Science.gov

Sample records for magnitud del problema

  1. Il problema del litio.

    NASA Astrophysics Data System (ADS)

    D'Antona, F.

    1995-03-01

    Contents: 1. Introduzione. 2. La nucleosintesi del Big Bang. 3. Il litio nelle stelle di popolazione II. 4. I modelli stellari standard. 5. Il litio negli ammassi aperti. 6. Meccanismi di distruzione "non standard". 7. I modelli non-standard applicati alla popolazione II. 8. L'evoluzione Galattica del litio. 9. Quali stelle producono litio? 10. Il litio come elemento chiave per dare un nome agli oggetti stellari più minuscoli. 11. Conclusioni.

  2. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  3. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  4. Estructura orbital en el Problema Restringido Rectilíneo Isósceles

    NASA Astrophysics Data System (ADS)

    Orellana, R. B.

    Para definir problemas en Mecánica Celeste se utilizan diferentes parámetros. El conocimiento de la dinámica del problema para valores particulares de estos parámetros nos permite entender el comportamiento en casos más generales. El Problema Restringido Rectilíneo Isósceles puede ser considerado como el caso límite del Problema de Sitnikov cuando la excentricidad tiende a uno o como el Problema Isósceles cuando la masa central tiende a cero. Se ha compactificado el espacio de fases y analizado la dinámica en el límite. Esto ha permitido separar el espacio de fases en diferentes regiones dependiendo de las clases de órbitas.

  5. Are Earthquake Magnitudes Clustered?

    SciTech Connect

    Davidsen, Joern; Green, Adam

    2011-03-11

    The question of earthquake predictability is a long-standing and important challenge. Recent results [Phys. Rev. Lett. 98, 098501 (2007); ibid.100, 038501 (2008)] have suggested that earthquake magnitudes are clustered, thus indicating that they are not independent in contrast to what is typically assumed. Here, we present evidence that the observed magnitude correlations are to a large extent, if not entirely, an artifact due to the incompleteness of earthquake catalogs and the well-known modified Omori law. The latter leads to variations in the frequency-magnitude distribution if the distribution is constrained to those earthquakes that are close in space and time to the directly following event.

  6. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  7. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  8. Should Astronomy Abolish Magnitudes?

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2001-12-01

    Astronomy is riddled with a number of anachronistic and counterintuitive practices. Among these are: plotting increasing stellar temperature from right to left in the H-R diagram; giving the distances to remote astronomical objects in parsecs; and reporting the brightness of astronomical objects in magnitudes. Historical accident and observational technique, respectively, are the bases for the first two practices, and they will undoubtedly persist in the future. However, the use of magnitudes is especially egregious when essentially linear optical detectors like CCDs are used for measuring brightness, which are then reported in a logarithmic (base 2.512 deg!) scale. The use of magnitudes has its origin in three historical artifacts: Ptolemy's method of reporting the brightness of stars in the "Almagest"; the 19th century need for a photographic photometry scale; and the 19th century studies by psychophysicists E. H. Weber and G. T. Fechner on the response of the human eye to light. The latter work sought to uncover the relationship between the subjective response of the human eye and brain to the objective brightness of external optical stimuli. The resulting Fechner-Weber law states that this response is logarithmic: that is, that the eye essentially takes the logarithm of the incoming optical signal. However, after more than a century of perceptual studies, most intensively by S. S. Stevens, it is now well established that this relation is not logarithmic. For naked eye detection of stars from the first to sixth magnitudes, it can be reasonably well fit by a power law with index of about 0.3. Therefore, the modern experimental studies undermine the physiological basis for the use of magnitudes in astronomy. Should the historical origins of magnitudes alone be reason enough for their continued use? Probably not, since astronomical magnitudes are based on outdated studies of human perception; make little sense in an era of linear optical detection; and provide a

  9. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  10. Magnitude correlations in global seismicity

    SciTech Connect

    Sarlis, N. V.

    2011-08-15

    By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for earthquake magnitudes greater than M{sub w}6.5.

  11. El problema de estabilidad de los sistemas Hamiltonianos multidimensionales

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.

    Se revisarán los aspectos básicos del problema de estabilidad de sistemans Hamiltonianos N-dimensionales, haciendo especial énfasis en los posibles mecanismos que dan lugar a la aparición de ``caos": overlap de resonancias, difusión de Arnol'd y otros procesos difusivos alternativos. Se mencionarán los aspectos aún no resueltos sobre la estabilidad de los sistemas con N > 2. Finalmente, se discutirá cuáles de estos mecanismos podrían tener alguna relevancia en la dinámica de sistemas estelares y planetarios.

  12. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  13. Statistical models for seismic magnitude

    NASA Astrophysics Data System (ADS)

    Christoffersson, Anders

    1980-02-01

    In this paper some statistical models in connection with seismic magnitude are presented. Two main situations are treated. The first deals with the estimation of magnitude for an event, using a fixed network of stations and taking into account the detection and bias properties of the individual stations. The second treats the problem of estimating seismicity, and detection and bias properties of individual stations. The models are applied to analyze the magnitude bias effects for an earthquake aftershock sequence from Japan, as recorded by a hypothetical network of 15 stations. It is found that network magnitudes computed by the conventional averaging technique are considerably biased, and that a maximum likelihood approach using instantaneous noise-level estimates for non-detecting stations gives the most consistent magnitude estimates. Finally, the models are applied to evaluate the detection characteristics and associated seismicity as recorded by three VELA arrays: UBO (Uinta Basin), TFO (Tonto Forest) and WMO (Wichita Mountains).

  14. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India

    NASA Astrophysics Data System (ADS)

    Bora, Dipok K.

    2016-06-01

    In this study, we aim to improve the scaling between the moment magnitude ( M W), local magnitude ( M L), and the duration magnitude ( M D) for 162 earthquakes in Shillong-Mikir plateau and its adjoining region of northeast India by extending the M W estimates to lower magnitude earthquakes using spectral analysis of P-waves from vertical component seismograms. The M W- M L and M W- M D relationships are determined by linear regression analysis. It is found that, M W values can be considered consistent with M L and M D, within 0.1 and 0.2 magnitude units respectively, in 90 % of the cases. The scaling relationships investigated comply well with similar relationships in other regions in the world and in other seismogenic areas in the northeast India region.

  15. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  16. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  17. Puertorriquenos En Chicago: El Problema Educativo Del Dropout

    ERIC Educational Resources Information Center

    Lucas, Isidro

    1974-01-01

    Article written in Spanish. Defines the term "dropout," discusses the characteristics and motivations of Puerto Rican school dropouts in Chicago, and outlines the problems in educating them. (Author/RJ)

  18. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  19. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  20. Solar Variability Magnitudes and Timescales

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  1. Astronomical Limiting Magnitude at Langkawi Observatory

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohd. Zambri; Loon, Chin Wei; Harun, Saedah

    2010-07-01

    Astronomical limiting magnitude is an indicator for astronomer to conduct astronomical measurement at a particular site. It gives an idea to astronomer of that site what magnitude of celestial object can be measured. Langkawi National Observatory (LNO) is situated at Bukit Malut with latitude 6°18' 25'' North and longitude 99°46' 52'' East in Langkawi Island. Sky brightness measurement has been performed at this site using the standard astronomical technique. The value of the limiting magnitude measured is V = 18.6+/-1.0 magnitude. This will indicate that astronomical measurement at Langkawi observatory can only be done for celestial objects having magnitude less than V = 18.6 magnitudes.

  2. Magnitude correlations and dynamical scaling for seismicity

    SciTech Connect

    Godano, Cataldo; Lippiello, Eugenio; De Arcangelis, Lucilla

    2007-12-06

    We analyze the experimental seismic catalog of Southern California and we show the existence of correlations between earthquake magnitudes. We propose a dynamical scaling hypothesis relating time and magnitude as the physical mechanism responsible of the observed magnitude correlations. We show that experimental distributions in size and time naturally originate solely from this scaling hypothesis. Furthermore we generate a synthetic catalog reproducing the organization in time and magnitude of experimental data.

  3. Magnitude and sign correlations in heartbeat fluctuations

    NASA Technical Reports Server (NTRS)

    Ashkenazy, Y.; Ivanov, P. C.; Havlin, S.; Peng, C. K.; Goldberger, A. L.; Stanley, H. E.

    2001-01-01

    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.

  4. The discovery and comparison of symbolic magnitudes.

    PubMed

    Chen, Dawn; Lu, Hongjing; Holyoak, Keith J

    2014-06-01

    Humans and other primates are able to make relative magnitude comparisons, both with perceptual stimuli and with symbolic inputs that convey magnitude information. Although numerous models of magnitude comparison have been proposed, the basic question of how symbolic magnitudes (e.g., size or intelligence of animals) are derived and represented in memory has received little attention. We argue that symbolic magnitudes often will not correspond directly to elementary features of individual concepts. Rather, magnitudes may be formed in working memory based on computations over more basic features stored in long-term memory. We present a model of how magnitudes can be acquired and compared based on BARTlet, a representationally simpler version of Bayesian Analogy with Relational Transformations (BART; Lu, Chen, & Holyoak, 2012). BARTlet operates on distributions of magnitude variables created by applying dimension-specific weights (learned with the aid of empirical priors derived from pre-categorical comparisons) to more primitive features of objects. The resulting magnitude distributions, formed and maintained in working memory, are sensitive to contextual influences such as the range of stimuli and polarity of the question. By incorporating psychological reference points that control the precision of magnitudes in working memory and applying the tools of signal detection theory, BARTlet is able to account for a wide range of empirical phenomena involving magnitude comparisons, including the symbolic distance effect and the semantic congruity effect. We discuss the role of reference points in cognitive and social decision-making, and implications for the evolution of relational representations. PMID:24531498

  5. Magnitude systems in old star catalogues

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoko; Yamaoka, Hitoshi

    2005-06-01

    The current system of stellar magnitudes originally introduced by Hipparchus was strictly defined by Norman Pogson in 1856. He based his system on Ptolemy's star catalogue, the Almagest, recorded in about AD137, and defined the magnitude-intensity relationship on a logarithmic scale. Stellar magnitudes observed with the naked eye recorded in seven old star catalogues were analyzed in order to examine the visual magnitude systems. Although psychophysicists have proposed that human visual sensitivity follows a power-law scale, it is shown here that the degree of agreement is far better for a logarithmic scale than for a power-law scale. It is also found that light ratios in each star catalogue are nearly equal to 2.512, if the brightest (1st magnitude) and the faintest (6th magnitude and dimmer) stars are excluded from the study. This means that the visual magnitudes in the old star catalogues agree fully with Pogson's logarithmic scale.

  6. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  7. Numerical Magnitude Representations Influence Arithmetic Learning

    ERIC Educational Resources Information Center

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  8. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  9. Representations of the Magnitudes of Fractions

    ERIC Educational Resources Information Center

    Schneider, Michael; Siegler, Robert S.

    2010-01-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…

  10. Local magnitudes of small contained explosions.

    SciTech Connect

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  11. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2014-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration. PMID:24965705

  12. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2016-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration.

  13. The Magnitude and Energy of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Purcaru, G.

    2003-12-01

    Several magnitudes were introduced to quantify large earthquakes better and more comprehensive than Ms: Mw (moment magnitude; Kanamori, 1977), ME (strain energy magnitude; Purcaru and Berckhemer, 1978), Mt (tsunami magnitude; Abe, 1979), Mm (mantle magnitude; Okal and Talandier, 1985), Me (seismic energy magnitude; Choy and Boatwright, 1995). Although these magnitudes are still subject to different uncertainties, various kinds of earthquakes can now be better understood in terms or combinations of them. They can also be viewd as mappings of basic source parameters: seismic moment, strain energy, seismic energy, stress drop, under certain assumptions or constraints. We studied a set of about 90 large earthquakes (shallow and deeper) occurred in different tectonic regimes, with more reliable source parameters, and compared them in terms of the above magnitudes. We found large differences between the strain energy (mapped to ME) and seismic energy (mapped to Me), and between ME of events with about the same Mw. This confirms that no 1-to-1 correspondence exists between these magnitudes (Purcaru, 2002). One major cause of differences for "normal" earthquakes is the level of the stress drop over asperities which release and partition the strain energy. We quantify the energetic balance of earthquakes in terms of strain energy Est and its components (fracture (Eg), friction (Ef) and seismic (Es) energy) using an extended Hamilton's principle. The earthquakes are thrust-interplate, strike slip, shallow in-slab, slow/tsunami, deep and continental. The (scaled) strain energy equation we derived is: Est/M0 = (1+e(g,s))(Es/M_0), e(g,s) = Eg/E_s, assuming complete stress drop, using the (static) stress drop variability, and that Est and Es are not in a 1-to-1 correspondence. With all uncertainties, our analysis reveal, for a given seismic moment, a large variation of earthquakes in terms of energies, even in the same seismic region. In view of these, for further understanding

  14. Measuring radon source magnitude in residential buildings

    SciTech Connect

    Nazaroff, W.W.; Boegel, M.L.; Nero, A.V.

    1981-08-01

    A description is given of procedures used in residences for rapid grab-sample and time-dependent measurements of the air-exchange rate and radon concentration. The radon source magnitude is calculated from the results of simultaneous measurements of these parameters. Grab-sample measurements in three survey groups comprising 101 US houses showed the radon source magnitude to vary approximately log-normally with a geometric mean of 0.37 and a range of 0.01 to 6.0 pCi 1/sup -1/ h/sup -1/. Successive measurements in six houses in the northeastern United States showed considerable variability in source magnitude within a given house. In two of these houses the source magnitude showed a strong correlation with the air-exchange rate, suggesting that soil gas influx can be an important transport process for indoor radon.

  15. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  16. A statistical measure of financial crises magnitude

    NASA Astrophysics Data System (ADS)

    Negrea, Bogdan

    2014-03-01

    This paper postulates the concept of financial market energy and provides a statistical measure of the financial market crisis magnitude based on an analogy between earthquakes and market crises. The financial energy released by the market is expressed in terms of trading volume and stock market index returns. A financial “earthquake” occurs if the financial energy released by the market exceeds the estimated threshold of market energy called critical energy. Similar to the Richter scale which is used in seismology in order to measure the magnitude of an earthquake, we propose a financial Gutenberg-Richter relation in order to capture the crisis magnitude and we show that the statistical pattern of the financial market crash is given by two statistical regimes, namely Pareto and Wakeby distributions.

  17. Magnitude and frequency of floods in Alabama

    USGS Publications Warehouse

    Atkins, J. Brian

    1996-01-01

    Methods of estimating flood magnitudes for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years are described for rural streams in Alabama that are not affected by regulation or urbanization. Flood-frequency characteristics are presented for 198 gaging stations in Alabama having 10 or more years of record through September 1991, that are used in the regional analysis. Regression relations were developed using generalized least-squares regression techniques to estimate flood magnitude and frequency on ungaged streams as a function of the drainage area of a basin. Sites on gaged streams should be weighted with gaging station data that are presented in the report. Graphical relations of peak discharges to drainage areas are also presented for sites along the Alabama, Black Warrior, Cahaba, Choctawhatchee, Conecub, and Tombigbee Rivers. Equations for estimating flood magnitudes on ungaged urban streams (taken from a previous report) that use drainage area and percentage of impervious cover as independent variables also are given.

  18. Delta Scorpii unusual brightening to first magnitude

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2016-01-01

    The Be star delta Scorpii with a range of variability between 2.35 and 1.65 in visible light is having an unusual brightening to magnitude mV=0.8, as measured on 31 Jan 2016 at 3:56 UT and 5:36 UT from Lanciano, Italy.

  19. On the statistical analysis of maximal magnitude

    NASA Astrophysics Data System (ADS)

    Holschneider, M.; Zöller, G.; Hainzl, S.

    2012-04-01

    We show how the maximum expected magnitude within a time horizon [0,T] may be estimated from earthquake catalog data within the context of truncated Gutenberg-Richter statistics. We present the results in a frequentist and in a Bayesian setting. Instead of deriving point estimations of this parameter and reporting its performance in terms of expectation value and variance, we focus on the calculation of confidence intervals based on an imposed level of confidence α. We present an estimate of the maximum magnitude within an observational time interval T in the future, given a complete earthquake catalog for a time period Tc in the past and optionally some paleoseismic events. We argue that from a statistical point of view the maximum magnitude in a time window is a reasonable parameter for probabilistic seismic hazard assessment, while the commonly used maximum possible magnitude for all times does almost certainly not allow the calculation of useful (i.e. non-trivial) confidence intervals. In the context of an unbounded GR law we show, that Jeffreys invariant prior distribtution yields normalizable posteriors. The predictive distribution based on this prior is explicitely computed.

  20. Lamp modulator provides signal magnitude indication

    NASA Technical Reports Server (NTRS)

    Zeman, J. R.

    1970-01-01

    Lamp modulator provides visible indication of presence and magnitude of an audio signal carrying voice or data. It can be made to reflect signal variations of up to 32 decibels. Lamp life is increased by use of a bypass resistor to prevent filament failure.

  1. Fast Regional Magnitude Determination at INGV

    NASA Astrophysics Data System (ADS)

    Michelini, A.; Lomax, A.; Bono, A.; Amato, A.

    2006-12-01

    The recent, very large earthquakes in the Indian Ocean and Indonesia have shown the importance of rapid magnitude determination for tsunami warning. In the Mediterranean region, destructive tsunamis have occurred repeatedly in the past; however, because of the proximity of the tsunami sources to populated coasts, very rapid analysis is necessary for effective warning. Reliable estimates of the earthquake location and size should be available within tens of seconds after the first arriving P-waves are recorded at local and regional distances. Currently in Europe there is no centralized agency such as the PTWC for the Pacific Ocean dedicated to issue tsunami warnings, though, recent initiatives, such as the NEAMTWS (North-East Atlantic and Mediterranean Tsunami Warning System), aim toward the establishment of such an agency. Thus established seismic monitoring centers, such as INGV, Rome, are currently relied upon for rapid earthquake analysis and information dissemination. In this study, we describe the recent, experimental implementation at the INGV seismic center of a procedure for rapid magnitude determination at regional distances based on the Mwp methodology (Tsuboi et al., 1995), which exploits information in the P-wave train. For our Mwp determinations, we have implemented an automatic procedure that windows the relevant part of the seismograms and picks the amplitudes of the first two largest peaks, providing within seconds after each P arrival an estimate of earthquake size. Manual revision is completed using interactive software that presents an analysis with the seismograms, amplitude picks and magnitude estimates. We have compared our Mwp magnitudes for recent earthquakes within the Mediterranean region with Mw determined through the Harvard CMT procedure. For the majority of the events, the Mwp and Mw magnitudes agree closely, indicating that the rapid Mwp estimates forms a useful tool for effective tsunami warning on a regional scale.

  2. Maximum magnitude in the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Merino, Miguel; Stein, Seth; Vleminckx, Bart; Brooks, Eddie; Camelbeeck, Thierry

    2014-05-01

    Estimating Mmax, the assumed magnitude of the largest future earthquakes expected on a fault or in an area, involves large uncertainties. No theoretical basis exists to infer Mmax because even where we know the long-term rate of motion across a plate boundary fault, or the deformation rate across an intraplate zone, neither predict how strain will be released. As a result, quite different estimates can be made based on the assumptions used. All one can say with certainty is that Mmax is at least as large as the largest earthquake in the available record. However, because catalogs are often short relative to the average recurrence time of large earthquakes, larger earthquakes than anticipated often occur. Estimating Mmax is especially challenging within plates, where deformation rates are poorly constrained, large earthquakes are rarer and variable in space and time, and often occur on previously unrecognized faults. We explore this issue for the Lower Rhine Graben seismic zone where the largest known earthquake, the 1756 Düren earthquake, has magnitude 5.7 and should occur on average about every 400 years. However, paleoseismic studies suggest that earthquakes with magnitudes up to 6.7 occurred during the Late Pleistocene and Holocene. What to assume for Mmax is crucial for critical facilities like nuclear power plants that should be designed to withstand the maximum shaking in 10,000 years. Using the observed earthquake frequency-magnitude data, we generate synthetic earthquake histories, and sample them over shorter intervals corresponding to the real catalog's completeness. The maximum magnitudes appearing most often in the simulations tend to be those of earthquakes with mean recurrence time equal to the catalog length. Because catalogs are often short relative to the average recurrence time of large earthquakes, we expect larger earthquakes than observed to date to occur. In a next step, we will compute hazard maps for different return periods based on the

  3. Subitizing, Magnitude Representation, and Magnitude Retrieval in Deaf and Hearing Adults

    ERIC Educational Resources Information Center

    Bull, Rebecca; Blatto-Vallee, Gary; Fabich, Megan

    2006-01-01

    This study examines basic number processing (subitizing, automaticity, and magnitude representation) as the possible underpinning of mathematical difficulties often evidenced in deaf adults. Hearing and deaf participants completed tasks to assess the automaticity with which magnitude information was activated and retrieved from long-term memory…

  4. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  5. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  6. The secular variation of cometary magnitude

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.; Daniels, P. A.

    1983-03-01

    This paper calculates the mean variation in absolute magnitude per perihelion passage, ΔH10, for short-period comets from the data of Vsekhsvyatskii and finds a value of 0.30 ± 0.06. Other mechanisms used for estimating cometary decay are reviewed an it is concluded that a more probable value for ΔH10 is about 0.002. Reasons for the discrepancy between these two values are given.

  7. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  8. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2016-06-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  9. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-04-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  10. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-05-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  11. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Saul, J.; Grosser, H.; Wang, R.; Zschau, J.

    2009-04-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake's damage potential. However, many magnitude scales developed over the past years have different meanings. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy ES (e.g. Bormann et al., 2002): Me = 2/3(log10 ES - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. The calculation of ES requires the integration over frequency of the squared P-waves velocity spectrum corrected for the energy loss experienced by the seismic waves along the path from the source to the receivers. To accout for the frequency-dependent energy loss, we computed spectral amplitude decay functions for different frequenciesby using synthetic Green's functions (Wang, 1999) based on the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We analyse teleseismic broadband P-waves signals in the distance range 20°-98°. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake's origin time. Indeed, we use time variable cumulative energy windows starting 4 s after the first P-wave arrival in order to include the earthquake rupture

  12. Apparent magnitude of earthshine: a simple calculation

    NASA Astrophysics Data System (ADS)

    Agrawal, Dulli Chandra

    2016-05-01

    The Sun illuminates both the Moon and the Earth with practically the same luminous fluxes which are in turn reflected by them. The Moon provides a dim light to the Earth whereas the Earth illuminates the Moon with somewhat brighter light which can be seen from the Earth and is called earthshine. As the amount of light reflected from the Earth depends on part of the Earth and the cloud cover, the strength of earthshine varies throughout the year. The measure of the earthshine light is luminance, which is defined in photometry as the total luminous flux of light hitting or passing through a surface. The expression for the earthshine light in terms of the apparent magnitude has been derived for the first time and evaluated for two extreme cases; firstly, when the Sun’s rays are reflected by the water of the oceans and secondly when the reflector is either thick clouds or snow. The corresponding values are -1.30 and -3.69, respectively. The earthshine value -3.22 reported by Jackson lies within these apparent magnitudes. This paper will motivate the students and teachers of physics to look for the illuminated Moon by earthlight during the waning or waxing crescent phase of the Moon and to reproduce the expressions derived here by making use of the inverse-square law of radiation, Planck’s expression for the power in electromagnetic radiation, photopic spectral luminous efficiency function and expression for the apparent magnitude of a body in terms of luminous fluxes.

  13. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  14. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  15. Precise Relative Earthquake Magnitudes from Cross Correlation

    DOE PAGESBeta

    Cleveland, K. Michael; Ammon, Charles J.

    2015-04-21

    We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.

  16. An Energy Rate Magnitude for Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Convers, J. A.

    2008-12-01

    The ability to rapidly assess the approximate size of very large and destructive earthquakes is important for early hazard mitigation from both strong shaking and potential tsunami generation. Using a methodology to rapidly determine earthquake energy and duration using teleseismic high-frequency energy, we develop an adaptation to approximate the magnitude of a very large earthquake before the full duration of rupture can be measured at available teleseismic stations. We utilize available vertical component data to analyze the high-frequency energy growth between 0.5 and 2 Hz, minimizing the effect of later arrivals that are mostly attenuated in this range. Because events smaller than M~6.5 occur rapidly, this method is most adequate for larger events, whose rupture duration exceeds ~20 seconds. Using a catalog of about 200 large and great earthquakes we compare the high-frequency energy rate (· Ehf) to the total broad- band energy (· Ebb) to find a relationship for: Log(· Ehf)/Log(Ebb)≍ 0.85. Hence, combining this relation to the broad-band energy magnitude (Me) [Choy and Boatwright, 1995], yields a new high-frequency energy rate magnitude: M· E=⅔ log10(· Ehf)/0.85-2.9. Such an empirical approach can thus be used to obtain a reasonable assessment of an event magnitude from the initial estimate of energy growth, even before the arrival of the full direct-P rupture signal. For large shallow events thus far examined, the M· E predicts the ultimate Me to within ±0.2 units of M. For fast rupturing deep earthquakes M· E overpredicts, while for slow-rupturing tsunami earthquakes M· E underpredicts Me likely due to material strength changes at the source rupture. We will report on the utility of this method in both research mode, and in real-time scenarios when data availability is limited. Because the high-frequency energy is clearly discernable in real-time, this result suggests that the growth of energy can be used as a good initial indicator of the

  17. Extreme Magnitude Earthquakes and their Economical Consequences

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.

    2011-12-01

    The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.

  18. Strong motion duration and earthquake magnitude relationships

    SciTech Connect

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  19. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Grosser, H.; Saul, J.; Wang, R.; Zschau, J.

    2009-12-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake’s damage potential. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy Es (e.g. Bormann et al., 2002): Me = 2/3(log10 Es - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. We analyse teleseismic broadband P-waves signals in the distance range 20°-98° to calculate Es. To correct the frequency-dependent energy loss experienced by the P-waves during the propagation path, we use pre-calculated spectral amplitude decay functions for different frequencies obtained from numerical simulations of Green’s functions (Wang, 1999) given the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake’s origin time, even in case of great earthquakes. We tested our procedure for a large dataset composed by about 770 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of

  20. Extracting parameters from colour-magnitude diagrams

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Campos, F.; Kepler, S. O.; Bica, E.

    2015-07-01

    We present a simple approach for obtaining robust values of astrophysical parameters from the observed colour-magnitude diagrams (CMDs) of star clusters. The basic inputs are the Hess diagram built with the photometric measurements of a star cluster and a set of isochrones covering wide ranges of age and metallicity. In short, each isochrone is shifted in apparent distance modulus and colour excess until it crosses over the maximum possible Hess density. Repeating this step for all available isochrones leads to the construction of the solution map, in which the optimum values of age and metallicity - as well as foreground/background reddening and distance from the Sun - can be searched for. Controlled tests with simulated CMDs show that the approach is efficient in recovering the input values. We apply the approach to the open clusters M 67, NGC 6791 and NGC 2635, which are characterized by different ages, metallicities and distances from the Sun.

  1. Violence against women: global scope and magnitude.

    PubMed

    Watts, Charlotte; Zimmerman, Cathy

    2002-04-01

    An increasing amount of research is beginning to offer a global overview of the extent of violence against women. In this paper we discuss the magnitude of some of the most common and most severe forms of violence against women: intimate partner violence; sexual abuse by non-intimate partners; trafficking, forced prostitution, exploitation of labour, and debt bondage of women and girls; physical and sexual violence against prostitutes; sex selective abortion, female infanticide, and the deliberate neglect of girls; and rape in war. There are many potential perpetrators, including spouses and partners, parents, other family members, neighbours, and men in positions of power or influence. Most forms of violence are not unique incidents but are ongoing, and can even continue for decades. Because of the sensitivity of the subject, violence is almost universally under-reported. Nevertheless, the prevalence of such violence suggests that globally, millions of women are experiencing violence or living with its consequences. PMID:11955557

  2. Estimating magnitude and duration of incident delays

    SciTech Connect

    Garib, A.; Radwan, A.E.; Al-Deek, H.

    1997-11-01

    Traffic congestion is a major operational problem on urban freeways. In the case of recurring congestion, travelers can plan their trips according to the expected occurrence and severity of recurring congestion. However, nonrecurring congestion cannot be managed without real-time prediction. Evaluating the efficiency of intelligent transportation systems (ITS) technologies in reducing incident effects requires developing models that can accurately predict incident duration along with the magnitude of nonrecurring congestion. This paper provides two statistical models for estimating incident delay and a model for predicting incident duration. The incident delay models showed that up to 85% of variation in incident delay can be explained by incident duration, number of lanes affected, number of vehicles involved, and traffic demand before the incident. The incident duration prediction model showed that 81% of variation in incident duration can be predicted by number of lanes affected, number of vehicles involved, truck involvement, time of day, police response time, and weather condition. These findings have implications for on-line applications within the context of advanced traveler information systems (ATIS).

  3. The magnitude distribution of dynamically triggered earthquakes

    NASA Astrophysics Data System (ADS)

    Hernandez, Stephen

    Large dynamic strains carried by seismic waves are known to trigger seismicity far from their source region. It is unknown, however, whether surface waves trigger only small earthquakes, or whether they can also trigger large, societally significant earthquakes. To address this question, we use a mixing model approach in which total seismicity is decomposed into 2 broad subclasses: "triggered" events initiated or advanced by far-field dynamic strains, and "untriggered" spontaneous events consisting of everything else. The b-value of a mixed data set, b MIX, is decomposed into a weighted sum of b-values of its constituent components, bT and bU. For populations of earthquakes subjected to dynamic strain, the fraction of earthquakes that are likely triggered, f T, is estimated via inter-event time ratios and used to invert for bT. The confidence bounds on b T are estimated by multiple inversions of bootstrap resamplings of bMIX and fT. For Californian seismicity, data are consistent with a single-parameter Gutenberg-Richter hypothesis governing the magnitudes of both triggered and untriggered earthquakes. Triggered earthquakes therefore seem just as likely to be societally significant as any other population of earthquakes.

  4. Extended arrays for nonlinear susceptibility magnitude imaging.

    PubMed

    Ficko, Bradley W; Giacometti, Paolo; Diamond, Solomon G

    2015-10-01

    This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2>0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044

  5. Demographic factors predict magnitude of conditioned fear.

    PubMed

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-10-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26151498

  6. Nonlinear Susceptibility Magnitude Imaging of Magnetic Nanoparticles

    PubMed Central

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2014-01-01

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2 = 0.99, CNR = 84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2 > 0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI. PMID:25505816

  7. Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Allmann, Bettina; Fäh, Donat; Clinton, John

    2010-10-01

    Moment magnitudes (MW) are computed for small and moderate earthquakes using a spectral fitting method. 40 of the resulting values are compared with those from broadband moment tensor solutions and found to match with negligible offset and scatter for available MW values of between 2.8 and 5.0. Using the presented method, MW are computed for 679 earthquakes in Switzerland with a minimum ML = 1.3. A combined bootstrap and orthogonal L1 minimization is then used to produce a scaling relation between ML and MW. The scaling relation has a polynomial form and is shown to reduce the dependence of the predicted MW residual on magnitude relative to an existing linear scaling relation. The computation of MW using the presented spectral technique is fully automated at the Swiss Seismological Service, providing real-time solutions within 10 minutes of an event through a web-based XML database. The scaling between ML and MW is explored using synthetic data computed with a stochastic simulation method. It is shown that the scaling relation can be explained by the interaction of attenuation, the stress-drop and the Wood-Anderson filter. For instance, it is shown that the stress-drop controls the saturation of the ML scale, with low-stress drops (e.g. 0.1-1.0 MPa) leading to saturation at magnitudes as low as ML = 4.

  8. 101 Short Problems from EQUALS = 101 Problemas Cortos del programma EQUALS.

    ERIC Educational Resources Information Center

    Stenmark, Jean Kerr, Ed.

    EQUALS is a teacher advisory program that helps elementary and secondary educators acquire methods and materials to attract minority and female students to mathematics. The program supports a problem-solving approach to mathematics, including having students working in groups, using active assessment methods, and incorporating a broad mathematics…

  9. Influence of Time and Space Correlations on Earthquake Magnitude

    SciTech Connect

    Lippiello, E.; Arcangelis, L. de; Godano, C.

    2008-01-25

    A crucial point in the debate on the feasibility of earthquake predictions is the dependence of an earthquake magnitude from past seismicity. Indeed, while clustering in time and space is widely accepted, much more questionable is the existence of magnitude correlations. The standard approach generally assumes that magnitudes are independent and therefore in principle unpredictable. Here we show the existence of clustering in magnitude: earthquakes occur with higher probability close in time, space, and magnitude to previous events. More precisely, the next earthquake tends to have a magnitude similar but smaller than the previous one. A dynamical scaling relation between magnitude, time, and space distances reproduces the complex pattern of magnitude, spatial, and temporal correlations observed in experimental seismic catalogs.

  10. Exploring the relationship between the magnitudes of seismic events

    NASA Astrophysics Data System (ADS)

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-02-01

    The distribution of the magnitudes of seismic events is generally assumed to be independent on past seismicity. However, by considering events in causal relation, for example, mother-daughter, it seems natural to assume that the magnitude of a daughter event is conditionally dependent on one of the corresponding mother events. In order to find experimental evidence supporting this hypothesis, we analyze different catalogs, both real and simulated, in two different ways. From each catalog, we obtain the law of the magnitude of the triggered events by kernel density. The results obtained show that the distribution density of the magnitude of the triggered events varies with the magnitude of their corresponding mother events. As the intuition suggests, an increase of the magnitude of the mother events induces an increase of the probability of having "high" values of the magnitude of the triggered events. In addition, we see a statistically significant increasing linear dependence of the magnitude means.

  11. Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2012-08-01

    We investigated the functional shape of the earthquake frequency-magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(-βm)q(m) where N(m) is the event number, m the magnitude, exp(-βm) the Gutenberg-Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m - Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume.

  12. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  13. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  14. Numerical Magnitude Processing in Children with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Brankaer, Carmen; Ghesquiere, Pol; De Smedt, Bert

    2011-01-01

    The present study investigated numerical magnitude processing in children with mild intellectual disabilities (MID) and examined whether these children have difficulties in the ability to represent numerical magnitudes and/or difficulties in the ability to access numerical magnitudes from formal symbols. We compared the performance of 26 children…

  15. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  16. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  17. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  18. Symbolic Magnitude Modulates Perceptual Strength in Binocular Rivalry

    ERIC Educational Resources Information Center

    Paffen, Chris L. E.; Plukaard, Sarah; Kanai, Ryota

    2011-01-01

    Basic aspects of magnitude (such as luminance contrast) are directly represented by sensory representations in early visual areas. However, it is unclear how symbolic magnitudes (such as Arabic numerals) are represented in the brain. Here we show that symbolic magnitude affects binocular rivalry: perceptual dominance of numbers and objects of…

  19. Sign-And-Magnitude Up/Down Counter

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1991-01-01

    Magnitude-and-sign counter includes conventional up/down counter for magnitude part and special additional circuitry for sign part. Negative numbers indicated more directly. Counter implemented by programming erasable programmable logic device (EPLD) or programmable logic array (PLA). Used in place of conventional up/down counter to provide sign and magnitude values directly to other circuits.

  20. Binocular disparity magnitude affects perceived depth magnitude despite inversion of depth order.

    PubMed

    Matthews, Harold; Hill, Harold; Palmisano, Stephen

    2011-01-01

    The hollow-face illusion involves a misperception of depth order: our perception follows our top-down knowledge that faces are convex, even though bottom-up depth information reflects the actual concave surface structure. While pictorial cues can be ambiguous, stereopsis should unambiguously indicate the actual depth order. We used computer-generated stereo images to investigate how, if at all, the sign and magnitude of binocular disparities affect the perceived depth of the illusory convex face. In experiment 1 participants adjusted the disparity of a convex comparison face until it matched a reference face. The reference face was either convex or hollow and had binocular disparities consistent with an average face or had disparities exaggerated, consistent with a face stretched in depth. We observed that apparent depth increased with disparity magnitude, even when the hollow faces were seen as convex (ie when perceived depth order was inconsistent with disparity sign). As expected, concave faces appeared flatter than convex faces, suggesting that disparity sign also affects perceived depth. In experiment 2, participants were presented with pairs of real and illusory convex faces. In each case, their task was to judge which of the two stimuli appeared to have the greater depth. Hollow faces with exaggerated disparities were again perceived as deeper. PMID:22132512

  1. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  2. Stress magnitudes in the crust: constraints from stress orientation and relative magnitude data

    USGS Publications Warehouse

    Zoback, M.L.; Magee, M.

    1991-01-01

    The World Stress Map Project is a global cooperative effort to compile and interpret data on the orientation and relative magnitudes of the contemporary in situ tectonic stress field in the Earth's lithosphere. The intraplate stress field in both the oceans and continents is largely compressional with one or both of the horizontal stresses greater than the vertical stress. The regionally uniform horizontal intraplate stress orientations are generally consistent with either relative or absolute plate motions indicating that plate-boundary forces dominate the stress distribution within the plates. Current models of stresses due to whole mantle flow inferred from seismic topography models predict a general compressional stress state within continents but do not match the broad-scale horizontal stress orientations. The broad regionally uniform intraplate stress orientations are best correlated with compressional plate-boundary forces and the geometry of the plate boundaries. -from Authors

  3. Kharkiv Asteroid Magnitude-Phase Relations V1.0

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. G.; Belskaya, I. N.; Lupishko, D. F.; Krugly, Yu. N.; Chiorny, V. G.; Velichko, F. P.

    2010-08-01

    A database of asteroid magnitude-phase relations compiled at the Institute of Astronomy of Kharkiv Kharazin University by Shevchenko et al., including observations from 1978 through 2008. Mainly the observations were performed at the Institute of Astronomy (Kharkiv, Ukraine) and at the Astrophysics Institute (Dushanbe, Tadjikistan). For most asteroids the magnitude-phase relations were obtained down to phase angles less than 1 deg. For some asteroids the magnitudes are presented in three (UBV) or four (BVRI) standard spectral bands.

  4. An empirical evolutionary magnitude estimation for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Wu, Yih-Min; Chen, Da-Yi

    2016-04-01

    For earthquake early warning (EEW) system, it is a difficult mission to accurately estimate earthquake magnitude in the early nucleation stage of an earthquake occurrence because only few stations are triggered and the recorded seismic waveforms are short. One of the feasible methods to measure the size of earthquakes is to extract amplitude parameters within the initial portion of waveform after P-wave arrival. However, a large-magnitude earthquake (Mw > 7.0) may take longer time to complete the whole ruptures of the causative fault. Instead of adopting amplitude contents in fixed-length time window, that may underestimate magnitude for large-magnitude events, we suppose a fast, robust and unsaturated approach to estimate earthquake magnitudes. In this new method, the EEW system can initially give a bottom-bund magnitude in a few second time window and then update magnitude without saturation by extending the time window. Here we compared two kinds of time windows for adopting amplitudes. One is pure P-wave time widow (PTW); the other is whole-wave time window after P-wave arrival (WTW). The peak displacement amplitude in vertical component were adopted from 1- to 10-s length PTW and WTW, respectively. Linear regression analysis were implemented to find the empirical relationships between peak displacement, hypocentral distances, and magnitudes using the earthquake records from 1993 to 2012 with magnitude greater than 5.5 and focal depth less than 30 km. The result shows that using WTW to estimate magnitudes accompanies with smaller standard deviation. In addition, large uncertainties exist in the 1-second time widow. Therefore, for magnitude estimations we suggest the EEW system need to progressively adopt peak displacement amplitudes form 2- to 10-s WTW.

  5. Comparison of local magnitude scales in Central Europe

    NASA Astrophysics Data System (ADS)

    Kysel, Robert; Kristek, Jozef; Moczo, Peter; Cipciar, Andrej; Csicsay, Kristian; Srbecky, Miroslav; Kristekova, Miriam

    2015-04-01

    Efficient monitoring of earthquakes and determination of their magnitudes are necessary for developing earthquake catalogues at a regional and national levels. Unification and homogenization of the catalogues in terms of magnitudes has great importance for seismic hazard assessment. Calibrated local earthquake magnitude scales are commonly used for determining magnitudes of regional earthquakes by all national seismological services in the Central Europe. However, at the local scale, each seismological service uses its own magnitude determination procedure. There is no systematic comparison of the approaches and there is no unified procedure. We present a comparison of the local magnitude scales used by the national seismological services of Slovakia (Geophysical Institute, Slovak Academy of Sciences), Czech Republic (Institute of Geophysics, Academy of Sciences of the Czech Republic), Austria (ZAMG), Hungary (Geodetic and Geophysical Institute, Hungarian Academy of Sciences) and Poland (Institute of Geophysics, Polish Academy of Sciences), and by the local network of seismic stations located around the Nuclear Power Plant Jaslovske Bohunice, Slovakia. The comparison is based on the national earthquake catalogues and annually published earthquake bulletins for the period from 1985 to 2011. A data set of earthquakes has been compiled based on identification of common events in the national earthquake catalogues and bulletins. For each pair of seismic networks, magnitude differences have been determined and investigated as a function of time. The mean and standard deviations of the magnitude differences as well as regression coefficients between local magnitudes from the national seismological networks have been computed. Results show relatively big scatter between different national local magnitudes and its considerable time variation. A conversion between different national local magnitudes in a scale 1:1 seems inappropriate, especially for the compilation of the

  6. The Construction of a Magnitude Estimation Scale of Adult Learning.

    ERIC Educational Resources Information Center

    Blunt, Adrian

    The psychophysical technique of magnitude estimation was used to develop a ratio scale of subjective estimations of adult learning in various adult education activities. A rank order of 26 learning activities and the magnitude estimations in "units of learning" that are expected to occur in each activity were obtained from 146 adult education…

  7. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: 1) representing increasingly precisely the magnitudes of non-symbolic…

  8. Congruency Effects between Number Magnitude and Response Force

    ERIC Educational Resources Information Center

    Vierck, Esther; Kiesel, Andrea

    2010-01-01

    Numbers are thought to be represented in space along a mental left-right oriented number line. Number magnitude has also been associated with the size of grip aperture, which might suggest a connection between number magnitude and intensity. The present experiment aimed to confirm this possibility more directly by using force as a response…

  9. Some Effects of Magnitude of Reinforcement on Persistence of Responding

    ERIC Educational Resources Information Center

    McComas, Jennifer J.; Hartman, Ellie C.; Jimenez, Angel

    2008-01-01

    The influence of magnitude of reinforcement was examined on both response rate and behavioral persistence. During Phase 1, a multiple schedule of concurrent reinforcement was implemented in which reinforcement for one response option was held constant at VI 30 s across both components, while magnitude of reinforcement for the other response option…

  10. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  11. The Effects of Reinforcer Magnitude on Timing in Rats

    ERIC Educational Resources Information Center

    Ludvig, Elliot A.; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated…

  12. Number Games, Magnitude Representation, and Basic Number Skills in Preschoolers

    ERIC Educational Resources Information Center

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-01-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was…

  13. The Weight of Time: Affordances for an Integrated Magnitude System

    ERIC Educational Resources Information Center

    Lu, Aitao; Mo, Lei; Hodges, Bert H.

    2011-01-01

    In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the…

  14. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  15. The Effects Of Reinforcement Magnitude On Functional Analysis Outcomes

    PubMed Central

    2005-01-01

    The duration or magnitude of reinforcement has varied and often appears to have been selected arbitrarily in functional analysis research. Few studies have evaluated the effects of reinforcement magnitude on problem behavior, even though basic findings indicate that this parameter may affect response rates during functional analyses. In the current study, 6 children with autism or developmental disabilities who engaged in severe problem behavior were exposed to three separate functional analyses, each of which varied in reinforcement magnitude. Results of these functional analyses were compared to determine if a particular reinforcement magnitude was associated with the most conclusive outcomes. In most cases, the same conclusion about the functions of problem behavior was drawn regardless of the reinforcement magnitude. PMID:16033163

  16. Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Toth, Laszlo

    2016-04-01

    The multifractality of the series of magnitudes of the earthquakes occurred in Pannonia region from 2002 to 2012 has been investigated. The shallow (depth less than 40 km) and deep (depth larger than 70 km) seismic catalogues were analysed by using the multifractal detrended fluctuation analysis. The shallow and deep catalogues are characterized by different multifractal properties: (i) the magnitudes of the shallow events are weakly persistent, while those of the deep ones are almost uncorrelated; (ii) the deep catalogue is more multifractal than the shallow one; (iii) the magnitudes of the deep catalogue are characterized by a right-skewed multifractal spectrum, while that of the shallow magnitude is rather symmetric; (iv) a direct relationship between the b-value of the Gutenberg-Richter law and the multifractality of the magnitudes is suggested.

