Science.gov

Sample records for magnitogorsk integrated iron

  1. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  2. Utilizing coking plant wastes for briquetting of sponge iron. [Magnitogorsk Integrated Iron and Steel Works-USSR

    SciTech Connect

    Letimin, V.N.; Aleksandrov, G.S.; Smetanina, E.K.; Syrovegina, R.I.; Shubin, A.F.; Andreev, L.M.; Anikin, G.Ya.

    1981-01-01

    Of all the carbon-containing coking industry wastes, the one most fully meeting the requirements for briquetting of sponge iron is heavy tar products. These wastes have a good binder capacity, are plentiful, are neutral with regard to sponge iron, and have a relatively low sulfur content. A plant has been modified for the use of the heavy tar products as a binder in the sponge iron briquettes. The capital investment is modest and the briquettes produced are of higher strength and quality than those compacted without a binder. 1 figure, 2 tables.

  3. Utilization of secondary energy resources at Magnitogorsk Metallurgical Combine

    NASA Astrophysics Data System (ADS)

    Ermolaev, V. N.; Klyuvgant, V. I.

    1982-12-01

    Savings obtained by the use of secondary thermal and energy resources at Magnitogorsk Metallurgical Combine during the period of the 10th five year plan are reviewed. These savings were obtained by fuller utilization of these resources, e.g., fuel from the use of blast furnace and coke oven gases and steam from boiler utilizers and evaporative cooling systems. The savings achieved were substantial.

  4. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  5. Mechanism of sintering and fracture of superfluxed iron-ore sinters

    NASA Astrophysics Data System (ADS)

    Malysheva, T. Ya.; Gibadulin, M. F.; Mansurova, N. R.; Lekin, V. P.

    2007-06-01

    Mineral formation in the binders of a commercial sinter with a basicity of 1.6 at the Magnitogorsk Metallurgical Integrated Works has been found to be determined by the crystallization of two morphological forms of high-iron aluminosilicoferrite (namely, dendritic and lamellar forms) from the melt. In a sintering zone, an association of dendritic aluminosilicoferrite crystals and dicalcium silicate Ca2SiO4 forms in high-calcium melt regions separated from magnetite grains. This association leads to the fracture of the finished product as a result of the phase transformation of Ca2SiO4 from the β into the γ modification during sinter cooling. Lamellar aluminosilicoferrites forming in high-iron sinter volumes serve as a high-strength binder for ore grains.

  6. Surface photovoltage analysis of iron contamination in silicon processing and the relation to gate oxide integrity

    NASA Astrophysics Data System (ADS)

    Henley, Worth B.

    1995-09-01

    Surface photovoltage (SPV), a contactless optical technique for measuring minority carrier lifetime, is used to quantify the relationship between silicon iron contamination level and thin gate oxide integrity. Iron concentration levels in the range of 1 X 1010 cm-3 to 5 X 1013 cm-3 are evaluated for oxide thicknesses of 8 to 20 nm. Ramp voltage electrical breakdown and time dependant dielectric breakdown measurement on the iron contaminated gate oxide capacitors are reported. Distinct iron contamination threshold limits based on defect density and gate oxide integrity evaluate cleaning efficiencies and metallic cross contamination effects during thermal processing contamination. Iron-silicide precipitation kinetics are investigated by the lifetime analysis procedure.

  7. Integrated modeling and heat treatment simulation of austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  8. Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium

    PubMed Central

    Snow, Joseph T.; Polyviou, Despo; Skipp, Paul; Chrismas, Nathan A. M.; Hitchcock, Andrew; Geider, Richard; Moore, C. Mark; Bibby, Thomas S.

    2015-01-01

    Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean. PMID:26562022

  9. Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium.

    PubMed

    Snow, Joseph T; Polyviou, Despo; Skipp, Paul; Chrismas, Nathan A M; Hitchcock, Andrew; Geider, Richard; Moore, C Mark; Bibby, Thomas S

    2015-01-01

    Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual 'new' nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55-60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean. PMID:26562022

  10. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  11. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    PubMed Central

    Pal, Rahul; Hameed, Saif; Fatima, Zeeshan

    2015-01-01

    Multidrug resistance (MDR) acquired by Mycobacterium tuberculosis (MTB) through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR. PMID:26779346

  12. [Heme metabolism as an integral part of iron homeostasis].

    PubMed

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-01

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages. PMID:24864106

  13. FUGITIVE EMISSIONS FROM INTEGRATED IRON AND STEEL PLANTS

    EPA Science Inventory

    The report gives results of an engineering investigation of fugitive (non-ducted) emissions in the iron and steel industry. Operations excluded from the study are coke ovens, basic oxygen furnace (BOF) charging, and blast furnace cast houses. Fugitive emission factors for iron an...

  14. Integrated strategies needed to prevent iron deficiency and to promote early child development.

    PubMed

    Black, Maureen M

    2012-06-01

    Iron deficiency (ID) and iron deficiency anemia (IDA) are global public health problems that differentially impact pregnant women and infants in low and middle income countries. IDA during the first 1000 days of life (prenatally through 24 months) has been associated with long term deficits in children's socio-emotional, motor, cognitive, and physiological functioning. Mechanisms linking iron deficiency to children's development may include alterations to dopamine metabolism, myelination, and hippocampal structure and function, as well as maternal depression and unresponsive caregiving, potentially associated with maternal ID. Iron supplementation trials have had mixed success in promoting children's development. Evidence suggests that the most effective interventions to prevent iron deficiency and to promote early child development begin early in life and integrate strategies to ensure adequate iron and nutritional status, along with strategies to promote responsive mother-child interactions and early learning opportunities. PMID:22664336

  15. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  16. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  17. AP-42 ADDITIONS AND REVISIONS - INTEGRATED IRON AND STEEL INDUSTRY - STEEL MINI MILLS

    EPA Science Inventory

    This project develops emission factors, etc., for the integrated iron and steel industry which are incorporated into AP-42. AP-42 is a massive collection of information concerning processes which generate air emissions and presents emission factors and control effectiveness infor...

  18. Chemical constituents in particulate emissions from an integrated iron and steel facility.

    PubMed

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Ding, Jian-Yuan; Choa, Ching-Guan; Chiang, Hung-Lung

    2007-08-17

    Particle emissions from four integrated iron and steel plant processes, i.e., coke making, sintering, cold forming, and hot forming, were investigated in this study. Particle compositions of 21 element species, 11 ionic species, elemental carbon (EC), organic carbon (OC) and 16 polyaromatic hydrocarbons (PAHs) were analyzed to create "fingerprints" of the particles emitted from various processes in an integrated iron and steel plant. Results indicated that element compositions (0.11-0.42 g/g), water-soluble ions (0.34-0.52 g/g), elemental carbon (0.008-0.14 g/g), organic carbon (0.02-0.06 g/g) and PAHs (0.52-6.2 mg/g) contributed to the particle mass. In general, sulfur had a higher mass contribution than the other elements, which resulted from the use of coal, flux, heavy oil, and many recycled materials in the iron and steel plant. The particle mass contribution of potassium and chlorine in the sinter plant was higher than in other processes; this may be attributed to the lower boiling point and volatility of potassium. In addition, many recycled materials were fed into the sinter plant, causing a high concentration of potassium and chlorine in the particle phase. Eight PAH compounds were analyzed in the four processes. The carcinogenic compound Benzo(a)pyrene (BaP) was detectable only in the sintering process. PMID:17276592

  19. Integrated Chemical Systems: The Simultaneous Formation of Hybrid Nanocomposites of Iron Oxide and Organo Silsesquioxanes

    SciTech Connect

    Zhao, L; Clapsaddle, B; Jr., J S; Schaefer, D; Shea, K

    2004-10-15

    A sol-gel approach for the synthesis of hybrid nanocomposites of iron oxide and bridged polysilsesquioxanes has been established. The procedures allow for the simultaneous formation of iron oxide and polysilsesquioxane networks in monolithic xerogels and aerogels. These hybrid nanocomposites are synthesized from FeCl{sub 3} {center_dot} 6H{sub 2}O and functionalized silsesquioxane monomers in a one-pot reaction using epoxides as a gelation agent. The porosity and microstructure of the materials has been determined by nitrogen porosimetry, electron microscopy and ultra small angle X-ray scattering (USAXS). The hybrid nanocomposites exhibit a uniform dispersion of both components with no evidence for phase separation at length scales > 5 nm. At this limit of resolution it is not possible to distinguish between two independent interpenetrating networks integrated at molecular length scales or a random copolymer or mixtures of both.

  20. Assessing dust exposure in an integrated iron and steel manufacturing plant in South India.

    PubMed

    Ravichandran, B; Krishnamurthy, V; Ravibabu, K; Raghavan, S; Rajan, B K; Rajmohan, H R

    2008-01-01

    A study to monitor and estimate respirable particulate matter (RPM), toxic trace metal concentrations in the work environment was carried out in different sections of an integrated steel manufacturing industry. The average RPM concentration observed varied according to the section blast furnace was 2.41 mg/m;{3}; energy optimization furnace, 1.87 mg/m;{3}; sintering plant, 0.98 mg/m;{3}; continuous casting machine, 1.93 mg/m;{3}. The average trace metal concentration estimated from the RPM samples like iron, manganese, lead and chromium did not exceed ACGIH prescribed levels. PMID:18413935

  1. FISICA Integral Field Spectroscopy of the Shocked Iron Gas in the Supernova Remnant G11.2--0.3

    NASA Astrophysics Data System (ADS)

    Moon, Dae-Sik; Eikenberry, Stephen S.; Koo, Bon-Chul; Raines, S. Nicholas; Gruel, Nicolas

    2006-02-01

    We have recently discovered strong iron line ([Fe II] (lambda)1.644 (mu)m) emission in the young supernova remnant G11.2-0.3. The iron line emission occurs at the south-eastern shell edge of G11.2-0.3, and positionally overlaps with the very strong X-ray and radio emission of the supernova remnant. The iron line emission is most likely caused by the shock acceleration of G11.2-0.3 interacting with the ambient medium. We propose to carry out JH-band integral-field spectroscopy of the two iron line clumps in G11.2-0.3 with FISICA, an image-slicing integral-field unit for FLAMINGOS, which will give us a uniquely comprehensive view of the strong shock acceleration of a SNR.

  2. Concentration of lead, cadmium, and iron in sediment dust and total suspended particles before and after initialisation of integral production in iron and steel work plant Zenica.

    PubMed

    Prcanović, Halim; Duraković, Mirnes; Beganović, Sanela

    2012-06-01

    Poor air quality is a common fact for all areas with base industry. The city of Zenica was once the metallurgical centre of Ex-Yugoslavia and is therefore highly polluted at present. Air pollution peaked in 1987 when average concentration of pollutants was extremely high (daily average concentration of SO(2) was 1800 μg m(-3)). With the beginning of the war in 1992, integral production in the steel work plant was shut down, to be re-launched in 2008. Limit values for iron do not exist, but iron has been monitored in Zenica for the past 28 years because of the presence of steel works. Concentrations of cadmium and lead have also been measured because they are very much present in polluted areas with steel works. The concentration of mentioned elements in air deposit and total suspended particles before and after integral production in the steel work plant was re-launched is the subject of this paper. Total suspended particles were measured in two locations using German standard VDI 2463 Blatt 4. Sediment dust was measured in nine locations using Bergerhoff method. The concentration of iron, lead, and cadmium was performed in the chemical laboratory of the Metallurgical Institute "Kemal Kapetanović" Zenica using standard methods. Higher concentrations of these parameters during the period of integral production clearly point to the impact of steel works on Zenica valley. PMID:22728800

  3. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana

    PubMed Central

    Zhang, Caiguo

    2015-01-01

    The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms. PMID:27330736

  4. Anti-Plasmodial Activity of Aroylhydrazone and Thiosemicarbazone Iron Chelators: Effect on Erythrocyte Membrane Integrity, Parasite Development and the Intracellular Labile Iron Pool

    PubMed Central

    Walcourt, Asikiya; Kurantsin-Mills, Joseph; Kwagyan, John; Adenuga, Babafemi B.; Kalinowski, Danuta S.; Lovejoy, David B.; Lane, Darius J. R.; Richardson, Des R.

    2013-01-01

    Iron chelators inhibit the growth of the malaria parasite, Plasmodium falciparum, in culture and in animal and human studies. We previously reported the anti-plasmodial activity of the chelators, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), 2-hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT), and 2-hydroxy-1-naphthylaldehyde 4-phenyl-3-thiosemicarbazone (N4pT). In fact, these ligands showed greater growth inhibition of chloroquine-sensitive (3D7) and chloroquine-resistant (7G8) strains of P. falciparum in culture compared to desferrioxamine (DFO). The present study examined the effects of 311, N4mT and N4pT on erythrocyte membrane integrity and asexual parasite development. While the characteristic biconcave disk shape of the erythrocytes was unaffected, the chelators caused very slight hemolysis at IC50 values that inhibited parasite growth. The chelators 311, N4mT and N4pT affected all stages of the intra-erythrocytic development cycle (IDC) of P. falciparum in culture. However, while these ligands primarily affected the ring-stage, DFO inhibited primarily trophozoite and schizont-stages. Ring, trophozoite and schizont-stages of the IDC were inhibited by significantly lower concentrations of 311, N4mT, and N4pT (IC50 = 4.45 ± 1.70, 10.30 ± 4.40, and 3.64 ± 2.00 μM, respectively) than DFO (IC50 = 23.43 ± 3.40 μM). Complexation of 311, N4mT and N4pT with iron reduced their anti-plasmodial activity. Estimation of the intracellular labile iron pool (LIP) in erythrocytes showed that the chelation efficacy of 311, N4mT and N4pT corresponded to their anti-plasmodial activity, suggesting that the LIP may be a potential source of non-heme iron for parasite metabolism within the erythrocyte. This study has implications for malaria chemotherapy that specifically disrupts parasite iron utilization. PMID:24028863

  5. Anti-plasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool.

    PubMed

    Walcourt, Asikiya; Kurantsin-Mills, Joseph; Kwagyan, John; Adenuga, Babafemi B; Kalinowski, Danuta S; Lovejoy, David B; Lane, Darius J R; Richardson, Des R

    2013-12-01

    Iron chelators inhibit the growth of the malaria parasite, Plasmodium falciparum, in culture and in animal and human studies. We previously reported the anti-plasmodial activity of the chelators, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), 2-hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT), and 2-hydroxy-1-naphthylaldehyde 4-phenyl-3-thiosemicarbazone (N4pT). In fact, these ligands showed greater growth inhibition of chloroquine-sensitive (3D7) and chloroquine-resistant (7G8) strains of P. falciparum in culture compared to desferrioxamine (DFO). The present study examined the effects of 311, N4mT and N4pT on erythrocyte membrane integrity and asexual parasite development. While the characteristic biconcave disk shape of the erythrocytes was unaffected, the chelators caused very slight hemolysis at IC50 values that inhibited parasite growth. The chelators 311, N4mT and N4pT affected all stages of the intra-erythrocytic development cycle (IDC) of P. falciparum in culture. However, while these ligands primarily affected the ring-stage, DFO inhibited primarily trophozoite and schizont-stages. Ring, trophozoite and schizont-stages of the IDC were inhibited by significantly lower concentrations of 311, N4mT, and N4pT (IC50=4.45±1.70, 10.30±4.40, and 3.64±2.00μM, respectively) than DFO (IC50=23.43±3.40μM). Complexation of 311, N4mT and N4pT with iron reduced their anti-plasmodial activity. Estimation of the intracellular labile iron pool (LIP) in erythrocytes showed that the chelation efficacy of 311, N4mT and N4pT corresponded to their anti-plasmodial activities, suggesting that the LIP may be a potential source of non-heme iron for parasite metabolism within the erythrocyte. This study has implications for malaria chemotherapy that specifically disrupts parasite iron utilization. PMID:24028863

  6. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.

