattering can be minimised.

  10. Effects of argon pressure on the properties of ZnO:Ga thin films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Marwoto, Putut; Fatiatun, Sulhadi, Sugianto, Aryanto, Didik

    2016-03-01

    Gallium (Ga)-doped zinc oxide (ZnO:Ga) thin films were deposited on corning glass substrates by homemade DC magnetron sputtering. Effects of argon gas pressure on the structural and optical properties of ZnO:Ga thin films were investigated by XRD, SEM and UV-Vis spectroscopy. The argon gas pressure was adjusted at 450, 500 and 550 mtorr. All the films exhibit a strong (002) peak and a weak (004) peaks. The XRD pattern demonstrated that crystallinity of the film improved with increasing of the argon pressure. ZnO:Ga thin films deposited have polycrystalline structure. It was shown that the argon pressure has a great influence on ZnO:Ga film surface structures. The grain size of the films was increased with the increases of argon pressure. The grains shape of the film change from an equiaxed rough grain to a longish grain with the argon pressure. The average of transmittance of the films is about 80% in the visible range. It is shown that the argon pressure has no effect significantly on optical bandgap of ZnO:Ga, but in general it can be explained that increasing of the argon pressure can reduce the bandgap. The optical bandgap of ZnO:Ga thin films in the range of 3.25 - 3.3 eV.

  11. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  12. Current-Voltage Characteristics and Deposition of AlTiN Thin Films by High Power Impulse Magnetron Sputtering Process

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Yu; Su, Amei; Liu, Yawei; Yeh, Chi-Ming; Chen, Wei-Chih; Chang, Chi-Lung

    2015-09-01

    In this study, AlTiN thin films were deposited using a high power impulse magnetron sputtering (HiPIMS) process under a unipolar mode. The AlTi target had a composition of 70 at% Al and 30 at% Ti. Nitrogen was used as the reactive gas to deposite AlTiN thin films along with Ar gas at a working pressure of 1 ×10-3 torr. The target voltage and current were measured at different conditions including various duty cycles from 1 to 5%, pulse durations from 50 to 400 μs, target powers from 0.6 to 1.8 kW, and N2/Ar ratios from 0 to 1. Depending on the deposition condition, peak powers in the range of 104 to 105 W were observed. The effect of deposition conditions were discussed. For film deposition, the pulse duration and the duty cycle were fixed at 100 μs and 3%, respectively. A fixed bias of -150 V was applied to the substrates, including Si wafer, 304 stainless steel, and tungsten carbide.It was found that the nitrogen content increases with the N2/Ar ratio and then saturates. With increasing target power, a higher N2/Ar ratio was required for the AlTiN thin films to have a better mechanical properties. Meanwhile, the hardness of the AlTiN thin films also increases with the target power. The highest hardness of 41 GPa was observed as the N2/Ar ratio was 0.9 and the power was 1.8 kW. It was found that the amount Al-N bonding and the distribution of AlN phase within the AlTiN thin films play an important role in determining the mechanical properties.

  13. Optimization of Ta2O5 optical thin film deposited by radio frequency magnetron sputtering.

    PubMed

    Shakoury, R; Willey, Ronald R

    2016-07-10

    Radio frequency magnetron sputtering has been used here to find the parameters at which to deposit Ta2O5 optical thin films with negligible absorption in the visible spectrum. The design of experiment methodology was employed to minimize the number of experiments needed to find the optimal results. Two independent approaches were used to determine the index of refraction n and k values. PMID:27409310

  14. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    SciTech Connect

    Borges, Joel Vaz, Filipe; Marques, Luis; Martin, Nicolas

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  15. Correlation between optical characterization of the plasma in reactive magnetron sputtering deposition of Zr N on SS 316L and surface and mechanical properties of the deposited films

    NASA Astrophysics Data System (ADS)

    Fragiel, A.; Machorro, R.; Muñoz-Saldaña, J.; Salinas, J.; Cota, L.

    2008-05-01

    Optical and surface spectroscopies as well as nanoindentation techniques have been used to study ZrN coatings on 316L stainless steel obtained by DC-reactive magnetron sputtering. The deposit process was carried out using initial and working pressures of 10 -6 Torr and 10 -3 Torr, respectively. The experimental set-up for optical spectra acquisition was designed for the study in situ of the plasma in the deposition chamber. Auger spectroscopy, SEM and X-ray diffraction were used to characterize the coatings. Nanoindentation tests were carried out to measure the mechanical properties of the coating. Plasma characterization revealed the presence of CN molecules and Cr ions in the plasma. Surface spectroscopy results showed that ZrN, Zr 3N 4 and ZrC coexist in the coating. These results allowed the understanding of the mechanical behavior of the coatings, demonstrating the importance of the plasma characterization as a tool for tailoring the properties of hard coatings.

  16. Study of hafnium oxide thin films deposited by RF magnetron sputtering under glancing angle deposition at varying target to substrate distance

    NASA Astrophysics Data System (ADS)

    Haque, S. Maidul; Rao, K. Divakar; Misal, J. S.; Tokas, R. B.; Shinde, D. D.; Ramana, J. V.; Rai, Sanjay; Sahoo, N. K.

    2015-10-01

    Glancing angle deposition of HfO2 thin films by RF magnetron sputtering technique has been explored with respect to two vital deposition parameters visualizing angle of deposition (at 82° and 86° glancing angles) and target to substrate distance, DTS in the range 70-125 mm. AFM and spectroscopic ellipsometry measurements show that at optimum DTS of 110 mm and glancing angle 82°, the films exhibit nanostructures with an estimated lowest refractive index ∼1.63 at 550 nm. For both the deposition angles, with decrease in DTS the round shaped grains of the film surface as obtained from AFM images are found to coalesce and produce films with elliptical shaped grains at shorter target to substrate distance. With increase in DTS the deposition rate first decreases up to DTS = 110 mm and subsequently increases. The phenomenon has been ascribed to the competition between reduced deposition flux density and increased sticking coefficient due to decrease in adatom kinetic energy with the increase in DTS. GIXRD measurement reveals that all the films exhibit monoclinic crystal structure. At lower DTS, the crystallinity has improved with increase in deposition angle whereas at higher DTS (>90 mm) the crystallinity becomes poorer with increase in deposition angle. The fact has been explained in light of variation of shadowing effect and deposition rate.

  17. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Jin, Hongmei; Chai, Jianwei; Pan, Jisheng; Seng, Hwee Leng; Goh, Glen Tai Wei; Wong, Lai Mun; Sullivan, Michael B.; Wang, Shi Jie

    2016-04-01

    Ti2AlN MAX-phase thin films have been deposited on MgO (1 1 1) substrates between 500 and 750 °C using DC reactive magnetron sputtering of a Ti2Al compound target in a mixed N2/Ar plasma. The composition, crystallinity, morphology and hardness of the thin films have been characterized by X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and nano-indentation, respectively. The film initially forms a mixture of Ti, Al and (Ti,Al)N cubic solid solution at 500 °C and nucleates into polycrystalline Ti2AlN MAX phases at 600 °C. Its crystallinity is further improved with an increase in the substrate temperature. At 750 °C, a single-crystalline Ti2AlN (0 0 0 2) thin film is formed having characteristic layered hexagonal surface morphology, high hardness, high Young's modulus and low electrical resistivity. The mechanism behind the evolution of the microstructure with growth temperature is discussed in terms of surface energies, lattice mismatch and enhanced adatom diffusion at high growth temperatures.

  18. Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror

    NASA Astrophysics Data System (ADS)

    Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K.

    2008-03-01

    Our developed all-solid-state switchable mirror as a smart window is consisted in multi-layer of Mg4Ni/Pd/Ta2O5/WO3/ITO/glass and can switch reversibly from the reflective state to the transparent one. The development of high performance solid electrolyte thin film of Ta2O5 is important for fast speed switching and high durability of the device. In this work, we have investigated the electrochemical property of Ta2O5 thin film deposited by reactive DC magnetron sputtering. The effect of thickness on electrochemical and proton conductivities of Ta2O5 thin film was investigated. The Ta2O5 thin film with a thickness of 400 nm had better proton conductivity of 1.5×10-9 S/cm measured by AC impedance method. The transmittance at wavelength of 670 nm of the device with 400 nm thick Ta2O5 thin film was changed from 0.1% (reflective state) to 51% (transparent state) within 10 s by applying voltage of 5 V. The device showed high durability up to two-thousand switching cycles.

  19. Combined filtered cathodic arc etching pretreatment-magnetron sputter deposition of highly adherent CrN films

    SciTech Connect

    Ehiasarian, A. P.; Anders, A.; Petrov, I.

    2007-05-15

    CrN films were prepared on steel substrates by a hybrid method utilizing filtered cathodic arc for Cr ion pretreatment and magnetron sputtering for coating deposition. During pretreatment the substrates were biased to -1200 V and exposed to filtered chromium plasma. The substrate-coating interface formed during the pretreatment contained a Cr-enriched modified layer with composition that was strongly influenced by the temperature of the substrate as observed by scanning transmission electron microscopy--energy dispersive spectroscopy. The modified layer had a nanocrystalline morphology and thickness of 15 nm. The path of formation of the layer is linked to the combined action of implantation, diffusion, and resputtering. The resulting adhesion of 3 {mu}m thick CrN films was very high with scratch test critical load values of 83 N. The morphology of the films was smooth without large scale defects and the microstructure was columnar. The coatings behaved well in dry sliding tests with very low wear coefficients of 2.3x10{sup -16} m{sup 3} N{sup -1} m{sup -1}, which can be linked to the high adhesion and defect-free microstructure. The smooth coatings also had a high resistance to corrosion as demonstrated by potentiodynamic tests with particularly high pitting potentials of +800 mV.

  20. Microstructure and mechanical properties of Ti–B–C–N–Si nanocomposite films deposited by unbalanced magnetron sputtering

    SciTech Connect

    Jang, Jaeho; An, Eunsol; Park, In-Wook; Nam, Dae-Geun; Jo, Ilguk; Lin, Jianliang; Moore, John J.; Ho Kim, Kwang; Park, Ikmin

    2013-11-15

    Quinary Ti–B–C–N–Si nanocomposite thin films were deposited on AISI 304 stainless steel substrates by d.c. unbalanced magnetron sputtering from a TiB{sub 2}–TiC compound target and a pure Si target. The relationship between microstructure and mechanical properties of the films was investigated in terms of the nanosized crystallites/amorphous system. The synthesized Ti–B–C–N–Si films were characterized using x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and high resolution transmission electron microscopy. The results showed that the Ti–B–C–N–Si films were nanocomposites composed of nanosized TiB{sub 2}, TiC, and TiSi{sub 2} crystallites (2-3 nm in size) embedded in an amorphous matrix. The addition of Si to the Ti–B–C–N film led to precipitation of nanosized crystalline TiSi{sub 2} and percolation of amorphous SiC phases. The Ti–B–C–N–Si films with up to 7 at. % Si content presented high hardness (≥35 GPa), H/E (≥0.0095), and W{sub e} (>50%) with compressive residual stress (∼0.5 GPa). A systematic investigation on the microstructure and mechanical properties of Ti–B–C–N–Si films containing different Si contents is reported.

  1. Mechanical and tribological properties of a-GeC{sub x} films deposited by dc-magnetron sputtering

    SciTech Connect

    Jacobsohn, L.G.; Reigada, D.C.; Freire, F.L. Jr.; Prioli, R.; Zanette, S.I.; Caride, A.O.; Nascimento, F.C.; Lepienski, C.M.

    1998-12-31

    Amorphous carbon-germanium films were grown by dc-magnetron sputtering at different argon plasma pressures ranging from 0.17 and 1.4 Pa. The water-cooled sample holder was grounded. The film thickness were typically 0.5 {micro}m. The ratio between germanium and carbon atomic concentration ranges up to 2.8, as measured by Rutherford backscattering spectrometry (RBS). Elastic recoil detection technique was used to measure hydrogen contamination. The film hardness was measured by nanoindentation techniques and the internal stress was determined by the bending of the substrate. The incorporation of Ge reduces both the film hardness and the internal stress. Hardness and internal stress increases when the films are deposited in lower pressures. Atomic Force Microscopy (AFM) was used to measure the surface roughness, which was found to be insensitive to the pressure and to the Ge content. A possible influence of the thickness on the morphology of pure carbon films is discussed. The friction coefficient measured by AFM is independent on the film composition within experimental errors.

  2. Crystalline Structure of Highly Piezoelectric (K,Na)NbO3 Films Deposited by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Shibata, Kenji; Oka, Fumihito; Nomoto, Akira; Mishima, Tomoyoshi; Kanno, Isaku

    2008-12-01

    We have previously reported (K,Na)NbO3 (KNN) films, whose piezoelectric properties are the highest reported thus far. In this study, we investigate the detailed crystalline structures of these KNN films after deposition on Pt/MgO and Pt/Ti/SiO2/Si substrates by RF magnetron sputtering. The KNN film on Pt/MgO was epitaxially grown on the Pt lower electrode with a perfect <001> orientation in the perovskite structure. The KNN film on Pt/Ti/SiO2/Si was polycrystalline with a preferential <001> orientation in the perovskite structure having dense columnar grains. X-ray diffraction measurements revealed that the KNN films grown on Pt/MgO and Pt/Ti/SiO2/Si were tetragonal; the lattice parameters c and a were related as c/a > 1. The KNN film on Pt/MgO had a higher c/a value than the KNN film on Pt/Ti/SiO2/Si, indicating that the former had more compressed strain. We conclude that this difference in compressed strain may contribute to the difference in piezoelectric properties of the KNN films on Pt/MgO and Pt/Ti/SiO2/Si.

  3. Surface and optical properties of indium tin oxide layer deposition by RF magnetron sputtering in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Yudar, H. Hakan; Korkmaz, Şadan; Özen, Soner; Şenay, Volkan; Pat, Suat

    2016-08-01

    This study focused on the characterization and properties of transparent and conductive indium tin oxide (ITO) thin films deposited in argon atmosphere. ITO thin films were coated onto glass substrates by radio frequency (RF) magnetron sputtering technique at 75 and 100 W RF powers. Structural characteristics of producing films were investigated through X-ray diffraction analysis. UV-Vis spectrophotometer and interferometer were used to determine transmittance, absorbance and reflectance values of samples. The surface morphology of the films was characterized by atomic force microscope. The calculated band gaps were 3.8 and 4.1 eV for the films at 75 and 100 W, respectively. The effect of RF power on crystallinity of prepared films was explored using mentioned analysis methods. The high RF power caused higher poly crystallinity in the produced samples. The thickness and refractive index values for all samples increased respect to an increment of RF power and were calculated as 20, 50 nm and 1.71, 1.86 for samples at 75 and 100 W, respectively. Finally, the estimated grain sizes for all prepared films decreased with increasing of 2 θ degrees, and the number of crystallite per unit volume was calculated. It was found that nearly all properties including sheet resistance and resistivity depend on the RF power.

  4. Silicon- and aluminum-nitride films deposited by reactive low-voltage ion plating and reactive dc-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Vogl, G. W.; Monz, K. H.; Nguyen, Quang D.; Huter, Michael; Rille, Eduard P.; Pulker, Hans K.

    1994-11-01

    In this work the properties of Si3N4 and AIN thin films deposited onto unheated substrates by Reactive Low Voltage Ion Plating (RLVIP) and Reactive DC-Magnetron Sputtering (RDCMS) were investigated. In both experimental setups pure silicon and aluminum were used as starting materials. Working and reactive gas were argon and nitrogen respectively. All Si3N4 films showed amorphous structure in X-ray and electron diffraction whereas AIN films were found to be polycrystalline and could be indexed to the bulk hexagonal AIN lattice. The values of the film refractive index at 550 nm are 2.08 for RLVIP Si3N4, 2.12 for RLVIP AIN, 2.02 for RDCMS Si3N4, and 1.98 or 2.12 for AIN depending on the total pressure in the range of 8 E - 1 Pa and 1 E - 1 Pa during the process. The high optical transmission region for the Si3N4 films lies between 0.23 and 9.5 micrometers , and for AIN films between 0.2 and 12.5 micrometers . Purity and composition were measured by electron microprobe, infrared transmission, nuclear reactions, elastic recoil detection analysis and Rutherford backscattering spectroscopy. Transmission electron micrographs of Pt-C replicas of fracture cross sections of the films show their different microstructure and surface topography. Environmental tests proved the RLVIP Si3N4 films to be very hard, of high density and of strong adherence to glass.

  5. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  6. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  7. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    PubMed

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects. PMID:27571960

  8. SiNx Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content.

    PubMed

    Schmidt, Susann; Hänninen, Tuomas; Goyenola, Cecilia; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Goebbels, Nico; Tobler, Markus; Högberg, Hans

    2016-08-10

    Reactive high power impulse magnetron sputtering (rHiPIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N2 as reactive gas. The effects of different N2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N2-to-Ar flow ratios of <0.16, while signals from ionized molecules rise with the N2-to-Ar flow ratio at the pulse end and during pulse-off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the N2-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS. PMID:27414283

  9. Structure and electrical properties of MgTiO{sub 3} thin films deposited by rf magnetron sputtering

    SciTech Connect

    Huang, C.-L.; Pan, C.-L.

    2004-11-01

    Bulk MgTiO{sub 3} ceramics have shown excellent dielectric properties at microwave frequencies; however, the high sintering temperature of the bulk materials is major obstacle in their use as dielectric resonators to miniaturize microwave circuits. In this article, MgTiO{sub 3} thin films were fabricated on n-type Si(100) substrates by rf magnetron sputtering by using MgTiO{sub 3} target which was synthesized in the experiment. It was possible to obtain highly oriented MgTiO{sub 3}(110) thin film at a rf power density of 7.7 W/cm{sup 2} and a substrate temperature of 400 deg. C, which is much lower than the bulk sintering temperature. These films were studied by choosing different rf power densities and substrate temperature. The microstructure and surface morphology of the MgTiO{sub 3} films deposited on Si(100) was determined by x-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy. The XRD showed that the deposited films exhibited a polycrystalline microstructure. The grain size of the film increased with an increase in the rf power density and substrate temperature. The electrical properties were measured using C-V and current-voltage I-V measurements on metal-insulator-semiconductor capacitor structures. As rf power density of 7.7 W/cm{sup 2} and substrate temperature of 400 deg. C, a dielectric constant of 14.9 (f=10 MHz) and a dissipation factor of 0.031 were obtained.

  10. Magnetron discharge sputtering for fabrication of nanogradient optical coatings

    NASA Astrophysics Data System (ADS)

    Volpian, O. D.; Kuzmichev, A. I.; Ermakov, G. F.; Krikunov, A. I.; Obod, Yu A.; Silin, N. V.; Shkatula, S. V.

    2015-11-01

    The technology of the middle frequency pulse reactive magnetron sputtering for fabrication of nanogradient optical coatings with smooth variation of refractive index was developed and studied. The technology is based on programmable motion of a substrate over two magnetrons with targets of different materials. The feature of the deposition process is a constant composition of reactive gas medium and an invariable magnetron operation mode. To realize this technology, an automatic computer-controlled sputtering system additionally comprising a gas discharge activator of reactive gas (oxygen) and an in situ optical monitor- spectrovisor has been built. The dielectric oxide-based nanogradient coatings of photon-barrier type were successfully fabricated. The obtained results confirm the high potential of the middle frequency pulse reactive magnetron sputtering of silicon and metal targets for fabrication of nanogradient dielectric optical coatings with excellent properties.

  11. Spatially resolved electron density and electron energy distribution function in Ar magnetron plasmas used for sputter-deposition of ZnO-based thin films

    SciTech Connect

    Maaloul, L.; Gangwar, R. K.; Morel, S.; Stafford, L.

    2015-11-15

    Langmuir probe and trace rare gases optical emission spectroscopy were used to analyze the spatial structure of the electron density and electron energy distribution function (EEDF) in a cylindrical Ar magnetron plasma reactor used for sputter-deposition of ZnO-based thin films. While a typical Bessel (zero order) diffusion profile was observed along the radial direction for the number density of charged particles at 21 cm from the ZnO target, a significant rise of these populations with respect to the Bessel function was seen in the center of the reactor at 4 cm from the magnetron surface. As for the EEDF, it was found to transform from a more or less Maxwellian far from the target to a two-temperature Maxwellian with a depletion of high-energy electrons where magnetic field confinement effects become important. No significant change in the behavior of the electron density and EEDF across a wide range of pressures (5–100 mTorr) and self-bias voltages (115–300 V) was observed during magnetron sputtering of Zn, ZnO, and In{sub 2}O{sub 3} targets. This indicates that sputtering of Zn, In, and O atoms do not play a very significant role on the electron particle balance and electron heating dynamics, at least over the range of experimental conditions investigated.

  12. Correlation between Microstructure and Mechanical Properties ofTiC Films Produced by Vacuum arc Deposition and Reactive MagnetronSputtering

    SciTech Connect

    Monteiro, O.R.; Delplancke-Ogletree, M.P.; Winand, R.; Brown, I.G.

    1999-07-29

    We have studied the synthesis of TiC films by vacuum arc deposition and reactive magnetron sputtering over a wide range of compositions. The films were deposited on silicon and tool steel. The films were characterized by various techniques: Auger electron and X-ray photoelectron spectroscopies, Rutherford backscattering, transmission electron diffraction and X-ray diffraction. Mechanical properties such as stress, adhesion, friction coefficient and wear resistance were obtained by carrying measurements of the curvature of the silicon substrate, pull tests, and ball-on-disk tests, respectively.

  13. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-01

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields. PMID:24308504

  14. Magnetron Sputtered Gold Contacts on N-gaas

    NASA Technical Reports Server (NTRS)

    Buonaquisti, A. D.; Matson, R. J.; Russell, P. E.; Holloway, P. H.

    1984-01-01

    Direct current planar magnetron sputtering was used to deposit gold Schottky barrier electrical contacts on n-type GaAs of varying doping densities. The electrical character of the contact was determined from current voltage and electron beam induced voltage data. Without reducing the surface concentration of carbon and oxide, the contacts were found to be rectifying. There is evidence that energetic neutral particles reflected from the magnetron target strike the GaAs and cause interfacial damage similar to that observed for ion sputtering. Particle irradiation of the surface during contact deposition is discussed.

  15. Magnetron Sputtering Deposition of Polycrystalline CrN/ZrN Superlattice Coatings

    NASA Astrophysics Data System (ADS)

    Wang, M. X.; Zhang, J. J.; Liu, Q. X.; Li, D. J.

    The influence of substrate rotary speed, species of reaction gases and flows on nanoindentation, nanoscratch fracture, and residual stress were explored on reactive sputtered nanoscale CrN/ZrN multilayered coatings. Hardness and critical fracture load as high as 32 GPa and 85 mN with desirable compressive stress were achieved for this model. A proper percentage of NH3 in N2 reaction gas was also proved to be of benefit to synthesize high-hard and fracture-resistant CrN/ZrN coatings. The low-angle XRD patterns provided the layer modulation period of the coatings. A marked polycrystallite of two-cubic NaCl phase CrN + ZrN as well as probably hexagonal Cr2N with small modulation period corresponded to the enhanced mechanical properties.

  16. Combinatorial study of WInZnO films deposited by rf magnetron co-sputtering

    SciTech Connect

    Oh, Byeong-Yun; Park, Jae-Cheol; Lee, Young-Jun; Cha, Sang-Jun; Kim, Joo-Hyung; Kim, Kwang-Young; Kim, Tae-Won; Heo, Gi-Seok

    2011-09-15

    The compositional dependence of co-sputtered tungsten indium zinc oxide (WInZnO) film properties was first investigated by means of a combinatorial technique. Indium zinc oxide (IZO) and WO{sub 3} targets were used with different target power. W composition ratio [W/(In+Zn+W)] was varied between 3 and 30 at% and film thickness was reduced as the sample position moved toward WO{sub 3} target. Furthermore, the optical bandgap energy increased gradually, which might be affected by the reduction in film thickness. All the WInZnO films showed an amorphous phase regardless of the W/(In+Zn+W) ratio. As the W/(In+Zn+W) ratio in WInZnO films increased, the carrier concentration was restricted, causing the increase in electrical resistivity. W cations worked as oxygen binders in determining the electronic properties, resulting in suppressing the formation of oxygen vacancies. Consequentially, W metal cations were effectively incorporated into the WInZnO films as a suppressor against the oxygen vacancies and the carrier generation by employing the combinatorial technique. - Graphical abstract: The film thickness and the sheet resistance (R{sub s}) with respect to the sample position of WInZnO films, which is compositionally graded by rf power for each target, are exhibited. Highlights: > The compositional dependence of co-sputtered WInZnO film properties is first investigated. > W cations work as oxygen binders in determining the electronic properties. > All the WInZnO films show an amorphous phase regardless of the W/(In+Zn+W) ratio. > W metal cations are effectively incorporated into the WInZnO films by the combinatorial technique.

  17. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  18. Structural Properties of Gold Thin Films Deposited on Technologically Important Substrates by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Glaser, Caleb; Schell, Michael; Tzolov, Marian; Senevirathne, Indrajith; Syed, Moniruzzaman

    2013-03-01

    Gold (Au) thin films offer a wide range of applications and may be used for memory storage, energy harvesting, nanosensors, optics, and biosensing devices. Au thin films are currently being studied more closely since they are highly conductive and yet not easily oxidized. Therefore, it is necessary to understand the growth mechanisms of film on various substrates. The structural properties of gold thin films also play an important role on the film quality, which may affect its' optical properties and the sensing capability of the device. In this study, Gold (Au) thin films were deposited on glass (SiO2), silicon (100) and other substrates at room temperature (RT) in an argon (Ar) gas environment as a function of deposition time. The structural properties and surface morphology of the Au thin film has been studied using an Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectrometry (EDX), and X-Ray Diffraction (XRD) measurements. The deposition rate was found to be decreased monotonically as deposition time increased for the films on glass substrates. The effect of the annealing temperature on the structural properties of the Au film deposited on the aforementioned substrates will also be discussed in this study. Lock Haven University of Pennsylvania

  19. Substrate heating and cooling during magnetron sputtering of copper target

    NASA Astrophysics Data System (ADS)

    Shapovalov, Viktor I.; Komlev, Andrey E.; Bondarenko, Anastasia S.; Baykov, Pavel B.; Karzin, Vitaliy V.

    2016-02-01

    Heating and cooling processes of the substrate during the DC magnetron sputtering of the copper target were investigated. The sensitive element of a thermocouple was used as a substrate. It was found, that the heat outflow rate from the substrate is lower when the magnetron is turned off rather than when it is turned on. Furthermore, the heating rate, the ultimate temperature, and the heat outflow rate related to the deposition of copper atoms are directly proportional to the discharge current density.

  20. Room-temperature rf-magnetron sputter-deposited W-doped indium oxide: decoupling the influence of W dopant and O vacancies on the film properties

    NASA Astrophysics Data System (ADS)

    Samatov, Ivan G.; Jeppesen, Bjarke R.; Larsen, Arne Nylandsted; Ram, Sanjay K.

    2016-04-01

    Tungsten-doped indium oxide (IWO) thin films were deposited at room temperature using rf-magnetron sputtering. The optical, electrical, and structural properties of the IWO films were studied as functions of the O2-dilution fraction in the Ar sputtering gas. The W-doping level, and contributions of intrinsic oxygen vacancies and W dopant to the free carrier concentration were studied. Windows of optimum deposition conditions are demonstrated where amorphous and smooth-surfaced IWO films are obtained with low resistivity of 3.5 × 10-4 Ω cm, high mobility of 45 cm2 v-1 s-1, and high optical transparency (visible and NIR transparencies of 83 and 80 %, respectively). The observed optoelectronic properties are discussed in light of the underlying electron transport mechanisms.

  1. On the phase formation of titanium oxide thin films deposited by reactive DC magnetron sputtering: influence of oxygen partial pressure and nitrogen doping

    NASA Astrophysics Data System (ADS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Rajagopalan, S.; Kamruddin, M.; Tyagi, A. K.

    2014-09-01

    This work describes about the control on phase formation in titanium oxide thin films deposited by reactive dc magnetron sputtering. Various phases of titanium oxide thin films were deposited by controlling the oxygen partial pressure during the sputtering process. By adding nitrogen gas to sputter gas mixture of oxygen and argon, the oxygen partial pressure was decreased further below the usual critical value, below and above which the sputtering yields metallic and oxide films, respectively. Furthermore, nitrogen addition eliminated the typical hysteretic behaviour between the flow rate and oxygen partial pressure, and significantly influenced the sputter rate. On increasing the oxygen partial pressure, the ratio between anatase and rutile fraction and grain size increases. The fracture cross-sectional scanning electron microscopy together with the complementary information from X-ray diffraction and micro-Raman investigations revealed the evolution and spatial distribution of the anatase and rutile phases. Both the energy delivered to the growing film and oxygen vacancy concentrations are correlated with the formation of various phases upon varying the oxygen partial pressure.

  2. Influence of the deposition conditions on radiofrequency magnetron sputtered MoS2 films

    NASA Technical Reports Server (NTRS)

    Steinmann, Pierre A.; Spalvins, Talivaldis

    1990-01-01

    By varying the radiofrequency (RF) power, the Ar pressure, and the potential on the substrates, MoS(x) films of various stoichiometry, density, adhesion, and morphology were produced. An increase of RF power increased the deposition rate and density of the MoS2 films as well as improved adhesion. However, the stoichiometry remained constant. An increase of Ar pressure increased the deposition rate but decreased the density, wheras both stoichiometry and adhesion were maximized at around 20 mtorr Ar pressure. Furthermore, a transition from compact film growth to columnar film growth was observed when the pressure was varied from 5 to 15 mtorr. Substoichiometric films were grown when a negative (bias) voltage was applied to the substrates.

  3. Effect of the hydrogen dilution on the local microstructure in hydrogenated amorphous silicon films deposited by radiofrequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Daouahi, M.; Zellama, K.; Bouchriha, H.; Elkaïm, P.

    2000-06-01

    The nature of the hydrogen bonding and content and their influence on the film microstructure have been investigated in detail, as a function of the H2 dilution and the residual pressure, in hydrogenated amorphous silicon (a-Si:H) films prepared by radiofrequency (rf) magnetron sputtering at a common substrate temperature (sim 250 °C) and pressure (5× 10^{-4} torr) and high rates (11-15 Å/s). H2 percentages in the gas phase mixture (Ar + % H2) of 5, 10, 15 and 20% have been introduced during growth. For the 20% of H2, two different pressures of 5× 10^{-4} and 50× 10^{-4} torr were used. A combination of infrared absorption, optical transmission and elastic recoil detection analysis experiments have been carried out to fully characterize the samples in their as-deposited state. The results clearly indicate that for H2 percentage equal to or lower than 15% , the total bonded H content in the films increases as the H2 percentage increases, and then reaches a saturation value or even decreases for higher H2 percentage. Moreover, the microstructure is also found to be deeply affected by the H2 dilution and pressure. In particular, for high H2 percentage (20% ) and high pressure (50× 10^{-4} torr), unbounded H as well as polyhydride (Si-H2)_n chains, possibly located in structural inhomogeneities such as voids, are also present in the films in addition to the isolated monohydride Si-H and polyhydride Si-H2 complexes. As a result, a reduction of the compactness of the film structure associated with a decrease of the refractive index n is observed. The optical gap is found to be rather controlled by the total bonded hydrogen content. The lowest proportion of isolated polyhydride Si-H2 complexes and the highest density are observed for films deposited with 10% of H2 in the gas phase and a pressure of 5× 10^{-4} torr.

  4. Magnetron sputtering for the production of EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank

    2015-03-01

    Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.

  5. Rotating cylindrical magnetron sputtering: Simulation of the reactive process

    SciTech Connect

    Depla, D.; Mahieu, S.; Van Aeken, K.; Leroy, W. P.; Haemers, J.; De Gryse, R.; Li, X. Y.; Bogaerts, A.