  17. Multiscale mapping of completeness magnitude of earthquake catalogs

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Narteau, Clement; Shebalin, Peter; Beauducel, François; Nercessian, Alexandre; Clouard, Valérie; Bouin, Marie-Paule

    2013-04-01

    We propose a multiscale method to map spatial variations in completeness magnitude Mc of earthquake catalogs. The Mc value may significantly vary in space due to the change of the seismic network density. Here we suggest a way to use only earthquake catalogs to separate small areas of higher network density (lower Mc) and larger areas of smaller network density (higher Mc). We reduce the analysis of the FMDs to the limited magnitude ranges, thus allowing deviation of the FMD from the log-linearity outside the range. We associate ranges of larger magnitudes with increasing areas for data selection based on constant in average number of completely recorded earthquakes. Then, for each point in space, we document the earthquake frequency-magnitude distribution at all length scales within the corresponding earthquake magnitude ranges. High resolution of the Mc-value is achieved through the determination of the smallest space-magnitude scale in which the Gutenberg-Richter law (i. e. an exponential decay) is verified. The multiscale procedure isolates the magnitude range that meets the best local seismicity and local record capacity. Using artificial catalogs and earthquake catalogs of the Lesser Antilles arc, this Mc mapping method is shown to be efficient in regions with mixed types of seismicity, a variable density of epicenters and various levels of registration.

  18. A scheme to set preferred magnitudes in the ISC Bulletin

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Storchak, Dmitry A.

    2016-04-01

    One of the main purposes of the International Seismological Centre (ISC) is to collect, integrate and reprocess seismic bulletins provided by agencies around the world in order to produce the ISC Bulletin. This is regarded as the most comprehensive bulletin of the Earth's seismicity, and its production is based on a unique cooperation in the seismological community that allows the ISC to complement the work of seismological agencies operating at global and/or local-regional scale. In addition, by using the seismic wave measurements provided by reporting agencies, the ISC computes, where possible, its own event locations and magnitudes such as short-period body wave m b and surface wave M S . Therefore, the ISC Bulletin contains the results of the reporting agencies as well as the ISC own solutions. Among the most used seismic event parameters listed in seismological bulletins, the event magnitude is of particular importance for characterizing a seismic event. The selection of a magnitude value (or multiple ones) for various research purposes or practical applications is not always a straightforward task for users of the ISC Bulletin and related products since a multitude of magnitude types is currently computed by seismological agencies (sometimes using different standards for the same magnitude type). Here, we describe a scheme that we intend to implement in routine ISC operations to mark the preferred magnitudes in order to help ISC users in the selection of events with magnitudes of their interest.

  19. Quantifying Heartbeat Dynamics by Magnitude and Sign Correlations

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Ashkenazy, Yosef; Kantelhardt, Jan W.; Stanley, H. Eugene

    2003-05-01

    We review a recently developed approach for analyzing time series with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that time series with identical long-range correlations can exhibit different time organization for the magnitude and sign. We apply our approach to series of time intervals between consecutive heartbeats. Using the detrended fluctuation analysis method we find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications. Further, we study the heartbeat magnitude and sign series during different sleep stages — light sleep, deep sleep, and REM sleep. For the heartbeat sign time series we find short-range anticorrelations, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, for the heartbeat magnitude time series we find long-range positive correlations, which are strong during REM sleep and weaker during light sleep. Thus, the sign and the magnitude series provide information which is also useful for distinguishing between different sleep stages.

  20. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas H. W.; Hosseini, S. Mehran

    2016-06-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  1. Derivation of Johnson-Cousins Magnitudes from DSLR Camera Observations

    NASA Astrophysics Data System (ADS)

    Park, Woojin; Pak, Soojong; Shim, Hyunjin; Le, Huynh Anh N.; Im, Myungshin; Chang, Seunghyuk; Yu, Joonkyu

    2016-01-01

    The RGB Bayer filter system consists of a mosaic of R, G, and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB, GB, and BB) into the Johnson-Cousins BVR filter system (BJ, VJ, and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal, VJcal, and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are (BJ - BJcal) = 0.064 mag, (VJ - VJcal) = 0.041 mag, and (RC - RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  2. Regression between earthquake magnitudes having errors with known variances

    NASA Astrophysics Data System (ADS)

    Pujol, Jose

    2016-06-01

    Recent publications on the regression between earthquake magnitudes assume that both magnitudes are affected by error and that only the ratio of error variances is known. If X and Y represent observed magnitudes, and x and y represent the corresponding theoretical values, the problem is to find the a and b of the best-fit line y = a x + b. This problem has a closed solution only for homoscedastic errors (their variances are all equal for each of the two variables). The published solution was derived using a method that cannot provide a sum of squares of residuals. Therefore, it is not possible to compare the goodness of fit for different pairs of magnitudes. Furthermore, the method does not provide expressions for the x and y. The least-squares method introduced here does not have these drawbacks. The two methods of solution result in the same equations for a and b. General properties of a discussed in the literature but not proved, or proved for particular cases, are derived here. A comparison of different expressions for the variances of a and b is provided. The paper also considers the statistical aspects of the ongoing debate regarding the prediction of y given X. Analysis of actual data from the literature shows that a new approach produces an average improvement of less than 0.1 magnitude units over the standard approach when applied to Mw vs. mb and Mw vs. MS regressions. This improvement is minor, within the typical error of Mw. Moreover, a test subset of 100 predicted magnitudes shows that the new approach results in magnitudes closer to the theoretically true magnitudes for only 65 % of them. For the remaining 35 %, the standard approach produces closer values. Therefore, the new approach does not always give the most accurate magnitude estimates.

  3. Regression between earthquake magnitudes having errors with known variances

    NASA Astrophysics Data System (ADS)

    Pujol, Jose

    2016-07-01

    Recent publications on the regression between earthquake magnitudes assume that both magnitudes are affected by error and that only the ratio of error variances is known. If X and Y represent observed magnitudes, and x and y represent the corresponding theoretical values, the problem is to find the a and b of the best-fit line y = a x + b. This problem has a closed solution only for homoscedastic errors (their variances are all equal for each of the two variables). The published solution was derived using a method that cannot provide a sum of squares of residuals. Therefore, it is not possible to compare the goodness of fit for different pairs of magnitudes. Furthermore, the method does not provide expressions for the x and y. The least-squares method introduced here does not have these drawbacks. The two methods of solution result in the same equations for a and b. General properties of a discussed in the literature but not proved, or proved for particular cases, are derived here. A comparison of different expressions for the variances of a and b is provided. The paper also considers the statistical aspects of the ongoing debate regarding the prediction of y given X. Analysis of actual data from the literature shows that a new approach produces an average improvement of less than 0.1 magnitude units over the standard approach when applied to Mw vs. mb and Mw vs. MS regressions. This improvement is minor, within the typical error of Mw. Moreover, a test subset of 100 predicted magnitudes shows that the new approach results in magnitudes closer to the theoretically true magnitudes for only 65 % of them. For the remaining 35 %, the standard approach produces closer values. Therefore, the new approach does not always give the most accurate magnitude estimates.

  4. Comparison of magnetic probe calibration at nano and millitesla magnitudes

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan A.; Rovey, Joshua L.; Pommerenke, David J.

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of dot{{B}} probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two dot{{B}} probe designs as functions of frequency and field magnitude are presented. The first dot{{B}} probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% {T}/{V {s}} at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% {T}/{V {s}} at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface mounted probe and 12.0% for the hand-wound probe. The

  5. A reevaluation of the 20-micron magnitude system

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.

    1984-01-01

    The 20-micron infrared magnitude system is reexamined by observing primary infrared standards and seven A V stars. The purpose is to determine whether Alpha Lyr has colors consistent with the average of A0 stars and to determine the relative magnitude of the primary standards to that of Alpha Lyr. The data presented are consistent with the interpretation that the spectrum of Alpha Lyr is a blackbody and that it is a viable flux standard at 10 and 20 microns. The absolute flux density scale, the physical quantity of interest, is found to be consistent with an extrapolation of the Alpha Lyr spectrum from the near infrared on the basis of the comparison of stars to Mars and asteroids. Adoption of a 0.0 magnitude for Alpha Lyr requires that the magnitudes given by Morrison and Simon (1973) and by Simon et al. (1972) be revised downward by 0.14 mag.

  6. Number games, magnitude representation, and basic number skills in preschoolers.

    PubMed

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-03-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision. PMID:18331146

  7. The Effects of Reinforcer Magnitude on Timing in Rats

    PubMed Central

    Ludvig, Elliot A; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated by a symmetric Gaussian function, peak times also were earlier; when estimated by a better-fitting asymmetric Gaussian function or by analyzing individual trials, however, these peak-time changes were determined to reflect a mixture of large effects of BSR on start times and no effect on stop times. These results pose a significant dilemma for three major theories of timing (SET, MTS, and BeT), which all predict no effects for chronic manipulations of reinforcer magnitude. We conclude that increased reinforcer magnitude influences timing in two ways: through larger immediate after-effects that delay responding and through anticipatory effects that elicit earlier responding. PMID:17465312

  8. On the macroseismic magnitudes of the largest Italian earthquakes

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Vittori, T.; Mulargia, F.

    1987-07-01

    The macroseismic magnitudes MT of the largest Italian earthquakes ( I0 ⩾ VIII, MCS) have been computed by using the intensity magnitude relationships recently assessed by the authors (1986) for the Italian region. The Progetto Finalizzato Geodinamica (PFG) catalog of the Italian earthquakes, covering the period 1000-1980 (Postpischl, 1985) is the source data base and is reproduced in the Appendix: here the estimated values of MT are given side by side with the catalog macroseismic magnitudes MK i.e. the magnitudes computed according to the Karnik laws (Karnik, 1969). The one-sigma errors Δ MT are also given for each earthquake. The basic aim of the paper is to provide a handy and useful tool to researchers involved in seismicity and seismic-risk studies on Italian territory.

  9. When Should Zero Be Included on a Scale Showing Magnitude?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2011-01-01

    This article addresses an important problem of graphing quantitative data: should one include zero on the scale showing magnitude? Based on a real time series example, the problem is discussed and some recommendations are proposed.

  10. Magnitude-frequency distribution of volcanic explosion earthquakes

    NASA Astrophysics Data System (ADS)

    Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Mohammad; Aoyama, Hiroshi; Yamada, Taishi; Ripepe, Maurizio; Genco, Riccardo

    2016-07-01

    Magnitude-frequency distributions of volcanic explosion earthquakes that are associated with occurrences of vulcanian and strombolian eruptions, or gas burst activity, are examined at six active volcanoes. The magnitude-frequency distribution at Suwanosejima volcano, Japan, shows a power-law distribution, which implies self-similarity in the system, as is often observed in statistical characteristics of tectonic and volcanic earthquakes. On the other hand, the magnitude-frequency distributions at five other volcanoes, Sakurajima and Tokachi-dake in Japan, Semeru and Lokon in Indonesia, and Stromboli in Italy, are well explained by exponential distributions. The statistical features are considered to reflect source size, as characterized by a volcanic conduit or chamber. Earthquake generation processes associated with vulcanian, strombolian and gas burst events are different from those of eruptions ejecting large amounts of pyroclasts, since the magnitude-frequency distribution of the volcanic explosivity index is generally explained by the power law.

  11. Frequency-Magnitude Relationship of Hydraulic Fracture Microseismicity (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, S.

    2009-12-01

    Microseismicity has become a common imaging technique for hydraulic fracture stimulations in the oil and gas industry, offering a wide range of microseismic data sets in different settings. Typically, arrays of 3C sensors are deployed in single monitoring wells presenting processing challenges associated with the limited acquisition geometry. However, the proximity of the sensors to the fracture network results in good sensitivity to detect small magnitude microseisms (down to about moment magnitude -3 in some cases). This sensitivity allows a comparison of the magnitude-frequency relationship between microseisms attributed to hydraulic fracturing with those related to activation of interaction with a pre-existing fault. A case study will be presented showing a clear change in the frequency-magnitude characteristics as the injection interacts with a known fault.

  12. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

    2016-02-01

    Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

  13. Magnitude knowledge: the common core of numerical development.

    PubMed

    Siegler, Robert S

    2016-05-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development. PMID:27074723

  14. A probabilistic neural network for earthquake magnitude prediction.

    PubMed

    Adeli, Hojjat; Panakkat, Ashif

    2009-09-01

    A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gutenberg-Richter inverse power law curve for the n events, the mean square deviation about the regression line based on the Gutenberg-Richter inverse power law for the n events, the average magnitude of the last n events, the difference between the observed maximum magnitude among the last n events and that expected through the Gutenberg-Richter relationship known as the magnitude deficit, the rate of square root of seismic energy released during the n events, the mean time or period between characteristic events, and the coefficient of variation of the mean time. Prediction accuracies of the model are evaluated using three different statistical measures: the probability of detection, the false alarm ratio, and the true skill score or R score. The PNN model is trained and tested using data for the Southern California region. The model yields good prediction accuracies for earthquakes of magnitude between 4.5 and 6.0. The PNN model presented in this paper complements the recurrent neural network model developed by the authors previously, where good results were reported for predicting earthquakes with magnitude greater than 6.0. PMID:19502005

  15. Local magnitude calibration of the Hellenic Unified Seismic Network

    NASA Astrophysics Data System (ADS)

    Scordilis, E. M.; Kementzetzidou, D.; Papazachos, B. C.

    2016-01-01

    A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007-2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

  16. High-orbit satellite magnitude estimation using photometric measurement method

    NASA Astrophysics Data System (ADS)

    Zhang, Shixue

    2015-12-01

    The means to get the accurate high-orbit satellite magnitude can be significant in space target surveillance. This paper proposes a satellite photometric measurement method based on image processing. We calculate the satellite magnitude by comparing the output value of camera's CCD between the known fixed star and the satellite. We calculate the luminance value of a certain object on the acquired image using a background-removing method. According to the observation parameters such as azimuth, elevation, height and the situation of the telescope, we can draw the star map on the image, so we can get the real magnitude of a certain fixed star in the image. We derive a new method to calculate the magnitude value of a certain satellite according to the magnitude of the fixed star in the image. To guarantee the algorithm's stability, we evaluate the measurement precision of the method, and analysis the restrict condition in actual application. We have made plenty of experiment of our system using large telescope in satellite surveillance, and testify the correctness of the algorithm. The experimental result shows that the precision of the proposed algorithm in satellite magnitude measurement is 0.24mv, and this method can be generalized to other relative fields.

  17. Estimation of the magnitudes and epicenters of Philippine historical earthquakes

    NASA Astrophysics Data System (ADS)

    Bautista, Maria Leonila P.; Oike, Kazuo

    2000-02-01

    The magnitudes and epicenters of Philippine earthquakes from 1589 to 1895 are estimated based on the review, evaluation and interpretation of historical accounts and descriptions. The first step involves the determination of magnitude-felt area relations for the Philippines for use in the magnitude estimation. Data used were the earthquake reports of 86, recent, shallow events with well-described effects and known magnitude values. Intensities are assigned according to the modified Mercalli intensity scale of I to XII. The areas enclosed by Intensities III to IX [ A(III) to A(IX)] are measured and related to magnitude values. The most robust relations are found for magnitudes relating to A(VI), A(VII), A(VIII) and A(IX). Historical earthquake data are obtained from primary sources in libraries in the Philippines and Spain. Most of these accounts were made by Spanish priests and officials stationed in the Philippines during the 15th to 19th centuries. More than 3000 events are catalogued, interpreted and their intensities determined by considering the possible effects of local site conditions, type of construction and the number and locations of existing towns to assess completeness of reporting. Of these events, 485 earthquakes with the largest number of accounts or with at least a minimum report of damage are selected. The historical epicenters are estimated based on the resulting generalized isoseismal maps augmented by information on recent seismicity and location of known tectonic structures. Their magnitudes are estimated by using the previously determined magnitude-felt area equations for recent events. Although historical epicenters are mostly found to lie on known tectonic structures, a few, however, are found to lie along structures that show not much activity during the instrumented period. A comparison of the magnitude distributions of historical and recent events showed that only the period 1850 to 1900 may be considered well-reported in terms of

  18. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Page, M. T.; Weiser, D. A.; Goebel, T.; Hosseini, S. M.

    2015-12-01

    Key questions with implications for seismic hazard and industry practice are how large injection-induced earthquakes can be, and whether their maximum size is smaller than for similarly located tectonic earthquakes. Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. McGarr (JGR 2014) showed that for earthquakes confined to the reservoir and triggered by pore-pressure increase, the maximum moment should be limited to the product of the shear modulus G and total injected volume ΔV. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network, with an absolute maximum magnitude that is notoriously difficult to constrain. A common approach for tectonic earthquakes is to use the magnitude-frequency distribution of smaller earthquakes to forecast the largest earthquake expected in some time period. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter (GR) distribution for tectonic earthquakes, with no assumption of an intrinsic upper bound. The GR law implies that the largest observed earthquake in a sample should scale with the log of the total number induced. We find that the maximum magnitudes at most sites are consistent with this scaling, and that maximum magnitude increases with log ΔV. We find little in the size distribution to distinguish induced from tectonic earthquakes. That being said, the probabilistic estimate exceeds the deterministic GΔV cap only for expected magnitudes larger than ~M6, making a definitive test of the models unlikely in the near future. In the meantime, however, it may be prudent to treat the hazard from induced earthquakes with the same probabilistic machinery used for tectonic earthquakes.

  19. Magnitude Characterization Using Complex Networks in Central Chile

    NASA Astrophysics Data System (ADS)

    Pasten, D.; Comte, D.; Munoz, V.

    2013-12-01

    Studies using complex networks are applied to many systems, like traffic, social networks, internet and earth science. In this work we make an analysis using complex networks applied to magnitude of seismicity in the central zone of Chile, we use the preferential attachment in order to construct a seismic network using local magnitudes and the hypocenters of a seismic data set in central Chile. In order to work with a complete catalogue in magnitude, the data associated with the linear part of the Gutenberg-Richter law, with magnitudes greater than 2.7, were taken. We then make a grid in space, so that each seismic event falls into a certain cell, depending on the location of its hypocenter. Now the network is constructed: the first node corresponds to the cell where the first seismic event occurs. The node has an associated number which is the magnitude of the event which occured in it, and a probability is assigned to the node. The probability is a nonlinear mapping of the magnitude (a Gaussian function was taken), so that nodes with lower magnitude events are more likely to be attached to. Each time a new node is added to the network, it is attached to the previous node which has the larger probability; the link is directed from the previous node to the new node. In this way, a directed network is constructed, with a ``preferential attachment''-like growth model, using the magnitudes as the parameter to determine the probability of attachment to future nodes. Several events could occur in the same node. In this case, the probability is calculated using the average of the magnitudes of the events occuring in that node. Once the directed network is finished, the corresponding undirected network is constructed, by making all links symmetric, and eliminating the loops which may appear when two events occur in the same cell. The resulting directed network is found to be scale free (with very low values of the power-law distribution exponent), whereas the undirected

  20. Zero Magnitude Effect for the Productivity of Triggered Tsunami Sources

    NASA Astrophysics Data System (ADS)

    Geist, E. L.

    2013-12-01

    The Epidemic Type Aftershock Sequence (ETAS) model is applied to tsunami events to explain previously observed temporal clustering of tsunami sources. Tsunami events are defined by National Geophysical Data Center (NGDC) tsunami database. For the ETAS analysis, the earthquake magnitude associated with each tsunami event in the NGDC database is replaced by the primary magnitude listed in the Centennial catalog up until 1976 and in the Global CMT catalog from 1976 through 2010. Tsunamis with a submarine landslide or volcanic component are included if they are accompanied by an earthquake, which is most often the case. Tsunami size is used as a mark for determining a tsunami-generating event, according to a minimum completeness level. The tsunami catalog is estimated to be complete for tsunami sizes greater than 1 m since 1900 and greater than 0.1 m since 1960. Of the five parameters in the temporal ETAS model (Ogata, 1988), the parameter that scales the magnitude dependence in the productivity of triggered events is the one that is most different from ETAS parameters derived from similar earthquake catalogs. Maximum likelihood estimates of this magnitude effect parameter is essentially zero, within 95% confidence, for both the 0.1 m and 1.0 m tsunami completeness levels. To explain this result, parameter estimates are determined for the Global CMT catalog under three tsunamigenic conditions: (1) M≥7 and focal depth ≤50 km, (2) submarine location, and (3) dominant component of dip slip. Successive subcatalogs are formed from the Global CMT catalog according to each of these conditions. The high magnitude threshold for tsunamigenesis alone (subcatalog 1) does not explain the zero magnitude effect. The zero magnitude effect also does not appear to be caused the smaller number of tsunamigenic events analyzed in comparison to earthquake catalogs with a similar magnitude threshold. ETAS parameter estimates from the subcatalog (3) with all three tsunamigenic conditions

  1. The Strain Energy, Seismic Moment and Magnitudes of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Purcaru, G.

    2004-12-01

    The strain energy Est, as potential energy, released by an earthquake and the seismic moment Mo are two fundamental physical earthquake parameters. The earthquake rupture process ``represents'' the release of the accumulated Est. The moment Mo, first obtained in 1966 by Aki, revolutioned the quantification of earthquake size and led to the elimination of the limitations of the conventional magnitudes (originally ML, Richter, 1930) mb, Ms, m, MGR. Both Mo and Est, not in a 1-to-1 correspondence, are uniform measures of the size, although Est is presently less accurate than Mo. Est is partitioned in seismic- (Es), fracture- (Eg) and frictional-energy Ef, and Ef is lost as frictional heat energy. The available Est = Es + Eg (Aki and Richards (1980), Kostrov and Das, (1988) for fundamentals on Mo and Est). Related to Mo, Est and Es, several modern magnitudes were defined under various assumptions: the moment magnitude Mw (Kanamori, 1977), strain energy magnitude ME (Purcaru and Berckhemer, 1978), tsunami magnitude Mt (Abe, 1979), mantle magnitude Mm (Okal and Talandier, 1987), seismic energy magnitude Me (Choy and Boatright, 1995, Yanovskaya et al, 1996), body-wave magnitude Mpw (Tsuboi et al, 1998). The available Est = (1/2μ )Δ σ Mo, Δ σ ~=~average stress drop, and ME is % \\[M_E = 2/3(\\log M_o + \\log(\\Delta\\sigma/\\mu)-12.1) ,\\] % and log Est = 11.8 + 1.5 ME. The estimation of Est was modified to include Mo, Δ and μ of predominant high slip zones (asperities) to account for multiple events (Purcaru, 1997): % \\[E_{st} = \\frac{1}{2} \\sum_i {\\frac{1}{\\mu_i} M_{o,i} \\Delta\\sigma_i} , \\sum_i M_{o,i} = M_o \\] % We derived the energy balance of Est, Es and Eg as: % \\[ E_{st}/M_o = (1+e(g,s)) E_s/M_o , e(g,s) = E_g/E_s \\] % We analyzed a set of about 90 large earthquakes and found that, depending on the goal these magnitudes quantify differently the rupture process, thus providing complementary means of earthquake characterization. Results for some

  2. Deep photometry and integral magnitudes of 8 nearby galaxies

    NASA Astrophysics Data System (ADS)

    Georgiev, Ts. B.

    2016-02-01

    We estimated integral magnitudes of galaxies trying to include the contribution of the brightest part of their halos. We performed surface photometry based on (i) concentric elliptical rims, corresponding to the peripheral ellipticity of the image, (ii) median estimation of the mean value of the rim pixels, (iii) apparent radial brightness profiles, corresponding to the rim medians, and (iv) magnitude curves of growth, derived by numerical integrations of the apparent rim profiles, without preliminary background estimation and removal. Furthermore, we used the magnitude curves of growth to determine the integral magnitudes (limited by size and deepness of our frames) and compared them with the total magnitudes in the data base HyperLeda. Also, we used the rim-profiles to estimate the background level far enough from the galaxy center and we build (here—only for trial) the intrinsic radial profiles (with background removal). We apply this photometry on 8 nearby galaxies, observed with CCD in the system BVRC IC by the 50 cm Schmidt telescope of the Rozhen NAO in 2003-2004. We build radial profiles which occur to be as average 1.8 times (1.2-2.5 times) larger than in data base NED and of integral brightness that occurs to be about 1.4 times (1.2-1.7 times) higher than in data base HyperLeda. The relative brightness additions, found here, correlate with the color index and anti-correlate with the luminosity of the galaxy.

  3. Correlating Total Visual Magnitude Estimates and CCD Photometry for Comets

    NASA Astrophysics Data System (ADS)

    Kidger, Mark Richard

    2015-08-01

    A key facet of understanding the activity of comets is coverage of their light curve. For some comets such as 2P/Encke there is good light curve coverage from visual observers extending back over many returns over more than 2 centuries. However, in recent years, CCD photometry by amateur astronomers has become the dominant data source and the number of total visual magnitude estimates has reduced sharply, making comparison of recent and historical photometric data for comets increasingly difficult. The relationship between total visual magnitude estimates - dominated by the emission from the Swan bands of C2 - and CCD aperture photometry - dominated by the dust continuum - has been far from clear.This paper compares CCD aperture photometry and total visual magnitude for several recent well-observed bright comets, including C/2014 Q2 (Lovejoy), C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS) using a consistent and homogeneous database of observations from (mainly) Spanish observers. For comets with a 1/r radial coma profile, good agreement is found between CCD aperture photometry and total visual magnitude estimates for a CCD aperture corresponding to a physical coma diameter of ≈105km.The relationship between the coma radial brightness slope and the equivalent physical aperture for CCD photometry to obtain agreement with total visual magnitude estimates is investigated.

  4. Magnitude and phase behavior of multiresolution BOLD signal

    PubMed Central

    Chen, Zikuan; Calhoun, Vince D.

    2010-01-01

    High spatial resolution fMRI provides a more precise estimate of brain activity than low resolution fMRI. The magnitude and phase parts of the BOLD signals are impacted differently by changes in the scan resolution. In this paper, we report on a numerical simulation to show the impact of spatial resolution upon the complex-valued BOLD signal in terms of magnitude and phase variation. We generate realistic capillary networks in cortex voxels, calculate the BOLD-induced magnetic field disturbance and the complex BOLD signals for the voxel and its subvoxels, and thereby characterize the magnitude and phase behaviors across multiple grid resolutions. Our results show that: 1) at higher spatial resolution there is greater spatial variation in the phase of the BOLD signal as compared to its magnitude; 2) the spatial variation of the phase signal monotonically increases with respect to spatial resolution while for the magnitude the spatial variation may reach a maximum at some resolution level; 3) voxels containing large capillaries have higher phase spatial variation than those with smaller capillaries; 4) the amplitude spatial variation at a resolution level increases with respect to relaxation time whereas the phase variation is generally unaffected. PMID:20890375

  5. Magnitude of perceived depth of multiple stereo transparent surfaces.

    PubMed

    Aida, Saori; Shimono, Koichi; Tam, Wa James

    2015-01-01

    According to the geometric relational expression of binocular stereopsis, for a given viewing distance the magnitude of the perceived depth of objects would be the same, as long as the disparity magnitudes were the same. However, we found that this is not necessarily the case for random-dot stereograms that depict parallel, overlapping, transparent stereoscopic surfaces (POTS). The data from five experiments indicated that (1) the magnitude of perceived depth between the two outer surfaces of a three- or a four-POTS configuration can be smaller than that for an identical pair of stereo surfaces of a two-POTS configuration for the range of disparities that we used (5.2-19.4 arcmin); (2) this phenomenon can be observed irrespective of the total dot density of a POTS configuration, at least for the range that we used (1.1-3.3 dots/deg(2)); and (3) the magnitude of perceived depth between the two outer surfaces of a POTS configuration can be reduced as the total number of stereo surfaces is increased, up to four surfaces. We explained these results in terms of a higher-order process or processes, with an output representing perceived depth magnitude, which is weakened when the number of its surfaces is increased. PMID:25120178

  6. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  7. The magnitude distribution of declustered earthquakes in Southern California

    PubMed Central

    Knopoff, Leon

    2000-01-01

    The binned distribution densities of magnitudes in both the complete and the declustered catalogs of earthquakes in the Southern California region have two significantly different branches with crossover magnitude near M = 4.8. In the case of declustered earthquakes, the b-values on the two branches differ significantly from each other by a factor of about two. The absence of self-similarity across a broad range of magnitudes in the distribution of declustered earthquakes is an argument against the application of an assumption of scale-independence to models of main-shock earthquake occurrence, and in turn to the use of such models to justify the assertion that earthquakes are unpredictable. The presumption of scale-independence for complete local earthquake catalogs is attributable, not to a universal process of self-organization leading to future large earthquakes, but to the universality of the process that produces aftershocks, which dominate complete catalogs. PMID:11035770

  8. Executive function and magnitude skills in preschool children.

    PubMed

    Prager, Emily O; Sera, Maria D; Carlson, Stephanie M

    2016-07-01

    Executive function (EF) has been highlighted as a potentially important factor for mathematical understanding. The relation has been well established in school-aged children but has been less explored at younger ages. The current study investigated the relation between EF and mathematics in preschool-aged children. Participants were 142 typically developing 3- and 4-year-olds. Controlling for verbal ability, a significant positive correlation was found between EF and general math abilities in this age group. Importantly, we further examined this relation causally by varying the EF load on a magnitude comparison task. Results suggested a developmental pattern where 3-year-olds' performance on the magnitude comparison task was worst when EF was taxed the most. Conversely, 4-year-olds performed well on the magnitude task despite varying EF demands, suggesting that EF might play a critical role in the development of math concepts. PMID:27082019

  9. Every reinforcer counts: reinforcer magnitude and local preference.

    PubMed Central

    Davison, Michael; Baum, William M

    2003-01-01

    Six pigeons were trained on concurrent variable-interval schedules. Sessions consisted of seven components, each lasting 10 reinforcers, with the conditions of reinforcement differing between components. The component sequence was randomly selected without replacement. In Experiment 1, the concurrent-schedule reinforcer ratios in components were all equal to 1.0, but across components reinforcer-magnitude ratios varied from 1:7 through 7:1. Three different overall reinforcer rates were arranged across conditions. In Experiment 2, the reinforcer-rate ratios varied across components from 27:1 to 1:27, and the reinforcer-magnitude ratios for each alternative were changed across conditions from 1:7 to 7:1. The results of Experiment 1 replicated the results for changing reinforcer-rate ratios across components reported by Davison and Baum (2000, 2002): Sensitivity to reinforcer-magnitude ratios increased with increasing numbers of reinforcers in components. Sensitivity to magnitude ratio, however, fell short of sensitivity to reinforcer-rate ratio. The degree of carryover from component to component depended on the reinforcer rate. Larger reinforcers produced larger and longer postreinforcer preference pulses than did smaller reinforcers. Similar results were found in Experiment 2, except that sensitivity to reinforcer magnitude was considerably higher and was greater for magnitudes that differed more from one another. Visit durations following reinforcers measured either as number of responses emitted or time spent responding before a changeover were longer following larger than following smaller reinforcers, and were longer following sequences of same reinforcers than following other sequences. The results add to the growing body of research that informs model building at local levels. PMID:13677611

  10. Toward Reconciling Magnitude Discrepancies Estimated from Paleoearthquake Data

    SciTech Connect

    N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer

    2012-06-01

    We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationships are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent

  11. Problemas de nervos: a multivocal symbol of distress for Portuguese immigrants.

    PubMed

    James, Susan; Fernandes, Mark; Navara, Geoffrey S; Harris, Sara; Foster, Durwin

    2009-06-01

    This article outlines research on a previous unstudied form of suffering specific to the Portugese immigrant community: problemas de nervos. Thirty-two Portuguese immigrant women (in Waterloo, ON and Boston, MA) were interviewed and each completed a questionnaire. Cluster analysis demonstrated that problemas de nervos has many meanings. The study profiled symptoms, causes and therapies associated with four variations of this culture-specific form of distress: "mal da cabeca" meaning problems with/in the head (e.g., lack of control, visions); " aflição" meaning affliction (e.g., nervous attacks, heart problems); immigration stress (causing sleep disturbances); and, conflicts with others (resulting in pressure within the body). None of the symptom clusters reported matched criteria for a DSM-IV-TR diagnosis, suggesting that problemas de nervos represents an idiomatic rather than universal expression of distress. PMID:19541751

  12. Standard magnitude prize reinforcers can be as efficacious as larger magnitude reinforcers in cocaine-dependent methadone patients

    PubMed Central

    Petry, Nancy M.; Alessi, Sheila M.; Barry, Danielle; Carroll, Kathleen M.

    2014-01-01

    Objective Contingency management (CM) reduces cocaine use in methadone patients, but only about 50% of patients respond to CM interventions. This study evaluated whether increasing magnitudes of reinforcement will improve outcomes. Methods Cocaine-dependent methadone patients (N = 240) were randomized to one of four 12-week treatment conditions: usual care (UC), UC plus “standard” prize CM in which average expected prize earnings were about $300, UC plus high magnitude prize CM in which average expected prize earnings were about $900, or UC plus voucher CM with an expected maximum of about $900 in vouchers. Results All three CM conditions yielded significant reductions in cocaine use relative to UC, with effect sizes (d) ranging from 0.38 to 0.59. No differences were noted between CM conditions, with at least 55% of patients in each CM condition achieving one week or more of cocaine abstinence versus 35% in UC. During the 12 weeks after the intervention ended, CM increased time until relapse relative to UC, but the effects of CM were no longer significant at a 12-month follow-up. Conclusions Providing the standard magnitude of $300 in prizes was as effective as larger magnitude CM in cocaine-dependent methadone patients in this study. Given its strong evidence base and relatively low costs, standard magnitude prize CM should be considered for adoption in methadone clinics to encourage cocaine abstinence, but new methods need to be developed to sustain abstinence. PMID:25198284

  13. The Magnitude of Premenstrual and Menstrual Mood Changes in Adolescents.

    ERIC Educational Resources Information Center

    Golub, Sharon; Murphy, Denise

    Frequent mood changes in adolescents are often attributed to the influence of shifting hormone levels. The presence and magnitude of menstrual-related mood changes in adolescent women were examined in 10th and 11th grade females (N=158) who completed the Menstrual Distress Questionnaire (MDQ). Self-reports of the onset date for the next two…

  14. Strategy Use and Strategy Choice in Fraction Magnitude Comparison

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; DeWolf, Melissa; Siegler, Robert S.

    2016-01-01

    We examined, on a trial-by-trial basis, fraction magnitude comparison strategies of adults with more and less mathematical knowledge. College students with high mathematical proficiency used a large variety of strategies that were well tailored to the characteristics of the problems and that were guaranteed to yield correct performance if executed…

  15. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  16. Error magnitude estimation in model-reference adaptive systems

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1975-01-01

    A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.

  17. Fraction Development in Children: Importance of Building Numerical Magnitude Understanding

    ERIC Educational Resources Information Center

    Jordan, Nancy C.; Carrique, Jessica; Hansen, Nicole; Resnick, Ilyse

    2016-01-01

    This chapter situates fraction learning within the integrated theory of numerical development. We argue that the understanding of numerical magnitudes for whole numbers as well as for fractions is critical to fraction learning in particular and mathematics achievement more generally. Results from the Delaware Longitudinal Study, which examined…

  18. Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference

    PubMed Central

    Thurley, Kay

    2016-01-01

    Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes. PMID:26909028

  19. The effect of crosstalk on depth magnitude in thin structures

    NASA Astrophysics Data System (ADS)

    Tsirlin, Inna; Wilcox, Laurie M.; Allison, Robert S.

    2011-03-01

    Stereoscopic displays must present separate images to the viewer's left and right eyes. Crosstalk is the unwanted contamination of one eye's image from the image of the other eye. It has been shown to cause distortions, reduce image quality and visual comfort and increase perceived workload when performing visual tasks. Crosstalk also affects one's ability to perceive stereoscopic depth although little consideration has been given to the perception of depth magnitude in the presence of crosstalk. In this paper we extend a previous study (Tsirlin, Allison & Wilcox, 2010, submitted) on the perception of depth magnitude in stereoscopic occluding and non-occluding surfaces to the special case of crosstalk in thin structures. Crosstalk in thin structures differs qualitatively from that in larger objects due to the separation of the ghost and real images and thus theoretically could have distinct perceptual consequences. To address this question we used a psychophysical paradigm, where observers estimated the perceived depth difference between two thin vertical bars using a measurement scale. Our data show that crosstalk degrades perceived depth. As crosstalk levels increased the magnitude of perceived depth decreased, especially for stimuli with larger relative disparities. In contrast to the effect of crosstalk on depth magnitude in larger objects, in thin structures, a significant detrimental effect was found at all disparities. Our findings, when considered with the other perceptual consequences of crosstalk, suggest that its presence in S3D media even in modest amounts will reduce observers' satisfaction.

  20. High magnitude head impacts experienced during youth football practices.

    PubMed

    Young, Tyler; Rowson, Steven; Duma, Stefan M

    2014-01-01

    To reduce the risk of concussion in the 3.5 million youth athletes who participate in organized football leagues in the United States each year, practice structure can be modified to decrease impact frequency and magnitude. The objective of this study is to identify activities that result in high magnitude head impacts in youth football players during practice. The HIT System was used to record the head acceleration magnitude, impact location on the helmet, and time of each impact for each game and practice players participated in. These data were used to quantify the head impact exposure associated with players between the ages of 9 and 11 years. Video footage recorded during each practice and game session was used to identify the activity associated with any impact above 45 g. The incidence rate of high magnitude impacts in various activities were compared by normalizing by the amount of time associated with each activity. It was determined that scrimmages accounted for 0.094 impacts greater than 45 g per minute in practices while contact drills contributed to 0.102 impacts greater than 45 g per minute during practices. The results of this study indicate future youth football practice modifications should focus on both scrimmages and contact drills. PMID:25405410

  1. Crystal measures short-term, large-magnitude forces

    NASA Technical Reports Server (NTRS)

    Pfeiffer, C. G.

    1965-01-01

    By using the magnitude of piezoelectric crystal response to distortion and compression, this device measures transient accelerations and their rate of change. The invention could be used in a servo control system by supplementing the accelerometer and taking over its function when its range was exceeded.

  2. The Role of Executive Functions in Numerical Magnitude Skills

    ERIC Educational Resources Information Center

    Kolkman, Meijke E.; Hoijtink, Herbert J. A.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2013-01-01

    Executive functions (EF) are closely related to math performance. Little is known, however, about the role of EF in numerical magnitude skills (NS), although these skills are widely acknowledged to be important precursors of math learning. The current study focuses on the different roles of updating, shifting, and inhibition in NS. EF and NS were…

  3. What Is the Meaning of the Physical Magnitude "Work"?

    ERIC Educational Resources Information Center

    Kanderakis, Nikos

    2014-01-01

    Usually, in physics textbooks, the physical magnitude "work" is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, "work" is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is…

  4. Discriminability and Sensitivity to Reinforcer Magnitude in a Detection Task

    ERIC Educational Resources Information Center

    Alsop, Brent; Porritt, Melissa

    2006-01-01

    Three pigeons discriminated between two sample stimuli (intensities of red light). The difficulty of the discrimination was varied over four levels. At each level, the relative reinforcer magnitude for the two correct responses was varied across conditions, and the reinforcer rates were equal. Within levels, discriminability between the sample…

  5. Neural processing of reward magnitude under varying attentional demands.

    PubMed

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-01

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. PMID:21295019

  6. Children's Sensitivity to Error Magnitude when Evaluating Informants

    ERIC Educational Resources Information Center

    Einav, Shiri; Robinson, Elizabeth J.

    2010-01-01

    Three experiments examined children's (N = 80; 40; 48) sensitivity to error magnitude as a measure of informants' past accuracy, and indication of future reliability. Experiments 1 and 2 assessed whether, in a forced-choice task, children would evaluate as better and show greater trust in an informant whose previous errors were consistently within…

  7. Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference.

    PubMed

    Thurley, Kay

    2016-01-01

    Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes. PMID:26909028

  8. Bayesian Predictive Distribution for the Magnitude of the Largest Aftershock

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.

    2014-12-01

    Aftershock sequences, which follow large earthquakes, last hundreds of days and are characterized by well defined frequency-magnitude and spatio-temporal distributions. The largest aftershocks in a sequence constitute significant hazard and can inflict additional damage to infrastructure. Therefore, the estimation of the magnitude of possible largest aftershocks in a sequence is of high importance. In this work, we propose a statistical model based on Bayesian analysis and extreme value statistics to describe the distribution of magnitudes of the largest aftershocks in a sequence. We derive an analytical expression for a Bayesian predictive distribution function for the magnitude of the largest expected aftershock and compute the corresponding confidence intervals. We assume that the occurrence of aftershocks can be modeled, to a good approximation, by a non-homogeneous Poisson process with a temporal event rate given by the modified Omori law. We also assume that the frequency-magnitude statistics of aftershocks can be approximated by Gutenberg-Richter scaling. We apply our analysis to 19 prominent aftershock sequences, which occurred in the last 30 years, in order to compute the Bayesian predictive distributions and the corresponding confidence intervals. In the analysis, we use the information of the early aftershocks in the sequences (in the first 1, 10, and 30 days after the main shock) to estimate retrospectively the confidence intervals for the magnitude of the expected largest aftershocks. We demonstrate by analysing 19 past sequences that in many cases we are able to constrain the magnitudes of the largest aftershocks. For example, this includes the analysis of the Darfield (Christchurch) aftershock sequence. The proposed analysis can be used for the earthquake hazard assessment and forecasting associated with the occurrence of large aftershocks. The improvement in instrumental data associated with early aftershocks can greatly enhance the analysis and

  9. Toward Reconciling Magnitude Discrepancies Estimated from Paleoearthquake Data: A New Approach for Predicting Earthquake Magnitudes from Fault Segment Lengths

    NASA Astrophysics Data System (ADS)

    Carpenter, N. S.; Payne, S. J.; Schafer, A. L.

    2011-12-01

    We recognize a discrepancy in magnitudes estimated for several Basin and Range faults in the Intermountain Seismic Belt, U.S.A. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths, Lseg, where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements, D, along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M ~ Lseg, should equal M ~ D). Typically, the empirical relationships are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating Lseg with surface rupture length, SRL. Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M ~ SRL relationship using Lseg as SRL leads to an underestimation of magnitude and the M ~ Lseg and M ~ D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude, Mw, and length, where length is Lseg instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw ~ Lseg results are strikingly consistent with Mw ~ D calculations using paleoearthquake data for

  10. Forecasting magnitude, time, and location of aftershocks for aftershock hazard

    NASA Astrophysics Data System (ADS)

    Chen, K.; Tsai, Y.; Huang, M.; Chang, W.

    2011-12-01

    In this study we investigate the spatial and temporal seismicity parameters of the aftershock sequence accompanying the 17:47 20 September 1999 (UTC) 7.45 Chi-Chi earthquake Taiwan. Dividing the epicentral zone into north of the epicenter, at the epicenter, and south of the epicenter, it is found that immediately after the earthquake the area close by the epicenter had a lower value than both the northern and southern sections. This pattern suggests that at the time of the Chi-Chi earthquake, the area close by the epicenter remained prone to large magnitude aftershocks and strong shaking. However, with time the value increases. An increasing value indicates a reduced likelihood of large magnitude aftershocks. The study also shows that the value is higher at the southern section of the epicentral zone, indicating a faster rate of decay in this section. The primary purpose of this paper is to design a predictive model for forecasting the magnitude, time, and location of aftershocks to large earthquakes. The developed model is presented and applied to the 17:47 20 September 1999 7.45 Chi-Chi earthquake Taiwan, and the 09:32 5 November 2009 (UTC) Nantou 6.19, and 00:18 4 March 2010 (UTC) Jiashian 6.49 earthquake sequences. In addition, peak ground acceleration trends for the Nantou and Jiashian aftershock sequences are predicted and compared to actual trends. The results of the estimated peak ground acceleration are remarkably similar to calculations from recorded magnitudes in both trend and level. To improve the predictive skill of the model for occurrence time, we use an empirical relation to forecast the time of aftershocks. The empirical relation improves time prediction over that of random processes. The results will be of interest to seismic mitigation specialists and rescue crews. We apply also the parameters and empirical relation from Chi-Chi aftershocks of Taiwan to forecast aftershocks with magnitude M > 6.0 of 05:46 11 March 2011 (UTC) Tohoku 9

  11. How are number words mapped to approximate magnitudes?

    PubMed

    Sullivan, Jessica; Barner, David

    2013-01-01

    How do we map number words to the magnitudes they represent? While much is known about the developmental trajectory of number word learning, the acquisition of the counting routine, and the academic correlates of estimation ability, previous studies have yet to describe the mechanisms that link number words to nonverbal representations of number. We investigated two mechanisms: associative mapping and structure mapping. Four dot array estimation tasks found that adults' ability to match a number word to one of two discriminably different sets declined as a function of set size and that participants' estimates of relatively large, but not small, set sizes were influenced by misleading feedback during an estimation task. We propose that subjects employ structure mappings for linking relatively large number words to set sizes, but rely chiefly on item-by-item associative mappings for smaller sets. These results indicate that both inference and association play important roles in mapping number words to approximate magnitudes. PMID:22963174

  12. A Search for 23rd Magnitude Kuiper Belt Comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane

    1997-01-01

    The goal of the project was to identify a statistically significant sample of large (200 km-sized) Kuiper Belt Objects (KBOs), by covering 10 sq. degrees of the sky to a red limiting magnitude m(sub R) = 23. This work differs from, but builds on, previous surveys of the outer solar system in that it will cover a large area to a limiting magnitude that is deep enough to guarantee positive results. The proposed work should provide us with a significant number of 200 km-size KBOs (approx. 20 are expected) for subsequent studies. Such a sample is crucial if we are to investigate the statistical properties of the Belt and its members. It was modified the original research strategy to accommodate unanticipated problems such as the urgent need for follow-up observations,the original goal was still reached: we have substantially increased the number of Kuiper Belt Objects brighter than 23rd mag.