    PubMed

    Moroishi, Toshiro; Nishiyama, Masaaki; Takeda, Yukiko; Iwai, Kazuhiro; Nakayama, Keiichi I

    2011-09-01

    Iron-dependent degradation of iron-regulatory protein 2 (IRP2) is a key event for maintenance of an appropriate intracellular concentration of iron. Although FBXL5 (F box and leucine-rich repeat protein 5) is thought to mediate this degradation, the role of FBXL5 in the control of iron homeostasis in vivo has been poorly understood. We have now found that mice deficient in FBXL5 died in utero, associated with excessive iron accumulation. This embryonic mortality was prevented by additional ablation of IRP2, suggesting that impaired IRP2 degradation is primarily responsible for the death of Fbxl5(-)(/-) mice. We also found that liver-specific deletion of Fbxl5 resulted in deregulation of both hepatic and systemic iron homeostasis, leading to the development of steatohepatitis. The liver-specific mutant mice died with acute liver failure when fed a high-iron diet. Thus, our results uncover a major role for FBXL5 in ensuring an appropriate supply of iron to cells. PMID:21907140

  7. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata.

    PubMed

    Nagi, Minoru; Tanabe, Koichi; Nakayama, Hironobu; Ueno, Keigo; Yamagoe, Satoshi; Umeyama, Takashi; Ohno, Hideaki; Miyazaki, Yoshitsugu

    2016-08-01

    Candida glabrata, a haploid budding yeast, is the cause of severe systemic infections in immune-compromised hosts. The amount of free iron supplied to C. glabrata cells during systemic infections is severely limited by iron-chelating proteins such as transferrin. Thus, the iron-deficiency response in C. glabrata cells is thought to play important roles in their survival inside the host's body. In this study, we found that mitophagy was induced under iron-depleted conditions, and that the disruption of a gene homologous to ATG32, which is responsible for mitophagy in Saccharomyces cerevisiae, blocked mitophagy in C. glabrata. The mitophagic activity in C. glabrata cells was not detected on short-period exposure to nitrogen-starved conditions, which is a mitophagy-inducing condition used in S. cerevisiae. The mitophagy-deficient atg32Δ mutant of C. glabrata also exhibited decreased longevity under iron-deficient conditions. The mitochondrial membrane potential in Cgatg32Δ cells was significantly lower than that in wild-type cells under iron-depleted conditions. In a mouse model of disseminated infection, the Cgatg32Δ strain resulted in significantly decreased kidney and spleen fungal burdens compared with the wild-type strain. These results indicate that mitophagy in C. glabrata occurs in an iron-poor host tissue environment, and it may contribute to the longevity of cells, mitochondrial quality control, and pathogenesis. PMID:27347716

  8. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata

    PubMed Central

    Nagi, Minoru; Tanabe, Koichi; Nakayama, Hironobu; Ueno, Keigo; Yamagoe, Satoshi; Umeyama, Takashi; Ohno, Hideaki; Miyazaki, Yoshitsugu

    2016-01-01

    ABSTRACT Candida glabrata, a haploid budding yeast, is the cause of severe systemic infections in immune-compromised hosts. The amount of free iron supplied to C. glabrata cells during systemic infections is severely limited by iron-chelating proteins such as transferrin. Thus, the iron-deficiency response in C. glabrata cells is thought to play important roles in their survival inside the host's body. In this study, we found that mitophagy was induced under iron-depleted conditions, and that the disruption of a gene homologous to ATG32, which is responsible for mitophagy in Saccharomyces cerevisiae, blocked mitophagy in C. glabrata. The mitophagic activity in C. glabrata cells was not detected on short-period exposure to nitrogen-starved conditions, which is a mitophagy-inducing condition used in S. cerevisiae. The mitophagy-deficient atg32Δ mutant of C. glabrata also exhibited decreased longevity under iron-deficient conditions. The mitochondrial membrane potential in Cgatg32Δ cells was significantly lower than that in wild-type cells under iron-depleted conditions. In a mouse model of disseminated infection, the Cgatg32Δ strain resulted in significantly decreased kidney and spleen fungal burdens compared with the wild-type strain. These results indicate that mitophagy in C. glabrata occurs in an iron-poor host tissue environment, and it may contribute to the longevity of cells, mitochondrial quality control, and pathogenesis. PMID:27347716

  9. Synthesis of iron-based chemical looping sorbents integrated with pH swing carbon mineral sequestration.

    PubMed

    Kim, Hyung Ray; Lee, Dong Hyun; Fan, Liang-Shih; Park, Ah-Hyung Alissa

    2009-12-01

    The previously developed pH swing carbon mineral sequestration immobilizes the gaseous CO2 into a thermodynamically stable solid, MgCO3, using Mg-bearing minerals such as serpentine. This mineral carbonation technology is particularly promising since it generates value-added solid products: high surface area silica, iron oxide, and magnesium carbonate, while providing a safe and permanent storage option for CO2. By carefully controlling the pH of the system, these solids products can be produced with high purity. This study focuses on the synthesis of iron oxide particles as a chemical looping sorbent in order to achieve the integration between carbon capture and storage technologies. Since the solubility of Fe in aqueous phase is relatively low at neutral pH, the effect of the weak acid and chelating agents on the extraction of Fe from serpentine was investigated. The synthesized iron-based chemical looping sorbent was found to be as effective as commercially available iron oxide nanoparticles at converting syngas into high purity H2, while producing a sequestration-ready CO2 stream. PMID:19908801

  10. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  11. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    SciTech Connect

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-17

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930 deg. C for 90 min and then austempered in fluidized bed at 380 deg. C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  12. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    NASA Astrophysics Data System (ADS)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  13. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  14. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  15. Colour and toxic characteristics of metakaolinite-hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    NASA Astrophysics Data System (ADS)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-07-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants.

  16. Lithium iron phosphate battery electrode integrity following high speed pulsed laser cutting

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fiorini, Maurizio; Fortunato, Alessandro; Carmignato, Simone

    2015-05-01

    Laser exposures are performed on lithium iron phosphate battery electrodes at with process parameters based on those leading to the smallest heat affected zone for low power laser exposure at . Scanning electron microscopy and Raman analysis are performed along the resulting cut edges to characterize macroscopic, chemical and microstructural changes resulting from laser exposure. The increase in velocity with respect to previous studies is found to limit macroscopic changes to areas directly exposed to the laser beam and greatly suppress or completely eliminate microstructural and chemical changes resulting from thermal conduction effects in the metallic conductor layers. These results confirm laser technology as a viable, more flexible solution to mechanical blanking devices for the cutting of lithium iron phosphate battery electrode films.

  17. Integration of Genome-Scale Metabolic Nodels of Iron-Reducing Bacteria With Subsurface Flow and Geochemical Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Mahadevan, R.; Fang, Y.; Garg, S.; Long, P. E.; Lovley, D. M.

    2008-12-01

    Several field and laboratory experiments have demonstrated that the growth and activity of iron-reducing bacteria can be stimulated in many subsurface environments by amendment of groundwater with a soluble electron donor. Under strong iron-reducing conditions, these organisms mediate reactions that can impact a wide range of subsurface contaminants including chlorinated hydrocarbons, metals, and radionuclides. Therefore there is strong interest in in-situ bioremediation as a potential technology for cleanup of contaminated aquifers. To evaluate and design bioremediation systems, as well as to evaluate the viability of monitored natural attenuation as an alternative, quantitative models of biogeochemically reactive transport are needed. To date, most such models represent microbial activity in terms of kinetic rate (e.g., Monod- type) formulations. Such models do not account for fundamental changes in microbial functionality (such as utilization of alternative respiratory pathways) that occur as the result of spatial and temporal variations in the geochemical environment experienced by microorganisms. Constraint-based genome-scale in silico models of microbial metabolism present an alternative to simplified rate formulations that provide flexibility to account for changes in microbial function in response to local geochemical conditions. We have developed and applied a methodology for coupling a constraint-based in silico model of Geobacter sulfurreducens with a conventional model of groundwater flow, transport, and geochemical reaction. Two uses of the in silico model are tested: 1) incorporation of modified microbial growth yield coefficients based on the in silico model, and 2) variation of reaction rates in a reactive transport model based on in silico modeling of a range of local geochemical conditions. Preliminary results from this integrated model will be presented.

  18. Effect of temperature on fast hydrogen diffusion in iron: A path-integral quantum dynamics approach

    NASA Astrophysics Data System (ADS)

    Kimizuka, Hajime; Mori, Hideki; Ogata, Shigenobu

    2011-03-01

    Here we explicitly present the diffusion coefficients (D) and activation energies (Ea) of interstitial H in α-Fe over a temperature range of 100 to 1000 K. These values were predicted by applying path-integral molecular dynamics modeling based on first principles. The obtained D and Ea values exhibit clear non-Arrhenius temperature dependence and a transition from quantum to classical behavior at around 500 K. Our results show that the quantum effects not only significantly lower the diffusion barrier but also change the diffusion pathway even at room temperature; thus, fast diffusion becomes possible.

  19. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  20. Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability

    SciTech Connect

    Sung, S.-Y.; Qi Xiaoyuan; Stadler, Bethanie J.H.

    2005-09-19

    Magneto-optical garnets (Y{sub 3}Fe{sub 5}O{sub 12} or YIG) were grown monolithically by a novel reactive radio-frequency sputtering method that used a partial pressure differential to increase sputtering rates. MgO and quartz substrates were used as they are good buffer layers and optical claddings for integration. A wide single-phase field for annealed YIG was found (26.9-43.2 at % Y), and the magnetic properties were measured. The films had refractive indices of 2.1 and out-of-plane Faraday rotations up to 0.2 deg. /{mu}m at 633 nm. The dielectric matrix was used to calculate the difference in the propagation constants of forward and backward traveling light ({delta}{beta}=1.999x10{sup -5})

  1. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant.

    PubMed

    Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati

    2016-08-15

    Fugitive emissions of PM10 (particles <10μm in diameter) and associated polycyclic aromatic hydrocarbons (PAHs) were monitored in the vicinity of coking unit, sintering unit, blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest. PMID:27099996

  2. Integrated analysis of the {open_quotes}sponge iron reactor and fuel cell system{close_quotes}

    SciTech Connect

    Lehrhofer, J.; Ghaemi, M.; Wernigg, H.

    1996-12-31

    The system Sponge Iron Reactor/Fuel Cell (SIR/FC) is investigated from the ecological and technical aspects and also the pre-conversion energy chain as a part of the natural gas fuel cycle is analyzed. What are the decisive characteristics of a sponge iron reactor or the basic process cycle sponge iron/hydrogen/iron oxide? This process cycle offers a simple possibility to store the energy of synthesis gases in the form of sponge iron and at the same time to reform and condition these synthesis gases. As {open_quote}product{close_quote} of this energy storage one receives pure hydrogen which is intended for the running of fuel cells.

  3. Iron deficiency anemia

    PubMed Central

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

  4. Integration to Implementation and the Micronutrient Forum: A Coordinated Approach for Global Nutrition. Case Study Application: Safety and Effectiveness of Iron Interventions.

    PubMed

    Raiten, Daniel J; Neufeld, Lynnette M; De-Regil, Luz-Maria; Pasricha, Sant-Rayn; Darnton-Hill, Ian; Hurrell, Richard; Murray-Kolb, Laura E; Nair, K Madhavan; Wefwafwa, Terry; Kupka, Roland; Phall, Modou Cheyassin; Sakr Ashour, Fayrouz A

    2016-01-01

    Paramount among the challenges to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance. The Integration to Effective Implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the food and nutrition enterprise. The 2014 Micronutrient Forum (MNF) Global Conference held in Addis Ababa, Ethiopia, in June 2014 offered the opportunity to apply the I-to-I approach with the use of current concerns about the safety and effectiveness of interventions to prevent and treat iron deficiency (ID) as a case study. ID is associated with a range of adverse outcomes, especially in pregnant and nonpregnant women, infants, and primary school-age children. Strategies to combat ID include iron supplementation, multiple micronutrient powders, and food-based interventions to enhance dietary iron intake. Recent reports indicate potential increased adverse risks when iron is provided in areas with high infection burdens (e.g., malaria). This paradox has weakened iron intervention programs. Furthermore, the selection and interpretation of available biomarkers for assessing iron nutrition have been found to be compromised by the inflammatory process. These issues highlight the need for a comprehensive approach that considers basic biology, assessment, interventions, and how these can be translated into appropriate programs and policies. The application of the I-to-I with the use of the MNF offered an opportunity to explore how that might be achieved. PMID:26773021

  5. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  6. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  7. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    PubMed Central

    Borrill, Philippa; Connorton, James M.; Balk, Janneke; Miller, Anthony J.; Sanders, Dale; Uauy, Cristobal

    2014-01-01

    Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat. PMID:24600464

  8. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  9. Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron overload in the brain on integrity of neuronal DNA.