    2010-06-15

    A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.

  6. A Two Magnetron Sputter Deposition Chamber Equipped with an Additional Ion Gun for in situ Observation of Thin Film Growth and Surface Modification by Synchrotron Radiation Scattering

    SciTech Connect

    Schell, Norbert; Borany, Johannes von; Hauser, Jens

    2007-01-19

    We report the design of a sputter deposition chamber for the in situ study of film growth and modification by synchrotron x-ray diffraction and reflectivity. The chamber is sealed with four Be-windows allowing unhindered scattering access of -2 up to +50 degrees off-plane and -2.9 up to +65 degrees in-plane, respectively. The chamber fits into a standard six-circle diffractometer from HUBER which is relatively widespread in synchrotron laboratories. Two commercial miniature magnetrons with additional gas inlets allow for the deposition of compound films and multilayers. Substrate heating up to 950 deg. C and different substrate bias voltages are possible. An additional ion gun up to 6 keV and 10 {mu}A allows post-deposition ion irradiation with light atoms or energetic ion bombardment during sputter deposition. The performance of the chamber was tested with the deposition of MAX phase Ti2AlN and with the off-sputtering of a thin Pt film.

  7. Texture of Al thin films deposited by magnetron sputtering onto epitaxial W(001)

    SciTech Connect

    Madsen, Lynnette D.; Svedberg, Erik B.; Bergstrom, Daniel B.; Petrov, Ivan; Greene, Joseph E.

    2000-01-01

    Highly textured epitaxial metallizations will be required for the next generation of devices with the main driving force being a reduction in electromigration. Herein a model system of 190 nm of Al on a 140 nm layer of W grown on MgO <00l> substrates was studied. The W layer was <00l> oriented and rotated 45 degree sign with respect to the MgO substrate to minimize the misfit; the remaining strain was accommodated by dislocations, evident in transmission electron microscopy images. From high-resolution x-ray diffraction (XRD) measurements, the out-of-plane lattice parameter was determined to be 3.175 Aa, and the in-plane parameter was 3.153 Aa, i.e., the W film sustained a strain resulting in a tetragonal distortion of the lattice. XRD pole figures showed that the Al had four fold symmetry and two dominant orientations, <016> and <3 9 11>, which were twinned with multiple placements on the epitaxial W layer. The driving force for the tilted <001> and <011> orientations of Al on W is due to strain minimization through lattice matching. These results show that <00l> Al deposited at ambient conditions onto W is difficult to achieve and implies that electromigration difficulties are inherent. (c) 2000 American Institute of Physics.

  8. Effect of a declination angle of substrate position on magnetron sputter deposition from a YBa sub 2 Cu sub 3 O sub 7 minus x target

    SciTech Connect

    Kageyama, Y.; Taga, Y. )

    1989-09-04

    Thin-film deposition by magnetron sputtering of a multielement target was carried out with respect to the geometrical factors between a target and the substrates. The thin films were deposited on substrates which were located semicircularly over a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} target in several declination angles measured from the normal to the target surface. The deposition rate decreased to about one-third with the change in the angle from 0{degree} to 90{degree}. In the angles of 45{degree}, 60{degree}, and 75{degree}, films showed significant instability in the atmosphere, which appeared to be caused by an excessive concentration of Ba atoms in the films. Target composition was almost reproduced in the films deposited in the angle of 90{degree}.

  9. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  10. Influence of Substrate Temperature on Structural Properties and Deposition Rate of AlN Thin Film Deposited by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Feng, Bin; Dong, Shurong; Zhou, Changjian; Zhou, Jian; Yang, Yi; Ren, Tianling; Luo, Jikui; Wang, Demiao

    2012-07-01

    Aluminum nitride (AlN) thin films with c-axis preferred orientation have been prepared by reactive direct-current (DC) magnetron sputtering. The degree of preferred crystal orientation, the cross-sectional structure, and the surface morphology of AlN thin films grown on Si (100) substrates at various substrate temperatures from 60°C to 520°C have been investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Results show that the substrate temperature has a significant effect on the structural properties, such as the degree of c-axis preferred orientation, the full-width at half-maximum (FWHM) of the rocking curve, the surface morphology, and the cross-sectional structure as well as the deposition rate of the AlN thin films. The optimal substrate temperature is 430°C, with corresponding root-mean-square surface roughness ( R rms) of 1.97 nm, FWHM of AlN (002) diffraction of 2.259°, and deposition rate of 20.86 nm/min. The mechanisms behind these phenomena are discussed. Finally, film bulk acoustic resonators based on AlN films were fabricated; the corresponding typical electromechanical coupling coefficient ( k {t/2}) is 5.1% with series and parallel frequencies of 2.37 GHz and 2.42 GHz, respectively.

  11. On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles.

    PubMed

    Godinho, V; Moskovkin, P; Álvarez, R; Caballero-Hernández, J; Schierholz, R; Bera, B; Demarche, J; Palmero, A; Fernández, A; Lucas, S

    2014-09-01

    The formation of the porous structure in dc magnetron sputtered amorphous silicon thin films at low temperatures is studied when using helium and/or argon as the processing gas. In each case, a-Si thin films were simultaneously grown at two different locations in the reactor which led to the assembly of different porous structures. The set of four fabricated samples has been analyzed at the microstructural level to elucidate the characteristics of the porous structure under the different deposition conditions. With the help of a growth model, we conclude that the chemical nature of the sputter gas not only affects the sputtering mechanism of Si atoms from the target and their subsequent transport in the gaseous/plasma phase towards the film, but also the pore formation mechanism and dynamics. When Ar is used, pores emerge as a direct result of the shadowing processes of Si atoms, in agreement with Thornton's structure zone model. The introduction of He produces, in addition to the shadowing effects, a new process where a degree of mobility results in the coarsening of small pores. Our results also highlight the influence of the composition of sputtering gas and tilt angles (for oblique angle deposition) on the formation of open and/or occluded porosity. PMID:25120129

  12. REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS

    EPA Science Inventory

    The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...

  13. High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering.

    PubMed

    Zeng, Longhui; Tao, Lili; Tang, Chunyin; Zhou, Bo; Long, Hui; Chai, Yang; Lau, Shu Ping; Tsang, Yuen Hong

    2016-01-01

    The two-dimensional layered semiconducting tungsten disulfide (WS2) film exhibits great promising prospects in the photoelectrical applications because of its unique photoelectrical conversion property. Herein, in this paper, we report the simple and scalable fabrication of homogeneous, large-size and transferable WS2 films with tens-of-nanometers thickness through magnetron sputtering and post annealing process. The produced WS2 films with low resistance (4.2 kΩ) are used to fabricate broadband sensitive photodetectors in the ultraviolet to visible region. The photodetectors exhibit excellent photoresponse properties, with a high responsivity of 53.3 A/W and a high detectivity of 1.22 × 10(11) Jones at 365 nm. The strategy reported paves new way towards the large scale growth of transferable high quality, uniform WS2 films for various important applications including high performance photodetectors, solar cell, photoelectrochemical cell and so on. PMID:26822972

  14. High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering

    PubMed Central

    Zeng, Longhui; Tao, Lili; Tang, Chunyin; Zhou, Bo; Long, Hui; Chai, Yang; Lau, Shu Ping; Tsang, Yuen Hong

    2016-01-01

    The two-dimensional layered semiconducting tungsten disulfide (WS2) film exhibits great promising prospects in the photoelectrical applications because of its unique photoelectrical conversion property. Herein, in this paper, we report the simple and scalable fabrication of homogeneous, large-size and transferable WS2 films with tens-of-nanometers thickness through magnetron sputtering and post annealing process. The produced WS2 films with low resistance (4.2 kΩ) are used to fabricate broadband sensitive photodetectors in the ultraviolet to visible region. The photodetectors exhibit excellent photoresponse properties, with a high responsivity of 53.3 A/W and a high detectivity of 1.22 × 1011 Jones at 365 nm. The strategy reported paves new way towards the large scale growth of transferable high quality, uniform WS2 films for various important applications including high performance photodetectors, solar cell, photoelectrochemical cell and so on. PMID:26822972

  15. High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zeng, Longhui; Tao, Lili; Tang, Chunyin; Zhou, Bo; Long, Hui; Chai, Yang; Lau, Shu Ping; Tsang, Yuen Hong

    2016-01-01

    The two-dimensional layered semiconducting tungsten disulfide (WS2) film exhibits great promising prospects in the photoelectrical applications because of its unique photoelectrical conversion property. Herein, in this paper, we report the simple and scalable fabrication of homogeneous, large-size and transferable WS2 films with tens-of-nanometers thickness through magnetron sputtering and post annealing process. The produced WS2 films with low resistance (4.2 kΩ) are used to fabricate broadband sensitive photodetectors in the ultraviolet to visible region. The photodetectors exhibit excellent photoresponse properties, with a high responsivity of 53.3 A/W and a high detectivity of 1.22 × 1011 Jones at 365 nm. The strategy reported paves new way towards the large scale growth of transferable high quality, uniform WS2 films for various important applications including high performance photodetectors, solar cell, photoelectrochemical cell and so on.

  16. Effect of microstructure on the nanomechanical properties of TiVCrZrAl nitride films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chang, Zue-Chin; Liang, Shih-Chang; Han, Sheng

    2011-09-01

    This paper describes the nanoindentation behavior of TiVCrZrAl nitride films grown on Si substrates by means of reactive radio-frequency magnetron sputtering at growth temperatures from 150 to 300 °C. We used cross-sectional transmission electron microscopy and X-ray diffraction to analyze the microstructure and crystallinity and nanoindentation techniques to study the hardness and elastic modulus. We found that a face-centered-cubic solid-solution structure with strong (2 0 0), (1 1 1), (2 2 0), and (3 1 1) orientations were revealed by X-ray diffraction. Upon increasing the growth temperature of the films, the hardness and elastic modulus increased to maximum values of 15.2 and 203.5 GPa, respectively.

  17. Extended x-ray absorption fine structure measurements on radio frequency magnetron sputtered HfO2 thin films deposited with different oxygen partial pressures.

    PubMed

    Maidul Haque, S; Nayak, C; Bhattacharyya, Dibyendu; Jha, S N; Sahoo, N K

    2016-03-20

    Two sets of HfO2 thin film have been deposited by the radio frequency magnetron sputtering technique at various oxygen partial pressures, one set without any substrate bias and another set with a 50 W pulsed dc substrate bias. The films have been characterized by extended x-ray absorption fine structure (EXAFS) measurements at the Hf L3 edge, and the structural information obtained from analysis of the EXAFS data has been used to explain the macroscopic behavior of the refractive index obtained from spectroscopic ellipsometry measurements. It has been observed that the variation of refractive index with oxygen partial pressure depends on the Hf-Hf bond length for the set of films deposited without substrate bias, while for the other set of films deposited with pulsed dc substrate bias, it depends on the oxygen coordination of the nearest neighbor shell surrounding Hf sites. PMID:27140550

  18. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    PubMed

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system. PMID:27131678

  19. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    NASA Astrophysics Data System (ADS)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  20. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K.; Daniels, Stephen; Hopkins, M. B.

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  1. Effect of bias voltage on the microstructure and hardness of Ti-Si-N films deposited by using high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, JiCheng; Zou, ChangWei; Wang, QiMin; Zeng, Kun; Feng, SiCheng

    2016-01-01

    The huge potential of High-power impulse magnetron sputtering (HIPIMS) to improve the properties of deposited coatings has been verified. In this study, Ti-Si-N coatings were deposited on Si (111), glass and cemented carbide substrates by using HIPIMS. The influences of the peak voltage, duty cycle and total gas pressure on the transient peak current of the Ti90Si10 target was investigated in detailed. The (200) diffraction intensity decreased with increasing bias voltage from -50 V to -400 V. The hardness of the Ti-Si-N coatings deposited at various bias voltages and the internal stress at different bias voltages were studied. The results indicate that HIPIMS technology can considerably improve the mechanical capacity of the Ti-Si-N coatings, possibly due to the combined protection of the increased adhesive force with the substrate and the relatively high hardness, which are caused by densification and dislocation strengthening effects.

  2. Influence of nitrogen-related defects on optical and electrical behaviour in HfO2-xNx deposited by high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Murdoch, B. J.; Ganesan, R.; McKenzie, D. R.; Bilek, M. M. M.; McCulloch, D. G.; Partridge, J. G.

    2015-09-01

    HfO2-xNx films have been deposited by high-power impulse magnetron sputtering in an Ar-O2-N2 atmosphere with a series of nitrogen partial pressures. X-ray absorption spectroscopy revealed the optimum deposition conditions required to passivate O vacancies in the HfO2-xNx films by nitrogen. Low-mobility interstitial species prevent crystallisation of nitrogen-incorporated films. These effects combine to remove leakage paths resulting in superior breakdown strengths compared to films deposited without nitrogen. The bandgap was maintained at ˜5.9 eV in the films in which nitrogen passivated the oxygen vacancies. This is essential to provide sufficient band offsets for HfO2-xNx films to be used an effective gate dielectric.

  3. High rate deposition of photocatalytic TiO{sub 2} films by dc magnetron sputtering using a TiO{sub 2-x} target

    SciTech Connect

    Sato, Yasushi; Uebayashi, Akira; Ito, Norihiro; Kamiyama, Toshihisa; Shigesato, Yuzo

    2008-07-15

    Photocatalytic TiO{sub 2} films were deposited on glass substrates by dc magnetron sputtering using a slightly reduced TiO{sub 2-x} target (2-x=1.986; conductivity, 3.7 S cm{sup -1}; density, 4.21 g/cm{sup 3}). The variation in the deposition rate as a function of the O{sub 2} flow ratio did not show a hysteresis curve at the 'transition region' as seen in the case of a Ti metal target. The deposition rate using the TiO{sub 2-x} target in 100% Ar gas was approximately seven times higher than that using the Ti metal target in an 'oxide mode'. The films postannealed in air at temperatures {>=}200 deg. C showed excellent photodecomposition characteristics of acetaldehyde (CH{sub 3}CHO) as well as photoinduced hydrophilicity.

  4. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  5. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  6. On reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.

    2016-01-01

    High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition (IPVD) technique that is particularly promising for reactive sputtering applications. However, there are few issues that have to be resolved before the full potential of this technique can be realized. Here we give an overview of the key experimental findings for the reactive HiPIMS discharge. An increase in the discharge current is commonly observed with increased partial pressure of the reactive gas or decreased repetition pulse frequency. There are somewhat conflicting claims regarding the hysteresis effect in the reactive HiPIMS discharge as some report reduction or elimination of the hysteresis effect while others claim a feedback control is essential. The ion energy distribution of the metal ion and the atomic ion of the reactive gas are similar and extend to very high energies while the ion energy distribution of the working gas and the molecular ion of the reactive gas are similar and are much less energetic.

  7. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-03-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  8. Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Kaczmarek, Danuta; Prociow, Eugeniusz; Domaradzki, Jaroslaw; Wojcieszak, Damian; Bocheński, Jakub

    2014-09-01

    In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10-2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

  9. Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Kaczmarek, Danuta; Prociow, Eugeniusz; Domaradzki, Jaroslaw; Wojcieszak, Damian; Bocheński, Jakub

    2014-06-01

    In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10-2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

  10. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-06-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  11. Electrical and optical properties of nitrogen doped SnO{sub 2} thin films deposited on flexible substrates by magnetron sputtering

    SciTech Connect

    Fang, Feng; Zhang, Yeyu; Wu, Xiaoqin; Shao, Qiyue; Xie, Zonghan

    2015-08-15

    Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical properties of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.

  12. Comparative studies of nonpolar (10-10) ZnO films grown by using atomic layer deposition and radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Choi, Nak-Jung; Son, Hyo-Soo; Choi, Hyun-Jun; Kim, Kyoung-Kook; Lee, Sung-Nam

    2014-08-01

    We comparatively investigated the crystal and the optical properties of nonpolar (10-10) ZnO films grown on m-plane sapphire substrates by using atomic layer deposition (ALD) and radio frequency (RF) magnetron sputtering. From high-resolution X-ray ω/2 θ scans, the (100) peak of the ALD-grown ZnO film was clearly developed at ~ 15.9 ° while that of the RF sputter-grown ZnO was broadly observed at 15.6 ~ 15.9 °, indicating that a nonpolar (10-10) ZnO film would be preferentially grown on an m-plane sapphire substrate. The photoluminescence bandedge emission intensity of the ALD-grown (10-10) ZnO film was ten times higher than that of the RF sputtergrown ZnO film. In addition, the electroluminescence intensity of a semipolar (11-22) GaN-based light-emitting diode (LED) with an ALD-grown (10-10) ZnO film as a transparent conductive oxide material was much higher than that of a semipolar (11-22) GaN-based LED with RF sputter-grown (10-10) ZnO film.

  13. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    De La Roche, J.; González, J. M.; Restrepo-Parra, E.; Sequeda, F.; Alleh, V.; Scharf, T. W.

    2014-11-01

    Titanium-doped tungsten bisulfide thin films (WS2-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS2 was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS2. Using the scratch test, the coatings' adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  14. Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition.

    PubMed

    Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E

    2016-03-01

    Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves. PMID:26743538

  15. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    SciTech Connect

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A.

    2015-07-28

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  16. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    NASA Astrophysics Data System (ADS)

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A.

    2015-07-01

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  17. The 1.54-{mu}m photoluminescence from an (Er, Ge) co-doped SiO{sub 2} film deposited on Si by rf magnetron sputtering

    SciTech Connect

    Heng, C.L.; Finstad, T.G.; Storaas, P.; Li, Y.J.; Gunnaes, A.E.; Nilsen, O.

    2004-11-08

    In this work, we report on quite strong 1.54-{mu}m photoluminescence (PL) from an (Er, Ge) co-doped SiO{sub 2} film deposited by rf magnetron sputtering. The PL intensity reaches a maximum value after the film is annealed at 700 deg. C for 30 min in N{sub 2}. High-resolution transmission electron microscopy observation, together with energy dispersive x-ray spectroscopy analysis, indicates that amorphous Ge-rich nanoclusters precipitate in the film after 700 deg. C annealing. X-ray diffraction shows the presence of Ge nanocrystals after 900 deg. C annealing, and increasing Ge nanocrystal size with increasing annealing temperature up to 1100 deg. C. The results suggest that the amorphous Ge-rich nanoclusters are more effective than Ge nanocrystals in exciting the Er{sup 3+} PL.

  18. Raman, electron microscopy and electrical transport studies of x-ray amorphous Zn-Ir-O thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubkins, M.; Kalendarev, R.; Gabrusenoks, J.; Smits, K.; Kundzins, K.; Vilnis, K.; Azens, A.; Purans, J.

    2015-03-01

    Zn-Ir-O thin films on glass and Ti substrates were deposited by reactive DC magnetron sputtering at room temperature. Structural and electrical properties were investigated as a function of iridium concentration in the films. Raman spectrum of Zn-Ir-O (61.5 at.% Ir) resembles the spectrum of rutile IrO2, without any distinct features of wurtzite ZnO structure. SEM images indicated that morphology of the films surface improves with the iridium content. EDX spectroscopy and cross-section SEM images revealed that the films growing process is homogeneous. Crystallites with approximately 2-5 nm size were discovered in the TEM images. Thermally activated conductivity related to the variable range hopping changes to the non-thermally activated before iridium concentration reaches the 45 at.%.

  19. OPTICAL PROPERTIES OF N-DOPED Cu2O THIN FILMS DEPOSITED BY RF-MAGNETRON SPUTTERING Cu2O TARGET

    NASA Astrophysics Data System (ADS)

    Lai, Guozhong; Wu, Yangwei; Lin, Limei; Qu, Yan; Lai, Fachun

    2014-05-01

    N-doped Cu2O films were deposited on quartz substrates by reactive magnetron sputtering a Cu2O target. The optical constants and thicknesses of the films with different nitrogen partial pressure (NPP) were retrieved from transmittance data by an optical model which combines the Forouhi-Bloomer model with modified Drude model. The results show that when NPP increases from 0.0 to 0.033 Pa, the optical gap decreases from 2.14 to 1.95 eV. Additionally, an optical absorption process in the infrared region below the optical band gap was observed for N-doped Cu2O films, which was not found in the pure Cu2O film. This is because an intermediate band (IB) in the band gap results from nitrogen doping. It is believed that N-doped Cu2O film with suitable NPP could be used to enhance the energy conversion efficiency for photovoltaic cells.

  20. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Canto, C. E.; Andrade, E.; de Lucio, O.; Cruz, J.; Solís, C.; Rocha, M. F.; Alemón, B.; Flores, M.; Huegel, J. C.

    2016-03-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  1. Electrical Properties and Thermodynamic Stability of Sr(Ti1-x,Rux)O3 Thin Films Deposited by Inductive-Coupling-Plasma-Induced RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Ohara, Ryoichi; Schimizu, Tatsuo; Sano, Kenya; Yoshiki, Masahiko; Kawakubo, Takashi

    2001-03-01

    Sr(Ti1-x,Rux)O3 (STRO) epitaxial thin films were deposited on single-crystal SrTiO3(100) substrates using the inductive-coupling-plasma-induced RF magnetron sputtering method without oxygen. The electrical conductivity of STRO films increases with Ru concentration and levels of the Ru 4d states are observed in the band gap of SrTiO3 by X-ray photoelectron spectroscopy (XPS) analysis. These results are consistent with those obtained by first-principles calculations. Thermodynamic stability increases with the decrease of Ru concentration, and STRO (x<0.50) is free from degradation under annealing H2 atmosphere at 600°C@. This high resistance against reductive processes indicates that STRO (x<0.50) is one of the most suitable candidates for conductive oxide electrodes of oxide capacitors.

  2. Synthesis of bamboo-leaf-shaped ZnO nanostructures by oxidation of Zn/SiO 2 composite films deposited with radio frequency magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Liwei; Li, Yuguo; Xue, Chengshan; Zhuang, Huizhao; He, Jianting; Tian, Dengheng

    2006-02-01

    Bamboo-leaf-shaped ZnO nanostructures were synthesized by oxidation of metal Zn/SiO 2 matrix composite thin films deposited on Si(1 1 1) substrates with radio frequency magnetron co-sputtering. The synthesized bamboo-leaf-shaped ZnO are single crystalline in nature with widths ranging from 30 to 60 nm and lengths of up to 5-10 μm, room temperature photoluminescence spectrum of the nanostructures shows a strong and sharp UV emission band at 372 nm and a weak and broad green emission band at about 520 nm which indicates relatively excellent crystallization and optical quality of the ZnO nanostructures synthesized by this novel method.

  3. Optical and local structural study of Gd doped ZrO{sub 2} thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Haque, S. Maidul Shinde, D. D.; Misal, J. S.; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K.

    2015-06-24

    ZrO{sub 2} samples with 0, 7, 9, 11, 13 % Gd doping have been prepared by RF magnetron sputtering deposition technique for solid oxide fuel cell application. The optical properties of the samples have been studied by transmission spectrophotometry and spectroscopic ellipsometry while the local structure surrounding Zr sites has been characterized by extended x-ray absorption fine structure (EXAFS) measurement at Zr K edge with synchrotron radiation. It has been observed that beyond 11% Gd doping, band gap decreases and refractive index increases significantly and also oxygen and Zr coordinations surrounding Zr sites increase which indicates the formation of Gd clustering in ZrO{sub 2} matrix beyond this doping concentration.

  4. Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Mohamed, Galal A.; Mohamed, El-Maghraby; Abu El-Fadl, A.

    2001-12-01

    Thin films of zinc oxide doped with Zn 1- xLi xO with x=0.2 (ZnO : Li), have been prepared on sapphire, MgO and quartz substrates by DC magnetron sputtering method at 5 mTorr. The substrate temperatures were fixed to about 573 K. We have measured the transmission and reflection spectra and determined the absorption coefficient, optical band-gap ( Egdopt), the high frequency dielectric constant ε‧ ∞ and the carrier concentration N for the as-prepared films at room temperature. The films show direct allowed optical transitions with Egdopt values of 3.38, 3.43 and 3.29 eV for films deposited on sapphire, MgO and quartz substrates, respectively. The dependence of the obtained results on the substrate type are discussed.

  5. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  6. Magnetron co-sputtering system for coating ICF targets

    SciTech Connect

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-09-09

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres.

  7. Characterisation of Mg biodegradable stents produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Elmrabet, N.; Botterill, N.; Grant, D. M.; Brown, P. D.

    2015-10-01

    Novel Mg-minitubes for biodegradable stent applications have been produced using PVD magnetron sputtering. The minitubes were characterised, as a function of annealing temperature, using a combination of SEM/EDS, XRD and hardness testing. The as-deposited minitubes exhibited columnar grain structures with high levels of porosity. Slight alteration to the crystal structure from columnar to equiaxed grain growth was demonstrated at elevated temperature, along with increased material densification, hardness and corrosion resistance.

  8. In-situ spectroscopic ellipsometry and structural study of HfO{sub 2} thin films deposited by radio frequency magnetron sputtering

    SciTech Connect

    Cantas, Ayten; Aygun, Gulnur; Basa, Deepak Kumar

    2014-08-28

    We have investigated the reduction of unwanted interfacial SiO{sub 2} layer at HfO{sub 2}/Si interface brought about by the deposition of thin Hf metal buffer layer on Si substrate prior to the deposition of HfO{sub 2} thin films for possible direct contact between HfO{sub 2} thin film and Si substrate, necessary for the future generation devices based on high-κ HfO{sub 2} gate dielectrics. Reactive rf magnetron sputtering system along with the attached in-situ spectroscopic ellipsometry (SE) was used to predeposit Hf metal buffer layer as well as to grow HfO{sub 2} thin films and also to undertake the in-situ characterization of the high-κ HfO{sub 2} thin films deposited on n-type 〈100〉 crystalline silicon substrate. The formation of the unwanted interfacial SiO{sub 2} layer and its reduction due to the predeposited Hf metal buffer layer as well as the depth profiling and also structure of HfO{sub 2} thin films were investigated by in-situ SE, Fourier Transform Infrared spectroscopy, and Grazing Incidence X-ray Diffraction. The study demonstrates that the predeposited Hf metal buffer layer has played a crucial role in eliminating the formation of unwanted interfacial layer and that the deposited high-κ HfO{sub 2} thin films are crystalline although they were deposited at room temperature.

  9. Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency

    NASA Astrophysics Data System (ADS)

    Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.

    2012-10-01

    Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.

  10. Optical and electrical properties of Ti(Cr)O2:N thin films deposited by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Kollbek, K.; Szkudlarek, A.; Marzec, M. M.; Lyson-Sypien, B.; Cecot, M.; Bernasik, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    The paper deals with TiO2-based thin films, doped with Cr and N, obtained by magnetron co-sputtering from titanium dioxide ceramic and chromium targets in Ar + N2 atmosphere. Co-doped samples of Ti(Cr)O2:N are investigated from the point of view of morphological, crystallographic, optical, and electrical properties. Characterization techniques such as: X-ray diffraction, XRD, scanning electron microscopy, SEM, atomic force microscopy, AFM, Energy Dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS, optical spectrophotometry as well as impedance spectroscopy are applied. XRD reveals TiO2 and TiO2:N thin films are well crystallized as opposed to those of TiO2:Cr and Ti(Cr)O2:N. XPS spectra confirm that co-doping has been successfully performed with the biggest contribution from the lower binding energy component of N 1s peak at 396 eV. SEM analysis indicates uniform and dense morphology without columnar growth. Comparison between the band gaps indicates a significant shift of the absorption edge towards visible range from 3.69 eV in the case of non-stoichiometric Ti(Cr)O2-x:N to 2.78 eV in the case of stoichiometric Ti(Cr)O2:N which should be attributed to the incorporation of both dopants at substitutional positions in TiO2 lattice. Electrical conductivity of stoichiometric Ti(Cr)O2:N increases in comparison to co-doped nonstoichiometric TiO2-x thin film and reaches almost the same value as that of TiO2 stoichiometric film.

  11. Lateral variation of target poisoning during reactive magnetron sputtering

    SciTech Connect

    Guettler, D.; Groetzschel, R.; Moeller, W.

    2007-06-25

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar/N{sub 2} atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  12. Lateral variation of target poisoning during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Güttler, D.; Grötzschel, R.; Möller, W.

    2007-06-01

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar /N2 atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  13. Effect of annealing treatment on the photocatalytic activity of TiO2 thin films deposited by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Arias, L. M. Franco; Arias Duran, A.; Cardona, D.; Camps, E.; Gómez, M. E.; Zambrano, G.

    2015-07-01

    Titanium dioxide (TiO2) thin films have been deposited by DC reactive magnetron sputtering on silicon and quartz substrates with different Ar/O2 ratios in the gas mixture. Substrate temperature was kept constant at 400 °C during the deposition process, and the TiO2 thin films were later annealed at 700 °C for 3 h. The effect of the Ar/O2 ratio in the gas flow and the annealing treatment on the phase composition, deposition rate, crystallinity, surface morphology and the resulting photocatalytic properties were investigated. For photocatalytic measurements, the variation of the concentration of the methylene blue (MB) dye under UV irradiation was followed by a change in the intensity of the characteristic MB band in the UV- Vis transmittance spectra. We report here that the as-grown TiO2 films showed only the anatase phase, whereas after annealing, the samples exhibited both the anatase and rutile phases in proportions that varied with the Ar/O2 ratio in the mixture of gases used during growth. In particular, the annealed TiO2 thin film deposited at a 50/50 ratio of Ar/O2, composed of both anatase (80%) and rutile phases (20%), exhibited the highest photocatalytic activity (30% of MB degradation) compared with the samples without annealing and composed of only the anatase phase.

  14. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2016-05-01

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  15. Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nulhakim, Lukman; Makino, Hisao

    2016-06-01

    This study examines the change of carrier scattering mechanism and defects states in Ga-doped ZnO (GZO) thin films deposited by radio-frequency magnetron sputtering as a function of the substrate temperature (Ts) during deposition. The GZO films deposited at room temperature exhibited a high defect density that resulted in a lower carrier concentration, lower Hall mobility, and optical absorption in visible wavelength range. Such defects were created by ion bombardment and were eliminated by increasing the Ts. The defects related to the optical absorption disappeared at a Ts of 125 °C. The defects responsible for the suppression of the carrier concentration gradually decreased with increasing Ts up to 200 °C. As a result, the carrier concentration and in-grain carrier mobility gradually increased. The Hall mobility was also influenced by film structural properties depending on the Ts. In addition to the c-axis preferred orientation, other oriented grains such as the (10 1 ¯ 1 ) plane parallel to the substrate surface appeared below 150 °C. This orientation of the (10 1 ¯ 1 ) plane significantly reduced the Hall mobility via grain boundary scattering. The films deposited at a Ts higher than 175 °C exhibited perfect c-axis orientation and grain boundary scattering was thus negligible in these films. The appearance of the 10 1 ¯ 1 peak in x-ray diffraction profile was correlated with the contribution of grain boundary scattering in heavily doped GZO films.

  16. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Velasco, L.; Olaya, J. J.; Rodil, S. E.

    2016-02-01

    In this work, nanostructured NbxSiyNz thin films were deposited onto stainless steel AISI 304 substrates by co-sputtering a Nb target with Si additions while using unbalanced magnetron sputtering. The microstructure was analyzed by X-ray diffraction, and the chemical composition was identified by X-ray photoelectron spectroscopy. The hardness was measured by nanoindentation, and the corrosion resistance was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy using a 3 wt% NaCl solution. The addition of Si in the NbN thin films changed the microstructure from a crystalline to an amorphous phase. The chemical analysis showed the presence of both Si3N4 and NbN phases. The hardness decreased from 20 GPa (NbN) to 15 GPa for the film with the highest Si concentration (28.6 at.%). Nevertheless, the corrosion properties were significantly improved as the Si concentration increased; the polarization resistance after 168 h of immersion was two orders of magnitude larger in comparison with the substrate.