  13. New methods for predicting the magnitude of sunspot maximum

    NASA Technical Reports Server (NTRS)

    Brown, G. M.

    1979-01-01

    Three new and independent methods of predicting the magnitude of a forthcoming sunspot maximum are suggested. The longest lead time is given by the first method, which is based on a terrestrial parameter measured during the declining phase of the preceding cycle. The second method, with only a slightly shorter foreknowledge, is based on an interplanetary parameter derived around the commencement of the cycle in question (sunspot minimum). The third method, giving the shortest prediction lead-time, is based entirely on solar parameters measured during the initial progress of the cycle in question. Application of all three methods to forecast the magnitude of the next maximum (Cycle 21) agree in predicting that it is likely to be very similar to that of Cycle 18.

  14. Sensori-motor spatial training of number magnitude representation.

    PubMed

    Fischer, Ursula; Moeller, Korbinian; Bientzle, Martina; Cress, Ulrike; Nuerk, Hans-Christoph

    2011-02-01

    An adequately developed spatial representation of number magnitude is associated with children's general arithmetic achievement. Therefore, a new spatial-numerical training program for kindergarten children was developed in which presentation and response were associated with a congruent spatial numerical representation. In particular, children responded by a full-body spatial movement on a digital dance mat in a magnitude comparison task. This spatial-numerical training was more effective than a non-spatial control training in enhancing children's performance on a number line estimation task and a subtest of a standardized mathematical achievement battery (TEDI-MATH). A mediation analysis suggested that these improvements were driven by an improvement of children's mental number line representation and not only by unspecific factors such as attention or motivation. These results suggest a benefit of spatial numerical associations. Rather than being a merely associated covariate, they work as an independently manipulated variable which is functional for numerical development. PMID:21327351

  15. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  16. MAGNITUDE GAP STATISTICS AND THE CONDITIONAL LUMINOSITY FUNCTION

    SciTech Connect

    More, Surhud

    2012-12-20

    In a recent preprint, Hearin et al. (H12) suggest that the halo mass-richness calibration of clusters can be improved by using the difference in the magnitude of the brightest and the second brightest galaxy (magnitude gap) as an additional observable. They claim that their results are at odds with the results from Paranjape and Sheth (PS12) who show that the magnitude distribution of the brightest and second brightest galaxies can be explained based on order statistics of luminosities randomly sampled from the total galaxy luminosity function. We find that a conditional luminosity function (CLF) for galaxies which varies with halo mass, in a manner which is consistent with existing observations, naturally leads to a magnitude gap distribution which changes as a function of halo mass at fixed richness, in qualitative agreement with H12. We show that, in general, the luminosity distribution of the brightest and the second brightest galaxy depends upon whether the luminosities of galaxies are drawn from the CLF or the global luminosity function. However, we also show that the difference between the two cases is small enough to evade detection in the small sample investigated by PS12. This shows that the luminosity distribution is not the appropriate statistic to distinguish between the two cases, given the small sample size. We argue in favor of the CLF (and therefore H12) based upon its consistency with other independent observations, such as the kinematics of satellite galaxies, the abundance and clustering of galaxies, and the galaxy-galaxy lensing signal from the Sloan Digital Sky Survey.

  17. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  18. Can we test for the maximum possible earthquake magnitude?

    NASA Astrophysics Data System (ADS)

    Holschneider, M.; Zöller, G.; Clements, R.; Schorlemmer, D.

    2014-03-01

    We explore the concept of maximum possible earthquake magnitude, M, in a region represented by an earthquake catalog from the viewpoint of statistical testing. For this aim, we assume that earthquake magnitudes are independent events that follow a doubly truncated Gutenberg-Richter distribution and focus on the upper truncation M. In earlier work, it has been shown that the value of M cannot be well constrained from earthquake catalogs alone. However, for two hypothesized values M and M', alternative statistical tests may address the question: Which value is more consistent with the data? In other words, is it possible to reject a magnitude within reasonable errors, i.e., the error of the first and the error of the second kind? The results for realistic settings indicate that either the error of the first kind or the error of the second kind is intolerably large. We conclude that it is essentially impossible to infer M in terms of alternative testing with sufficient confidence from an earthquake catalog alone, even in regions like Japan with excellent data availability. These findings are also valid for frequency-magnitude distributions with different tail behavior, e.g., exponential tapering. Finally, we emphasize that different data may only be useful to provide additional constraints for M, if they do not correlate with the earthquake catalog, i.e., if they have not been recorded in the same observational period. In particular, long-term geological assessments might be suitable to reduce the errors, while GPS measurements provide overall the same information as the catalogs.

  19. The magnitude-redshift relation for 561 Abell clusters

    NASA Technical Reports Server (NTRS)

    Postman, M.; Huchra, J. P.; Geller, M. J.; Henry, J. P.

    1985-01-01

    The Hubble diagram for the 561 Abell clusters with measured redshifts has been examined using Abell's (1958) corrected photo-red magnitudes for the tenth-ranked cluster member (m10). After correction for the Scott effect and K dimming, the data are in good agreement with a linear magnitude-redshift relation with a slope of 0.2 out to z = 0.1. New redshift data are also presented for 20 Abell clusters. Abell's m10 is suitable for redshift estimation for clusters with m10 of no more than 16.5. At fainter m10, the number of foreground galaxies expected within an Abell radius is large enough to make identification of the tenth-ranked galaxy difficult. Interlopers bias the estimated redshift toward low values at high redshift. Leir and van den Bergh's (1977) redshift estimates suffer from this same bias but to a smaller degree because of the use of multiple cluster parameters. Constraints on deviations of cluster velocities from the mean cosmological flow require greater photometric accuracy than is provided by Abell's m10 magnitudes.

  20. Typical magnitude and spatial extent of crowding in autism

    PubMed Central

    Freyberg, Jan; Robertson, Caroline E.; Baron-Cohen, Simon

    2016-01-01

    Enhanced spatial processing of local visual details has been reported in individuals with autism spectrum conditions (ASC), and crowding is postulated to be a mechanism that may produce this ability. However, evidence for atypical crowding in ASC is mixed, with some studies reporting a complete lack of crowding in autism and others reporting a typical magnitude of crowding between individuals with and without ASC. Here, we aim to disambiguate these conflicting results by testing both the magnitude and the spatial extent of crowding in individuals with ASC (N = 25) and age- and IQ-matched controls (N = 23) during an orientation discrimination task. We find a strong crowding effect in individuals with and without ASC, which falls off as the distance between target and flanker is increased. Both the magnitude and the spatial range of this effect were comparable between individuals with and without ASC. We also find typical (uncrowded) orientation discrimination thresholds in individuals with ASC. These findings suggest that the spatial extent of crowding is unremarkable in ASC, and is therefore unlikely to account for the visual symptoms reported in individuals with the diagnosis. PMID:26998801

  1. The Road to Convergence in Earthquake Frequency-Magnitude Statistics

    NASA Astrophysics Data System (ADS)

    Naylor, M.; Bell, A. F.; Main, I. G.

    2013-12-01

    The Gutenberg-Richter frequency-magnitude relation is a fundamental empirical law of seismology, but its form remains uncertain for rare extreme events. Convergence trends can be diagnostic of the nature of an underlying distribution and its sampling even before convergence has occurred. We examine the evolution of an information criteria metric applied to earthquake magnitude time series, in order to test whether the Gutenberg-Richter law can be rejecting in various earthquake catalogues. This would imply that the catalogue is starting to sample roll-off in the tail though it cannot yet identify the form of the roll-off. We compare bootstrapped synthetic Gutenberg-Richter and synthetic modified Gutenberg-Richter catalogues with the convergence trends observed in real earthquake data e.g. the global CMT catalogue, Southern California and mining/geothermal data. Whilst convergence in the tail remains some way off, we show that the temporal evolution of model likelihoods and parameters for the frequency-magnitude distribution of the global Harvard Centroid Moment Tensor catalogue is inconsistent with an unbounded GR relation, despite it being the preferred model at the current time. Bell, A. F., M. Naylor, and I. G. Main (2013), Convergence of the frequency-size distribution of global earthquakes, Geophys. Res. Lett., 40, 2585-2589, doi:10.1002/grl.50416.

  2. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  3. Correlating precursory declines in groundwater radon with earthquake magnitude.

    PubMed

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. PMID:23550908

  4. Hybrid Modelling of the Economical Consequences of Extreme Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Garcia, S.; Emerson, D.; Perea, N.; Salazar, A.; Moulinec, C.

    2013-05-01

    A hybrid modelling methodology is proposed to estimate the probability of exceedance of the intensities of extreme magnitude earthquakes (PEI) and of their direct economical consequences (PEDEC). The hybrid modeling uses 3D seismic wave propagation (3DWP) combined with empirical Green function (EGF) and Neural Network (NN) techniques in order to estimate the seismic hazard (PEIs) of extreme earthquakes (plausible) scenarios corresponding to synthetic seismic sources. The 3DWP modeling is achieved by using a 3D finite difference code run in the ~100 thousands cores Blue Gene Q supercomputer of the STFC Daresbury Laboratory of UK. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. The methodology is validated for Mw 8 magnitude subduction events, and show examples of its application for the estimation of the hazard and the economical consequences, for extreme Mw 8.5 subduction earthquake scenarios with seismic sources in the Mexican Pacific Coast. The results obtained with the proposed methodology, such as those of the PEDECs in terms of the joint event "damage Cost (C) - maximum ground intensities", of the conditional return period of C given that the maximum intensity exceeds a certain value, could be used by decision makers to allocate funds or to implement policies, to mitigate the impact associated to the plausible occurrence of future extreme magnitude earthquakes.

  5. Regional moment: Magnitude relations for earthquakes and explosions

    SciTech Connect

    Patton, H.J.; Walter, W.R. )

    1993-02-19

    The authors present M[sub o]:m[sub b] relations using m[sub b](P[sub n]) and m[sub b](L[sub g]) for earthquakes and explosions occurring in tectonic and stable areas. The observations for m[sub b](P[sub n]) range from about 3 to 6 and show excellent separation between earthquakes and explosions on M[sub o]:m[sub b] plots, independent of the magnitude. The scatter in M[sub o]:M[sub b] observations for NTS explosions is small compared to the earthquake data. The M[sub o]:m[sub b](L[sub g]) data for Soviet explosions overlay the observations for US explosions. These results, and the small scatter for NTS explosions, suggest weak dependence of M[sub o]:m[sub b] relations on emplacement media. A simple theoretical model is developed which matches all these observations. The model uses scaling similarity and conservation of energy to provide a physical link between seismic moment and a broadband seismic magnitude. Three factors, radiation pattern, material property, and apparent stress, contribute to the separation between earthquakes and explosions. This theoretical separation is independent of broadband magnitude. For US explosions in different media, the material property and apparent stress contributions are shown to compensate for one another, supporting the observations that M[sub o]:M[sub b] is nearly independent of source geology. 19 refs., 2 figs., 1 tab.

  6. The magnitude-redshift relation in a realistic inhomogeneous universe

    SciTech Connect

    Hada, Ryuichiro; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp

    2014-12-01

    The light rays from a source are subject to a local inhomogeneous geometry generated by inhomogeneous matter distribution as well as the existence of collapsed objects. In this paper we investigate the effect of inhomogeneities and the existence of collapsed objects on the propagation of light rays and evaluate changes in the magnitude-redshift relation from the standard relationship found in a homogeneous FRW universe. We give the expression of the correlation function and the variance for the perturbation of apparent magnitude, and calculate it numerically by using the non-linear matter power spectrum. We use the lognormal probability distribution function for the density contrast and spherical collapse model to truncate the power spectrum in order to estimate the blocking effect by collapsed objects. We find that the uncertainties in Ω{sub m} is ∼ 0.02, and that of w is ∼ 0.04 . We also discuss a possible method to extract these effects from real data which contains intrinsic ambiguities associated with the absolute magnitude.

  7. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGESBeta

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes mb = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  8. Does low magnitude earthquake ground shaking cause landslides?

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Rosser, Nick; Vann Jones, Emma; Tunstall, Neil

    2015-04-01

    Estimating the magnitude of coseismic landslide strain accumulation at both local and regional scales is a key goal in understanding earthquake-triggered landslide distributions and landscape evolution, and in undertaking seismic risk assessment. Research in this field has primarily been carried out using the 'Newmark sliding block method' to model landslide behaviour; downslope movement of the landslide mass occurs when seismic ground accelerations are sufficient to overcome shear resistance at the landslide shear surface. The Newmark method has the advantage of simplicity, requiring only limited information on material strength properties, landslide geometry and coseismic ground motion. However, the underlying conceptual model assumes that shear strength characteristics (friction angle and cohesion) calculated using conventional strain-controlled monotonic shear tests are valid under dynamic conditions, and that values describing shear strength do not change as landslide shear strain accumulates. Recent experimental work has begun to question these assumptions, highlighting, for example, the importance of shear strain rate and changes in shear strength properties following seismic loading. However, such studies typically focus on a single earthquake event that is of sufficient magnitude to cause permanent strain accumulation; by doing so, they do not consider the potential effects that multiple low-magnitude ground shaking events can have on material strength. Since such events are more common in nature relative to high-magnitude shaking events, it is important to constrain their geomorphic effectiveness. Using an experimental laboratory approach, we present results that address this key question. We used a bespoke geotechnical testing apparatus, the Dynamic Back-Pressured Shear Box (DynBPS), that uniquely permits more realistic simulation of earthquake ground-shaking conditions within a hillslope. We tested both cohesive and granular materials, both of which

  9. Trends in flood peaks' magnitude and seasonality in European transects

    NASA Astrophysics Data System (ADS)

    Diamantini, Elena; Mallucci, Stefano; Allamano, Paola; Claps, Pierluigi; Laio, Francesco; Viglione, Alberto; Hall, Julia; Blöschl, Günter

    2015-04-01

    In the last decade floods seems to have lashed more and more European population, so that more accurate studies concerning flood events tendencies are needed. We present a work in which trends in flood peaks' magnitude and seasonality (in time and space) are analyzed at the European scale: in total 2055 and 4340 stations respectively for magnitude and seasonality are considered along transect lines including entire nations, ranging typically from north to south of Europe. The work is part of the ERC Project "Deciphering River Flood Change". Trend analysis of flood magnitudes is applied to time series longer than 40 years. We find that there is a cluster of stations with negative trends in flood magnitude around the alpine and perialpine area. Positive trends are more frequent in the valleys of the mid Europe. We also use quantile regressions to investigate the behaviour of the highest quantiles, corresponding to floods with the highest return period. The original database is further divided into four classes based on station elevation; the group of catchments between 500 and 1000 m a.s.l. has the most positive trends for the large quantiles. The analysis is further developed by considering the coefficient of variation in 10-years time windows covering the data; the possible presence of trends in the CV is investigated. The obtained results show that there is a global prevalence of positive trend in the CVs, in particular for stations between 500 and 1000 m a.s.l., demonstrating a tendency toward the increase of very large (and possibly very small) annual maxima. To better discriminate the above results we used quantile regressions, able to highlight the trend behaviour of the highest quantiles computed on flood time series, Moreover, the database is divided into four classes based on station elevation. Results show that the group of catchments between 500 and 1000 m a.s.l. has definite and positive trends for the large quantiles. A different branch of this study

  10. Understanding high magnitude flood risk: evidence from the past

    NASA Astrophysics Data System (ADS)

    MacDonald, N.

    2009-04-01

    The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.

  11. Lower-bound magnitude for probabilistic seismic hazard assessment

    SciTech Connect

    McCann, M.W. Jr.; Reed, J.W. and Associates, Inc., Mountain View, CA )

    1989-10-01

    This report provides technical information to determine the lower-bound earthquake magnitude (LBM) for use in probabilistic seismic hazard (PSH) computations that are applied to nuclear plant applications. The evaluations consider the seismologic characteristics of earthquake experience at similar facilities and insights from probabilistic risk analysis. The recommendations for LBM satisfy the two basic precepts: (1) there is a reasonable engineering assurance that the likelihood of damage due to earthquakes smaller than the LBM is negligible, and (2) any small risk due to earthquakes smaller than the LBM is compensated by conservatisms in PSH results for larger earthquakes. Theoretical and empirical ground motion studies demonstrate that ground shaking duration and spectral shape are a strong function of earthquake magnitude. Small earthquakes have short duration and spectral shapes centered at high frequencies as compared to nuclear power plant design spectra which are typical of moderate and large earthquakes. Analysis of earthquake experience data shows damage to heavy industrial facilities, taken as analogs to nuclear plant structures and components, occurs for earthquakes having moment magnitude M larger than 5.1. Probabilistic seismic risk and margins studies show nuclear plant structures and adequately anchored ductile components to be rugged for moderate-size earthquakes with broad design-type spectral shapes. They may, therefore, be considered rugged for small earthquakes. Finally, nonlinear analysis of the damage effectiveness of strong-motion recordings shows that potential damage does not occur for earthquakes smaller than about M5.6. These results support a conservative LBM of M5.0 for application to nuclear power plant PSH assessments. 144 refs., 78 figs., 34 tabs.

  12. Unexpected downshift in reward magnitude induces variation in human behavior

    PubMed Central

    Jensen, Greg; Stokes, Patricia; Paterniti, Anthea; Balsam, Peter

    2013-01-01

    We investigated how changes in outcome magnitude affect behavioral variation in human volunteers. Participants entered strings of characters using a computer keyboard, receiving feedback (gaining a number of points) for any string at least 10 characters long. During a “surprise” phase in which the number of points awarded was changed, participants only increased their behavioral variability when the reward value was downshifted to a lower amount, and only when such a shift was novel. Upshifts in reward did not have a systematic effect on variability. PMID:23884690

  13. In Brief: China shaken by magnitude 7.9 earthquake

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-05-01

    A magnitude 7.9 earthquake that struck the eastern Sichuan region of China on 12 May 2008 at 0628 UTC has caused more than 22,000 fatalities as of press time, and Chinese government officials have indiciated that this figure could increase to 50,000. The quake also caused severe damage including landslides and cracks to 391 mostly small dams, according to an Associated Press report that cited the Xinhua News Agency and CCTV news. China's Ministry of Water Resources has dispatched several work teams to quake-hit localities ``to prevent dams that were damaged by the earthquake from bursting and endangering the lives of residents,'' the ministry stated.

  14. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  15. Lightcurve Analysis of a Magnitude Limited Asteroid Sample

    NASA Astrophysics Data System (ADS)

    Molnar, Lawrence A.; Haegert, Melissa, J.; Beaumont, Christopher N.; Block, Marjorie J.; Brom, Timothy H.; Butler, Andrew R.; Cook, Peter L.; Green, Allyson, G.; Holtrop, Joshua P.; Hoogeboom, Kathleen M.; Kulisek, Jason J.; Lovelace, Jonathan S.; Olivero, Jeffrey S.; Shrestha, Achyut; Taylor, Jessie F.; Todd, Kenneth, D.; Vander Heide, John D.; van Coter, Samuel O.

    2008-03-01

    Synodic rotation periods and amplitudes for twelve main-belt asteroids observed at the Calvin-Rehoboth Observatory are reported: 285 Regina, 939 Isberga, 1104 Syringa, 1206 Numerowia, 1613 Smiley, 1623 Vivian, 1835 Gajdariya, 3013 Dobrovoleva, 3170 Dzhanibekov, 4411 Kochibunkyo, (5854) 1992UP, and (119245) 2001 QD293. The asteroid 939 Isberga is a binary with orbital period 26.8 ± 0.1 h. Together with five asteroids previously measured these constitute a complete magnitude limited sample which can be used to test for bias in the larger catalog of rotation periods.

  16. A Psychological Model for Aggregating Judgments of Magnitude

    NASA Astrophysics Data System (ADS)

    Merkle, Edgar C.; Steyvers, Mark

    In this paper, we develop and illustrate a psychologically-motivated model for aggregating judgments of magnitude across experts. The model assumes that experts' judgments are perturbed from the truth by both systematic biases and random error, and it provides aggregated estimates that are implicitly based on the application of nonlinear weights to individual judgments. The model is also easily extended to situations where experts report multiple quantile judgments. We apply the model to expert judgments concerning flange leaks in a chemical plant, illustrating its use and comparing it to baseline measures.

  17. The Earthquake Frequency-Magnitude Distribution Functional Shape

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2012-04-01

    Knowledge of the completeness magnitude Mc, magnitude above which all earthquakes are detected, is a prerequisite to most seismicity analyses. Although computation of Mc is done routinely, different techniques often result in different values. Since an incorrect estimate can lead to under-sampling or worse to an erroneous estimate of the parameters of the Gutenberg-Richter (G-R) law, a better assessment of the deviation from the G-R law and thus of the earthquake detectability is of paramount importance to correctly estimate Mc. This is especially true for refined mapping of seismicity parameters such as in earthquake forecast models. The capacity of a seismic network to detect small earthquakes can be evaluated by investigating the functional shape of the earthquake Frequency-Magnitude Distribution (FMD). The non-cumulative FMD takes the form N(m) ∝ exp(-βm)q(m) where N(m) is the number of events of magnitude m, exp(-βm) the G-R law and q(m) a probability function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature often observed in bulk FMDs. Recent results however show that this gradual curvature is potentially due to spatial heterogeneities in Mc, meaning that the functional shape of the elemental (local) FMD still has to be described. Based on preliminary observations, we propose an exponential detection function of the form q(m) = exp(κ(m-Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models (gradually curved and angular) are compared in Southern California and Nevada. We show that the angular shaped FMD model better describes the elemental FMD and that the sum of elemental FMDs with different Mc(x,y) leads to the gradually curved FMD at the regional scale. We show that the proposed model (1) provides more robust estimates of Mc, (2) better estimates local b-values, and (3) gives an insight into earthquake detectability properties by using seismicity as a proxy

  18. Sequence data - Magnitude and implications of some ambiguities.

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Jukes, T. H.

    1972-01-01

    A stochastic model is applied to the divergence of the horse-pig lineage from a common ansestor in terms of the alpha and beta chains of hemoglobin and fibrinopeptides. The results are compared with those based on the minimum mutation distance model of Fitch (1972). Buckwheat and cauliflower cytochrome c sequences are analyzed to demonstrate their ambiguities. A comparative analysis of evolutionary rates for various proteins of horses and pigs shows that errors of considerable magnitude are introduced by Glx and Asx ambiguities into evolutionary conclusions drawn from sequences of incompletely analyzed proteins.

  19. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  20. Coastal erosion: Processes, timing and magnitudes at the bluff toe

    USGS Publications Warehouse

    Carter, C.H.; Guy, D.E., Jr.

    1988-01-01

    Five Lake Erie bluffs (one interlaminated clay and silt, three clay-rich diamicts and one shale) were surveyed at about 2-week intervals and after wind storms for up to 5 years. Erosion of the bluff toes along this low-energy coast occurred during northeast wind storms, which produced surges of up to 1 m and surf-zone waves of up to 1.2 m. Wave impact and/or uprush caused quarrying, which removed most of the toe material, and abrasion. There were from 1 to 23 erosion events/sites, with maximum magnitudes of erosion ranging from 12 to 55 cm/event. Timing and magnitude were linked to erodibility, maximum water level, storm surge, storm duration and beach width. A threshold maximum water level and a threshold surge were necessary for erosion. At these thresholds, the beach was submerged and wave energy was directly expended on the toe. Erosion did not take place when there was shorefast ice or when debris slopes shielded the toe from waves. The originally cohesive toe materials are easily eroded when they weather to an essentially noncohesive state. Wave erosion is the crucial erosion process; removal of material from the toe prevents the development of a stable slope. ?? 1988.

  1. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    USGS Publications Warehouse

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-01-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  2. Millennial scale variability in high magnitude flooding across Britain

    NASA Astrophysics Data System (ADS)

    Macdonald, N.

    2014-09-01

    The last decade has witnessed severe flooding across much of the globe, but have these floods really been exceptional? Globally, relatively few instrumental river flow series extend beyond 50 years, with short records presenting significant challenges in determining flood risk from high-magnitude floods. A perceived increase in extreme floods in recent years has decreased public confidence in conventional flood risk estimates; the results affect society (insurance costs), individuals (personal vulnerability) and companies (e.g. water resource managers - flood/drought risk). Here we show how historical records from Britain have improved understanding of high magnitude floods, by examining past spatial and temporal variability. The findings identify that whilst recent floods are notable, several comparable periods of increased flooding are identifiable historically, with periods of greater frequency (flood-rich periods) or/and larger floods. The use of historical records identifies that the largest floods often transcend single catchments affecting regions and that the current flood rich period is not exceptional.

  3. Influence of storm magnitude and watershed size on runoff nonlinearity

    NASA Astrophysics Data System (ADS)

    Lee, Kwan Tun; Huang, Jen-Kuo

    2016-06-01

    The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.

  4. Regional moment - Magnitude relations for earthquakes and explosions

    NASA Astrophysics Data System (ADS)

    Patton, Howard J.; Walter, William R.

    1993-02-01

    We present M sub o:m sub b relations using m sub b (P sub n) and m sub b (L sub g) for earthquakes and explosions occurring in tectonic and stable areas. The observations for m sub b (P sub n) range from about 3 to 6 and show excellent separation between earthquakes and explosions on M sub o:m sub b plots, independent of the magnitude. The scatter in M sub o:m sub b observations for NTS explosions is small compared to the earthquake data. The M sub o:m sub b (L sub g) data for Soviet explosions overlay the observations for U.S. explosions. These results, and the small scatter for NTS explosions, suggest weak dependence of M sub o:m sub b relations on emplacement media. A simple theoretical model is developed which matches all these observations. The model uses scaling similarity and conservation of energy to provide a physical link between seismic moment and a broadband seismic magnitude. For U.S. explosions in different media, the material property and apparent stress contributions are shown to compensate for one another, supporting the observations that M sub o:m sub b is nearly independent of source geology.

  5. A Study of LFE Magnitudes in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.

    2014-12-01

    We have compiled a comprehensive suite of ~250 low-frequency-earthquake (LFE) templates representing spatially distinct tremor sources on or near the plate boundary in northern Cascadia from northern Vancouver Island to southern Washington. Each template is assembled from 100's to 1000's of individual LFEs, representing a total of over 200,000 independent detections spanning a selection of episodic-tremor-and-slip (ETS) events between 2003 and 2013. On the basis of empirical evidence and analytical arguments, these templates can be considered as band-limited, empirical Green's functions excited from shallow-thrust point sources to station locations corresponding to a collection of temporary and permanent network sites. The high fidelity of template match-filtered detections enables precise alignment of individual LFE time series and analysis of LFE amplitudes. Upon correction for geometrical spreading, attenuation, free-surface magnification and radiation pattern, we solve for station-channel amplification factors and LFE magnitudes for all detections corresponding to a given ETS episode. We will present a spatio-temporal analysis of LFE magnitudes including their variability across different ETS events, their dependence in along-dip location, and their expression in different rupture modes, i.e. main front versus rapid tremor reversals of Houston [2011] versus small scale reversals of Rubin and Armbruster [2013].

  6. Los problemas de contenido y de empleo del verbo haber (Problems of Meaning and Use of the Verb "Haber.")

    ERIC Educational Resources Information Center

    Perez Botero, Luis A.

    1975-01-01

    Discusses the derivation, meaning and both past and present uses of the Spanish verb "haber." The verb refers to relationships of possession, duration and existence, and is used as an auxiliary. Extant derivative forms of the verb in other languages and earlier Spanish meanings are noted. (Text is in Spanish.) (CHK)

  7. Temas y problemas del idioma espanol en la prensa (Spanish Language Topics and Problems in the Press).

    ERIC Educational Resources Information Center

    El Brocense; And Others

    1980-01-01

    This section consists of reprints on the following topics: (1) the misuse of "en"; (2) anglicisms; (3) widespread use of vulgar language; (4) an interview with Emilio Criado on Spanish language variation; (5) use of the feminine in professional titles; and (6) Spanish, the national language of Latin American countries. (AMH)

  8. Una formalizacion tentativa del problema de la barrera linguistica (A Tentative Formalization of the Problem of Linguistic Barriers).

    ERIC Educational Resources Information Center

    Zierer, Ernesto

    1971-01-01

    The formulas presented in this paper provide the means for showing the ease with which scientific information can be passed from one language into another. The formulas are based on several factors. The linguistic barrier can be measured to illustrate the relative degree of difference between two languages based on a comparison of vocabulary,…

  9. Aportes del Aprendizaje Basado en Problemas (ABP) en la ensenanza de la Fisiologia Animal en un programa de Zootecnia

    NASA Astrophysics Data System (ADS)

    Reinartz-Estrada, Monica

    Based on difficulties observed on the subject of technical-scientific conceptualization and the integration of theory and practice in learning animal physiology for students in the Animal Science program at the National University of Colombia in Medellin, this research paper proposes a problem-based learning strategy founded on the method of Problem Based Learning (PBL), applied specifically to the issues of thermoregulation and physiological stress in domestic animals. In this case study, a sample size of eight students was presented with a pedagogical problem during the first session that would then be solved during the course. In order to evaluate the process, three surveys were conducted called Level Test Formulations (NF) performed at different times of the trial: one before beginning the topic (NF 1), one after three theoretical classes had been given and before beginning the fieldwork (NF 2), and another one after the end of the process (NF 3). Finally, individual interviews were conducted with each student to know the students' perceptions regarding the method. The information obtained was subjected to a qualitative analysis and categorization, using the QDA Miner program which reviewed and coded texts from the surveys and individual interviews, supplemented in turn, by field observation, analyzing the conceptual change, the theory-practice relationship and the correlation between the variables and categories established. Among the main results obtained, it should be noted that following the implementation of PBL in this Animal Physiology course, support for conceptual change was demonstrated and the formulated problem served as a connector between theory and practice. Moreover, there was a fusion of prior knowledge with newly acquired knowledge, meaningful learning, improvement in the level of conceptualization and an increase in the scientificness of definitions; it also led to problem-solving and overcoming epistemological obstacles such as multidisciplinarity and nonlinearity. As a result of this research, it is recommended that this method be evaluated in other topics related to Animal Physiology, in other sciences, in larger sample sizes, as well as to address the issue of evaluation applied directly to this method. Key words: Problem Based Learning (PBL), conceptual change, integration of theory and practice, significatif learning, animal physiology, thermoregulation, physiological stress.

  10. The color-magnitude distribution of small Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-11-01

    Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the

  11. The absolute magnitude distribution of Kuiper Belt objects

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin

    2014-02-20

    Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power laws. The cold population has a bright-end slope, α{sub 1}=1.5{sub −0.2}{sup +0.4}, and break magnitude, H{sub B}=6.9{sub −0.2}{sup +0.1} (r'-band). The hot population has a shallower bright-end slope of, α{sub 1}=0.87{sub −0.2}{sup +0.07}, and break magnitude H{sub B}=7.7{sub −0.5}{sup +1.0}. Both populations share similar faint-end slopes of α{sub 2} ∼ 0.2. We estimate the masses of the hot and cold populations are ∼0.01 and ∼3 × 10{sup –4} M {sub ⊕}. The broken power-law fit to the Trojan H-distribution has α{sub 1} = 1.0 ± 0.2, α{sub 2} = 0.36 ± 0.01, and H {sub B} = 8.3. The Kolmogorov-Smirnov test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide-field survey data suggest that the brightest few hot objects, with H{sub r{sup ′}}≲3, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.

  12. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  13. Reevaluating the two-representation model of numerical magnitude processing.

    PubMed

    Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng

    2016-01-01

    One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models. PMID:26268066

  14. Stress orientations and magnitudes in the SAFOD pilot hole

    USGS Publications Warehouse

    Hickman, S.; Zoback, M.

    2004-01-01

    Borehole breakouts and drilling-induced tensile fractures in the 2.2-km-deep SAFOD pilot hole at Parkfield, CA, indicate significant local variations in the direction of the maximum horizontal compressive stress, SHmax, but show a generalized increase in the angle between SHmax and the San Andreas Fault with depth. This angle ranges from a minimum of 25 ?? 10?? at 1000-1150 m to a maximum of 69 ?? 14?? at 2050-2200 m. The simultaneous occurrence of tensile fractures and borehole breakouts indicates a transitional strike-slip to reverse faulting stress regime with high horizontal differential stress, although there is considerable uncertainty in our estimates of horizontal stress magnitudes. If stress observations near the bottom of the pilot hole are representative of stresses acting at greater depth, then they are consistent with regional stress field indicators and an anomalously weak San Andreas Fault in an otherwise strong crust. Copyright 2004 by the American Geophysical Union.

  15. What is the Meaning of the Physical Magnitude `Work'?

    NASA Astrophysics Data System (ADS)

    Kanderakis, Nikos

    2014-06-01

    Usually, in physics textbooks, the physical magnitude `work' is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, `work' is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is missing. On the other hand, in the history of its creation, `work' was a concept that had empirical meaning from the start. It was constructed by engineers to measure the work (labor) of motor engines, men, and animals. Very soon however this initial meaning seems to vanish. In this article, it will be looked at how `work' is presented in physics textbooks, what was its initial meaning in the history of its formulation, under what circumstances this initial meaning faded, and how elements from the history of its creation can be used in the classroom to teach it.

  16. Membership probability via control-field colour-magnitude decontamination†

    NASA Astrophysics Data System (ADS)

    Corradi, Wagner J. B.; Maia, Francisco F. S.; Santos, João F. C.

    2010-01-01

    The fundamental physical parameters of open clusters are important tools to understand the formation and evolution of the Galactic disk and to test star-formation and evolution models. However, only a small fraction of the known open clusters in the Milky Way have precise determinations of distance, reddening, age, metallicity, radial velocity and proper motion. One of the major problems in determining these parameters lies in the difficulty to separate cluster members from field stars and to assign membership. We propose a decontamination method by employing 2mass data in the regions around the clusters NGC 1981, NGC 2516, NGC 6494 and M11. We present decontaminated colour-magnitude diagrams of these objects showing the membership probabilities and structural parameters as derived from King-profile fitting.

  17. Magnitude and Distribution of Flows into Northeastern Florida Bay

    USGS Publications Warehouse

    Patino, Eduardo; Hittle, Clinton D.

    2000-01-01

    Changes in water-management practices have been made to accommodate a large and rapidly growing urban population along the Atlantic Coast and to meet the demand for intensive agricultural activities. These changes have resulted in a highly managed hydrologic system consisting of numerous canals, levees, control structures, and pumping stations that have altered the hydrology of the Everglades and Florida Bay ecosystems. Over the past decade, Florida Bay has experienced sea-grass die-off and algal blooms, which are indicators of ecological change attributed primarily to the increase in salinity and nutrient content of bay waters. Because plans are to restore sheetflow in the Everglades wetlands to its natural state, water managers anticipate a change in the magnitude and timing of freshwater exiting the mainland through the creeks that cut through the embankment or as sheetflow into Florida Bay.

  18. Magnitude of visual accommodation to a head-up display

    NASA Technical Reports Server (NTRS)

    Leitner, E. F.; Haines, R. F.

    1981-01-01

    The virtual image symbology of head-up displays (HUDs) is presented at optical infinity to the pilot. This design feature is intended to help pilots maintain visual focus distance at optical infinity. However, the accommodation response could be nearer than optical infinity, due to an individual's dark focus response. Accommodation responses were measured of two age groups of airline pilots to: (1) static symbology on a HUD; (2) a landing site background at optical infinity; (3) the combination of the HUD symbology and the landing site background; and (4) complete darkness. Results indicate that magnitude of accommodation to HUD symbology, with and without the background, is not significantly different from an infinity focus response for either age group. The dark focus response is significantly closer than optical infinity for the younger pilots, but not the older pilots, a finding consistent with previous research.

  19. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  20. THE EXTRAGALACTIC DISTANCE DATABASE: COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-15

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  1. Nonlinear site response in medium magnitude earthquakes near Parkfield, California

    USGS Publications Warehouse

    Rubinstein, Justin L.

    2011-01-01

    Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).

  2. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  3. Magnitude and variation of prehistoric bird extinctions in the Pacific

    PubMed Central

    Duncan, Richard P.; Boyer, Alison G.; Blackburn, Tim M.

    2013-01-01

    The largest extinction event in the Holocene occurred on Pacific islands, where Late Quaternary fossils reveal the loss of thousands of bird populations following human colonization of the region. However, gaps in the fossil record mean that considerable uncertainty surrounds the magnitude and pattern of these extinctions. We use a Bayesian mark-recapture approach to model gaps in the fossil record and to quantify losses of nonpasserine landbirds on 41 Pacific islands. Two-thirds of the populations on these islands went extinct in the period between first human arrival and European contact, with extinction rates linked to island and species characteristics that increased susceptibility to hunting and habitat destruction. We calculate that human colonization of remote Pacific islands caused the global extinction of close to 1,000 species of nonpasserine landbird alone; nonpasserine seabird and passerine extinctions will add to this total. PMID:23530197

  4. Magnitude 8.1 Earthquake off the Solomon Islands

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 1, 2007, a magnitude 8.1 earthquake rattled the Solomon Islands, 2,145 kilometers (1,330 miles) northeast of Brisbane, Australia. Centered less than ten kilometers beneath the Earth's surface, the earthquake displaced enough water in the ocean above to trigger a small tsunami. Though officials were still assessing damage to remote island communities on April 3, Reuters reported that the earthquake and the tsunami killed an estimated 22 people and left as many as 5,409 homeless. The most serious damage occurred on the island of Gizo, northwest of the earthquake epicenter, where the tsunami damaged the hospital, schools, and hundreds of houses, said Reuters. This image, captured by the Landsat-7 satellite, shows the location of the earthquake epicenter in relation to the nearest islands in the Solomon Island group. Gizo is beyond the left edge of the image, but its triangular fringing coral reefs are shown in the upper left corner. Though dense rain forest hides volcanic features from view, the very shape of the islands testifies to the geologic activity of the region. The circular Kolombangara Island is the tip of a dormant volcano, and other circular volcanic peaks are visible in the image. The image also shows that the Solomon Islands run on a northwest-southeast axis parallel to the edge of the Pacific plate, the section of the Earth's crust that carries the Pacific Ocean and its islands. The earthquake occurred along the plate boundary, where the Australia/Woodlark/Solomon Sea plates slide beneath the denser Pacific plate. Friction between the sinking (subducting) plates and the overriding Pacific plate led to the large earthquake on April 1, said the United States Geological Survey (USGS) summary of the earthquake. Large earthquakes are common in the region, though the section of the plate that produced the April 1 earthquake had not caused any quakes of magnitude 7 or larger since the early 20th century, said the USGS.

  5. Gaze direction affects the magnitude of face identity aftereffects.

    PubMed

    Kloth, Nadine; Jeffery, Linda; Rhodes, Gillian

    2015-01-01

    The face perception system partly owes its efficiency to adaptive mechanisms that constantly recalibrate face coding to our current diet of faces. Moreover, faces that are better attended produce more adaptation. Here, we investigated whether the social cues conveyed by a face can influence the amount of adaptation that face induces. We compared the magnitude of face identity aftereffects induced by adaptors with direct and averted gazes. We reasoned that faces conveying direct gaze may be more engaging and better attended and thus produce larger aftereffects than those with averted gaze. Using an adaptation duration of 5 s, we found that aftereffects for adaptors with direct and averted gazes did not differ (Experiment 1). However, when processing demands were increased by reducing adaptation duration to 1 s, we found that gaze direction did affect the magnitude of the aftereffect, but in an unexpected direction: Aftereffects were larger for adaptors with averted rather than direct gaze (Experiment 2). Eye tracking revealed that differences in looking time to the faces between the two gaze directions could not account for these findings. Subsequent ratings of the stimuli (Experiment 3) showed that adaptors with averted gaze were actually perceived as more expressive and interesting than adaptors with direct gaze. Therefore it appears that the averted-gaze faces were more engaging and better attended, leading to larger aftereffects. Overall, our results suggest that naturally occurring facial signals can modulate the adaptive impact a face exerts on our perceptual system. Specifically, the faces that we perceive as most interesting also appear to calibrate the organization of our perceptual system most strongly. PMID:25761338

  6. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  7. THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX

    SciTech Connect

    Kollmeier, Juna A.; Burns, Christopher R.; Thompson, Ian B.; Preston, George W.; Crane, Jeffrey D.; Madore, Barry F.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen; Simon, Joshua D.; Villanueva, Edward; Szczygieł, Dorota M.; Gould, Andrew; Sneden, Christopher; Dong, Subo

    2013-09-20

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that M{sub V,RRc} = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = –1.59. This is to be compared with previous estimates for RRab stars (M{sub V,RRab} = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M{sub V,RRc} = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (W{sub π}, W{sub θ}, W{sub z} ) = (12.0, –209.9, 3.0) km s{sup –1} in the radial, rotational, and vertical directions with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (150.4, 106.1, 96.0) km s{sup -1}. For the disk, we find (W{sub π}, W{sub θ}, W{sub z} ) = (13.0, –42.0, –27.3) km s{sup –1} relative to the Sun with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (67.7,59.2,54.9) km s{sup -1}. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

  8. VLF study of low magnitude Earthquakes (4.5

    NASA Astrophysics Data System (ADS)

    Wolbang, Daniel; Biernat, Helfried; Schwingenschuh, Konrad; Eichelberger, Hans; Prattes, Gustav; Besser, Bruno; Boudjada, Mohammed; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Friedrich, Martin

    2014-05-01

    In the course of the European VLF/LF radio receiver network (International Network for Frontier Research on Earthquake Precursors, INFREP), radio signals in the frequency range from 10-50 kilohertz are received, continuously recorded (temporal resolution 20 seconds) and analyzed in the Graz/Austria knot. The radio signals are generated by dedicated distributed transmitters and detected by INFREP receivers in Europe. In case the signal is crossing an earthquake preparation zone, we are in principle able to detect seismic activity if the signal to noise ratio is high enough. The requirements to detect a seismic event with the radio link methods are given by the magnitude M of the Earthquake (EQ), the EQ preparation zone and the Fresnel zone. As pointed out by Rozhnoi et al. (2009), the VLF methods are suitable for earthquakes M>5.0. Furthermore, the VLF/LF radio link gets only disturbed if it is crossing the EQ preparation zone which is described by Molchanov et al. (2008). In the frame of this project I analyze low seismicity EQs (M≤5.6) in south/eastern Europe in the time period 2011-2013. My emphasis is on two seismic events with magnitudes 5.6 and 4.8 which we are not able to adequately characterize using our single parameter VLF method. I perform a fine structure analysis of the residua of various radio links crossing the area around the particular 2 EQs. Depending on the individual paths not all radio links are crossing the EQ preparation zone directly, so a comparative study is possible. As a comparison I analyze with the same method the already good described EQ of L'Aquila/Italy in 2009 with M=6.3 and radio links which are crossing directly the EQ preparation zone. In the course of this project we try to understand in more detail why it is so difficult to detect EQs with 4.5

  9. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  10. Analysis of the magnitude and frequency of floods in Colorado

    USGS Publications Warehouse

    Vaill, J.E.

    2000-01-01

    Regionalized flood-frequency relations need to be updated on a regular basis (about every 10 years). The latest study on regionalized flood-frequency equations for Colorado used data collected through water year 1981. A study was begun in 1994 by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation and the Bureau of Land Management, to include streamflow data collected since water year 1981 in the regionalized flood-frequency relations for Colorado. Longer periods of streamflow data and improved statistical analysis methods were used to define regression relations for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for unregulated streams in Colorado. The regression relations can be applied to sites of interest on gaged and ungaged streams. Ordinary least-squares regression was used to determine the best explanatory basin or climatic characteristic variables for each peak-discharge characteristic, and generalized least-squares regression was used to determine the best regression relation. Drainage-basin area, mean annual precipitation, and mean basin slope were determined to be statistically significant explanatory variables in the regression relations. Separate regression relations were developed for each of five distinct hydrologic regions in the State. The mean standard errors of estimate and average standard error of prediction associated with the regression relations generally ranged from 40 to 80 percent, except for one hydrologic region where the errors ranged from about 200 to 300 percent. Methods are presented for determining the magnitude of peak discharges for sites located at gaging stations, for sites located near gaging stations on the same stream when the ratio of drainage-basin areas is between about 0.5 and 1.5, and for sites where the drainage basin crosses a flood-region boundary or a State boundary. Methods are presented for determining the magnitude of peak

  11. Physics-based estimates of maximum magnitude of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean-Paul; Galis, Martin; Mai, P. Martin

    2016-04-01

    In this study, we present new findings when integrating earthquake physics and rupture dynamics into estimates of maximum magnitude of induced seismicity (Mmax). Existing empirical relations for Mmax lack a physics-based relation between earthquake size and the characteristics of the triggering stress perturbation. To fill this gap, we extend our recent work on the nucleation and arrest of dynamic ruptures derived from fracture mechanics theory. There, we derived theoretical relations between the area and overstress of overstressed asperity and the ability of ruptures to either stop spontaneously (sub-critical ruptures) or runaway (super-critical ruptures). These relations were verified by comparison with simulation and laboratory results, namely 3D dynamic rupture simulations on faults governed by slip-weakening friction, and laboratory experiments of frictional sliding nucleated by localized stresses. Here, we apply and extend these results to situations that are representative for the induced seismicity environment. We present physics-based predictions of Mmax on a fault intersecting cylindrical reservoir. We investigate Mmax dependence on pore-pressure variations (by varying reservoir parameters), frictional parameters and stress conditions of the fault. We also derive Mmax as a function of injected volume. Our approach provides results that are consistent with observations but suggests different scaling with injected volume than that of empirical relation by McGarr, 2014.