    PubMed

    Li, Hui; Swiercz, Rafal; Englander, Ella W

    2009-09-01

    Tissue-specific iron content is tightly regulated to simultaneously satisfy specialized metabolic needs and avoid cytotoxicity. In the brain, disruption of iron homeostasis may occur in acute as well as progressive injuries associated with neuronal dysfunction and death. We hypothesized that adverse effects of disrupted metal homeostasis on brain function may involve impairment of DNA repair processes. Because in the brain, the base excision repair (BER) pathway is central for handling oxidatively damaged DNA, we investigated effects of elevated iron and zinc on key BER enzymes. In vitro DNA repair assays revealed inhibitory effects of metals on BER activities, including the incision of abasic sites, 5'-flap cleavage, gap filling DNA synthesis and ligation. Using the comet assay, we showed that while metals at concentrations which inhibit BER activities in in vitro assays, did not induce direct genomic damage in cultured primary neurons, they significantly delayed repair of genomic DNA damage induced by sublethal exposure to H(2)O(2). Thus, in the brain even a mild transient metal overload, may adversely affect the DNA repair capacity and thereby compromise genomic integrity and initiate long-term deleterious sequelae including neuronal dysfunction and death. PMID:19619136

  10. Investigation of the Biophysical and Cell Biological Properties of Ferroportin, a Multi-Pass Integral Membrane Protein Iron Exporter

    PubMed Central

    Rice, Adrian E.; Mendez, Michael J.; Hokanson, Craig A.; Rees, Douglas C.; Björkman, Pamela J.

    2009-01-01

    Ferroportin is a multi-pass membrane protein that serves as an iron exporter in many vertebrate cell types. Ferroportin-mediated iron export is controlled by the hormone hepcidin, which binds ferroportin, causing its internalization and degradation. Mutations in ferroportin cause a form of the iron overload disease hereditary hemochromatosis. Relatively little is known about ferroportin’s properties or the mechanism by which mutations cause disease. Here we expressed and purified human ferroportin to characterize its biochemical/biophysical properties in solution and conducted cell biological studies in mammalian cells. We show that purified, detergent-solubilized ferroportin was a well-folded monomer that bound hepcidin. In cell membranes, the N- and C-termini were both cytosolic, implying an even number of transmembrane regions, and ferroportin was mainly localized to the plasma membrane. Hepcidin addition resulted in a redistribution of ferroportin to intracellular compartments that labeled with early endosomal and lysosomal, but not Golgi, markers and that trafficked along microtubules. An analysis of 16 disease-related ferroportin mutants revealed that all formed well-folded monomers that localized to the plasma membrane, but some were resistant to hepcidin-induced internalization. The characterizations reported here form a basis upon which models for ferroportin’s role in regulating iron homeostasis in health and disease can be interpreted. PMID:19150361

  11. Crustal architecture of the southern Uralides from true amplitude processing of the Urals Seismic Experiment and Integrated Studies (URSEIS) vibroseis profile

    NASA Astrophysics Data System (ADS)

    Tryggvason, A.; Brown, D.; PéRez-Estaún, A.

    2001-12-01

    True amplitude processing of the Urals Seismic Experiment and Integrated Studies (URSEIS) vibroseis deep reflection seismic data acquired by the URSEIS consortium shows the southern Uralide crust to be composed of four major blocks with distinctive reflection characteristics. These blocks are juxtaposed along crustal-scale boundaries. The foreland thrust and fold belt, developed from the East European craton crust, is imaged as subhorizontal to east dipping reflectivity that can be related to its Paleozoic and older tectonic history. The Moho beneath the foreland thrust and fold belt is not imaged in the vibroseis data set. The Main Uralian fault (the major arc-continent suture) is unreflective, but its subsurface location can be inferred by the truncation of the reflection pattern of the East European craton and its contrast with that of the Magnitogorsk arc. The Magnitogorsk arc reflectivity is characterized by patchy, noncoherent to coherent reflections in the upper ˜10 - 15 km that are interpreted to be related to the arc volcanic rocks. Below this, reflectivity is diffuse, or the arc crust is transparent, and the Moho is not imaged. The East Magnitogorsk fault zone, which juxtaposes the arc against the East Uralian zone, is not imaged by the data. The upper 5 to 6 km of the East Uralian zone, corresponding to the Dzhabyk granite, is transparent. Below the granite the crust is characterised by east dipping patches of moderately coherent, high-amplitude reflections that in the east become shallowly west-dipping. A ˜10 km thick, west dipping band of coherent, high amplitude reflections between 12 and 35 km depth, corresponding to the Kartaly Reflection Sequence, extends beneath almost the entire East Uralian zone. The crust beneath the easternmost East Uralian zone reaches 53 km in thickness. The upper and middle crust of the Trans-Uralian zone is characterized by a series of east and west dipping, concave upward, moderately coherent, high-amplitude reflections

  12. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  13. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  14. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment

    NASA Astrophysics Data System (ADS)

    Martin, F. A.; Bataillon, C.; Schlegel, M. L.

    2008-09-01

    The aim of this study was to determine the corrosion behaviour of iron and low alloyed steels under simulated geological disposal conditions, related to long-term disposal of nuclear wastes in the site of Bure (Meuse-Haute Marne, Champagne, France). The dedicated experiment was a fully integrated set-up: three different bars of material (iron, steel or nickel) have been introduced inside a solid block of clay, which has been saturated with synthetic Bure water and maintained at 90 °C during 8 months. Two types of clay have been tested: first, a compacted MX80 (Wyoming, USA) and second, argilite directly taken from the Bure site (Callovo-Oxfordian). In situ electrochemistry has been performed: impedance spectra, chronopotentiometry… The samples have been analysed using a combination of techniques, such as SEM, XRD, EDS, μXAS, μRaman, gravimetry after desquamation. In both cases, the steel or the iron seemed to passivate in contact with the clay. Post-processing of the EIS determined the corrosion rates and the changes in the kinetics have been noticed. The post mortem analysis of the corrosion products showed in both cases the presence of an internal layer made of magnetite (Raman, EDX). The external layer was made of partially Ca-substituted siderite (Fe 1-xCa xCO 3), which could play an extra role in the passivation. Moreover, the samples embedded in the Bure argilite presented an intermediate unique layer containing Fe, O, Na and Si. This study suggests the corrosion products started to react with the silica issued from the dissolution of the Bure clay minerals, resulting in clay minerals neo-formation and in corrosion kinetic changes.

  15. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. PMID:27179316

  16. Application of direct-injection detector integrated with the multi-pumping flow system to photometric stop-flow determination of total iron.

    PubMed

    Koronkiewicz, Stanislawa; Kalinowski, Slawomir

    2012-07-15

    A novel direct-injection detector (DID) integrated with multi-pumping flow system (MPFS) for the photometric determination of iron is proposed. Paired emitter-detector diodes have been used as a photometric detection system. The sample and reagent were injected using appropriate solenoid pulse micro-pumps directly into the detection chamber where effective mixing occured. The use of proposed stop-flow detector considerably simplified the analytical procedure. The potassium thiocyanate has been chosen as a chromogenic reagent for photometric Fe(III) detection. The total volume of reagent and sample/standard solutions involved in the detection process was adjusted to the volume of the reaction-detection chamber. Calibration graph was found to be linear in the range up to 10mgL(-1). The detection limit (3s(b)/S) was 0.15mgL(-1). The repeatability (R.S.D.), calculated from 10 analyses of sample containing 5mgL(-1) Fe(III), was 1.5% and the sample throughput 180 determinations per hour. The consumption of sample and reagent was 20μL each with the waste generation at the level of 0.24mL. The applicability of the proposed method to the determination of total iron in groundwater samples has been proved. The analytical parameters are compared to those obtained exploiting the MPFS system with typical configuration containing a confluence point and reaction coil. PMID:22817930

  17. Fully quantum mechanical calculation of the diffusivity of hydrogen in iron using the tight-binding approximation and path integral theory

    NASA Astrophysics Data System (ADS)

    Katzarov, Ivaylo H.; Pashov, Dimitar L.; Paxton, Anthony T.

    2013-08-01

    We present calculations of free energy barriers and diffusivities as functions of temperature for the diffusion of hydrogen in α-Fe. This is a fully quantum mechanical approach since the total energy landscape is computed using a self-consistent, transferable tight binding model for interstitial impurities in magnetic iron. Also the hydrogen nucleus is treated quantum mechanically and we compare here two approaches in the literature both based in the Feynman path integral formulation of statistical mechanics. We find that the quantum transition state theory which admits greater freedom for the proton to explore phase space gives result in better agreement with experiment than the alternative which is based on fixed centroid calculations of the free energy barrier. This will have an impact on future modeling and the simulation of hydrogen trapping and diffusion.

  18. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  19. Atmospheric iron deposition: global distribution, variability, and human perturbations.

    PubMed

    Mahowald, Natalie M; Engelstaedter, Sebastian; Luo, Chao; Sealy, Andrea; Artaxo, Paulo; Benitez-Nelson, Claudia; Bonnet, Sophie; Chen, Ying; Chuang, Patrick Y; Cohen, David D; Dulac, Francois; Herut, Barak; Johansen, Anne M; Kubilay, Nilgun; Losno, Remi; Maenhaut, Willy; Paytan, Adina; Prospero, Joseph M; Shank, Lindsey M; Siefert, Ronald L

    2009-01-01

    Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding. PMID:21141037

  20. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  1. Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron.

    PubMed

    Xu, Guiying; Wang, Jiangbo; Lu, Mang

    2014-12-01

    This study investigated the effects of nano- and micro-scale zero-valent iron (nZVI and mZVI) particles on Dehalococcoides sp. strain CBDB1 participating in anaerobic reduction of polybrominated diphenyl ethers. nZVI (>0.25 g L(-)(1)) had an inhibitory effect upon this strain, whereas 1.0 g L(-1) mZVI showed no negative impact on bacterial growth. Strain CBDB1 could only utilize lower brominated congeners (<7 bromines) as electron acceptor. In the bio-ZVI system, decabromodiphenyl ether (BDE-209) was first reduced by ZVI to lower brominated congeners, which were then dehalogenated to diphenyl ether by CBDB1. Within 30 d, a BDE-209 debromination efficiency of 16% and 24% was obtained in the bio-nZVI (0.25 g L(-1)) and bio-mZVI (1.0 g L(-1)) systems with a corresponding diphenyl ether yield efficiency of 14% and 19%, respectively. The debromination efficiency increased significantly from 8% to 24% with an increase of mZVI dosage from 0.25 to 1.0 g L(-1) in the bio-mZVI system. PMID:25217713

  2. Iron transport and signaling in plants.

    PubMed

    Curie, Catherine; Briat, Jean-François

    2003-01-01

    Cellular and whole organism iron homeostasis must be balanced to supply enough iron for metabolism and to avoid excessive, toxic levels. To perform iron uptake from the environment, iron distribution to various organs and tissues, and iron intracellular compartmentalization, various membranes must be crossed by this metal. The uptake and transport of iron under physiological conditions require particular processes such as chelation or reduction because ferric iron has a very low solubility. The molecular actors involved in iron acquisition from the soil have recently been characterized. A few candidates belonging to various gene families are hypothesized to play major roles in iron distribution throughout the plant. All these transport activities are tightly regulated at transcriptional and posttranslational levels, according to the iron status of the plant. These coordinated regulations result from an integration of local and long-distance transduction pathways. PMID:14509968

  3. Integrated biomarker assessment of the effects of tailing discharges from an iron ore mine using blue mussels (Mytilus spp.).

    PubMed

    Brooks, Steven J; Harman, Christopher; Hultman, Maria T; Berge, John Arthur

    2015-08-15

    The blue mussel (Mytilus spp.) has been used to assess the potential biological effects of the discharge effluent from the Sydvaranger mine, which releases its tailings into Bøk fjord at Kirkenes in the north of Norway. Metal bioaccumulation and a suite of biomarkers were measured in mussels positioned for 6 weeks at varying distances from the discharge outlet. The biomarkers used included: stress on stress (SS); condition index (CI); cellular energy allocation (CEA); micronuclei formation (MN); lysosomal membrane stability (LMS), basophilic cell volume (VvBAS); and neutral lipid (NL) accumulation. The individual biomarkers were integrated using the integrated biological response (IBR/n) index. The accumulation of Fe was significantly higher in mussels located closer to the discharge outlet, indicating that these mussels had been exposed to the suspended mine effluent. The IBR/n results were in good agreement with the location of the mussels in relation to the distance from the discharge outlet and expected exposure to the mine effluent. Several biomarkers showed responses resulting in higher IBR/n values of analysed mussels within a 3 km distance from the tailing discharge. PMID:25889549

  4. Human CIA2A (FAM96A) and CIA2B (FAM96B) integrate maturation of different subsets of cytosolic-nuclear iron-sulfur proteins and iron homeostasis

    PubMed Central

    Stehling, Oliver; Mascarenhas, Judita; Vashisht, Ajay A.; Sheftel, Alex D.; Niggemeyer, Brigitte; Rösser, Ralf; Pierik, Antonio J.; Wohlschlegel, James A.; Lill, Roland

    2013-01-01

    SUMMARY Numerous cytosolic and nuclear proteins involved in metabolism, DNA maintenance, protein translation, or iron homeostasis depend on iron-sulfur (Fe/S) cofactors, yet their assembly is poorly defined. Here, we identify and characterize human CIA2A (FAM96A), CIA2B (FAM96B), and CIA1 (CIAO1) as components of the cytosolic Fe/S protein assembly (CIA) machinery. CIA1 associates with either CIA2A or CIA2B and the CIA targeting factor MMS19. The CIA2B-CIA1-MMS19 complex binds to and facilitates assembly of most cytosolic-nuclear Fe/S proteins. In contrast, CIA2A specifically matures iron regulatory protein (IRP) 1 which is critical for cellular iron homeostasis. Surprisingly, a second layer of iron regulation involves the stabilization of IRP2 by CIA2A binding or upon depletion of CIA2B or MMS19, even though IRP2 lacks a Fe/S cluster. In summary, CIA2B-CIA1-MMS19 and CIA2A-CIA1 assist different branches of Fe/S protein assembly, and intimately link this process to cellular iron regulation via IRP1 Fe/S cluster maturation and IRP2 stabilization. PMID:23891004

  5. Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations

    NASA Astrophysics Data System (ADS)

    Duro, Refiz; Dauser, Thomas; Grinberg, Victoria; Miškovičová, Ivica; Rodriguez, Jérôme; Tomsick, John; Hanke, Manfred; Pottschmidt, Katja; Nowak, Michael A.; Kreykenbohm, Sonja; Cadolle Bel, Marion; Bodaghee, Arash; Lohfink, Anne; Reynolds, Christopher S.; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Staubert, Rüdiger; Wilms, Jörn

    2016-05-01

    We report on the analysis of the broad Fe Kα line feature of Cyg X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe Kα reflection line at 6.4 keV with a very high signal to noise ratio. The 4-500 keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of a ~ 0.9, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be i ~ 30°, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk.