  17. Spectroscopic ellipsometry and x-ray photoelectron spectroscopy of La{sub 2}O{sub 3} thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Atuchin, V. V.; Kalinkin, A. V.; Kochubey, V. A.; Kruchinin, V. N.; Vemuri, R. S.; Ramana, C. V.

    2011-03-15

    Lanthanum oxide (La{sub 2}O{sub 3}) films were grown by the reactive dc magnetron sputtering and studied their structural, chemical and optical parameters. La{sub 2}O{sub 3} films were deposited onto Si substrates by sputtering La-metal in a reactive gas (Ar+O{sub 2}) mixture at a substrate temperature of 200 deg. C Reflection high-energy electron diffraction measurements confirm the amorphous state of La{sub 2}O{sub 3} films. Chemical analysis of the top-surface layers evaluated with x-ray photoelectron spectroscopy indicates the presence of a layer modified by hydroxylation due to interaction with atmosphere. Optical parameters of a-La{sub 2}O{sub 3} were determined with spectroscopic ellipsometry (SE). There is no optical absorption over spectral range {lambda}=250-1100 nm. Dispersion of refractive index of a-La{sub 2}O{sub 3} was defined by fitting of SE parameters over {lambda}=250-1100 nm.

  18. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect

    Jimenez, Francisco J. Dew, Steven K.; Field, David J.

    2014-11-01

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  19. Highly conducting ZnSe films by reactive magnetron sputtering

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.

    1986-01-01

    This paper presents the results of an effort to deposit high-conductivity ZnSe on glass and conducting SnO2-coated glass substrates by reactive magnetron sputter deposition, using pure metal sputter targets of Zn and dopants such as In, Ga, and Al. Clear yellow ZnSe films were successfully obtained. By using substrate temperatures as low as 150 C, cosputtered dopants, and sputter parameters and H2Se injection rates which maximize the Zn-to-Se ratio in the films, ZnSe bulk resistivities have been lowered by up to seven orders of magnitude, reaching values as low as 20 ohm cm. The most effective dopant to data has been In, cosputtered with Zn in amounts leading to In atomic concentrations as high as 1.4 percent. Atomic-absorption measurements show an average 49.9/48.9 ratio of Zn to Se.

  20. Mixed-mode high-power impulse magnetron sputter deposition of tetrahedral amorphous carbon with pulse-length control of ionization

    NASA Astrophysics Data System (ADS)

    Tucker, M. D.; Ganesan, R.; McCulloch, D. G.; Partridge, J. G.; Stueber, M.; Ulrich, S.; Bilek, M. M. M.; McKenzie, D. R.; Marks, N. A.

    2016-04-01

    High-power impulse magnetron sputtering (HiPIMS) is used to deposit amorphous carbon thin films with sp3 fractions of 13% to 82%. Increasing the pulse length results in a transition from conventional HiPIMS deposition to a "mixed-mode" in which an arc triggers on the target surface, resulting in a large flux of carbon ions. The films are characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, ellipsometry, nanoindentation, elastic recoil detection analysis, and measurements of stress and contact angle. All properties vary in a consistent manner, showing a high tetrahedral character only for long pulses, demonstrating that mixed-mode deposition is the source of the high carbon ion flux. Varying the substrate bias reveals an "energy window" effect, where the sp3 fraction of the films is greatest for a substrate bias around -100 V and decreases for higher or lower bias values. In the absence of bias, the films' properties show little dependence on the pulse length, showing that energetic ions are the origin of the highly tetrahedral character.

  1. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  2. Effects of substrate heating on the photovoltaic characteristics of dye-sensitized solar cells during two-step Ti film deposition by RF magnetron sputtering.

    PubMed

    Park, Min-Woo; Park, Seon-Hee; Kwak, Dong-Joo; Sung, Youl-Moon

    2012-04-01

    Nanoporous Ti metal film electrodes for use as photoanodes in dye-sensitized solar cells (DSSCs) were deposited directly on the nanoporous TiO2 layer using the two-step RF magnetron sputtering technique. The Ti film electrode replaces the transparent conducting oxide (TCO) layer. The effect of substrate heating during the deposition of the Ti film was studied to improve the porosity and columnar array of the film pores and the resulting cell efficiency. The porous Ti layer (-41 microm) with low sheet resistance (-1.7 omega/sq) was obtained by deposition at 250 degrees C. The porous Ti layer collects electrons from the TiO2 layer and allows the diffusion of I-/I3(-) through the holes. The DSSC efficiency (eta) using porous Ti layers with highly columnar structures was measured with the highest conversion efficiency of -5.77%; the other photovoltaic properties were ff: 0.76, V(oc): 0.72 V, and J(sc): 10.6 mA/cm2. PMID:22849113

  3. Effect of N2/Ar on structure and hardness of TaN-Ag thin films deposited by DC cylindrical magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Foadi, Farnaz; Darabi, Elham; Reza Hantehzadeh, Mohammad

    2014-05-01

    TaN-Ag thin films were deposited on a 304 stainless steel substrate by cylindrical DC magnetron sputtering using different ratios of nitrogen to argon gas. The N2 percentages were 1.5%, 3%, 4.5%, 7.5%, 10.5% and 15% by volume. The influence of the N2/Ar ratio on the films morphology, structure and hardness was investigated using Atomic Force Microscopy (AFM), Grazing Incidence X-ray Diffraction (GIXRD), and the nanoindentation method. The amounts of Ta and Ag were determined using Energy Dispersive X-ray Spectroscopy (EDS). The thickness of the deposited films was measured by surface step profilometer. The RMS surface roughness increased for N2 percentages up to 7.5% and then decreased. Grazing results showed different TaN phases and Ag crystalline structures. The hardness of all films was much higher than the hardness of bulk silver or tantalum. The highest hardness value was obtained for 1.5% N2 . The EDS results indicated that the Ag/Ta ratio in the deposited films increases with increasing the N2 amount from 1.5% to 15%. The size of Ag islands on the surface was maximized at 7.5% N2 in the gas mixture. The thicknesses of films were in the range of 400-600 nm.

  4. Influence of oxygen on characteristics of Zn(O,S) thin films deposited by RF magnetron sputtering

    SciTech Connect

    Choi, Ji Hyun; Garay, Adrian Adalberto; Hwang, Su Min; Chung, Chee Won

    2015-07-15

    Zn(O,S) thin films were successfully deposited by reactive sputtering using Ar and O{sub 2} gas mixtures at 473 K. X-ray diffraction patterns revealed that the well crystallized Zn(O,S) films were deposited with increasing oxygen concentration in O{sub 2}/Ar, resulting in a shift of the Zn peak of 28.5° to a higher angle, closer to the ZnO peak of 34.4°. Zn(O,S) films were composed of grains agglomerated from small particles, which grew gradually with increasing oxygen concentration. The depth profiles and energy dispersive spectroscopy results of the films indicated that the O/(O+S) ratio increased from 0.04 to 0.81, and all Zn(O,S) films were Zn rich with uniform concentrations of each component. X-ray photoelectron spectroscopy revealed that, as the oxygen concentration increased to 2%, the ZnS films were transformed to Zn(O,S) films via substitution of oxygen for sulfur.

  5. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications.

    PubMed

    Tallarico, D A; Gobbi, A L; Paulin Filho, P I; Maia da Costa, M E H; Nascente, P A P

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. PMID:25175186

  6. Solid oxide fuel cells with (La,Sr)(Ga,Mg)O3-δ electrolyte film deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Lu, His-Chuan; Hsu, Yung-Fu; Hu, Yi-Xuan

    2015-05-01

    In this study, solid oxide fuel cells (SOFCs) containing a high quality La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) film deposited on anode supported substrate using RF magnetron sputtering are successfully prepared. The anode substrate is composed of two functional NiO/Sm0.2Ce0.8O2-δ (SDC) composite layers with ratios of 60/40 wt% and 50/50 wt% and a current collector layer of pure NiO. The as-deposited LSGM film appears to be amorphous in nature. After post-annealing at 1000 °C, a uniform and dense polycrystalline film with a composition of La0.87Sr0.13Ga0.85Mg0.15O3-δ and a thickness of 3.8 μm is obtained, which was well adhered to the anode substrate. A composite LSGM/La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) layer, with a ratio of 30/70 wt%, is used as the cathode. The SOFC prepared reveals a good mechanical integrity with no sign of cracking, delamination, or discontinuity among the interfaces. The total cell resistance of a single cell with LSGM electrolyte film declines from 0.60 to 0.10 Ω cm2 as the temperature escalates from 600 to 800 °C and the open circuit voltage (OCV) ranges from 0.85 to 0.95 V. The maximum power density (MPD) of the single cell is reported as 0.65, 1.02, 1.30, 1.42, and 1.38 W cm-2 at 600, 650, 700, 750, and 800 °C, respectively. The good cell performance leads to the conclusion that RF magnetron sputtering is a feasible deposition method for preparing good quality LSGM films in SOFCs.

  7. Particle contamination formation and detection in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Weiss, C.A.; Sequeda, F.; Huang, C.

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  8. Relation between surface and bulk electronic properties of Al doped ZnO films deposited at varying substrate temperature by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, C. C.; Patel, T. A.; Panda, E.

    2015-06-01

    In this study, a qualitative relationship between the surface and bulk electronic states for Al-doped ZnO (AZO) thin films (thickness < 260 nm) is established. To this end, AZO films were deposited on soda lime glass substrates by varying substrate temperature (Ts) from 303 K to 673 K in RF magnetron sputtering. All these AZO films are found to have grown in ZnO hexagonal wurtzite structure with strong (002) orientation of the crystallites and with an average transmittance of 84%-91% in the visible range. Room temperature scanning tunneling spectroscopy measurements reveal semiconducting behavior for the films deposited at Ts ≤ 373 K and semi-metallic behavior for those deposited at Ts > 373 K. Further, these films show two modes of electron tunneling, (a) direct tunneling at lower bias voltage and (b) FN tunneling at higher bias voltage, with transition voltage ( Vtrans ) shifting towards lower bias voltage (and thereby reducing the barrier height ( Φ)) with increasing Ts. This is attributed to additional (local) density of states near the Fermi level of these AZO films because of higher carrier concentration ( ne ) at increased Ts. Thus, qualitatively, the behavior in both the local surface electronic states and bulk state electronic properties for these deposited AZO films are found to follow similar trends with increasing Ts. The variation in local barrier heights (indicative of the local surface electronic structures) across the AZO film surface is found to be smaller for the films deposited at Ts ≤ 373 K, where semiconducting behavior is observed and wider for the semi-metallic AZO films deposited at higher Ts > 373 K, indicating a larger inhomogeneity of local surface electronic properties at higher bulk carrier concentration.

  9. A study of Ta xC 1 -x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; Wang, B. L.; Li, L.; Zheng, Y. F.

    2010-11-01

    In this paper, Ta xC 1 -x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures ( Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of Ta xC 1 -x coatings. When Ts was <150 °C, the Ta xC 1 -x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm ( Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the Ta xC 1 -x coatings decreased. The nano-indentation experiments indicated that the Ta xC 1 -x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that Ta xC 1 -x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that Ta xC 1 -x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited Ta xC 1 -x coatings. The platelet adhesion test results indicated that the Ta xC 1 -x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the Ta xC 1 -x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  10. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    SciTech Connect

    Nie, Man Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  11. Spectroscopy analysis of graphene like deposition using DC unbalanced magnetron sputtering on γ‐Al{sub 2}O{sub 3} buffer layer

    SciTech Connect

    Aji, A. S. Darma, Y.

    2014-02-24

    In this work, graphene-like deposition using DC unbalanced magnetron-sputtering technique on γ‐Al{sub 2}O{sub 3} layer at low temperature has been systematically studied. The γ‐Al{sub 2}O{sub 3} was growth on silicon substrate using thermal evaporation of Al wire and continuing with dry oxidation of Al at 550 °C. Sputtering process were carried out using Fe-doped carbon pellet as a target by maintain the chamber pressure of 4.6×10{sup −2} Torr at substrate temperature of 300 °C for time deposition range of 1 to 4 hours. The quality of Al{sub 2}O{sub 3} on Si(100) and the characteristic of carbon thin film on γ‐Al{sub 2}O{sub 3} were analized by mean XRD, opctical microscopy, EDAX, FTIR, and Raman spectra. XRD and optical microscopy analysis shows that Al{sub 2}O{sub 3} film is growth uniformly on Si substrate and forming the γ phase of Al{sub 2}O{sub 3}. Raman and FTIR spectra confirm the formation of graphene like carbon layer on Al{sub 2}O{sub 3}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by XRD spectra. The quality and the number of graphene layers are investigated by using Raman spectra peaks analysis.

  12. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-12

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.

  13. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride

    PubMed Central

    2013-01-01

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596

  14. Enhancement of adhesion by a transition layer: Deposition of a-C film on ultrahigh molecular weight polyethylene (UHMWPE) by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    He, F. F.; Bai, W. Q.; Li, L. L.; Wang, X. L.; Xie, Y. J.; Jin, G.; Tu, J. P.

    2016-02-01

    An amorphous carbon (a-C) film is deposited on the plasma-treated UHMWPE substrate using a closed field unbalanced magnetron sputtering to improve its tribological properties. During the plasma treatment period, a transition layer is prepared by high energy ion bombardment at a bias voltage of -500 V to enhance the adhesion between the a-C film and the substrate. The mechanical and tribological properties of the a-C film were evaluated by nano-indentation and ball-on-disk tribometer. After deposition of a-C film with a thickness 900 nm, the nano-hardness of UHMWPE significantly increases from 47 MPa to 720 MPa and the wear rate decreases from 9.82 × 10-15 m3 N-1 m-1 to 4.78 × 10-15 m3 N-1 m-1 in bovine calf serum solution. The formation of the transition layer is believed to be the reason why the vertical adhesion between the a-C film and the UHMWPE substrate is enhanced.

  15. Mechanical properties of Ta-Al-N thin films deposited by cylindrical DC magnetron sputtering: Influence of N2% in the gas mixture

    NASA Astrophysics Data System (ADS)

    Darabi, Elham; Moghaddasi, Naghmeh; Reza Hantehzadeh, Mohammad

    2016-06-01

    Ta-Al-N thin films were deposited by cylindrical DC magnetron sputtering on a stainless steel substrate under varying nitrogen flow ratios ( N2 with respect to N2 + Ar in the range of 1.5%-9%. The effect of the N2 content in the reactive gas mixture on crystalline structure, surface morphology, and mechanical properties of Ta-Al-N thin films was investigated. The amount of Al and Ta in deposited films was obtained by energy dispersive X-ray spectroscopy (EDX) analysis and films thickness was measured by surface step profilometer. X-ray diffraction analysis (XRD) revealed that the crystalline structure of the Ta-Al-N polycrystalline thin film is a mixture of TaAl, TaN, and AlN crystalline phases. Surface morphology, roughness, and grain size were investigated by atomic force microscopy (AFM). The nano hardness of Ta-Al-N thin films, measured by the nanoindentation method, was about 9GPa maximum for samples prepared under 3% N2 , and the friction coefficient, obtained by nanoscratch analysis, was approximately 0.2 for all Ta-Al-N thin films. Other results were found to be affected considerably by increasing the N2 amount.

  16. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Umm-i-Kalsoom; R., Ahmad; Nisar, Ali; A. Khan, I.; Sehrish, Saleem; Uzma, Ikhlaq; Nasarullah, Khan

    2013-07-01

    CrN thin films are deposited on stainless steel (AISI-304) substrate using pulsed DC magnetron sputtering in a mixture of nitrogen and argon plasma. Two set of samples are prepared. The first set of sample is treated at different powers (100 W to 200 W) in a mixture of argon (95%) and nitrogen (5%). The second set of samples is treated at different nitrogen concentrations (5% to 20%) in argon (95% to 80%) for a constant power (150 W). X-ray diffraction (XRD) analysis exhibits the development of new phases related to different compounds. The crystallinity of CrN varies by varying the applied power and nitrogen content. Crystallite size and residual stresses of the CrN (111) plane show similar variation for the applied power and nitrogen contents. Scanning electron microscopy (SEM) analysis shows the formation of a granular surface morphology that varies with the change of powers and nitrogen content. The thickness of the film is measured using SEM cross sectional images and using atomic force microscopy (AFM) scratch analysis. The maximum film thickness (about 755 nm) is obtained for the film deposited at 5% nitrogen in 95% argon at 150 W power. For these conditions, maximum hardness is also observed.

  17. Inhomogeneous optoelectronic and microstructure property distribution across the substrate of ZnO:Al films deposited by room temperature magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Diao, Xungang; Wang, Xuan

    2011-09-01

    Aluminum doped zinc oxide (ZAO) films were deposited by direct current (DC) reactive magnetron sputtering from a ZnO:Al2O3 (3 wt.% Al2O3) ceramic target at room temperature. In order to explore the inhomogeneous property distribution across the substrate, the films were deposited with varied substrate-target distances (Ds) ranging from 2 cm to 9 cm. The experimental results obtained from four-point probe, spectrophotometer, scanning electron microscope, X-ray diffractometer and Auger electronic spectrometer were analyzed to explore the nonuniform property distribution of the obtained ZAO films. The results confirmed that the films' optoelectronic properties, crystallinity and surface morphology, etc., which were obtained from different substrate areas facing the target were remarkably different. It was revealed that the inhomogeneous property distribution was noticeably dependent on the Ds. It was also suggested that the great difference of electrical conductivity among films from different substrate areas could not be ascribed to the difference of chemical composition, but might be explained by the distinctive crystallinity correspondingly. Films from different substrate regions with distinctive electrical characteristics were either (0 0 2) or (1 1 0) textured.

  18. Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2013-12-01

    Rutile titanium dioxide (TiO2) nanostructures were successfully fabricated using the simple chemical bath deposition method at various deposition temperatures. These nanostructures were fabricated on (100 ± 10 nm) TiO2 seed layer coated glass, which was prepared via radio frequency (RF) magnetron sputtering at a substrate temperature of 350 °C. The synthesized TiO2 nanostructures were annealed at 550 °C for 2 h and examined via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and Raman spectroscopy. The XRD patterns showed the presence of the peaks characteristic of rutile phase. The band gap of the TiO2 nanostructures was calculated using the UV-vis absorption spectrum and was determined to be between 3.15 and 3.24 eV. The Raman spectra contained three characteristic bands at 232, 446 and 612 cm-1, which correspond to the tetragonal TiO2 rutile. The results showed good quality of nanocrystalline TiO2 rutile phase.

  19. TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, M.; Wojcieszak, D.; Domaradzki, J.; Kaczmarek, D.; Song, S.; Placido, F.

    2013-06-01

    In this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450-800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.

  20. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  1. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    SciTech Connect

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-28

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  2. Effect of oxygen incorporation on structural and properties of Ti-Si-N nanocomposite coatings deposited by reactive unbalanced magnetron sputtering

    SciTech Connect

    Ding, X.Z.; Zeng, X.T.; Liu, Y.C.; Zhao, L.R.

    2006-07-15

    Ti-Si-N-O nanocomposite coatings with different contents of oxygen were deposited by a combined dc/rf reactive unbalanced magnetron sputtering process in an Ar+N{sub 2}+O{sub 2} mixture atmosphere. The composition, structure, mechanical, and tribological properties of the as-deposited coatings were analyzed by energy dispersive analysis of x-rays, x-ray diffraction (XRD), nanoindentation, and pin-on-disk tribometer experiments, respectively. It was found that in the range of lower oxygen content with atomic ratio of O/N{<=}0.72, the tribological properties of the Ti-Si-N-O coatings are evidently improved, in comparison with the coating without oxygen incorporation. At O/N=0.72, the friction coefficient and wear rate of the as-deposited coatings are reduced to 20% and 45%, respectively. Meanwhile, however, their hardness was not reduced, but, on the contrary, slightly increased. With increasing oxygen content further to O/N{>=}0.72, coating hardness decreased significantly. The friction coefficient of the as-deposited coatings decreased monotonously with the increase of oxygen content in the whole composition range investigated. The wear rate of the coatings exhibited a minimum value at around O/N=0.72. In the lower range of O/N, wear rate decreased significantly due to the lubricant effect of oxygen incorporation, while in the higher range of O/N, wear rate increased gradually due to the weakening of coating hardness. XRD patterns revealed that the as-deposited coatings were mainly crystallized in cubic TiN phase, accompanied with minority of rutile structure titania in the case of higher oxygen incorporation.

  3. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    NASA Astrophysics Data System (ADS)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-01

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  4. Effect of Cr incorporation on the structural and optoelectronic properties of TiO 2:Cr deposited by means of a magnetron co-sputtering process

    NASA Astrophysics Data System (ADS)

    Hajjaji, A.; Gaidi, M.; Bessais, B.; Khakani, M. A. El

    2011-10-01

    In this work, we report on the effect of Cr incorporation on the microstructural and optical properties of TiO 2:Cr thin films deposited by the RF-magnetron sputtering method. The structural, morphological, chemical bonding and optoelectronic properties of the sputter-deposited TiO 2:Cr films were systematically investigated, as a function the incorporated Cr content, by means of various techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier-Transform Infra-Red (FTIR) absorption, X-ray Photoelectron Spectroscopy (XPS) and ellipsometry. The Cr incorporation into the TiO 2 films was controlled by adjusting the RF power ( PCr) on the Cr target during the co-sputtering process of TiO 2 and Cr. We were thus able to demonstrate that by varying PCr from 8 W to 150 W, the Cr content of the TiO 2:Cr films can be fairly controlled from ˜2 at.% to ˜18 at.% and their associated bandgap engineered from 3.3 eV to 1.5 eV. The room-temperature deposited TiO 2:Cr are mainly amorphous with the presence of some TiO 2 nanocrystallites, and their density increases as their Cr content is increased. The Cr inclusions were found to coexist under both metallic and oxidized forms in the films. By subjecting the TiO 2:Cr films to post-annealing treatment (at 550 °C), their crystalline structure was found to be sensitive to their Cr content. Indeed, an anatase-to-rutile phase transformation has been pointed out to occur at a Cr content of ˜7 at.%. Likewise, the Cr-content dependence of the bandgap of annealed TiO 2:Cr films undergoes a transition around the 7 at.% of Cr. Our results demonstrate the ability to control the Cr-content of TiO 2:Cr films, which leads to tune their optoelectronic properties, such as bandgap or optical absorption edge.

  5. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.

    PubMed

    Kitano, Masaaki; Funatsu, Keisho; Matsuoka, Masaya; Ueshima, Michio; Anpo, Masakazu

    2006-12-21

    Nitrogen-substituted TiO2 (N-TiO2) thin film photocatalysts have been prepared by a radio frequency magnetron sputtering (RF-MS) deposition method using a N2/Ar mixture sputtering gas. The effect of the concentration of substituted nitrogen on the characteristics of the N-TiO2 thin films was investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The absorption band of the N-TiO2 thin film was found to shift smoothly to visible light regions up to 550 nm, its extent depending on the concentration of nitrogen substituted within the TiO2 lattice in a range of 2.0-16.5%. The N-TiO2 thin film photocatalyst with a nitrogen concentration of 6.0% exhibited the highest reactivity for the photocatalytic oxidation of 2-propanol diluted in water even under visible (lambda > or = 450 nm) or solar light irradiation. Moreover, N-TiO2 thin film photocatalysts prepared on conducting glass electrodes showed anodic photocurrents attributed to the photooxidation of water under visible light, its extent depending on wavelengths up to 550 nm. The absorbed photon to current conversion efficiencies reached 25.2% and 22.4% under UV (lambda = 360 nm) and visible light (lambda = 420 nm), respectively. UV-vis and photoelectrochemical investigations also confirmed that these thin films remain thermodynamically and mechanically stable even under heat treatment at 673 K. In addition, XPS and XRD studies revealed that a significantly high substitution of the lattice O atoms of the TiO2 with the N atoms plays a crucial role in the band gap narrowing of the TiO2 thin films, enabling them to absorb and operate under visible light irradiation as a highly reactive, effective photocatalyst. PMID:17165971

  6. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  7. Microstructural evolution and Poisson ratio of epitaxial ScN grown on TiN(001)/MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Gall, D.; Petrov, I.; Desjardins, P.; Greene, J. E.

    1999-11-01

    ScN layers, 60-80 nm thick, were grown at 800 °C on 220-nm-thick epitaxial TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition in pure N2 discharges. The films are stoichiometric with N/Sc ratios, determined by Rutherford backscattering spectroscopy and x-ray photoelectron spectroscopy, of 1.00±0.02. Plan-view and cross-sectional transmission electron microscopy analyses showed that the films are single crystals which appear defect free up to a critical thickness of ≃15 nm, above which an array of nanopipes form with their tubular axis along the film growth direction and extending to the free surface. The nanopipes are rectangular in cross section with areas of ≃1.5×5 nm2 and are self-organized along <100>, directions with an average separation of ≃40 nm. Their formation is the result of periodic kinetic surface roughening which leads to atomic self-shadowing and, under limited adatom mobility conditions, to deep cusps which are the origin of the nanopipes. The ScN layers are nearly relaxed, as determined from x-ray diffraction θ-2θ scans in both reflection and transmission, with only a small residual compressive strain due to differential thermal contraction. The Poisson ratio of ScN was found to be 0.20±0.04, in good agreement with ab initio calculations.

  8. Electrochromic properties of NiOx:H films deposited by DC magnetron sputtering for ITO/NiOx:H/ZrO2/WO3/ITO device

    NASA Astrophysics Data System (ADS)

    Dong, Dongmei; Wang, Wenwen; Dong, Guobo; Zhou, Yuliang; Wu, Zhonghou; Wang, Mei; Liu, Famin; Diao, Xungang

    2015-12-01

    NiOx:H thin films were deposited on ITO-coated glass by DC reactive magnetron sputtering at room temperature. The effects of the hydrogen content on the structure, morphologies, electrochemical properties, the stoichiometry and chemical states of NiOx:H thin films were systematically studied. In X-ray diffraction and atomic force microscopy analysis, the crystallinity of the films tends to be weakened when the flow amount ratio of Ar:O2:H2 equals 19:1:3 and as confirmed in electrochemical analysis, such relatively weak crystallinity is the main contributing factor to ion transportation. X-ray photoelectron spectroscopy reveals that the increase of the hydrogen contents results in a relatively lower binding energy exhibited in the Ni 2p spectra. The proportion of Ni2O3 in NiOx:H films increases from 22% at bleached state to 33% at colored state. A monolithic all-thin-film inorganic electrochromic device was fabricated with complementary configuration as ITO/NiOx:H/ZrO2/WO3/ITO. The electrochromic device with optimized NiOx:H thin films acting both as ion storage layer and proton-providing source displays high modulation efficiency of 68% at a fixed wavelength 550 nm.

  9. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  10. Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Seo, Seon Hee; Kang, Hyon Chol

    2013-11-01

    This paper reports the growth behavior of Ga-doped ZnO (ZnO:Ga) thin films deposited on Au/SiN/Si(001) substrates by radio-frequency magnetron sputtering. The microstructures of the overgrown ZnO:Ga thin films were investigated by performing X-ray diffraction, scanning electron microcopy, and transmission electron microscopy analyses. It was confirmed that the growth process proceeds through three stages. In the first stage, nano-scale ZnO:Ga islands were grown on the SiN layer, while a fairly continuous flat structure was formed on the Au nanoparticles (NPs). In the second stage of the growth process, ZnO:Ga domains with different growth orientations, depending strongly on the crystalline planes of the host Au NPs, were nucleated. These domains then grew at different rates, resulting in a change in the morphology from the initial shape reflecting that of the Au NPs to a sunflower-type shape. In the final stage, columnar growth with a preferred (0002) orientation along the surface normal direction became dominant.

  11. Simultaneous catalyst deposition and growth of aligned carbon nanotubes on SiO{sub 2}/Si substrates by radio frequency magnetron sputtering

    SciTech Connect

    Scalese, S.; Scuderi, V.; Privitera, V.; Pennisi, A.; Simone, F.

    2007-12-01

    Radio frequency magnetron sputtering has been used for the synthesis of aligned carbon nanotubes (CNTs) on a SiO{sub 2}/Si substrate, with simultaneous in situ catalyst deposition. This method allows the use of substrates without the need of a surface predeposition of catalytic particles. In particular, among the metals considered, we observed the formation of CNTs using W or Ni as catalysts. Only in the case of Ni did we find that the CNTs are aligned along the target-substrate direction, unlike the randomly oriented CNTs observed when W was used as catalyst. Scanning and transmission electron microscopies show that the catalytic Ni nanoparticle is found mostly on the tip of the obtained bamboolike CNTs, while W nanoparticles are encapsulated inside hollow nanotubes, at different points along their length. We ascribe not only the observed structural differences to the size of the W and Ni particles but also to a different diffusion behavior of C in the two kinds of metallic clusters.

  12. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOχ/ITO electrochromic devices prepared by using magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang

    2016-05-01

    Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.

  13. Ultrafast pump-probe spectroscopy studies of CeO2 thin film deposited on Ni-W substrate by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Preetam; Srivatsa, K. M. K.; Jewariya, Mukesh

    2016-08-01

    This study presents the first investigation of rapid dynamical processes that occur in pure CeO2 thin film, using ultra fast pump-probe spectroscopy at room temperature. For this purpose we have used a single (200) oriented CeO2 film deposited on biaxially textured Ni-W substrate by RF magnetron sputtering technique. The ultrafast transient spectra show initial sharp rise transition followed by an exponential photon decay. This rise time is about 10 ps irrespective of the probe wavelengths range 500-800 nm. The initial decay constant (τ) at 500 nm probe wavelength is found to be 171 ps, while at 800 nm probe wavelength it is 107.5 ps. The ultrafast absorption spectra show two absorption peaks at 745 and 800 nm, and are attributed to the electronic transitions from 2F7/2-2F5/2 and 1S0-1F3 respectively. The relatively high intensity absorption peak at 745 nm indicates dominant f-f electronic transition. Further, the absorption peak at 745 nm splits into two distinct peaks with respect to delay time, and is attributed to the charge transfer in between Ce4+ and Ce3+ ions. These results indicate that CeO2 itself is a potential candidate and can be used for optical applications.

  14. Influence of film thickness on the morphological and electrical properties of epitaxial TiC films deposited by reactive magnetron sputtering on MgO substrates

    NASA Astrophysics Data System (ADS)

    Zoita, N. C.; Braic, V.; Danila, M.; Vlaicu, A. M.; Logofatu, C.; Grigorescu, C. E. A.; Braic, M.

    2014-03-01

    Epitaxial TiC films were deposited on MgO (001) by DC magnetron sputtering in a reactive atmosphere of Ar and CH4 at 800 °C. The films elemental composition and chemical bonding was investigated by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The crystallographic structure, investigated by X-ray diffraction, exhibited an increased degree of (001) orientation with the film thickness, with a cube-on-cube epitaxial relationship with the substrate. The films morphology and electrical properties were determined by atomic force microscopy (AFM) and Hall measurements in Van der Pauw geometry. The influences of the film thickness (57-545 nm) on the morphological and electrical properties were investigated. The thinnest film presented the lowest resistivity, ~160 μΩ cm, showing an atomically flat surface, while higher values were obtained for the thicker films, explained by their different morphology dominated by low aspect ratio nanoislands/nanocolumns.

  15. Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Mei, A. B.; Wilson, R. B.; Li, D.; Cahill, David G.; Rockett, A.; Birch, J.; Hultman, L.; Greene, J. E.; Petrov, I.