  12. Radiocarbon test of earthquake magnitude at the Cascadia subduction zone

    USGS Publications Warehouse

    Atwater, B.F.; Stuiver, M.; Yamaguchi, D.K.

    1991-01-01

    THE Cascadia subduction zone, which extends along the northern Pacific coast of North America, might produce earthquakes of magnitude 8 or 9 ('great' earthquakes) even though it has not done so during the past 200 years of European observation 1-7. Much of the evidence for past Cascadia earthquakes comes from former meadows and forests that became tidal mudflats owing to abrupt tectonic subsidence in the past 5,000 years2,3,6,7. If due to a great earthquake, such subsidence should have extended along more than 100 km of the coast2. Here we investigate the extent of coastal subsidence that might have been caused by a single earthquake, through high-precision radiocarbon dating of coastal trees that abruptly subsided into the intertidal zone. The ages leave the great-earthquake hypothesis intact by limiting to a few decades the discordance, if any, in the most recent subsidence of two areas 55 km apart along the Washington coast. This subsidence probably occurred about 300 years ago.

  13. Magnitude of negative interpretation bias depends on severity of depression.

    PubMed

    Lee, Jong-Sun; Mathews, Andrew; Shergill, Sukhi; Yiend, Jenny

    2016-08-01

    The present study investigated the hypothesis that the magnitude of negative interpretation bias displayed by those with depression is related to the degree of depression they experience. Seventy one depressed participants (scoring 14 and above on the Beck Depression Inventory II) completed tasks spanning three domains of possible negative interpretations: semantic ambiguity; nonverbal ambiguity and situational ambiguity. Regression analyses revealed that just under half of the variance in depressive symptom severity was explained by the combination of negative interpretation bias tasks, with the strongest predictor of depressive symptom severity being negative interpretation of semantic ambiguity when reading ambiguous text descriptions. Subsidiary group analyses confirmed that severely depressed individuals interpreted emotionally ambiguous information in a more negative way than did their mildly or moderately depressed counterparts. These findings indicate that the degree of negative interpretive bias is closely related to depression severity and that bias manifests especially strongly at the most severe levels of depression. Our findings may help us to refine cognitive theories of depression and be helpful in guiding therapy. PMID:27262590

  14. Magnitude of income-related disparities in adverse perinatal outcomes

    PubMed Central

    2014-01-01

    Background To assess and compare multiple measurements of socioeconomic position (SEP) in order to determine the relationship with adverse perinatal outcomes across various contexts. Methods A birth registry, the Nova Scotia Atlee Perinatal Database, was confidentially linked to income tax and related information for the year in which delivery occurred. Multiple logistic regression was used to examine odds ratios between multiple indicators of SEP and multiple adverse perinatal outcomes in 117734 singleton births between 1988 and 2003. Models for after tax family income were also adjusted for neighborhood deprivation to gauge the relative magnitude of effects related to SEP at both levels. Effects of SEP were stratified by single- versus multiple-parent family composition, and by urban versus rural location of residence. Results The risk of small for gestational age and spontaneous preterm birth was higher across all the indicators of lower SEP, while risk for large for gestational age was lower across indicators of lower SEP. Higher risk of postneonatal death was demonstrated for several measures of lower SEP. Higher material deprivation in the neighborhood of residence was associated with increased risk for perinatal death, small for gestational age birth, and iatrogenic and spontaneous preterm birth. Family composition and urbanicity were shown to modify the association between income and some perinatal outcomes. Conclusions This study highlights the importance of understanding the definitions of SEP and the mechanisms that lead to the association between income and poor perinatal outcomes, and broadening the types of SEP measures used in some cases. PMID:24589212

  15. Uneven Magnitude of Disparities in Cancer Risks from Air Toxics

    PubMed Central

    James, Wesley; Jia, Chunrong; Kedia, Satish

    2012-01-01

    This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10−6. Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods. PMID:23208297

  16. Maxwell's conjecture on three point charges with equal magnitudes

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Lun

    2015-08-01

    Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.

  17. Metal-Organic Coordination Number Determined Charge Transfer Magnitude

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I.; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2014-03-01

    By the appropriate choice of head groups and molecular ligands, various metal-organic coordination geometries can be engineered. Such metal-organic structures provide different chemical environments for molecules and give us templates to study the charge redistribution within the metal-organic interface. We created various metal-organic bonding environment by growing self-assembly nanostructures of Fe-PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) chains and networks on a Au(111) surface. Bonding environment dependent frontier molecular orbital energies are acquired by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. H.-H. Yang, Y.-H. Chu, C.-I Lu, T.-H. Yang, K.-J. Yang, C.-C. Kaun, G. Hoffmann, and M.-T. Lin, ACS Nano 7, 2814 (2013).

  18. The bright end of the color-magnitude relation

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Cora, S. A.; Bassino, L. P.; Smith Castelli, A. V.

    We investigate the origin of the color-magnitude relation (CMR) followed by early-type cluster galaxies by using a combination of cosmological N- body simulations of cluster of galaxies and a semi-analytic model of galaxy formation (Lagos, Cora & Padilla 2008). Results show good agreement be- tween the general trend of the simulated and observed CMR. However, in many clusters, the most luminous galaxies depart from the linear fit to ob- served data displaying almost constant colors. With the aim of understand- ing this behaviour, we analyze the dependence with redshift of the stellar mass contributed to each galaxy by different processes, i.e., quiescent star formation, and starbursts during major/minor and wet/dry merger, and disc instability events. The evolution of the metallicity of the stellar component, contributed by each of these processes, is also investigated. We find that the major contribution of stellar mass at low redshift is due to minor dry merger events, being the metallicity of the stellar mass accreted during this process quite low. Thus, minor dry merger events seem to increase the mass of the more luminous galaxies without changing their colors.

  19. Size matters: Perceived depth magnitude varies with stimulus height.

    PubMed

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2016-06-01

    Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity. We used three estimation techniques: a virtual ruler, a touch-sensor (for haptic estimates) and a disparity probe. We found that depth estimates were significantly larger for the bar stimuli than for the disc stimuli for all methods of estimation and different configurations. In a second experiment, we measured perceived depth as a function of the height of the bar and the radius of the disc. Perceived depth increased with increasing bar height and disc radius suggesting that disparity is integrated along the vertical edges. We discuss size-disparity correlation and inter-neural excitatory connections as potential mechanisms that could account for these results. PMID:27180656

  20. Ultrasound Evaluation of the Magnitude of Pneumothorax: A New Concept

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Nicolaou, S.; Kirkpatrick, A. W.; Hamilton, D. R.; Campbell, M. R,; Billica, R. D.; Dawson, D. L.; Williams, D. R.; Dulchavsky, S. A.

    2000-01-01

    Pneumothorax is commonly seen in trauma patients; the diagnosis is usually confirmed by radiography. Use of ultrasound for this purpose, in environments such as space flight and remote terrestrial areas where radiographic capabilities are absent, is being investigated by NASA. In this study, the ability of ultrasound to assess the magnitude of pneumothorax in a porcine model was evaluated. Sonography was performed on anesthetized pigs (avg. wt. 50 kg) in both ground-based laboratory (n = 5) and micro gravity conditions (0 g) aboard the KC-135 aircraft during parabolic flight (n = 4). Aliquots of air (50-1 OOcc) were introduced into the chest through a catheter to simulate pneumothorax. Results were video-recorded and digitized for later interpretation by radiologists. Several distinct sonographic patterns of partial lung sliding were noted, including the combination of a sliding zone with a still zone, and a "segmented" sliding zone. These "partial lung sliding" patterns exclude massive pneumothorax manifested by a complete separation of the lung from the parietal pleura. In 0 g, the sonographic picture was more diverse; 1 g differences between posterior and anterior aspects were diminished. CONCLUSIONS: Modest pneumothorax can be inferred by the ultrasound sign of "partial lung sliding". This finding, which increases the negative predictive value of thoracic ultrasound, may be attributed to intermittent pleural contact, small air spaces, or alterations in pleural lubricant. Further studies of these phenomena are warranted.

  1. FPGA-specific decimal sign-magnitude addition and subtraction

    NASA Astrophysics Data System (ADS)

    Vázquez, Martín; Todorovich, Elías

    2016-07-01

    The interest in sign-magnitude (SM) representation in decimal numbers lies in the IEEE 754-2008 standard, where the significand in floating-point numbers is coded as SM. However, software implementations do not meet performance constraints in some applications and more development is required in programmable logic, a key technology for hardware acceleration. Thus, in this work, two strategies for SM decimal adder/subtractors are studied and six new Field Programmable Gate Array (FPGA)-specific circuits are derived from these strategies. The first strategy is based on ten's complement (C10) adder/subtractors and the second one is based on parallel computation of an unsigned adder and an unsigned subtractor. Four of these alternative circuits are useful for at least one area-time-trade-off and specific operand size. For example, the fastest SM adder/subtractor for operand sizes of 7 and 16 decimal digits is based on the second proposed strategy with delays of 3.43 and 4.33 ns, respectively, but the fastest circuit for 34-digit operands is one of the three specific implementations based on C10 adder/subtractors with a delay of 4.65 ns.

  2. Reprint of: "Demographic factors predict magnitude of conditioned fear".

    PubMed

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-12-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26608179

  3. Refining the Magnitude of the Shallow Slip Deficit

    NASA Astrophysics Data System (ADS)

    Xu, X.; Tong, X.; Sandwell, D. T.; Milliner, C. W. D.

    2014-12-01

    Geodetic inversions for slip versus depth for several major (Mw > 7) strike-slip earthquakes (e.g. 1992 Landers, 1999 Hector Mine, 2010 El_Mayor-Cucapah) show a 10% to 40% reduction in slip near surface (depth < 2 km) compared to the slip at deeper depths (5 to 8 km). This has been called the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions used incomplete data that do not go close to fault so the shallow portions of the slip models were poorly resolved and generally underestimated. In this study we improve the geodetic inversion, especially at shallow depth by: 1) refining the InSAR processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU using a correlation mask and allowing a phase discontinuity along the rupture; 2) including near-fault offset data from optical imagery and SAR azimuth offsets; 3) using more detailed fault geometry; 4) and using additional campaign GPS data. With these improved observations, the slip inversion has significantly increased resolution at shallow depth. For the Landers rupture the SSD is reduced from 45% to 16%. Similarly for the Hector Mine rupture the SSD is reduced from 15% to 5%. We are assembling all the relevant co-seismic data for the El Major-Cucapah earthquake and will report the inversion result with its SSD at the meeting.

  4. Increasing urban flood magnitudes: Is it the drainage network?

    NASA Astrophysics Data System (ADS)

    Zahner, J. A.; Ogden, F. L.

    2004-05-01

    It has been long thought that increases in impervious area had the greatest impact on urban runoff volume and increased flood peaks. This theory was recently challenged by a study in Charlotte, North Carolina that concluded that the increase in storm drainage connectivity and hence hydraulic efficiency played the greatest role in increasing flood magnitudes. Prediction of hydrologic conditions in urbanized watersheds is increasingly turning to distributed-parameter models, as these methods are capable of describing land-surface modifications and heterogeneity. One major deficiency of many of these models, however, is their inability to explicitly handle storm drainage networks. The purpose of this research is to examine the effect of subsurface storm drainage networks on the formation of floods. Factors considered include changes in network topology as described by the drainage width function and the relative importance of improved drainage efficiency relative to imperviousness. The Gridded Surface/Subsurface Hydrologic Analysis (GSSHA), a square-grid (raster) hydrologic model that solves the equations of transport of mass, energy, and momentum, has been modified to include storm drainage capability. This has made it possible to more accurately model the complexity of an urban watershed. The SUPERLINK scheme was chosen to model flow in closed conduits. This method solves the St. Venant equations in one dimension and employs the widely used "Preissmann slot" to extend their applicability to storm sewer flow. The SUPERLINK scheme is significantly different from the Preissmann scheme in that it is able to robustly simulate traditional flows as well as moving shocks. The coupled GSSHA SUPERLINK model will be used to simulate the effect of a subsurface drainage network on an urbanizing catchment.

  5. Order of magnitude reduction of fluoroscopic x-ray dose

    NASA Astrophysics Data System (ADS)

    Bal, Abhinav; Robert, Normand; Machan, Lindsay; Deutsch, Meir; Kisselgoff, David; Babyn, Paul; Rowlands, John A.

    2012-03-01

    The role of fluoroscopic imaging is critical for diagnostic and image guided therapy. However, fluoroscopic imaging can require significant radiation leading to increased cancer risk and non-stochastic effects such as radiation burns. Our purpose is to reduce the exposure and dose to the patient by an order of magnitude in these procedures by use of the region of interest method. Method and Materials: Region of interest fluoroscopy (ROIF) uses a partial attenuator. The central region of the image has full exposure while the image periphery, there to provide context only, has a reduced exposure rate. ROIF using a static partial attenuator has been shown in our previous studies to reduce the dose area product (DAP) to the patient by at least 2.5 times. Significantly greater reductions in DAP would require improvements in flat panel detectors performance at low x-ray exposures or a different x-ray attenuation strategy. Thus we have investigated a second, dynamic, approach. We have constructed an x-ray shutter system allowing a normal x-ray exposure in the region of interest while reducing the number of x-ray exposures in the periphery through the rapid introduction, positioning and removal of an x-ray attenuating shutter to block radiation only for selected frames. This dynamic approach eliminates the DQE(0) loss associated with the use of static partial attenuator applied to every frame thus permitting a greater reduction in DAP. Results: We have compared the two methods by modeling and determined their fundamental limits.

  6. Magnitude of Interfractional Vaginal Cuff Movement: Implications for External Irradiation

    SciTech Connect

    Ma, Daniel J.; Michaletz-Lorenz, Martha; Goddu, S. Murty; Grigsby, Perry W.

    2012-03-15

    Purpose: To quantify the extent of interfractional vaginal cuff movement in patients receiving postoperative irradiation for cervical or endometrial cancer in the absence of bowel/bladder instruction. Methods and Materials: Eleven consecutive patients with cervical or endometrial cancer underwent placement of three gold seed fiducial markers in the vaginal cuff apex as part of standard of care before simulation. Patients subsequently underwent external irradiation and brachytherapy treatment based on institutional guidelines. Daily megavoltage CT imaging was performed during each external radiation treatment fraction. The daily positions of the vaginal apex fiducial markers were subsequently compared with the original position of the fiducial markers on the simulation CT. Composite dose-volume histograms were also created by summing daily target positions. Results: The average ({+-} standard deviation) vaginal cuff movement throughout daily pelvic external radiotherapy when referenced to the simulation position was 16.2 {+-} 8.3 mm. The maximum vaginal cuff movement for any patient during treatment was 34.5 mm. In the axial plane the mean vaginal cuff movement was 12.9 {+-} 6.7 mm. The maximum vaginal cuff axial movement was 30.7 mm. In the craniocaudal axis the mean movement was 10.3 {+-} 7.6 mm, with a maximum movement of 27.0 mm. Probability of cuff excursion outside of the clinical target volume steadily dropped as margin size increased (53%, 26%, 4.2%, and 1.4% for 1.0, 1.5, 2.0, and 2.5 cm, respectively.) However, rectal and bladder doses steadily increased with larger margin sizes. Conclusions: The magnitude of vaginal cuff movement is highly patient specific and can impact target coverage in patients without bowel/bladder instructions at simulation. The use of vaginal cuff fiducials can help identify patients at risk for target volume excursion.

  7. Hippocampal vulnerability and subacute response following varied blast magnitudes.

    PubMed

    Sajja, Venkata Siva Sai Sujith; Ereifej, Evon S; VandeVord, Pamela J

    2014-06-01

    Clinical outcomes from blast neurotrauma are associated with higher order cognitive functions such as memory, problem solving skills and attention. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure and is focused on the acute response (<3 days). In an attempt to expand the understanding of neuropathological and molecular changes of the subacute response (7 days post injury), we used an established rodent model of blast neurotrauma. Three pressure magnitudes (low, moderate and high) were used to evaluate molecular injury thresholds. Immunohistochemical analysis demonstrated increased cleaved caspase-3 levels and loss of neuronal population (NeuN+) within the hippocampus of all pressure groups. On the contrary, selective activation of microglia was observed in the low blast group. In addition, increased astrocytes (GFAP), membrane signal transduction protein (Map2k1) and calcium regulator mechanosensitive protein (Piezo 2) were observed in the moderate blast group. Results from gene expression analysis suggested ongoing neuroprotection, as brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and Mn and CuZn superoxide dismutases (SOD) all increased in the low and moderate blast groups. Ongoing neuroprotection was further supported by increased SOD levels observed in the moderate group using immunohistochemistry. The gene expression level of glutamate aspartate transporter (GLAST) was upregulated in the low, but downregulated in the high blast group, while no changes were found in the moderate group. Overall, the data shown here provides evidence of a diverse neuroprotective and glial response to various levels of blast exposure. This mechanistic role of neuroprotection is vital in understanding ongoing cellular stress, both at the gene and protein levels, in order to develop interventional studies for the prognosis of injury. PMID:24726403

  8. The effects of reinforcement magnitude on skill acquisition for children with autism.

    PubMed

    Paden, Amber R; Kodak, Tiffany

    2015-12-01

    We examined the effects of reinforcement magnitude on skill acquisition during discrete-trial training. After conducting a magnitude preference assessment, we compared acquisition during conditions with large and small magnitudes of edible reinforcement to a praise-only condition. Although all participants showed a preference for the large-magnitude reinforcer, preference did not predict the magnitude that produced the fastest skill acquisition. PMID:26281795

  9. Application of linear statistical models of earthquake magnitude versus fault length in estimating maximum expectable earthquakes

    USGS Publications Warehouse

    Mark, Robert K.

    1977-01-01

    Correlation or linear regression estimates of earthquake magnitude from data on historical magnitude and length of surface rupture should be based upon the correct regression. For example, the regression of magnitude on the logarithm of the length of surface rupture L can be used to estimate magnitude, but the regression of log L on magnitude cannot. Regression estimates are most probable values, and estimates of maximum values require consideration of one-sided confidence limits.

  10. Magnitude-range brightness variations of overactive K giants

    NASA Astrophysics Data System (ADS)

    Oláh, K.; Moór, A.; Kővári, Zs.; Granzer, T.; Strassmeier, K. G.; Kriskovics, L.; Vida, K.

    2014-12-01

    Context. Decades-long, phase-resolved photometry of overactive spotted cool stars has revealed that their long-term peak-to-peak light variations can be as large as one magnitude. Such brightness variations are too large to be solely explained by rotational modulation and/or a cyclic, or pseudo-cyclic, waxing and waning of surface spots and faculae as we see in the Sun. Aims: We study three representative, overactive spotted K giants (IL Hya, XX Tri, and DM UMa) known to exhibit V-band light variations between 0.m65-1.m05. Our aim is to find the origin of their large brightness variation. Methods: We employ long-term phase-resolved multicolor photometry, mostly from automatic telescopes, covering 42 yr for IL Hya, 28 yr for XX Tri, and 34 yr for DM UMa. For one target, IL Hya, we present a new Doppler image from NSO data taken in late 1996. Effective temperatures for our targets are determined from all well-sampled observing epochs and are based on a V - IC color-index calibration. Results: The effective temperature change between the extrema of the rotational modulation for IL Hya and XX Tri is in the range 50-200 K. The bolometric flux during maximum of the rotational modulation, i.e., the least spotted states, varied by up to 39% in IL Hya and up to 54% in XX Tri over the course of our observations. We emphasize that for IL Hya it is just about half of the total luminosity variation that can be explained by the photospheric temperature (spots/faculae) changes, while for XX Tri it is even about one third. The long-term, 0.m6 V-band variation of DM UMa is more difficult to explain because little or no B - V color index change is observed on the same timescale. Placing the three stars with their light and color variations into H-R diagrams, we find that their overall luminosities are generally too low compared to predictions from current evolutionary tracks. Conclusions: A change in the stellar radius due to strong and variable magnetic fields during activity

  11. Variation of SEP event occurrence with heliospheric magnetic field magnitudes

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2009-05-01

    Recent work based on nitrate abundances in polar ice cores has shown that large fluence solar energetic (E>30MeV) particle (LSEP) events during the spacecraft era of observations (1960-present) are diminished in comparison with those of some preceding eras detected in the ice cores dating back to 1561. McCracken et al. [McCracken, K.G., Dreschhoff, G.A.M., Smart, D.F., Shea, M.A. A study of the frequency of occurrence of large-fluence solar proton events and the strength of the interplanetary magnetic field, Sol. Phys., 224, 359-372, 2004] have reported an inverse correlation between LSEP events and the magnitudes of the associated reconstructed heliospheric magnetic fields (HMF). A physical working model by McCracken [McCracken, K.G. Changes in the cosmic ray and heliomagnetic components of space climate, 1428-2005, including the variable occurrence of solar energetic particle events, Adv. Space Res., 40, 1070-1077, 2007a; McCracken, K.G. High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future, Space Weather, 5, S07004, 2007b] is that the lower HMF and coronal magnetic field B imply that fast coronal mass ejections (CMEs) produce shocks with enhanced Alfvenic Mach numbers MA and higher compression ratios r, leading to shock production of more numerous and energetic LSEP events. From a possible decline of the HMF over the next several solar cycles he has urged a watch for a return to the environment of high-frequency, high-fluence LSEP events preceding the current spacecraft era. His LSEP event watch involves three independent questions about (1) the physical model, (2) the prediction of decreasing solar-cycle sunspot numbers and heliomagnetic fields, and (3) the inferred anti-correlation between LSEP events and HMFs. Here we discuss observational evidence bearing on the last question and find little support for the claimed LSEP-HMF anticorrelation.

  12. Magnitude and Carbon Consequences of Forest Management in North America

    NASA Astrophysics Data System (ADS)

    Masek, J.; Kurz, W.; de Jong, B. H.

    2009-12-01

    The carbon balance of forests depends on the type, frequency and severity of recent disturbances (carbon source) and the rate of recovery from past disturbance (carbon sink). Harvest and land cover conversion represent significant forest disturbance agents over much of North America. For example, pine forests in the southeastern US are typically harvested at ~20 year intervals, and may occupy about half the regional landscape, resulting in regional landscape turnover rates of 2-3% per year. Inventory data are the primary source for quantifying information on harvest and conversion in the U.S., Mexico, and Canada. Recent inventory data from these countries indicate timber production of 424 million cu m, 163 million cu m, and 7 million cu m, respectively, with significant year-to-year variability associated with wood products demand and timber price. Areas affected by harvest activity vary as well, with 3.97 Mha (million hectares) and 1.04 Mha affected by harvest in the US and Canada, respectively. Forest cover conversion (deforestation) is thought to be relatively minor in the US and Canada, but recent estimates suggest that forest and woodland cover in Mexico declined by 300-500 Kha/yr during the 1990’s. Recently, satellite remote sensing data products on forest change have been generated that complement the traditional inventory approach. These products are particularly useful for “wall-to-wall” estimates of forest conversion and tracking small disturbances. The type and severity of disturbance cannot be easily determined using satellite observations, however, and therefore some care must be taken to reconcile these products with ground-based data. In this talk we review available resources for characterizing “carbon relevant” information on the magnitude (area, type of activity) of forest management in North America, and attempt a first-order comparison between remote sensing and inventory estimates. We also discuss strategies that might be employed to

  13. Maximum Earthquake Magnitude Assessments by Japanese Government Committees (Invited)

    NASA Astrophysics Data System (ADS)

    Satake, K.

    2013-12-01

    earthquakes. The Nuclear Regulation Authority, established in 2012, makes independent decisions based on the latest scientific knowledge. They assigned maximum credible earthquake magnitude of 9.6 for Nankai an Ryukyu troughs, 9.6 for Kuirl-Japan trench, and 9.2 for Izu-Bonin trench.

  14. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  15. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  16. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  17. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  18. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  19. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  20. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  1. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  2. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  3. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  4. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  5. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  6. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  7. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  8. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  9. The Effects of Reinforcement Magnitude on Skill Acquisition for Children with Autism

    ERIC Educational Resources Information Center

    Paden, Amber R.; Kodak, Tiffany

    2015-01-01

    We examined the effects of reinforcement magnitude on skill acquisition during discrete-trial training. After conducting a magnitude preference assessment, we compared acquisition during conditions with large and small magnitudes of edible reinforcement to a praise-only condition. Although all participants showed a preference for the…

  10. The Effects of Numerical Magnitude, Size, and Color Saturation on Perceived Interval Duration

    ERIC Educational Resources Information Center

    Alards-Tomalin, Doug; Leboe-McGowan, Jason P.; Shaw, Joshua D. M.; Leboe-McGowan, Launa C.

    2014-01-01

    The relative magnitude (or intensity) of an event can have direct implications on timing estimation. Previous studies have found that greater magnitude stimuli are often reported as longer in duration than lesser magnitudes, including Arabic digits (Xuan, Zhang, He, & Chen, 2007). One explanation for these findings is that different…

  11. SNARC-like Congruency Based on Number Magnitude and Response Duration

    ERIC Educational Resources Information Center

    Kiesel, Andrea; Vierck, Esther

    2009-01-01

    Recent findings demonstrated that number magnitude affects the perception of display time (B. Xuan, D. Zhang, S. He, & X. Chen, 2007). Participants made fewer errors when display time (e.g., short) and magnitude (e.g., small) matched, suggesting an influence of magnitude on time perception. With the present experiment, the authors aimed to extend…

  12. Aplicación del Teorema de Nekhorochev para tiempos de estabilidad en Mecánica Celeste

    NASA Astrophysics Data System (ADS)

    Miloni, O.; Núñez, J.; Brunini, A.

    En Mecánica Celeste, uno de los problemas centrales consiste en la determinación de los tiempos de estabilidad. El teorema de Nekhorochev proporciona un método para dicho estudio, para un sistema determinado por un hamiltoniano descripto en las variables acción-ángulo. El trabajo consiste en la acotación tanto del potencial perturbador y de la matriz hessiana del hamiltoniano integrable para determinar luego el tiempo de estabilidad de dicho sistema, donde por estabilidad se entiende la separación en norma infinito en el espacio de las acciones.

  13. EVALUATION REINFORCER MAGNITUDE AND RATE DEPENDENCY OF RESISTANCE TO CHANGE MECHANIMS

    PubMed Central

    Pinkston, Jonathan W.; Ginsburg, Brett C.; Lamb, R. J.

    2015-01-01

    In many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs, such that when schedules arrange for relatively larger reinforcer magnitude, rate dependency is attenuated compared to behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple fixed-interval schedule. Three drugs, clonidine, haloperidol, and morphine, were examined: all three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine, but those effects were not modulated by reinforcer magnitude. Additionally, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable. PMID:25115595

  14. Joint Determination of Event Location and Magnitude from Historical Seismic Damage Records

    NASA Astrophysics Data System (ADS)

    Park, S.; Hong, T. K.

    2014-12-01

    Large earthquakes have long recurrence intervals. It is crucial to consider long-time seismicity for a proper assessment of potential seismic hazards. It is required to use historical earthquake records to complement the long-time seismicity records. Historical earthquake records remain as in seismic damage description with limited accuracy in source parameters including event location and its size. It is important to determine epicenters and magnitudes of historical earthquakes accurately. A noble method to determine the event location and magnitude from historical seismic damage records is introduced. Seismic damage is typically proportional to the event magnitude, and is inversely proportional to the distance. This feature allows us to deduce the event magnitude and location from spatial distribution of seismic intensities. However, the magnitude and distance trade off each other, inhibiting unique determination of event magnitude and location. The Gutenberg-Richter frequency-magnitude relationship is additionally considered to constrain the source parameters. The Gutenberg-Richter frequency-magnitude relationship is assumed to be consistent between instrumental and historical seismicity. A set of event location and magnitude that satisfy the chance of event occurrence according to the Gutenberg-Richter frequency-magnitude relationship is selected. The accuracy of the method is tested for synthetic data sets, and the validity of the method is examined. The synthetic tests present high accuracy of the method. The method is applied to historical seismic damage records, which allows us to calibrate the source parameters of historical earthquakes.

  15. Improved rapid magnitude estimation for a community-based, low-cost MEMS accelerometer network

    USGS Publications Warehouse

    Chung, Angela I.; Cochran, Elizabeth S.; Kaiser, Anna E.; Christensen, Carl M.; Yildirim, Battalgazi; Lawrence, Jesse F.

    2015-01-01

    Immediately following the Mw 7.2 Darfield, New Zealand, earthquake, over 180 Quake‐Catcher Network (QCN) low‐cost micro‐electro‐mechanical systems accelerometers were deployed in the Canterbury region. Using data recorded by this dense network from 2010 to 2013, we significantly improved the QCN rapid magnitude estimation relationship. The previous scaling relationship (Lawrence et al., 2014) did not accurately estimate the magnitudes of nearby (<35  km) events. The new scaling relationship estimates earthquake magnitudes within 1 magnitude unit of the GNS Science GeoNet earthquake catalog magnitudes for 99% of the events tested, within 0.5 magnitude units for 90% of the events, and within 0.25 magnitude units for 57% of the events. These magnitudes are reliably estimated within 3 s of the initial trigger recorded on at least seven stations. In this report, we present the methods used to calculate a new scaling relationship and demonstrate the accuracy of the revised magnitude estimates using a program that is able to retrospectively estimate event magnitudes using archived data.

  16. The association between symbolic and nonsymbolic numerical magnitude processing and mental versus algorithmic subtraction in adults.

    PubMed

    Linsen, Sarah; Torbeyns, Joke; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert

    2016-03-01

    There are two well-known computation methods for solving multi-digit subtraction items, namely mental and algorithmic computation. It has been contended that mental and algorithmic computation differentially rely on numerical magnitude processing, an assumption that has already been examined in children, but not yet in adults. Therefore, in this study, we examined how numerical magnitude processing was associated with mental and algorithmic computation, and whether this association with numerical magnitude processing was different for mental versus algorithmic computation. We also investigated whether the association between numerical magnitude processing and mental and algorithmic computation differed for measures of symbolic versus nonsymbolic numerical magnitude processing. Results showed that symbolic, and not nonsymbolic, numerical magnitude processing was associated with mental computation, but not with algorithmic computation. Additional analyses showed, however, that the size of this association with symbolic numerical magnitude processing was not significantly different for mental and algorithmic computation. We also tried to further clarify the association between numerical magnitude processing and complex calculation by also including relevant arithmetical subskills, i.e. arithmetic facts, needed for complex calculation that are also known to be dependent on numerical magnitude processing. Results showed that the associations between symbolic numerical magnitude processing and mental and algorithmic computation were fully explained by individual differences in elementary arithmetic fact knowledge. PMID:26914586

  17. Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms.

    PubMed

    Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J

    2014-10-01

    Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable. PMID:25115595

  18. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental

  19. Design of recursive digital filters having specified phase and magnitude characteristics

    NASA Technical Reports Server (NTRS)

    King, R. E.; Condon, G. W.

    1972-01-01

    A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.

  20. An analysis of Almagest magnitudes for the study of stellar evolution.

    NASA Astrophysics Data System (ADS)

    Hearnshaw, J. B.

    Visual magnitude data in Ptolemy's Almagest are analysed by comparing them with modern photoelectric magnitudes on the Pogson scale, after taking extinction into account. The results show that a linear relationship exists between Almagest and Pogson scales, contrary to the findings of earlier authors, with one Almagest magnitude being equal to about 1.36 Pogson magnitudes. This result is used to transform Almagest magnitudes to the Pogson scale. A study is made of changes in the visual magnitudes of supergiant stars in the Almagest between classical and modern times (an interval of nearly 19 centuries). No evidence is found for any secular changes in the mean brightness of these stars, contrary to the conclusion of Mayer (Observatory 104, 77 (1984)). However, it is shown that the Almagest magnitudes for stars in the Milky Way are on average 0.34 Pogson magnitudes too faint, and about half the Almagest supergiants are affected by this. Finally, some evidence is cited for the visual atmospheric extinction in classical times being significantly less than today. If this is the case, and it is not taken into account, it would mimic an apparent supergiant brightening of about 0.1 magnitudes over this time interval.

  1. Magnitude and Frequency of Rainfall-induced Landslides at the Chenyulan and Tsengwen Watersheds in Taiwan

    NASA Astrophysics Data System (ADS)

    Jan, C.; Yang, S.

    2013-12-01

    We investigate the landslide magnitude associated with rainfall at the Chenyulan and Tsengwen watersheds in the central Taiwan. The dependences of landslide magnitude in area on regional average rainfall characteristics for landslides between 1988 and 2009, and the frequency-magnitude distribution of landslides caused by Typhoon Morakot in 2009 are presented in this paper. The results indicate that both total rainfall depth and maximum rainfall intensity are the major factors to the magnitude of rainfall-induced landslide. We also found that the rainfall erosivity index that is used to estimate soil erosion is well related with the landslide magnitude. Moreover, via the rainfall erosivity index, we also clarify that the magnitude of rainfall-induced landslide is affected by the Chi-Chi earthquake that occurred in 1999 in subsequent five years. The result suggests that the rainfall erosivity index could be a good parameter to evaluate the characteristics of rainfall-induced landslides. We also study the relation of landslide magnitude (in area) against its occurrence frequency caused by a severe rainfall brought by Typhoon Morakot in 2009. The landslide magnitude (in area) varies from 600 m2 to 600,000 m2. A cumulative frequency-magnitude relation in a power-law scaling is presented herein. Figure 1. Cumulative landslide frequency - mangitude distribution Figure 2. Non-cumulative landslide frequency - mangitude distribution

  2. Homogeneous magnitude system of the Eurasian continent: S and L waves

    NASA Astrophysics Data System (ADS)

    Christoskov, L.; Kondorskaya, N. V.; Vanek, J.

    1983-07-01

    A research project was started by the Commission of Academies of Socialist Countries on Planetary Geophysics (KAPG) to establish a system of seismic reference stations of the Eurasian continent for determining reliable earthquake magnitudes. This system was called the Homogeneous Magnitude System (HMS), and seismologist of 13 institutions from Bulgaria, Czechoslovakia, German Democratic Republic, Poland, and the U.S.S.R. participated. The project was sponsored by the Commission on Practice of the International Association of Seismology and Physics of the Earth's Interior, which created a special working group for homogeneous magnitude system within its Subcommission on Magnitude.

  3. Reappraisal of surface wave magnitudes in the Eastern Mediterranean region and the Middle East

    NASA Astrophysics Data System (ADS)

    Ambraseys, N.; Douglas, J.

    2000-05-01

    There have been many attempts to improve parametric catalogues for surface wave magnitudes for earthquakes of this century, and many of these attempts have been based on empirical adjustments to homogenize and complete catalogues without recourse to the instrumental data with which these magnitudes have been calculated. Using the Prague formula with station corrections and a substantial volume of amplitude and period readings of surface waves, culled from station bulletins, we calculated uniformly the magnitude of all significant earthquakes, 1519 in all, in the Eastern Mediterranean region and in the Middle East between 1900 and 1998. We also calculated station corrections and their variation with time, and examined the effect of distance adjustment of the Prague formula on Ms estimates. We find that the current procedure of averaging station magnitudes underestimates Ms. This underestimation depends on the variance and on the number of station magnitudes available for the calculation of Ms, which can be as large as 0.3 magnitude units or more. We also find that station corrections have a rather small overall effect on event magnitude, of less than +0.1, except when the number of observing stations is small, in which case the correction may reach +0.3 magnitude units. Event magnitudes derived from station magnitudes with distance adjustment, calculated from the original Prague formula, are on average 0.1 units larger than Ms without distance correction. We find that for shallow events, Gutenberg's estimates are, on average, larger by 0.12 units and show a significant scatter, with a standard deviation three times the mean value. We find similar differences and scatter for surface wave magnitudes estimated by other workers and agencies.

  4. Quantifying Surface Processes and Stratigraphic Characteristics Resulting from Large Magnitude High Frequency and Small Magnitude Low Frequency Relative Sea Level Cycles: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, Q.; Esposito, C. R.; Straub, K. M.

    2015-12-01

    Relative Sea-Level (RSL) change, which is a primary control on sequence stratigraphic architecture, has a close relationship with climate change. In order to explore the influence of RSL change on the stratigraphic record, we conducted three physical experiments which shared identical boundary conditions but differed in their RSL characteristics. Specifically, the three experiments differed with respect to two non-dimensional numbers that compare the magnitude and periodicity of RSL cycles to the spatial and temporal scales of autogenic processes, respectively. The magnitude of RSL change is quantified with H*, defined as the peak to trough difference in RSL during a cycle divided by a system's maximum autogenic channel depth. The periodicity of RSL change is quantified with T*, defined as the period of RSL cycles divided by the time required to deposit one channel depth of sediment, on average, everywhere in the basin. Experiments performed included: 1) a control experiment lacking RSL cycles, used to define a system's autogenics, 2) a high magnitude, high frequency RSL cycles experiment, and 3) a low magnitude, low frequency cycles experiment. We observe that the high magnitude, high frequency experiment resulted in the thickest channel bodies with the lowest width-to-depth ratios, while the low magnitude, long period experiment preserves a record of gradual shoreline transgression and regression producing facies that are the most continuous in space. We plan to integrate our experimental results with Delft3D numerical experiments models that sample similar non-dimensional characteristics of RSL cycles. Quantifying the influence of RSL change, normalized as a function of the spatial and temporal scales of autogenic processes will strengthen our ability to predict stratigraphic architecture and invert stratigraphy for paleo-environmental conditions.

  5. Involvement of Working Memory in Longitudinal Development of Number-Magnitude Skills

    ERIC Educational Resources Information Center

    Kolkman, Meijke E.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2014-01-01

    The ability to connect numbers and magnitudes is an important prerequisite for math learning, here referred to as number-magnitude skills. It has been proposed that working memory plays an important role in constructing these connections. The aim of the current study was to examine if working memory accounts for constructing these connections by…

  6. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  7. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  8. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  9. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  10. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  11. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  12. Scaling of frequency-magnitude distributions of fluid-induced seismicity

    NASA Astrophysics Data System (ADS)

    Dinske, Carsten; Shapiro, Serge A.

    2015-04-01

    We compare b value and seismogenic index Σ estimates using two different approaches: a standard Gutenberg-Richter power-law fitting and a frequency-magnitude lower bound probability fitting. The latter takes into account the finite size of the perturbed rock volume. Our results reveal that the smaller is the perturbed rock volume the larger are the deviations between the two sets of derived parameters. It means that the magnitude statistics of the induced events is most affected for low injection volumes and/or short injection times. In sufficiently large stimulated volumes both fitting approaches provide comparable b value and seismogenic index estimates. In particular, the b value is then in the range universally obtained for tectonic earthquakes (b 0.8 - 1.2). We introduce the specific magnitude MΣ as a seismotectonic characteristic of a reservoir location. Defined as the ratio between seismogenic index Σ and b value, this magnitude scaling parameter is unaffected by the size of perturbed rock volumes. Using both seismogenic index model and specific magnitude model we predict frequency-magnitude distributions for two different scenarios and compare these to observed data. We conclude that the seismogenic index model provides reliable predictions which confirm its applicability as a forecast tool. On the other hand, the specific magnitude model can be applied to predict the asymptotical limit of probable frequency-magnitude distributions.

  13. Maximum Magnitude and Recurrence Interval for the Large Earthquakes in the Central and Eastern United States

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Hu, C.

    2012-12-01

    Maximum magnitude and recurrence interval of the large earthquakes are key parameters for seismic hazard assessment in the central and eastern United States. Determination of these two parameters is quite difficult in the region, however. For example, the estimated maximum magnitudes of the 1811-12 New Madrid sequence are in the range of M6.6 to M8.2, whereas the estimated recurrence intervals are in the range of about 500 to several thousand years. These large variations of maximum magnitude and recurrence interval for the large earthquakes lead to significant variation of estimated seismic hazards in the central and eastern United States. There are several approaches being used to estimate the magnitudes and recurrence intervals, such as historical intensity analysis, geodetic data analysis, and paleo-seismic investigation. We will discuss the approaches that are currently being used to estimate maximum magnitude and recurrence interval of the large earthquakes in the central United States.

  14. Application of magnitude estimation scaling to the assessment of subjective loudness response to simulated sonic booms

    NASA Technical Reports Server (NTRS)

    Mcdaniel, S.; Leatherwood, J. D.; Sullivan, B. M.

    1992-01-01

    A laboratory study was conducted for the following reasons: (1) to investigate the application of magnitude estimation scaling for evaluating the subjective loudness of sonic booms; and (2) to compare the relative merits of magnitude estimation and numerical category scaling for sonic boom loudness evaluation. The study was conducted in the NASA LeRC's sonic boom simulator and used a total of 80 test subjects (48 for magnitude estimation and 32 for numerical category scaling). Results demonstrated that magnitude estimation was a practical and effective method for quantifying subjective loudness of sonic booms. When using magnitude estimation, the subjects made valid and consistent ratio judgments of sonic boom loudness irrespective of the frequency of presentation of the standard stimulus. Presentation of the standard as every fourth stimulus was preferred by the subjects and is recommended as the standard presentation frequency to be used in future tests.

  15. Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes.

    PubMed

    Matthews, Percival G; Chesney, Dana L

    2015-05-01

    This study presents evidence that humans have intuitive, perceptually based access to the abstract fraction magnitudes instantiated by nonsymbolic ratio stimuli. Moreover, it shows these perceptually accessed magnitudes can be easily compared with symbolically represented fractions. In cross-format comparisons, participants picked the larger of two ratios. Ratios were presented either symbolically as fractions or nonsymbolically as paired dot arrays or as paired circles. Response patterns were consistent with participants comparing specific analog fractional magnitudes independently of the particular formats in which they were presented. These results pose a challenge to accounts that argue human cognitive architecture is ill-suited for processing fractions. Instead, it seems that humans can process nonsymbolic ratio magnitudes via perceptual routes and without recourse to conscious symbolic algorithms, analogous to the processing of whole number magnitudes. These findings have important implications for theories regarding the nature of human number sense - they imply that fractions may in some sense be natural numbers, too. PMID:25797529

  16. The Surface Wave Magnitude for the 9 October 2006 North Korean Nuclear Explosion

    SciTech Connect

    Bonner, J; Herrmann, R; Harkrider, D; Pasyanos, M

    2008-03-11

    Surface waves were generated by the North Korean nuclear explosion of 9 October 2006 and recorded at epicentral distances up to 34 degrees, from which we estimated a surface wave magnitude (M{sub s}) of 2.94 with an interstation standard deviation of 0.17 magnitude units. The International Data Centre estimated a body wave magnitude (m{sub b}) of 4.1. This is the only explosion we have analyzed that was not easily screened as an explosion based on the differences between the M{sub s} and m{sub b} estimates. Additionally, this M{sub s} predicts a yield, based on empirical M{sub s}/Yield relationships, that is almost an order of magnitude larger then the 0.5 to 1 kiloton reported for this explosion. We investigate how emplacement medium effects on surface wave moment and magnitude may have contributed to the yield discrepancy.

  17. Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan W.; Ashkenazy, Yosef; Ivanov, Plamen Ch.; Bunde, Armin; Havlin, Shlomo; Penzel, Thomas; Peter, Jörg-Hermann; Stanley, H. Eugene

    2002-05-01

    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and rapid eye movement (REM) sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep, and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.