  6. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  7. Microbial iron cycling in acidic geothermal springs of yellowstone national park: integrating molecular surveys, geochemical processes, and isolation of novel fe-active microorganisms.

    PubMed

    Kozubal, Mark A; Macur, Richard E; Jay, Zackary J; Beam, Jacob P; Malfatti, Stephanie A; Tringe, Susannah G; Kocar, Benjamin D; Borch, Thomas; Inskeep, William P

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  8. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    PubMed Central

    Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  9. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling

    PubMed Central

    Saenchai, Chorpet; Bouain, Nadia; Kisko, Mushtak; Prom-u-thai, Chanakan; Doumas, Patrick; Rouached, Hatem

    2016-01-01

    Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis. However, despite its importance, how plants integrate multiple nutritional stimuli into complex developmental programs, and which genes are involved in this tripartite (Pi ZnFe) interaction is still not clear. The aim of this study was to examine the physiological and molecular responses of rice (Oriza sativa L.) to a combination of Pi, Zn, and/or Fe deficiency stress conditions. Results showed that Fe deficiency had the most drastic single-nutrient effect on biomass, while the Zn deficiency-effect depended on the presence of Pi in the medium. Interestingly, the observed negative effect of Fe starvation was alleviated by concomitant Pi or PiZn depletion. Members of the OsPHO1 family showed a differential transcriptional regulation in response PiZnFe combinatory stress conditions. Particularly, the transcripts of the OsPHO1;1 sense and its natural antisense cis-NatPHO1;1 showed the highest accumulation under PiZn deficiency. In this condition, the Ospho1;1 mutants showed over-accumulation of Fe in roots compared to wild type plants. These data reveal coordination between pathways involved in Fe transport and PiZn signaling in rice which involves the OsPHO1; 1, and support the hypothesis of a genetic basis for Pi, Zn, and Fe signaling interactions in plants. PMID:27092147

  10. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling.

    PubMed

    Saenchai, Chorpet; Bouain, Nadia; Kisko, Mushtak; Prom-U-Thai, Chanakan; Doumas, Patrick; Rouached, Hatem

    2016-01-01

    Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis. However, despite its importance, how plants integrate multiple nutritional stimuli into complex developmental programs, and which genes are involved in this tripartite (Pi ZnFe) interaction is still not clear. The aim of this study was to examine the physiological and molecular responses of rice (Oriza sativa L.) to a combination of Pi, Zn, and/or Fe deficiency stress conditions. Results showed that Fe deficiency had the most drastic single-nutrient effect on biomass, while the Zn deficiency-effect depended on the presence of Pi in the medium. Interestingly, the observed negative effect of Fe starvation was alleviated by concomitant Pi or PiZn depletion. Members of the OsPHO1 family showed a differential transcriptional regulation in response PiZnFe combinatory stress conditions. Particularly, the transcripts of the OsPHO1;1 sense and its natural antisense cis-NatPHO1;1 showed the highest accumulation under PiZn deficiency. In this condition, the Ospho1;1 mutants showed over-accumulation of Fe in roots compared to wild type plants. These data reveal coordination between pathways involved in Fe transport and PiZn signaling in rice which involves the OsPHO1; 1, and support the hypothesis of a genetic basis for Pi, Zn, and Fe signaling interactions in plants. PMID:27092147

  11. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  12. Iron contamination in silicon technology

    NASA Astrophysics Data System (ADS)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article continues the review of fundamental physical properties of iron and its complexes in silicon (Appl. Phys. A 69, 13 (1999)), and is focused on ongoing applied research of iron in silicon technology. The first section of this article presents an analysis of the effect of iron on devices, including integrated circuits, power devices, and solar cells. Then, sources of unintentional iron contamination and reaction paths of iron during device manufacturing are discussed. Experimental techniques to measure trace contamination levels of iron in silicon, such as minority carrier lifetime techniques (SPV, μ-PCD, and ELYMAT), deep-level transient spectroscopy (DLTS), total X-ray fluorescence (TXRF) and vapor-phase decomposition TXRF (VPD-TXRF), atomic absorption spectroscopy (AAS), mass spectrometry and its modifications (SIMS, SNMS, ICP-MS), and neutron activation analysis (NAA) are reviewed in the second section of the article. Prospective analytical tools, such as heavy-ion backscattering spectroscopy (HIBS) and synchrotron-based X-ray microprobe techniques (XPS, XANES, XRF) are briefly discussed. The third section includes a discussion of the present achievements and challenges of the electrochemistry and physics of cleaning of silicon wafers, with an emphasis on removal of iron contamination from the wafers. Finally, the techniques for gettering of iron are presented.

  13. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  14. Integrating Mobile Phones into Science Teaching to Help Students Develop a Procedure to Evaluate the Corrosion Rate of Iron in Simulated Seawater

    ERIC Educational Resources Information Center

    Moraes, Edgar P.; Confessor, Mario R.; Gasparotto, Luiz H. S.

    2015-01-01

    This article proposes an indirect method to evaluate the corrosion rate of iron nail in simulated seawater. The official procedure is based on the direct measurement of the specimen's weight loss over time; however, a highly precise scale is required and such equipment may not be easily available. On the other hand, mobile phones equipped with…

  15. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  16. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  17. A novel integration system of magnetically immobilized cells and a pair of graphite plate-stainless iron mesh electrodes for the bioremediation of coking wastewater.

    PubMed

    Jiang, Bei; Tan, Liang; Ning, Shuxiang; Shi, Shengnan

    2016-09-01

    Magnetically immobilized cells of Comamonas sp. JB coupling with electrode reaction was developed to enhance the treatment efficiency of coking wastewater containing phenol, carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). The pair of graphite plate-stainless iron mesh electrodes was chosen as the most suitable electrodes. Magnetically immobilized cells coupling with graphite plate-stainless iron mesh electrodes (coupling system) exhibited high degradation activity for all the compounds, which were significantly higher than the sum by single magnetically immobilized cells and electrode reaction at the optimal voltage. Recycling experiments demonstrated that the degradation activity of coupling system increased gradually during eight recycles, indicating that there was a coupling effect between the biodegradation and electrode reaction. Phenol hydroxylase and qPCR assays confirmed that appropriate electrical stimulation could improve phenol hydroxylase activity and promote cells growth. Toxicity assessment suggested the treatment of the coking wastewater by coupling system led to less toxicity than untreated wastewater. PMID:27289060

  18. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  19. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  20. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  1. Development of an integrated in-situ remediation technology. Draft topical report for Task {number_sign}3.3 entitled, ``Iron dechlorination studies`` (September 26, 1994--August 31, 1997)

    SciTech Connect

    Orth, R.; Dauda, T.; McKenzie, D.E.

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}3.3 summarizes the iron dechlorination research conducted by Monsanto Company.

  2. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  3. The Integrated Field-Scale Subsurface Research Challenge Site (IFC) at Rifle, Colorado: Preliminary Results on Microbiological, Geochemical and Hydrologic Processes Controlling Iron Reduction and Uranium Mobility

    NASA Astrophysics Data System (ADS)

    Long, P. E.; Banfield, J.; Bush, R.; Campbell, K.; Chandler, D. P.; Davis, J. A.; Dayvault, R.; Druhan, J.; Elifantz, H.; Englert, A.; Hettich, R. L.; Holmes, D.; Hubbard, S.; Icenhower, J.; Jaffe, P. R.; Kerkhof, L. J.; Kukkadapu, R. K.; Lesher, E.; Lipton, M.; Lovley, D.; Morris, S.; Morrison, S.; Mouser, P.; Newcomer, D.; N'guessan, L.; Peacock, A.; Qafoku, N.; Resch, C. T.; Spane, F.; Spaulding, B.; Steefel, C.; Verberkmoes, N.; Wilkins, M.; Williams, K. H.; Yabusaki, S. B.

    2007-12-01

    The IFC at Rifle, Colorado was recently funded by the U.S. Department of Energy to address knowledge gaps in 1) geochemical and microbial controls on stimulated U(VI) bioreduction by iron-reducers, 2) U(VI) sorption under Fe-reducing conditions, 3) post-biostimulation U(VI) stability and removal, and 4) rates of natural bioreduction of U(VI). The over-arching goal of the project is to develop a mechanistic understanding of bioreductive and abiotic processes that control uranium mobility targeting new knowledge that can be translated into scientifically defensible flow and reactive transport process models. The Rifle IFC will conduct a focused set of field and lab experiments that use recently developed sciences of proteogenomics and stable isotope probing to track microbial metabolic status during acetate amendment. This information will be linked to changes in Fe redox status and sulfide minerals, with field-scale changes detected by non-invasive hydrogeophysics, including 3-D resistivity tomography. A key goal of the project is to combine abiotic sorption processes under reducing conditions with biotic processes controlling U(VI) reduction. The initial field-scale experiment for the Rifle IFC was conducted during the summer of 2007 with the objectives of collecting simultaneous metagenomic and proteomic samples during acetate amendment and to assess the impact of intentionally decreasing electron donor concentration on the metabolic processes of iron reducers. The 2007 experiment replicated previous field experiments, producing dominance of Geobacter sp. in groundwater within 10 days after the start of acetate amendment. The experiment also confirmed the importance of heterogeneities in controlling the flux of electron donor and the impact of naturally reduced zones on the duration of Fe reduction.

  4. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  5. The liver: conductor of systemic iron balance

    PubMed Central

    Meynard, Delphine; Babitt, Jodie L.

    2014-01-01

    Iron is a micronutrient essential for almost all organisms: bacteria, plants, and animals. It is a metal that exists in multiple redox states, including the divalent ferrous (Fe2+) and the trivalent ferric (Fe3+) species. The multiple oxidation states of iron make it excellent for electron transfer, allowing iron to be selected during evolution as a cofactor for many proteins involved in central cellular processes including oxygen transport, mitochondrial respiration, and DNA synthesis. However, the redox cycling of ferrous and ferric iron in the presence of H2O2, which is physiologically present in the cells, also leads to the production of free radicals (Fenton reaction) that can attack and damage lipids, proteins, DNA, and other cellular components. To meet the physiological needs of the body, but to prevent cellular damage by iron, the amount of iron in the body must be tightly regulated. Here we review how the liver is the central conductor of systemic iron balance and show that this central role is related to the secretion of a peptide hormone hepcidin by hepatocytes. We then review how the liver receives and integrates the many signals that report the body’s iron needs to orchestrate hepcidin production and maintain systemic iron homeostasis. PMID:24200681

  6. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  7. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  8. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  9. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  10. Collisional Records in Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Marti, K.; Lavielle, B.; Jeannot, J.-P.

    1995-09-01

    The asteroid belt is considered to be the ultimate source of iron meteorites and it would be of considerable interest to obtain a chronology of break-ups of asteroidal objects. However, as multiple fragmentation of such objects did likely occur, the exposure ages date the break-off of iron masses from shielded locations within the immediate parent object. Meteorites which were fragmented in more than one collisional event may have recorded integral effects of cosmic ray interactions in varying geometrical configuration and individual stages may be difficult to unravel; we term such exposure histories "complex". Exposure age histograms based on potassium ages have been discussed by Voshage [1] and he concluded that irons of groups IIIA and IIIB reveal similar histograms and probably were derived from the same parent body. He also noted a cluster for group IVA members ,but no clear evidence for other clusters. We present the collisional evidence based on published noble gas data, coupled to the new production rates which we calculate for central locations, adjusted for off-center locations whenever concentration profiles can be inferred. Unlike potassium ages which show large uncertainties for ages < 300 Ma, T38 ages can be obtained for all iron meteorites. We note, however,that T38 values of five "old" irons are systematically 15% lower than potassium ages. We confirm the evidence for stochastic events for IIIAB and IVA irons. The statistics are improved because of the larger data base. There are interesting clusters also among ages < 100 Ma, in the range which overlaps the histograms of chondrites. Recent reports [2,3] of H-chondritic inclusions in IIE irons, whose exposure ages are consistent with H-chondrite clusters, point to a genetic link. Group IIAB reveals two clusters with T38 < 100 Ma, and both events appear to involve also IIE irons. Clusterings of two thirds of group IIIE members and of group IID irons appear significant. The youngest IVB ages coincide

  11. Iron and Diabetes Risk

    PubMed Central

    Simcox, Judith A.; McClain, Donald A.

    2013-01-01

    Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions—hereditary hemochromatosis and thalassemia—but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Iron is also a factor in the regulation of metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood, but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways. PMID:23473030

  12. Iron deficiency in Europe.

    PubMed

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  13. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae.

    PubMed

    Wofford, Joshua D; Lindahl, Paul A

    2015-11-01

    An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar Fe(II) is oxidized to Fe(III). The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin Fe(II) ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such "dual sensing" probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol. PMID:26306041

  14. Ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  15. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  16. Serum iron test

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  17. Total iron binding capacity

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  18. Iron and Your Child

    MedlinePlus

    ... 24 months old. Serve iron-rich foods alongside foods containing vitamin C — such as tomatoes, broccoli, oranges, and strawberries — which improves the body's absorption of iron. Avoid serving coffee ...

  19. Iron losses in sweat

    SciTech Connect

    Brune, M.; Magnusson, B.; Persson, H.; Hallberg, L.

    1986-03-01

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findings indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.

  20. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  1. Iron in diet

    MedlinePlus

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  2. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    PubMed

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. PMID:22771343

  3. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds.

    PubMed

    Rodríguez-Celma, Jorge; Schmidt, Wolfgang

    2013-11-01

    With the exception of the grasses, plants rely on a reduction-based iron (Fe) uptake system that is compromised by high soil pH, leading to severe chlorosis and reduced yield in crop plants. We recently reported that iron deficiency triggers the production of secondary metabolites that are beneficial for Fe uptake in particular at high external pH when iron is present but not readily available. The exact function of these metabolites, however, remains enigmatic. Here, we speculate on the mechanism by which secondary metabolites secreted by roots from Fe-deficient plants improve Fe acquisition. We suggest that the production and excretion of Iron Binding Compounds (IBCs) constitute an integrative, pH-insensitive component of the reduction-based iron uptake strategy in plants. PMID:23989491

  4. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  5. Synthesis of iron silicides starting with Fe/Si multilayers

    NASA Astrophysics Data System (ADS)

    Saul, C. Ketzer; Amaral, L.; Schreiner, W. H.