    2014-06-01

    Elastic constants are determined for single-crystal stoichiometric NaCl-structure VN(001), VN(011), and VN(111) epitaxial layers grown by magnetically unbalanced reactive magnetron sputter deposition on 001-, 011-, and 111-oriented MgO substrates at 430 °C. The relaxed lattice parameter ao = 0.4134 ± 0.0004 nm, obtained from high-resolution reciprocal space maps, and the mass density ρ = 6.1 g/cm3, determined from the combination of Rutherford backscattering spectroscopy and film thickness measurements, of the VN layers are both in good agreement with reported values for bulk crystals. Sub-picosecond ultrasonic optical pump/probe techniques are used to generate and detect VN longitudinal sound waves with measured velocities v001 = 9.8 ± 0.3, v011 = 9.1 ± 0.3, and v111 = 9.1 ± 0.3 km/s. The VN c11 elastic constant is determined from the sound wave velocity measurements as 585 ± 30 GPa; the c44 elastic constant, 126 ± 3 GPa, is obtained from surface acoustic wave measurements. From the combination of c11, c44, vhkl, and ρ we obtain the VN c12 elastic constant 178 ± 33 GPa, the VN elastic anisotropy A = 0.62, the isotropic Poisson ratio ν = 0.29, and the anisotropic Poisson ratios ν001 = 0.23, ν011 = 0.30, and ν111 = 0.29.

  16. Optical characterization and electrochemical behavior of electrochromic windows using magnetron sputter deposition Tungsten Oxide and (1-x) WO 3xTiO II thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhuying; Liu, Zuli; Yao, Kailun; Song, Yusu

    2006-02-01

    Since Deb's experiment in 1973 on the electrochromic effect, transmissive electrochromic devices (ECDs) exhibit outstanding potential as energy efficient window controls which allow dynamic control of the solar energy transmission [1]. These devices with non-volatile memory, once in the coloured state, remain in the same state even after removal of the field. The optical and electrochemical properties of electrochromic windows using magnetron sputter deposition tungsten oxide thin films and titanium oxide doped tungsten oxide thin films are investigated. From the UV region of the transmittance spectra, the band gap energy from the fundamental absorption edge can be determined. And the impedance of these thin films in 1 mol LiClO 4 propylene carbonate electrolyte (LIPC) are measured and analysed. Equivalent circuit of thin film impedances, and correlative resistances and constant phase angle element are gained. SEM and XRD of the tungsten oxide thin films and (1-x) WO 3xTiO II thin films are studied. These performance characteristics make tungsten oxide thin films and titanium oxide doped tungsten oxide thin films materials suitable for electrochromic windows applications.

  17. Comparative Study of Cu Films Prepared by DC, High-Power Pulsed and Burst Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Oskirko, V. O.; Semenov, V. A.; Oskomov, K. V.; Rabotkin, S. V.

    2016-05-01

    A comparative study of deposition rate, adhesion, structural and electrical properties of nanocrystalline copper thin films deposited using direct current magnetron sputtering (DCMS) and different regimes of high power pulsed magnetron sputtering is presented. High-power impulse magnetron sputtering (HIPIMS) and burst regime (pulse packages) of magnetron sputtering are investigated. The ion and atomic flows toward the growing film during magnetron sputtering of a Cu target are determined. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. In all sputtering regimes, Cu films have mixture crystalline orientations of [111], [200], [311] and [220] in the direction of the film growth. As peak power density in studied deposition regimes was different in order of magnitude (from 15 W/cm2 in DC regime to 3700 W/cm2 in HIPIMS), film properties were also greatly different. DCMS Cu films exhibit a porous columnar grain structure. In contrast, HIPIMS Cu films have a slightly columnar and denser composition. Cu films deposited using burst regimes at peak power density of 415 W cm-2 and ion-to-atom ratio of about 5 have the densest composition and smallest electrical resistance.

  18. Comparative Study of Cu Films Prepared by DC, High-Power Pulsed and Burst Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Oskirko, V. O.; Semenov, V. A.; Oskomov, K. V.; Rabotkin, S. V.

    2016-08-01

    A comparative study of deposition rate, adhesion, structural and electrical properties of nanocrystalline copper thin films deposited using direct current magnetron sputtering (DCMS) and different regimes of high power pulsed magnetron sputtering is presented. High-power impulse magnetron sputtering (HIPIMS) and burst regime (pulse packages) of magnetron sputtering are investigated. The ion and atomic flows toward the growing film during magnetron sputtering of a Cu target are determined. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. In all sputtering regimes, Cu films have mixture crystalline orientations of [111], [200], [311] and [220] in the direction of the film growth. As peak power density in studied deposition regimes was different in order of magnitude (from 15 W/cm2 in DC regime to 3700 W/cm2 in HIPIMS), film properties were also greatly different. DCMS Cu films exhibit a porous columnar grain structure. In contrast, HIPIMS Cu films have a slightly columnar and denser composition. Cu films deposited using burst regimes at peak power density of 415 W cm-2 and ion-to-atom ratio of about 5 have the densest composition and smallest electrical resistance.

  19. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  20. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    NASA Astrophysics Data System (ADS)

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-01

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness Rq evolves with film thickness as a power law, Rq ˜ dfβ, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β1 = 0.14 and β2 = 0.64 for RT, and β1 = 0.89 and β2 = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  1. Magnetron co-sputtering system for coating ICF targets

    SciTech Connect

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-12-09

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres. The preliminary data on the properties of a Au-Cu binary alloy system by SEM and STEM analysis is presented.

  2. Plasma regimes in high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    de Los Arcos, Teresa

    2013-09-01

    High Power Pulsed Magnetron Sputtering (HPPMS) is a relatively recent variation of magnetron sputtering where high power is applied to the magnetron in short pulses. The result is the formation of dense transient plasmas with a high fraction of ionized species, ideally leading to better control of film growth through substrate bias. However, the broad range of experimental conditions accessible in pulsed discharges results in bewildering variations in current and voltage pulse shapes, pulse power densities, etc, which represent different discharge behaviors, making it difficult to identify relevant deposition conditions. The complexity of the plasma dynamics is evident. Within each pulse, plasma characteristics such as plasma composition, density, gas rarefaction, spatial distribution, degree of self-sputtering, etc. vary with time. A recent development has been the discovery that the plasma emission can self-organize into well-defined regions of high and low plasma emissivity above the racetrack (spokes), which rotate in the direction given by the E ×B drift and that significantly influence the transport mechanisms in HPPMS. One seemingly universal characteristic of HPPMS plasmas is the existence of well defined plasma regimes for different power ranges. These regimes are clearly differentiated in terms of plasma conductivity, plasma composition and spatial plasma self-organization. We will discuss the global characteristics of these regimes in terms of current-voltage characteristics, energy-resolved QMS and OES analysis, and fast imaging. In particular we will discuss how the reorganization of the plasma emission into spokes is associated only to specific regimes of high plasma conductivity. We will also briefly discuss the role of the target in shaping the characteristics of the HPPMS plasma, since sputtering is a surface-driven process. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SFB-TR87.

  3. Sputter Deposition of Metallic Sponges

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-01-18

    Metallic films are grown with a sponge-like morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous porosity on the sub-micron scale. The stabilization of the metallic sponge is directly correlated with a limited range for the sputter deposition parameters of working gas pressure and substrate temperature. This sponge-like morphology augments the features as generally understood in the classic zone models of growth for physical vapor deposits. Nickel coatings are deposited with working gas pressures up to 4 Pa and for substrate temperatures up to 1100 K. The morphology of the deposits is examined in plan and in cross-section with scanning electron microscopy. The parametric range of gas pressure and substrate temperature (relative to absolute melt point) for the deposition processing under which the metallic sponges are produced appear universal for many metals, as for example, including gold, silver, and aluminum.

  4. Mechanical, tribological, and electrochemical behavior of Cr 1- xAl xN coatings deposited by r.f. reactive magnetron co-sputtering method

    NASA Astrophysics Data System (ADS)

    Sanchéz, J. E.; Sanchéz, O. M.; Ipaz, L.; Aperador, W.; Caicedo, J. C.; Amaya, C.; Landaverde, M. A. Hernández; Beltran, F. Espinoza; Muñoz-Saldaña, J.; Zambrano, G.

    2010-02-01

    Chromium aluminum nitride (Cr 1- xAl xN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N 2) gas mixture from chromium and aluminum targets. Properties of deposited Cr 1- xAl xN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr 1- xAl xN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr 1- xAl xN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr 1- xAl xN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr 1- xAl xN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.

  5. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Guojun; Jiang, Bailing

    2016-02-01

    CrTiAlN and CrTiAlMoN nano-multilayer coatings were deposited by closed field unbalanced magnetron sputtering. TiMoN and CrTiMoN nano-multilayer coatings with same Mo2N layer thickness were also prepared for comparison. The structure of these coatings is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The mechanical and tribological properties were characterized and compared by nano-indentation and ball-on-disc test. It was found that these coatings were structured by fcc metal nitride phases (including CrN, TiN, AlN and Mo2N) and the preferred orientation changed from (1 1 1) to (2 0 0) with the increase of Mo content. The TEM results showed that the coatings exhibited typical columnar structure and nano-multilayer structure with modulation periods ranged from 3.2 nm to 7.6 nm. Among these coatings, CrTiAlMoN coatings presented the highest hardness, lowest coefficient of friction (COF) and wear rate. The hardness of these nano-multilayer coatings were determined by layer interfaces: TiN/Mo2N and AlN/Mo2N layer interface showed benefit on hardness enhancement while CrN/Mo2N layer interface led to a great hardness decrement. In comparison with the other as-deposited coatings, the low COF of CrTiAlMoN coatings was not only affected by Mo addition but also related to its oxidation behaviors.

  6. Ion-induced oxidation of aluminum during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kreiter, Oliver; Grosse-Kreul, Simon; Corbella, Carles; von Keudell, Achim

    2013-04-01

    Particle beam experiments were conducted in an ultra-high-vacuum vessel to mimic target poisoning during reactive magnetron sputtering of aluminum. Aluminum targets were exposed to quantified beams of argon ions, oxygen atoms and molecules, and aluminum vapour. The growth and etch rates were measured in situ by means of an Al-coated quartz crystal microbalance. The chemical state of the target surface was monitored in-situ by real-time Fourier transform infrared spectroscopy. The surface processes were modelled through a set of balance equations providing sputter yields and sticking coefficients. The results indicate that the oxygen uptake of the aluminum surface is enhanced by a factor 1 to 2 by knock-on implantation and that the deposition of aluminum is not affected by the oxidation state of the surface.

  7. Surface characterization of Zr/Ti/Nb tri-layered films deposited by magnetron sputtering on Si(111) and stainless steel substrates

    SciTech Connect

    Tallarico, Denise A.; Gobbi, Angelo L.; Filho, Pedro I. Paulin; Galtayries, Anouk; Nascente, Pedro A. P.

    2012-09-15

    Among metallic materials, commercially pure titanium and titanium alloys are very often used as biomaterials for implants. Among these alloys, titanium-aluminum-vanadium alloy Ti-6 A-4 V is one of the most commonly used due to its excellent biocompatibility and ability to allow bone-implant integration. A new class of Ti alloys employs Zr for solid-solution hardening and Nb as {beta}-phase stabilizer. Metals such as Ti, Nb, and Zr-known as valve metals-usually have their surfaces covered by a thin oxide film that forms spontaneously in air. This oxide film constitutes a barrier between the metal and the medium. The Ti-Nb-Zr alloys have mechanical and corrosion resistance characteristics which make them suitable for use as implants. Tri-layered films of Ti-Nb-Zr were deposited on both Si(111) and stainless steel (SS) substrates using dc magnetron sputtering equipment, under an argon atmosphere according to the following methodology: a 100 nm thick layer of Nb was deposited on the substrate, followed by a 200 nm thick layer of Ti, and finally a 50 nm thick layer of Zr, on top of the multilayer stack. The morphology and chemical composition of the films were analyzed by atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). AFM images showed that the Zr/Ti/Nb tri-layer films presented nanostructured grains and low roughness. The ToF-SIMS depth profiles confirmed the formation of a three-layered film on Si(111) with well-defined and sharp interfaces between the layers, while the deposition on the stainless steel substrate caused slight intermixing at the different alloy/Nb, Nb/Ti and Ti/Zr interfaces, reflecting the greater roughness of the raw substrate. The XPS results for the Zr/Ti/Nb layers deposited on Si(111) and SS confirmed that the outermost layer consisted of Zr only, with a predominance of ZrO{sub 2}, as the metal layer is passivated in air. An oxidation treatment of 1000 Degree

  8. Magnetron-sputter deposition of high-indium-content n-AlInN thin film on p-Si(001) substrate for photovoltaic applications

    SciTech Connect

    Liu, H. F.; Tan, C. C.; Dalapati, G. K.; Chi, D. Z.

    2012-09-15

    Al{sub 0.278}In{sub 0.722}N thin films have been grown on p-type Si(001) and c-plane sapphire substrates by employing radio-frequency magnetron-sputter deposition at elevated temperatures. High-resolution x-ray diffraction, as well as pole-figure measurements, reveals no phase separation of the thin films. The Al{sub 0.278}In{sub 0.722}N film grown on p-Si(001) substrate is a typical fiber-texture with AlInN(0001)//Si(001) while that on the c-sapphire exhibits the onset of epitaxy. Microscopic studies reveal that the growth is dominated by a columnar mechanism and the average columnar grain diameter is about 31.5 and 50.8 nm on p-Si(001) and c-sapphire substrates, respectively. Photoluminescence at room-temperature exhibits a strong emission peak at 1.875 eV, smaller than the optical absorption edge (2.102 eV) but larger than the theoretical bandgap energy (1.70 eV), which is attributable to the band-filling effect, as is supported by the high electron density of 4.5 Multiplication-Sign 10{sup 20} cm{sup -3}. The n-Al{sub 0.278}In{sub 0.722}N/p-Si(001) heterostructure is tested for solar cells and the results are discussed based on the I-V characteristics and their fittings.

  9. The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti-Si-V-N films deposited by DC reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fernandes, F.; Loureiro, A.; Polcar, T.; Cavaleiro, A.

    2014-01-01

    In the last years, vanadium rich films have been introduced as possible candidates for self-lubrication at high temperatures, based on the formation of V2O5 oxide. The aim of this investigation was to study the effect of V additions on the structure, mechanical properties and oxidation resistance of Ti-Si-V-N coatings deposited by DC reactive magnetron sputtering. The results achieved for TiSiVN films were compared and discussed in relation to TiN and TiSiN films prepared as reference. All coatings presented a fcc NaCl-type structure. A shift of the diffraction peaks to higher angles with increasing Si and V contents suggested the formation of a substitutional solid solution in TiN phase. Hardness and Young's modulus of the coatings were similar regardless on V content. The onset of oxidation of the films decreased significantly to 500 °C when V was added into the films; this behaviour was independent of the Si and V contents. The thermogravimetric isothermal curves of TiSiVN coatings oxidized at temperatures below the melting point of α-V2O5 (∼685 °C) showed two stages: at an early stage, the weight increase over time is linear, whilst, in the second stage, a parabolic evolution can be fitted to the experimental data. At higher temperatures only a parabolic evolution was fitted. α-V2O5 was the main phase detected at the oxidized surface of the coatings. Reduction of α-V2O5 to β-V2O5 phase occurred for temperatures above its melting point.

  10. Relationship between the physical and structural properties of Nb{sub z}Si{sub y}N{sub x} thin films deposited by dc reactive magnetron sputtering

    SciTech Connect

    Sanjines, R.; Benkahoul, M.; Sandu, C.S.; Schmid, P.E.; Levy, F.

    2005-12-15

    The optical and electrical properties of Nb{sub z}Si{sub y}N{sub x} thin films deposited by dc reactive magnetron sputtering have been investigated as a function of the Si content (C{sub Si}). Optical properties were studied by both specular reflectivity and spectroscopic ellipsometry. Electrical resistivity was measured by the van der Pauw method at room temperature and as a function of the temperature down to 10 K. Both the optical and electrical properties of Nb{sub z}Si{sub y}N{sub x} films are closely related with the chemical composition and microstructure evolution caused by Si addition. For C{sub Si} up to 4 at. % the Si atoms are soluble in the lattice of the NbN crystallites. In this compositional regime, the optical and electrical properties show little dependence on the Si content. Between 4 and 7 at. % the surplus of Si atoms segregates at the grain boundaries, builds an insulating SiN{sub x} layer, and originates important modifications in the optical and electrical properties of these films. Further increase of C{sub Si} leads to the formation of nanocomposite structures. The electrical properties of these films are well described by the grain-boundary scattering model with low probability for electrons to cross the grain boundary. The appearance of the intragranular-insulating SiN{sub x} layer and the reduction of the grain size are noticed in the dielectric function mainly as a strong damping of the plasma oscillation.

  11. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  12. Factors determining the efficiency of magnetron sputtering. Optimization criteria

    NASA Astrophysics Data System (ADS)

    Rogov, A. V.; Kapustin, Yu. V.; Martynenko, Yu. V.

    2015-02-01

    We report on the results of experimental study of the dependence of sputtering energy efficiency K w in a dc planar magnetron sputtering setup on the discharge power, working gas pressure, magnetic field, cathode erosion depth, and the structure of the gas puffing system and anode. We propose that this parameter be used for comparing the degree of perfection of the magnetron design irrespective of the magnetron size and structural features. The results of measurements of K w in sputtering of Al, Ti, Cr, Cu, Zn, Zr, Nb, Mo, Ag, In, Sn, Ta, W, Pt, and Au are considered. The optimization criterion is worked out for the magnetic system of the magnetron, which ensures the minimal working pressure and the maximal sputtering rate for the cathode. The results are analyzed theoretically.

  13. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  14. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  15. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  16. Corrosion behavior of magnetron sputter-deposited (Mo/0.6/Ru/0.4/)82B18 and Mo82B18 amorphous metal films

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Thakoor, A. P.; Khanna, S. K.; Johnson, W. L.

    1984-01-01

    Amorphous metallic films of Mo49Ru33B18 and Mo82B18 have been prepared by magnetron sputtering, and their corrosion behavior was investigated and compared with amorphous liquid-quenched Mo49Ru33B18 and crystalline Mo i acidic and basic solutions. Sputtered Mo49Ru33B18 showed lower corrosion rates compared with liquid-quenched Mo49Ru33B18, owing to the superior surface smoothness and uniformity of the former. Amorphous Mo82B18 showed low corrosion rates in both acidic and basic aqueous solutions. Comparison of the corrosion properties of Mo49Ru33B18 with Mo82B18 and Mo demonstrates the roles of the alloys' constituents. Ru significantly extends the passive region to high-anodic potentials, but, at less-anodic potentials, Mo82B18 has the lowest corrosion rate.

  17. A Comprehensive Study on Mo/CdTe Metal-Semiconductor Interface Deposited by Radio Frequency Magnetron Sputtering.

    PubMed

    Dhar, N; Khan, N A; Chelvanathan, P; Akhtaruzzaman, M; Alam, M M; Alothman, Z A; Sopian, K; Amin, N

    2015-11-01

    Metal-semiconductor (MS) junction between Mo and CdTe, which is one of the fundamental issues for CdTe based solar cell, has been investigated for films deposited on different substrates. XRD pattern of Mo/CdTe films on the polyimide (PI) substrate shows a strong preferential orientation of MoTe2 in (100) at 2θ = 29.44 degrees, which becomes less apparent as deposition time of CdTe increases. However, on soda lime glass (SLG) no such XRD reflection pattern is observed. Moreover, from EDX measurement, Mo-Te compound also identifies MoTe2 at Mo/CdTe interface on PI substrate, which is not present on SLG. Bulk carrier concentration of Mo/CdTe films on PI substrate for lower deposition time of CdTe is found 1.42 x 10(18) cm(-3), which is almost equal to MoTe2. Thereafter, it decreases as CdTe growth time increases. The type of unintentionally formed MoTe2 on PI substrate is found to be n-type in nature. Lattice constants of a = 6.5 Å for CdTe and a = 3.52 Å for MoTe2 are found from nanostructure study by TEM. PMID:26726685

  18. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.

    2016-03-01

    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  19. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.

    2016-08-01

    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  20. Direct-current magnetron sputtering for optical coatings

    NASA Astrophysics Data System (ADS)

    Lagana, Paolo; Misiano, Carlo; Simonetti, Enrico

    1994-09-01

    The advantages of optical coatings realized by Sputtering versus thermal evaporation by crucible or Electron Gun, are very well known, but this technique is used only partially for dielectric coatings despite of a wide use in semiconductors and microcircuits, due to the slowness of RF Sputtering processes when starting from dielectric targets. This paper describes a DC Reactive Magnetron Sputtering technique from metal target set up at Ce.Te.V. for deposition of multilayer coatings, with cycle times comparable-or even faster-than conventional solution. The advantages of this process consist in obtaining films with high optical and mechanical performances with high repeatability on room temperature substrates. Pumping cycle can thus be faster and dead time for substrates heating and cooling down can be avoided, characteristics which plastic substrates can particularly take advantage of. Performances of the realized coatings on glass and plastic substrates, together with cycle time and material costs, are finally compared to results obtainable by Electron Beam Gun Reactive Deposition.

  1. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect

    Usha, N.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  2. Effect of annealing on the structural and UV photoluminescence properties of Sb-doped SnO2 films deposited on Al2O3 (0001) substrates by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Feng, Xianjin; Luo, Yi; Luan, Caina

    2014-11-01

    The antimony-doped tin oxide (SnO2∶Sb) films have been deposited on the Al2O3 (0001) substrates by RF magnetron sputtering. The influence of annealing on the structural and photoluminescence (PL) properties of the SnO2∶Sb films was investigated. The prepared samples were polycrystalline films having a rutile structure of pure SnO2 and a preferred orientation along the (110) direction, with an improvement in the film crystallinity observed after annealing. An ultraviolet PL peak near 334 nm was observed at room temperature both before and after annealing. The corresponding PL mechanism was discussed in detail.

  3. The target heating influence on the reactive magnetron sputtering process

    NASA Astrophysics Data System (ADS)

    Bondarenko, A.; Kolomiytsev, A.; Shapovalov, V.

    2016-07-01

    A physicochemical model for the reactive magnetron sputtering of a “hot” target is described in this paper. The system consisting of eight algebraic equations was solved for a tantalum target sputtered in an O2 environment. It was established that the hysteresis effect disappears with the increase of the ion current density.

  4. Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering

    SciTech Connect

    Ju, Hongbo; Xu, Junhua

    2015-09-15

    Composite Nb–V–Si–N films with various V contents (3.7–13.2 at.%) were deposited by reactive magnetron sputtering and the effects of V content on the microstructure, mechanical and tribological properties of Nb–V–Si–N films were investigated. The results revealed that a three-phase structure, consisting of face-centered cubic (fcc) Nb–V–Si–N, hexagonal close-packed (hcp) Nb–V–Si–N and amorphous Si{sub 3}N{sub 4}, co-exists in the Nb–V–Si–N films and the cubic phase is dominant. The hardness and critical load (L{sub c}) of Nb–V–Si–N films initially increased gradually and reached a summit, then decreased with the increasing V content in the films and the maximum values were 35 GPa and 9.8 N, respectively, at 6.4 at.% V. The combination of V into Nb–Si–N film led to the fracture toughness linearly increasing from 1.11 MPa·m{sup 1/2} at 3.7 at.% V to 1.67 MPa·m{sup 1/2} at 13.2 at.% V. At room temperature (RT), the average friction coefficient decreased from 0.80 at 3.7 at.% V to 0.55 at 13.2 at.% V for the Nb–V–Si–N films. The wear rate of Nb–V–Si–N films initially decreased and then increased after reaching a minimum value of about 6.35 × 10{sup −} {sup 7} mm{sup 3}/N·mm at 6.4 at.% V. As the rise of testing temperature from 200 °C to 600 °C, the average friction coefficient of Nb–V–Si–N films decreased with the increase of the testing temperature regardless of V content. However, the wear rate gradually increased for all films. The average friction coefficient and wear rate at RT and elevated temperatures were mainly influenced by the vanadium oxides with weakly bonded lattice planes. - Highlight: • Fcc-Nb–V–Si–N, hcp-Nb–V–Si–N and amorphous Si{sub 3}N{sub 4} co-existed in the films. • The amount of Si{sub 3}N{sub 4} decreased with increasing V content in the films. • Hardness of Nb–V–Si–N film (6.4 at.%) reached a maximum value of 35 GPa. • Addition of V led to the

  5. Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature

    SciTech Connect

    Zhang, X. B.; Pei, Z. L.; Gong, J.; Sun, C.

    2007-01-01

    A study of the electrical properties and spatial distribution of the ZnO:Al (AZO) thin films prepared by dc magnetron sputtering at low deposition temperature was presented, with emphasis on the origin of the resistivity inhomogeneity across the substrate. Various growth conditions were obtained by manipulating the growth temperature T{sub S}, total pressure P{sub T}, and ion-to-neutral ratio J{sub i}/J{sub n}. The plasma characteristics such as radial ion density and floating/plasma potential distribution over the substrate were measured by Langmuir probe, while the flux and energy distribution of energetic species were estimated through Monte Carlo simulations. The crystalline, stress and electrical properties of the films were found to be strongly dependent on T{sub S} and J{sub i}/J{sub n}. Under the low J{sub i}/J{sub n} (<0.3) conditions, the T{sub S} exerted a remarkable influence on film quality. The films prepared at 90 deg. C were highly compressed, exhibiting poor electrical properties and significant spatial distribution. High quality films with low stress and resistivity were produced at higher T{sub S} (200 deg. C). Similarly, at lower T{sub S} (90 deg. C), higher J{sub i}/J{sub n} ({approx}2) dramatically improved the film resistivity as well as its lateral distribution. Moreover, it indicated that the role of ion bombardment is dependent on the mechanism of dissipation of incident species. Ion bombardment is beneficial to the film growth if the energy of incident species E{sub i} is below the penetration threshold E{sub pet} ({approx}33 eV for ZnO); on the other hand, the energy subimplant mechanism would work, and the bombardment degrades the film quality when E{sub i} is over the E{sub pet}. The energetic bombardment of negative oxygen ions rather than the positives dominated the resistivity distribution of AZO films, while the nonuniform distribution of active oxygen played a secondary role which was otherwise more notable under conditions of

  6. Monte Carlo simulation of the transport of atoms in DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mahieu, S.; Buyle, G.; Depla, D.; Heirwegh, S.; Ghekiere, P.; De Gryse, R.

    2006-02-01

    In this work, we present a Monte Carlo simulation for the transport of sputtered particles during DC magnetron sputter deposition through the gas phase. The nascent sputter flux has been simulated by SRIM and TRIM, while the collisions of the sputtered atoms with the sputter gas are simulated with a screened Coulomb potential, with the Molière screening function and the Firsov screening length. The model calculates the flux of the atoms arriving at the substrate, their energy, direction and number of collisions they underwent. The model was verified by comparing the simulated thickness profiles with experimental profiles of deposited layers of Al, Cu and Zr/Y (85/15 wt%) on large substrates (ratio of the substrate diameter to the target diameter is 8). A good agreement between the experimental data and the simulations for sputter pressures (0.3-1 Pa) and target-substrate distances (7-16 cm) is obtained.

  7. Influence of RF power on magnetron sputtered AZO films

    SciTech Connect

    Agarwal, Mohit; Modi, Pankaj; Dusane, R. O.

    2013-02-05

    Al-doped Zinc Oxide (AZO) transparent conducting films are prepared on glass substrate by RF magnetron sputtering under different RF power with a 3 inch diameter target of 2 wt%Al{sub 2}O{sub 3} in zinc oxide. The effect of RF power on the structural, optical and electrical properties of AZO films was investigated by X-ray Diffraction (XRD), Hall measurement and UV-Visible spectrophotometry. The XRD data indicates a preferential c-axis orientation for all the films. All films exhibit high transmittance (<90%) in visible region. Films deposited at 60 W power exhibit lowest resistivity of 5.7 Multiplication-Sign 10{sup -4}{omega}cm. Such low-resistivity and high-transmittance AZO films when prepared using low RF power at room temperature could find important applications in flexible electronics.

  8. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    SciTech Connect

    Anders, André

    2014-09-02

    In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  9. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE PAGESBeta

    Anders, André

    2014-09-02

    In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in thismore » review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less

  10. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  11. Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO){sub 3}In{sub 2}O{sub 3} thin films deposited by rf magnetron sputtering

    SciTech Connect

    Orikasa, Yuki; Hayashi, Naoaki; Muranaka, Shigetoshi

    2008-06-01

    Zinc indium oxide films were deposited by the rf magnetron sputtering method using a (ZnO){sub 3}In{sub 2}O{sub 3} target. The films were prepared at 573 K in various Ar/O{sub 2} sputtering gases (O{sub 2} content: 0%-25%). The effect of the oxygen gas content in the sputtering gas on the structural, optical, electrical, and thermoelectric properties of the films was investigated. The films had a c-axis oriented layer structure. The films deposited at 0%-3% oxygen gas contents exhibited a high electrical conductivity with a high carrier concentration, n{approx_equal}10{sup 20} cm{sup -3}, while the conductivity of the films significantly decreased above the 3% oxygen gas content, having a carrier concentration below 10{sup 18} cm{sup -3}. From the optical transmission measurement, the band gap of the films was estimated to be 3.01 eV. The films deposited at 3%-8% oxygen gas contents showed a high Seebeck coefficient, -300 {mu}V/K, while the maximum power factor, 4.78x10{sup -5} W/m K{sup 2}, was obtained at the 2% oxygen gas content. The Seebeck coefficient and the power factor were calculated on the basis of degenerate semiconductors. These results suggest that zinc indium oxide films have the possibility of being high performance thermoelectric materials.

  12. Fabrication of hydrogenated microcrystalline silicon thin films using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Hsuan-Wen; Su, Wei-Ning; Han, Chia-Wei; Chen, Sheng-Hui; Lee, Cheng-Chung

    2007-09-01

    Hydrogenated microcrystalline silicon (μc-Si:H ) thin films have attracted many attentions due to the high mobility compared with the amorphous silicon (a-Si) thin films. To fabricate μc-Si:H thin films, plasma-enhance chemical vapor deposition (PECVD) is the most popular method. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH 4). Whereas there is no these disadvantages using radio-frequency (RF) magnetron sputtering to deposit silicon thin films. Unfortunately, the silicon thin films deposited by the regular RF magnetron sputtering are a-Si. In this study, μc-Si:H thin films were fabricated using RF magnetron sputtering with argon and hydrogen as working gas at low substrate temperature (T s=250°C and 350°C).The grain sizes, crystal volume fractions and photosensitivity (ratios of dark conductivities and photo conductivities) of the μc-Si:H thin films which deposited with different hydrogen partial pressures and sputtering powers were analyzed. The results showed that the grain sizes and the crystal volume fractions were increased and the photosensitivity was decreased as the hydrogen partial pressure increased at the sputtering power 200W. The grain size was between 15 to 20 nm and the crystal volume fractions was between 75 to 80% when the hydrogen partial pressure was over 90%.

  13. Magnetron deposition of coatings with evaporation of the target

    NASA Astrophysics Data System (ADS)

    Bleykher, G. A.; Krivobokov, V. P.; Yuryeva, A. V.

    2015-12-01

    We analyze the potentialities of the plasma in various types of magnetron sputtering systems including pulsed and liquid-target systems for producing intense emission of atoms and high-rate deposition of coatings. For this purpose, a mathematical model of thermal and erosion processes in the target is developed based on the heat conduction equations taking into account first-order phase transitions. Using this model, we determine the parameters of magnetrons for which intense evaporation of atoms from the target surface takes place. It is shown that evaporation leads to an increase in the growth rate of metal coatings by 1-2 orders of magnitude as compared to conventional magnetron systems based only on collisional sputtering.

  14. Effect of Substrate Bias Voltage on the Physical Properties of Zirconium Nitride (ZrN) Films Deposited by Mid Frequency Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Kannan, R.; Loganathan, S.