  18. Numerical magnitude processing deficits in children with mathematical difficulties are independent of intelligence.

    PubMed

    Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert

    2014-11-01

    Developmental dyscalculia (DD) is thought to arise from difficulties in the ability to process numerical magnitudes. Most research relied on IQ-discrepancy based definitions of DD and only included individuals with normal IQ, yet little is known about the role of intelligence in the association between numerical magnitude processing and mathematical difficulties (MD). The present study examined numerical magnitude processing in matched groups of 7- to 8-year-olds (n=42) who had either discrepant MD (poor math scores, average IQ), nondiscrepant MD (poor math scores, below-average IQ) or no MD. Both groups of children with MD showed similar impairments in numerical magnitudes processing compared to controls, suggesting that the association between numerical magnitude processing deficits and MD is independent of intelligence. PMID:25036314

  19. ERP correlates of the magnitude of pitch errors detected in the human voice.

    PubMed

    Scheerer, N E; Behich, J; Liu, H; Jones, J A

    2013-06-14

    Auditory event-related potentials (ERP)s of the P1-N1-P2 complex are modulated when participants hear frequency-altered feedback (FAF) regarding their ongoing vocal productions. However, the relationship between feedback perturbation magnitudes and the resultant neural responses is at present unclear. In the present study, we exposed speakers to FAF of different magnitudes ranging from 0 to 400 cents. Vocal responses and P1-N1-P2-N2 ERPs were examined in an attempt to relate variation in the magnitude of the imposed feedback perturbation with variation in vocal and neural responses. Overall, vocal response magnitudes remained relatively consistent in response to smaller feedback perturbations (<250 cents), while larger feedback perturbations (>300 cents) resulted in decreased vocal response magnitudes. P1 amplitudes were found to increase in a non-specific manner in response to FAF. Conversely, N1 amplitudes displayed increased specificity: small feedback perturbations evoked one size of response, while larger feedback perturbations resulted in larger responses. The P2 component showed the most systematic amplitude modulation as feedback perturbation magnitude increased. A regression analysis highlighted the relationship between vocal response magnitude and P2 amplitude, with both vocal response magnitude and P2 amplitude increasing in response to perturbations between 50 and 250 cents, and then decreasing in response to larger perturbations. Although not generally observed in FAF studies, a robust N2 was also found; N2 amplitudes increased as stimulus magnitudes increased. The pattern of P1-N1-P2-N2 amplitude modulation in response to different magnitudes of FAF indicates that these components reflect processes involved in the detection and correction of unintended changes in auditory feedback during speech. PMID:23466810

  20. Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Fang, Rongxin; Shi, Chuang; Song, Weiwei; Wang, Guangxing; Liu, Jingnan

    2014-01-01

    For earthquake and tsunami early warning and emergency response, earthquake magnitude is the crucial parameter to be determined rapidly and correctly. However, a reliable and rapid measurement of the magnitude of an earthquake is a challenging problem, especially for large earthquakes (M > 8). Here, the magnitude is determined based on the GPS displacement waveform derived from real-time precise point positioning (RTPPP). RTPPP results are evaluated with an accuracy of 1 cm in the horizontal components and 2-3 cm in the vertical components, indicating that the RTPPP is capable of detecting seismic waves with amplitude of 1 cm horizontally and 2-3 cm vertically with a confidence level of 95 per cent. In order to estimate the magnitude, the unique information provided by the GPS displacement waveform is the horizontal peak displacement amplitude. We show that the empirical relation of Gutenberg (1945) between peak displacement and magnitude holds up to nearly magnitude 9.0 when displacements are measured with GPS. We tested the proposed method for three large earthquakes. For the 2010 Mw 7.2 El Mayor-Cucapah earthquake, our method provides a magnitude of M7.18 ± 0.18. For the 2011 Mw 9.0 Tohoku-oki earthquake the estimated magnitude is M8.74 ± 0.06, and for the 2010 Mw 8.8 Maule earthquake the value is M8.7 ± 0.1 after excluding some near-field stations. We, therefore, conclude that depending on the availability of high-rate GPS observations, a robust value of magnitude up to 9.0 for a point source earthquake can be estimated within tens of seconds or a few minutes after an event using a few GPS stations close to the epicentre. The rapid magnitude could be as a pre-requisite for tsunami early warning, fast source inversion and emergency response is feasible.

  1. How to assess magnitudes of paleo-earthquakes from multiple observations

    NASA Astrophysics Data System (ADS)

    Hintersberger, Esther; Decker, Kurt

    2016-04-01

    An important aspect of fault characterisation regarding seismic hazard assessment are paleo-earthquake magnitudes. Especially in regions with low or moderate seismicity, paleo-magnitudes are normally much larger than those of historical earthquakes and therefore provide essential information about seismic potential and expected maximum magnitudes of a certain region. In general, these paleo-earthquake magnitudes are based either on surface rupture length or on surface displacement observed at trenching sites. Several well-established correlations provide the possibility to link the observed surface displacement to a certain magnitude. However, the combination of more than one observation is still rare and not well established. We present here a method based on a probabilistic approach proposed by Biasi and Weldon (2006) to combine several observations to better constrain the possible magnitude range of a paleo-earthquake. Extrapolating the approach of Biasi and Weldon (2006), the single-observation probability density functions (PDF) are assumed to be independent of each other. Following this line, the common PDF for all observed surface displacements generated by one earthquake is the product of all single-displacement PDFs. In order to test our method, we use surface displacement data for modern earthquakes, where magnitudes have been determined by instrumental records. For randomly selected "observations", we calculated the associated PDFs for each "observation point". We then combined the PDFs into one common PDF for an increasing number of "observations". Plotting the most probable magnitudes against the number of combined "observations", the resultant range of most probable magnitudes is very close to the magnitude derived by instrumental methods. Testing our method with real trenching observations, we used the results of a paleoseismological investigation within the Vienna Pull-Apart Basin (Austria), where three trenches were opened along the normal

  2. Magnitude Problems in Historical Earthquake Catalogs and Their Impact on Seismic Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Mahdyiar, M.; Shen-Tu, B.; Shabestari, K.; Guin, J.

    2010-12-01

    A reliable historical earthquake catalog is a critical component for any regional seismic hazard analysis. In Europe, a number of historical earthquake catalogs have been compiled and used in constructing national or regional seismic hazard maps, for instance, Switzerland ECOS catalog by Swiss Seismological Service (2002), Italy CPTI catalog by CPTI Working Group (2004), Greece catalog by Papazachos et al. (2007), and CENEC (central, northern and northwestern Europe) catalog by Grünthal et al. (2009), Turkey catalog by Kalafat et al. (2007), and GSHAP catalog by Global Seismic Hazard Assessment Program (1999). These catalogs spatially overlap with each other to a large extent and employed a uniform magnitude scale (Mw). A careful review of these catalogs has revealed significant magnitude problems which can substantially impact regional seismic hazard assessment: 1) Magnitudes for the same earthquakes in different catalogs are discrepant. Such discrepancies are mainly driven by different regression relationships used to convert other magnitude scales or intensity into Mw. One of the consequences is magnitudes of many events in one catalog are systematically biased higher or lower with respect to those in another catalog. For example, the magnitudes of large historical earthquakes in the Italy CPTI catalog are systematically higher than those in Switzerland ECOS catalog. 2) Abnormally high frequency of large magnitude events is observed for some time period that intensities are the main available data. This phenomenon is observed in Italy CPTI catalog for the time period of 1870 to 1930. This may be due to biased conversion from intensity to magnitude. 3) A systematic bias in magnitude resulted in biased estimations for a- and b-values of the Gutenberg-Richter magnitude frequency relationships. It also affected the determination of upper bound magnitudes for various seismic source zones. All of these issues can lead to skewed seismic hazard results, or inconsistent

  3. Probability of inducing given-magnitude earthquakes by perturbing finite volumes of rocks

    NASA Astrophysics Data System (ADS)

    Shapiro, Serge A.; Krüger, Oliver S.; Dinske, Carsten

    2013-07-01

    Fluid-induced seismicity results from an activation of finite rock volumes. The finiteness of perturbed volumes influences frequency-magnitude statistics. Previously we observed that induced large-magnitude events at geothermal and hydrocarbon reservoirs are frequently underrepresented in comparison with the Gutenberg-Richter law. This is an indication that the events are more probable on rupture surfaces contained within the stimulated volume. Here we theoretically and numerically analyze this effect. We consider different possible scenarios of event triggering: rupture surfaces located completely within or intersecting only the stimulated volume. We approximate the stimulated volume by an ellipsoid or cuboid and derive the statistics of induced events from the statistics of random thin flat discs modeling rupture surfaces. We derive lower and upper bounds of the probability to induce a given-magnitude event. The bounds depend strongly on the minimum principal axis of the stimulated volume. We compare the bounds with data on seismicity induced by fluid injections in boreholes. Fitting the bounds to the frequency-magnitude distribution provides estimates of a largest expected induced magnitude and a characteristic stress drop, in addition to improved estimates of the Gutenberg-Richter a and b parameters. The observed frequency-magnitude curves seem to follow mainly the lower bound. However, in some case studies there are individual large-magnitude events clearly deviating from this statistic. We propose that such events can be interpreted as triggered ones, in contrast to the absolute majority of the induced events following the lower bound.

  4. Development of magnitude processing in children with developmental dyscalculia: space, time, and number

    PubMed Central

    Skagerlund, Kenny; Träff, Ulf

    2014-01-01

    Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit. PMID:25018746

  5. Multiple determinants of the effects of reinforcement magnitude on free-operant response rates

    PubMed Central

    Reed, Phil

    1991-01-01

    Four experiments examined the effects of increasing the number of food pellets given to hungry rats for a lever-press response. On a simple variable-interval 60-s schedule, increased number of pellets depressed response rates (Experiment 1). In Experiment 2, the decrease in response rate as a function of increased reinforcement magnitude was demonstrated on a variable-interval 30-s schedule, but enhanced rates of response were obtained with the same increase in reinforcement magnitude on a variable-ratio 30 schedule. In Experiment 3, higher rates of responding were maintained by the component of a concurrent variable-interval 60-s variable-interval 60-s schedule associated with a higher reinforcement magnitude. In Experiment 4, higher rates of response were produced in the component of a multiple variable-interval 60-s variable-interval 60-s schedule associated with the higher reinforcement magnitude. It is suggested that on simple schedules greater reinforcer magnitudes shape the reinforced pattern of responding more effectively than do smaller reinforcement magnitudes. This effect is, however, overridden by another process, such a contrast, when two magnitudes are presented within a single session on two-component schedules. PMID:16812628

  6. Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation

    NASA Astrophysics Data System (ADS)

    Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch.; Bernaola-Galván, Pedro A.

    2016-04-01

    We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.

  7. Methods for estimating magnitude and frequency of floods in Montana based on data through 1983

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1986-01-01

    Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)

  8. Revised magnitude-bound relation for the Wabash Valley seismic zone of the central United States

    USGS Publications Warehouse

    Olson, S.M.; Green, R.A.; Obermeier, S.F.

    2005-01-01

    Seismic hazard assessment in the central United States, and in particular the Wabash Valley seismic zone of Indiana-Illinois, frequently relies on empirical estimates of paleoearthquake magnitudes (M). In large part these estimates have been made using the magnitude-bound method. Existing region-specific magnitude-bound relations rely heavily on only a few historical earthquakes in the central United States and eastern Canada that induced reported liquefaction features. Recent seismological studies have suggested smaller magnitudes than previously presumed for some of these earthquakes, however, and other studies have reinterpreted site-to-source distances to liquefaction features associated with some of these earthquakes. In this paper, we re-examine historical earthquakes (M > ???5) that occurred in the central and eastern United States and eastern Canada; some of these earthquakes triggered liquefaction and others did not. Based on our findings, we reinterpret the region-specific magnitude-bound relation for the Wabash Valley. Using this revised magnitude-bound relation, we present magnitude estimates for four prehistoric earthquakes that occurred in the Wabash Valley seismic zone during Holocene time.

  9. Magnitude and frequency of floods in Alaska south of the Yukon River

    USGS Publications Warehouse

    Berwick, Vernon Kenneth; Childers, Joseph M.; Kuentzel, M.A.

    1964-01-01

    This report presents a method for evaluating the magnitude and frequency of floods on the basis of the analysis of flood records. One composite frequency curve is applied to the entire study region. This curve relates floods of various magnitudes at any site within the region to probable recurrence intervals (from 1.1 to 50 years) for those floods. Flood magnitudes are reduced to dimensionless form by expressing them as a ratio to mean annual flood. Magnitudes of mean annual floods vary with the flood-producing characteristics of stream basins. On the basis of the limited data available, drainage-area size is found to be the only significant factor affecting the magnitude of the mean annual flood. Trial and error groupings of gaging-station records show that the region can be split into three hydrologic areas: one curve defines the relation within each area between mean annual flood and drainage area. These three curves in combination with the composite flood-frequency curve permit, for natural-flow conditions at any site, the determination of flood magnitude for a given recurrence interval, or the determination of recurrence interval for a flood of known magnitude.

  10. Stability of individual loudness functions obtained by magnitude estimation and production

    NASA Technical Reports Server (NTRS)

    Hellman, R. P.

    1981-01-01

    A correlational analysis of individual magnitude estimation and production exponents at the same frequency is performed, as is an analysis of individual exponents produced in different sessions by the same procedure across frequency (250, 1000, and 3000 Hz). Taken as a whole, the results show that individual exponent differences do not decrease by counterbalancing magnitude estimation with magnitude production and that individual exponent differences remain stable over time despite changes in stimulus frequency. Further results show that although individual magnitude estimation and production exponents do not necessarily obey the .6 power law, it is possible to predict the slope of an equal-sensation function averaged for a group of listeners from individual magnitude estimation and production data. On the assumption that individual listeners with sensorineural hearing also produce stable and reliable magnitude functions, it is also shown that the slope of the loudness-recruitment function measured by magnitude estimation and production can be predicted for individuals with bilateral losses of long duration. Results obtained in normal and pathological ears thus suggest that individual listeners can produce loudness judgements that reveal, although indirectly, the input-output characteristic of the auditory system.

  11. Development of magnitude processing in children with developmental dyscalculia: space, time, and number.

    PubMed

    Skagerlund, Kenny; Träff, Ulf

    2014-01-01

    Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit. PMID:25018746

  12. Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation.

    PubMed

    Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A

    2016-04-01

    We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum. PMID:27176287

  13. Estimating earthquake magnitudes from reported intensities in the central and eastern United States

    USGS Publications Warehouse

    Boyd, Oliver; Cramer, Chris H.

    2014-01-01

    A new macroseismic intensity prediction equation is derived for the central and eastern United States and is used to estimate the magnitudes of the 1811–1812 New Madrid, Missouri, and 1886 Charleston, South Carolina, earthquakes. This work improves upon previous derivations of intensity prediction equations by including additional intensity data, correcting magnitudes in the intensity datasets to moment magnitude, and accounting for the spatial and temporal population distributions. The new relation leads to moment magnitude estimates for the New Madrid earthquakes that are toward the lower range of previous studies. Depending on the intensity dataset to which the new macroseismic intensity prediction equation is applied, mean estimates for the 16 December 1811, 23 January 1812, and 7 February 1812 mainshocks, and 16 December 1811 dawn aftershock range from 6.9 to 7.1, 6.8 to 7.1, 7.3 to 7.6, and 6.3 to 6.5, respectively. One‐sigma uncertainties on any given estimate could be as high as 0.3–0.4 magnitude units. We also estimate a magnitude of 6.9±0.3 for the 1886 Charleston, South Carolina, earthquake. We find a greater range of magnitude estimates when also accounting for multiple macroseismic intensity prediction equations. The inability to accurately and precisely ascertain magnitude from intensities increases the uncertainty of the central United States earthquake hazard by nearly a factor of two. Relative to the 2008 national seismic hazard maps, our range of possible 1811–1812 New Madrid earthquake magnitudes increases the coefficient of variation of seismic hazard estimates for Memphis, Tennessee, by 35%–42% for ground motions expected to be exceeded with a 2% probability in 50 years and by 27%–35% for ground motions expected to be exceeded with a 10% probability in 50 years.

  14. Understanding the magnitude dependence of PGA and PGV in NGA-West 2 data

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.

    2014-01-01

    The Next Generation Attenuation‐West 2 (NGA‐West 2) 2014 ground‐motion prediction equations (GMPEs) model ground motions as a function of magnitude and distance, using empirically derived coefficients (e.g., Bozorgniaet al., 2014); as such, these GMPEs do not clearly employ earthquake source parameters beyond moment magnitude (M) and focal mechanism. To better understand the magnitude‐dependent trends in the GMPEs, we build a comprehensive earthquake source‐based model to explain the magnitude dependence of peak ground acceleration and peak ground velocity in the NGA‐West 2 ground‐motion databases and GMPEs. Our model employs existing models (Hanks and McGuire, 1981; Boore, 1983, 1986; Anderson and Hough, 1984) that incorporate a point‐source Brune model, including a constant stress drop and the high‐frequency attenuation parameter κ0, random vibration theory, and a finite‐fault assumption at the large magnitudes to describe the data from magnitudes 3 to 8. We partition this range into four different magnitude regions, each of which has different functional dependences on M. Use of the four magnitude partitions separately allows greater understanding of what happens in any one subrange, as well as the limiting conditions between the subranges. This model provides a remarkably good fit to the NGA data for magnitudes from 3magnitude data, for which the corner frequency is masked by the attenuation of high frequencies. That this simple, source‐based model matches the NGA‐West 2 GMPEs and data so well suggests that considerable simplicity underlies the parametrically complex NGA GMPEs.

  15. Empirical conversion between teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian scale

    NASA Astrophysics Data System (ADS)

    Lolli, B.; Gasperini, P.; Vannucci, G.

    2014-11-01

    We analysed the conversion problem between teleseismic magnitudes (Ms and mb) provided by the Seismological Bulletin of the International Seismological Centre and moment magnitudes (Mw) provided by online moment tensor (MT) catalogues using the chi-square general orthogonal regression method (CSQ) that, differently from the ordinary least-square regression method (OLS), accounts for the measurement errors of both the predictor and response variables. To account for the non-linearity of the relationships, we used two types of curvilinear models: (i) the exponential model (EXP), recently proposed by the authors of the Global Catalogue sponsored by the Global Earthquake Model (GEM) Foundation and (ii) a connected bilinear (CBL) model, similar to that proposed by Ekström & Dziewonski, where two different linear trends at low and high magnitudes are connected by an arc of circle that preserves the continuity of the function and of its first derivative at the connecting points. For Ms, we found that the regression curves computed for a global data set (GBL) are likely to be biased by the incompleteness of global MT catalogues for Mw <5.0-5.5. In fact, the GBL curves deviate significantly from a similar regression curve computed for a Euro-Mediterranean data set (MED) integrated with the data provided by two regional MT catalogues including many more events with Mw < 5.0-5.5. The GLB regression curves overestimate the Mw proxies computed from Ms up to 0.5 magnitude units. Hence for computing Mw proxies at the global scale of Ms ≤ 5.5, we suggest to adopt the coefficients obtained from the MED regression. The analysis of the frequency-magnitude relationship of the resulting Mw proxy catalogues confirms the validity of this choice as the behaviour of b­-value as a function of cut-off magnitude of the GBL data set is much more stable using such approach. The incompleteness of Mw's provided from MT global catalogues also affects the mb GBL data set but in this case the

  16. Magnitude calibration of a fixed head star tracker using Astro-1 flight data

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; West, Mark E.

    1992-01-01

    The Astro-1 UV astronomy mission was hampered by the failures of the automatic star acquisition procedure. The acquisition procedure depended on the Instrument Pointing Subsystem's Fixed Head Star Trackers (FHST) to acquire, track and identify guidestars of known visual magnitude. During the Astro-1 mission it was suspected that the star magnitudes measured by the FHST were much lower than predicted. A postflight investigation of the Astro-1 flight data confirmed and quantified this suspicion. Star magnitude calibration curves computed from the flight data depict the variance from the preflight calibration curves. These results are helping engineers to plan improvements to the acquisition procedure for the upcoming Astro-2 mission.

  17. Interaction of frequency and magnitude of reinforcement on concurrent performances1

    PubMed Central

    Todorov, Joao Claudio

    1973-01-01

    Frequency and magnitude of reinforcement were varied in concurrent variable-interval variable-interval schedules of reinforcement. The relative response rate to the two stimuli did not support the notion that choice approximately matches relative total access to food (the product of frequency and magnitude of reinforcement in one schedule divided by the sum of products of frequency and magnitude in both schedules). Relative response rates matched relative reinforcement value when that measure was adjusted to give more emphasis to reinforcement frequency than to reinforcement duration. PMID:16811675

  18. Cross identification of 238 galaxies and use of a colour magnitude relation in the coma cluster

    NASA Astrophysics Data System (ADS)

    Mazure, A.; Proust, D.; Mathez, G.; Mellier, Y.

    1988-12-01

    A catalogue of 238 galaxies is obtained by the cross identification of data from Kent and Gunn (1982), Godwin and Peach (1977) and Godwin, Metcalfe and Peach (1983). It contains the radial velocities, bvr magnitudes, colour indices, isophotal radii and other characteristics of individual galaxies. This leads to the definition of various samples of radial velocities complete to various limiting magnitudes depending on radius. The use of the colour magnitude relation is discussed to define a class of 1340 objects ({sequence} objects) likely to belong to the cluster from their photometry only.

  19. Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan Camilo; Ortíz, Juan Carlos; Pierini, Jorge; Schrottke, Kerstin; Maza, Mauro; Otero, Luís; Aguirre, Julián

    2014-02-01

    The monthly averaged freshwater discharge data from ten rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analysed to quantify the magnitudes, to estimate long-term trends, and to evaluate the variability of discharge patterns. These rivers deliver ∼340.9 km3 yr-1 of freshwater to the Caribbean Sea. The largest freshwater supply is provided by the Magdalena River, with a mean discharge of 205.1 km3 yr-1 at Calamar, which is 26% of the total fluvial discharge into this basin. From 2000 to 2010, the annual streamflow of these rivers increased as high as 65%, and upward trends in statistical significance were found for the Mulatos, Canal del Dique, Magdalena, and Fundación Rivers. The concurrence of major oscillation processes and the maximum power of the 3-7 year band fluctuation defined a period of intense hydrological activity from approximately 1998-2002. The wavelet spectrum highlighted a change in the variability patterns of fluvial systems between 2000 and 2010 characterised by a shift towards a quasi-decadal process (8-12 years) domain. The Intertropical Convergence Zone (ITCZ), El Niño - Southern Oscillation (ENSO) events, and quasi-decadal climate processes are the main factors controlling the fluvial discharge variability of these fluvial systems.

  20. Floods in Georgia, magnitude and frequency : techniques for estimating the magnitude and frequency of floods in Georgia with compilation of flood data through 1974

    USGS Publications Warehouse

    Price, McGlone

    1979-01-01

    Regional relations are defined for estimating the magnitude and frequency of floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years on streams with natural flow in Georgia. Multiple-regression analyses were used to define the relationship between the flood-discharge frequency of annual peak discharges for streams draining 0.1 to 1,000 square miles and 10 climatological and physical basin characteristics. The analyses indicate that the drainage area of the basin is the most significant characteristic. Five regions having distinct flood-discharge frequency characteristics are delineated. Individual relations of flood magnitude and frequency to drainage area are given for parts of the main stems of the major rivers without significant regulation draining more than 1,000 square miles. (Kosco-USGS)

  1. A local earthquake coda magnitude and its relation to duration, moment M sub O, and local Richter magnitude M sub L

    NASA Technical Reports Server (NTRS)

    Suteau, A. M.; Whitcomb, J. H.

    1977-01-01

    A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.

  2. Process and Object Interpretations of Vector Magnitude Mediated by Use of the Graphics Calculator.

    ERIC Educational Resources Information Center

    Forster, Patricia

    2000-01-01

    Analyzes the development of one student's understanding of vector magnitude and how her problem solving was mediated by use of the absolute value graphics calculator function. (Contains 35 references.) (Author/ASK)

  3. A technique for computation of star magnitudes relative to an optical sensor

    NASA Technical Reports Server (NTRS)

    Rhoads, J. W.

    1972-01-01

    The theory and techniques used to compute star magnitudes relative to any optical detector (such as the Mariner Mars 1971 Canopus star tracker) are described. Results are given relative to various star detectors.

  4. ESTIMATION OF RESPONSE-SPECTRAL VALUES AS FUNCTIONS OF MAGNITUDE, DISTANCE, AND SITE CONDITIONS.

    USGS Publications Warehouse

    Joyner, W.B.; Boore, D.M.

    1983-01-01

    Horizontal pseudo-velocity response was analyzed for twelve shallow earthquakes in western North America. Estimation of response-spectral values was related to magnitude, distance and site conditions. Errors in the methods are analyzed.

  5. 'Abd al-Rahman al-Sufi's 3-Step Magnitude System

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. Richard; Orchiston, Wayne

    'Abd al-Rahmān al-ūfī's Book of the Fixed Stars dates from around AD 964 and is one of the most important medieval Arabic treatises on astronomy. In this paper we begin with a very brief introduction to the Book of the Fixed Stars. This book contains an extensive star catalogue that lists star coordinates and magnitude estimates for all of the Ptolemaic stars. However, in his book al-hūfī utilized three distinct intermediate magnitude values whereas Ptolemy only mentioned two. We believe that al-hūfī used what we have termed a '3-step intermediate magnitude system,' which is more accurate than Ptolemy's 2-step intermediate system. In this paper we examine in detail the accuracy of this unique 3-step system in comparison with Ptolemy's and modern magnitude values.

  6. Mole Pi: Using New Technology to Teach the Magnitude of a Mole

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2014-01-01

    A modified technique for demonstrating the magnitude of Avogadro's number using a new Raspberry Pi computer and the Python language is described. The technique also provides students the opportunity to review dimensional analysis.

  7. Understanding volatility correlation behavior with a magnitude cross-correlation function

    NASA Astrophysics Data System (ADS)

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  8. Color Magnitude Diagrams for Quasars Using SDSS, GALEX, and WISE Data

    NASA Astrophysics Data System (ADS)

    Curtis, Wendy; Gorjian, V.; Thompson, P.; Doyle, T.; Blackwell, J.; Llamas, J.; Mauduit, J.; Chanda, R.; Glidden, A.; Gruen, A. E.; Laurence, C.; McGeeney, M.; Majercik, Z.; Mikel, T.; Mohamud, A.; Neilson, A.; Payamps, A.; Robles, R.; Uribe, G.

    2013-01-01

    Data from the Galaxy Evolution Explorer (GALEX), the Wide-Field Infrared Survey Explorer (WISE), and the Sloan Digital Sky Survey (SDSS) was used to construct color-magnitude diagrams for Type I quasars at redshift values of 0.1magnitude at a variety of wavelengths, from near ultraviolet to infrared. No tight correlations were found when comparing any of the UV or optical colors to the various infrared absolute magnitudes. However, a relationship was found using the NUV (GALEX) - z band (SDSS) color vs NUV (GALEX) absolute magnitude.

  9. Earthquake magnitude calculation without saturation from the scaling of peak ground displacement

    NASA Astrophysics Data System (ADS)

    Melgar, Diego; Crowell, Brendan W.; Geng, Jianghui; Allen, Richard M.; Bock, Yehuda; Riquelme, Sebastian; Hill, Emma M.; Protti, Marino; Ganas, Athanassios

    2015-07-01

    GPS instruments are noninertial and directly measure displacements with respect to a global reference frame, while inertial sensors are affected by systematic offsets—primarily tilting—that adversely impact integration to displacement. We study the magnitude scaling properties of peak ground displacement (PGD) from high-rate GPS networks at near-source to regional distances (~10-1000 km), from earthquakes between Mw6 and 9. We conclude that real-time GPS seismic waveforms can be used to rapidly determine magnitude, typically within the first minute of rupture initiation and in many cases before the rupture is complete. While slower than earthquake early warning methods that rely on the first few seconds of P wave arrival, our approach does not suffer from the saturation effects experienced with seismic sensors at large magnitudes. Rapid magnitude estimation is useful for generating rapid earthquake source models, tsunami prediction, and ground motion studies that require accurate information on long-period displacements.

  10. Reinforcement magnitude modulation of rate dependent effects in pigeons and rats.

    PubMed

    Ginsburg, Brett C; Pinkston, Jonathan W; Lamb, R J

    2011-08-01

    Response rate can influence the behavioral effects of many drugs. Reinforcement magnitude may also influence drug effects. Further, reinforcement magnitude can influence rate-dependent effects. For example, in an earlier report, we showed that rate-dependent effects of two antidepressants depended on reinforcement magnitude. The ability of reinforcement magnitude to interact with rate-dependency has not been well characterized. It is not known whether our previous results are specific to antidepressants or generalize to other drug classes. Here, we further examine rate-magnitude interactions by studying effects of two stimulants (d-amphetamine [0.32-5.6 mg/kg] and cocaine [0.32-10 mg/kg]) and two sedatives (chlordiazepoxide [1.78-32 mg/kg] and pentobarbital [1.0-17.8 mg/kg]) in pigeons responding under a 3-component multiple fixed-interval (FI) 300-s schedule maintained by 2-, 4-, or 8-s of food access. We also examine the effects of d-amphetamine [0.32-3.2 mg/kg] and pentobarbital [1.8-10 mg/kg] in rats responding under a similar multiple FI300-s schedule maintained by 2- or 10- food pellet (45 mg) delivery. In pigeons, cocaine and, to a lesser extent, chlordiazepoxide exerted rate-dependent effects that were diminished by increasing durations of food access. The relationship was less apparent for pentobarbital, and not present for d-amphetamine. In rats, rate-dependent effects of pentobarbital and d-amphetamine were not modulated by reinforcement magnitude. In conclusion, some drugs appear to exert rate-dependent effect which are diminished when reinforcement magnitude is relatively high. Subsequent analysis of the rate-dependency data suggest the effects of reinforcement magnitude may be due to a diminution of drug-induced increases in low-rate behavior that occurs early in the fixed-interval. PMID:21707192

  11. Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling

    PubMed Central

    Matejko, Anna A.; Ansari, Daniel

    2016-01-01

    Sensitivity to numerical magnitudes is thought to provide a foundation for higher-level mathematical skills such as calculation. It is still unclear how symbolic (e.g. Arabic digits) and nonsymbolic (e.g. Dots) magnitude systems develop and how the two formats relate to one another. Some theories propose that children learn the meaning of symbolic numbers by scaffolding them onto a pre-existing nonsymbolic system (Approximate Number System). Others suggest that symbolic and nonsymbolic magnitudes have distinct and non-overlapping representations. In the present study, we examine the developmental trajectories of symbolic and nonsymbolic magnitude processing skills and how they relate to each other in the first year of formal schooling when children are becoming more fluent with symbolic numbers. Thirty Grade 1 children completed symbolic and nonsymbolic magnitude processing tasks at three time points in Grade 1. We found that symbolic and nonsymbolic magnitude processing skills had distinct developmental trajectories, where symbolic magnitude processing was characterized by greater gains than nonsymbolic skills over the one-year period in Grade 1. We further found that the development of the two formats only related to one another in the first half of the school year where symbolic magnitude processing skills influenced later nonsymbolic skills. These findings indicate that symbolic and nonsymbolic abilities have different developmental trajectories and that the development of symbolic abilities is not strongly linked to nonsymbolic representations by Grade 1. These findings also suggest that the relationship between symbolic and nonsymbolic processing is not as unidirectional as previously thought. PMID:26930195

  12. Relative Reinforcer Rates and Magnitudes Do Not Control Concurrent Choice Independently

    PubMed Central

    Elliffe, Douglas; Davison, Michael; Landon, Jason

    2008-01-01

    One assumption of the matching approach to choice is that different independent variables control choice independently of each other. We tested this assumption for reinforcer rate and magnitude in an extensive parametric experiment. Five pigeons responded for food reinforcement on switching-key concurrent variable-interval variable-interval schedules. Across conditions, the ratios of reinforcer rates and of reinforcer magnitudes on the two alternatives were both manipulated. Control by each independent variable, as measured by generalized-matching sensitivity, changed significantly with the ratio of the other independent variable. Analyses taking the model-comparison approach, which weighs improvement in goodness-of-fit against increasing number of free parameters, were inconclusive. These analyses compared a model assuming constant sensitivity to magnitude across all reinforcer-rate ratios with two alternative models. One of those alternatives allowed sensitivity to magnitude to vary freely across reinforcer-rate ratios, and was less efficient than the common-sensitivity model for all pigeons, according to the Schwarz-Bayes information criterion. The second alternative model constrained sensitivity to magnitude to be equal for pairs of reinforcer-rate ratios that deviated from unity by proportionately equal amounts but in opposite directions. This model was more efficient than the common-magnitude-sensitivity model for 2 of the pigeons, but not for the other 3. An analysis of variance, carried out independently of the generalized-matching analysis, also showed a significant interaction between the effects of reinforcer rate and reinforcer magnitude on choice. On balance, these results suggest that the assumption of independence inherent in the matching approach cannot be maintained. Relative reinforcer rates and magnitudes do not control choice independently. PMID:18831124

  13. Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling.

    PubMed

    Matejko, Anna A; Ansari, Daniel

    2016-01-01

    Sensitivity to numerical magnitudes is thought to provide a foundation for higher-level mathematical skills such as calculation. It is still unclear how symbolic (e.g. Arabic digits) and nonsymbolic (e.g. Dots) magnitude systems develop and how the two formats relate to one another. Some theories propose that children learn the meaning of symbolic numbers by scaffolding them onto a pre-existing nonsymbolic system (Approximate Number System). Others suggest that symbolic and nonsymbolic magnitudes have distinct and non-overlapping representations. In the present study, we examine the developmental trajectories of symbolic and nonsymbolic magnitude processing skills and how they relate to each other in the first year of formal schooling when children are becoming more fluent with symbolic numbers. Thirty Grade 1 children completed symbolic and nonsymbolic magnitude processing tasks at three time points in Grade 1. We found that symbolic and nonsymbolic magnitude processing skills had distinct developmental trajectories, where symbolic magnitude processing was characterized by greater gains than nonsymbolic skills over the one-year period in Grade 1. We further found that the development of the two formats only related to one another in the first half of the school year where symbolic magnitude processing skills influenced later nonsymbolic skills. These findings indicate that symbolic and nonsymbolic abilities have different developmental trajectories and that the development of symbolic abilities is not strongly linked to nonsymbolic representations by Grade 1. These findings also suggest that the relationship between symbolic and nonsymbolic processing is not as unidirectional as previously thought. PMID:26930195

  14. VizieR Online Data Catalog: Third Photometric Magnitude Difference Catalog (Mason, 2008)

    NASA Astrophysics Data System (ADS)

    Worley, C. E.; Mason, B. D.; Wycoff, G. L.

    2009-01-01

    The Photometric Magnitude Difference Catalog is a collection of all double star photometric data which does not contain astrometric information and is therefore inappropriate for the Washington Double Star Catalog. Magnitude difference information can be useful in estimating mass ratios, determining photocentric positions which are color dependent, or into investigations of variability in close binary systems. Due to uncertainties in bandpass characteristics or variability, no summary line is presented, rather a complete listing of all data. This version supersedes the (5 data files).

  15. How do magnitude and frequency of monetary reward guide visual search?

    PubMed

    Won, Bo-Yeong; Leber, Andrew B

    2016-07-01

    How does reward guide spatial attention during visual search? In the present study, we examine whether and how two types of reward information-magnitude and frequency-guide search behavior. Observers were asked to find a target among distractors in a search display to earn points. We manipulated multiple levels of value across the search display quadrants in two ways: For reward magnitude, targets appeared equally often in each quadrant, and the value of each quadrant was determined by the average points earned per target; for reward frequency, we varied how often the target appeared in each quadrant but held the average points earned per target constant across the quadrants. In Experiment 1, we found that observers were highly sensitive to the reward frequency information, and prioritized their search accordingly, whereas we did not find much prioritization based on magnitude information. In Experiment 2, we found that magnitude information for a nonspatial feature (color) could bias search performance, showing that the relative insensitivity to magnitude information during visual search is not generalized across all types of information. In Experiment 3, we replicated the negligible use of spatial magnitude information even when we used limited-exposure displays to incentivize the expression of learning. In Experiment 4, we found participants used the spatial magnitude information during a modified choice task-but again not during search. Taken together, these findings suggest that the visual search apparatus does not equally exploit all potential sources of spatial value information; instead, it favors spatial reward frequency information over spatial reward magnitude information. PMID:27270595

  16. Method for measuring surface shear stress magnitude and direction using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C. (Inventor)

    1995-01-01

    A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.

  17. Using Landsat to Diagnose Trends in Disturbance Magnitude Across the National Forest System

    NASA Astrophysics Data System (ADS)

    Hernandez, A. J.; Healey, S. P.; Stehman, S. V.; Ramsey, R. D.

    2014-12-01

    The Landsat archive is increasingly being used to detect trends in the occurrence of forest disturbance. Beyond information about the amount of area affected, forest managers need to know if and how disturbance severity is changing. For example, the United States National Forest System (NFS) has developed a comprehensive plan for carbon monitoring, which requires a detailed temporal mapping of forest disturbance magnitudes across 75 million hectares. To meet this need, we have prepared multitemporal models of percent canopy cover that were calibrated with extensive field data from the USFS Forest Inventory and Analysis Program (FIA). By applying these models to pre- and post-event Landsat images at the site of known disturbances, we develop maps showing first-order estimates of disturbance magnitude on the basis of cover removal. However, validation activities consistently show that these initial estimates under-estimate disturbance magnitude. We have developed an approach, which quantifies this under-prediction at the landscape level and uses empirical validation data to adjust change magnitude estimates derived from initial disturbance maps. In an assessment of adjusted magnitude trends of NFS' Northern Region from 1990 to the present, we observed significant declines since 1990 (p < .01) in harvest magnitude, likely related to known reduction of clearcutting practices in the region. Fire, conversely, did not show strongly significant trends in magnitude, despite an increase in the overall area affected. As Landsat is used to provide increasingly precise maps of the timing and location of historical forest disturbance, a logical next step is to use the archive to generate widely interpretable and objective estimates of disturbance magnitude.

  18. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction

    PubMed Central

    Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.

    2015-01-01

    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842

  19. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  20. Different magnitude representations in left and right hemisphere: evidence from the visual half field technique.

    PubMed

    Notebaert, Karolien; Reynvoet, Bert

    2009-05-01

    The differences between left and right hemispheric magnitude representations were investigated in two lateralised priming experiments using single-digit (Experiment 1) and two-digit numbers (Experiment 2). Based on recent brain-imaging and TMS studies, some authors have argued that the magnitude representation in the left hemisphere (LH) is more precise than the one in the right hemisphere (RH). In two experiments a prime number preceded a target number that had to be classified as smaller or larger than a fixed standard. In order to reveal hemispheric differences in magnitude representation, the priming distance effect, i.e., faster responses to targets preceded by numerically closer primes, was analysed in both visual half fields (VHF). Using single-digit numbers no hemispheric differences were found for the priming distance effect, supporting an equally precise magnitude representation in both hemispheres. However, the experiment using two-digit numbers revealed a significantly steeper priming curve when targets were presented in the left visual field (LVF) compared to targets presented in the RVF. These results suggest a less precise magnitude representation in the RH, due to a larger overlap of magnitude representations. PMID:18792837

  1. Self-motion magnitude estimation during linear oscillation - Changes with head orientation and following fatigue

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Wood, D. L.; Gulledge, W. L.; Goodrich, R. L.

    1979-01-01

    Two types of experiments concerning the estimated magnitude of self-motion during exposure to linear oscillation on a parallel swing are described in this paper. Experiment I examined changes in magnitude estimation as a function of variation of the subject's head orientation, and Experiments II a, II b, and II c assessed changes in magnitude estimation performance following exposure to sustained, 'intense' linear oscillation (fatigue-inducting stimulation). The subjects' performance was summarized employing Stevens' power law R = k x S to the nth, where R is perceived self-motion magnitude, k is a constant, S is amplitude of linear oscillation, and n is an exponent). The results of Experiment I indicated that the exponents, n, for the magnitude estimation functions varied with head orientation and were greatest when the head was oriented 135 deg off the vertical. In Experiments II a-c, the magnitude estimation function exponents were increased following fatigue. Both types of experiments suggest ways in which the vestibular system's contribution to a spatial orientation perceptual system may vary. This variability may be a contributing factor to the development of pilot/astronaut disorientation and may also be implicated in the occurrence of motion sickness.