    1994-12-01

    The iron silicides are considered key materials for silicon integrated optoelectronic devices. This report describes the synthesis of the iron silicides starting with e-beam evaporated multilayered Fe/Si samples. Samples with two chemical wavelengths were studied upon annealing and ion beam mixing. The characterization included X-ray diffraction, CEMS and Rutherford backscattering.

  6. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  7. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models. PMID:27455808

  8. The Organization of Controller Motifs Leading to Robust Plant Iron Homeostasis

    PubMed Central

    Agafonov, Oleg; Selstø, Christina Helen; Thorsen, Kristian; Xu, Xiang Ming; Drengstig, Tormod; Ruoff, Peter

    2016-01-01

    Iron is an essential element needed by all organisms for growth and development. Because iron becomes toxic at higher concentrations iron is under homeostatic control. Plants face also the problem that iron in the soil is tightly bound to oxygen and difficult to access. Plants have therefore developed special mechanisms for iron uptake and regulation. During the last years key components of plant iron regulation have been identified. How these components integrate and maintain robust iron homeostasis is presently not well understood. Here we use a computational approach to identify mechanisms for robust iron homeostasis in non-graminaceous plants. In comparison with experimental results certain control arrangements can be eliminated, among them that iron homeostasis is solely based on an iron-dependent degradation of the transporter IRT1. Recent IRT1 overexpression experiments suggested that IRT1-degradation is iron-independent. This suggestion appears to be misleading. We show that iron signaling pathways under IRT1 overexpression conditions become saturated, leading to a breakdown in iron regulation and to the observed iron-independent degradation of IRT1. A model, which complies with experimental data places the regulation of cytosolic iron at the transcript level of the transcription factor FIT. Including the experimental observation that FIT induces inhibition of IRT1 turnover we found a significant improvement in the system’s response time, suggesting a functional role for the FIT-mediated inhibition of IRT1 degradation. By combining iron uptake with storage and remobilization mechanisms a model is obtained which in a concerted manner integrates iron uptake, storage and remobilization. In agreement with experiments the model does not store iron during its high-affinity uptake. As an iron biofortification approach we discuss the possibility how iron can be accumulated even during high-affinity uptake. PMID:26800438

  9. Vapor-Liquid Partitioning of Iron and Manganese in Hydrothermal Fluids: An Experimental Investigation with Application to the Integrated Study of Basalt-hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Seyfried, W. E.

    2010-12-01

    The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of

  10. Dissecting plant iron homeostasis under short and long-term iron fluctuations.

    PubMed

    Darbani, Behrooz; Briat, Jean-François; Holm, Preben Bach; Husted, Søren; Noeparvar, Shahin; Borg, Søren

    2013-12-01

    A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human. PMID:23680191

  11. The Evidence-Based Evaluation of Iron Deficiency Anemia.

    PubMed

    Hempel, Eliana V; Bollard, Edward R

    2016-09-01

    Anemia is a prevalent disease with multiple possible etiologies and resultant complications. Iron deficiency anemia is a common cause of anemia and is typically due to insufficient intake, poor absorption, or overt or occult blood loss. Distinguishing iron deficiency from other causes of anemia is integral to initiating the appropriate treatment. In addition, identifying the underlying cause of iron deficiency is also necessary to help guide management of these patients. We review the key components to an evidence-based, cost-conscious evaluation of suspected iron deficiency anemia. PMID:27542426

  12. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. PMID:26314490

  13. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth. PMID:22845493

  14. Diffusion and segregation properties of iron in silicon dioxide

    NASA Astrophysics Data System (ADS)

    Ramappa, Deepak Arabagatte

    1999-09-01

    segregation coefficient value of k = 1.1 x 10--7 at 1000°C, where k = NSi/Noxide. This strong segregation tendency seemingly impedes the diffusion of iron from SiO2 into the silicon bulk. Such segregation could lead to supersaturation of iron impurity at the interface and eventually precipitation. Precipitation of iron at the interface can prove to be detrimental to the gate oxide integrity. Ramp voltage oxide breakdown testing performed on iron diffused oxides showed the detrimental impact of iron in reducing the oxide breakdown fields.

  15. Iron and iron-based alloys for temporary cardiovascular applications.

    PubMed

    Francis, A; Yang, Y; Virtanen, S; Boccaccini, A R

    2015-03-01

    In the last decade, biodegradable metals have emerged as a topic of interest for particular biomedical applications which require high strength to bulk ratio, including for cardiovascular stents. The advantages of biodegradable materials are related to the reduction of long term risks associated with the presence of permanent metal implants, e.g. chronic inflammation and in-stent restenosis. From a structural point of view, the analysis of the literature reveals that iron-based alloys used as temporary biodegradable stents have several advantages over Mg-based alloys in terms of ductility and strength. Efforts on the modification and tunability of iron-based alloys design and compositions have been mainly focused on controlling the degradation rate while retaining the mechanical integrity within a reasonable period. The early pre-clinical results of many iron-based alloys seem promising for future implants developments. This review discusses the available literature focusing mainly on: (i) Fe and Fe-based alloys design and fabrication techniques; (ii) in vitro and in vivo performance; (iii) cytotoxicity and cell viability tests. PMID:25716025

  16. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  17. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  18. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research. PMID:19344751

  19. Iron and transfusion medicine.

    PubMed

    Waldvogel-Abramovski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

    2013-11-01

    Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been published on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only performed just before or even during blood donation, but the determination of iron stores is largely ignored. The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type 2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably regarding their possible genetic profiles that eventually will discriminate "good" iron absorbers from "bad" iron responders. PMID:24148756

  20. IRON IN MULTIPLE MYELOMA

    PubMed Central

    VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

    2013-01-01

    Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

  1. Iron shielded MRI optimization

    NASA Astrophysics Data System (ADS)

    Borghi, C. A.; Fabbri, M.

    1998-09-01

    The design of the main current systems of an actively shielded and of an iron shielded MRI device for nuclear resonance imaging, is considered. The model for the analysis of the magnetic induction produced by the current system, is based on the combination of a Boundary Element technique and of the integration of two Fredholm integral equations of the first and the second kind. The equivalent current magnetization model is used for the calculation of the magnetization produced by the iron shield. High field uniformity in a spherical region inside the device, and a low stray field in the neighborhood of the device are required. In order to meet the design requirements a multi-objective global minimization problem is solved. The minimization method is based on the combination of the filled function technique and the (1+1) evolution strategy algorithm. The multi-objective problem is treated by means of a penalty method. The actively shielded MRI system results to utilize larger amount of conductor and produce higher magnetic energy than the iron shield device. On veut étudier le projet du système des courants principaux d'un MRI à écran en fer et d'un MRI à écran actif. Le modèle d'analyse du champ magnétique produit par le système de courants est basé sur la combinaison d'une technique Boundary Element et de l'intégration de deux équations intégrales de Fredholm de première et de seconde sorte. On utilise pour calculer la magnétisation produite par l'écran en fer le modèle à cou rants de magné ti sa tion équivalents. On exige une élévation uniforme du champ dans une région sphérique au cœur de l'appareil et un bas champ magnétique dispersé à proximité de l'appareil. Dans le but de répondre aux impératifs du projet, on va résoudre un problème multiobjectif de minimisation globale. On utilise une technique de minimisation obtenue par la combinaison des méthodes “Filled Function” et “(1+1) Evolution Strategy”. Le probl

  2. Austempered Ductile Iron Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  3. Physics of iron

    SciTech Connect

    Anderson, O.

    1993-10-01

    This volume comprises papers presented at the AIRAPT Conference, June 28 to July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, {beta}, with a {gamma}-{beta}-{epsilon} triple point at about 30 GPa and 1190 K, and possible sixth phase, {omega}, with an {epsilon}-{Theta}-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth`s heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there was notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  4. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  5. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  6. Comparative Evaluation of Nephrotoxicity and Management by Macrophages of Intravenous Pharmaceutical Iron Formulations

    PubMed Central

    Connor, James R.; Zhang, Xuesheng; Nixon, Anne M.; Webb, Becky; Perno, Joseph R.

    2015-01-01

    Background There is a significant clinical need for effective treatment of iron deficiency. A number of compounds that can be administered intravenously have been developed. This study examines how the compounds are handled by macrophages and their relative potential to provoke oxidative stress. Methods Human kidney (HK-2) cells, rat peritoneal macrophages and renal cortical homogenates were exposed to pharmaceutical iron preparations. Analyses were performed for indices of oxidative stress and cell integrity. In addition, in macrophages, iron uptake and release and cytokine secretion was monitored. Results HK-2 cell viability was decreased by iron isomaltoside and ferumoxytol and all compounds induced lipid peroxidation. In the renal cortical homogenates, lipid peroxidation occurred at lowest concentrations with ferric carboxymaltose, iron dextran, iron sucrose and sodium ferric gluconate. In the macrophages, iron sucrose caused loss of cell viability. Iron uptake was highest for ferumoxytol and iron isomaltoside and lowest for iron sucrose and sodium ferric gluconate. Iron was released as secretion of ferritin or as ferrous iron via ferroportin. The latter was blocked by hepcidin. Exposure to ferric carboxymaltose and iron dextran resulted in release of tumor necrosis factor α. Conclusions Exposure to iron compounds increased cell stress but was tissue and dose dependent. There was a clear difference in the handling of iron from the different compounds by macrophages that suggests in vivo responses may differ. PMID:25973894

  7. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  8. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells.

    PubMed

    Vert, Grégory; Barberon, Marie; Zelazny, Enric; Séguéla, Mathilde; Briat, Jean-François; Curie, Catherine

    2009-05-01

    Iron is an essential nutrient for all organisms but toxic when present in excess. Consequently, plants carefully regulate their iron uptake, dependent on the FRO2 ferric reductase and the IRT1 transporter, to control its homeostasis. Arabidopsis IRT2 gene, whose expression is induced in root epidermis upon iron deprivation, was shown to encode a functional iron/zinc transporter in yeast, and proposed to function in iron acquisition from the soil. In this study, we demonstrate that, unlike its close homolog IRT1, IRT2 is not involved in iron absorption from the soil since overexpression of IRT2 does not rescue the iron uptake defect of irt1-1 mutant and since a null irt2 mutant shows no chlorosis in low iron. Consistently, an IRT2-green fluorescent fusion protein, transiently expressed in culture cells, localizes to intracellular vesicles. However, IRT2 appears strictly co-regulated with FRO2 and IRT1, supporting the view that IRT2 is an integral component of the root response to iron deficiency in root epidermal cells. We propose a model where IRT2 likely prevents toxicity from IRT1-dependent iron fluxes in epidermal cells, through compartmentalization. PMID:19252923

  9. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  10. Perspectives on nutritional iron deficiency.

    PubMed

    Hallberg, L

    2001-01-01

    Nutritional iron deficiency (ID) is caused by an intake of dietary iron insufficient to cover physiological iron requirements. Studies on iron absorption from whole diets have examined relationships between dietary iron bioavailability/absorption, iron losses, and amounts of stored iron. New insights have been obtained into regulation of iron absorption and expected rates of changes of iron stores or hemoglobin iron deficits when bioavailability or iron content of the diet has been modified and when losses of iron occur. Negative effects of ID are probably related to age, up to about 20 years, explaining some of earlier controversies. Difficulties in establishing the prevalence of mild ID are outlined. The degree of underestimation of the prevalence of mild ID when using multiple diagnostic criteria is discussed. It is suggested that current low-energy lifestyles are a common denominator for the current high prevalence not only of ID but also of obesity, diabetes, and osteoporosis. PMID:11375427

  11. Taking iron supplements

    MedlinePlus

    ... The stools are tarry-looking as well as black If they have red streaks Cramps, sharp pains, or soreness in the stomach occur Liquid forms of iron may stain your teeth. Try mixing the iron with water or other liquids (such as fruit juice or ...

  12. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  13. Hypersensitivity from intravenous iron products.

    PubMed

    Bircher, Andreas J; Auerbach, Michael

    2014-08-01

    In the last several years, intravenous therapy with iron products has been more widely used. Although it has been a standard procedure in dialysis-associated anemia since the early 1990s, its use is expanding to a host of conditions associated with iron deficiency, especially young women with heavy uterine bleeding and pregnancy. Free iron is associated with unacceptable high toxicity inducing severe, hemodynamically significant symptoms. Subsequently, formulations that contain the iron as an iron carbohydrate nanoparticle have been designed. With newer formulations, including low-molecular-weight iron dextran, iron sucrose, ferric gluconate, ferumoxytol, iron isomaltoside, and ferric carboxymaltose, serious adverse events are rare. PMID:25017687

  14. Microbes: mini iron factories.

    PubMed

    Joshi, Kumar Batuk

    2014-12-01

    Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries. PMID:25320452

  15. Iron studies in hemophilia

    SciTech Connect

    Lottenberg, R.; Kitchens, C.S.; Roessler, G.S.; Noyes, W.D.

    1981-12-01

    Although iron deficiency is not recognized as a usual complication of hemophilia, we questioned whether intermittent occult loss of blood in urine or stool might predispose hemophiliacs to chronic iron deficiency. Seven men with factor VII and one with factor IX deficiency were studied. Blood studied, bone marrow aspirates, urine and stool samples, and ferrokinetics with total-body counting up to five months were examined. These data showed no excessive loss of blood during the study period; however, marrow iron stores were decidedly decreased, being absent in four subjects. We suggest that in some hemophiliacs, iron deposits in tissues such as synovial membranes may form a high proportion of the body's total iron stores.

  16. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  17. Iron economy in Chlamydomonas reinhardtii

    PubMed Central

    Glaesener, Anne G.; Merchant, Sabeeha S.; Blaby-Haas, Crysten E.

    2013-01-01

    While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance. PMID:24032036

  18. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  19. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  20. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  1. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  2. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  3. Coal desulfurization. [using iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1979-01-01

    Organic sulfur is removed from coal by treatment with an organic solution of iron pentacarbonyl. Organic sulfur compounds can be removed by reaction of the iron pentacarbonyl with coal to generate CO and COS off-gases. The CO gas separated from COS can be passed over hot iron fillings to generate iron pentacarbonyl.