    2014-05-01

    Present work involves the preparation of Zirconium Nitride thin films on stainless steel (SS) (304L grade) substrate by reactive cylindrical magnetron sputtering method. The X-ray diffraction (XRD) profile of the ZrN thin films prepared with different bias voltage conforms face centered cubic structure with preferred orientation along the (111) plane at lower bias voltage (100 V) and at higher bias voltage (300 V) the preferred orientation shifted to (220) plane. The influences of bias voltage on the thickness and microhardness ZrN thin films have been studied. ZrN thin film sputtered with 300 V bias voltage shows the maximum reflectance of 90% at a wavelength of 1000 nm. The coated substrates have been found to exhibit improved corrosion resistance compared to the SS plate. The root mean square surface roughness and surface morphology were investigated from 3D atomic force microscope (AFM) images and scanning electron microscope (SEM), which indicate smooth and uniform surface pattern without any pin holes.

  15. RF magnetron sputter-deposition of La{sub 0.5}CoO{sub 3}//Pt composite electrodes for Pb(Zr,Ti)O{sub 3} thin film capacitors

    SciTech Connect

    Raymond, M.V.; Al-Shareef, H.N.; Tuttle, B.A.; DiMos, D.; Evans, J.T.

    1996-07-01

    La{sub 0.5}Sr{sub 0.5}CoO{sub 3} (LSCO) thin films have been deposited using RF magnetron sputter-deposition for use as an electrode material for PZT (PbZrTiO{sub 3}) thin film capacitors. Effect of O{sub 2}:Ar sputter gas ratio during deposition, on LSCO film properties was studied. It was found that the resistivity of the LSCO films deposited at ambient temperature decreases as the O{sub 2}: Ar ratio was increased for both as-deposited and annealed films. It was also found that thin overlayers of LSCO tend to stabilize the underlying Pt//Ti electrode structure during subsequent thermal processing. The LSCO//Pt//Ti composite electrode stack has a low resistivity and provides excellent fatigue performance for PZT capacitors. Furthermore, the LSCO//Pt//Ti electrode sheet resistance does not degrade with annealing temperature and the electrode does not display hillock formation. Possible mechanisms for the stabilization of the Pt//Ti electrode with LSCO overlayers are discussed.

  16. Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method.

    PubMed

    Kikuchi, Hisashi; Kitano, Masaaki; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu; Kamat, Prashant V

    2006-03-23

    TiO(2) thin films prepared by a radio frequency magnetron sputtering (RF-MS) deposition method were found to show an enhanced photoelectrochemical response in the visible light region. By controlling the temperature and the gaseous medium during the deposition step, it was possible to control the properties of these films. The photoelectrochemical behavior of the sputtered TiO(2) thin films was compared with that of a commercial TiO(2) sample, and the sputtered films showed higher incident photon to the charge carrier generation efficiency (IPCE of 12.6% at 350 nm) as well as power conversion efficiency (0.33% at 1.84 mW/cm(2)) than the commercial TiO(2) sample. Femtosecond transient absorption spectroscopy experiments have revealed that a major fraction of photogenerated electrons and holes recombine within a few picoseconds, thus limiting photocurrent generation efficiency. The mechanistic insights obtained in the present study should aid in designing semiconductor nanostructures that will maximize the charge separation efficiency and extend the response of the large band gap semiconductor TiO(2) into visible light regions. PMID:16539493

  17. The release of nickel from nickel-titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by rf-magnetron sputtering.

    PubMed

    Surmenev, R A; Ryabtseva, M A; Shesterikov, E V; Pichugin, V F; Peitsch, T; Epple, M

    2010-04-01

    Thin calcium phosphate coatings were deposited on NiTi substrates (plates) by rf-magnetron sputtering. The release of nickel upon immersion in water or in saline solution (0.9% NaCl in water) was measured by atomic absorption spectroscopy (AAS) for 42 days. The coating was analyzed before and after immersion by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). After an initial burst during the first 7 days that was observed for all samples, the rate of nickel release decreased 0.4-0.5 ng cm(-2) d(-1) for a 0.5 mum-thick calcium phosphate coating (deposited at 290 W). This was much less than the release from uncoated NiTi (3.4-4.4 ng cm(-2) d(-1)). Notably, the nickel release rate was not significantly different in pure water and in aqueous saline solution. PMID:20119644

  18. GaAs Films Prepared by RF-Magnetron Sputtering

    SciTech Connect

    L.H. Ouyang; D.L. Rode; T. Zulkifli; B. Abraham-Shrauner; N. Lewis; M.R. Freeman

    2001-08-01

    The authors reported on the optical absorption, adhesion, and microstructure of RF-magnetron sputtered films of hydrogenated amorphous and microcrystalline GaAs films for the 1 to 25 {micro}m infrared wavelength rate. Sputtering parameters which were varied include sputtering power, temperature and pressure, and hydrogen sputtering-gas concentration. TEM results show a sharp transition from purely amorphous GaAs to a mixture of microcrystalline GaAs in an amorphous matrix at 34 {+-} 2 C. By optimizing the sputtering parameters, the optical absorption coefficient can be decreased below 100 cm{sup -1} for wavelengths greater than about 1.25 {micro}m. These results represent the lowest reported values of optical absorption for sputtered films of GaAs directly measured by spectrophotometry for the near-infrared wavelength region.

  19. A Plasma Lens for Magnetron Sputtering

    SciTech Connect

    Anders, Andre; Brown, Jeff

    2010-11-30

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  20. Effects of Substrate Temperature on ZAO Thin Film Prepared by DC Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Lu, F.; Zhou, X. G.; Xu, C. H.; Wen, L. S.

    The effects of substrate temperature on the resistivity and transmittance of ZAO thin films prepared by DC magnetron reactive sputtering have been investigated. The properties of the samples have been analyzed through Hall effect, X-ray diffraction and SEM. The results show that carrier concentration, Hall mobility and crystallinity of the films depend obviously on the deposition temperature. The film deposited at the range 200-250°C has lower resistivity and higher transmittance.

  1. Comprehensive computer model for magnetron sputtering. I. Gas heating and rarefaction

    SciTech Connect

    Jimenez, Francisco J.; Dew, Steven K.

    2012-07-15

    The complex interaction between several variables in magnetron sputtering discharges is a challenge in developing engineering design tools for industrial applications. For instance, at high pressures, rarefaction and gas heating should no longer be neglected for determining several parameters of the process. In this article, we use a comprehensive 3D reactor-scale simulator that incorporates most phenomena of interest in a self-consistent manner to simulate the transport of sputtered particles over a wide range of pressures and powers. Calculations of aluminum deposition rates and metal vapor densities are in reasonable agreement with experiments over a wide range of pressures and powers. Of the elements investigated (Al, Ti, and Cu), copper showed the greatest rarefaction (30%) due to its higher sputtering yield. Titanium, despite a slightly lower sputtering yield than Al, shows a greater rarefaction than aluminum as more particles are reflected from the target as high energy neutrals. In this case, a more efficient energy transfer process is responsible for the higher rarefaction observed in Ti sputtering when compared to Al. The authors also observed that by sputtering at a higher pressure, the probability of electron impact ionization of sputtered particles is increased and speculate about the role of this process in contrast to penning ionization, which is believed to be the dominant ionization mechanism in magnetron sputtering.

  2. Reactive sputter deposition of boron nitride

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied {minus}300 V dc bias.

  3. The effect of Si content on structure and mechanical features of silicon-containing calcium-phosphate-based films deposited by RF-magnetron sputtering on titanium substrate treated by pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Surmeneva, M.; Tyurin, A.; Mukhametkaliyev, T.; Teresov, A.; Koval, A.; Pirozhkova, T.; Shuvarin, I.; Chudinova, E.; Surmenev, R.

    2015-11-01

    Silicon-containing calcium phosphate (Si-CaP) coatings were fabricated by radio frequency (rf) magnetron sputtering using the targets prepared from hydroxyapatite (HA) powder with different silicon content. A powder of Si-HA (Ca10(PO4)6-x(SiO4)x(OH)2-x, x=0.5 and 1.72) was prepared by mechanochemical activation and then used as a precursor-powder to prepare a target for sputtering. The titanium substrate was acid etched and treated with pulsed electron beam with an energy density of 15 J/cm2. The average crystallite size as determined by XRD was 28 nm for the coatings obtained using the target prepared from the Si-HA powder (x=0.5), whereas Si-CaP (Si-HA powder x=1.72) films showed an amorphous structure. The nanohardness and the Young's modulus of the Si-CaP coating (x=0.5) deposited on titanium treated by pulsed electron beam are enhanced to 4.5 and 113 GPa compared to titanium substrate. Increase of Si content resulted in a dramatic decrease of the nanohardness and Young's modulus of Si-CaP films. However, Si-CaP coatings with the highest Si content revealed significantly lower values of elastic modulus, but slightly higher values of H/E and H3/E2 than did the non-coated specimens. Rf-magnetron sputtering allowed us to produce Si- CaP coatings with higher nanohardness and lower elastic modulus compared to titanium substrate.

  4. Very low pressure high power impulse triggered magnetron sputtering

    SciTech Connect

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  5. Reactive sputtering of δ-ZrH{sub 2} thin films by high power impulse magnetron sputtering and direct current magnetron sputtering

    SciTech Connect

    Högberg, Hans Tengdelius, Lina; Eriksson, Fredrik; Broitman, Esteban; Lu, Jun; Jensen, Jens; Hultman, Lars; Samuelsson, Mattias

    2014-07-01

    Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H{sub 2} plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at. % and O contents typically below 0.2 at. % as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of ∼0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase δ-ZrH{sub 2} (CaF{sub 2} type structure) at H content >∼55 at. % and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5–7 GPa for the δ-ZrH{sub 2} films that is slightly harder than the ∼5 GPa determined for Zr films and with coefficients of friction in the range of 0.12–0.18 to compare with the range of 0.4–0.6 obtained for Zr films. Wear resistance testing show that phase-pure δ-ZrH{sub 2} films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of ∼100–120 μΩ cm for the δ-ZrH{sub 2} films, which is slightly higher compared to Zr films with values in the range 70–80 μΩ cm.

  6. Photocatalytic activity and UV-protection of TiO2 nanocoatings on poly(lactic acid) fibres deposited by pulsed magnetron sputtering.

    PubMed

    Carneiro, J O; Teixeira, V; Nascimento, J H O; Neves, J; Tavares, P B

    2011-10-01

    The application of nanocoatings in the textile finishing is increasingly being explored because they open a whole new vista of value-addition possibilities in the textile sector. In the present work, low temperature pulsed DC magnetron sputtering method was used to create functional TiO2 nanocoatings on poly(lactic acid) textile fibres surfaces. In this study, the principal objectives in the application of TiO2 nanocoatings to textile materials are to impart UV protection functions and self-cleaning properties to the textile substrates. The TiO2 films were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, UV-visible spectroscopy and contact angle analysis. The Photocatalytic activity of the films was tested by measuring the photodegradation rates of rhodamine-B dye aqueous solution under UV light irradiation. The ultraviolet protection function was tested according to the Australian/New Zealand standards. It was observed that the TiO2 nanocoatings on poly(lactic acid) fibres showed an excellent ultraviolet protection (> 40) function and the photocatalytic efficiency was maintained even after a strong washing treatment. PMID:22400290

  7. Characterization of hydrogenated and deuterated silicon carbide films codeposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Pantelica, D.; Ionescu, P.; Petrascu, H.; Dracea, M. D.; Statescu, M.; Matei, E.; Rasoga, O.; Stancu, C.; Marascu, V.; Ion, V.; Acsente, T.; Dinescu, G.

    2016-03-01

    In this work we present the deposition of amorphous SiC thin films by radiofrequency dual magnetron sputtering. The dependence of the deposited films properties over the discharges electrical power and the effect of hydrogenous species (H2 and/or D2) addition to main discharge gas (Ar) were investigated. Accurate elemental analysis of the samples, including detection of hydrogen and deuterium, was performed by ion beam analysis (IBA) techniques: RBS (Rutherford Backscattering Spectrometry) and ERDA (Elastic Recoil Detection Analysis). SiCx thin films with thicknesses between 1700 and 4500 Å and C/Si ratio between 0.2/1 and 1.25/1 were obtained in different deposition conditions. The results prove that thin films of amorphous SiC with well controlled properties can be produced using radiofrequency dual magnetron sputtering.

  8. Room temperature growth of nanocrystalline anatase TiO 2 thin films by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Preetam; Kaur, Davinder

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  9. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G. H.

    2015-09-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  10. Magnetron-sputter deposition of Fe{sub 3}S{sub 4} thin films and their conversion into pyrite (FeS{sub 2}) by thermal sulfurization for photovoltaic applications

    SciTech Connect

    Liu Hongfei; Chi Dongzhi

    2012-07-15

    The authors report on the fabrication of FeS{sub 2} (pyrite) thin films by sulfurizing Fe{sub 3}S{sub 4} that were deposited by direct current magnetron sputtering at room temperature. Under the selected sputtering conditions, Fe{sub 3}S{sub 4} nanocrystal films are obtained and the nanocrystals tend to locally cluster and closely pack into ricelike nanoparticles with an increase in film thickness. Meanwhile, the film tends to crack when the film thickness is increased over {approx}1.3 {mu}m. The film cracking can be effectively suppressed by an introduction of a 3-nm Cu intermediate layer prior to Fe{sub 3}S{sub 4} deposition. However, an introduction of a 3-nm Al intermediate layer tends to enhance the film cracking. By post-growth thermal sulfurization of the Fe{sub 3}S{sub 4} thin films in a tube-furnace, FeS{sub 2} with high phase purity, as determined by using x ray diffraction, is obtained. Optical absorption spectroscopy was employed to characterize the resultant FeS{sub 2} thin films, which revealed two absorption edges at 0.9 and 1.2 eV, respectively. These two absorption edges are assigned to the direct bandgap (0.9 eV) and the indirect allowed transitions (1.2 eV) of FeS{sub 2}, respectively.

  11. Study of Ni{sub 2}-Mn-Ga phase formation by magnetron sputtering film deposition at low temperature onto Si substrates and LaNiO{sub 3}/Pb(Ti,Zr)O{sub 3} buffer

    SciTech Connect

    Figueiras, F.; Rauwel, E.; Amaral, V. S.; Vyshatko, N.; Kholkin, A. L.; Soyer, C.; Remiens, D.; Shvartsman, V. V.; Borisov, P.; Kleemann, W.

    2010-01-15

    Film deposition of Ni{sub 2}MnGa phaselike alloy by radio frequency (rf) magnetron sputtering was performed onto bare Si(100) substrates and LaNiO{sub 3}/Pb(Ti,Zr)O{sub 3} (LNO/PZT) ferroelectric buffer layer near room temperature. The prepared samples were characterized using conventional x-ray diffraction (XRD), superconducting quantum interference device, and electron dispersive x-ray spectroscopy from scanning electron microscope observations. The optimized films deposited under high rf power and low argon pressure present good surface quality and highly textured phase crystallization. The positioning distance between the substrate and the target-holder axis has some limited effect on the film's composition due to the specific diffusion behavior of each element in the sputtering plasma. Extended four pole high resolution XRD analysis allowed one to discriminate the intended Ni-Mn-Ga tetragonal martensitic phase induced by the (100) LNO/PZT oriented buffer. This low temperature process appears to be very promising, allowing separate control of the functional layer's properties, while trying to achieve high electromagnetoelastic coupling.

  12. : comparison between magnetron sputtering and sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Cosentino, S.; Knebel, S.; Mirabella, S.; Gibilisco, S.; Simone, F.; Bracht, H.; Wilde, G.; Terrasi, A.

    2014-07-01

    SiGeO films have been produced by a sol-gel derived approach and by magnetron sputtering deposition. Post-thermal annealing of SiGeO films in forming gas or nitrogen atmosphere between 600 and 900 °C ensured the phase separation of the SiGeO films and synthesis and growth of Ge nanoclusters (NCs) embedded in SiO2. Rutherford backscattering spectrometry analysis evidenced a similar Ge concentration (~12 %), but a different Ge out-diffusion after annealing between the two types of techniques with the formation of a pure SiO2 surface layer (~30 nm thick) in sol-gel samples. The thermal evolution of Ge NCs has been followed by transmission electron microscopy and Raman analysis. In both samples, Ge NCs form with similar size increase (from ~3 up to ~7 nm) and with a concomitant amorphous to crystalline transition in the 600-800 °C temperature range. Despite a similar Ge concentration, a significant lower NCs density is observed in sol-gel samples attributed to an incomplete precipitation of Ge, which probably remains still dispersed in the matrix. The optical absorption of Ge NCs has been measured by spectrophotometry analyses. Ge NCs produced by the sol-gel method evidence an optical band gap of around 2 eV, larger than that of NCs produced by sputtering (~1.5 eV). These data are presented and discussed also considering the promising implications of a low-cost sol-gel based technique towards the fabrication of light harvesting devices based on Ge nanostructures.

  13. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and

  14. The bioactivity mechanism of magnetron sputtered bioglass thin films

    NASA Astrophysics Data System (ADS)

    Berbecaru, C.; Stan, G. E.; Pina, S.; Tulyaganov, D. U.; Ferreira, J. M. F.

    2012-10-01

    Smooth and adherent bioactive coatings with ∼0.5 μm thickness were deposited onto Si substrates by the radiofrequency-magnetron sputtering method at 150 °C under 0.4 Pa of Ar atmosphere using a bioglass powder as target with a composition in the SiO2-CaO-MgO-P2O5-CaF2-B2O3-Na2O system. The bioactivity of the as-prepared bioglass samples was assessed by immersion in simulated body fluid for different periods of time up to 30 days. Grazing incidence X-ray diffraction, Fourier transform infra-red spectrometry and energy dispersive spectroscopy revealed that important structural and compositional changes took place upon immersing the samples in SBF. Whilst the excellent biomineralisation capability of the BG thin films was demonstrated by the in vitro induction of extensive and homogenous crystalline hydroxyapatite in-growths on their surfaces, a series of bioactivity process kinetics peculiarities (derogations from the classical model) were emphasised and thoroughly discussed.

  15. Microstructure, Mechanical, and Scratch Resistance Properties of TiAlCrNbN-Graded Composite Coating Deposited on AISI H13 Steel Substrate with Pulsed DC Closed Field Unbalanced Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kara, Levent; Küçükömeroğlu, Tevfik; Baran, Özlem; Efeoğlu, İhsan; Yamamoto, Kenji

    2014-04-01

    Structure and adhesion properties of TiAlCrNbN coatings were investigated. These coatings were deposited onto AISI H13 steel substrate using pulsed dc closed field unbalanced magnetron sputtering at different deposition parameters including duty cycle, bias voltage, and working pressure. The coatings have been characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The TiAlCrNbN-graded composite coatings have a dense and columnar structure. The X-ray diffraction patterns of coatings exhibited predominantly c-TiAlCrN, h-NbN, and h-TiAlN reflections. Scratch resistance test showed that the highest adhesion strength was attained as 68 N at 2.5 μs duty time, 100 V bias voltages, and 3 × 10-3 Torr deposition parameters. The lowest adhesion strength was obtained as 55 N at 0.5 μs duty time, 50V bias voltage, and 2 × 10-3 Torr deposition parameters.

  16. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument. PMID:26429486

  17. EMI shielding using composite materials with two sources magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Jaroszewski, M.; Lewandowski, M.

    2016-02-01

    In this study, the preparation composite materials for electromagnetic shields using two sources magnetron sputtering DC-M is presented. A composite material was prepared by coating a nonwoven polypropylene metallic layer in sputtering process of targets Ti (purity 99%) and brass alloy MO58 (58%Cu, 40%Zn, 2%Pb) and ϕ diameter targets = 50 mm, under argon atmosphere. The system with magnetron sputtering sources was powered using switch-mode power supply DPS (Dora Power System) with a maximum power of 16 kW and a maximum voltage of 1.2 kV with group frequency from 50 Hz to 5 kHz. The influence of sputtering time of individual targets on the value of the EM field attenuation SE [dB] was investigated for the following supply conditions: pressure pp = 2x10-3 Torr, sputtering power P = 750 W, the time of applying a layer t = 5 min, group frequency fg = 2 kHz, the frequency of switching between targets fp = 1 Hz.

  18. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.

    PubMed

    Caballero-Hernández, Jaime; Godinho, Vanda; Lacroix, Bertrand; Jiménez de Haro, Maria C; Jamon, Damien; Fernández, Asunción

    2015-07-01

    The fabrication of single-material photonic-multilayer devices is explored using a new methodology to produce porous silicon layers by magnetron sputtering. Our bottom-up methodology produces highly stable amorphous porous silicon films with a controlled refractive index using magnetron sputtering and incorporating a large amount of deposition gas inside the closed pores. The influence of the substrate bias on the formation of the closed porosity was explored here for the first time when He was used as the deposition gas. We successfully simulated, designed, and characterized Bragg reflectors and an optical microcavity that integrates these porous layers. The sharp interfaces between the dense and porous layers combined with the adequate control of the refractive index and thickness allowed for excellent agreement between the simulation and the experiments. The versatility of the magnetron sputtering technique allowed for the preparation of these structures for a wide range of substrates such as polymers while also taking advantage of the oblique angle deposition to prepare Bragg reflectors with a controlled lateral gradient in the stop band wavelengths. PMID:26046812

  19. Discharge current modes of high power impulse magnetron sputtering

    SciTech Connect

    Wu, Zhongzhen Xiao, Shu; Ma, Zhengyong; Cui, Suihan; Ji, Shunping; Pan, Feng; Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  20. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    SciTech Connect

    Steglich, Martin; Schrempel, Frank; Füchsel, Kevin; Kley, Ernst-Bernhard; Patzig, Christian; Berthold, Lutz; Höche, Thomas; Tünnermann, Andreas

    2013-07-15

    The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  1. Magnetic field effects in RF magnetron sputtering of CdS/CdTe solar cells

    SciTech Connect

    Compaan, A.D.; Shao, M.; Tabory, C.N.; Feng, Z.; Fischer, A.; Shen, F.; Narayanswami, C.; Bohn, R.G.

    1996-01-01

    We have studied effects of magnetic field strength and configuration on rf planar magnetron sputtering of CdS and CdTe. This study was carried out with one sputter gun having an unbalanced magnetic field and a second gun having an approximately balanced magnetic field. The unbalanced field gun produces significantly higher ion and electron bombardment of the film during growth and slightly higher electron kinetic energies. Films produced with the unbalanced gun show much stronger photoluminescence and cell performance is much better when the CdTe is deposited with the unbalanced gun. {copyright} {ital 1996 American Institute of Physics.}

  2. Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gupta, Rachana; Pandey, Nidhi; Behera, Layanta; Gupta, Mukul

    2016-05-01

    In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N2 gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L2,3 and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films. In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.

  3. Hollow target magnetron-sputter-type solid material ion source.

    PubMed

    Sasaki, D; Ieki, S; Kasuya, T; Wada, M

    2012-02-01

    A thin-walled aluminum (Al) hollow electrode has been inserted into an ion source to serve as an electrode for a radio frequency magnetron discharge. The produced plasma stabilized by argon (Ar) gas sputters the Al electrode to form a beam of Al(+) and Ar(+) ions. The total beam current extracted through a 3 mm diameter extraction hole has been 50 μA, with the Al(+) ion beam occupying 30% of the total beam current. PMID:22380320

  4. Optical properties of magnetron-sputtered and rolled aluminum

    SciTech Connect

    Van Gils, S.; Dimogerontakis, Th.; Buytaert, G.; Stijns, E.; Terryn, H.; Skeldon, P.; Thompson, G.E.; Alexander, M.R.

    2005-10-15

    The optical properties of magnetron-sputtered aluminum and AA1050 aluminum alloy sheet have been examined qualitatively using total reflectance and quantitatively by means of visible spectroscopic ellipsometry (VISSE). Significant changes in reflectance and optical constants are observed, which are related to the incorporation of oxide in the aluminum bulk. The role of such oxide was determined by VISSE using the Bruggeman effective-medium approximation, with the findings validated by x-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy.

  5. Calcium phosphate coatings produced by radiofrequency magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Bolbasov, E. N.; Zheravin, A. A.; Klimov, I. A.; Kulbakin, D. E.; Perelmuter, V. M.; Tverdokhlebov, S. I.; Cherdyntseva, N. V.; Choinzonov, E. L.

    2016-08-01

    Calcium phosphate coatings on titanium implants surface, produced by radio frequency (RF) magnetron sputtering method with hydroxyapatite solid target were investigated. It was found that produced coatings are calcium deficient compared to stoichiometric hydroxyapatite. The surface of the coatings is highly rough at the nanoscale and highly elastic. In vivo experiments on rats revealed that titanium implants with the calcium phosphate coatings do not cause negative tissue reaction after 6 months incubation period.

  6. Hollow target magnetron-sputter-type solid material ion source

    SciTech Connect

    Sasaki, D.; Ieki, S.; Kasuya, T.; Wada, M.

    2012-02-15

    A thin-walled aluminum (Al) hollow electrode has been inserted into an ion source to serve as an electrode for a radio frequency magnetron discharge. The produced plasma stabilized by argon (Ar) gas sputters the Al electrode to form a beam of Al{sup +} and Ar{sup +} ions. The total beam current extracted through a 3 mm diameter extraction hole has been 50 {mu}A, with the Al{sup +} ion beam occupying 30% of the total beam current.

  7. Discharge Physics of High Power Impulse Magnetron Sputtering

    SciTech Connect

    Anders, Andre

    2010-10-13

    High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

  8. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  9. Preparation of DC reactive magnetron sputtered ZnO thin film towards photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Prabhu, M.; Sivanantham, A.; Kannan, P. Karthick; Vishnukanthan, V.; Mayandi, J.

    2013-06-01

    Zinc oxide thin films deposited on glass and p-type silicon (100) substrates by DC reactive magnetron sputtering are reported here. The XRD investigations confirmed that the thin films deposited by this technique have hexagonal wurtzite structure. AFM results present the surface morphology and roughness of the deposited thin films. From the optical absorption spectrum, the band gap of the thin film is found to be ˜ 3.2 eV. The photoluminescence spectrum of the sample has an UV emission peak centered at 407 nm with broad visible emission in the range of 500-580 nm.

  10. Hysteresis behavior during reactive magnetron sputtering of Al{sub 2}O{sub 3} using a rotating cylindrical magnetron

    SciTech Connect

    Depla, D.; Haemers, J.; Buyle, G.; Gryse, R. de

    2006-07-15

    Rotating cylindrical magnetrons are used intensively on industrial scale. A rotating cylindrical magnetron on laboratory scale makes it possible to study this deposition technique in detail and under well controlled conditions. Therefore, a small scale rotating cylindrical magnetron was designed and used to study the influence of the rotation speed on the hysteresis behavior during reactive magnetron sputtering of aluminum in Ar/O{sub 2} in dc mode. This study reveals that the hysteresis shifts towards lower oxygen flows when the rotation speed of the target is increased, i.e., target poisoning occurs more readily when the rotation speed is increased. The shift is more pronounced for the lower branch of the hysteresis loop than for the upper branch of the hysteresis. This behavior can be understood qualitatively. The results also show that the oxidation mechanism inside the race track is different from the oxidation mechanism outside the race track. Indeed, outside the race track the oxidation mechanism is only defined by chemisorption while inside the race track reactive ion implantation will also influence the oxidation mechanism.

  11. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  12. Elementary surface processes during reactive magnetron sputtering of chromium

    SciTech Connect

    Monje, Sascha; Corbella, Carles Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  13. MeV electron irradiation of Si-SiO2 structures with magnetron sputtered oxide

    NASA Astrophysics Data System (ADS)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2016-03-01

    MeV electrons influence on the characteristics of Si-SiO2 structure with magnetron sputtered oxide was studied by ellipsometry and the thermally stimulated current (TSC) method. The MOS structures used in this study were fabricated on <100> oriented p-Si wafers of 12.75-17,25 Ω.cm resistivity. Magnetron sputtered oxides with different thicknesses of 20 and 100 nm were deposited on p-Si substrates. Both groups of samples were irradiated by 23 MeV electrons. The oxide thicknesses and TSC characteristics of the MOS samples were measured before and after MeV electron irradiation with doses of 4.8×1015 and 4.8×1016 el.cm-2. The oxide thicknesses of both groups of samples increased after irradiation. The main defects generated by the MeV electrons were evaluated. It was shown that the trap concentration increases with the electron irradiation dose. The main peak in the TSC characteristics gives information about the main radiation defects at the Si-SiO2 interface of the MOS structures. These defects can be related to the vacancy-boron complexes which are associated with the main impurities in the p-Si substrate. These results correspond to our results reported earlier for MeV electron irradiated Si-SiO2 structures with thermally grown oxide. But (in this case) the effects observed are more pronounced for the magnetron sputtered oxide. A possible reason is the higher defect concentration generated in the magnetron sputtered oxide during its deposition on Si-substrates.

  14. Optical Properties of Magnetron sputtered Nickel Thin Films

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Fidele; Geerts, Wilhelmus J.; Cui, Yubo

    2015-03-01

    The study of optical properties of Nickel (Ni) is important, given the pivotal role it plays in the semiconductor and nano-electronics technology. Ni films were made by DC and RF magnetron sputtering in an ATC Orion sputtering system of AJA on various substrates. The optical properties were studied ex situ by variable angle spectroscopic (220-1000 nm) ellipsometry at room temperature. The data were modeled and analyzed using the Woollam CompleteEase Software fitting ellipsometric and transmission data. Films sputtered at low pressure have optical properties similar to that of Palik. Films sputtered at higher pressure however have a lower refraction index and extinction coefficient. It is expected from our results that the density of the sputtered films can be determined from the ellipsometric quantities. Our experiments also revealed that Ni is susceptible to a slow oxidation changing its optical properties over the course of several weeks. The optical properties of the native oxide differ from those of reactive sputtered NiO similar as found by. Furthermore the oxidation process of our samples is characterized by at least two different time constants.

  15. Simultaneous ion sputter polishing and deposition

    NASA Technical Reports Server (NTRS)

    Rutledge, S.; Banks, B.; Brdar, M.

    1981-01-01

    Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.

  16. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen. PMID:20355470

  17. Off-axis sputter deposition of thin films

    SciTech Connect

    Capuano, L.A.; Newman, N. )

    1990-01-01

    Currently there are several techniques for making high Tc thin films, e.g., sputter deposition, laser ablation, coevaporation (including MBE), chemical vapor deposition and solution coating/pyrolysis. Of these techniques, the authors have demonstrated that high-pressure in-situ off-axis rf-magnetron sputter deposition is a simple, relatively inexpensive process capable of reproducibly yielding YBCO superconducting thin films with excellent surface resistance properties. This article describes the off-axis technique, the basic equipment requirements and the performance characteristics of high Tc superconductor films produced using this technique.

  18. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  19. Stress related anisotropy studies in DC-magnetron sputtered TbCo and TbFe films

    SciTech Connect

    Cheng, S.C.N.; Kryder, M.H.; Mathur, M.C.A. )

    1989-09-01

    A series of TbCo films and a series of TbFe films were prepared by de-magnetron sputtering at different deposition powers and Ar sputtering pressures. It was found that anisotropy decreased with an increase of deposition power. The authors discuss how anisotropy showed a peak within the range of 2.5 mtorr to 11.5 mtorr of Ar sputtering pressures. The perpendicular magnetic anisotropy of films which were still attached to their substrates and films which had been removed from their substrates were compared. The percentage change in K/sub u/, which occurred when the film was removed from its substrate, correlated with the rise and fall of perpendicular anisotropy, although changes were also typically large at 2.5 mtorr of Ar sputtering pressure. Changes in K/sub u/ after removal from the substrate were as large as 46% in TbFe films deposited at 2.5 mtorr of Ar sputtering pressure. Larger percentage changes in K/sub u/ was found in de-magnetron sputtered films than were previously reported for rf-sputtered TbFe and TbCo films. The films deposited onto thick polycarbonate substrates had the largest anisotropy and also suffered the largest percentage change in anisotropy when they were removed from the substrate.