  2. Reinforcer magnitude affects delay discounting and influences effects of d-amphetamine in rats.

    PubMed

    Krebs, Christopher A; Reilly, William J; Anderson, Karen G

    2016-09-01

    Impulsive choice in humans can be altered by changing reinforcer magnitude; however, this effect has not been found in rats. Current levels of impulsive choice can also influence effects of d-amphetamine. This study used a within-subject assessment to determine if impulsive choice is sensitive to changes in reinforcer magnitude, and whether effects of d-amphetamine are related to current levels of impulsive choice. A discounting procedure in which choice was for a smaller reinforcer available immediately or a larger reinforcer available after a delay that increased within session was used. Reinforcer magnitude was manipulated between conditions and impulsive choice was quantified using area under the curve (AUC). In the Smaller-Magnitude (SM) Condition, choice was between one food pellet and three food pellets. In the Larger-Magnitude (LM) Condition, choice was between two food pellets and six food pellets. Impulsive choice was greater in the SM Condition compared to the LM Condition. Further, effects of d-amphetamine (0.1-1.8mg/kg) were related to differences in impulsive choice. d-Amphetamine increased impulsive choice in the LM Condition, but had no effect on impulsive choice in the SM Condition. Overall, these results show that impulsive choice in rats is sensitive to changes in reinforcer magnitude, and that effects of d-amphetamine are influenced by current levels of impulsive choice. PMID:27418423

  3. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2016-04-01

    We have obtained new results in the statistical analysis of global earthquake catalogs with special attention to the largest earthquakes, and we examined the statistical behavior of earthquake rate variations. These results can serve as an input for updating our recent earthquake forecast, known as the "Global Earthquake Activity Rate 1" model (GEAR1), which is based on past earthquakes and geodetic strain rates. The GEAR1 forecast is expressed as the rate density of all earthquakes above magnitude 5.8 within 70 km of sea level everywhere on earth at 0.1 by 0.1 degree resolution, and it is currently being tested by the Collaboratory for Study of Earthquake Predictability. The seismic component of the present model is based on a smoothed version of the Global Centroid Moment Tensor (GCMT) catalog from 1977 through 2013. The tectonic component is based on the Global Strain Rate Map, a "General Earthquake Model" (GEM) product. The forecast was optimized to fit the GCMT data from 2005 through 2012, but it also fit well the earthquake locations from 1918 to 1976 reported in the International Seismological Centre-Global Earthquake Model (ISC-GEM) global catalog of instrumental and pre-instrumental magnitude determinations. We have improved the recent forecast by optimizing the treatment of larger magnitudes and including a longer duration (1918-2011) ISC-GEM catalog of large earthquakes to estimate smoothed seismicity. We revised our estimates of upper magnitude limits, described as corner magnitudes, based on the massive earthquakes since 2004 and the seismic moment conservation principle. The new corner magnitude estimates are somewhat larger than but consistent with our previous estimates. For major subduction zones we find the best estimates of corner magnitude to be in the range 8.9 to 9.6 and consistent with a uniform average of 9.35. Statistical estimates tend to grow with time as larger earthquakes occur. However, by using the moment conservation principle that

  4. Analysis of Scaling Parameters of Event Magnitudes by Fluid Injections in Reservoirs

    NASA Astrophysics Data System (ADS)

    Dinske, Carsten; Krüger, Oliver; Shapiro, Serge

    2014-05-01

    We continue to elaborate scaling parameters of observed frequency-magnitude distributions of injection-induced seismicity. In addition to pumped fluid mass, b-value and seismogenic index (Shapiro et al., 2010, Dinske and Shapiro, 2013), one more scaling was recognised by the analysis of the induced event magnitudes. A frequently observed under-representation of events with larger magnitudes in comparison with the Gutenberg-Richter relation is explained by the geometry and the dimensions of the hydraulically stimulated rock volume (Shapiro et al., 2011, 2013). This under-representation, however, introduces a bias in b-value estimations which then should be considered as an apparent and transient b-value depending on the size of the perturbed rock volume. We study in detail in which way the seismogenic index estimate is affected by the apparent b-value. For this purpose, we compare b-value and seismogenic index estimates using two different approaches. First, we perform standard Gutenberg-Richter power-law fitting and second, we apply frequency-magnitude lower bound probability fitting as proposed by Shapiro et al. (2013). The latter takes into account the finite size of the perturbed rock volume. Our result reveals that the smaller is the perturbed rock volume the larger are the deviations between the two sets of derived parameters. It means that the magnitude statistics of the induced events is most affected for low injection volumes and/or short injection times. At sufficiently large stimulated volumes both fitting approaches provide comparable b-value and seismogenic index estimates. In particular, the b-value is then in the range of b-values universally obtained for tectonic earthquakes (i.e., 0.8 - 1.2). Based on our findings, we introduce the specific magnitude which is a seismotectonic characteristic for a reservoir location. Defined as the ratio of seismogenic index and b-value, the specific magnitude is found to be a magnitude scaling parameter which is

  5. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2016-07-01

    We have obtained new results in the statistical analysis of global earthquake catalogues with special attention to the largest earthquakes, and we examined the statistical behaviour of earthquake rate variations. These results can serve as an input for updating our recent earthquake forecast, known as the `Global Earthquake Activity Rate 1' model (GEAR1), which is based on past earthquakes and geodetic strain rates. The GEAR1 forecast is expressed as the rate density of all earthquakes above magnitude 5.8 within 70 km of sea level everywhere on earth at 0.1 × 0.1 degree resolution, and it is currently being tested by the Collaboratory for Study of Earthquake Predictability. The seismic component of the present model is based on a smoothed version of the Global Centroid Moment Tensor (GCMT) catalogue from 1977 through 2013. The tectonic component is based on the Global Strain Rate Map, a `General Earthquake Model' (GEM) product. The forecast was optimized to fit the GCMT data from 2005 through 2012, but it also fit well the earthquake locations from 1918 to 1976 reported in the International Seismological Centre-Global Earthquake Model (ISC-GEM) global catalogue of instrumental and pre-instrumental magnitude determinations. We have improved the recent forecast by optimizing the treatment of larger magnitudes and including a longer duration (1918-2011) ISC-GEM catalogue of large earthquakes to estimate smoothed seismicity. We revised our estimates of upper magnitude limits, described as corner magnitudes, based on the massive earthquakes since 2004 and the seismic moment conservation principle. The new corner magnitude estimates are somewhat larger than but consistent with our previous estimates. For major subduction zones we find the best estimates of corner magnitude to be in the range 8.9 to 9.6 and consistent with a uniform average of 9.35. Statistical estimates tend to grow with time as larger earthquakes occur. However, by using the moment conservation

  6. An association between understanding cardinality and analog magnitude representations in preschoolers.

    PubMed

    Wagner, Jennifer B; Johnson, Susan C

    2011-04-01

    The preschool years are a time of great advances in children's numerical thinking, most notably as they master verbal counting. The present research assessed the relation between analog magnitude representations and cardinal number knowledge in preschool-aged children to ask two questions: (1) Is there a relationship between acuity in the analog magnitude system and cardinality proficiency? (2) Can evidence of the analog magnitude system be found within mappings of number words children have not successfully mastered? To address the first question, Study 1 asked three- to five-year-old children to discriminate side-by-side dot arrays with varying differences in numerical ratio, as well as to complete an assessment of cardinality. Consistent with the analog magnitude system, children became less accurate at discriminating dot arrays as the ratio between the two numbers approached one. Further, contrary to prior work with preschoolers, a significant correlation was found between cardinal number knowledge and non-symbolic numerical discrimination. Study 2 aimed to look for evidence of the analog magnitude system in mappings to the words in preschoolers' verbal counting list. Based on a modified give-a-number task (Wynn, 1990, 1992), three- to five-year-old children were asked to give quantities between 1 and 10 as many times as possible in order to assess analog magnitude variability within their developing cardinality understanding. In this task, even children who have not yet induced the cardinality principle showed signs of analog representations in their understanding of the verbal count list. Implications for the contribution of analog magnitude representations towards mastery of the verbal count list are discussed in light of the present work. PMID:21288508

  7. Heterogeneous in situ stress magnitudes due to the presence of weak natural discontinuities in granitic rocks

    NASA Astrophysics Data System (ADS)

    Chang, Chandong; Jo, Yeonguk

    2015-11-01

    Two field examples of hydraulic fracturing stress measurements are reported, in which the determined stress magnitudes exhibit severe variations with depth. The stress measurements were conducted in vertical boreholes drilled in granites in two different locations in South Korea. Several isolated intervals of intact rocks in the boreholes were vertically fractured by injecting water. The magnitudes of the minimum horizontal principal compressive stress (Shmin) were determined from shut-in pressures. The magnitudes of the maximum horizontal principal compressive stress (SHmax) were estimated based on the Kirsch equation using tensile strengths determined from hollow cylinder tests and Brazilian tests, in which pressurization-rate effects on tensile strength were taken into account. The stress states in both locations are in reverse-faulting stress regimes. The magnitudes of SHmax are generally within a stress range defined by frictional limits of favorably oriented fractures having frictional coefficients of 0.6 and 1.0. However, SHmax magnitudes do not increase linearly with depth, but rather scatter quite severely. It is noted that near the depths where the measured stresses are relatively low, natural discontinuities with wide apertures containing weak filling material exist, whereas near the depths of high stress, such wide discontinuities are scarce. Wide aperture discontinuities are predominantly oriented such that their slip tendency is high under the given stress conditions, meaning that if excessive shear stress is exerted, the weak discontinuities would slip to release the excessive stress. Such local processes would restrict SHmax magnitudes within values that can only be sustained by the shear strengths of the discontinuities, leading to severe variations of SHmax with depth. This result suggests that stress magnitudes are controlled quite locally by the frictional property of natural discontinuities, and that the stress state in granitic rock might be

  8. Preguntas y respuestas acerca del Estudio del

    Cancer.gov

    El Estudio del Tamoxifeno y Raloxifeno (STAR, por sus siglas en ingls) es un estudio clnico (un estudio de investigacin conducido con voluntarios) diseado para ver cómo el medicamento raloxifeno (Evista) se compara con el medicamento tamoxifeno (Nolvadex)

  9. Global survey of star clusters in the Milky Way. V. Integrated JHKS magnitudes and luminosity functions

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Röser, S.; Scholz, R.-D.

    2016-01-01

    Aims: In this study we determine absolute integrated magnitudes in the J,H,KS passbands for Galactic star clusters from the Milky Way Star Clusters survey. In the wide solar neighbourhood, we derive the open cluster luminosity function (CLF) for different cluster ages. Methods: The integrated magnitudes are based on uniform cluster membership derived from the 2MAst catalogue (a merger of the PPMXL and 2MASS) and are computed by summing up the individual luminosities of the most reliable cluster members. We discuss two different techniques of constructing the CLF, a magnitude-limited and a distance-limited approach. Results: Absolute J,H,KS integrated magnitudes are obtained for 3061 open clusters, and 147 globular clusters. The integrated magnitudes and colours are accurate to about 0.8 and 0.2 mag, respectively. Based on the sample of open clusters we construct the general cluster luminosity function in the solar neighbourhood in the three passbands. In each passband the CLF shows a linear part covering a range of 6 to 7 mag at the bright end. The CLFs reach their maxima at an absolute magnitude of -2 mag, then drop by one order of magnitude. During cluster evolution, the CLF changes its slope within tight, but well-defined limits. The CLF of the youngest clusters has a steep slope of about 0.4 at bright magnitudes and a quasi-flat portion for faint clusters. For the oldest population, we find a flatter function with a slope of about 0.2. The CLFs at Galactocentric radii smaller than that of the solar circle differ from those in the direction of the Galactic anti-centre. The CLF in the inner area is flatter and the cluster surface density higher than the local one. In contrast, the CLF is somewhat steeper than the local one in the outer disk, and the surface density is lower. The corresponding catalogue of integrated magnitudes is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  10. Determination of magnitude and epicenter of historical earthquakes on the Trans Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Suarez, G.; Jiménez, G.

    2013-12-01

    Two large earthquakes occurred in the Trans Mexican Volcanic Belt (TMVB) in the XXth century. A Mw 6.9 earthquake took place near the town of Acambay in 1912 and in 1920 an event near the city of Jalapa had a magnitude of Mw 6.4. Both events took place in the crust and reflect the tectonic deformation of the TMVB. In addition to these two instrumental earthquakes, the historical record in Mexico, which spans approximately the past 450 years, has a large volume of macroseismic information suggesting the presence crustal earthquakes similar to those that took place in 1912 and 1920. The catalog of macroseismic data in Mexico was carefully reviewed, searching for the presence of crustal events in the TMVB. In total, twelve potential earthquakes were identified. The data was geo-referenced, a magnitude was assigned in the Modified Mercalli Scale (MMS) and events were collated based on the dates reported by the references. The method developed by Bakun and Wentworth (1997) was used to estimate the magnitude and epicentral location of these historical earthquakes. Considering that only two instrumental earthquakes of similar magnitudes exist, it was not possible to construct an attenuation calibration curve of magnitude versus distance. Instead, several published attenuation curves were used. The calibration curve determined for California yielded the best results for both magnitude and epicentral location for the XXth century events. Using this calibration curve, the magnitude and location of several historical events was determined. Our results indicate that over the past 450 years, at least six earthquakes larger than magnitude M 6 have occurred on the TMVB. Three of these, the earthquakes of 1568, 1858 and 1875, appear to have a magnitude larger than M 7. Furthermore, the distribution of these historical earthquakes spans the TMVB in its entirety, and is not restricted to specific areas. The presence of these relatively large, crustal events that take place near the

  11. The rat nucleus accumbens is involved in guiding of instrumental responses by stimuli predicting reward magnitude.

    PubMed

    Giertler, Christian; Bohn, Ines; Hauber, Wolfgang

    2003-10-01

    The present study examined the involvement of N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate/kainate (AMPA/KA) and dopamine receptors in the nucleus accumbens (ACB) in influencing reaction times of instrumental responses by the expectancy of reward. A simple reaction time task demanding conditioned lever release was used in which the upcoming reward magnitude was signalled in advance by discriminative cues. After training, in control rats with vehicle infusions (0.5 micro L) into the ACB, reaction times of responses were significantly shorter to the discriminative cue predictive of high reward magnitude. Indirect stimulation of dopamine receptors in the ACB by d-amphetamine (20 micro g/0.5 micro L) decreased reaction times, impaired their guidance by cue-associated reward magnitudes and reduced the accuracy of task performance. Blockade of AMPA/KA receptors in the ACB by 6-cyano-7-nitroquino-xaline-2,3-dione (0.75 and 2.5 micro g/0.5 micro L) or NMDA receptors by d(-)-2-amino-5-phosphonopentanoic acid (5 micro g/0.5 micro L) produced a general increase in reaction times, but left guidance of reaction times by cue-associated reward magnitudes unaffected. Thus, stimulation of intra-ACB ionotropic glutamate receptors is critically involved in modulating the speed of instrumental responding to cues predictive for reward magnitude, but is not required for intact performance of previously learned instrumental behaviour. PMID:14622231

  12. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D

    PubMed Central

    van Beek, Femke E.; Bergmann Tiest, Wouter M.; Mugge, Winfred; Kappers, Astrid M. L.

    2015-01-01

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception. PMID:26643041

  13. A framework for accurate determination of the T2 distribution from multiple echo magnitude MRI images

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Koay, Cheng Guan; Hutchinson, Elizabeth; Basser, Peter J.

    2014-07-01

    Measurement of the T2 distribution in tissues provides biologically relevant information about normal and abnormal microstructure and organization. Typically, the T2 distribution is obtained by fitting the magnitude MR images acquired by a multi-echo MRI pulse sequence using an inverse Laplace transform (ILT) algorithm. It is well known that the ideal magnitude MR signal follows a Rician distribution. Unfortunately, studies attempting to establish the validity and efficacy of the ILT algorithm assume that these input signals are Gaussian distributed. Violation of the normality (or Gaussian) assumption introduces unexpected artifacts, including spurious cerebrospinal fluid (CSF)-like long T2 components; bias of the true geometric mean T2 values and in the relative fractions of various components; and blurring of nearby T2 peaks in the T2 distribution. Here we apply and extend our previously proposed magnitude signal transformation framework to map noisy Rician-distributed magnitude multi-echo MRI signals into Gaussian-distributed signals with high accuracy and precision. We then perform an ILT on the transformed data to obtain an accurate T2 distribution. Additionally, we demonstrate, by simulations and experiments, that this approach corrects the aforementioned artifacts in magnitude multi-echo MR images over a large range of signal-to-noise ratios.

  14. A General Method to Estimate Earthquake Moment and Magnitude using Regional Phase Amplitudes

    SciTech Connect

    Pasyanos, M E

    2009-11-19

    This paper presents a general method of estimating earthquake magnitude using regional phase amplitudes, called regional M{sub o} or regional M{sub w}. Conceptually, this method uses an earthquake source model along with an attenuation model and geometrical spreading which accounts for the propagation to utilize regional phase amplitudes of any phase and frequency. Amplitudes are corrected to yield a source term from which one can estimate the seismic moment. Moment magnitudes can then be reliably determined with sets of observed phase amplitudes rather than predetermined ones, and afterwards averaged to robustly determine this parameter. We first examine in detail several events to demonstrate the methodology. We then look at various ensembles of phases and frequencies, and compare results to existing regional methods. We find regional M{sub o} to be a stable estimator of earthquake size that has several advantages over other methods. Because of its versatility, it is applicable to many more events, particularly smaller events. We make moment estimates for earthquakes ranging from magnitude 2 to as large as 7. Even with diverse input amplitude sources, we find magnitude estimates to be more robust than typical magnitudes and existing regional methods and might be tuned further to improve upon them. The method yields a more meaningful quantity of seismic moment, which can be recast as M{sub w}. Lastly, it is applied here to the Middle East region using an existing calibration model, but it would be easy to transport to any region with suitable attenuation calibration.

  15. Development of streamflow drought severity- and magnitude-duration-frequency curves using the threshold level method

    NASA Astrophysics Data System (ADS)

    Sung, J. H.; Chung, E.-S.; Lee, K. S.

    2013-12-01

    This study developed a comprehensive method to quantify streamflow drought severity and magnitude based on a traditional frequency analysis. Two types of curve were developed: the streamflow drought severity-duration-frequency (SDF) curve and the streamflow drought magnitude-duration-frequency (MDF) curve (e.g., a rainfall intensity-duration-frequency curve). Severity was represented as the total water deficit volume for the specific drought duration, and magnitude was defined as the daily average water deficit. The variable threshold level method was introduced to set the target instream flow requirement, which can significantly affect the streamflow drought severity and magnitude. The four threshold levels utilized were fixed, monthly, daily, and desired yield for water use. The threshold levels for the desired yield differed considerably from the other levels and represented more realistic conditions because real water demands were considered. The streamflow drought severities and magnitudes from the four threshold methods could be derived at any frequency and duration from the generated SDF and MDF curves. These SDF and MDF curves are useful in designing water resources systems for streamflow drought and water supply management.

  16. The UBV Color Evolution of Classical Novae. II. Color–Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2016-04-01

    We have examined the outburst tracks of 40 novae in the color–magnitude diagram (intrinsic B ‑ V color versus absolute V magnitude). After reaching the optical maximum, each nova generally evolves toward blue from the upper right to the lower left and then turns back toward the right. The 40 tracks are categorized into one of six templates: very fast nova V1500 Cyg fast novae V1668 Cyg, V1974 Cyg, and LV Vul moderately fast nova FH Ser and very slow nova PU Vul. These templates are located from the left (blue) to the right (red) in this order, depending on the envelope mass and nova speed class. A bluer nova has a less massive envelope and faster nova speed class. In novae with multiple peaks, the track of the first decay is more red than that of the second (or third) decay, because a large part of the envelope mass had already been ejected during the first peak. Thus, our newly obtained tracks in the color–magnitude diagram provide useful information to understand the physics of classical novae. We also found that the absolute magnitude at the beginning of the nebular phase is almost similar among various novae. We are able to determine the absolute magnitude (or distance modulus) by fitting the track of a target nova to the same classification of a nova with a known distance. This method for determining nova distance has been applied to some recurrent novae, and their distances have been recalculated.

  17. Effects of Numerical Versus Foreground-Only Icon Displays on Understanding of Risk Magnitudes.

    PubMed

    Stone, Eric R; Gabard, Alexis R; Groves, Aislinn E; Lipkus, Isaac M

    2015-01-01

    The aim of this work is to advance knowledge of how to measure gist and verbatim understanding of risk magnitude information and to apply this knowledge to address whether graphics that focus on the number of people affected (the numerator of the risk ratio, i.e., the foreground) are effective displays for increasing (a) understanding of absolute and relative risk magnitudes and (b) risk avoidance. In 2 experiments, the authors examined the effects of a graphical display that used icons to represent the foreground information on measures of understanding (Experiments 1 and 2) and on perceived risk, affect, and risk aversion (Experiment 2). Consistent with prior findings, this foreground-only graphical display increased perceived risk and risk aversion; however, it also led to decreased understanding of absolute (although not relative) risk magnitudes. Methodologically, this work shows the importance of distinguishing understanding of absolute risk from understanding of relative risk magnitudes, and the need to assess gist knowledge of both types of risk. Substantively, this work shows that although using foreground-only graphical displays is an appealing risk communication strategy to increase risk aversion, doing so comes at the cost of decreased understanding of absolute risk magnitudes. PMID:26065633

  18. Which data provide the most useful information about maximum earthquake magnitudes?

    NASA Astrophysics Data System (ADS)

    Zoeller, G.; Holschneider, M.

    2013-12-01

    In recent publications, it has been shown that earthquake catalogs are useful to estimate the maximum expected earthquake magnitude in a future time horizon Tf. However, earthquake catalogs alone do not allow to estimate the maximum possible magnitude M (Tf = ∞) in a study area. Therefore, we focus on the question, which data might be helpful to constrain M. Assuming a doubly-truncated Gutenberg-Richter law and independent events, optimal estimates of M depend solely on the largest observed magnitude μ regardless of all the other details in the catalog. For other models of the frequency-magnitude relation, this results holds in approximation. We show that the maximum observed magnitude μT in a known time interval T in the past provides provides the most powerful information on M in terms of the smallest confidence intervals. However, if high levels of confidence are required, the upper bound of the confidence interval may diverge. Geological or tectonic data, e.g. strain rates, might be helpful, if μT is not available; but these quantities can only serve as proxies for μT and will always lead to a higher degree of uncertainty and, therefore, to larger confidence intervals of M.

  19. The calculation of an equation of magnitude for determining the proper motions of stars

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.

    A method is proposed for correcting errors in magnitude equations for the proper motion of stars using only catalog data. An independent catalog of proper motion is obtained by calculating the local motion of stars within individual areas. The method can be applied to any catalog of stellar proper motions, including the AGK-3 catalog. Estimates of error are obtained for stellar magnitudes in the Goloseyev catalog of stellar proper motions relative to galaxies. The method is also applied to equations of proper motion obtained from photographs taken by the double long-focusing astrograph of the Main Astronomical Observatory of the Ukrainian SSR Academy of Sciences in the interval of stellar magnitudes between 10 and 15 mag. Values are obtained for the large degree of difference observed between temperature and type of plate.

  20. Observations on the magnitude-frequency distribution of Earth-crossing asteroids

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Shoemaker, Carolyn S.

    1987-01-01

    During the past decade, discovery of Earth-crossing asteroids has continued at the pace of several per year; the total number of known Earth crossers reached 70 as of September, 1986. The sample of discovered Earth crossers has become large enough to provide a fairly strong statistical basis for calculations of mean probabilities of asteroid collision with the Earth, the Moon, and Venus. It is also now large enough to begin to address the more difficult question of the magnitude-frequency distribution and size distribution of the Earth-crossing asteroids. Absolute V magnitude, H, was derived from reported magnitudes for each Earth crosser on the basis of a standard algorithm that utilizes a physically realistic phase function. The derived values of H range from 12.88 for (1627) Ivar to 21.6 for the Palomar-Leiden object 6344, which is the faintest and smallest asteroid discovered.

  1. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  2. Computing approximate random Delta v magnitude probability densities. [for spacecraft trajectory correction

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1984-01-01

    This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.

  3. High-accuracy computation of Delta V magnitude probability densities - Preliminary remarks

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1986-01-01

    This paper describes an algorithm for the high accuracy computation of some statistical quantities of the magnitude of a random trajectory correction maneuver (TCM). The trajectory correction velocity increment Delta V is assumed to be a three-component random vector with each component being a normally distributed random scalar having a possibly nonzero mean. Knowledge of the statitiscal properties of the magnitude of a random TCM is important in the planning and execution of maneuver strategies for deep-space missions such as Galileo. The current algorithm involves the numerical integration of a set of differential equations. This approach allows the computation of density functions for specific Delta V magnitude distributions to high accuracy without first having to generate large numbers of random samples. Possible applications of the algorithm to maneuver planning, planetary quarantine evaluation, and guidance success probability calculations are described.

  4. Effects of stimulus duration on observing behavior maintained by differential reinforcement magnitude1

    PubMed Central

    Auge, Robert J.

    1973-01-01

    Pigeons made observing responses for stimuli signalling the availability of either 10-sec or 2-sec access to grain on fixed-interval 1-min schedules. If observing responses did not occur, food-producing responses occurred to a stimulus common to both reinforcement magnitudes. When the stimuli remained on for the duration of the components and signalled differential reinforcement magnitudes, observing responses were maintained; however, when the stimuli remained on for 10 sec, observing responses decreased markedly. In addition, it was shown that the occasional presentation of the stimulus signalling 10-sec access to grain was necessary for the maintenance of observing behavior. A control condition demonstrated that when all the available stimuli signalled 6-sec access to grain, observing responses declined. Taken together, the results demonstrated that the occasional presentation of the stimulus that remained on for the duration of the component and signalled the larger reinforcement magnitude was necessary for the maintenance of observing behavior. PMID:16811716

  5. Improvements in magnitude precision, using the statistics of relative amplitudes measured by cross correlation

    NASA Astrophysics Data System (ADS)

    Schaff, David P.; Richards, Paul G.

    2014-04-01

    Standard processing of seismic events for reporting in bulletins is usually done one-at-a time. State-of-the-art relative event methods, often involving cross correlation, are increasingly used and have improved estimates of event parameters for event detection, location and magnitude. This is because relative event techniques can simultaneously reduce measurement error and effects of model error. We show how cross correlation can be used to assign relative magnitudes for neighbouring seismic events distributed over a large region in east Asia and quantify to what extent the uncertainty in these values increases as waveform similarity breaks down. We find that cross correlation works well for magnitude comparison of two events when it is expected that they generate very similar signals even if these may be almost buried in large amounts of noise. This may be the case when investigating repeating earthquakes or nuclear explosions within a few kilometres of each other. Cross correlation is the optimal detector in these cases assuming noise is white and Gaussian, and also provides the least-squares solution for the relative amplitudes. However, when the waveform similarity of the underlying signals breaks down, due to interevent separation distance, source time function differences or focal mechanism differences, these assumptions are no longer valid and a bias is introduced into the relative magnitude measurement. This bias due to degradation of waveform similarity is modelled here with synthetics and an analytic expression for it is derived based on three terms-the cross-correlation coefficient (CC), and the signal-to-noise ratio (SNR) of the larger and smaller events. The analytic expression is a good match to the observed bias in the data. If the equation for relative magnitude is rewritten to correct for the bias due to the CC, a new equation results which is simply the log of the ratio of the L2 norms. The bias due to SNRs is still present because the observed

  6. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    USGS Publications Warehouse

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  7. Instrumentation for magnitude estimation and cross-modality matching of auditory and lingual vibrotactile sensations

    NASA Astrophysics Data System (ADS)

    Harris, Daniel; Fucci, Donald; Petrosino, Linda; Wallace, Daniel

    1986-09-01

    An instrumentation system has been designed to investigate the relationship between auditory and oral tactile sensory processes. This instrumentation can be employed to obtain judgments of auditory and oral tactile sensation magnitudes by the psychophysical scaling methods of magnitude estimation and cross-modality matching. The stimulus generating units, stimulus measurement units, and psychophysical sensation magnitude scaling procedures are described. Previous research on the relationship of auditory and oral tactile sensory processes has frequently involved disruption of one or both sensory modes. The instrumentation system described permits investigation of these sensory channels in a nondisruptive manner. The results of two preliminary studies employing the described instrumentation and experimental techniques indicate that the system provides a viable means for investigating auditory and oral tactile sensory interactions in normal and speech-disordered subjects.

  8. Magnitude and frequency of wind speed shears from 3 to 150 meters

    NASA Technical Reports Server (NTRS)

    Alexander, M. B.; Camp, D. W.

    1981-01-01

    An analysis is presented of high resolution wind profile measurements recorded at the NASA 150-m ground winds tower facility, showing wind speed shear frequency and magnitude distributions for six vertical layers of the atmosphere and one vertical distance. Vertical wind shear is defined as the change of wind speed with height, and its magnitudes were derived by algebraically subtracting lower level wind speeds from those of higher levels and dividing the distance between levels. Horizontal wind shear is understood to be change of wind speed with horizontal distance, and its magnitudes were derived by algebraically subtracting the wind speed at a short tower from that at a tall one and dividing by the distance between towers.

  9. Outcome Probability versus Magnitude: When Waiting Benefits One at the Cost of the Other

    PubMed Central

    Young, Michael E.; Webb, Tara L.; Rung, Jillian M.; McCoy, Anthony W.

    2014-01-01

    Using a continuous impulsivity and risk platform (CIRP) that was constructed using a video game engine, choice was assessed under conditions in which waiting produced a continuously increasing probability of an outcome with a continuously decreasing magnitude (Experiment 1) or a continuously increasing magnitude of an outcome with a continuously decreasing probability (Experiment 2). Performance in both experiments reflected a greater desire for a higher probability even though the corresponding wait times produced substantive decreases in overall performance. These tendencies are considered to principally reflect hyperbolic discounting of probability, power discounting of magnitude, and the mathematical consequences of different response rates. Behavior in the CIRP is compared and contrasted with that in the Balloon Analogue Risk Task (BART). PMID:24892657

  10. Variations of Magnitude and Ionization Along the Traces of the Same Meteors

    NASA Astrophysics Data System (ADS)

    Narziev, Mirhusen

    2016-07-01

    Using the results of simultaneous television and basic radar observations of meteors from points 4-5, received during the periods of activity of the main annual meteor showers α - Kaprikornis, δ - Akvarids, Geminids, Quadrantids and Orionids in 1979 in GisAO, the variation of magnitude and linear electronic density along a traces of the same meteors were studied. It was determined that for meteors with velocities of 23-69 km/c the course of variation of magnitude and linear electronic density along the traces of the same meteors were fairly coordinated among themselves. The received results are compared with the similar data received for weaker meteors in Harward (Illinois). It is concluded that the difference between radar-tracking and photographic magnitude depends on the speed of meteors.

  11. Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading.

    PubMed

    Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert

    2016-01-01

    In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children's numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935

  12. Attentional blink magnitude is predicted by the ability to keep irrelevant material out of working memory.

    PubMed

    Arnell, Karen M; Stubitz, Shawn M

    2010-09-01

    Participants have difficulty in reporting the second of two masked targets if the second target is presented within 500 ms of the first target-an attentional blink (AB). Individual participants differ in the magnitude of their AB. The present study employed an individual differences design and two visual working memory tasks to examine whether visual working memory capacity and/or the ability to exclude irrelevant information from visual working memory (working memory filtering efficiency) could predict individual differences in the AB. Visual working memory capacity was positively related to filtering efficiency, but did not predict AB magnitude. However, the degree to which irrelevant stimuli were admitted into visual working memory (i.e., poor filtering efficiency) was positively correlated with AB magnitude over and above visual working memory capacity. Good filtering efficiency may benefit the AB by not allowing irrelevant RSVP distractors to gain access to working memory. PMID:19937451

  13. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Zhang, Ze; Han, Xiaodong; Zou, Jin

    2016-04-01

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  14. Analytically exact correction scheme for signal extraction from noisy magnitude MR signals

    NASA Astrophysics Data System (ADS)

    Koay, Cheng Guan; Basser, Peter J.

    2006-04-01

    An analytically exact method is proposed to extract the signal intensity and the noise variance simultaneously from noisy magnitude MR signals. This method relies on a fixed point formula of signal-to-noise ratio (SNR) and a correction factor. The correction factor, which is a function of SNR, establishes a fundamental link between the variance of the magnitude MR signal and the variance of the underlying Gaussian noise in the two quadrature channels. A more general but very similar method is developed for parallel signal acquisitions with multiple receiver coils. In the context of MR imaging, the proposed method can be carried out on a pixel-by-pixel basis if the mean and the standard deviation of the magnitude signal are available.

  15. Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading

    PubMed Central

    Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert

    2016-01-01

    In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children’s numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935

  16. MAGNITUDE AND SEISMIC MOMENT SCALES IN WESTERN YUNNAN, PEOPLES REPUBLIC OF CHINA.

    USGS Publications Warehouse

    Bakun, W.H.; Li, Yizheng; Fischer, F.G.; Jin, Yafu

    1985-01-01

    Seismograms and accelerograms from 77 earthquakes in 1982 to 1984 near the northwest end of the Red River fault in western Yunnan Province, Peoples Republic of China, have been used to calculate seismic moment, M//O, and local magnitude, M//L, using techniques established in California. For 1 1/2 APP 1STH M//L APP 1STH 3 1/2, log M//O equals 16. 97 plus (1. 17 plus or minus 0. 05)M//L, consistent with the log M//O minus M//L relation appropriate for central California. A comparison of these M//L values and the coda duration magnitudes M and S-wave amplitude magnitudes M assigned by the Seismological Bureau of Yunnan Province suggests that M and M values are generally larger than the M//L values.

  17. Vector Quantization of Harmonic Magnitudes in Speech Coding Applications—A Survey and New Technique

    NASA Astrophysics Data System (ADS)

    Chu, Wai C.

    2004-12-01

    A harmonic coder extracts the harmonic components of a signal and represents them efficiently using a few parameters. The principles of harmonic coding have become quite successful and several standardized speech and audio coders are based on it. One of the key issues in harmonic coder design is in the quantization of harmonic magnitudes, where many propositions have appeared in the literature. The objective of this paper is to provide a survey of the various techniques that have appeared in the literature for vector quantization of harmonic magnitudes, with emphasis on those adopted by the major speech coding standards; these include constant magnitude approximation, partial quantization, dimension conversion, and variable-dimension vector quantization (VDVQ). In addition, a refined VDVQ technique is proposed where experimental data are provided to demonstrate its effectiveness.

  18. Comparison of water production rates from UV spectroscopy and visual magnitudes for some recent comets

    NASA Technical Reports Server (NTRS)

    Roettger, E. E.; Feldman, P. D.; A'Hearn, M. F.; Festou, M. C.

    1990-01-01

    IUE data on the UV and visible coma emissions of the comets Bradfield, P/Tempel 2, Wilson, and P/Halley, are presently compared with the visual lightcurves from magnitudes reported in the IAU circulars to consider the temporal evolution of these comets. While the water-production rates obtainable from visual magnitudes on the basis of Newburn's (1984) method are consistent with OH-derived rates to first order, they are sometimes either displaced or unable to exhibit the same pre/postperihelion asymmetry. The best agreement is obtained for the relatively dust-free Comet P/Tempel 2. IUE Fine Error Sensor lightcurves are generally in agreement with curves based on total visual magnitude.

  19. STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Nordin, J.; Thomas, R. C.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2013-04-01

    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SEDs) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak B brightness are calibrated to 0.13 mag in the g band and to as low as 0.09 mag in the z = 0.25 blueshifted i band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.

  20. Outcome probability versus magnitude: when waiting benefits one at the cost of the other.

    PubMed

    Young, Michael E; Webb, Tara L; Rung, Jillian M; McCoy, Anthony W

    2014-01-01

    Using a continuous impulsivity and risk platform (CIRP) that was constructed using a video game engine, choice was assessed under conditions in which waiting produced a continuously increasing probability of an outcome with a continuously decreasing magnitude (Experiment 1) or a continuously increasing magnitude of an outcome with a continuously decreasing probability (Experiment 2). Performance in both experiments reflected a greater desire for a higher probability even though the corresponding wait times produced substantive decreases in overall performance. These tendencies are considered to principally reflect hyperbolic discounting of probability, power discounting of magnitude, and the mathematical consequences of different response rates. Behavior in the CIRP is compared and contrasted with that in the Balloon Analogue Risk Task (BART). PMID:24892657

  1. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. PMID:22959740

  2. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes.

    PubMed

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-04-01

    We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016)10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard. PMID:27176281

  3. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes

    NASA Astrophysics Data System (ADS)

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-04-01

    We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016), 10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard.

  4. Magnitudes and moment-duration scaling of low-frequency earthquakes beneath southern Vancouver Island

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.; Thomas, A. M.; Savard, G.; Chuang, L.; Rubin, A. M.

    2015-09-01

    We employ 130 low-frequency earthquake (LFE) templates representing tremor sources on the plate boundary below southern Vancouver Island to examine LFE magnitudes. Each template is assembled from hundreds to thousands of individual LFEs, representing over 269,000 independent detections from major episodic-tremor-and-slip (ETS) events between 2003 and 2013. Template displacement waveforms for direct P and S waves at near epicentral distances are remarkably simple at many stations, approaching the zero-phase, single pulse expected for a point dislocation source in a homogeneous medium. High spatiotemporal precision of template match-filtered detections facilitates precise alignment of individual LFE detections and analysis of waveforms. Upon correction for 1-D geometrical spreading, attenuation, free surface magnification and radiation pattern, we solve a large, sparse linear system for 3-D path corrections and LFE magnitudes for all detections corresponding to a single-ETS template. The spatiotemporal distribution of magnitudes indicates that typically half the total moment release occurs within the first 12-24 h of LFE activity during an ETS episode when tidal sensitivity is low. The remainder is released in bursts over several days, particularly as spatially extensive rapid tremor reversals (RTRs), during which tidal sensitivity is high. RTRs are characterized by large-magnitude LFEs and are most strongly expressed in the updip portions of the ETS transition zone and less organized at downdip levels. LFE magnitude-frequency relations are better described by power law than exponential distributions although they exhibit very high b values ≥˜5. We examine LFE moment-duration scaling by generating templates using detections for limiting magnitude ranges (MW<1.5, MW≥2.0). LFE duration displays a weaker dependence upon moment than expected for self-similarity, suggesting that LFE asperities are limited in fault dimension and that moment variation is dominated by

  5. Robust automatic photometry of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles

    NASA Astrophysics Data System (ADS)

    Consolandi, Guido; Gavazzi, Giuseppe; Fumagalli, Michele; Dotti, Massimo; Fossati, Matteo

    2016-06-01

    We present an automatic procedure to perform reliable photometry of galaxies on SDSS images. We selected a sample of 5853 galaxies in the Coma and Virgo superclusters. For each galaxy, we derive Petrosian g and i magnitudes, surface brightness and color profiles. Unlike the SDSS pipeline, our procedure is not affected by the well known shredding problem and efficiently extracts Petrosian magnitudes for all galaxies. Hence we derived magnitudes even from the population of galaxies missed by the SDSS which represents ~25% of all local supercluster galaxies and ~95% of galaxies with g < 11 mag. After correcting the g and i magnitudes for Galactic and internal extinction, the blue and red sequences in the color magnitude diagram are well separated, with similar slopes. In addition, we study (i) the color-magnitude diagrams in different galaxy regions, the inner (r ≤ 1 kpc), intermediate (0.2RPet ≤ r ≤ 0.3RPet) and outer, disk-dominated (r ≥ 0.35RPet)) zone; and (ii), we compute template color profiles, discussing the dependences of the templates on the galaxy masses and on their morphological type. The two analyses consistently lead to a picture where elliptical galaxies show no color gradients, irrespective of their masses. Spirals, instead, display a steeper gradient in their color profiles with increasing mass, which is consistent with the growing relevance of a bulge and/or a bar component above 1010 M⊙. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A38

  6. Magnitude-frequency relations for earthquakes using a statistical mechanical approach

    SciTech Connect

    Rundle, J.B.

    1993-12-10

    At very small magnitudes, observations indicate that the frequency of occurrence of earthquakes is significantly smaller than the frequency predicted by simple Gutenberg-Richter statistics. Previously, it has been suggested that the dearth of small events is related to a rapid rise in scattering and attenuation at high frequencies and the consequent inability to detect these events with standard arrays of seismometers. However, several recent studies have suggested that instrumentation cannot account for the entire effect and that the decline in frequency may be real. Working from this hypothesis, we derive a magnitude-frequency relation for very small earthquakes that is based upon the postulate that the system of moving plates can be treated as a system not too far removed from equilibrium. As a result, it is assumed that in the steady state, the probability P[E] that a segment of fault has a free energy E is proportional to the exponential of the free energy P {proportional_to} exp[-E / E{sub N}]. In equilibrium statistical mechanics this distribution is called the Boltzmann distribution. The probability weight E{sub N} is the space-time steady state average of the free energy of the segment. Earthquakes are then treated as fluctuations in the free energy of the segments. With these assumptions, it is shown that magnitude-frequency relations can be obtained. For example, previous results obtained by the author can be recovered under the same assumptions as before, for intermediate and large events, the distinction being whether the event is of a linear dimension sufficient to extend the entire width of the brittle zone. Additionally, a magnitude-frequency relation is obtained that is in satisfactory agreement with the data at very small magnitudes. At these magnitudes, departures from frequencies predicted by Gutenberg-Richter statistics are found using a model that accounts for the finite thickness of the inelastic part of the fault zone.

  7. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement

  8. Cosmological parameter extraction and biases from type Ia supernova magnitude evolution

    NASA Astrophysics Data System (ADS)

    Linden, S.; Virey, J.-M.; Tilquin, A.

    2009-11-01

    We study different one-parametric models of type Ia supernova magnitude evolution on cosmic time scales. Constraints on cosmological and supernova evolution parameters are obtained by combined fits on the actual data coming from supernovae, the cosmic microwave background, and baryonic acoustic oscillations. We find that the best-fit values imply supernova magnitude evolution such that high-redshift supernovae appear some percent brighter than would be expected in a standard cosmos with a dark energy component. However, the errors on the evolution parameters are of the same order, and data are consistent with nonevolving magnitudes at the 1σ level, except for special cases. We simulate a future data scenario where SN magnitude evolution is allowed for, and neglect the possibility of such an evolution in the fit. We find the fiducial models for which the wrong model assumption of nonevolving SN magnitude is not detectable, and for which biases on the fitted cosmological parameters are introduced at the same time. Of the cosmological parameters, the overall mass density ΩM has the strongest chances to be biased due to the wrong model assumption. Whereas early-epoch models with a magnitude offset Δ m˜ z2 show up to be not too dangerous when neglected in the fitting procedure, late epoch models with Δ m˜√{z} have high chances of undetectably biasing the fit results. Centre de Physique Théorique is UMR 6207 - “Unité Mixte de Recherche” of CNRS and of the Universities “de Provence”, “de la Mediterranée”, and “du Sud Toulon-Var” - Laboratory affiliated with FRUMAM (FR2291).

  9. Rapid internal dose magnitude estimation in emergency situations using annual limits on intake (ALI) comparisons.

    PubMed

    Sugarman, Stephen L; Toohey, Richard; Goans, Ronald; Christensen, Doran; Wiley, Albert

    2010-06-01

    It is crucial to integrate health physics into the medical management of radiation illness or injury. The key to early medical management is not necessarily radiation dose calculation and assignment, but radiation dose magnitude estimation. The magnitude of the dose can be used to predict potential biological consequences and the corresponding need for medical intervention. It is, therefore, imperative that physicians and health physicists have the necessary tools to help guide this decision making process. All internal radiation doses should be assigned using proper dosimetry techniques, but the formal internal dosimetry process often takes time that may delay treatment, thus reducing the efficacy of some medical countermeasures. Magnitudes of inhalation or ingestion intakes or intakes associated with contaminated wounds can be estimated by applying simple rules of thumb to sample results or direct measurements and comparing the outcome to known limits for a projection of dose magnitude. Although a United States regulatory unit, the annual limit on intake (ALI) is based on committed dose, and can therefore be used as a comparison point. For example, internal dose magnitudes associated with contaminated wounds can be estimated by comparing a direct wound measurement taken soon after the injury to the product of the ingestion ALI and the associated f1 value (the fractional uptake from the small intestine to the blood). International Commission on Radiation Protection Publication 96, as well as other resources, recommends treatment based on ALI determination. Often, treatment decisions have to be made with limited information. However, one can still perform dose magnitude estimations in order to help effectively guide the need for medical treatment by properly assessing the situation and appropriately applying basic rules of thumb. PMID:20445387

  10. Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA

    NASA Astrophysics Data System (ADS)

    Mallakpour, Iman; Villarini, Gabriele

    2016-08-01

    Auc(bstract) Gridded daily precipitation observations over the contiguous USA are used to investigate the past observed changes in the frequency and magnitude of heavy precipitation, and to examine its seasonality. Analyses are based on the Climate Prediction Center (CPC) daily precipitation data from 1948 to 2012. We use a block maxima approach to identify changes in the magnitude of heavy precipitation and a peak-over-threshold (POT) approach for the changes in the frequency. The results of this study show that there is a stronger signal of change in the frequency rather than in the magnitude of heavy precipitation events. Also, results show an increasing trend in the frequency of heavy precipitation over large areas of the contiguous USA with the most notable exception of the US Northwest. These results indicate that over the last 65 years, the stronger storms are not getting stronger, but a larger number of heavy precipitation events have been observed. The annual maximum precipitation and annual frequency of heavy precipitation reveal a marked seasonality over the contiguous USA. However, we could not find any evidence suggesting shifting in the seasonality of annual maximum precipitation by investigating whether the day of the year at which the maximum precipitation occurs has changed over time. Furthermore, we examine whether the year-to-year variations in the frequency and magnitude of heavy precipitation can be explained in terms of climate variability driven by the influence of the Atlantic and Pacific Oceans. Our findings indicate that the climate variability of both the Atlantic and Pacific Oceans can exert a large control on the precipitation frequency and magnitude over the contiguous USA. Also, the results indicate that part of the spatial and temporal features of the relationship between climate variability and heavy precipitation magnitude and frequency can be described by one or more of the climate indices considered here.

  11. Chile2015: Lévy Flight and Long-Range Correlation Analysis of Earthquake Magnitudes in Chile

    NASA Astrophysics Data System (ADS)

    Beccar-Varela, Maria P.; Gonzalez-Huizar, Hector; Mariani, Maria C.; Serpa, Laura F.; Tweneboah, Osei K.

    2016-06-01

    The stochastic Truncated Lévy Flight model and detrended fluctuation analysis (DFA) are used to investigate the temporal distribution of earthquake magnitudes in Chile. We show that Lévy Flight is appropriated for modeling the time series of the magnitudes of the earthquakes. Furthermore, DFA shows that these events present memory effects, suggesting that the magnitude of impeding earthquakes depends on the magnitude of previous earthquakes. Based on this dependency, we use a non-linear regression to estimate the magnitude of the 2015, M8.3 Illapel earthquake based on the magnitudes of the previous events.

  12. Chile2015: Lévy Flight and Long-Range Correlation Analysis of Earthquake Magnitudes in Chile

    NASA Astrophysics Data System (ADS)

    Beccar-Varela, Maria P.; Gonzalez-Huizar, Hector; Mariani, Maria C.; Serpa, Laura F.; Tweneboah, Osei K.

    2016-07-01

    The stochastic Truncated Lévy Flight model and detrended fluctuation analysis (DFA) are used to investigate the temporal distribution of earthquake magnitudes in Chile. We show that Lévy Flight is appropriated for modeling the time series of the magnitudes of the earthquakes. Furthermore, DFA shows that these events present memory effects, suggesting that the magnitude of impeding earthquakes depends on the magnitude of previous earthquakes. Based on this dependency, we use a non-linear regression to estimate the magnitude of the 2015, M8.3 Illapel earthquake based on the magnitudes of the previous events.

  13. Dynamics of subjective discomfort in motion sickness as measured with a magnitude estimation method

    NASA Technical Reports Server (NTRS)

    Bock, O. L.; Oman, C. M.

    1982-01-01

    Eight subjects, wearing left-right vision reversing goggles, executed sequences of controlled active head movements to provoke motion sickness. Head movement sequences were interspaced with periods of eye closure and no head movement to permit partial remission of symptoms between sequences. Subjects reported the level of discomfort experienced by using a magnitude estimation technique derived from Stevens' (1957) ratio scaling method. Using this approach, we demonstrated that the time course of subjective discomfort exhibits a profile, similar in all our subjects, characterized by both fast and slow response components. The potential usefulness of magnitude estimation for research on the dynamic properties of the mechanism generating motion sickness symptoms is discussed.