  4. Dietary Iron and Colorectal Cancer Risk: A Review of Human Population Studies.

    PubMed

    Ashmore, Joseph H; Rogers, Connie J; Kelleher, Shannon L; Lesko, Samuel M; Hartman, Terryl J

    2016-04-25

    Iron is an essential micronutrient that is involved in many redox processes and serves as an integral component in various physiological functions. However, excess iron can cause tissue damage through its pro-oxidative effects, potentiating the development of many diseases such as cancer through the generation of reactive oxidative species. The two major forms of iron in the diet are heme and nonheme iron, both of which are found in several different foods. In addition to natural food sources, intake of nonheme iron may also come from fortified foods or in supplement form. This review summarizes the results of human population studies that have examined the role of dietary iron (heme and nonheme), heme iron alone, and iron from supplements in colorectal carcinogenesis. PMID:25574701

  5. Iron in diet

    MedlinePlus

    ... Some foods reduce iron absorption. For example, commercial black or pekoe teas contain substances that bind to ... nih.gov/pubmed/19297463 . Mason JB. Vitamins, trace minerals, and other micronutrients. In: Goldman L, Schafer AI, ...

  6. Iron deficiency in pregnancy

    PubMed Central

    McMahon, Lawrence P

    2010-01-01

    Iron deficiency (ID) and related anaemia (IDA) during pregnancy are highly prevalent worldwide in both developed and developing nations although the causes are often different. At conception, many women lack sufficient iron stores to meet the increased requirements of pregnancy, which are calculated at approximately 1200 mg. Appraisal of iron status in pregnant women is problematic, however the most reliable available diagnostic test is a serum ferritin < 20 µg/L. ID is often associated with other nutritional disorders, and there is frequently a secondary cause or association. A greater oral intake is usually insufficient to meet the increased demands of pregnancy, however regular oral supplements (given either daily or intermittently) can often meet maternal needs and avoid associated neonatal complications of IDA. Over-treatment with iron should be avoided, but intravenous administration is useful when deficiency is discovered late, is severe, or if the woman is intolerant of oral formulations. This paper reviews the current literature, and addresses differences in the prevalence and causes of ID betwen developed and developing nations. It examines gestational iron requirements, distinguishes between ID and IDA, and highlights difficulties in diagnostic testing. Finally, it appraises the evidence for and against different treatment regimens, ranging from food fortification to intravenous iron infusions, according to availability and to need.

  7. HERC2 Targets the Iron Regulator FBXL5 for Degradation and Modulates Iron Metabolism

    PubMed Central

    Moroishi, Toshiro; Yamauchi, Takayoshi; Nishiyama, Masaaki; Nakayama, Keiichi I.

    2014-01-01

    FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCFFBXL5 ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism. PMID:24778179

  8. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism.

    PubMed

    Moroishi, Toshiro; Yamauchi, Takayoshi; Nishiyama, Masaaki; Nakayama, Keiichi I

    2014-06-01

    FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCF(FBXL5) ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism. PMID:24778179

  9. Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System

    EPA Science Inventory

    Understanding the effects of biofilm on the iron corrosion, iron release and associated corrosion by-products is critical for maintaining the water quality and the integrity of drinking water distribution system (DWDS). In this work, iron corrosion experiments under sterilized a...

  10. An update on iron physiology

    PubMed Central

    Muñoz, Manuel; Villar, Isabel; García-Erce, José Antonio

    2009-01-01

    Iron is an essential micronutrient, as it is required for adequate erythropoietic function, oxidative metabolism and cellular immune responses. Although the absorption of dietary iron (1-2 mg/d) is regulated tightly, it is just balanced with losses. Therefore, internal turnover of iron is essential to meet the requirements for erythropoiesis (20-30 mg/d). Increased iron requirements, limited external supply, and increased blood loss may lead to iron deficiency (ID) and iron-deficiency anemia. Hepcidin, which is made primarily in hepatocytes in response to liver iron levels, inflammation, hypoxia and anemia, is the main iron regulatory hormone. Once secreted into the circulation, hepcidin binds ferroportin on enterocytes and macrophages, which triggers its internalization and lysosomal degradation. Thus, in chronic inflammation, the excess of hepcidin decreases iron absorption and prevents iron recycling, which results in hypoferremia and iron-restricted erythropoiesis, despite normal iron stores (functional ID), and anemia of chronic disease (ACD), which can evolve to ACD plus true ID (ACD + ID). In contrast, low hepcidin expression may lead to iron overload, and vice versa. Laboratory tests provide evidence of iron depletion in the body, or reflect iron-deficient red cell production. The appropriate combination of these laboratory tests help to establish a correct diagnosis of ID status and anemia. PMID:19787824

  11. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron, and carbonyl iron. (1)...

  12. Plant Cell Nucleolus as a Hot Spot for Iron*

    PubMed Central

    Roschzttardtz, Hannetz; Grillet, Louis; Isaure, Marie-Pierre; Conéjéro, Geneviève; Ortega, Richard; Curie, Catherine; Mari, Stéphane

    2011-01-01

    Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes. PMID:21719700

  13. Plant cell nucleolus as a hot spot for iron.

    PubMed

    Roschzttardtz, Hannetz; Grillet, Louis; Isaure, Marie-Pierre; Conéjéro, Geneviève; Ortega, Richard; Curie, Catherine; Mari, Stéphane

    2011-08-12

    Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes. PMID:21719700

  14. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  15. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  16. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  17. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  18. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  19. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  20. Development of an iron-enriched high-yieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice.

    PubMed

    Paul, Soumitra; Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2014-09-01

    Low level of iron in staple food crops is one reason for the predominance of iron-deficiency anemia in developing countries. Most of the iron in rice grains accumulates in the outer aleurone layer and embryo, which are removed during milling, and the edible endosperm contains very low amounts of iron. In an effort to increase iron nutrition, we report here the transgene introgression of a high-iron trait into a high-yielding indica rice cultivar. The ferritin gene from soybean (soyfer1) was introduced into rice plants through interbreeding between soybean ferritin-overexpressing transgenic IR68144 and the high-yielding cultivar Swarna. The stable integration of the soyfer1 gene was confirmed in the BC2F4 generation, and the hybrid seeds showed 2.6-fold soybean ferritin gene expression over the recurrent parent Swarna. The hybrid milled seeds revealed a 2.54-fold increase in iron and 1.54-fold increase in zinc compared to Swarna. Agronomic data and an SSR marker analysis of the hybrid rice plants were taken into account for NIL character identification. PMID:25069855

  1. Cardioprotective activity of iron oxide nanoparticles

    PubMed Central

    Xiong, Fei; Wang, Hao; Feng, Yidong; Li, Yunman; Hua, Xiaoqing; Pang, Xingyun; Zhang, Song; Song, Lina; Zhang, Yu; Gu, Ning

    2015-01-01

    Iron oxide nanoparticles (IONPs) are chemically inert materials and have been mainly used for imaging applications and drug deliveries. However, the possibility whether they can be used as therapeutic drugs themselves has not yet been explored. We reported here that Fe2O3 nanoparticles (NPs) can protect hearts from ischemic damage at the animal, tissue and cell level. The cardioprotective activity of Fe2O3 NPs requires the integrity of nanoparticles and is not dependent upon their surface charges and molecules that were integrated into nanoparticles. Also, Fe2O3 NPs showed no significant toxicity towards normal cardiomyocytes, indicative of their potential to treat cardiovascular diseases. PMID:25716309

  2. Mammalian iron metabolism and its control by iron regulatory proteins☆

    PubMed Central

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  3. Iron-sensitive fluorescent probes: monitoring intracellular iron pools.

    PubMed

    Ma, Yongmin; Abbate, V; Hider, R C

    2015-02-01

    Several iron-sensitive fluorophores have been investigated in a range of cell types in order to quantify iron(II) levels in the cytosol and the cytoplasm. Both iron(II) and iron(III) cause fluorescence quenching of these probes and changes in cytosolic iron levels can be monitored in a reproducible manner. However the precise quantification of iron(II) in the cytosol is complicated by the uncertainty of the structure of many of the quenched species that exist under in vivo conditions. Precise knowledge of these structures is essential for quantitative purposes. The lysosomal and mitochondrial iron pools have only been the subject of relatively few studies at the time of writing. Calcein-AM has been widely adopted for the monitoring of changes in iron levels in a range different cell types. PMID:25315476

  4. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  5. INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS FROM CUPOLA TO IRON TREATMENT AREAS BEFORE BEING TRANSFERRED TO PIPE CASTING MACHINES. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  6. Anemia caused by low iron - children

    MedlinePlus

    Anemia - iron deficiency - children ... able to absorb iron well, even though the child is eating enough iron Slow blood loss over ... bleeding in the digestive tract Iron deficiency in children can also be related to lead poisoning .

  7. Silver-iron batteries

    NASA Astrophysics Data System (ADS)

    Lindstroem, O.

    1980-04-01

    Production methods for iron electrodes were studied. It was found that a sintering temperature of 700 C gave the best strength and capacity. Production methods and additions for silver electrodes were also studied. The capacity of the produced iron and silver electrodes were 1100 mAh/cu cm. Different separators were investigated. Cellophane I and II from Du Pont was found to be the best. In tests open cells achieved 60 percent of the calculated capacity. In order to minimize the increase of the pressure in closed cells different additions to the electrodes were studied.

  8. Iron Meteorite on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity has found an iron meteorite on Mars, the first meteorite of any type ever identified on another planet. The pitted, basketball-size object is mostly made of iron and nickel. Readings from spectrometers on the rover determined that composition. Opportunity used its panoramic camera to take the images used in this approximately true-color composite on the rover's 339th martian day, or sol (Jan. 6, 2005). This composite combines images taken through the panoramic camera's 600-nanometer (red), 530-nanometer (green), and 480-nanometer (blue) filters.

  9. Protein degradation and iron homeostasis.

    PubMed

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  10. Iron deficiency anemia in children.

    PubMed

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency. PMID:25636824

  11. Iron in Infection and Immunity

    PubMed Central

    Cassat, James E.; Skaar, Eric P.

    2013-01-01

    Iron is an essential nutrient for both humans and pathogenic microbes. Because of its ability to exist in one of two oxidation states, iron is an ideal redox catalyst for diverse cellular processes including respiration and DNA replication. However, the redox potential of iron also contributes to its toxicity, thus iron concentration and distribution must be carefully controlled. Given the absolute requirement for iron by virtually all human pathogens, an important facet of the innate immune system is to limit iron availability to invading microbes in a process termed nutritional immunity. Successful human pathogens must therefore possess mechanisms to circumvent nutritional immunity in order to cause disease. In this review, we discuss regulation of iron metabolism in the setting of infection and delineate strategies used by human pathogens to overcome iron-withholding defenses. PMID:23684303

  12. Iron Ion and Iron Hydroxide Adsorption to Charge-Neutral Phosphatidylcholine Templates.

    PubMed

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren; San Emeterio, Josue; Mallapragada, Surya; Vaknin, David

    2016-08-01

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ∼3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to a neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. The strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin. PMID:27409514

  13. Synthesis and characterization of iron(II) quinaldate complexes.

    PubMed

    Houghton, Dylan T; Gydesen, Nicholas W; Arulsamy, Navamoney; Mehn, Mark P

    2010-02-01

    Treatment of iron(II) chloride or iron(II) bromide with 2 equiv of sodium quinaldate (qn = quinaldate or C(10)H(6)NO(2)(-)) yields the coordinatively unsaturated mononuclear iron(II) quinaldate complexes Na[Fe(II)(qn)(2)Cl].DMF and Na[Fe(II)(qn)(2)Br].DMF (DMF = N,N-dimethylformamide), respectively. When a similar synthesis is carried out using iron(II) triflate, a solvent-derived linear triiron(II) complex, [Fe(II)(3)(qn)(6)(DMF)(2)], with two five-coordinate iron(II) centers and a single six-coordinate iron(II) center is obtained. Each of these species has been characterized using X-ray diffraction. The vibrational features of these complexes are consistent with the observed solid-state structures. Each of these compounds exhibits an iron(II)-to-quinaldate (pi*) charge-transfer band between 520 and 550 nm. These metal-to-ligand charge-transfer bands are sensitive to substitution of the quinaldates as well as alteration of the first coordination sphere ligands. However, the (1)H NMR spectra of these paramagnetic high-spin iron(II) complexes are not consistent with retention of the solid-state structures in a DMF solution. The chemical shifts, longitudinal relaxation times (T(1)), relative integrations, and substitution of the quinaldate ligands provide a means to fully assign the (1)H NMR spectra of the paramagnetic materials. These spectra are consistent with coordination equilibria between five- and six-coordinate species in a DMF solution. Electrochemical studies are reported to place these oxygen-sensitive compounds in a broader context with other iron(II) compounds. Iron complexes of bidentate quinoline-2-carboxylate-derived ligands are germane to metabolic pathways, environmental remediation, and catalytic applications. PMID:20030376

  14. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  15. Toughness Properties of Nodular Iron

    NASA Astrophysics Data System (ADS)

    Bradley, Walter L.

    1985-01-01

    The German government recently certified ductile iron for construction of nuclear waste transport containers. This approved use of ductile iron for such a critical application represents the culmination of ten years worth of research bringing to light the surprising toughness of ductile iron. This article explains how modern fracture mechanics and microstructure/property relationships have altered the stereotype of ductile iron as a low toughness material.

  16. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1991-01-01

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  17. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... Specific Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron,...

  18. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... Specific Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron,...

  19. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron, elemental. 184.1375 Section 184.1375 Food and... Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron, and...

  20. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... Specific Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron,...

  1. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    PubMed

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  2. Canada's iron creek meteorite

    NASA Astrophysics Data System (ADS)

    Spratt, C. E.

    1989-04-01

    An iron mass, of meteoritical origin, found on a hilltop in the southern Canadian prairies, is unique to Canadian scientific history. It is the third largest meteorite to have been found in Canada (at one time it was reported to be Canada's largest single meteorite mass). A brief historical account, and a corrected official weight (145 kilograms), of this interesting meteorite is presented.

  3. Taking iron supplements

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Iron Browse the Encyclopedia A.D.A. ...

  4. Extracting Iron from Cereal.

    ERIC Educational Resources Information Center

    Katz, David A.

    1992-01-01

    Describes an activity in which students can investigate and evaluate the amount of iron found in most fortified breakfast cereals or cream of wheat. Includes a list of necessary materials, safety precautions, experimental procedure, disposal protocol, and nutritional explanation, utilization, and variations. (JJK)

  5. Iron deficiency anemia

    MedlinePlus

    ... or blood in the stool Heavy menstrual bleeding (women) Pain in the upper belly (from ulcers) Weight loss (in people with cancer) ... an injection into the muscle. Pregnant and breastfeeding women ... bone marrow. Iron-rich foods include: Chicken and turkey Dried ...