  20. A Semi-Empirical Model for Tilted-Gun Planar Magnetron Sputtering Accounting for Chimney Shadowing

    NASA Astrophysics Data System (ADS)

    Bunn, J. K.; Metting, C. J.; Hattrick-Simpers, J.

    2015-01-01

    Integrated computational materials engineering (ICME) approaches to composition and thickness profiles of sputtered thin-film samples are the key to expediting materials exploration for these materials. Here, an ICME-based semi-empirical approach to modeling the thickness of thin-film samples deposited via magnetron sputtering is developed. Using Yamamura's dimensionless differential angular sputtering yield and a measured deposition rate at a point in space for a single experimental condition, the model predicts the deposition profile from planar DC sputtering sources. The model includes corrections for off-center, tilted gun geometries as well as shadowing effects from gun chimneys used in most state-of-the-art sputtering systems. The modeling algorithm was validated by comparing its results with experimental deposition rates obtained from a sputtering system utilizing sources with a multi-piece chimney assembly that consists of a lower ground shield and a removable gas chimney. Simulations were performed for gun-tilts ranging from 0° to 31.3° from the vertical with and without the gas chimney installed. The results for the predicted and experimental angular dependence of the sputtering deposition rate were found to have an average magnitude of relative error of for a 0°-31.3° gun-tilt range without the gas chimney, and for a 17.7°-31.3° gun-tilt range with the gas chimney. The continuum nature of the model renders this approach reverse-optimizable, providing a rapid tool for assisting in the understanding of the synthesis-composition-property space of novel materials.

  1. Crystallographic texture, morphology, optical, and microwave dielectric properties of dc magnetron sputtered nanostructured zirconia thin films

    SciTech Connect

    Pamu, D.; Sudheendran, K.; Ghanashyam Krishna, M.; James Raju, K. C.

    2008-03-15

    Nanocrystalline zirconia thin films have been deposited at ambient temperature by dc magnetron sputtering on glass and quartz substrates. The crystallite size as calculated from the x-ray diffraction patterns in the films varies between 10 and 25 nm and is dependent on oxygen percentage in the sputtering gas. Interestingly, the presence of monoclinic and cubic phase is observed for the films deposited on glass at 40%, 60%, and 80% of oxygen in the sputtering gas, while those deposited on quartz showed only the monoclinic phase. Refractive index decreased with increase in percentage of oxygen in the sputter gas. Significantly, even at 100% oxygen in the sputtering gas, films of thickness of the order of 500 nm have been grown starting from the metallic Zr target. The dielectric constants were measured using the extended cavity perturbation technique at X-band frequency (8-12 GHz). The dielectric constant and loss tangent showed a very small decrease with increase in frequency but exhibited a stronger dependence on processing parameters. The dielectric constants of the films at microwave frequencies ranged between 12.16 and 22.3.

  2. Characterization of Magnetron Sputtered Coatings by Pulsed Eddy Current Techniques

    SciTech Connect

    Mulligan, Chris; Lee Changqing; Danon, Yaron

    2005-04-09

    A method that uses induced pulsed eddy currents for characterization of thick magnetron sputtered Nb coatings on steel is presented in this paper. The objectives of this work are to develop a system for rapid quantitative nondestructive inspection of coatings as well as to determine the correlation between coating properties, such as density and purity, and eddy current measured resistivity of coatings. A two-probe differential system having higher sensitivity and less noise than a one-probe system with 2-D scanning ability was developed.

  3. Electrical properties of Mg x Zn1- x O thin films deposited by using RF magnetron co-sputtering with ZnO and Mg0.3Zn0.7O targets

    NASA Astrophysics Data System (ADS)

    Yue, Li Li; Yang, Yi Da; Kim, Hong Seung; Jang, Nak Won; Yun, Young

    2016-03-01

    We successfully deposited hexagonal wurtzite Mg x Zn1- x O (0 ≤ x ≤ 0.18) films on Si substrates by using RF magnetron co-sputtering with ZnO and Mg0.3Zn0.7O targets. The Mg content was varied by controlling the RF power of the Mg0.3Zn0.7O target while the RF power of the ZnO target was fixed at 100 W. The electrical properties of the Mg x Zn1- x O films were investigated by using a transmission line model (TLM) with Ti/Au electrode and Hall effect measurements. The X-ray diffraction (XRD) results demonstrate that some Zn atoms can be replaced by Mg atoms in the Mg x Zn1- x O films. As the Mg content was increased from 0 at.% to 18 at.%, the resistivity of Mg x Zn1- x O films increased and the carrier concentration decreased from 1.17 × 1019 cm-3 to 1.17 × 1017 cm-3, which indicates a decrease in the number of oxygen vacancies. Meanwhile, the Hall mobility increased to 15.3 cm2/Vs. The electrical properties of Mg x Zn1- x O films were tuned by using the Mg content.

  4. Determination of the density of the defect states in Hf{sub 0.5}Zr{sub 0.5}O{sub 2} high-k film Deposited by using rf-magnetron sputtering technique

    SciTech Connect

    Lu, W.; Lu, J. X.; Ou, X.; Liu, X. J.; Cao, Y. Q.; Li, A. D.; Xu, B.; Xia, Y. D.; Yin, J.; Liu, Z. G.

    2014-08-15

    A memory structure Pt/Al{sub 2}O{sub 3}/Hf{sub 0.5}Zr{sub 0.5}O{sub 2}/Al{sub 2}O{sub 3}/p-Si was fabricated by using atomic layer deposition and rf-magnetron sputtering techniques, and its microstructure has been investigated by using the high resolution transmission electron microscopy (HRTEM). By measuring the applied gate voltage dependence of the capacitance for the memory structure, the planar density of the trapped charges in Hf{sub 0.5}Zr{sub 0.5}O{sub 2} high-k film was estimated as 6.63 × 10{sup 12} cm{sup −2}, indicating a body defect density of larger than 2.21 × 10{sup 19} cm{sup −3}. It is observed that the post-annealing in N{sub 2} can reduces the defect density in Hf{sub 0.5}Zr{sub 0.5}O{sub 2} film, which was ascribed to the occupancy of oxygen vacancies by nitrogen atoms.

  5. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    PubMed

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. PMID:24123999

  6. Full-Scale 3D Simulation of a sputtering magnetron

    NASA Astrophysics Data System (ADS)

    Walton, C. C.; Wilks, S. C.; Ayyaswamy, V.; Verboncoeur, J. P.; Parks, P. B.; Wu, W.; Zhou, C. D.; Stoltz, P. H.

    2010-11-01

    PIC simulations have been used to study ion energy distributions in magnetron plasmas, and coupled with other simulations to relate plasma processes to properties of sputtered films. The plasma is weakly ionized and exchanges heat with the background gas by scattering and charge-exchange reactions. Resulting heating of neutral background gas up to ˜1200K, leading to ˜5X rarefaction and increased plasma impedance, was studied with coupled PIC and Direct Simulation Monte Carlo (DSMC) simulations. Effects of scaling the PIC simulations from 0.1X to 1X physical size, and modifying the plasma potential by a dc substrate bias, will be presented. Comparison to experimental I-V relations and importance for roughness and density of sputtered films will be discussed.

  7. Experimental evidence of warm electron populations in magnetron sputtering plasmas

    SciTech Connect

    Sahu, B. B. Han, Jeon G.; Kim, Hye R.; Ishikawa, K.; Hori, M.

    2015-01-21

    This work report on the results obtained using the Langmuir probe (LP) measurements in high-power dc magnetron sputtering discharges. Data show clear evidence of two electron components, such as warm and bulk electrons, in the sputtering plasma in a magnetic trap. We have also used optical emission spectroscopy diagnostic method along with LP to investigate the plasma production. Data show that there is a presence of low-frequency oscillations in the 2–3 MHz range, which are expected to be generated by high-frequency waves. Analysis also suggests that the warm electrons, in the plasmas, can be formed due to the collisionless Landau damping of the bulk electrons.

  8. Combined optical emission and resonant absorption diagnostics of an Ar-O2-Ce-reactive magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    El Mel, A. A.; Ershov, S.; Britun, N.; Ricard, A.; Konstantinidis, S.; Snyders, R.

    2015-01-01

    We report the results on combined optical characterization of Ar-O2-Ce magnetron sputtering discharges by optical emission and resonant absorption spectroscopy. In this study, a DC magnetron sputtering system equipped with a movable planar magnetron source with a Ce target is used. The intensities of Ar, O, and Ce emission lines, as well as the absolute densities of Ar metastable and Ce ground state atoms are analyzed as a function of the distance from the magnetron target, applied DC power, O2 content, etc. The absolute number density of the Arm is found to decrease exponentially as a function of the target-to-substrate distance. The rate of this decrease is dependent on the sputtering regime, which should be due to the different collisional quenching rates of Arm by O2 molecules at different oxygen contents. Quantitatively, the absolute number density of Arm is found to be equal to ≈ 3 × 108 cm- 3 in the metallic, and ≈ 5 × 107 cm- 3 in the oxidized regime of sputtering, whereas Ce ground state densities at the similar conditions are found to be few times lower. The absolute densities of species are consistent with the corresponding deposition rates, which decrease sharply during the transition from metallic to poisoned sputtering regime.

  9. Double circular erosion patterns on dielectric target in magnetron sputtering.

    PubMed

    Suzaki, Yoshifumi; Miyagawa, Hayato; Ejima, Seiki

    2009-10-01

    In rf magnetron sputtering, a circular erosion pattern forms on the surface of a circular metal conductor target with permanent magnets on its back. In this case, the theory behind the erosion pattern has been established. However, in the case of a dielectric target, a double circular erosion pattern is formed. So far, this pattern has been phenomenologically recognized by experimenters; however, it has not yet been investigated. In this study, we performed a magnetron sputtering experiment with a SiO2 dielectric target, and confirmed the formation of a double circular erosion pattern. The dimensions of the double circular erosion pattern varied depending on the insulation resistance or the thickness of the SiO2 target. Furthermore, we found that the dimensions of a double circular erosion pattern changed by making a gap between the SiO2 target and guard ring. Based on the experimental results, we have proposed a qualitative model to explain the formation mechanism of double circular erosion patterns. PMID:19895082

  10. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Yan, Rong; Chen, Junling; Chen, Longwei; Ding, Rui; Zhu, Dahuan

    2014-12-01

    The stainless steel (SS) first mirror pre-exposed in the deposition-dominated environment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.

  11. Ion beam analysis and co-sputtering simulation (CO-SS) of bi-metal films produced by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Andrade, E.; Muhl, S.; Canto, C.; de Lucio, O.; Chávez, E.; Rocha, M. F.; Garcés-Medina, E.

    2016-03-01

    Magnetron sputtering is widely used to deposit thin films on different types of substrates. An important application of this method is to make multicomponent thin films using co-sputtering, where two or more elements are included in the target. The thickness and elemental composition of the films depend on the experimental parameters used, the system geometry and the spatial distribution of the elements in the target. If the target is made of two spatially separate pieces of the materials, then the composition of the deposit depends on a combination of the relative areas, the sputtering yield and the angular distribution of the emission of the sputtered flux of each material. In this work, a co-sputtering simulation program, known as CO-SS, was developed to simulate the thickness and composition of metal films produced by DC magnetron sputtering (Al) and co-sputtering (Al + Ti). The CO-SS code models the angular distribution of particles ejected by sputtering from the target, where this is assumed to vary as cosn β , where n is a free parameter and β is the angle of ejection relative to the normal to the surface of the target, and the sputtering yield of each material. The program also takes into account other geometry factors such as the distance between the target and the substrate, and the size of the substrate. Rutherford backscattering (RBS) using 4He was employed to measure the thickness and the composition of the films deposited on glass cover slides in order to assess the CO-SS program. The film thickness was also measured by profilometry. The CO-SS code was found to accurately model the experimental results for both the Al and Ti/Al films. The CO-SS code is freely available for use from http://demonstrations.wolfram.com/CoSputteringSimulationCOSS/.

  12. Structure evolution of magnetron sputtered TiO{sub 2} thin films

    SciTech Connect

    Mraz, Stanislav; Schneider, Jochen M.

    2011-01-15

    The structure evolution of TiO{sub 2} thin films deposited by rf and dc magnetron sputtering onto nonintentionally heated, floating, glass and Si (100) substrates was investigated. As the total pressure was varied from 0.15 to 4.0 Pa, corresponding to the pressure-distance product values from 10.5 to 280 Pa mm, rutile, anatase, and a mixture thereof were deposited. The pressure-distance induced changes in ion energy were quantified by probing the ion energy distribution functions. The ion energy during synthesis was additionally varied by applying a substrate bias potential ranging from floating to -100 V revealing a similar phase formation characteristic. While the structure evolution of the TiO{sub 2} thin films reported in the literature exhibits a rather complex dependence on the process parameters, a simple correlation between the structure evolution and the ratio between the ion energy flux and the deposition flux was identified here. Phase pure anatase films were grown below 540 eV/Ti atom and phase pure rutile films were grown above 1000 eV/Ti atom. The here presented data suggest that the ratio between the ion energy flux and the deposition flux ratio defines the phase formation of TiO{sub 2} thin films during magnetron sputtering.

  13. Alfven's critical ionization velocity observed in high power impulse magnetron sputtering discharges

    SciTech Connect

    Brenning, N.; Lundin, D.

    2012-09-15

    Azimuthally rotating dense plasma structures, spokes, have recently been detected in several high power impulse magnetron sputtering (HiPIMS) devices used for thin film deposition and surface treatment, and are thought to be important for plasma buildup, energizing of electrons, as well as cross-B transport of charged particles. In this work, the drift velocities of these spokes are shown to be strongly correlated with the critical ionization velocity, CIV, proposed by Alfven. It is proposed as the most promising approach in combining the CIV and HiPIMS research fields is to focus on the role of spokes in the process of electron energization.

  14. Structural parameters and polarization properties of TiN thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Solovan, M. M.; Brus, V. V.; Pidkamin, L. J.; Maryanchuk, P. D.; Dobrovolsky, Yu. G.

    2015-11-01

    We report the results of the investigation of morphological, structural, optical and plarimeteric properties of titanium nitride thin films deposited on silicon and glass substrates. The magnetron sputtered titanium nitride thin films were established to possess crystalline structure with the average grain size about D = 15 nm. The method of correlation matrix is was applied for the analysis of polarization properties of scattered light by the titanium nitride thin film. The obtained experimental result, can be explained by the presence of the effects of linear and circular dichroism in the material of the titanium nitride thin films under investigations.

  15. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  16. Tribological evaluation of magnetron-sputtered coating for military applications. Final report, November 1994--March 1997

    SciTech Connect

    Beatty, J.H.; Huang, P.J.; Fountzoulas, C.G.; Kelly, J.V.

    1999-02-01

    There is a continuing requirement for high-performance tribological coatings in both commercial and military applications. To maximize system performance, corresponding improvements in wear resistance, high-temperature stability, Corrosion behavior, and bearing durability must be realized. In the ongoing study, a number of different coatings were applied to 52100 bearing steel, 4340 steel, Inconel 718, and Ti-6Al-4V to improve wear characteristics, corrosion resistance, and rolling contact fatigue behavior. This report deals with CrN, TiN, W, and Ta coatings deposited by magnetron sputtering. Data on corrosion, Falex annular wear, ball-on-disk, and rolling contact fatigue are presented.

  17. Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry

    SciTech Connect

    Ohno, Takahiro; Yagyu, Daisuke; Saito, Shigeru Ohno, Yasunori; Itoh, Masatoshi; Uhara, Yoshio; Miura, Tsutomu; Nakano, Hirofumi

    2015-11-15

    A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge.

  18. Magnetron deposition of TCO films using ion beam

    NASA Astrophysics Data System (ADS)

    Asainov, O.; Umnov, S.; Chinin, A.

    2015-11-01

    Thin films of tin oxide (TO) were deposited on the glass substrates at room temperature using reactive magnetron sputtering at various oxygen partial pressures. After the deposition the films were irradiated with argon ions beam. The change of the optical and electrical properties of the films depending on the irradiation time was studied. Films optical properties in the range of 300-1100 nm were investigated by photometry as well as their structural properties were studied using X-ray diffraction. Diffractometric research showed that the films, deposited on a substrate, have a crystal structure, and after argon ions irradiation they become quasi-crystalline (amorphous). It was found that the transmission increases proportionally with the irradiation time, but the surface resistance -disproportionally.

  19. Sputtering. [as deposition technique in mechanical engineering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  20. Characterization of ion beam and magnetron sputtered thin Ta/NiFe films

    NASA Astrophysics Data System (ADS)

    Mao, M.; Leng, Q.; Huai, Y.; Johnson, P.; Miller, M.; Tong, H.-C.; Miloslavsky, L.; Qian, C.; Wang, J.; Hegde, H.

    1999-04-01

    Thin Ta/NiFe films were deposited using ion beam deposition (IBD), pulsed, and static magnetron sputtering techniques. These NiFe films show anisotropy field values ˜4 Oe, easy axis coercivities ⩽1 Oe, and hard axis coercivities ⩽0.3 Oe. IBD films exhibit higher magnetoresistance ratios (ΔR/R), while little difference is noted between different deposition techniques in the sheet resistance of NiFe films. A ΔR/R value of 1.8% has been measured for a 90 Å IBD NiFe films. X-ray diffraction measurements indicate that NiFe films of the same thickness have about the same grain size regardless of deposition technique, however, IBD films exhibit superior (111) texture and crystallinity. Our results clearly indicate that the superior magnetic properties of thin IBD Ta/NiFe films are a result of high crystallographic quality of these films.

  1. Strong blue light emission from Eu-doped SiOC prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Zhenxu; Guo, Yanqing; Wang, Xiang; Song, Chao; Song, Jie; Zhang, Yi; Huang, Rui

    2015-08-01

    The Eu-doped SiOC films were prepared by magnetron sputtering technique at a low temperature of 250°C. The effects of the Eu2O3 deposited power and post-thermal annealing temperature on the PL characteristics of the Eu-doped SiOC films were investigated. It is found that the photoluminescence intensity could be enhanced by more than tenfold by increasing the Eu2O3 deposited power from 20W to 80W. Furthermore, very bright blue light emission can be clearly observed with the naked eye in a bright room for the Eu-doped SiOC films prepared at a Eu2O3 deposited power of 80 W. The improved PL intensity is attributed to the increasing number density of europium silicate clusters as a result of the increasing Eu2O3 deposited power as well as high annealing temperatures.

  2. Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions.

    PubMed

    Wolke, J G; van der Waerden, J P; de Groot, K; Jansen, J A

    1997-03-01

    The stability of radiofrequency (RF) magnetron sputtered calcium phosphate was studied under cyclically loaded conditions. The coatings were deposited on titanium bars and tested in either dry or wet conditions X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy were used to characterize the as-sputtered and tested coatings. XRD demonstrated that the amorphous structure after annealing at 650 C changed into a crystalline apatite structure. The residual stresses were determined by the XRD cos 2 i/i method. These residual film stresses were influenced by the coating conditions and the crystalline sputtered coating showed the presence of compressive stresses. SEM demonstrated that, after cyclic loading conditions in air, the crystalline sputter-coated Ti-6A1-4V bars showed a partial coating loss. Furthermore, in wet conditions (simulated body fluid) only the heat-treated sputter-coated bars appeared to be stable. On the other hand, the amorphous coating only showed signs of delamination in the more highly stressed regions, while in the less stressed regions a Ca-P precipitate was formed. On the basis of these results we conclude that calcium phosphate coatings subjected to cyclic loading conditions show an important difference in fatigue behaviour when tested in either dry or wet conditions. PMID:9111952

  3. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface. PMID:20355462

  4. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    NASA Astrophysics Data System (ADS)

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magneto-optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation.

  5. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  6. Microstructure of microwave dielectricthin films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Cui, Chuanwen

    2010-02-01

    The article describes the microstructure and morphological properties of microwave dielectric ceramic thin films. These thin films were successfully prepared on SiO 2 (1 1 0) single-crystal substrates by radio frequency magnetron-sputtering system. The microstructure and morphology of the thin films were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The results show that the main phase is Ba 0.5Sr 0.5Nb 2O 6,which has a tetragonal perovskite structure, a long strip pattern, and uniform crystal-grain size of about 2-3 μm in length when annealed under 1150 °C for 30 min in an O 2 atmosphere. These thin films are of excellent crystallization quality, with a polycrystalline and dense structure.

  7. RF magnetron sputtering of thick platinum coatings on glass microspheres

    SciTech Connect

    Meyer, S.F.; Hsieh, E.J.; Burt, R.J.

    1980-05-28

    Thick platinum coatings on glass microspheres are needed for proposed Laser Fusion targets. The spherical nature of these substrates coupled with the small dimensions (approx. 100 ..mu..m OD) make it difficult to achieve a smooth and uniform coating. Coating problems encountered include a rough surface and porous microstructure from the oblique incidence and lack of temperature and bias control, clumping of the microspheres causing non-uniformities, and particle accumulation causing cone defects. Sputtering parameters significantly affecting the coatings include total pressure, DC substrate bias, and the addition of doping gases. Using an ultrasonic vibrating screened cage and RF magnetron Sputtergun, we have successfully batch coated microspheres with up to 6 ..mu..m of Pt, with a surface roughness of 200 nm, thickness non-concentricity of 300 nm, and density greater than 98% of bulk Pt.

  8. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    SciTech Connect

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.

    2014-10-15

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  9. Chemical mechanical polishing characteristics of ITO thin film prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Yeon; Choi, Gwon-Woo; Kim, Yong-Jae; Choi, Youn-Ok; Kim, Nam-Oh

    2012-02-01

    Indium-tin-oxide (ITO) thin films have attracted intensive interest because of their unique properties of good conductivity, high optical transmittance over the visible region and easy patterning ability. ITO thin films have found many applications in anti-static coatings, thermal heaters, solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), electroluminescent devices, sensors and organic light-emitting diodes (OLEDs). ITO thin films are generally fabricated by using various methods, such as spraying, chemical vapor deposition (CVD), evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive sputtering. In this research, ITO films were grown on glass substrates by using a radio-frequency (RF) magnetron sputtering method. In order to achieve a high transmittance and a low resistivity, we examined the various film deposition conditions, such as substrate temperature, working pressure, annealing temperature, and deposition time. Next, in order to improve the surface quality of the ITO thin films, we performed a chemical mechanical polishing (CMP) with different process parameters and compared the electrical and the optical properties of the polished ITO thin films. The best CMP conditions with a high removal rate, low nonuniformity, low resistivity and high transmittance were as follows: platen speed, head speed, polishing time, and slurry flow rate of 30 rpm, 30 rpm, 60 sec, and 60 ml/min, respectively.

  10. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2012-04-15

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 {mu}s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons'ExB drift velocity, which is about 10{sup 5} m/s and shows structures in space and time.

  11. Asymmetric particle fluxes from drifting ionization zones in sputtering magnetrons

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Franz, Robert; Anders, André

    2014-04-01

    Electron and ion fluxes from direct current and high-power impulse magnetron sputtering (dcMS and HiPIMS) plasmas were measured in the plane of the target surface. Biased collector probes and a particle energy and mass analyzer showed asymmetric emission of electrons and of singly and doubly charged ions. For both HiPIMS and dcMS discharges, higher fluxes of all types of particles were observed in the direction of the electrons' E × B drift. These results are put in the context with ionization zones that drift over the magnetron's racetrack. The measured currents of time-resolving collector probes suggest that a large fraction of the ion flux originates from drifting ionization zones, while energy-resolving mass spectrometry indicates that a large fraction of the ion energy is due to acceleration by an electric field. This supports the recently proposed hypothesis that each ionization zone is associated with a negative-positive-negative space charge structure, thereby producing an electric field that accelerates ions from the location where they were formed.

  12. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  13. Structural and optical properties of Al-doped ZnO films coated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Bo; Huang, Bo; Zhang, Liang-Tang; Li, Jing; Wu, Sun-Tao

    2007-12-01

    The Al-doped ZnO (AZO) films were deposited on glass by RF magnetron sputtering under different sputtering power: 75W, 120W, 160W and 200W. During the films deposition, the other sputtering conditions were maintained constant. The crystal structures of the AZO films were characterized and analyzed by X-ray diffraction. The surface morphologies of the films were observed by SEM. The transmission spectra of the films were measured using a spectrophotometer within the range from 200 to 800 nm at room temperature. The results indicate each of the films has a preferential c-axis orientation and the grain size increases with the increase of sputtering power. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics.

  14. An in situ x-ray photoelectron spectroscopy study of the initial stages of rf magnetron sputter deposition of indium tin oxide on p-type Si substrate

    SciTech Connect

    Rein, M. H.; Holt, A. O.; Hohmann, M. V.; Klein, A.; Thogersen, A.; Mayandi, J.; Monakhov, E. V.

    2013-01-14

    The interface between indium tin oxide and p-type silicon is studied by in situ X-ray photoelectron spectroscopy (XPS). This is done by performing XPS without breaking vacuum after deposition of ultrathin layers in sequences. Elemental tin and indium are shown to be present at the interface, both after 2 and 10 s of deposition. In addition, the silicon oxide layer at the interface is shown to be composed of mainly silicon suboxides rather than silicon dioxide.

  15. p-type semiconducting Cu2O-CoO thin films prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Suzuki, Shingo; Miyata, Toshihiro; Minami, Tadatsugu

    2003-07-01

    The preparation by magnetron sputtering of p-type semiconducting thin films consisting of a multicomponent oxide composed of Cu oxide and Co oxide is described. The electrical, optical, and crystallographical properties of films deposited by rf magnetron sputtering using (Cu2O)1-x-(CoO)x powder targets were strongly dependent on not only the deposition condition but also the calcination condition as well as the CoO content of the targets. These properties drastically changed in films prepared with a CoO content around 90 mol %. All prepared films, i.e., CoO content in the range from 0 to 100 mol %, were found to be p type, or positive hole conductors, as evidenced from the Seebeck effect: Resistivities in the range from 103 to 10-3 Ω cm. A hole concentration on the order of 1016 cm-3 and a mobility on the order of 10-1 cm2/V s were obtained in an amorphous multicomponent oxide film prepared with a CoO content of 50 mol %. Fabricated thin-film pin heterojunction diodes consisting of a p-type high-resistance multicomponent oxide combined with undoped ZnO and n-type Al-doped ZnO exhibited a rectifying current-voltage characteristic.

  16. Continuous and nanostructured TiO2 films grown by dc sputtering magnetron.

    PubMed

    Sánchez, O; Vergara, L; Font, A Climent; de Melo, O; Sanz, R; Hernández-Vélez, M

    2012-12-01

    The growth of Anatase nanostructured films using dc reactive magnetron sputtering and post-annealing treatment is reported. TiO2 has been deposited on Porous Anodic Alumina Films used as templates which were previously grown in phosphoric acid solution and etched to modify their pore diameters. This synthesis via results in the formation of vertically aligned and spatially ordered TiO2 nanostructures replicating the underlying template. Previously, the growth optimization of TiO2 thin films deposited by dc magnetron sputtering on flat silicon substrates was done. The crystalline structure and Ti in-depth concentration profile were determined by grazing incidence X-ray diffraction and Rutherford backscattering spectrometry, respectively. The surface morphology of the samples was explored by mean of a Field Emission Gun scanning electron microscope. Optical properties of the nanostructured samples were studied by using the reflectance spectra received in the UV-visible range. In these spectra different band gap values and complex light absorption features were observed. PMID:23447970

  17. Magnetron sputtered WS2; optical and structural analysis

    NASA Astrophysics Data System (ADS)

    Koçak, Y.; Akaltun, Y.; Gür, Emre

    2016-04-01

    Remarkable properties of graphene have renewed interest in inorganic, Transition Metal Dichalgogenits (TMDC) due to unique electronic and optical properties. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as solar cells, transistors, photodetectors and electroluminescent devices in which the graphene is not actively used. So, fabrication and analysis of these films are important for new generation devices. In this work, polycrystalline WS2 films were grown by radio frequency magnetron sputtering (RFMS) on different substrates like n-Si(100), n-Si(111), p-Si(100), glass and fused silica. Structural, morphological, optical and electrical properties were investigated as a function of film thickness and RF power. From XRD analysis, signals from planes of (002), (100), (101), (110), (008) belong to the hegzagonal WS2 were obtained. Raman spectra of the WS2 show that there are two dominant peaks at ~351 cm-1 (in-plane phonon mode) and ~417 cm-1 (out-of-plane phonon mode). XPS analysis of the films has shown that binding energy and the intensity of tungsten 4f shells shifts by depending on the depth of the films which might be due to the wellknown preferential sputtering.

  18. Optical coatings and thin films for display technologies using closed-field magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gibson, Desmond R.; Brinkley, Ian; Walls, J. M.

    2004-11-01

    "Closed field" magnetron (CFM) sputtering offers high throughput, flexible deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, depositing films over a large surface area at a high rate with excellent and reproducible properties. Machines based on CFM are scaleable to meet a range of batch and in-line size requirements. Thin film thickness control to <+/-1% is accomplished using time, although quartz crystal or optical monitoring are used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a special rotating shutter mechanism. This paper presents data on optical properties for CFM deposited coatings relevant to displays, including anti-reflection, IR blocker and color and thermal control filters, graded coatings, barrier coatings as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM process for a range of display technologies; OLED, EL and projection are described.

  19. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    SciTech Connect

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-07-15

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H{sub 2} gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H{sub 2} (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10{sup -4} {omega} cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H{sub 2} gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films.

  20. Magnetron sputtering as a method of thin-film catalyst development for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Medvedeva, E. A.

    2016-07-01

    The aim of this work was to develop a thin-film Pt/C catalyst on the fluoroplastic substrates by means of the magnetron sputtering method in order to use as reference and working electrodes of electrochemical cells.

  1. Magnetron Sputtering of Gold Nanoparticles onto WO3 and Activated Carbon

    SciTech Connect

    Veith, Gabriel M; Lupini, Andrew R; Pennycook, Stephen J; Villa, Alberto; Prati, Laura; Dudney, Nancy J

    2007-01-01

    In this paper we describe the production and investigation of two supported gold catalyst systems prepared by magnetron sputtering: Au on WO3 and Au on activated carbon. The magnetron sputtering technique entails the sputtering of a high purity gold metal target, with an argon plasma, to produce a flux of gold atoms onto a constantly tumbling support material. This technique offers a number of advantages over conventional chemical preparation methods including the flexibility to create gold nanoparticles (diameters < 3 nm) on unusual support materials, such as WO3 and carbon, which are generally not accessible using the ubiquitous deposition-precipitation technique. We present data demonstrating the formation of catalytic gold nanoparticles with average diameters of 1.7 nm (Au/C) and 2.1 nm (Au/WO3) as well as a substantial number of single atom species on the Au/C sample. Prototypical carbon monoxide oxidation (Au/WO3) and glycerol oxidation (Au/C) reactions were performed in order to gauge the activity of these catalysts. The WO3 supported catalyst exhibits substantial catalytic activity from room temperature to 135oC (0.0018 - 0.082 mole CO/mole Au sec) with an apparent transition around 75oC to a more active catalyst. The activity 1 of the Au/C catalysts was compared to a Au/C catalysts prepared from a PVA sol. The smaller catalysts prepared by sputtering are more active than the large gold particles prepared using the PVA sol. However, the larger gold catalyst are substaintially more selective towards the production of intermediate products from the oxidation of glycerol.