  14. Influence of weak motion data to magnitude dependence of PGA prediction model in Austria

    NASA Astrophysics Data System (ADS)

    Jia, Yan

    2015-04-01

    Data recorded by the STS2-sensors at the Austrian Seismic Network were differentiated and used to derive the PGA prediction model for Austria (Jia and Lenhardt, 2010). Before using it to our hazard assessment and real time shakemap, it is necessary to validate this model and obtain a deep understanding about it. In this paper, influence of weak motion data to the magnitude dependence of our prediction model was studied. In addition, spatial PGA residuals between the measurements and predictions were investigated as well. There are 127 earthquakes with a magnitude between 3 and 5.4 that were used to derive the PGA prediction model published in 2011. Unfortunately, 90% of used PGA measurements were made for the events with a magnitude smaller than 4. Only ten quakes among them have a magnitude larger than 4, which is the important magnitude range that needs our attention and hazard assessment. In this investigation, 127 earthquakes were divided into two groups: the first group only includes events with a magnitude smaller than 4, while the second group contains quakes with a magnitude larger than 4. By using the same modeling for estimating PGA attenuation in 2011, coefficients of the model were inverted from the measurements in two groups and compared to the one based on the complete data set. It was found that the group with the weak quakes returned results that only have small differences to the one from all 127 events, while the group with strong quakes (ml> 4) gave greater magnitude dependence than the model published in 2011. The distance coefficients stayed nearly unchanged for all three inversions. As the second step, spatial PGA residuals between the measurements and the predictions from our model were investigated. As explained in Jia and Lenhardt (2013), there are some differences in the site amplifications between the West- and the East-Austria. For a fair comparison, residuals were normalized for each station before the investigation. Then normalized

  15. Analysis of the dependence of the few-neutron transfer probability on the Q -value magnitudes

    NASA Astrophysics Data System (ADS)

    Scamps, G.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2015-02-01

    Employing the known experimental fact that the sub-barrier capture (fusion) enhancement in the reactions 40Ca+Zr,9694 and 40Ca+116,124,132Sn is not proportional to the magnitudes of Q values for the neutron transfer, the similarity of the structure of the target nuclei, and the conservation of the total reaction flux, we analyze the dependence of a few-neutron transfer probability on the magnitudes of Q values. This analysis is checked by the calculations of nucleon transfer probabilities within the time-dependent Hartree-Fock plus BCS approach.

  16. Estrategia innovadora enfocada en parejas del mismo sexo para disminuir la infección del VIH en hombres Latinos

    PubMed Central

    Martinez, Omar; Wu, Elwin; Sandfort, Theo; Shultz, Andrew Z.; Capote, Jonathan; Chávez, Silvia; Moya, Eva; Dodge, Brian; Morales, Gabriel; Porras, Antonio; Ovejero, Hugo

    2014-01-01

    Resumen El VIH es un problema de salud importante dentro de la comunidad latina de los Estados Unidos. Gracias a los esfuerzos de prevención, los niveles de contagio entre los latinos se han mantenido estables por más de una década. Sin embargo, esta población sigue siendo afectada a niveles muy altos, en particular entre hombres que tienen sexo con hombres (HSH), de origen latino y que hablan principalmente el idioma español. Existen varios factores que contribuyen a la transmisión del VIH entre esta población, como son: el uso de drogas; la violencia dentro de la pareja; la presencia de infecciones de transmisión sexual; relaciones sexuales sin protección, dentro y fuera de la pareja; el evadir la búsqueda de recursos (prueba y tratamiento adecuado) por temor a ser discriminado o por su estatus migratorio; la escasez de recursos económicos o estado de pobreza y los patrones relacionados a la migración. En particular, Investigaciones Epidemiológicas de Comportamientos han determinado: cómo algunas dinámicas en parejas están directamente asociadas a los comportamientos sexuales de riesgos. En consecuencia, es necesaria mayor investigación para identificar esas dinámicas, y a su vez, realizar intervenciones dirigidas a la reducción de conductas de riesgo enfocadas en parejas de hombres del mismo sexo. En este escrito, se describe la importancia del uso de las relaciones de pareja como estrategia en la reducción de la trasmisión del VIH/SIDA en HSH de origen latino y que hablan principalmente el idioma español en los Estados Unidos. PMID:25580466

  17. Spectral P-wave magnitudes, magnitude spectra and other source parameters for the 1990 southern Sudan and the 2005 Lake Tanganyika earthquakes

    NASA Astrophysics Data System (ADS)

    Moussa, Hesham Hussein Mohamed

    2008-10-01

    Teleseismic Broadband seismograms of P-waves from the May 1990 southern Sudan and the December, 2005 Lake Tanganyika earthquakes; the western branch of the East African Rift System at different azimuths have been investigated on the basis of magnitude spectra. The two earthquakes are the largest shocks in the East African Rift System and its extension in southern Sudan. Focal mechanism solutions along with geological evidences suggest that the first event represents a complex style of the deformation at the intersection of the northern branch of the western branch of the East African Rift and Aswa Shear Zone while the second one represents the current tensional stress on the East African Rift. The maximum average spectral magnitude for the first event is determined to be 6.79 at 4 s period compared to 6.33 at 4 s period for the second event. The other source parameters for the two earthquakes were also estimated. The first event had a seismic moment over fourth that of the second one. The two events are radiated from patches of faults having radii of 13.05 and 7.85 km, respectively. The average displacement and stress drop are estimated to be 0.56 m and 1.65 MPa for the first event and 0.43 m and 2.20 MPa for the second one. The source parameters that describe inhomogeneity of the fault are also determined from the magnitude spectra. These additional parameters are complexity, asperity radius, displacements across the asperity and ambient stress drop. Both events produce moderate rupture complexity. Compared to the second event, the first event is characterized by relatively higher complexity, a low average stress drop and a high ambient stress. A reasonable explanation for the variations in these parameters may suggest variation in the strength of the seismogenic fault which provides the relations between the different source parameters. The values of stress drops and the ambient stresses estimated for both events indicate that these earthquakes are of interplate

  18. Espectroscopia del Cometa Halley

    NASA Astrophysics Data System (ADS)

    Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.

    1987-05-01

    Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.

  19. Parametric Modulation of Error-Related ERP Components by the Magnitude of Visuo-Motor Mismatch

    ERIC Educational Resources Information Center

    Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik

    2011-01-01

    Errors generate typical brain responses, characterized by two successive event-related potentials (ERP) following incorrect action: the error-related negativity (ERN) and the positivity error (Pe). However, it is unclear whether these error-related responses are sensitive to the magnitude of the error, or instead show all-or-none effects. We…

  20. Strain magnitude-dependent calcific marker expression in valvular and vascular cells.

    PubMed

    Ferdous, Zannatul; Jo, Hanjoong; Nerem, Robert M

    2013-01-01

    Aortic valve disease and atherosclerosis tend to coexist in most patients with cardiovascular disease; however, the causes and mechanisms of disease development in heart valves are still not clearly understood. To understand the contributions of the magnitude of cyclic strain (5% hypotension, 10% physiological, and 15% hypertension) in calcification, we used a model system of tissue-engineered collagen gels containing human aortic smooth muscle cells and human aortic valvular interstitial cells, both isolated from noncalcific heart transplant tissue. The compacted collagen gels were cultured in osteogenic media for 3 weeks in a custom-designed bioreactor and all assessments were performed at the end of the culture period. The major finding of this study is that bone morphogenic protein (BMP)-2 and BMP-4 and transforming growth factor-β1 mRNA expression significantly changed in response to the magnitude of applied strain in valvular cells, while the lowest expression was observed for the representative physiological strain. On the other hand, mRNA expression in vascular cells did not vary in response to the magnitude of strain. Regarding BMP-2 and BMP-4 protein expression determined by immunostaining, trends were similar to mRNA expression in vascular and valvular cells, where only valvular cells showed a varied protein expression depending on the magnitude of the strain applied. Our results suggest that cellular differences exist between vascular and valvular cells in their response to altered levels of cyclic strain during calcification. PMID:23548742

  1. Relative Reinforcer Rates and Magnitudes Do Not Control Concurrent Choice Independently

    ERIC Educational Resources Information Center

    Elliffe, Douglas; Davison, Michael; Landon, Jason

    2008-01-01

    One assumption of the matching approach to choice is that different independent variables control choice independently of each other. We tested this assumption for reinforcer rate and magnitude in an extensive parametric experiment. Five pigeons responded for food reinforcement on switching-key concurrent variable-interval variable-interval…

  2. Direct Magnitude Estimation of Articulation Rate in Boys with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Zajac, David J.; Harris, Adrianne A.; Roberts, Joanne E.; Martin, Gary E.

    2009-01-01

    Purpose: To compare the perceived articulation rate of boys with fragile X syndrome (FXS) with that of chronologically age-matched (CA) boys and to determine segmental and/or prosodic factors that account for perceived rate. Method: Ten listeners used direct magnitude estimation procedures to judge the articulation rates of 7 boys with FXS only, 5…

  3. The empirical formula determination of local magnitude for North Moluccas region

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Basri; Suardi, Iman; Heryandoko, Nova; Bunaga, I. Gusti Ketut Satria

    2016-05-01

    The energy of local and regional earthquake is usually expressed by local magnitude. In addition, local magnitude is also useful for seismic hazard assessment. The aims of this study are to determine the empirical formula of local magnitude and the correction distance function, -log A 0, applied for North Moluccas region. This study used waveform data from the MCGA seismic network located around North Moluccas region. We collected 148 maximum amplitude data of 40 earthquake events which are recorded by 6 seismometers with range of time from December 1, 2013 till January 31, 2014, hypocentral distance from 25km till 550 km, and depth below 70 km. The results of this study are the empirical formula of local magnitude, ML = log A + 0.651logR + 0.0037R 1.3568, and the correction distance function, logA0 = 0.651logR + 0.0037R 1.3568, respectively. Also we found that the station correction values of the GLMI, LBMI, MNI, SANI, TMSI, and TNTI seismic stations were -0.057, -0.216, -0.322, 0.088, -0.494, and 0.180, respectively. Low amplification is indicated by the positive value of station correction; meanwhile high amplification is by the negative. The correction distance function of North Moluccas region is similar to the Central California region. It means that the attenuation characteristics of the two regions have similarities.

  4. Flux of optical meteors down to M sub pg = +12. [photographic absolute magnitude

    NASA Technical Reports Server (NTRS)

    Cook, A. F.; Weekes, T. C.; Williams, J. T.; Omongain, E.

    1980-01-01

    Observations of the flux of optical meteors down to photographic magnitudes of +12 are reported. The meteors were detected by photometry using a 10-m optical reflector from December 12-15, 1974, during the Geminid shower. A total of 2222 light pulses is identified as coming from meteors within the 1 deg field of view of the detector, most of which correspond to sporadic meteors traversing the detector beam at various angles and velocities and do not differ with the date, indicating that the Geminid contribution at faint luminosities is small compared to the sporadic contribution. A rate of 1.1 to 3.3 x 10 to the -12th meteors/sq cm per sec is obtained together with a power law meteor spectrum which is used to derive a relationship between cumulative meteor flux and magnitude which is linear for magnitudes from -2.4 through +12. Expressions for the cumulative flux upon the earth's atmosphere and at a test surface at 1 AU far from the earth as a function of magnitude are also obtained along with an estimate of the cumulative number density of particles.

  5. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; O'NeilJr., E. J.; Stetson, P. B.

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  6. Numerical Magnitude Representations and Individual Differences in Children's Arithmetic Strategy Use

    ERIC Educational Resources Information Center

    Vanbinst, Kiran; Ghesquiere, Pol; De Smedt, Bert

    2012-01-01

    Against the background of neuroimaging studies on how the brain processes numbers, there is now converging evidence that numerical magnitude representations are crucial for successful mathematics achievement. One major drawback of this research is that it mainly investigated mathematics performance as measured through general standardized…

  7. Increasing Magnitude "Counts" More: Asymmetrical Processing of Ordinality in 4-Month-Old Infants

    ERIC Educational Resources Information Center

    Cassia, Viola Macchi; Picozzi, Marta; Girelli, Luisa; de Hevia, Maria Dolores

    2012-01-01

    While infants' ability to discriminate quantities has been extensively studied, showing that this competence is present even in neonates, the ability to compute ordinal relations between magnitudes has received much less attention. Here we show that the ability to represent ordinal information embedded in size-based sequences is apparent at 4…

  8. College Students' Temporal-Magnitude Recognition Ability Associated with Durations of Scientific Changes

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Liu, Ou Lydia; Price, C. Aaron; Kendall, Amber L. M.

    2011-01-01

    The purpose of this study was to explore college students' recognition of temporal magnitudes associated with durations of scientific changes through construct validation of a 30-item instrument. We administered the instrument to 514 students from 10 higher education institutions in the United States. Among them, 419 students took the instrument…

  9. An Association between Understanding Cardinality and Analog Magnitude Representations in Preschoolers

    ERIC Educational Resources Information Center

    Wagner, Jennifer B.; Johnson, Susan C.

    2011-01-01

    The preschool years are a time of great advances in children's numerical thinking, most notably as they master verbal counting. The present research assessed the relation between analog magnitude representations and cardinal number knowledge in preschool-aged children to ask two questions: (1) Is there a relationship between acuity in the analog…

  10. The correlation between water production rates and visual magnitudes in comets

    NASA Technical Reports Server (NTRS)

    Jorda, L.; Crovisier, Jacques; Green, D. W. E.

    1992-01-01

    From the visual magnitudes of the International Comet Quarterly data base and the OH radio lines measured at the Nancay radio telescope, the law log Q(H2O) = 30.74 (+/-0.02) - 0.240 (+/-.003) m(sub h) is derived from a sample of 13 comets.

  11. When Is a Physical Concept Born? The Emergence of "Work" as a Magnitude of Mechanics

    ERIC Educational Resources Information Center

    Kanderakis, Nikos Emmanouil

    2010-01-01

    The physical magnitude "work" has a long history. It emerged when two different practices, performed during the whole eighteenth century, met each other. The first was theoretical, practiced by philosophers and mathematicians, and was related mainly to the "living forces" (vires vivae). The second was empirical, practiced by engineers, and was…

  12. Defective Number Module or Impaired Access? Numerical Magnitude Processing in First Graders with Mathematical Difficulties

    ERIC Educational Resources Information Center

    De Smedt, Bert; Gilmore, Camilla K.

    2011-01-01

    This study examined numerical magnitude processing in first graders with severe and mild forms of mathematical difficulties, children with mathematics learning disabilities (MLD) and children with low achievement (LA) in mathematics, respectively. In total, 20 children with MLD, 21 children with LA, and 41 regular achievers completed a numerical…

  13. The Magnitude 6.7 Northridge, California, Earthquake of January 17, 1994

    NASA Technical Reports Server (NTRS)

    Donnellan, A.

    1994-01-01

    The most damaging earthquake in the United States since 1906 struck northern Los Angeles on January 17.1994. The magnitude 6.7 Northridge earthquake produced a maximum of more than 3 meters of reverse (up-dip) slip on a south-dipping thrust fault rooted under the San Fernando Valley and projecting north under the Santa Susana Mountains.

  14. Resting EEG in Alpha and Beta Bands Predicts Individual Differences in Attentional Blink Magnitude

    ERIC Educational Resources Information Center

    MacLean, Mary H.; Arnell, Karen M.; Cote, Kimberly A.

    2012-01-01

    Accuracy for a second target (T2) is reduced when it is presented within 500 ms of a first target (T1) in a rapid serial visual presentation (RSVP)--an attentional blink (AB). There are reliable individual differences in the magnitude of the AB. Recent evidence has shown that the attentional approach that an individual typically adopts during a…

  15. Children's Representation of Symbolic and Nonsymbolic Magnitude Examined with the Priming Paradigm

    ERIC Educational Resources Information Center

    Defever, Emmy; Sasanguie, Delphine; Gebuis, Titia; Reynvoet, Bert

    2011-01-01

    How people process and represent magnitude has often been studied using number comparison tasks. From the results of these tasks, a comparison distance effect (CDE) is generated, showing that it is easier to discriminate two numbers that are numerically further apart (e.g., 2 and 8) compared with numerically closer numbers (e.g., 6 and 8).…

  16. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit. PMID:20037244

  17. Effect of Reinforcer Magnitude on Performance Maintained by Progressive-Ratio Schedules

    ERIC Educational Resources Information Center

    Rickard, J. F.; Body, S.; Zhang, Z.; Bradshaw, C. M.; Szabadi, E.

    2009-01-01

    This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microliters.…

  18. Comparisons of numerical magnitudes in children with different levels of mathematical achievement. An ERP study.

    PubMed

    Gómez-Velázquez, Fabiola Reveca; Berumen, Gustavo; González-Garrido, Andrés Antonio

    2015-11-19

    The ability to map between non-symbolic and symbolic magnitude representations is crucial in the development of mathematics and this map is disturbed in children with math difficulties. In addition, positive parietal ERPs have been found to be sensitive to the number distance effect and skills solving arithmetic problems. Therefore we aimed to contrast the behavioral and ERP responses in children with different levels of mathematical achievement: low (LA), average (AA) and high (HA), while comparing symbolic and non-symbolic magnitudes. The results showed that LA children repeatedly failed when comparing magnitudes, particularly the symbolic ones. In addition, a positive correlation between correct responses while analyzing symbolic quantities and WRAT-4 scores emerged. The amplitude of N200 was significantly larger during non-symbolic comparisons. In addition, P2P amplitude was consistently smaller in LA children while comparing both symbolic and non-symbolic quantities, and correlated positively with the WRAT-4 scores. The latency of P3 seemed to be sensitive to the type of numerical comparison. The results suggest that math difficulties might be related to a more general magnitude representation problem, and that ERP are useful to study its timecourse in children with different mathematical skills. PMID:26385418

  19. Maximum earthquake magnitudes along different sections of the North Anatolian fault zone

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Martínez-Garzón, Patricia; Bulut, Fatih; Stierle, Eva; Ben-Zion, Yehuda

    2016-04-01

    Constraining the maximum likely magnitude of future earthquakes on continental transform faults has fundamental consequences for the expected seismic hazard. Since the recurrence time for those earthquakes is typically longer than a century, such estimates rely primarily on well-documented historical earthquake catalogs, when available. Here we discuss the maximum observed earthquake magnitudes along different sections of the North Anatolian Fault Zone (NAFZ) in relation to the age of the fault activity, cumulative offset, slip rate and maximum length of coherent fault segments. The findings are based on a newly compiled catalog of historical earthquakes in the region, using the extensive literary sources that exist owing to the long civilization record. We find that the largest M7.8-8.0 earthquakes are exclusively observed along the older eastern part of the NAFZ that also has longer coherent fault segments. In contrast, the maximum observed events on the younger western part where the fault branches into two or more strands are smaller. No first-order relations between maximum magnitudes and fault offset or slip rates are found. The results suggest that the maximum expected earthquake magnitude in the densely populated Marmara-Istanbul region would probably not exceed M7.5. The findings are consistent with available knowledge for the San Andreas Fault and Dead Sea Transform, and can help in estimating hazard potential associated with different sections of large transform faults.

  20. Distance and absolute magnitudes of the brightest stars in the dwarf galaxy Sextans A

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Carlson, G.

    1982-01-01

    In an attempt to improve present bright star calibration, data were gathered for the brightest red and blue stars and the Cepheids in the Im V dwarf galaxy, Sextans A. On the basis of a magnitude sequence measured to V and B values of about 22 and 23, respectively, the mean magnitudes of the three brightest blue stars are V=17.98 and B=17.88. The three brightest red supergiants have V=18.09 and B=20.14. The periods and magnitudes measured for five Cepheids yield an apparent blue distance modulus of 25.67 + or - 0.2, via the P-L relation, and the mean absolute magnitudes of V=-7.56 and B=-5.53 for the red supergiants provide additional calibration of the brightest red stars as distance indicators. If Sextans A were placed at the distance of the Virgo cluster, it would appear to have a surface brightness of 23.5 mag/sq arcec. This, together with the large angular diameter, would make such a galaxy easily discoverable in the Virgo cluster by means of ground-based surveys.

  1. The Magnitude, Destinations, and Determinants of Mathematics and Science Teacher Turnover. CPRE Research Report # RR-66

    ERIC Educational Resources Information Center

    Ingersoll, Richard M.; May, Henry

    2010-01-01

    This study examines the magnitude, destinations, and determinants of the departures of mathematics and science teachers from public schools. The data are from the National Center for Education Statistics' nationally representative Schools and Staffing Survey and its longitudinal supplement, the Teacher Follow-up Survey. Our analyses show that…

  2. The Magnitude, Destinations, and Determinants of Mathematics and Science Teacher Turnover

    ERIC Educational Resources Information Center

    Ingersoll, Richard M.; May, Henry

    2012-01-01

    This study examines the magnitude, destinations, and determinants of mathematics and science teacher turnover. The data are from the nationally representative Schools and Staffing Survey and the Teacher Follow-Up Survey. Over the past two decades, rates of mathematics and science teacher turnover have increased but, contrary to conventional…

  3. Magnitude and frequency of heat and cold waves in recent decades: the case of South America

    NASA Astrophysics Data System (ADS)

    Ceccherini, Guido; Russo, Simone; Ameztoy, Iban; Romero, Claudia Patricia; Carmona-Moreno, Cesar

    2016-03-01

    In recent decades there has been an increase in magnitude and occurrence of heat waves and a decrease of cold waves, both of which may be related to the anthropogenic influence. This study describes the extreme temperature regime of heat waves and cold waves across South America over recent years (1980-2014). Temperature records come from the Global Surface Summary of the Day (GSOD), a climatological data set produced by the National Climatic Data Center that provides records of daily maximum and minimum temperatures acquired worldwide. The magnitude of heat waves and cold waves for each GSOD station are quantified on an annual basis by means of the Heat Wave Magnitude Index and the Cold Wave Magnitude Index. Results indicate an increase in intensity and in frequency of heat waves, especially in the last 10 years. Conversely, no significant changes are detected for cold waves. In addition, the trend of the annual temperature range (i.e. yearly mean of Tmax - yearly mean of Tmin) is positive - up to 1 °C per decade - over the extratropics and negative - up to 0.5 °C per decade - over the tropics.

  4. Magnitude and frequency of heat and cold waves in recent decades: the case of South America

    NASA Astrophysics Data System (ADS)

    Ceccherini, G.; Russo, S.; Ameztoy, I.; Romero, C. P.; Carmona-Moreno, C.

    2015-12-01

    In recent decades there has been an increase in magnitude and occurrence of heat waves and a decrease of cold waves which are possibly related to the anthropogenic influence (Solomon et al., 2007). This study describes the extreme temperature regime of heat waves and cold waves across South America over recent years (1980-2014). Temperature records come from the Global Surface Summary of the Day (GSOD), a climatological dataset produced by the National Climatic Data Center that provides records of daily maximum and minimum temperatures acquired worldwide. The magnitude of heat waves and cold waves for each GSOD station are quantified on annual basis by means of the Heat Wave Magnitude Index (Russo et al., 2014) and the Cold Wave Magnitude Index (CWMI, Forzieri et al., 2015). Results indicate an increase in intensity and in frequency of heat waves, with up to 75 % more events occurring only in the last 10 years. Conversely, no significant changes are detected for cold waves. In addition, the trend of the annual temperature range (i.e., yearly mean of Tmax - yearly mean of Tmin) is positive - up to 1 °C decade-1 - over the extra-tropics and negative - up to 0.5 °C decade-1 - over the tropic. This dichotomous behaviour indicates that the annual mean of Tmax is generally increasing more than the annual mean of Tmin in the extra-tropics and vice versa in the tropics.

  5. Mental representations of magnitude and order: a dissociation by sensorimotor learning.

    PubMed

    Badets, Arnaud; Boutin, Arnaud; Heuer, Herbert

    2015-05-01

    Numbers and spatially directed actions share cognitive representations. This assertion is derived from studies that have demonstrated that the processing of small- and large-magnitude numbers facilitates motor behaviors that are directed to the left and right, respectively. However, little is known about the role of sensorimotor learning for such number-action associations. In this study, we show that sensorimotor learning in a serial reaction-time task can modify the associations between number magnitudes and spatially directed movements. Experiments 1 and 3 revealed that this effect is present only for the learned sequence and does not transfer to a novel unpracticed sequence. Experiments 2 and 4 showed that the modification of stimulus-action associations by sensorimotor learning does not occur for other sets of ordered stimuli such as letters of the alphabet. These results strongly suggest that numbers and actions share a common magnitude representation that differs from the common order representation shared by letters and spatially directed actions. Only the magnitude representation, but not the order representation, can be modified episodically by sensorimotor learning. PMID:25813898

  6. Reversing the Signaled Magnitude Effect in Delayed Matching to Sample: Delay-Specific Remembering?

    ERIC Educational Resources Information Center

    White, K. Geoffrey; Brown, Glenn S.

    2011-01-01

    Pigeons performed a delayed matching-to-sample task in which large or small reinforcers for correct remembering were signaled during the retention interval. Accuracy was low when small reinforcers were signaled, and high when large reinforcers were signaled (the signaled magnitude effect). When the reinforcer-size cue was switched from small to…

  7. Toddler Subtraction with Large Sets: Further Evidence for an Analog-Magnitude Representation of Number

    ERIC Educational Resources Information Center

    Slaughter, Virginia; Kamppi, Dorian; Paynter, Jessica

    2006-01-01

    Two experiments were conducted to test the hypothesis that toddlers have access to an analog-magnitude number representation that supports numerical reasoning about relatively large numbers. Three-year-olds were presented with subtraction problems in which initial set size and proportions subtracted were systematically varied. Two sets of cookies…

  8. Of magnitudes and metaphors: explaining cognitive interactions between space, time, and number.

    PubMed

    Winter, Bodo; Marghetis, Tyler; Matlock, Teenie

    2015-03-01

    Space, time, and number are fundamental to how we act within and reason about the world. These three experiential domains are systematically intertwined in behavior, language, and the brain. Two main theories have attempted to account for cross-domain interactions. A Theory of Magnitude (ATOM) posits a domain-general magnitude system. Conceptual Metaphor Theory (CMT) maintains that cross-domain interactions are manifestations of asymmetric mappings that use representations of space to structure the domains of number and time. These theories are often viewed as competing accounts. We propose instead that ATOM and CMT are complementary, each illuminating different aspects of cross-domain interactions. We argue that simple representations of magnitude cannot, on their own, account for the rich, complex interactions between space, time and number described by CMT. On the other hand, ATOM is better at accounting for low-level and language-independent associations that arise early in ontogeny. We conclude by discussing how magnitudes and metaphors are both needed to understand our neural and cognitive web of space, time and number. PMID:25437376

  9. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro

    SciTech Connect

    Tang Lin; Lin Zhu; Li Yongming . E-mail: liyongming@fmmu.edu.cn

    2006-05-26

    In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24 h using a Flexercell Strain Unit, and then the mRNA and protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-{kappa}B ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling.

  10. Magnitude Representations in Williams Syndrome: Differential Acuity in Time, Space and Number Processing

    PubMed Central

    Rousselle, Laurence; Dembour, Guy; Noël, Marie-Pascale

    2013-01-01

    For some authors, the human sensitivity to numerosities would be grounded in our ability to process non-numerical magnitudes. In the present study, the developmental relationships between non numerical and numerical magnitude processing are examined in people with Williams syndrome (WS), a genetic disorder known to associate visuo-spatial and math learning disabilities. Twenty patients with WS and 40 typically developing children matched on verbal or non-verbal abilities were administered three comparison tasks in which they had to compare numerosities, lengths or durations. Participants with WS showed lower acuity (manifested by a higher Weber fraction) than their verbal matched peers when processing numerical and spatial but not temporal magnitudes, indicating that they do not present a domain-general dysfunction of all magnitude processing. Conversely, they do not differ from non-verbal matched participants in any of the three tasks. Finally, correlational analyses revealed that non-numerical and numerical acuity indexes were both related to the first mathematical acquisitions but not with later arithmetical skills. PMID:24013906

  11. Effects of Reinforcer Magnitude and Distribution on Preference for Work Schedules

    ERIC Educational Resources Information Center

    Ward-Horner, John C.; Pittenger, Alexis; Pace, Gary; Fienup, Daniel M.

    2014-01-01

    When the overall magnitude of reinforcement is matched between 2 alternative work schedules, some students prefer to complete all of their work for continuous access to a reinforcer (continuous work) rather than distributed access to a reinforcer while they work (discontinuous work). We evaluated a student's preference for continuous work by…

  12. Evaluating Statistical Significance Using Corrected and Uncorrected Magnitude of Effect Size Estimates.

    ERIC Educational Resources Information Center

    Snyder, Patricia; Lawson, Stephen

    Magnitude of effect measures (MEMs), when adequately understood and correctly used, are important aids for researchers who do not want to rely solely on tests of statistical significance in substantive result interpretation. The MEM tells how much of the dependent variable can be controlled, predicted, or explained by the independent variables.…

  13. Selection Dynamics in Joint Matching to Rate and Magnitude of Reinforcement

    ERIC Educational Resources Information Center

    McDowell, J. J.; Popa, Andrei; Calvin, Nicholas T.

    2012-01-01

    Virtual organisms animated by a selectionist theory of behavior dynamics worked on concurrent random interval schedules where both the rate and magnitude of reinforcement were varied. The selectionist theory consists of a set of simple rules of selection, recombination, and mutation that act on a population of potential behaviors by means of a…

  14. Infants' Auditory Enumeration: Evidence for Analog Magnitudes in the Small Number Range

    ERIC Educational Resources Information Center

    vanMarle, Kristy; Wynn, Karen

    2009-01-01

    Vigorous debate surrounds the issue of whether infants use different representational mechanisms to discriminate small and large numbers. We report evidence for ratio-dependent performance in infants' discrimination of small numbers of auditory events, suggesting that infants can use analog magnitudes to represent small values, at least in the…

  15. Comparative Study of Local Magnitude Scales for Central U.S. and Western India

    NASA Astrophysics Data System (ADS)

    Miao, Q.; Langston, C. A.

    2004-12-01

    Seismic waveform data from 816 aftershocks of 2001 Bhuj Mw 7.7 earthquake, recorded by CERI/STAR aftershock deployment, including eight K2 6-channel dataloggers with 3-component episensor accelerometers and 3-component L-28 geophones, were used to develop a local magnitude scale for Kachchh basin of western India. Results show that the distance correction curve can be expressed as -logA0=1.8286*(r/100.0)-0.0052*(r-100.0)+3.0, displaying weak distance attenuation. This result is much like that of the local magnitude scale for the Central U.S. Both scales show weak distance attenuation, compared with the local magnitude scales for southern California or Tanzania, East Africa, and display a negative K parameter, implying similar patterns of seismic wave spreading in these two regions. These results for local magnitude scales give support to the assertion that the Kachchh basin and New Madrid Seismic Zone are geological analogs inasmuch that ground motion and other seismological results from one area can shed light on similar problems in the other area.

  16. What magnitude are observed non-target impacts from weed biocontrol?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a ...

  17. An Empirical Study of the Relative Error Magnitude in Three Measures of Change.

    ERIC Educational Resources Information Center

    Williams, Richard H.; And Others

    1984-01-01

    This paper describes the procedures and results of two studies designed to yield empirical comparisons of the error magnitude in three change measures: the simple gain score, the residualized difference score, and the base free measure (Tucker et al). Residualized scores possessed smaller standard errors of measurement. (Author/BS)

  18. Multi-dimensional self-esteem and magnitude of change in the treatment of anorexia nervosa.

    PubMed

    Collin, Paula; Karatzias, Thanos; Power, Kevin; Howard, Ruth; Grierson, David; Yellowlees, Alex

    2016-03-30

    Self-esteem improvement is one of the main targets of inpatient eating disorder programmes. The present study sought to examine multi-dimensional self-esteem and magnitude of change in eating psychopathology among adults participating in a specialist inpatient treatment programme for anorexia nervosa. A standardised assessment battery, including multi-dimensional measures of eating psychopathology and self-esteem, was completed pre- and post-treatment for 60 participants (all white Scottish female, mean age=25.63 years). Statistical analyses indicated that self-esteem improved with eating psychopathology and weight over the course of treatment, but that improvements were domain-specific and small in size. Global self-esteem was not predictive of treatment outcome. Dimensions of self-esteem at baseline (Lovability and Moral Self-approval), however, were predictive of magnitude of change in dimensions of eating psychopathology (Shape and Weight Concern). Magnitude of change in Self-Control and Lovability dimensions were predictive of magnitude of change in eating psychopathology (Global, Dietary Restraint, and Shape Concern). The results of this study demonstrate that the relationship between self-esteem and eating disorder is far from straightforward, and suggest that future research and interventions should focus less exclusively on self-esteem as a uni-dimensional psychological construct. PMID:26837476

  19. Functional Communication Training without Extinction Using Concurrent Schedules of Differing Magnitudes of Reinforcement in Classrooms

    ERIC Educational Resources Information Center

    Davis, Dawn H.; Fredrick, Laura D.; Alberto, Paul A.; Gama, Roberto

    2012-01-01

    This study investigated the effects of functional communication training (FCT) implemented with concurrent schedules of differing magnitudes of reinforcement in lieu of extinction to reduce inappropriate behaviors and increase alternative mands. Participants were four adolescent students diagnosed with severe emotional and behavior disorders…

  20. Magnitude of the residue analyses in specialty crops from experimental applications of triazole fungicides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The IR-4 Project conducts the research required for the registration of pest control products on specialty crops such as fruits, vegetables, herbs, and others. The Tifton IR-4 Analytical Laboratory is one of the program’s five regional laboratories that conduct magnitude of the residue analyses on ...

  1. Modulation of Response Timing in ADHD, Effects of Reinforcement Valence and Magnitude

    ERIC Educational Resources Information Center

    Luman, Marjolein; Oosterlaan, Jaap; Sergeant, Joseph A.

    2008-01-01

    The present study investigated the impact of reinforcement valence and magnitude on response timing in children with ADHD. Children were required to estimate a 1-s interval, and both the median response time (response tendency) and the intrasubject-variability (response stability) were investigated. In addition, heart rate and skin conductance…

  2. Beyond Valence and Magnitude: a Flexible Evaluative Coding System in the Brain

    PubMed Central

    Gu, Ruolei; Lei, Zhihui; Broster, Lucas; Wu, Tingting; Jiang, Yang; Luo, Yue-jia

    2013-01-01

    Outcome evaluation is a cognitive process that plays an important role in our daily lives. In most paradigms utilized in the field of experimental psychology, outcome valence and outcome magnitude are the two major features investigated. The classical “independent coding model” suggest that outcome valence and outcome magnitude are evaluated by separate neural mechanisms that may be mapped onto discrete event-related potential (ERP) components: feedback-related negativity (FRN) and the P3, respectively. To examine this model, we presented outcome valence and magnitude sequentially rather than simultaneously. The results reveal that when only outcome valence or magnitude is known, both the FRN and the P3 encode that outcome feature; when both aspects of outcome are known, the cognitive functions of the two components dissociate: the FRN responds to the information available in the current context, while the P3 pattern depends on outcome presentation sequence. The current study indicates that the human evaluative system, indexed in part by the FRN and the P3, is more flexible than previous theories suggested. PMID:22019775

  3. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  4. Magnitude and frequency of high flows of unregulated streams in Kansas

    USGS Publications Warehouse

    Jordan, P.R.

    1984-01-01

    Information on high flow magnitude and frequency is needed for hydrologic evaluation of such factors as flood control storage and dam safety. High flow information given in this report is for streamflows unaffected by major regulation, such as by large reservoirs. High flow magnitude and frequency data are given for 91 streamflow gaging stations throughout Kansas. Results of frequency calculations are given for durations of high flow of 1 , 3, 7, 15, 30, 60, 90, 120, and 183 consecutive days. Accuracy of the magnitude-frequency values is influenced by the variability of flow, the number of years of flow record, and the recurrence interval calculated. High flow magnitude and frequency for ungaged sites can be estimated from regression equations using significant drainage basin characteristics of contributing-drainage area; 50-yr, 24-hr rainfall; and free-water-surface evaporation. Standard errors of estimate for ungaged sites on ungaged streams range from 31% to 49%, generally increasing with recurrence interval. If an ungaged site is near a gaging station having 10 or more yr of record on the same stream, the data for the gaging station may be used to improve the regression estimates. (Author 's abstract)

  5. Magnitude and frequency of high flows of unregulated streams in Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert

    1986-01-01

    Information on high-flow magnitude and frequency is needed for hydrologic evaluation of such factors as flood-control storage and dam safety. High-flow information given in this report is for streamflows unaffected by major regulation, such as by large reservoirs. High-flow magnitude and frequency data are given for 91 streamflow-gaging stations throughout Kansas. Results of frequency calculations are given for durations of high flow of 1, 3, 7, 15, 30, 60, 90, 120, and 183 consecutive days. Accuracy of the magnitude-frequency values is influenced by the variability of flow, the number of years of flow record, and the recurrence interval calculated. High-flow magnitude and frequency for ungaged sites can be estimated from regression equations using significant drainage-basin characteristics of contributing-drainage area; 50-year, 24-hour rainfall; and free-water-surface evaporation. Standard errors of estimate for ungaged sites on ungaged streams range from 31 to 49 percent, generally increasing with recurrence interval. If an ungaged site is near a gaging station having 10 or more years of record on the same stream, the data for the gaging station may be used to improve the regression estimates.

  6. On the Effects of Signaling Reinforcer Probability and Magnitude in Delayed Matching to Sample

    ERIC Educational Resources Information Center

    Brown, Glenn S.; White, K. Geoffrey

    2005-01-01

    Two experiments examined whether postsample signals of reinforcer probability or magnitude affected the accuracy of delayed matching to sample in pigeons. On each trial, red or green choice responses that matched red or green stimuli seen shortly before a variable retention interval were reinforced with wheat access. In Experiment 1, the…

  7. Odds Ratio, Delta, ETS Classification, and Standardization Measures of DIF Magnitude for Binary Logistic Regression

    ERIC Educational Resources Information Center

    Monahan, Patrick O.; McHorney, Colleen A.; Stump, Timothy E.; Perkins, Anthony J.

    2007-01-01

    Previous methodological and applied studies that used binary logistic regression (LR) for detection of differential item functioning (DIF) in dichotomously scored items either did not report an effect size or did not employ several useful measures of DIF magnitude derived from the LR model. Equations are provided for these effect size indices.…

  8. Review of the magnitude of folate and vitamin B12 deficiencies worldwide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human deficiencies of folate and vitamin B12 result in adverse effects which may be of public health significance, but the magnitude of these deficiencies is unknown. Therefore, we examine the prevalence data currently available, assess global coverage of surveys, determine the frequency with which...

  9. How Sequential Changes in Reward Magnitude Modulate Cognitive Flexibility: Evidence from Voluntary Task Switching

    ERIC Educational Resources Information Center

    Fröber, Kerstin; Dreisbach, Gesine

    2016-01-01

    There is much evidence that the prospect of reward modulates cognitive control in terms of more stable behavior. Increases in expected reward magnitude, however, have been suggested to increase flexible behavior as evidenced by reduced switch costs. In a series of experiments, the authors provide evidence that this increased cognitive flexibility…

  10. On magnitudes in memory: An internal clock account of space-time interaction.

    PubMed

    Cai, Zhenguang G; Connell, Louise

    2016-07-01

    Traditionally, research on time perception has diverged into a representational approach that focuses on the interaction between time and non-temporal magnitude information like spatial distance, and a mechanistic approach that emphasizes the workings and timecourse of components within an internal clock. We combined these approaches in order to identify the locus of space-time interaction effects in the mechanistic framework of the internal clock model. In three experiments, we contrasted the effects of spatial distance (a long- vs. short-distance line) on time perception with those of visual flicker (a flickering vs. static stimulus) in a duration reproduction paradigm. We found that both a flickering stimulus and a long-distance line lengthened reproduced time when presented during time encoding. However, when presented during time reproduction, a flickering stimulus shortened reproduced time but a long-distance line had no effect. The results thus show that, while visual flickers affects duration accumulation itself, spatial distance instead biases the memory of the accumulated duration. These findings are consistent with a clock-magnitude account of space-time interaction whereby both temporal duration and spatial distance are represented as mental magnitudes that can interfere with each other while being kept in memory, and places the locus of interaction between temporal and non-temporal magnitude dimensions at the memory maintenance stage of the internal clock model. PMID:27116395

  11. Assessing Young Children's Number Magnitude Representation: A Comparison between Novel and Conventional Tasks

    ERIC Educational Resources Information Center

    Reid, Erin E.; Baroody, Arthur J.; Purpura, David J.

    2015-01-01

    Previously, researchers have relied on asking young children to plot a given number on a 0-to-10 number line to assess their mental representation of numbers 1 to 9. However, such a ("conventional") number-to-position (N-P) task may underestimate the accuracy of young children's magnitude estimates and misrepresent the nature of their…

  12. The universal SNARC effect: the association between number magnitude and space is amodal.

    PubMed

    Nuerk, Hans-Christoph; Wood, Guilherme; Willmes, Klaus

    2005-01-01

    It is thought that number magnitude is represented in an abstract and amodal way on a left-to-right oriented mental number line. Major evidence for this idea has been provided by the SNARC effect (Dehaene, Bossini, & Giraux, 1993): responses to relatively larger numbers are faster for the right hand, those to smaller numbers for the left hand, even when number magnitude is irrelevant. The SNARC effect has been used to index automatic access to a central semantic and amodal magnitude representation. However, this assumption of modality independence has never been tested and it remains uncertain if the SNARC effect exists in other modalities in a similar way as in the visual modality. We have examined this question by systematically varying modality/notation (auditory number word, visual Arabic numeral, visual number word, visual dice pattern) in a within-participant design. The SNARC effect was found consistently for all modality/notation conditions, including auditory presentation. The size of the SNARC effect in the auditory condition did not differ from the SNARC effect in any visual condition. We conclude that the SNARC effect is indeed a general index of a central semantic and amodal number magnitude representation. PMID:16076066

  13. Earthquakes clustering based on the magnitude and the depths in Molluca Province

    SciTech Connect

    Wattimanela, H. J.; Pasaribu, U. S.; Indratno, S. W.; Puspito, A. N. T.

    2015-12-22

    In this paper, we present a model to classify the earthquakes occurred in Molluca Province. We use K-Means clustering method to classify the earthquake based on the magnitude and the depth of the earthquake. The result can be used for disaster mitigation and for designing evacuation route in Molluca Province.

  14. Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude

    ERIC Educational Resources Information Center

    Holloway, Ian D.; Ansari, Daniel

    2010-01-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic…

  15. Does Sensitivity to Magnitude Depend on the Temporal Distribution of Reinforcement?

    ERIC Educational Resources Information Center

    Grace, Randolph C.; Bragason, Orn

    2005-01-01

    Our research addressed the question of whether sensitivity to relative reinforcer magnitude in concurrent chains depends on the distribution of reinforcer delays when the terminal-link schedules are equal. In Experiment 1, 12 pigeons responded in a two-component procedure. In both components, the initial links were concurrent variable-interval 40…

  16. Does the Measurement or Magnitude of Academic Entitlement Change over Time?

    ERIC Educational Resources Information Center

    Sessoms, John; Finney, Sara J.; Kopp, Jason P.

    2016-01-01

    Academic entitlement (AE) characterizes students who believe they deserve positive academic outcomes independent of performance. Using the Academic Entitlement Questionnaire, we evaluated the longitudinal stability of the measurement and magnitude of AE. Results indicated partial measurement invariance, slight average increase in AE, and…

  17. Discounting of Delayed Food Rewards in Pigeons and Rats: Is There a Magnitude Effect

    ERIC Educational Resources Information Center

    Green, Leonard; Myerson, Joel; Holt, Daniel D.; Slavin, John R.; Estle, Sara J.

    2004-01-01

    Temporal discounting refers to the decrease in the present, subjective value of a reward as the time to its receipt increases. Results from humans have shown that a hyperbola-like function describes the form of the discounting function when choices involve hypothetical monetary rewards. In addition, magnitude effects have been reported in which…

  18. Problemas del Lenguaje Espanol en la Prensa: El Castellano, Esta Lengua Enferma (Problems of the Spanish Language in the Press: Castillian, That Closed-In Language)

    ERIC Educational Resources Information Center

    Quijada, Carlos Alonso

    1977-01-01

    Learned academies deplore the deterioration of Castillian Spanish due to foreign contamination. They ignore the real source of the problem within Spain itself where everyone speaks the language badly except those in the remote towns and a few intellectuals. A ray of hope comes from the Americans. (Text is in Spanish.) (AMH)

  19. Temas y Problemas del idioma espanol en la prensa: El lenguaje, arma peligrosa (Themes and Problems of the Spanish Language in the Press: Language, a Dangerous Weapon).

    ERIC Educational Resources Information Center

    de Senillosa, Antonio

    1979-01-01

    Discusses the important role that language has in our society and compares human communication to animal group communication. Gives specific examples of corruption in the Spanish language today. (NCR)

  20. A relative magnitude scale for microseismic events from surface-recorded data

    NASA Astrophysics Data System (ADS)

    Luh, P. C.; Tibi, R.

    2013-12-01

    Despite the recent staggering growth in microseismic passive monitoring, estimating magnitudes for microseismic events remains challenging due to the small size of the events in sometimes noisy environment and often inadequate local earth model. Moveout-corrected P-wave arrivals of a high-quality microseismic event show amplitude and polarity variations with both receiver distance and azimuth, consistent with the radiation pattern. Provided the waveform contents are undistorted, this study shows that a relative magnitude scale for micro-earthquakes can be derived similar to the Richter scale. Due to the general lack of amplitude calibration and variability in geophone types, the proposed magnitude scale is survey and geophone-specific, but can be readily calibrated once amplitude responses of a recorded earthquake with cataloged magnitude can be found. Such relative magnitude scale is meaningful only if observed amplitudes directly relate to the source and wave-propagation effect, suffering little or no amplitude distortion in data processing. Moveout alignment of a good microseismic event often exhibits distinct doublet (or quadruplet) L2-norm semblance peaks, which can be refined with Alignment-Intensity measure to be singly-centered for consistent location detection and polarity picking (Luh, et al, 2012). The calculated relative magnitudes along with the respective focal-mechanism solutions obtained from P-wave first-motion polarities allow normalized moment-tensor elements to be estimated as well as moment-consistent analysis performed on the resulting normalized moment tensors (Jost and Hermann, 1989; Frohlich and Apperson, 1992; Tibi, et al., 2013). Analyses for two microseismic surveys, one in the northern and the other in the southern hemisphere, show that the approach is robust within the relevant ray-path range with uncertainties of ×0.5 for the estimated relative magnitudes. Frohlich, C. and Apperson, E., 1992. Tectonics: 11, No.2, 279-296 Jost, M. and

  1. Earthquake potential and magnitude limits inferred from a geodetic strain-rate model for southern Europe

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Bird, P.; Jackson, D. D.