  6. Iron dominated magnets

    SciTech Connect

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  7. Ferrous Sulfate (Iron)

    MedlinePlus

    (fer' us)Accidental overdose of products containing iron is a leading cause of fatal poisoning in children under the age of 6. Keep this product out of the reach of children. In case of an accidental overdose, call your doctor or a poison ...

  8. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  9. Development of iron aluminides

    SciTech Connect

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K.

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  10. Iron Aluminide Composites

    SciTech Connect

    Schneibel, J.H.

    1998-11-20

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB{sub 2}, and ZrB{sub 2}. In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructure, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength at elevated temperatures (1073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a mile of mixtures. Interestingly, sufficiently thin (< 1 {micro}m) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminizes, environmental embrittlement is dramatically reduced in iron aluminide composites.

  11. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  12. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  13. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  14. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  15. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  16. Iron status in the elderly

    PubMed Central

    Fairweather-Tait, Susan J.; Wawer, Anna A.; Gillings, Rachel; Jennings, Amy; Myint, Phyo K.

    2014-01-01

    Iron deficiency anaemia is prevalent in older age, particularly after the age of 80. Serum ferritin concentrations also decline, although there is no evidence to suggest that changes in iron stores are an inevitable consequence of ageing. Chronic inflammation is a common condition in older people, making the measurement of iron status difficult, and it is likely that elevated levels of circulating hepcidin are responsible for changes in iron metabolism that result in systemic iron depletion. Other contributory factors are poor diet and some medications, such as aspirin. Anaemia in older age has undesirable health outcomes, including increased susceptibility to falling and depression. However, there are concerns about possible adverse effects of iron supplements, either in relation to pro-inflammatory effects in the gut or inappropriate tissue iron deposition. Brain iron levels are increased with age-related degenerative diseases, but it is not known if this is the cause or a consequence of the disease, and genetic factors are likely to play a role. In order to maintain body iron within the normal range a personalised approach is required, taking into account all of the factors that may affect iron metabolism and the available strategies for preventing iron deficiency or overload. PMID:24275120

  17. Iron and cancer: recent insights.

    PubMed

    Manz, David H; Blanchette, Nicole L; Paul, Bibbin T; Torti, Frank M; Torti, Suzy V

    2016-03-01

    Iron is an essential dietary element. However, the ability of iron to cycle between oxidized and reduced forms also renders it capable of contributing to free radical formation, which can have deleterious effects, including promutagenic effects that can potentiate tumor formation. Dysregulation of iron metabolism can increase cancer risk and promote tumor growth. Cancer cells exhibit an enhanced dependence on iron relative to their normal counterparts, a phenomenon we have termed iron addiction. Work conducted in the past few years has revealed new cellular processes and mechanisms that deepen our understanding of the link between iron and cancer. Control of iron efflux through the combined action of ferroportin, an iron efflux pump, and its regulator hepcidin appears to play an important role in tumorigenesis. Ferroptosis is a form of iron-dependent cell death involving the production of reactive oxygen species. Specific mechanisms involved in ferroptosis, including depletion of glutathione and inhibition of glutathione peroxidase 4, have been uncovered. Ferritinophagy is a newly identified mechanism for degradation of the iron storage protein ferritin. Perturbations of mechanisms that control transcripts encoding proteins that regulate iron have been observed in cancer cells, including differences in miRNA, methylation, and acetylation. These new insights may ultimately provide new therapeutic opportunities for treating cancer. PMID:26890363

  18. Novel approaches and application of contemporary sensory evaluation practices in iron fortification programs.

    PubMed

    Bovell-Benjamin, Adelia C; Guinard, Jean-Xavier

    2003-01-01

    Iron deficiency is the leading nutritional deficiency in the U.S. and the rest of the world, with its highest prevalences in the developing world. Iron fortification of food has been proposed as a strategy to reduce the high prevalence of iron deficiency. Poor consumer acceptance, unacceptable taste, and discoloration of the iron-fortified foods have been frequently listed as causes of unsuccessful iron fortification programs. An excellent prospect for improving consumer acceptance of iron-fortified foods is the incorporation of a thorough, organized, and unified approach to sensory evaluation practices into iron fortification programs for product optimization. The information gained from systematic sensory evaluation allows for the manipulation of the sensory attributes, and thus improvement of the sensory properties of the fortified food. However, iron fortification programs have not systematically measured the effect of fortification on the sensory quality of the food. Because sensory evaluation is an important criterion in successful iron fortification, an integrated approach is necessary. Therefore, nutritionists and sensory scientists should work closely with each other to select the most suitable sensory tests and methods. The objectives of this article are to: (1) critically review and discuss some traditional and contemporary approaches and applications of sensory evaluation practices in iron fortification programs, and (2) demonstrate the importance of incorporating a multidisciplinary, systematic sensory evaluation approach in iron fortification programs. PMID:12940417

  19. A protective role for zinc on intestinal peroxidative damage during oral iron repletion.

    PubMed

    Sreedhar, B; Subramaniyan, R; Nair, K Madhavan

    2004-06-11

    Oral iron-supplementation is a general practice to correct iron deficiency anemia. Exposure of iron-deficient intestine to large doses of iron is known to induce oxidative damage, leading to loss of functional integrity, and reduced mucosal cell turnover. Conditioning of intestine with anti-oxidants during iron administration was shown to suppress iron-induced oxidative damage. Zinc is known to protect cells from peroxidative damage by inducing metallothionein and maintaining the sulfhydryl group stability. Nevertheless, co-administration of iron and zinc may antagonize each other with respect to absorption. In the present study, we show that combined supplementation of iron and zinc though marginally inhibits iron uptake significantly attenuates the oxidative stress by induction of metallothionein and elevating the levels of GSH. Further, presence of zinc in situ reduced the iron-induced hydroxyl radical production in the intestinal mucosa, as assessed by EPR spectroscopy. These results strongly suggest a protective role for zinc on iron-induced oxidative stress, which might have implications in anemia control programs. PMID:15147971

  20. Novel approaches and application of contemporary sensory evaluation practices in iron fortification programs

    NASA Technical Reports Server (NTRS)

    Bovell-Benjamin, Adelia C.; Guinard, Jean-Xavier

    2003-01-01

    Iron deficiency is the leading nutritional deficiency in the U.S. and the rest of the world, with its highest prevalences in the developing world. Iron fortification of food has been proposed as a strategy to reduce the high prevalence of iron deficiency. Poor consumer acceptance, unacceptable taste, and discoloration of the iron-fortified foods have been frequently listed as causes of unsuccessful iron fortification programs. An excellent prospect for improving consumer acceptance of iron-fortified foods is the incorporation of a thorough, organized, and unified approach to sensory evaluation practices into iron fortification programs for product optimization. The information gained from systematic sensory evaluation allows for the manipulation of the sensory attributes, and thus improvement of the sensory properties of the fortified food. However, iron fortification programs have not systematically measured the effect of fortification on the sensory quality of the food. Because sensory evaluation is an important criterion in successful iron fortification, an integrated approach is necessary. Therefore, nutritionists and sensory scientists should work closely with each other to select the most suitable sensory tests and methods. The objectives of this article are to: (1) critically review and discuss some traditional and contemporary approaches and applications of sensory evaluation practices in iron fortification programs, and (2) demonstrate the importance of incorporating a multidisciplinary, systematic sensory evaluation approach in iron fortification programs.

  1. Protein Degradation and Iron Homeostasis

    PubMed Central

    Thompson, Joel W.; Bruick, Richard K.

    2013-01-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron’s privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. PMID:22349011

  2. Ferrioxamine excretion in iron-loaded man

    SciTech Connect

    Pippard, M.J.; Callender, S.T.; Finch, C.A.

    1982-08-01

    Factors affecting iron excretion after subcutaneous desferrioxamine infusion were evaluated in individuals with iron overload. Urinary iron varied directly, whereas stool iron varied inversely with the level of erythropoiesis. Ascorbic acid greatly enhanced urinary iron excretion but had a less constant effect on stool iron. Stool iron losses contributed a greater proportion of total iron excretion at higher chelator dosage. These studies indicate the importance of biliary iron excretion in monitoring the effectiveness of desferrioxamine. They also suggest that large chelator doses may remove established iron overload much more rapidly than has previously been realized.

  3. Degradation of chlorofluorocarbons using granular iron and bimetallic irons.

    PubMed

    Jeen, Sung-Wook; Lazar, Snezana; Gui, Lai; Gillham, Robert W

    2014-03-01

    Degradation of trichlorofluoromethane (CFC11) and 1,1,2-trichloro-1,2,2-trifluoroethane (CFC113) by granular iron and bimetallic (nickel- or palladium-enhanced) irons was studied in flow-through column tests. Both compounds were rapidly degraded, following pseudo-first-order kinetics with respect to the parent compounds. The average pseudo-first-order rate constants for CFC11 were similar among different materials, except for palladium-enhanced iron (PdFe), in which the rate of degradation was about two times faster than for the other materials. In the case of CFC113, the rate constants for bimetallic irons were about two to three times greater than for the regular iron material. The smaller than expected differences in degradation rate constants of chlorofluorocarbons (CFCs) between regular iron and bimetallic irons suggested little, if any, catalytic effect of the bimetallic materials in the initial degradation step. Subsequent degradation steps involved catalytic hydrogenation, however, playing a significant role in further degradation of reaction intermediates. The degradation intermediates and final products of CFC11 and CFC113 suggested that degradation proceeded through hydrogenolysis and α/β-elimination in the presence of regular iron (Fe) and nickel-enhanced iron (NiFe). Even though there is only minor benefit in the use of bimetallic iron in terms of degradation kinetics of the parent CFCs, enhanced degradation rates of intermediates such as chlorotriflouroethene (CTFE) in subsequent reaction steps could be beneficial. PMID:24492233

  4. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  5. Iron pages of HTSC

    SciTech Connect

    Gasparov, V. A.

    2010-08-15

    Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.

  6. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  7. Tungsten in iron meteorites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.

    1978-01-01

    Tungsten concentrations have been determined by instrumental neutron activation in 104 iron meteorites, and range from 0.07 to 5 microg/g. In individual groups, concentrations vary by factors of between 1.5 and 8, but there are negative W-Ni correlations in 8 groups: IAB, IC, IIAB, IID, IIE, IIIAB, IIICD, and IIIF. The lowest W concentrations are found in groups IAB and IIICD, which also have the smallest slopes on a W-Ni plot. Eighteen anomalous irons have W concentrations between 5 microg/g (Butler) and 0.11 microg/g (Rafrueti). The distribution of W in irons shows similarities to that of other refractory sideophilic elements (except Mo), but is closest to the distribution of Ru and Pt. Assuming that chemical trends in group IIIAB were produced by fractional crystallization, a value of 1.6 can be deduced for the distribution coefficient of W between solid and liquid metal, as compared with 0.89 for Mo. Experimental evidence in support of these values is tenuous.

  8. Measurement of iron absorption from meals contaminated with iron

    SciTech Connect

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-12-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer.

  9. Formation of glutathionyl dinitrosyl iron complexes protects against iron genotoxicity.

    PubMed

    Lewandowska, Hanna; Sadło, Jarosław; Męczyńska, Sylwia; Stępkowski, Tomasz M; Wójciuk, Grzegorz; Kruszewski, Marcin

    2015-07-28

    Dinitrosyl iron(i) complexes (DNICs), intracellular NO donors, are important factors in nitric oxide-dependent regulation of cellular metabolism and signal transduction. It has been shown that NO diminishes the toxicity of iron ions and vice versa. To gain insight into the possible role of DNIC in this phenomenon, we examined the effect of GS-DNIC formation on the ability of iron ions to mediate DNA damage, by treatment of the pUC19 plasmid with physiologically relevant concentrations of GS-DNIC. It was shown that GS-DNIC formation protects against the genotoxic effect of iron ions alone and iron ions in the presence of a naturally abundant antioxidant, GSH. This sheds new light on the iron-related protective effect of NO under the circumstances of oxidative stress. PMID:26079708

  10. Iron homeostasis and eye disease

    PubMed Central

    Loh, Allison; Hadziahmetovic, Majda; Dunaief, Joshua L.

    2009-01-01

    Summary Iron is necessary for life, but excess iron can be toxic to tissues. Iron is thought to damage tissues primarily by generating oxygen free radicals through the Fenton reaction. We present an overview of the evidence supporting iron's potential contribution to a broad range of eye disease using an anatomical approach. Firstly, iron can be visualized in the cornea as iron lines in the normal aging cornea as well as in diseases like keratoconus and pterygium. In the lens, we present the evidence for the role of oxidative damage in cataractogenesis. Also, we review the evidence that iron may play a role in the pathogenesis of the retinal disease age-related macular degeneration. Although currently there is no direct link between excess iron and development of optic neuropathies, ferrous iron's ability to form highly reactive oxygen species may play a role in optic nerve pathology. Lastly, we discuss recent advances in prevention and therapeutics for eye disease with antioxidants and iron chelators,. PMID:19059309

  11. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.

    PubMed Central

    Brock, T D; Gustafson, J

    1976-01-01

    Acidophilic bacteria of the genera Thiobacillus and Sulfolobus are able to reduce ferric iron when growing on elemental sulfur as an energy source. It has been previously thought that ferric iron serves as a nonbiological oxidant in the formation of acid mine drainage and in the leaching of ores, but these results suggest that bacterial catalysis may play a significant role in the reactivity of ferric iron. PMID:825043

  12. ASSESSMENT OF SURFACE RUNOFF FROM IRON AND STEEL MILLS

    EPA Science Inventory

    The report gives results of a program to determine if surface runoff from iron and steel mills is an environmental problem. It includes a compilation of data available before this program, information gathered from plant tours, and results of a field survey at two fully integrate...