  2. Synthesizing mixed phase titania nanocomposites with enhanced photoactivity and redshifted photoresponse by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Le

    Recent work points out the importance of the solid-solid interface in explaining the high photoactivity of mixed phase TiO2 catalysts. The goal of this research was to probe the synthesis-structure-function relationships of the solid-solid interfaces created by the reactive direct current (DC) magnetron sputtering of titanium dioxide. I hypothesize that the reactive DC magnetron sputtering is a useful method for synthesizing photo-catalysts with unique structure including solid-solid interfaces and surface defects that are associated with enhanced photoreactivity as well as a photoresponse shifted to longer wavelengths of light. I showed that sputter deposition provides excellent control of the phase and interface formation as well as the stoichiometry of the films. I explored the effects exerted by the process parameters of pressure, oxygen partial pressure, target power, substrate bias (RF), deposition incidence angle, and post annealing treatment on the structural and functional characteristics of the catalysts. I have successfully made pure and mixed phase TiO2 films. These films were characterized with UV-Vis, XPS, AFM, SEM, TEM, XRD and EPR, to determine optical properties, elemental stoichiometry, surface morphology, phase distribution and chemical coordination. Bundles of anatase-rutile nano-columns having high densities of dual-scale of interfaces among and within the columns are fabricated. Photocatalytic performance of the sputtered films as measured by the oxidation of the pollutant, acetaldehyde, and the reduction of CO2 for fuel (CH4) production was compared (normalized for surface area) to that of mixed phase TiO2 fabricated by other methods, including flame hydrolysis powders, and solgel deposited TiO 2 films. The sputtered mixed phase materials were far superior to the commercial standard (Degussa P25) and solgel TiO2 based on gas phase reaction of acetaldehyde oxidation under UV light and CO2 reduction under both UV and visible illuminations. The

  3. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  4. Real-time measurement of protein adsorption on electrophoretically deposited hydroxyapatite coatings and magnetron sputtered metallic films using the surface acoustic wave technique.

    PubMed

    Meininger, M; Schmitz, T; Wagner, T; Ewald, A; Gbureck, U; Groll, J; Moseke, C

    2016-04-01

    Surface acoustic wave (SAW) biosensors are highly sensitive for mass binding and are therefore used to detect protein-protein and protein-antibody interactions. Whilst the standard surface of the chips is a thin gold film, measurements on implant- or bone-like surfaces could significantly enhance the range of possible applications for this technique. The aim of this study was to establish methods to coat biosensor chips with Ti, TiN, and silver-doped TiN using physical vapor deposition as well as with hydroxyapatite by electrophoresis. To demonstrate that protein adsorption can be detected on these surfaces, binding experiments with fibronectin and fibronectin-specific antibodies have been performed with the coatings, which successfully proved the applicability of PVD and EPD for SAW biosensor functionalization. PMID:26838860

  5. Nanoindentation and scratch studies on magnetron sputtered Ti thin films.

    PubMed

    Kataria, S; Ramaseshan, R; Dash, S; Tyagi, A K

    2009-09-01

    Ti thin films sputter deposited on D9 steel at two different temperatures were studied for their mechanical behavior under static and sliding contact conditions using nanoindentation and scratch tests. The film hardness measured at the surface of the coatings exhibited a value of 2.5 GPa, for both conditions. From the scratch test, it is understood that coatings deposited at 200 degrees C substrate temperature showed superior adhesion strength. Critical load to failure for these coatings was evaluated at 2 N. PMID:19928247

  6. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    NASA Astrophysics Data System (ADS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  7. Studying of nanocomposite films’ structure and properties obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tleukenov, Y. O.; Plotnikov, S. V.; Erdybaeva, N. K.; Pogrebnyak, A. D.

    2016-02-01

    Various approaches to creating multicomponent na-nocomposite coatings of high and superhigh hardness (from 30 to 100 ± 120 GPa) are reviewed with particular emphasis placed on mechanisms underlying the increase in hardness in thin coatings. Nanocomposite Nb-Al-N films fabricated by magnetron sputtering were researched in this work. Two stable crystalline structural states were found in the films: NbNch and solid solution B1-NbxAl1-xNyO1-y, and also an amorphous component associated with aluminum oxynitride with reactive magnetron sputtering. A relationship of substructural characteristics sensitivity with the current and nanohardness and Knoop hardness characteristic was determined in this paper. Recent changes in the range of 29-33.5 GPa and 46-48 GPa, respectively. Initial principle calculations of NbN and Nb2AlN phases and NbN/AlN heterostructures were carried out for the interpretation of the results. Deposited nanocomposite films with the given mechanical properties may be used as wear resistant or protective coatings. On the basis of these results, it can be assumed that two stable crystalline structural states were found in the films: B1-NbNx and solid solution with a composition close to the B1-Nb0-67Al0-33N. The films also contain an amorphous component associated with aluminum nitride.

  8. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications.

    PubMed

    Uhm, Soo-Hyuk; Lee, Sang-Bae; Song, Doo-Hoon; Kwon, Jae-Sung; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-10-01

    We investigated whether a silver coating on an anodic oxidized titania (TiO2) nanotube surface would be useful for preventing infections in dental implants. We used a magnetron sputtering process to deposit Ag nanoparticles onto a TiO2 surface. We studied different sputtering input power densities and maintained other parameters constant. We used scanning electron microscopy, X-ray diffraction, and contact angle measurements to characterize the coated surfaces. Staphylococcus aureus was used to evaluate antibacterial activity. The X-ray diffraction analysis showed peaks that corresponded to metallic Ag, Ti, O, and biocompatible anatase phase TiO2 on the examined surfaces. The contact angles of the Ag nanoparticle-loaded surfaces were significantly lower at 2.5 W/cm2 input power under pulsed direct current mode compared to commercial, untreated Ti surfaces. In vitro antibacterial analysis indicated that a significantly reduced number of S. aureus were detected on an Ag nanoparticle-loaded TiO2 nanotube surface compared to control untreated surfaces. No cytotoxicity was noted, except in the group treated with 5 W/cm2 input power density, which was the highest input of power density we tested for the magnetron sputtering process. Overall, we concluded that it was feasible to create antibacterial Ag nanoparticle-loaded titanium nanotube surfaces with magnetron sputtering. PMID:25942879

  9. Mechanical property improvement by texture control of magnetron co-sputtered Zr-Ti films

    NASA Astrophysics Data System (ADS)

    Wang, Weipeng; Zhan, Peng; Xie, Zheng; Li, Zhengcao; Zhang, Zhengjun

    2014-01-01

    The present work studies the effect of substrate temperature and film composition on the structural and mechanical properties evolution of magnetron sputtered Zr-Ti films. As-deposited films show a monotonically strengthening (0002) crystallographic texture ranging from ambient temperature to 523 K, while then reveal a (0002) texture to randomly orientated structure transition at higher temperature. High Resolution TEM observations reveal a competitive and reconstruction growth mechanism which is in good agreement with the well-known Structure Zone Model. Nano-indentation measurements revealed that texture strengthening contribute to the improvement of mechanical properties. These results suggest that by establishing a semi-quantitative phase diagram based on the Structure Zone Model, structure and structure-related properties modification can be easily realized and precisely controlled by modifying the TS/Tm region during deposition.

  10. Electrochemical properties of magnetron sputtered WO{sub 3} thin films

    SciTech Connect

    Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S.

    2013-02-05

    Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly in the first few cycles and stabilized at a lesser stage.

  11. Fabrication of LiCoO{sub 2} thin film cathodes by DC magnetron sputtering method

    SciTech Connect

    Noh, Jung-pil; Cho, Gyu-bong; Jung, Ki-taek; Kang, Won-gyeong; Ha, Chung-wan; Ahn, Hyo-jun; Ahn, Jou-Hyeon; Nam, Tae-hyun; Kim, Ki-won

    2012-10-15

    LiCoO{sub 2} thin films were fabricated on Al substrate by direct current magnetron sputtering method. The effects of Ar/O{sub 2} gas rates and annealing temperatures were investigated. Crystal structures and surface morphologies of the deposited films were investigated by X-ray diffraction, Raman scattering spectroscopy and field emission scanning electron microscopy. The as-deposited LiCoO{sub 2} thin films exhibited amorphous structure. The crystallization starts at the annealing temperature over 400 °C. However, the annealed films have the partially disordered structure without completely ordered crystalline structure even at 600 °C annealing. The electrochemical properties of the LiCoO{sub 2} films were investigated by the charge–discharge and cycle measurements. The 500 °C annealing film has the highest capacity retention rate of 78.2% at 100th cycles.

  12. Thermal stability of magnetron and ion beam sputtered top and bottom spin-valve films

    SciTech Connect

    Mao, Ming; Cerjan, Charlie; Hung, Stephanie; Miloslavsky, Lena; Chien, Chester; Sant, Sudhi

    2001-06-01

    The thermal stability of top and bottom IrMn exchange-biased spin-valve films prepared by ion beam deposition (IBD) and magnetron sputtering physical vapor deposition (PVD) is compared. These films exhibit identical temperature dependence for the exchange bias field H{sub ex}, with a blocking temperature of T{sub B}=250{degree}C, that is independent of preparation technique. Isothermal annealing at temperatures below T{sub B} led to a ln(t) dependent degradation in H{sub ex}, suggesting a thermal activation process. The high crystallographic quality of the IBD films leads to a superior stability compared to PVD films. Top spin-valve films are also found to be more stable than bottom spin-valve films. {copyright} 2001 American Institute of Physics.

  13. Thermal stability of magnetron and ion beam sputtered top and bottom spin-valve films

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Hung, Stephanie; Miloslavsky, Lena; Chien, Chester; Sant, Sudhi

    2001-06-01

    The thermal stability of top and bottom IrMn exchange-biased spin-valve films prepared by ion beam deposition (IBD) and magnetron sputtering physical vapor deposition (PVD) is compared. These films exhibit identical temperature dependence for the exchange bias field Hex, with a blocking temperature of TB=250 °C, that is independent of preparation technique. Isothermal annealing at temperatures below TB led to a ln(t) dependent degradation in Hex, suggesting a thermal activation process. The high crystallographic quality of the IBD films leads to a superior stability compared to PVD films. Top spin-valve films are also found to be more stable than bottom spin-valve films.

  14. Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films

    SciTech Connect

    Thoegersen, Annett; Rein, Margrethe; Monakhov, Edouard; Mayandi, Jeyanthinath; Diplas, Spyros

    2011-06-01

    The atomic structure and composition of noninterfacial ITO and ITO-Si interfaces were studied with transmission electron microscopy and x-ray photoelectron spectroscopy (XPS). The films were deposited by dc magnetron sputtering on monocrystalline p-type (100) Si wafers. Both as deposited and heat treated films consisted of crystalline ITO. The ITO/Si interface showed a more complicated composition. A thin layer of SiO{sub x} was found at the ITO/Si interface together with In and Sn nanoclusters, as well as highly oxygen deficient regions, as observed by XPS. High energy electron exposure of this area crystallized the In nanoclusters and at the same time increased the SiO{sub x} interface layer thickness.

  15. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    NASA Astrophysics Data System (ADS)

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  16. High low-temperature CO oxidation activity of platinum oxide prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Johánek, V.; Václavů, M.; Matolínová, I.; Khalakhan, I.; Haviar, S.; Matolín, V.

    2015-08-01

    CO oxidation on platinum oxide deposited by magnetron sputtering on flat (Si) and highly porous (multi-walled carbon nanotubes, MWCNT) substrates were examined using X-ray photoelectron spectroscopy, scanning tunneling microscopy, temperature-programmed desorption and temperature-programmed reaction in both UHV and ambient pressure conditions. Platinum in the freshly deposited thin film is present entirely in the 4+ oxidation state. The intrinsic CO oxidation capability of such catalyst proved to be significantly higher under approx. 480 K than that of pure platinum, presumably due to the interplay between metallic and cationic platinum entities, and the reaction yield can be further enhanced by increasing effective surface area when MWCNT is used as a support. The thermo-chemical stability of the platinum oxide, however, has its limitations as the thin film can be gradually thermally reduced to metallic platinum (with small residuum of stable Pt2+ species) and this process is further facilitated in the presence of reducing CO atmosphere.

  17. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  18. Sputter deposition system for controlled fabrication of multilayers

    SciTech Connect

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  19. A TEM study of the structure of magnetron sputtered chromium diboride coatings

    NASA Astrophysics Data System (ADS)

    Audronis, M.; Kelly, P. J.; Leyland, A.; Matthews, A.

    2006-02-01

    Chromium diboride thin films possess desirable combinations of properties, which are attractive for a wide range of potential industrial applications. However, these properties are strongly dependent on the deposition process and parameters. In this paper, CrB2 coatings deposited by DC and pulsed-DC magnetron sputtering of loosely packed blended powder targets are characterised by transmission electron microscopy techniques (electron diffraction and bright-field/dark-field imaging). Coatings with an extremely fine, nanocolumnar structure were observed. DC sputter deposited coatings exhibit a dense, short range ordered structure, while the pulsed-DC deposited coatings are defect-free, crystalline and show strong preferred orientation. A small amount of contamination of the interfacial sub-layers of the coatings by oxygen (from the target material) was found to affect the structure by suppressing growth of nanocolumns and promoting equiaxial grains of about 4-8 nanometres size, in the first ~70 nanometres of coating, close to the substrate interface. The majority of the coating however remains nanocolumnar.

  20. CdS Film Thickness Characterization By R. F. Magnetron Sputtering

    SciTech Connect

    Hashim, Uda; Rahman, Kasim Abdul

    2009-06-01

    In this work, cadmium sulphide (CdS) target with 99.999% purity was used as a target in RF magnetron sputtering. The sputtering experiment was conducted onto silicon oxide substrates at different temperatures ranging from 200 deg. C to 400 deg. C in 50 deg. C steps, using a capacitive coupled magnetron cathode with 13.65 MHz that at higher magnetron power. After all investigations, it was concluded that 300 deg. C substrate temperature is suitable for producing CdS films on silicon wafer with RF magnetron sputtering and the examined properties (good crystallinity and low resistivity) of this film show its feasibility for technological purposes, especially for light sensor cells.

  1. Growth of CuCl thin films by magnetron sputtering for ultraviolet optoelectronic applications

    SciTech Connect

    Natarajan, Gomathi; Daniels, S.; Cameron, D. C.; O'Reilly, L.; Mitra, A.; McNally, P. J.; Lucas, O. F.; Rajendra Kumar, R. T.; Reid, Ian; Bradley, A. L.

    2006-08-01

    Copper (I) chloride (CuCl) is a potential candidate for ultraviolet (UV) optoelectronics due to its close lattice match with Si (mismatch less than 0.4%) and a high UV excitonic emission at room temperature. CuCl thin films were deposited using radio frequency magnetron sputtering technique. The influence of target to substrate distance (d{sub ts}) and sputtering pressure on the composition, microstructure, and UV emission properties of the films were analyzed. The films deposited with shorter target to substrate spacing (d{sub ts}=3 cm) were found to be nonstoichiometric, and the film stoichiometry improves when the substrate is moved away from the target (d{sub ts}=4.5 and 6 cm). A further increase in the spacing results in poor crystalline quality. The grain interface area increases when the sputtering pressure is increased from 1.1x10{sup -3} to 1x10{sup -2} mbar at d{sub ts}=6 cm. Room temperature cathodoluminescence spectrum shows an intense and sharp UV exciton (Z{sub 3}) emission at {approx}385 nm with a full width at half maximum of 16 nm for the films deposited at the optimum d{sub ts} of 6 cm and a pressure of 1.1x10{sup -3} mbar. A broad deep level emission in the green region ({approx}515 nm) is also observed. The relative intensity of the UV to green emission peaks decreased when the sputtering pressure was increased, consistent with an increase in grain boundary area. The variation in the stoichiometry and the crystallinity are attributed to the change in the intensity and energy of the flux of materials from the target due to the interaction with the background gas molecules.

  2. Modification of film structure by plasma potential control using triode high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nakano, Takeo; Umahashi, Takuya; Baba, Shigeru

    2014-02-01

    We have designed a new triode configuration in a magnetron sputtering apparatus to control the plasma potential of the discharge. An additional chimney electrode was introduced above the conventional sputter gun to apply a positive voltage. The discharge power was provided by a pulse power source to achieve high power pulsed magnetron sputtering operation. We confirmed that the plasma potential increased with increasing positive electrode voltage. Copper films with substantially flatter surfaces could be obtained on a water-cooled and electrically grounded substrate at an Ar gas pressure of 5 Pa.

  3. Study of optical properties of asymmetric bipolar pulse DC magnetron sputtered Ta{sub 2}O{sub 5} thin film as a function of oxygen content in deposition ambient

    SciTech Connect

    Haque, S. Maidul Shinde, D. D. Misal, J. S.; Bhattacharyya, D.; Sahoo, N. K.

    2014-04-24

    Tantalum penta-oxide thin films have been deposited by reactive sputtering technique using asymmetric bipolar pulsed DC source at various oxygen percentage viz. 0 to 50 %. The optical properties of the films have been studied by spectroscopic ellipsometry measurements. It has been observed that compact films with low void fraction, high refractive index and band gap can be obtained by the above technique with oxygen percentage in the range of 30–40%. The films deposited with zero or very low oxygen content have high deposition rate and yield metal rich films with large voids, defects, low band gap and high refractive index. Similarly films deposited with >40% oxygen content again contain voids and defects due to the presence of large amount of gas molecules in the sputtering ambient.

  4. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Weiß, V.; Rossner, H.

    2001-07-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3° and 10°, is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  5. Tribological Properties of CrN/AlN Films Produced by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Rojo, A.; Solís, J.; Oseguera, J.; Salas, O.; Reichelt, R.

    2010-04-01

    The microstructure of CrN/AlN films, prepared by reactive magnetron sputtering under various conditions, was analyzed and related to the wear behavior of the films. One set of films was prepared by conventional reactive magnetron sputtering, a second set adding an extra amount of reactive gas to the initial Ar + N2 mixture and a third set adding an extra source of nitrogen near the substrate during sputtering. The samples were analyzed by scanning electron microscopy + energy dispersive microanalysis, high resolution scanning electron microscopy, atomic force microscopy, and x-ray diffraction. The results of the microstructural analysis revealed a clear difference in the morphology growth of the films when extra nitrogen was used compared to the conventionally prepared films. Formation of CrN was significantly faster than that of AlN. The most effective method to produce AlN was to introduce extra nitrogen. Pin-on-disk wear experiments were carried out in ambient air, to investigate the tribological behavior of the CrN/AlN system against a steel ball under dry conditions for various loads and a constant sliding speed. The results revealed that tribological properties of the layers improved unlike those of the untreated H13 steel. The friction behavior is closely related to the structure of the deposited films. The thicker CrN layer contributed to the higher load capacity of the coated steel when compared to the unmodified steel. However, wear life for the coating system was very short, denoted by the fairly poor adhesion of the film system to the steel substrate.

  6. Negative oxygen ion formation in reactive magnetron sputtering processes for transparent conductive oxides

    SciTech Connect

    Welzel, Thomas; Ellmer, Klaus

    2012-11-15

    Reactive d.c. magnetron sputtering in Ar/O{sub 2} gas mixtures has been investigated with energy-resolved mass spectrometry. Different metal targets (Mg, Ti, Zn, In, InSn, and Sn), which are of importance for transparent conductive oxide thin film deposition, have been used to study the formation of negative ions, mainly high-energetic O{sup -}, which are supposed to induce radiation damage in thin films. Besides their energy distribution, the ions have been particularly investigated with respect to their intensity in comparison of the different target materials. To realize the comparability, various calibration factors had to be introduced. After their application, major differences in the negative ion production have been observed for the target materials. The intensity, especially of O{sup -}, differs by about two orders of magnitude. It is shown that this difference results almost exclusively from ions that gain their energy in the target sheath. Those may gain additional energy from the sputtering process or reflection at the target. Low-energetic negative ions are, however, less affected by changes of the target material. The results concerning O{sup -} formation are discussed in term of the sputtering rate from the target and are compared to models for negative ion formation.

  7. Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering.

    PubMed

    Stuart, Bryan W; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M

    2015-12-16

    Quinternary phosphate-based glasses of up to 2.67 μm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching. PMID:26523618

  8. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  9. Effects of parameters on the performance of amorphous IGZO thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Niu, Jian-wen; Ma, Rui-xin; Wang, Yuan-yuan; Li, Shi-na; Cheng, Shi-yao; Liu, Zi-lin

    2014-09-01

    Amorphous indium-gallium-zinc oxide (IGZO) transparent conductive thin films are prepared on glass substrates by radio frequency (RF) magnetron sputtering. The effects of seven factors, which are substrate temperature, sputtering atmosphere, working pressure, sputtering power, annealing temperature, negative bias voltage and sputtering time, on Hall mobility, transmittance and surface roughness are studied through orthogonal experiments. The results show that the effects of working pressure, substrate temperature and sputtering atmosphere on performance of films are the most prominent. According to the experimental results and discussion, relatively reasonable process parameters are obtained, which are working pressure of 0.35 Pa, substrate temperature of 200 °C, sputtering atmosphere of Ar, sputtering power of 125 W, sputtering time of 30 min, negative bias voltage of 0 V and annealing temperature of 300 °C.

  10. Studies on optoelectronic properties of DC reactive magnetron sputtered chromium doped CdO thin films

    SciTech Connect

    Hymavathi, B. Rao, T. Subba; Kumar, B. Rajesh

    2014-10-15

    Cr doped CdO thin films were deposited on glass substrates by DC reactive magnetron sputtering method and subsequently annealed from 200 °C to 500 °C. X-ray diffraction analysis showed that the films exhibit (1 1 1) preferred orientation. The optical transmittance of the films increases from 64% to 88% with increasing annealing temperature. The optical band gap values were found to be decreased from 2.77 to 2.65 eV with the increase of annealing temperature. The decrease in optical band gap energy with increasing annealing temperature can be attributed to improvement in the crystallinity of the films and may also be due to quantum confinement effect. A minimum resistivity of 2.23 × 10{sup −4} Ω.cm and sheet resistance of 6.3 Ω/sq is obtained for Cr doped CdO film annealed at 500 °C.

  11. A Complementary Type of Electrochromic Device by Radio Frequency Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change their optical properties reversibly in the visible region (400-800 nm) upon charge insertion/extraction reactions according to the applied voltage. A complementary type of EC device composes of two electrochromic layers, which is separated by an ionic conduction layer (electrolyte). In this work, the EC device was fabricated using vanadium oxide (V2O5) and titanium doped tungsten oxide (WO3-TiO2) electrodes. The EC electrodes were deposited as thin film structures by a reactive RF magnetron sputtering system in a medium of gas mixture of argon and oxygen. surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical property and durability of the EC device was investigated by a potentiostat system. Optical measurement was examined under applied voltages of +/- 2.5 V by a computer-controlled system, constantly.

  12. Obtaining Au thin films in atmosphere of reactive nitrogen through magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Quintero, J. H.; Ospina, R.; Mello, A.

    2016-02-01

    4d and 5d series of the transition metals are used to the obtaining nitrides metallic, due to the synthesis of PtN, AgN and AuN in the last years. Different nitrides are obtained in the Plasma Assisted Physics Vapour Deposition system, due to its ionization energy which is necessary for their formation. In this paper a Magnetron Sputtering system was used to obtain Au thin films on Si wafers in Nitrogen atmosphere. The substrate temperature was varied between 500 to 950°C. The samples obtained at high temperatures (>500°C) show Au, Si and N elements, as it is corroborated in the narrow spectrum obtained for X-Ray Photoelectron Spectroscopy; besides the competition of orientation crystallographic texture between (111) and (311) directions was present in the X-Ray Diffraction analysis to the sample heated at 950°C.

  13. Optical properties of ITO films obtained by high-frequency magnetron sputtering with accompanying ion treatment

    SciTech Connect

    Krylov, P. N. Zakirova, R. M.; Fedotova, I. V.

    2013-10-15

    A variation in the properties of indium-tin-oxide (ITO) films obtained by the method of reactive magnetron sputtering with simultaneous ion treatment is reported. The ITO films feature the following parameters in the optical range of 450-1100 nm: a transmission coefficient of 80%, band gap of 3.50-3.60 eV, and a refractive index of 1.97-2.06. All characteristics of the films depend on the ion-treatment current. The latter, during the course of deposition, reduces the resistivity of the ITO films with the smallest value of the resistivity being equal to 2 Multiplication-Sign 10{sup -3} {Omega} cm. The degradation of films with a high resistivity when kept in air is observed.

  14. One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering

    SciTech Connect

    Liu, Ziheng Hao, Xiaojing; Ho-Baillie, Anita; Green, Martin A.

    2014-02-03

    In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.

  15. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    NASA Astrophysics Data System (ADS)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.; Conédéra, V.; Estève, A.; Tenailleau, C.; Alphonse, P.; Chabal, Y. J.

    2010-10-01

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case of the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.

  16. Structure and Properties of Ti-O-N Coatings Produced by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Konischev, M. E.; Kuzmin, O. S.; Pustovalova, A. A.; Morozova, N. S.; Evdokimov, K. E.; Surmenev, R. A.; Pichugin, V. F.; Epple, M.

    2014-02-01

    Results of an experimental study of the optical characteristics of gas discharges are presented. The study was aimed at optimizing the operating modes of a mid-frequency magnetron sputtering system to efficiently deposit Ti-O-N coatings. The conditions for maintaining the intensity of the chosen spectroscopic lines that ensure synthesis of titanium oxide and titanium oxynitride coatings have been revealed. The morphology, structure, contact angle, and free surface energy of titanium oxide and titanium oxynitride coatings on type 12Kh18N10T stainless steel substrates were examined by using scanning and transmission electron microscopy and infrared spectroscopy, and by measuring the wetting angle. The results of examination of the structure and properties of the synthesized films and their physicomechanical and optical characteristics are given.

  17. Formation of textured Ni(200) and Ni(111) films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dzhumaliev, A. S.; Nikulin, Yu. V.; Filimonov, Yu. A.

    2016-06-01

    The effect of the working gas pressure ( P ≈ 1.33-0.09 Pa) and the substrate temperature ( T s ≈ 77-550 K) on the texture and the microstructure of nickel films deposited by magnetron sputtering onto SiO2/Si substrates is studied. Ni(200) films with a transition type of microstructure are shown to form at growth parameters P ≈ 0.13-0.09 Pa and T s ≈ 300-550 K, which ensure a high migration ability of nickel adatoms on a substrate. This transition type is characterized by a change of the film structure from quasi-homogeneous to quasi-columnar when a film reaches a critical thickness. Ni(111) films with a columnar microstructure and high porosity form at a low migration ability, which takes place at P ≈ 1.33-0.3 Pa or upon cooling a substrate to T s ≈ 77 K.

  18. Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-11-08

    Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

  19. Morphology of epitaxial TiN(001) grown by magnetron sputtering

    SciTech Connect

    Karr, B.W.; Petrov, I.; Cahill, D.G.; Greene, J.E.

    1997-03-01

    The evolution of surface morphology and microstructure during growth of single crystal TiN(001) is characterized by {ital in situ} scanning tunneling microscopy and postdeposition plan-view transmission electron microscopy. The TiN layers are grown on MgO at 650{lt}T{lt}750{degree}C using reactive magnetron sputter deposition in pure N{sub 2}. The surface morphology is dominated by growth mounds with an aspect ratio of {approx_equal}0.006; both the roughness amplitude and average separation between mounds approximately follow a power law dependence on film thickness, t{sup {alpha}}, with {alpha}=0.25{plus_minus}0.07. Island edges show dendritic geometries characteristic of limited step-edge mobility at the growth temperature. {copyright} {ital 1997 American Institute of Physics.}

  20. Preparation of transparent Cu2Y2O5 thin films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chiu, Te-Wei; Chang, Chih-Hao; Yang, Li-Wei; Wang, Yung-Po

    2015-11-01

    Cu2Y2O5 thin films were deposited on non-alkali glass substrates by RF magnetron sputtering. Its crystal structure, microstructure, optical property, mechanical property, and antibacterial activity were investigated by grazing-incidence X-ray diffraction, transmittance spectra, nanoindenter, and antibiotics test, respectively. A single-phase of Cu2Y2O5 was obtained while annealing at 700 °C in air and its optical transparency was >80% in the visible region. The hardness and elastic modulus of the film were 6.7 GPa and 82 GPa, respectively. Antibiotics testing result revealed that Cu2Y2O5 surface had a superior antibacterial performance even at a dark environment. Therefore, Cu2Y2O5 is a promising novel transparent antibacterial hard coating material.

  1. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    SciTech Connect

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I.

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  2. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    NASA Astrophysics Data System (ADS)

    Li, Chunwei; Tian, Xiubo

    2016-08-01

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  3. ZnO:Al films prepared by inline DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bingel, Astrid; Füchsel, Kevin; Kaiser, Norbert; Tünnermann, Andreas

    2014-02-01

    Aluminum-doped zinc oxide (AZO) is one of the most promising transparent conductive oxide (TCO) materials that can substitute the high-quality but costly indium tin oxide (ITO). To ensure high-quality films as well as moderate production costs, inline DC magnetron sputtering was chosen to deposit thin AZO films. The influence of sputter gas pressure, substrate temperature, and film thickness on the electrical, optical, and structural properties was analyzed. The resistivity reaches a minimum of 1.3×10-5 Ωm at around 1 Pa for a substrate temperature of 90°C. A maximum conductivity was obtained by increasing the substrate temperature to 160°C. An annealing step after deposition led to a further decrease in resistivity to a value of 5.3×10-6 Ωm in a 200 nm thin film. At the same time, the optical performance could be improved. Additionally, simulations of the transmittance and reflectance spectra were carried out to compare carrier concentration and mobility determined by optical techniques with those from Hall measurements.

  4. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field.

    PubMed

    Li, Chunwei; Tian, Xiubo

    2016-08-01

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process. PMID:27587123

  5. Radio-frequency superimposed direct current magnetron sputtered Ga:ZnO transparent conducting thin films

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.; Ndione, Paul F.; Perkins, John D.; Gennett, Thomas; van Hest, Maikel F. A. M.; Shaheen, Sean E.; Ginley, David S.; Berry, Joseph J.

    2012-05-01

    The utilization of radio-frequency (RF) superimposed direct-current (DC) magnetron sputtering deposition on the properties of gallium doped ZnO (GZO) based transparent conducting oxides has been examined. The GZO films were deposited using 76.2 mm diameter ZnO:Ga2O3 (5 at. % Ga vs. Zn) ceramic oxide target on heated non-alkaline glass substrates by varying total power from 60 W to 120 W in steps of 20 W and at various power ratios of RF to DC changing from 0 to 1 in steps of 0.25. The GZO thin films grown with pure DC, mixed approach, and pure RF resulted in conductivities of 2200 ± 200 S/cm, 3920 ± 600 S/cm, and 3610 ± 400 S/cm, respectively. X-ray diffraction showed all films have wurtzite ZnO structure with the c-axis oriented perpendicular to the substrate. The films grown with increasing RF portion of the total power resulted in the improvement of crystallographic texture with smaller full-width half maximum in χ and broadening of optical gap with increased carrier concentration via more efficient doping. Independent of the total sputtering power, all films grown with 50% or higher RF power portion resulted in high mobility (˜28 ± 1 cm2/Vs), consistent with observed improvements in crystallographic texture. All films showed optical transmittance of ˜90% in the visible range.

  6. Effect of pulse frequency on the ion fluxes during pulsed dc magnetron sputtering

    SciTech Connect

    Rahamathunnisa, M.; Cameron, D. C.

    2009-03-15

    The ion fluxes and energies which impinge on the substrate during the deposition of chromium nitride by asymmetric bipolar pulsed dc reactive magnetron sputtering have been analyzed using energy resolved mass spectrometry. It has been found that there is a remarkable increase in ion flux at higher pulse frequencies and that the peak ion energy is directly related to the positive voltage overshoot of the target voltage. The magnitude of the metal flux depositing on the substrate is consistent with a 'dead time' of {approx}0.7 {mu}s at the start of the on period. The variation of the ion flux with pulse frequency has been explained by a simple model in which the ion density during the on period has a large peak which is slightly delayed from the large negative voltage overshoot which occurs at the start of the on pulse due to increased ionization at that time. This is consistent with the previously observed phenomena in pulsed sputtering.