  13. Blood withdrawal affects iron store dynamics in primates with consequences on monoaminergic system function.

    PubMed

    Hyacinthe, C; De Deurwaerdere, P; Thiollier, T; Li, Q; Bezard, E; Ghorayeb, I

    2015-04-01

    Iron homeostasis is essential for the integrity of brain monoaminergic functions and its deregulation might be involved in neurological movement disorders such as the restless legs syndrome (RLS). Although iron metabolism breakdown concomitantly appears with monoaminergic system dysfunction in iron-deficient rodents and in RLS patients, the direct consequences of peripheral iron deficiency in the central nervous system (CNS) of non-human primates have received little attention. Here, we evaluated the peripheral iron-depletion impact on brain monoamine levels in macaque monkeys. After documenting circadian variations of iron and iron-related proteins (hemoglobin, ferritin and transferrin) in both serum and cerebrospinal fluid (CSF) of normal macaques, repeated blood withdrawals (RBW) were used to reduce peripheral iron-related parameter levels. Decreased serum iron levels were paradoxically associated with increased CSF iron concentrations. Despite limited consequences on tissue monoamine contents (dopamine - DA, 3, 4-dihydroxyphenylacetic acid - DOPAC, homovanillic acid, L-3, 4-dihydroxyphenylalanine - L-DOPA, 5-8 hydroxytryptamine - 5-HT, 5-hydroxyindoleacetic acid - 5-HIAA and noradrenaline) measured with post-mortem chromatography, we found distinct and region-dependent relationships of these tissue concentrations with CSF iron and/or serum iron and/or blood hemoglobin. Additionally, striatal extracellular DA, DOPAC and 5-HIAA levels evaluated by in vivo microdialysis showed a substantial increase, suggesting an overall increase in both DA and 5-HT tones. Finally, a trending increase in general locomotor activity, measured by actimetry, was observed in the most serum iron-depleted macaques. Taken together, our data are compatible with an increase in nigrostriatal DAergic function in the event of iron deficiency and point to a specific alteration of the 5-HT/DA interaction in the CNS that is possibly involved in the etiology of RLS. PMID:25662508

  14. Intestinal Iron Homeostasis and Colon Tumorigenesis

    PubMed Central

    Xue, Xiang; Shah, Yatrik M.

    2013-01-01

    Colorectal cancer (CRC) is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC. PMID:23812305

  15. Pagophagia in iron deficiency anemia.

    PubMed

    Uchida, Tatsumi; Kawati, Yasunori

    2014-04-01

    The relationship between pagophagia (ice pica) and iron deficiency anemia was studied. All 81 patients with iron deficiency anemia defined as hemoglobin <12.0 g/dl and ferritin level <12 ng/ml were interviewed about their habits of eating ice or other non-food substances. Pagophagia was defined as compulsive and repeated ingestion of at least one tray of ice or ice eating which was relieved after iron administration. Pagophagia was present in 13 patients (16.0%). All patients who received oral iron were periodically assessed employing a questionnaire on pagophagia and laboratory data. Iron therapy can cure the pagophagia earlier than hemoglobin recovery and repair of tissue iron deficiency. Although the pathogenesis of pagophagia is unclear, a biochemical approach involving the central nervous system might elucidate the mechanism underlying these abnormal behaviors. PMID:24850454

  16. Iron metabolism in mammalian cells.

    PubMed

    Walker, B L; Tiong, J W; Jefferies, W A

    2001-01-01

    Most living things require iron to exist. Iron has many functions within cells but is rarely found unbound because of its propensity to catalyze the formation of toxic free radicals. Thus the regulation of iron requirements by cells and the acquisition and uptake of iron into tissues in multicellular organisms is tightly regulated. In humans, understanding iron transport and utility has recently been advanced by a "great conjunction" of molecular genetics in simple organisms, identifying genes involved in genetic diseases of metal metabolism and by the application of traditional cell physiology approaches. We are now able to approach a rudimentary understanding of the "iron cycle" within mammals. In the future, this information will be applied toward modulating the outcome of therapies designed to overcome diseases involving metals. PMID:11597005

  17. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  18. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  19. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    PubMed Central

    Ibrahim, Ashraf S.; Gebermariam, Teclegiorgis; Fu, Yue; Lin,, Lin; Husseiny, Mohamed I.; French, Samuel W.; Schwartz, Julie; Skory, Christopher D.; Edwards, John E.; Spellberg, Brad J.

    2007-01-01

    Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical isolates of Mucorales at concentrations well below clinically achievable serum levels. When administered to diabetic ketoacidotic or neutropenic mice with mucormycosis, deferasirox significantly improved survival and decreased tissue fungal burden, with an efficacy similar to that of liposomal amphotericin B. Deferasirox treatment also enhanced the host inflammatory response to mucormycosis. Most importantly, deferasirox synergistically improved survival and reduced tissue fungal burden when combined with liposomal amphotericin B. These data support clinical investigation of adjunctive deferasirox therapy to improve the poor outcomes of mucormycosis with current therapy. As iron availability is integral to the pathogenesis of other infections (e.g., tuberculosis, malaria), broader investigation of deferasirox as an antiinfective treatment is warranted. PMID:17786247

  20. The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.

    PubMed

    Emerson, David

    2015-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  1. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  2. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability. PMID:25222563

  3. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1992-01-01

    This report describes experimental progress in characterizing and identifying redox proteins in a number of iron-oxidizing bacteria. Sections of the paper are entitled (1) In Situ electrolysis was explored to achieve enhanced yields of iron-oxidizing bacteria, (2)Structure/function studies were performed on redox-active biomolecules from Thiobacillus ferrooxidans, (3) Novel redox-active biomolecules were demonstrated in other iron autotrophs, and (4) New probes of metalloprotein electron-transfer reactions were synthesized and characterized.

  4. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  5. A novel model for brain iron uptake: introducing the concept of regulation

    PubMed Central

    Simpson, Ian A; Ponnuru, Padmavathi; Klinger, Marianne E; Myers, Roland L; Devraj, Kavi; Coe, Christopher L; Lubach, Gabriele R; Carruthers, Anthony; Connor, James R

    2015-01-01

    Neurologic disorders such as Alzheimer's, Parkinson's disease, and Restless Legs Syndrome involve a loss of brain iron homeostasis. Moreover, iron deficiency is the most prevalent nutritional concern worldwide with many associated cognitive and neural ramifications. Therefore, understanding the mechanisms by which iron enters the brain and how those processes are regulated addresses significant global health issues. The existing paradigm assumes that the endothelial cells (ECs) forming the blood–brain barrier (BBB) serve as a simple conduit for transport of transferrin-bound iron. This concept is a significant oversimplification, at minimum failing to account for the iron needs of the ECs. Using an in vivo model of brain iron deficiency, the Belgrade rat, we show the distribution of transferrin receptors in brain microvasculature is altered in luminal, intracellular, and abluminal membranes dependent on brain iron status. We used a cell culture model of the BBB to show the presence of factors that influence iron release in non-human primate cerebrospinal fluid and conditioned media from astrocytes; specifically apo-transferrin and hepcidin were found to increase and decrease iron release, respectively. These data have been integrated into an interactive model where BBB ECs are central in the regulation of cerebral iron metabolism. PMID:25315861

  6. Replacing London's cast iron mains

    SciTech Connect

    Thorne, A. ); Mathews, P. )

    1992-07-01

    This paper discusses the cast iron gas distribution systems that exist in many cities and contains considerable amounts of pipe that vary in age from 20 to 150 years. In many ways, cast iron is an excellent material. It is inherently corrosion resistant, easy to install and cheap. However, it is also brittle and smaller diameter cast iron pipe has a relatively low beam strength. This can lead, under some circumstances, to failure without external warning, with typically a full-circumferential failure. In congested areas this can lead to serious consequences. As a result, cast iron replacement programs are a common feature in such urban gas distribution systems.

  7. Iron Aluminide Hot Gas Filters

    SciTech Connect

    Hurley, J.; Brosious, S.; Johnson, M.

    1996-12-31

    Currently, high temperature filter systems are in the demonstration phase with the first commercial scale hot filter systems being installed on integrated gasification combined cycle (IGCC) and pressurized fluid bed combustion cycle (PBFC) systems (70 MW). They are dependent on the development of durable and economic high temperature filter systems. These filters are mostly ceramic tubes or candles. Ceramic filter durability has not been high. Failure is usually attributed to mechanical or thermal shock: they can also undergo significant changes due to service conditions. The overall objective of this project is to commercialize weldable, crack resistant filters which will provide several years service in advanced power processes. The specific objectives of this project are to develop corrosion resistant alloys and manufacturing processes to make Iron Aluminide filter media, and to use a ``short term`` exposure apparatus supported by other tests to identify the most promising candidate (alloy plus sintering cycle). The objectives of the next phases are to demonstrate long term corrosion stability for the best candidate followed by the production of fifty filters (optional).

  8. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  9. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  10. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  11. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  12. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  13. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition.

    PubMed

    Lane, Darius J R; Mills, Thomas M; Shafie, Nurul H; Merlot, Angelica M; Saleh Moussa, Rayan; Kalinowski, Danuta S; Kovacevic, Zaklina; Richardson, Des R

    2014-04-01

    Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells. PMID:24472573

  14. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  15. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina.

    PubMed

    Paz, Yakov; Shimoni, Eyal; Weiss, Meira; Pick, Uri

    2007-07-01

    Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability. PMID:17513481

  16. Studies of hypervalent iron

    SciTech Connect

    Bielski, B.H.J.

    1989-01-01

    The iron (IV), (V) and (VI) oxidation states are of great interest because of their role in catalytic oxidation/hydroxylation reactions. This report summarizes the information currently available on the kinetic and chemical properties of the water-soluble ions of FeO{sub 4}{sup 2{minus}}, FeO{sub 4}{sup 3{minus}} and FeO{sub 4}{sup 4{minus}}, their protonated forms, and/or simple complex derivatives. The discussion includes their radiation-induced formation, decay kinetics, reactivity with other compounds, determination of their respective pK{sub a} values as well as spectral properties. 32 refs., 3 figs., 2 tabs.

  17. IRON TEEMING FROM CUPOLA (UPPER RIGHT CORNER) DUCTILE IRON LADLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IRON TEEMING FROM CUPOLA (UPPER RIGHT CORNER) DUCTILE IRON LADLE MOVING DOWN TRACK IN PREPARATION FOR DISTRIBUTION TO DE LAVAUD MACHINES. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  18. IRON TEEMING FROM CUPOLA (UPPER RIGHT CORNER) DUCTILE IRON LADLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IRON TEEMING FROM CUPOLA (UPPER RIGHT CORNER) DUCTILE IRON LADLE MOVING DOWN TRACK IN PREPARATION FOR DISTRIBUTION TO DE LAVAUD MACHINES, LADLE TRANSFER CRANE ON FAR LEFT. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  19. Iron uptake and iron-repressible polypeptides in Yersinia pestis.

    PubMed Central

    Lucier, T S; Fetherston, J D; Brubaker, R R; Perry, R D

    1996-01-01

    Pigmented (Pgm+) cells of Yersinia pestis are virulent, are sensitive to pesticin, adsorb exogenous hemin at 26 degrees C (Hms+), produce iron-repressible outer membrane proteins, and grow at 37 degrees C in iron-deficient media. These traits are lost upon spontaneous deletion of a chromosomal 102-kb pgm locus (Pgm-). Here we demonstrate that an Hms+ but pesticin-resistant (Pst(r)) mutant acquired a 5-bp deletion in the pesticin receptor gene (psn) encoding IrpB to IrpD. Growth and assimilation of iron by Pgm- and Hms+ Pst(r) mutants were markedly inhibited by ferrous chelators at 37 degrees C; inhibition by ferric and ferrous chelators was less effective at 26 degrees C. Iron-deficient growth at 26 degrees C induced iron-regulated outer membrane proteins of 34, 28.5, and 22.5 kDa and periplasmic polypeptides of 33.5 and 30 kDa. These findings provide a basis for understanding the psn-driven system of iron uptake, indicate the existence of at least one additional 26 degrees C-dependent iron assimilation system, and define over 30 iron-repressible proteins in Y. pestis. PMID:8757829

  20. MALLEABLE IRON BULL LADLE, HOLDS IRON AFTER IT IS TAPPED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MALLEABLE IRON BULL LADLE, HOLDS IRON AFTER IT IS TAPPED OUT OF THE CUPOLA UNTIL IT NEEDED BY POURERS ON THE CONVEYOR LINES WHO FILL MOBILE LADLES ATTACHED TO OVERHEAD RAIL SYSTEMS AS THE BULL LADLE TIPS. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. Colloidal Suspended Iron in Rivers

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.

    2009-12-01

    Iron is transported in most rivers predominantly in two physical-chemical forms: a) organic complexes of Fe(III) and b) crystalline or poorly-ordered suspended phases frequently dominated by iron oxides. These two forms have different properties with respect to transport, bioavailability, and sorption. For the suspended phase iron, the fraction in the colloidal size range may be especially important given the interactions of ferric oxide surfaces with dissolved metal ions and organic compounds. We report the concentrations of colloidal (20 - 450 nm) suspended particulate iron in a wide variety of rivers. Goals of this effort are to ascertain the ubiquity of this material and also to examine other fluvial variables as indicators of its sources and nature. This, in turn, should lead to an understanding of how landscape/climate change could affect fluvial colloidal suspended iron. Possible sources of suspended colloidal iron include ferric oxides precipitated from the oxidation of ferrous iron derived from reducing environments, alumino-silicates derived from physical weathering, products of chemical weathering, and flushing of soils. We observe most commonly that increasing concentrations of colloidal suspended iron follow indicators of reducing sources (e.g., higher dissolved Mn and Ce anomaly close to 1), suggesting that this material is dominated by freshly precipitated iron oxides. Only in glacial watersheds do we find colloidal suspended iron instead correlating with colloidal suspended Si, and hence, likely to be associated with alumino-silicates. We also observe that colloidal suspended iron correlates well with the UV absorbance associated with this size range (20 - 450 nm).

  2. Compacted graphite iron: Cast iron makes a comeback

    NASA Astrophysics Data System (ADS)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  3. Iron-Deficiency Anemia (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  4. The Iron Metallome in Eukaryotic Organisms

    PubMed Central

    Dlouhy, Adrienne C.; Outten, Caryn E.

    2013-01-01

    This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels. PMID:23595675

  5. Can Iron Lift Your Learning Ability?

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1997-01-01

    Presents samples of publicly available materials related to the role of iron in the diet. Summarizes what nutritionists feel about iron in the human diet and suggests some experiments related to iron for the classroom. (AIM)

  6. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  7. An international registry for neurodegeneration with brain iron accumulation

    PubMed Central

    2012-01-01

    We report the development of an international registry for Neurodegeneration with Brain Iron Accumulation (NBIA), in the context of TIRCON (Treat Iron-Related Childhood-Onset Neurodegeneration), an EU-FP7 – funded project. This registry aims to combine scattered resources, integrate clinical and scientific knowledge, and generate a rich source for future research studies. This paper describes the content, architecture and future utility of the registry with the intent to capture as many NBIA patients as possible and to offer comprehensive information to the international scientific community. PMID:22985983

  8. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  9. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  10. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and....1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III) oxide (CAS Reg. No....