  7. Characterization of tantalum nitride thin films synthesized by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zaman, Anna

    Tantalum Nitride is chemically inert, oxidation resistant and hard. TaN finds its application as a protective coating on steel due to their excellent wear properties. It has become a very promising diffusion barrier material in Cu interconnect technology in microelectronics. TaN has not been analyzed as much as other transition metal nitrides like the TiN system because TaN exhibits various stable and metastable phases. The emergence of these phases and the different physical, chemical and mechanical properties depend on the growth technique and deposition conditions. TaN thin films were deposited using the magnetron PVD system in the SaNEL lab. The aim of this study was to identify the effect of processing parameters like N2/Ar ratio, substrate bias and temperature, on the emergence of the different phases present in TaN thin films and the effect of deposition conditions on the mechanical properties of these films. The phases present in the films, deposited at varying conditions were explored via low angle X-Ray Diffraction (XRD), hardness of the films was measured by Nanoindentation and tribological tests were carried out to measure the frictional and wear behavior. It was observed that at high percentage of Nitrogen (10%-25%) the main phase present was FCC TaN and as the nitrogen content was decreased a mixture of phases was present in these films. The hardness of the films increases as we decrease the Nitrogen content, yielding a film with a hardness of 37.1 GPa at 3% N2 with a substrate bias voltage of -100 V.

  8. Substrate heating rates for planar and cylindrical-post magnetron sputtering sources

    NASA Technical Reports Server (NTRS)

    Thornton, J. A.; Lamb, J. L.

    1984-01-01

    Results are presented for the substrate heating energy/atom required in the planar magnetron sputtering of Al, Cr, Ni, Cu, Mo, In, Ta, W, and Pt in Ar, as well as Al and Cr in O2. Data are also obtained for cylindrical magnetron sputtering of Nb, Ag, Ta, W, and Pb-Sn in Ar, and Mo sputtered in Ne, Ar, Kr, and Xe. Planar and cylindrical magnetron heating rates were comparable. Special experiments were conducted to examine the contributions to substrate heating of plasma species and ion neutralization and reflection at the cathode; the results obtained indicate that charged plasma species do not significantly contribute to the heating, but that neutralized and reflected ions play a significant role in the planar as well as cylindrical cases despite the differences in cathode geometry.

  9. Initial Growth Process of Magnetron Sputtering 321 Stainless Steel Films Observed by Afm

    NASA Astrophysics Data System (ADS)

    Jin, Yongzhong; Wu, Wei; Liu, Dongliang; Chen, Jian; Sun, Yali

    To investigate the initial morphological evolution of 321 stainless steel (SS) films, we examined the effect of sputtering time on the morphology of 321 SS film. In this study, a group of samples were prepared at nine different sputtering times within 20 s using radio-frequency (r.f.) magnetron sputtering and characterized by atomic force microscopy (AFM). Only globular-like grains were formed on mica substrates within 6 s, whose average grain size is ~ 21-44 nm. Meanwhile, few grains with larger size are subject to settle at the defect sites of mica substrates. At 8 s, we found large columnar crystallites with the average grain size of 61 nm. From 10 to 14 s, islands grew continuously and coalesced in order to form an interconnected structure containing irregular channels or grooves, with a depth of ~ 3.5-5 nm. Up to 16 s, a nearly continuous film was formed and some new globular-like grains were again present on the film. Study of the AFM image at 20 s suggests that the watercolor masking method designed by us is an effective method, by which we can prepare thin films with steps for the measurement of the thickness of continuous thin films. It is also found that the coverage rate of films increases with the increase in sputtering time (from 2 to 16 s). On the other hand, the increase in root mean square (RMS) roughness is much more significant from 6 to 10 s, and there is a maximum value, 2.81 nm at 10 s due to more islands during deposition. However, RMS roughness decreases with the decrease in length and width of channels or grooves from 10 to 16 s. Especially, a lower RMS roughness of 0.73 nm occurs at 16 s, because of the continuous film produced with a large coverage rate of 98.43%.

  10. Thermal stability of anisotropy in TbFe films prepared by dc-magnetron sputtering

    SciTech Connect

    Cheng, S.N.; Kryder, M.H. )

    1991-11-15

    We have found that stresses induced during magnetron sputter deposition of amorphous TbFe films are very important in determining the thermal stability of the perpendicular anisotropy, {ital K}{sub {ital u}}. To determine the stress-induced contribution to the anisotropy, the anisotropy was measured with a torque magnetometer before and after peeling films from their substrates. Data clearly show that the fractional change in anisotropy which occurs when the film is peeled from its substrate, {Delta}{ital K}{sub {ital u}}/{ital K}{sub {ital u}}, decreases with increasing Ar pressures. Furthermore, annealing studies reveal that the thermal stability of {ital K}{sub {ital u}} improves with increasing Ar sputtering pressure{minus}a trend which is in conflict with the tendency for films sputtered under low Ar pressure to be more oxidation resistant. This trend is attributed to the large stress-induced anisotropy component which exists at low argon pressures and its tendency to decrease as a result of long-term annealing. Measurements of the anisotropy of films which had been annealed at 200 {degree}C for 815 h showed that the residual {ital K}{sub {ital u}} after annealing increased with argon pressure. Measurements of the width of the peak in coercivity around {ital T}{sub comp} in these films shows that {ital H}{sub {ital c}} increases monotonically with argon pressure. This monotonic increase in {ital H}{sub {ital c}} is attributed to larger local variations in anisotropy caused by the less dense microstructure and the more random local anisotropy produced by the larger angle of incidence of adatoms which results from the increased scattering in the higher pressure sputtering gas.

  11. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique.

    PubMed

    Boyd, A R; Rutledge, L; Randolph, L D; Meenan, B J

    2015-01-01

    The bioactivity of hydroxyapatite (HA) coatings can be modified by the addition of different ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HA lattice. Of the ions listed here, strontium substituted hydroxyapatite (SrHA) coatings have received a lot of interest recently as Sr has been shown to promote osteoblast proliferation and differentiation, and reduce osteoclast activity. In this study, SrHA coatings were deposited onto titanium substrates using radio frequency (RF) magnetron co-sputtering (and compared to those surfaces deposited from HA alone). FTIR, XPS, XRD, and SEM techniques were used to analyse the different coatings produced, whereby different combinations of pure HA and 13% Sr-substituted HA targets were investigated. The results highlight that Sr could be successfully incorporated into the HA lattice to form SrHA coatings. It was observed that as the number of SrHA sputtering targets in the study were increased (increasing Sr content), the deposition rate decreased. It was also shown that as the Sr content of the coatings increased, so did the degree of preferred 002 orientation of the coating (along with obvious changes in the surface morphology). This study has shown that RF magnetron sputtering (specifically co-sputtering), offers an appropriate methodology to control the surface properties of Sr-substituted HA, such as the crystallinity, stoichiometry, phase purity and surface morphology. PMID:25491990

  12. TiN Deposition and Process Diagnostics using Remote Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Wonkyun; Kim, Gi-Taek; Lee, Seunghun; Kim, Do-Geun; Kim, Jong-Kuk

    2013-08-01

    The discharge voltage-current characteristics and the optical diagnostics of a remote plasma sputtering system called by high density plasma assisted sputtering source (HiPASS) were investigated. The remote plasma was generated by the hollow cathode discharge (HCD) gun and was transported to the target surface by external electromagnet coils. This showed a wide process window because the sputtering voltage and current could be individually controlled. The ion density and energy distribution could be also controlled unlike the conventional magnetron sputtering. Titanium nitride films were deposited under different sputtering voltage. The high voltage mode induced the high ionization ratio of the sputtered atoms and the high ion energy toward the substrate. That resulted in the enlarged grain size, and the preferred orientation toward (220). Eventually, this optimized condition of HiPASS obtained the best hardness of TiN films to be about 48 GPa at the sputtering voltage of -800 V.

  13. Stress development and relaxation during sputter deposition film growth

    NASA Astrophysics Data System (ADS)

    Meng, Fanyu

    The stress development and relaxation of magnetron sputtered copper and amorphous-silicon (a-Si) films at room temperature are studied. Samples were prepared as a function of pressure and deposition power. In-situ stress measurements with the wafer curvature method were made using a helium neon gas laser system with a 10mm beam splitter. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to perform post-growth microstructural and surface analysis. SEM cross-section analysis was used to determine the final film thickness. Phase compositions were studied by X-ray diffraction. The growth rates of copper films decreased with increasing pressure. Copper film stress development followed a non-monotonic compressive, tensile then tensile relaxation curve. In order to investigate further the nature of the stress relaxation, stress curves both after deposition was stopped and after it is restarted were also measured. Correlations between growth rate and pressure were also observed in a-Si sputter deposition. In some contrast to what was observed for Cu deposition, stress measurement during a-Si deposition showed a trend of tensile development and relaxation at all pressures studied. In a new approach to understanding stress relaxation during film growth, an acoustic emission (AE) system is introduced to measure the AE energy during sputter deposition. Evidence shows a certain relation between the strain energy of films calculated using the measured stresses and AE energy recorded during the deposition. AE energy occurs immediately after deposition starts and follows the trend of stress development (increasing hits and energies) and relaxation (decreasing hits and energies). No further signal was detected after deposition, matching the results of stress curve measurements showing that stress magnitude after deposition stays at the same level as before deposition stopped. Results also show a lower AE energy magnitude with increasing deposition

  14. Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film.

    PubMed

    Yang, Yi-Ju; Tsou, Hsi-Kai; Chen, Ying-Hung; Chung, Chi-Jen; He, Ju-Liang

    2015-12-01

    This study utilizes a novel technique, high power impulse magnetron sputtering (HIPIMS), which provides a higher ionization rate and ion bombardment energy than direct current magnetron sputtering (DCMS), to deposit high osteoblast compatible titanium dioxide (TiO2) coatings with anatase (A-TiO2) and rutile (R-TiO2) phases onto the biomedical polyetheretherketone (PEEK) polymer substrates at low temperature. The adhesions of TiO2 coatings that were fabricated using HIPIMS and DCMS were compared. The in vitro biocompatibility of these coatings was confirmed. The results reveal that HIPIMS can be used to prepare crystallinic columnar A-TiO2 and R-TiO2 coatings on PEEK substrate if the ratio of oxygen to argon is properly controlled. According to a tape adhesion test, the HIPIMS-TiO2 coatings had an adhesion grade of 5B even after they were immersed in simulated body fluid (SBF) environments for 28days. Scratch tests proved that HIPIMS-TiO2 coatings undergo cohesive failure. These results demonstrate that the adhesive force between HIPIMS-TiO2 coating/PEEK is stronger than that between DCMS-TiO2 coating/PEEK. After a long period (28days) of immersion in SBF, a bone-like crystallinic hydroxyapatite layer with a corresponding Ca/P stoichiometry was formed on both HIPIMS-TiO2. The osteoblast compatibility of HIPIMS-TiO2 exceeded that of the bare PEEK substrate. It is also noticeable that the R-TiO2 performed better in vitro than the A-TiO2 due to the formation of many negatively charged hydroxyl groups (-OH(-)) groups on R-TiO2 (110) surface. In summary, the HIPIMS-TiO2 coatings satisfied the requirements for osseointegration, suggesting the possibility of using HIPIMS to modify the PEEK surface with TiO2 for spinal implants. PMID:26354240

  15. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline NbN Coatings in Corrosion Protective Die Casting Molds.

    PubMed

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 200 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single NbN phased coatings with nano-grain sized (<7.6 nm) were identified. The corrosion resistance and hardness of each coating were evaluated from potentiostat and nanoindentator. Superior corrosion protective coatings in excess of 13.9 GPa were deposited with assistance of ICP plasma during sputtering. PMID:27433719

  16. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  17. Photoluminescence study of (Er3+ + Yb3+) doped gallium nitride layers fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prajzler, Vaclav; Hüttel, Ivan; Spirkova, Jarmila; Oswald, Jiri; Perina, Vratislav; Zavadil, Jiri; Machovic, Vladimír; Burian, Zdenek

    2005-09-01

    Erbium (Er3+) and Ytterbium (Yb3+) ions doped Gallium Nitride (GaN) layers were deposited by RF magnetron sputtering. Deposition was carried out in Ar + N2 gas mixture using Ga and Ga2O3 target as the source of Gallium. For the erbium and ytterbium doping, the Er2O3, Yb2O3 pellets, or Er and Yb powder were laid on the top of the Ga2O3 target. The GaN layers were deposited on silicon and Corning glass substrates. The properties of the GaN layers were investigated by using X-ray diffraction, Raman spectroscopy, absorption spectra and photoluminescence spectra. Prism coupling mode spectroscopy was used to measure the waveguiding properties. The composition of the fabricated samples was determined by using nuclear chemical analysis as Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA). The results of the experiments were evaluated in terms of the relations between the technology approaches and the composition and luminescence properties of the fabricated thin films. Up to now the best results, which can be utilized for a structure operating at 1550 nm (when pumped at 980 nm), were obtained when using (erbium plus ytterbium) metallic powder and Corning glass as the substrate for the deposition.

  18. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  19. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    SciTech Connect

    Gudmundsson, J. T.; Lundin, D.; Minea, T. M.; Stancu, G. D.; Brenning, N.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  20. Large-area few-layer MoS2 deposited by sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Hong; Chen, Hsing-Hung; Liu, Pang-Shiuan; Lu, Li-Syuan; Wu, Chien-Ting; Chou, Cheng-Tung; Lee, Yao-Jen; Li, Lain-Jong; Chang, Wen-Hao; Hou, Tuo-Hung

    2016-06-01

    Direct magnetron sputtering of transition metal dichalcogenide targets is proposed as a new approach for depositing large-area two-dimensional layered materials. Bilayer to few-layer MoS2 deposited by magnetron sputtering followed by post-deposition annealing shows superior area scalability over 20 cm2 and layer-by-layer controllability. High crystallinity of layered MoS2 was confirmed by Raman, photo-luminescence, and transmission electron microscopy analysis. The sputtering temperature and annealing ambience were found to play an important role in the film quality. The top-gate field-effect transistor by using the layered MoS2 channel shows typical n-type characteristics with a current on/off ratio of approximately 104. The relatively low mobility is attributed to the small grain size of 0.1–1 μm with a trap charge density in grain boundaries of the order of 1013 cm–2.

  1. Influence of reactive sputter deposition conditions on crystallization of zirconium oxide thin films

    SciTech Connect

    Sethi, Guneet; Sunal, Paul; Horn, Mark W.; Lanagan, Michael T.

    2009-05-15

    Zirconium oxide thin films were prepared through reactive magnetron sputtering with a zirconium target using pulsed-dc and radio frequency (rf) sources. The film crystallization was studied with respect to sputtering growth variables such as sputtering power, sputtering pressure, source frequency, oxygen pressure, substrate temperature, and substrate material. The crystallization was studied through x-ray diffraction (XRD) 2{theta} scans and was quantified with peak full width at half maximum and crystallite size. Crystallization of the films was found to occur over a broad range of sputter deposition parameters, while the amorphous phase was produced only at high sputtering pressure and low sputtering power. With a decrease in sputtering pressure or power, the crystallite size decreased. Energy dispersive x-ray spectroscopy, electron microscopy, and XRD analysis revealed that at very low pressures, these films are polyphase assemblages of cubic phases of oxygen deficient zirconium oxides such as ZrO and Zr{sub 2}O. When the sputtering oxygen content of these films is increased above 25%, monoclinic-ZrO{sub 2} phase is stabilized in the films and the deposition rate decreases. However, in the case of rf sputtering, an additional peak corresponding to tetragonal phase of ZrO{sub 2} is observed. The sputtering parameters were related to physical parameters such as sputtering mode, ion energy, and substrate temperature, which influence crystallinity.

  2. Enhanced electrical and noise properties of nanocomposite vanadium oxide thin films by reactive pulsed-dc magnetron sputtering

    SciTech Connect

    Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.

    2012-06-25

    Thin films of VO{sub x} (1.3 {<=} x {<=} 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VO{sub x} samples. The resistivity of nanotwinned VO{sub x} films ranged from 4 m{Omega}{center_dot}cm to 0.6 {Omega}{center_dot}cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VO{sub x} samples using the Hooge-Vandamme relation. These VO{sub x} films are comparable or surpass commercial VO{sub x} films deposited by ion beam sputtering.

  3. Enhanced electrical and noise properties of nanocomposite vanadium oxide thin films by reactive pulsed-dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.

    2012-06-01

    Thin films of VOx (1.3 ≤ x ≤ 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VOx samples. The resistivity of nanotwinned VOx films ranged from 4 mΩ.cm to 0.6 Ω.cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VOx samples using the Hooge-Vandamme relation. These VOx films are comparable or surpass commercial VOx films deposited by ion beam sputtering.

  4. Characterization of Ta-Si-N coatings prepared using direct current magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Yung-I.; Lin, Kun-Yi; Wang, Hsiu-Hui; Cheng, Yu-Ru

    2014-06-01

    Ta-Si-N coatings were prepared using reactive direct current magnetron co-sputtering on silicon substrates. When the sputtering powers and N2 flow ratio were varied, Ta-Si-N coatings exhibited various chemical compositions and crystalline characteristics. The high-Si-content Ta-Si-N coatings exhibited an amorphous phase in the as-deposited states, whereas the low-Si-content coatings exhibited a face-centered cubic phase or an amorphous phase depending on the N content. This study evaluated the application of amorphous Ta-Si-N coatings, such as the protective coatings on glass molding dies, in high-temperature and oxygen-containing atmospheres for longed operation durations. To explore the oxidation resistance and mechanical properties of the Ta-Si-N coatings, annealing treatments were conducted in a 1%O2-99%Ar atmosphere at 600 °C for 4-100 h. The material characteristics and oxidation behavior of the annealed Ta-Si-N coatings were examined using atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and a nanoindentation tester. The Si oxidized preferentially in the Ta-Si-N coatings. The in-diffusion of oxygen during 600 °C annealing was restricted by the formation of an amorphous oxide scale consisting of Si and O.

  5. Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S.

    2014-12-01

    Thin films of tungsten trioxide (WO3) have been prepared by RF reactive magnetron sputtering of tungsten target at different substrate temperatures in the range 303-673 K and at fixed oxygen partial pressure of 6×10-2 Pa and sputter pressure of 4 Pa. The effect of substrate temperature on the structural, morphological, optical and electrochromic properties of WO3 films was systematically studied. The films formed at 303 K were of X-ray amorphous, while those deposited at substrate temperatures ≥473 K were crystallized into orthorhombic phase WO3. The crystallite size of the films increased from 17 to 24 nm with increase of substrate temperature from 473 to 673 K. Raman studies confirmed that the presence of O-W-O and W=O bonds in WO3 films. The surface morphology of the films was significantly varied with substrate temperature. The optical transmittance data revealed that the optical band gap increased from 3.08 to 3.48 eV and refractive index increased from 2.18 to 2.26 with increase of substrate temperature from 303 to 673 K respectively. The WO3 films formed at substrate temperature of 473 K exhibited better optical transmittance modulation of 40% between colored and bleached state with a color efficiency of 33.8 cm2/C and diffusion coefficient of 1.85×10-11 cm2/s.

  6. Tribological properties of metal doped a-C film by RF magnetron sputtering method

    SciTech Connect

    Park, Yong Seob; Jung, Tae-Hwan; Lim, Dong-Gun; Park, Young; Kim, Hyungchul; Choi, Won Seok

    2012-10-15

    We deposited various metal doped amorphous carbon (a-C:Me) films by radio frequency (RF) magnetron co-sputtering method. Tungsten (W), molybdenum (Mo), and chromium (Cr) were used as the doping metals in a-C film. The applied power on carbon and metal (W, Mo, and Cr) target were 150 W and 40 W, respectively. a-C:Me films exhibited smooth and uniform surface roughness and the hardness over 15 GPa. Specially, a-C:W film showed the maximum hardness of 18.5 GPa. The coefficient of friction of a-C:W film is relatively lower than that of other films and the critical load value of a-C:W film is higher. These results are related to the concentration of metal in the carbon matrix by the difference of sputtering yield and the change of the structure by the metal bonding. Consequently, W metal is good candidate as the doping metal for the improvement of tribological characteristics.

  7. Study of thin TiC xN 1-x films fabricated by hybrid magnetron-laser deposition

    NASA Astrophysics Data System (ADS)

    Kocourek, Tomáš; Jelínek, Miroslav; Studnička, Václav; Kadlec, Jaromír

    2006-02-01

    Titanium- carbonitride thin films were grown at room temperature using a hybrid deposition arrangement combining DC magnetron sputtering and KrF pulsed laser deposition (MSPLD). Carbon and titanium were simultaneously deposited on the same Si substrate, dimensions of 3 cm × 3 cm. Films were fabricated in argon- nitrogen atmosphere of 1 Pa - 5 Pa, for laser fluence of 15 Jcm -2 and magnetron power of 150 W. Film properties were modified by RF discharge held between the target and substrate. Film crystallinity was studied by XRD and the composition depth profile of TiCN layers by glow discharge optical emission spectroscopy (GDOES).

  8. The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films

    SciTech Connect

    Bikowski, Andre; Welzel, Thomas; Ellmer, Klaus

    2013-06-17

    In order to study the impact of negative oxygen ion bombardment on the electronic transport properties of ZnO:Al films, a systematic magnetron sputtering study from ceramic targets with excitation frequencies from DC to 27 MHz, accompanied by strongly varying discharge voltages, has been performed. Higher plasma excitation frequencies significantly improve the transport properties of ZnO:Al films. The effect of the bombardment of the films by energetic particles (negative oxygen ions) can be explained by the dynamic equilibrium between the formation of acceptor-like oxygen interstitials compensating the extrinsic donors and the self-annealing of the interstitial defects at higher deposition temperatures.

  9. Preparation and characterization of Gd{sub 2}O{sub 3} thin films by RF magnetron sputtering

    SciTech Connect

    Pattabi, Manjunatha; Thilipan, G. Arun Kumar

    2013-02-05

    Gd{sub 2}O{sub 3} films were deposited on to glass substrates held at room temperature using radio frequency (RF) magnetron sputtering, at a RF power of 63 W and argon pressure maintained at 1 Multiplication-Sign 10{sup -2}mbar. The morphology was studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The band gaps obtained from optical absorption studies are in the range of 3.4 and 4.02 eV, after annealing in air at 380 Degree-Sign C for 1 hour.

  10. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  11. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  12. Effect of reactive magnetron sputtering parameters on structural and electrical properties of hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Szymańska, Magdalena; Gierałtowska, Sylwia; Wachnicki, Łukasz; Grobelny, Marcin; Makowska, Katarzyna; Mroczyński, Robert

    2014-05-01

    The purpose of this work was to compare the structural and electrical properties of magnetron sputtered hafnium oxide (HfOx) and hafnium oxynitride (HfOxNy) thin films. A careful analysis of the influence of deposition process parameters, among them: pressure in the reactor chamber, Ar and O2 flow rate, power applied to the reactor chamber and deposition time, on electro-physical properties of HfOx and HfOxNy layers has been performed. In the course of this work we performed number of experiments by means of Taguchi's orthogonal arrays approach. Such a method allowed for the determination of dielectric layers properties depending on process parameters with relatively low amount of experiments. Moreover, the effects of post-deposition annealing on electrical characteristics of metal-insulator-semiconductor (MIS) structures with HfOx or HfOxNy gate dielectric and its structural properties have also been reported. Investigated hafnia thin films were characterized by means of spectroscopic ellipsometry (SE), electrical characteristics measurements, atomic force microscopy (AFM), X-ray diffraction spectroscopy (XRD) and Rutherford backscattering spectrometry (RBS).

  13. Growth, microstructure and supercapacitive performance of copper oxide thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Purusottam Reddy, B.; Sivajee Ganesh, K.; Hussain, O. M.

    2016-02-01

    The supercapacitive performance of copper oxide thin film electrodes mainly relies on micro structure, phase, surface area and conductivity which in turn depend on the deposition technique and process parameters during growth. In the present study, thin films of copper oxide were prepared by RF magnetron sputtering on stainless steel substrates keeping O2-to-Ar ratio at 1:11 and RF power at 250 W and varying the substrate temperature. The microstructure and the induced phase changes in copper oxide films are observed to be strongly influenced by the substrate temperature since the relaxation time, surface diffusion and surface structural changes are thermally activated. The XRD and Raman studies reveal that the films deposited at low substrate temperature (<200 °C) exhibited CuO, while the films deposited at substrate temperature >200 °C exhibited Cu2O phase. The films prepared at 350 °C exhibited reflections correspond to cubic Cu2O with predominant (111) orientation. The estimated maximum grain size from AFM studies was 72 nm with surface roughness of 51 nm. These films exhibited a highest areal capacitance of 30 mF cm-2 at scan rate of 5 mV s-1. The galvanostatic charge-discharge studies demonstrated high specific capacitance of 908 F g-1 at 0.5 mA cm-2 current density with 80 % of its initial capacity retention even after 1000 cycles.

  14. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-01

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10-4 Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  15. Growth of crystalline hydroxyapatite thin films at room temperature by tuning the energy of the RF-magnetron sputtering plasma.

    PubMed

    López, Elvis O; Mello, Alexandre; Sendão, Henrique; Costa, Lilian T; Rossi, André L; Ospina, Rogelio O; Borghi, Fabrício F; Silva Filho, José G; Rossi, Alexandre M

    2013-10-01

    Right angle radio frequency magnetron sputtering technique (RAMS) was redesigned to favor the production of high-quality hydroxyapatite (HA) thin coatings for biomedical applications. Stoichiometric HA films with controlled crystallinity, thickness varying from 254 to 540 nm, crystallite mean size of 73 nm, and RMS roughness of 1.7 ± 0.9 nm, were obtained at room temperature by tuning the thermodynamic properties of the plasma sheath energy. The plasma energies were adjusted by using a suitable high magnetic field confinement of 143 mT (1430 G) and a substrate floating potential of 2 V at the substrate-to-magnetron distance of Z = 10 mm and by varying the sputtering geometry, substrate-to-magnetron distance from Z = 5 mm to Z = 18 mm, forwarded RF power and reactive gas pressure. Measurements that were taken with a Langmuir probe showed that the adjusted RAMS geometry generated a plasma with an adequate effective temperature of Teff ≈ 11.8 eV and electron density of 2.0 × 10(15) m(-3) to nucleate nanoclusters and to further crystallize the nanodomains of stoichiometric HA. The deposition mechanism in the RAMS geometry was described by the formation of building units of amorphous calcium phosphate clusters (ACP), the conversion into HA nanodomains and the crystallization of the grain domains with a preferential orientation along the HA [002] direction. PMID:24059686

  16. Microstructural evolution of thin film vanadium oxide prepared by pulsed-direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Motyka, M. A.; Gauntt, B. D.; Horn, M. W.; Dickey, E. C.; Podraza, N. J.

    2012-11-01

    Vanadium oxide (VOx) thin films have been deposited by pulsed-DC magnetron sputtering using a metallic vanadium target in a reactive argon and oxygen environment. While the process parameters (power, total pressure, oxygen-to-argon ratio) remained constant, the deposition time was varied to produce films between 75 ± 6 and 2901 ± 30 Å thick, which were then optically and electrically characterized. The complex dielectric function spectra (ɛ = ɛ1 + iɛ2) of the films from 0.75 to 5.15 eV were extracted by ex situ, multiple-angle spectroscopic ellipsometry (SE) measurements for the series of varied thickness VOx samples. Significant changes in ɛ and resistivity occur as a function of thickness, indicating the correlations exist between the electrical and the optical properties over this spectral range. In addition, in situ measurements via real time SE (RTSE) were made on the film grown to the largest thickness to track optical property and structural variations during growth. RTSE was also used to characterize changes in the film occurring after growth was completed, namely during post sputtering in the presence of argon and oxygen while the sample is shielded, and atmospheric exposure. RTSE indicates that the exposure of the film to the argon and oxygen environment, regardless of the shutter isolating the target, causes up to 200 Å of the top surface of the deposited film to become more electrically resistive as evidenced by variations in ɛ. Exposure of the VOx thin film to atmospheric conditions introduces a similar change in ɛ, but this change occurs throughout the bulk of the film. A combination of these observations with RTSE results indicates that thinner, less ordered VOx films are more susceptible to drastic changes due to atmospheric exposure and that microstructural variations in this material ultimately control its environmental stability.

  17. Microstructural dependence of annealing temperature in magnetron-sputtered Al-Si-Cu films

    NASA Astrophysics Data System (ADS)

    Liang, Ming-Kaan; Ling, Yong-Chien

    1993-09-01

    The effect of sputtering temperature, sputtering bias, and annealing temperature upon the sheet resistance, WO3 formation at the Al-Si-Cu/Ti-W interface, and diffraction intensity of the Al2Cu precipitates of magnetron-sputtered Al-Si-Cu films were investigated. Statistical methods and microcharacterization techniques were applied to study these effects. Statistical analysis verifies the effect of annealing temperature on the measured sheet resistance. Annealing temperature alone is the dominant factor upon the WO3 formation at the Al-Si-Cu/Ti-W interface and the Al2Cu (211) plane diffraction intensity. Annealed samples are of higher sheet resistance. Increase in sheet resistance is ascribed to the formation of interfacial WO3. Reduced electromigration is related to the formation of Al2Cu precipitates. Secondary ion mass spectrometry (SIMS) analysis of the as-deposited sample depicts the presence of an excess amount of oxygen atoms at the surface and the Al-Si-Cu/Ti-W and Ti-W/Ti interfaces. Rutherford backscattering spectrometry and SIMS analyses reveal the outdiffusion of W from the Ti-W layer toward the Al-Si-Cu layer, the presence of Si nodules at the Al-Si-Cu/Ti-W interface, and the formation of Ti silicides at the Ti/Si interface. These phenomena are confirmed by transmission electron microscopy, energy dispersive x-ray analysis, and scanning electron microscopy analyses. It is concluded that interfacial oxygen, which reacts with W to form WO3 upon annealing, warrants further reduction to yield films of better sheet resistance.

  18. Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering

    SciTech Connect

    Abramov, N F; Volpyan, O D; Obod, Yu A; Dronskii, R V

    2013-09-30

    Significant advantages of the magnetron sputtering method for producing complex high-quality optical coatings for laser devices are shown. Technology aspects of efficient fabrication of such coatings are considered. The capabilities of the developed automated technological and control equipment are described. (nanogradient dielectric coatings and metamaterials)

  19. Sputter deposited Terfenol-D thin films for multiferroic applications

    NASA Astrophysics Data System (ADS)

    Mohanchandra, K. P.; Prikhodko, S. V.; Wetzlar, K. P.; Sun, W. Y.; Nordeen, P.; Carman, G. P.

    2015-09-01

    In this paper, we study the sputter deposition and crystallization process to produce high quality Terfenol-D thin film (100 nm) with surface roughness below 1.5 nm. The Terfenol-D thin film was produced using DC magnetron sputtering technique with various sputtering parameters and two different crystallization methods, i.e. substrate heating and post-annealing. Several characterization techniques including WDS, XRD, TEM, AFM, SQUID and MOKE were used to determine the physical and magnetic properties of the Terfenol-D films. TEM studies reveal that the film deposited on the heated substrate has large grains grown along the film thickness producing undesirable surface roughness while the film crystallized by post-annealing method shows uniformly distributed small grains producing a smooth surface. The Terfenol-D film was also deposited onto (011) cut PMN-PT single crystal substrate. With the application of an electric field the film exhibited a 1553 Oe change in coercivity with an estimated saturation magnetostriction of λs = 910 x 10-6.

  20. Sputtering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    The potential of using the sputtering process as a deposition technique is reviewed; however, the manufacturing and sputter etching aspects are also discussed. The basic mechanism for dc and rf sputtering is described. Sputter deposition is presented in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter etching, target geometry (coating and complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also discussed are some of the specific industrial areas which are turning to sputter deposition techniques.