    2016-04-01

    The project Seismic Hazard Harmonization in Europe (SHARE), completed in 2013, presents significant improvements over previous regional seismic hazard modeling efforts. The Global Strain Rate Map v2.1, sponsored by the Global Earthquake Model Foundation and built on a large set of self-consistent geodetic GPS velocities, was released in 2014. To check the SHARE seismic source models that were based mainly on historical earthquakes and active fault data, we first evaluate the SHARE historical earthquake catalogues and demonstrate that the earthquake magnitudes are acceptable. Then, we construct an earthquake potential model using the Global Strain Rate Map data. SHARE models provided parameters from which magnitude-frequency distributions can be specified for each of 437 seismic source zones covering most of Europe. Because we are interested in proposed magnitude limits, and the original zones had insufficient data for accurate estimates, we combine zones into five groups according to SHARE's estimates of maximum magnitude. Using the strain rates, we calculate tectonic moment rates for each group. Next, we infer seismicity rates from the tectonic moment rates and compare them with historical and SHARE seismicity rates. For two of the groups, the tectonic moment rates are higher than the seismic moment rates of the SHARE models. Consequently, the rates of large earthquakes forecast by the SHARE models are lower than those inferred from tectonic moment rate. In fact, the SHARE models forecast higher seismicity rates than the historical rates, which indicate that the authors of SHARE were aware of the potentially higher seismic activities in the zones. For one group, the tectonic moment rate is lower than the seismic moment rates forecast by the SHARE models. As a result, the rates of large earthquakes in that group forecast by the SHARE model are higher than those inferred from tectonic moment rate, but lower than what the historical data show. For the other two

  2. Magnitude Scaling of the early displacement for the 2007, Mw 7.8 Tocopilla sequence (Chile)

    NASA Astrophysics Data System (ADS)

    Lancieri, M.; Fuenzalida, A.; Ruiz, S.; Madariaga, R. I.

    2009-12-01

    We investigate the empirical relationships between the initial portion of P and S-phase and the final event magnitude, on the Tocopilla (Chile) event and its aftershocks. Such correlations, on which real-time magnitude estimation for seismic early warning is founded, have been widely studied on several data sets, merging earthquakes generated in different tectonic settings and recorded with very different networks. The Tocopilla (Mw 7.8) earthquake, occurred along the northern Chile seismic gap on 14 November 2007, provides, together with its aftershocks, a unique opportunity of studying a homogeneous data set in terms of tectonic environment, focal mechanism, and recording network. The preliminary analysis required to build the seismic catalogue includes the automatic identification of more than 570 aftershocks using an automatic phase detector and picker algorithm, and the subsequent location of the events through a non-linear and probabilistic code. The seismic moment (M0) has been calculated by spectral modeling of P and S waves, assuming a Brune omega-square model. This analysis also yields values for the corner frequency and quality factor. The estimated range of moment magnitude for the aftershocks sequence is [2.8 - 6.8]. The correlation between the low pass filtered peak displacement (PD) and the final magnitude has been investigated for 90 events with magnitude greater than 4. These include the main event, its larger aftershock (Mw 6.8 occurred twenty-four hours after the main shock), and seven events with magnitude greater than 5.7. The recovered relationships confirm the observations of Zollo et al. [2006, 2007] of a clear correlation between distance corrected PD and final magnitude in the magnitude range [4.0 - 7.4], when considering time windows of 4 sec of P- or 2 sec of S- wave. In contrast with the previous studies, when examining time windows of 2 sec of P-wave, we surprisingly do not observe any saturation effect for magnitudes greater than 6

  3. CONTAMINACIÓN AMBIENTAL, VARIABILIDAD CLIMÁTICA Y CAMBIO CLIMÁTICO: UNA REVISIÓN DEL IMPACTO EN LA SALUD DE LA POBLACIÓN PERUANA

    PubMed Central

    Gonzales, Gustavo F.; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2015-01-01

    RESUMEN El presente artículo es una revisión sobre la contaminación del agua, el aire y el efecto del cambio climático en la salud de la población peruana. Uno de los principales contaminantes del aire es el material particulado menor de 2,5 μ (PM 2,5), en la ciudad de Lima, anualmente 2300 muertes prematuras son atribuibles a este contaminante. Otro problema es la contaminación del aire domiciliario por el uso de cocinas con combustible de biomasa, donde la exposición excesiva a PM 2,5 dentro de las casas es responsable de aproximadamente 3000 muertes prematuras anuales entre adultos, con otro número desconocido de muertes entre niños debido a infecciones respiratorias. La contaminación del agua tiene como principales causas los desagües vertidos directamente a los ríos, minerales (arsénico) de varias fuentes, y fallas de las plantas de tratamiento. En el Perú, el cambio climático puede impactar en la frecuencia y severidad del fenómeno de El Niño oscilación del sur (ENSO) que se ha asociado con un incremento en los casos de enfermedades como cólera, malaria y dengue. El cambio climático incrementa la temperatura y puede extender las áreas afectadas por enfermedades transmitidas por vectores, además de tener efecto en la disponibilidad del agua y en la contaminación del aire. En conclusión, el Perú, pasa por una transición de factores de riesgo ambientales, donde coexisten riesgos tradicionales y modernos, y persisten los problemas infecciosos y crónicos, algunos de los cuales se asocian con problemas de contaminación de agua y de aire. PMID:25418656

  4. An Exponential Detection Function to Describe Earthquake Frequency-Magnitude Distributions Below Completeness

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2011-12-01

    The capacity of a seismic network to detect small earthquakes can be evaluated by investigating the shape of the Frequency-Magnitude Distribution (FMD) of the resultant earthquake catalogue. The non-cumulative FMD takes the form N(m) ∝ exp(-βm)q(m) where N(m) is the number of events of magnitude m, exp(-βm) the Gutenberg-Richter law and q(m) a probability function. I propose an exponential detection function of the form q(m) = exp(κ(m-Mc)) for m < Mc with Mc the magnitude of completeness, magnitude at which N(m) is maximal. With Mc varying in space due to the heterogeneous distribution of seismic stations in a network, the bulk FMD of an earthquake catalogue corresponds to the sum of local FMDs with respective Mc(x,y), which leads to the gradual curvature of the bulk FMD below max(Mc(x,y)). More complicated FMD shapes are expected if the catalogue is derived from multiple network configurations. The model predictions are verified in the case of Southern California and Nevada. Only slight variations of the detection parameter k = κ/ln(10) are observed within a given region, with k = 3.84 ± 0.66 for Southern California and k = 2.84 ± 0.77 for Nevada, assuming Mc constant in 2° by 2° cells. Synthetic catalogues, which follow the exponential model, can reproduce reasonably well the FMDs observed for Southern California and Nevada by using only c. 15% of the total number of observed events. The proposed model has important implications in Mc mapping procedures and allows use of the full magnitude range for subsequent seismicity analyses.

  5. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events

    PubMed Central

    Fey, Samuel B.; Siepielski, Adam M.; Nusslé, Sébastien; Cervantes-Yoshida, Kristina; Hwan, Jason L.; Huber, Eric R.; Fey, Maxfield J.; Catenazzi, Alessandro; Carlson, Stephanie M.

    2015-01-01

    Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: removing more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here we present an analysis of 727 published MMEs from across the globe, affecting 2,407 animal populations. We show that the magnitude of MMEs has been intensifying for birds, fishes, and marine invertebrates; invariant for mammals; and decreasing for reptiles and amphibians. These shifts in magnitude proved robust when we accounted for an increase in the occurrence of MMEs since 1940. However, it remains unclear whether the increase in the occurrence of MMEs represents a true pattern or simply a perceived increase. Regardless, the increase in MMEs appears to be associated with a rise in disease emergence, biotoxicity, and events produced by multiple interacting stressors, yet temporal trends in MME causes varied among taxa and may be associated with increased detectability. In addition, MMEs with the largest magnitudes were those that resulted from multiple stressors, starvation, and disease. These results advance our understanding of rare demographic processes and their relationship to global and regional perturbations to natural systems. PMID:25583498

  6. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events.

    PubMed

    Fey, Samuel B; Siepielski, Adam M; Nusslé, Sébastien; Cervantes-Yoshida, Kristina; Hwan, Jason L; Huber, Eric R; Fey, Maxfield J; Catenazzi, Alessandro; Carlson, Stephanie M

    2015-01-27

    Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: removing more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here we present an analysis of 727 published MMEs from across the globe, affecting 2,407 animal populations. We show that the magnitude of MMEs has been intensifying for birds, fishes, and marine invertebrates; invariant for mammals; and decreasing for reptiles and amphibians. These shifts in magnitude proved robust when we accounted for an increase in the occurrence of MMEs since 1940. However, it remains unclear whether the increase in the occurrence of MMEs represents a true pattern or simply a perceived increase. Regardless, the increase in MMEs appears to be associated with a rise in disease emergence, biotoxicity, and events produced by multiple interacting stressors, yet temporal trends in MME causes varied among taxa and may be associated with increased detectability. In addition, MMEs with the largest magnitudes were those that resulted from multiple stressors, starvation, and disease. These results advance our understanding of rare demographic processes and their relationship to global and regional perturbations to natural systems. PMID:25583498

  7. Improved instrumental magnitude prediction expected from version 2 of the NASA SKY2000 master star catalog

    NASA Technical Reports Server (NTRS)

    Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.

    1998-01-01

    The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.

  8. Pitch-angle Scattering of Energetic Charged Particles in Nearly Constant Magnitude Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Sun, P.; Jokipii, J. R.; Giacalone, J.

    2016-08-01

    We use a method developed by Roberts that optimizes the phase angles of an ensemble of plane waves with amplitudes determined from a Kolmogorov-like power spectrum, to construct magnetic field vector fluctuations having nearly constant magnitude and large variances in its components. This is a representation of the turbulent magnetic field consistent with that observed in the solar wind. Charged-particle pitch-angle diffusion coefficients are determined by integrating the equations of motion for a large number of charged particles moving under the influence of forces from our predefined magnetic field. We tested different cases by varying the kinetic energy of the particles (E p) and the turbulent magnetic field variance ({σ }B2). For each combination of E p and {σ }B2, we tested three different models: (1) the so-called “slab” model, where the turbulent magnetic field depends on only one spatial coordinate and has significant fluctuations in its magnitude (b=\\sqrt{δ {B}x2(z)+δ {B}y2(z)+{B}02}) (2) the slab model optimized with nearly constant magnitude b; and (3) the slab model turbulent magnetic field with nearly constant magnitude plus a “variance-conserving” adjustment. In the last case, this model attempts to conserve the variance of the turbulent components ({σ }{Bx}2+{σ }{By}2), which is found to decrease during the optimization with nearly constant magnitude. We found that there is little or no effect on the pitch-angle diffusion coefficient {D}μ μ between models 1 and 2. However, the result from model 3 is significantly different. We also introduce a new method to accurately determine the pitch-angle diffusion coefficients as a function of μ.

  9. The sensivity of geomagnetic reversal frequency to core-mantle boundary heat flux magnitude and heterogeneity.

    NASA Astrophysics Data System (ADS)

    Metman, Maurits; de Groot, Lennart; Thieulot, Cedric; Biggin, Andrew; Spakman, Wim

    2015-04-01

    For a number of decades the core-mantle boundary (CMB) heat flux has been thought to be a key parameter controlling the geomagnetic field. A CMB heat flow increase is assumed to destabilize the geodynamo, increasing and decreasing the reversal frequency and dipole moment, respectively. The opposite case where a CMB flux decrease induces a relatively high dipole moment, as well as a low reversal frequency, would correspond to the characteristics of a superchron (Biggin et al., 2012). So far, only the magnitude of the CMB heat flux has been subject of research. However, the temporal and spatial heat flux distribution across the CMB also appears to have an influence on the geomagnetic reversal frequency. For example, the amount of heat flux heterogeneity may also be associated with a destabilization of the dynamo, increasing the reversal frequency (Olson et al., 2010). In this work we set out to assess: - (1) How the geomagnetic field intensity and reversals are predominantly sensitive to CMB heat flux magnitude or heterogeneity; - (2) what combination of magnitude and heterogeneity best reproduces the geomagnetic record on the 10 Myr timescale. To this end we use the PARODY software and test for a number of CMB heat flow modes (spherical harmonics of increasing degree and order, with an amplitude of 10 mW/m^2) and magnitudes (ranging from 20 to 100 mW/m^2). We will show our modeling results of how CMB heat flow magnitude and heterogeneity control the paleomagnetic record in terms of reversal frequency and dipole moment. Also relevant snapshots in time of outer core convection and thermal/magnetic structure will be shown. References Biggin et al. (2012). Nature Geoscience, 5(8):526-533. Olson et al. (2010). PEPI, 180(1-2):66 - 79.

  10. Magnitude-recurrence statistics for stratabound fracture networks in layered media

    NASA Astrophysics Data System (ADS)

    Eaton, David; Davidsen, Joern

    2014-05-01

    Variants of the Gutenberg-Richter (G-R) relation, which express scale-independent behavior of earthquakes over a range of values, are almost universally used to describe magnitude-recurrence statistics for microseismic observations. The b value, which is the slope derived from classic G-R plots, is a particularly important parameter that effectively measures the abundance of large-magnitude events relative to small events. Hydraulic fracture monitoring programs often yield apparent b values of 2.0 or greater. These values are exceptionally high compared to earthquake fault sysems, which typically exhibit b values close to 1.0. In some reports, a sudden reduction in b value during treatment has been attributed to unintended activation of a pre-existing fault. An alternative model is developed here to describe magnitude statistics of microseismic events that occur on steeply dipping to vertical fracture surfaces in horizontally layered media. Termination of fractures at mechanical layer boundaries imposes a size-dependent scaling relationship and results in a stratabound fracture networks, which are well described in a number of field studies. In the case of constant stress drop, microseismic magnitude distributions will mimic bed-thickness distributions under these circumstances. A lognormal distribution of mechanical bed thickness, which provides a good fit for three examples considered here from various parts of North America, leads asymptotically to a Gaussian distribution of microseismic magnitudes that readily explains apparent observed b values of close to 2.0. This model is consistent with a sudden reduction in b value arising from uninended triggering of a pre-existing fault, and also implies that subtle changes in b value during a treatment program may be indicative of spatial variations in reservoir facies.

  11. Fast determination of earthquake magnitude and fault extent from real-time P-wave recordings

    NASA Astrophysics Data System (ADS)

    Colombelli, Simona; Zollo, Aldo

    2015-08-01

    This work is aimed at the automatic and fast characterization of the extended earthquake source, through the progressive measurement of the P-wave displacement amplitude along the recorded seismograms. We propose a straightforward methodology to quickly characterize the earthquake magnitude and the expected length of the rupture, and to provide an approximate estimate of the average stress drop to be used for Earthquake Early Warning and rapid response purposes. We test the methodology over a wide distance and magnitude range using a massive Japan earthquake, accelerogram data set. Our estimates of moment magnitude, source duration/length and stress drop are consistent with the ones obtained by using other techniques and analysing the whole seismic waveform. In particular, the retrieved source parameters follow a self-similar, constant stress-drop scaling (median value of stress drop = 0.71 MPa). For the M 9.0, 2011 Tohoku-Oki event, both magnitude and length are underestimated, due to limited, available P-wave time window (PTWs) and to the low-frequency cut-off of analysed data. We show that, in a simulated real-time mode, about 1-2 seconds would be required for the source parameter determination of M 4-5 events, 3-10 seconds for M 6-7 and 30-40 s for M 8-8.5. The proposed method can also provide a rapid evaluation of the average slip on the fault plane, which can be used as an additional discriminant for tsunami potential, associated to large magnitude earthquakes occurring offshore.

  12. Comparing the Magnitude of Two Fractions with Common Components: Which Representations Are Used by 10- and 12-Year-Olds?

    ERIC Educational Resources Information Center

    Meert, Gaelle; Gregoire, Jacques; Noel, Marie-Pascale

    2010-01-01

    This study tested whether 10- and 12-year-olds who can correctly compare the magnitudes of fractions with common components access the magnitudes of the whole fractions rather than only compare the magnitudes of their components. Time for comparing two fractions was predicted by the numerical distance between the whole fractions, suggesting an…

  13. Maximum Magnitude in Relation to Mapped Fault Length and Fault Rupture

    NASA Astrophysics Data System (ADS)

    Black, N.; Jackson, D.; Rockwell, T.

    2004-12-01

    Earthquake hazard zones are highlighted using known fault locations and an estimate of the fault's maximum magnitude earthquake. Magnitude limits are commonly determined from fault geometry, which is dependent on fault length. Over the past 30 years it has become apparent that fault length is often poorly constrained and that a single event can rupture across several individual fault segments. In this study fault geometries are analyzed before and after several moderate to large magnitude earthquakes to determine how well fault length can accurately assess seismic hazard. Estimates of future earthquake magnitudes are often inferred from prior determinations of fault length, but use magnitude regressions based on rupture length. However, rupture length is not always limited to the previously estimated fault length or contained on a single fault. Therefore, the maximum magnitude for a fault may be underestimated, unless the geometry and segmentation of faulting is completely understood. This study examines whether rupture/fault length can be used to accurately predict the maximum magnitude for a given fault. We examine earthquakes greater than 6.0 that occurred after 1970 in Southern California. Geologic maps, fault evaluation reports, and aerial photos that existed prior to these earthquakes are used to obtain the pre-earthquake fault lengths. Pre-earthquake fault lengths are compared with rupture lengths to determine: 1) if fault lengths are the same before and after the ruptures and 2) to constrain the geology and geometry of ruptures that propagated beyond the originally recognized endpoints of a mapped fault. The ruptures examined in this study typically follow one of the following models. The ruptures are either: 1) contained within the dimensions of the original fault trace, 2) break through one or both end points of the originally mapped fault trace, or 3) break through multiple faults, connecting segments into one large fault line. No rupture simply broke a

  14. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  15. The conference on magnitude of deviatoric stresses in the Earth's crust and uppermost mantle

    NASA Astrophysics Data System (ADS)

    Hanks, Thomas C.; Raleigh, C. Barry

    1980-11-01

    The magnitude of deviatoric stresses in the earth's crust and uppermost mantle, and especially the magnitude of shear stresses that resist plate motions across the major plate boundaries, is a matter of central importance to solid earth geophysics. Since currently available estimates vary by at least a factor of 10, even when the same features or set of observations are involved, such fundamental issues as the driving mechanism(s) of plate tectonics and the energetics of crustal faulting are entirely unresolved. More generally, there is very little in the study of active geologic processes of geophysical interest that does not involve material deformation of some kind or another; in understated terms the analysis of material deformation to reveal causative processes is poorly constrained when the magnitude of the deviatoric stresses involved is so uncertain. Apart from the obvious problem of our inability to measure directly deviatoric stresses in the earth's crust and uppermost mantle through all but a small fraction of its depth—or sample directly this region in any other way at the present time—a confounding difficulty exists in the great range of time scales involved in geophysical processes of interest, from fractions of seconds for the spontaneous failure of small crustal earthquakes to billions of years for the relaxation of certain topographic and gravimetric features of the continental crust. It is probably naive then to expect that the same magnitude of deviatoric stresses should exist for all these geologic processes, given the great range of time scales over which they operate. Moreover, the earth's crust and uppermost mantle are heterogeneous enough, especially in continental regions, that significant spatial variations probably exist as well. Certainly, an important problem is whether the actual variations in space and time of deviatoric stresses in the earth's crust and uppermost mantle can be large enough to accommodate the order of magnitude

  16. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, Andreas; Babeyko, Andrey Y.; Zamora, Natalia

    2016-06-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  17. RR Lyrae stars and color-magnitude diagram of the globular cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Silbermann, N. A.; Smith, Horace A.; Bolte, Michael; Hazen, Martha L.

    1994-01-01

    We present new V, B-V, and V, V-R color-magnitude diagrams for the bulge globular cluster NGC 6388. These diagrams indicate that NGC 6388 is a metal-rich globular cluster with color-magnitude morphology similar to that of 47 Tucanae. We have conducted a search for new variable stars close to NGC 6388, finding three new RR Lyrae stars. The membership of these and previously discovered RR Lyrae stars near NGC 6388 is discussed. There is reason for believing that some of these variables are nonmembers. Others, however, may belong to the cluster and may be similar to the RR Lyrae star V9 in 47 Tuc.

  18. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  19. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    SciTech Connect

    Kim, Alex G

    2010-12-10

    I present an analysis for fitting cosmological parameters from a Hubble Diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data themselves, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for sub-types and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently-used fitters are negligibly small for existing and projected supernova data sets.

  20. Uvby-beta photometry of visual double stars - Absolute magnitudes of intrinsically bright stars

    NASA Astrophysics Data System (ADS)

    Olsen, E. H.

    1982-05-01

    Individual absolute visual magnitudes M(v) are derived for intrinsically bright stars and evolved stars. The results are collected for 106 objects believed to be members of binary systems. uvby-beta photometry was empirically calibrated in terms of M(v) for main sequence stars and photoelectrically determined apparent magnitudes. The derived M(v) values are not significantly different from those stated in the Wilson catalogue (1976). Binary systems with main sequence primaries and secondary components off the main sequence were also investigated. Several systems in which at least one component may be in the pre-main sequence contraction stage are pointed out. A wide variety of comments and derived data are given individually for 136 double stars, including metallicities, distance moduli, and masses.

  1. Effects of the 1993 flood on the determination of flood magnitude and frequency in Iowa

    USGS Publications Warehouse

    Eash, David A.

    1997-01-01

    Several factors, which included recurrence intervals for the 1993 peak discharges and the effective record lengths for 1993, were investigated for the 62 selected streamflow-gaging stations to evaluate their possible effect on the computed flood-frequency discharges. The combined effect of these two factors on the computed 100-year recurrence-interval discharges was significant. Gaging stations were grouped into four discrete categories on the basis ofrecurrence intervals for the 1993 peak discharges and the effective record lengths for 1993 . Of the 28 gaging stations that had small flood magnitudes in 1993 and long record lengths, the difference between the 1992 and the 1993 flood-frequency analyses for 100- year recurrence-interval discharges at 22 gaging stations was less than 5 percent. Of the 10 gaging stations that had large flood magnitudes in 1993 and short record lengths, the increase in 100-year recurrence-interval discharges at 9 gaging stations was greater than 15 percent.

  2. Simultaneous measurement of magnitude and phase in interferometric sum-frequency vibrational spectroscopy.

    PubMed

    Covert, Paul A; FitzGerald, William R; Hore, Dennis K

    2012-07-01

    We present a visible-infrared sum-frequency spectroscopic technique that is capable of simultaneously determining the magnitude and phase of the sample response from a single set of experimental conditions. This is especially valuable in cases where the phase stability is high, as in collinear beam geometries, as it enables multiple experiments to be performed without re-measuring the local oscillator phase or the reference phase. After illustrating the phase stability achievable with such a geometry, we provide a technique for quantitatively determining the magnitude and phase from a single set of two-dimensional spectral-temporal interference fringes. A complete demonstration is provided for the C-H stretching frequency region at the surface of an octadecyltricholosilane film. PMID:22779640

  3. Automatic Colon Cleansing in CTC Image Using Gradient Magnitude and Similarity Measure

    NASA Astrophysics Data System (ADS)

    Chunhapongpipat, Krisorn; Vajragupta, Laddawan; Chaopathomkul, Bundit; Cooharojananone, Nagul; Lipikorn, Rajalida

    Electronic colon cleansing (ECC) is an alternative method that can be used to remove remaining tagged fecal material from colon during polyp detection in virtual colonoscopy (VC). This paper presents a new method for automatic electronic colon cleansing using gradient magnitude and similarity measure to detect and remove tagged material from colon in CTC images. First, Canny edge detection and 8-adjacency are used to generate closed boundary for low density (air) and high density regions (tagged material and bone). Then similarity measure is used to classify pixels into high density regions, and all the pixels that are classified as high density materials are removed. Finally, gradient magnitude and thresholding are used to detect AT and ATT layers. The proposed method was evaluated on four pilot dadasets from two patients and the experimental results reveal that the proposed method can perform colon cleansing effectively.

  4. The colour-magnitude relation as a constraint on the formation of rich cluster galaxies

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Kodama, Tadayuki; Terlevich, Ale

    1998-10-01

    The colours and magnitudes of early-type galaxies in galaxy clusters are strongly correlated. The existence of such a correlation has been used to infer that early-type galaxies must be old passively evolving systems. Given the dominance of early-type galaxies in the cores of rich clusters, this view sits uncomfortably with the increasing fraction of blue galaxies found in clusters at intermediate redshifts, and with the late formation of galaxies favoured by cold dark matter type cosmologies. In this paper, we make a detailed investigation of these issues and examine the role that the colour-magnitude relation can play in constraining the formation history of galaxies currently found in the cores of rich clusters. We start by considering the colour evolution of galaxies after star formation ceases. We show that the scatter of the colour-magnitude relation places a strong constraint on the spread in age that is allowed for the bulk of the stellar population. In the extreme case that the stars are formed in a single event, the spread in age cannot be more than 4 Gyr. Although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies with star formation being truncated randomly. This model is consistent with the formation of stars in a few systems until look-back times of ~5Gyr. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the colour-magnitude relation with the observed blue galaxy fractions of intermediate redshift galaxy clusters. In addition to setting a limit on the variations in luminosity-weighted age between the stellar populations of cluster galaxies, the colour-magnitude relation can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the colour-magnitude

  5. Effects of urbanization on the magnitude and frequency of floods in northeastern Illinois

    USGS Publications Warehouse

    Allen, Howard E.; Bejcek, Richard M.

    1979-01-01

    Changes in land use associated with urbanization have increased flood-peak discharges in northeastern Illinois by factors up to 3.2. Techniques are presented for estimating the magnitude and frequency of floods in the urban environment of northeastern Illinois, and for estimating probable changes in flood characteristics that may be expected to accompany progressive urbanization. Suggestions also are offered for estimating the effects of urbanization on flood characteristics in areas other than northeastern Illinois. Three variables, drainage area, channel slope, and percent imperviousness (an urbanization factor), are used to estimate flood magnitudes for frequencies ranging from 2 to 500 years. Multiple regression analyses were used to relate flood-discharge data to the above watershed characteristics for 103 gaged watersheds. These watersheds ranged in drainage area from 0.07 to 630 square miles, in channel slope from 1.1 to 115 feet per mile, and in imperviousness from 1 to 39 percent. (Woodard-USGS)

  6. Debris flows in Grand Canyon National Park, Arizona: magnitude, frequency and effects on the Colorado River

    USGS Publications Warehouse

    Melis, Theodre S.; Webb, Robert H.

    1993-01-01

    Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.

  7. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  8. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, A.; Babeyko, A. Y.; Zamora, N.

    2015-09-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  9. Assessing the spatio-temporal variations of the completeness magnitude for seismic events in Venezuela

    NASA Astrophysics Data System (ADS)

    Vasquez, R.; Bravo, L.

    2013-05-01

    We investigate the spatio temporal variation of the completeness magnitude Mc, for a set of 18774 well localized earthquakes registered by the Venezuelan Seismological Network over the period 2000-2010. In the entire seismicity region we defined two-dimensional grids of different sizes in order to map the Mc: 11 km, 22 km, 55 km and 111 km. We calculated the completeness magnitude using the Maximum Curvature method (MAXC) for every particular cell taking at least 15 earthquakes to perform computations. The results show an overall variation from 2.0 to 3.6. We found different thresholds and ranges of Mc depending on the dimension of the seismicity zone: western region from 2.2 to 2.8, north central from 2.0 to 3.2 and eastern region from 2.2 to 3.2. We also include remarks in border seismicity, close to Colombia and Trinidad, where the largest Mc values are estimated.

  10. The volcanic explosivity index /VEI/ - An estimate of explosive magnitude for historical volcanism

    NASA Technical Reports Server (NTRS)

    Newhall, C. G.; Self, S.

    1982-01-01

    A composite estimate of the magnitude of past explosive eruptions, referred to as the Volcanic Explosivity Index (VEI), is proposed as a semiquantitative compromise between poor data and the need in various disciplines to evaluate the record of past volcanism. The VEI is assigned to more than 8000 historic and prehistoric eruptions. It is shown that the VEI can help detect incompleteness and reporting biases and can help in selecting subsets of the historical record suitable for each study. The VEI is a composite estimate of Walkers (1980) magnitude and/or intensity and/or destructiveness and/or (less frequently) dispersive power, violence, and energy release rate, depending on the data that are available.

  11. A geometric frequency-magnitude scaling transition: Measuring b = 1.5 for large earthquakes

    NASA Astrophysics Data System (ADS)

    Yoder, Mark R.; Holliday, James R.; Turcotte, Donald L.; Rundle, John B.

    2012-04-01

    We identify two distinct scaling regimes in the frequency-magnitude distribution of global earthquakes. Specifically, we measure the scaling exponent b = 1.0 for "small" earthquakes with 5.5 < m < 7.6 and b = 1.5 for "large" earthquakes with 7.6 < m < 9.0. This transition at mt = 7.6, can be explained by geometric constraints on the rupture. In conjunction with supporting literature, this corroborates theories in favor of fully self-similar and magnitude independent earthquake physics. We also show that the scaling behavior and abrupt transition between the scaling regimes imply that earthquake ruptures have compact shapes and smooth rupture-fronts.

  12. Environmental variation influences the magnitude of inbreeding depression in Cucurbita pepo ssp. texana (Cucurbitaceae).

    PubMed

    Hayes, C Nelson; Winsor, James A; Stephenson, Andrew G

    2005-01-01

    We grew inbred and outcrossed Cucurbita pepo ssp. texana plants and measured inbreeding depression for several male and female fitness traits 4 years in a row in adjacent fields at the same field station under the same cultivation conditions. We found that the magnitude of inbreeding depression varied from 0.16 to 0.53 from year to year and that those traits which were most affected tended to vary with year. We also grew inbred and outcrossed C. pepo ssp. texana plants in two adjacent fields differing only in the presence of nitrogen fertilizer to examine the effect of nutrient limitation as a form of environmental stress on the magnitude of inbreeding depression. We found that inbreeding depression was more severe in the unfertilized field. Overall, this study illustrates the notion that any estimate of inbreeding depression represents a single point in a cluster of possible estimates that can vary (often dramatically) with growing conditions. PMID:15669971

  13. Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform

    SciTech Connect

    Kelly, Damien P.; Hennelly, Bryan M.; Sheridan, John T

    2005-05-01

    The optical fractional Fourier transform (OFRT) in combination with speckle photography has previously been used to measure the magnitude of surface tilting and translation. Previous OFRT techniques used to determine motion have not been able to discern the direction of the tilt and translation. A simple new approach involving use of correlation is presented to overcome this limitation. Controlled variation of the minimum resolution and dynamical range of measurement is demonstrated. It is then experimentally confirmed that if a rigid body's motion is captured by two OFRT systems of different orders, the direction and magnitude of both the tilting and the in-plane translation motion of the body can be independently determined without a priori knowledge. The experimental results confirm the validity of previous theoretical predictions.

  14. Source time function properties indicate a strain drop independent of earthquake depth and magnitude.

    PubMed

    Vallée, Martin

    2013-01-01

    The movement of tectonic plates leads to strain build-up in the Earth, which can be released during earthquakes when one side of a seismic fault suddenly slips with respect to the other. The amount of seismic strain release (or 'strain drop') is thus a direct measurement of a basic earthquake property, that is, the ratio of seismic slip over the dimension of the ruptured fault. Here the analysis of a new global catalogue, containing ~1,700 earthquakes with magnitude larger than 6, suggests that strain drop is independent of earthquake depth and magnitude. This invariance implies that deep earthquakes are even more similar to their shallow counterparts than previously thought, a puzzling finding as shallow and deep earthquakes are believed to originate from different physical mechanisms. More practically, this property contributes to our ability to predict the damaging waves generated by future earthquakes. PMID:24126256

  15. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  16. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.

    PubMed

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan

    2015-08-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541

  17. The visual magnitudes of stars in the Almagest of Ptolemeus and in later catalogues.

    NASA Astrophysics Data System (ADS)

    Schmidt, H.

    1994-09-01

    The visual magnitudes of the Almagest have been compared with modern photoelectric measurements in V. Later catalogues equally based on visual estimates have been included. The various catalogues correlate rather well. Systematic effects due to extinction and the colour of the stars have been investigated. In spite of the hopes of the early observers no stars with very slow but systematic brightness variations have been found.

  18. Earthquake source inversion for moderate magnitude seismic events based on GPS simulated high-rate data

    NASA Astrophysics Data System (ADS)

    Psimoulis, Panos; Dalguer, Luis; Houlie, Nicolas; Zhang, Youbing; Clinton, John; Rothacher, Markus; Giardini, Domenico

    2013-04-01

    The development of GNSS technology with the potential of high-rate (up to 100Hz) GNSS (GPS, GLONASS, Galileo, Compass) records allows the monitoring of the seismic ground motions. In this study we show the potential of estimating the earthquake magnitude (Mw) and the fault geometry parameters (slip, depth, length, rake, dip, strike) during the propagation of seismic waves based on high-rate GPS network data and using a non-linear inversion algorithm. The examined area is the Valais (South-West Switzerland) where a permanent GPS network of 15 stations (COGEAR and AGNES GPS networks) is operational and where the occurrence of an earthquake of Mw≈6 is possible every 80 years. We test our methodology using synthetic events of magnitude 6.0-6.5 corresponding to normal fault according to most of the fault mechanisms of the area, for surface and buried rupture. The epicentres are located in the Valais close to the epicentre of previous historical earthquakes. For each earthquake, synthetic seismic data (velocity records) of 15 sites, corresponding to the current GPS network sites in Valais, were produced. The synthetic seismic data were integrated into displacement time-series. By jointly using these time-series with the Bernese GNSS Software 5.1 (modified), 10Hz sampling rate GPS records were generated assuming a noise of peak-to-peak amplitudes of ±1cm and ±3cm for the horizontal and for the vertical components, respectively. The GPS records were processed and resulted in kinematic time series from where the seismic displacements were derived and inverted for the magnitude and the fault geometry parameters. The inversion results indicate that it is possible to estimate both, the earthquake magnitudes and the fault geometry parameters in real-time (~10 seconds after the fault rupture). The accuracy of the results depends on the geometry of the GPS network and of the position of the earthquake epicentre.

  19. Arm Swing Magnitude and Asymmetry During Gait in the Early Stages of Parkinson's Disease

    PubMed Central

    Lewek, Michael D.; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2009-01-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in “off” state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p=0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p=0.907) or less (p=0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9±7.9%) compared to the control group (asymmetry angle: 5.1±4.0%; p=0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. PMID:19945285

  20. Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments

    USGS Publications Warehouse

    Bonner, J.; Herrmann, R.; Benz, H.

    2010-01-01

    We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2 magnitude units (m.u). The residuals between Mw [Ms(VMAX)] and Mw [Waveform Modeling] show a significant focal mechanism effect, especially when strike-slip events are compared with other mechanisms. Validation testing of this method suggests that Ms(VMAX)-predicted Mw's can be estimated within minutes after the origin of an event and are typically within ??0.2 m.u. of the final Mw[Waveform Modeling]. While Mw estimated from Ms(VMAX) has a slightly higher variance than waveform modeling results, it can be measured on the first short-period surface-wave observed at a local or near-regional distance seismic station after a preliminary epicentral location has been formed. Therefore, it may be used to make rapid measurements of Mw, which are needed by government agencies for early warning systems.

  1. 35-45 Giga Hertz Transceiver System for Phase and Magnitude Detection

    NASA Technical Reports Server (NTRS)

    Beni, Aman Aflaki

    2007-01-01

    Nondestructive evaluation (NDE) is the science and practice of examining an object in a way that the object's usefulness is not adversely affected. Different types of NDE methods exist but this thesis is based on microwave and millimeter wave NDE using imaging techniques. Microwave NDE is based on illuminating the object under test with a microwave signal and studying the various properties of the reflected signal from the object. This reflected signal contains some information about the inner structure of the object under test. This information may be contained in several parameters including the phase and magnitude of the reflected signal. The goal of this project is to design and build a Q-band coherent transceiver that is capable of measuring the reflected signal's phase and magnitude so that an image of the object under test may be reconstructed. From the several techniques that can be used to construct an image of the object under test, techniques of interest to this work include synthetic aperture focusing technique (SAFT) and microwave holography. The transceiver system should have the ability to sweep a large portion of Q-band frequency range in small frequency steps as quick as possible while the detected phase and magnitude of the reflected signal is very accurate. Several different designs were studied and the final schematic diagram of the transceiver system was determined. One of the most important modules that was designed, implemented and tested in the laboratory was an accurate phase/magnitude detector circuit. The compared results of the scans using the transceiver system and vector network analyzer (VNA) showed that this transceiver system has a great potential to replace a VNA for the purpose of microwave and millimeter wave imaging.

  2. Reflection magnitude as a predictor of mortality: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Zamani, Payman; Jacobs, David R; Segers, Patrick; Duprez, Daniel A; Brumback, Lyndia; Kronmal, Richard A; Lilly, Scott M; Townsend, Raymond R; Budoff, Matthew; Lima, Joao A; Hannan, Peter; Chirinos, Julio A

    2014-11-01

    Arterial wave reflections have been associated with mortality in an ethnically homogenous Asian population. It is unknown whether this association is present in a multiethnic population or whether it is independent of subclinical atherosclerosis. We hypothesized that reflection magnitude (defined as the ratio of the amplitude of the backward wave [Pb] to that of the forward wave [Pf]) is associated with all-cause mortality in a large multiethnic adult community-based sample. We studied 5984 participants enrolled in the Multi-Ethnic Study of Atherosclerosis who had analyzable arterial tonometry waveforms. During 9.8±1.7 years of follow-up, 617 deaths occurred, of which 134 (22%) were adjudicated cardiovascular deaths. In Cox proportional hazards models, each 10% increase in reflection magnitude was associated with a 31% increased risk for all-cause mortality (hazard ratio [HR]=1.31; 95% confidence interval [CI]=1.11-1.55; P=0.001). This relationship persisted after adjustment for various confounders and for markers of subclinical atherosclerosis (HR=1.23; 95% CI=1.01-1.51; P=0.04), including the coronary calcium score, ankle-brachial index, common carotid intima-media thickness, and ascending thoracic aortic Agatston score. Pb was independently associated with all-cause mortality in a similarly adjusted model (HR per 10 mm Hg increase in P(b)=2.18; 95% CI=1.21-3.92; P=0.009). Reflection magnitude (HR=1.71; 95% CI=1.06-2.77; P=0.03) and P(b) (HR=5.02; 95% CI=1.29-19.42; P=0.02) were mainly associated with cardiovascular mortality. In conclusion, reflection magnitude is independently associated with all-cause mortality in a multiethnic population initially free of clinically evident cardiovascular disease. This relationship persists after adjustment for a comprehensive set of markers of subclinical atherosclerosis. PMID:25259746

  3. Analyzing Enron Data: Bitmap Indexing Outperforms MySQL Queries bySeveral Orders of Magnitude

    SciTech Connect

    Stockinger, Kurt; Rotem, Doron; Shoshani, Arie; Wu, Kesheng

    2006-01-28

    FastBit is an efficient, compressed bitmap indexing technology that was developed in our group. In this report we evaluate the performance of MySQL and FastBit for analyzing the email traffic of the Enron dataset. The first finding shows that materializing the join results of several tables significantly improves the query performance. The second finding shows that FastBit outperforms MySQL by several orders of magnitude.

  4. Origin of how steam rockets can reduce space transport cost by orders of magnitude

    SciTech Connect

    Zuppero, A.; Larson, T.K.; Schnitzler, B.G.; Rice, J.W.; Hill, T.J.; Richins, W.D.; Parlier, L.; Werner, J.E.

    1999-01-01

    A brief sketch shows the origin of why and how thermal rocket propulsion has the unique potential to dramatically reduce the cost of space transportation for most inner solar system missions of interest. Orders of magnitude reduction in cost are apparently possible when compared to all processes requiring electrolysis for the production of rocket fuels or propellants and to all electric propulsion systems. An order of magnitude advantage can be attributed to rocket propellant tank factors associated with storing water propellant, compared to cryogenic liquids. An order of magnitude can also be attributed to the simplicity of the extraction and processing of ice on the lunar surface, into an easily stored, non-cryogenic rocket propellant (water). A nuclear heated thermal rocket can deliver thousands of times its mass to Low Earth Orbit from the Lunar surface, providing the equivalent to orders of magnitude drop in launch cost for mass in Earth orbit. Mass includes water ice. These cost reductions depend (exponentially) on the mission delta-v requirements being less than about 6 km/s, or about 3 times the specific velocity of steam rockets (2 km/s, from Isp 200 sec). Such missions include: from the lunar surface to Low Lunar Orbit, (LLO), from LLO to lunar escape, from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO), from LEO to Earth Escape, from LEO to Mars Transfer Orbit, from LLO to GEO, missions returning payloads from about 10{percent} of the periodic comets using propulsive capture to orbits around Earth itself, and fast, 100 day missions from Lunar Escape to Mars. All the assertions depend entirely and completely on the existence of abundant, nearly pure ice at the permanently dark North and South Poles of the Moon. {copyright} {ital 1999 American Institute of Physics.}

  5. Instrumental magnitude constraints for the 1889 Chilik and the 1887 Verny earthquake, Central Asia

    NASA Astrophysics Data System (ADS)

    Krueger, Frank; Kulikova, Galina; Landgraf, Angela

    2016-04-01

    A series of four large earthquakes hit the continental collision region north of Lake Issyk Kul in the years 1885, 1887, 1889 and 1911 with magnitudes above 6.9. The largest event was the Chilik earthquake on July 11, 1889 with M 8.3 based on macroseismic intensities, recently confirmed by Bindi et al. (2013). Despite the existence of several juvenile fault scarps in the epicentral region no on scale through-going surface rupture has been located. Rupture length of ~200 km and slip of ~10 m are expected for M 8.3 (Blaser et al., 2010). The lack of high concentrated epicentral intensities require a hypocenter depth of 40 km located in the lower crust. Late coda envelope amplitude comparison of modern events in Central Asia recorded at stations in Northern Germany with the reproduction of a Rebeur-Paschwitz pendulum seismogram recorded at Wilhelmshaven results in a magnitude estimate of Mw 8.0-8.5. Amplitude comparison of longperiod surface waves measured on magnetograms at two british geomagnetic observatories favors a magnitude of Mw 8.0. Both can be made consistent if a station site factor of 2-4 for the Wilhelmshaven station is applied (for which indications exist). A truly deep centroid depth (h>40 km) is unlikely (from coda amplitude scaling), a shallow rupture of appropriate length is till now not discovered. Both arguments point to a possible lower crust contribution to the seismic moment. Magnetogram amplitudes for the Jun 8, 1887, Verny earthquake point to a magnitude of M ~7.5-7.6 (preliminary).

  6. Effects of Phonation Time and Magnitude Dose on Vocal Fold Epithelial Genes, Barrier Integrity, and Function

    PubMed Central

    Kojima, Tsuyoshi; Valenzuela, Carla V.; Novaleski, Carolyn K.; Van Deusen, Mark; Mitchell, Joshua R.; Garrett, C. Gaelyn; Sivasankar, M. Preeti; Rousseau, Bernard

    2014-01-01

    Objective To investigate the effects of increasing time and magnitude doses of vibration exposure on transcription of the vocal fold's junctional proteins, structural alterations, and functional tissue outcomes. Study Design Animal study. Methods 100 New Zealand White breeder rabbits were studied. Dependent variables were measured in response to increasing time doses (30, 60, or 120 minutes) and magnitude doses (control, modal intensity, and raised intensity) of vibration exposure. Messenger RNA expression of occludin, zonula occluden-1 (ZO-1), E-cadherin, β-catenin, interleukin 1β (IL-1β), cyclooxygenase-2 (COX-2), transforming growth factor β-1 (TGFβ1), and fibronectin were measured. Tissue structural alterations were assessed using transmission electron microscopy (TEM). Transepithelial resistance was used to measure functional tissue outcomes. Results Occludin gene expression was downregulated in vocal folds exposed to 120 minute time doses of raised intensity phonation, relative to control, and modal intensity phonation. ZO-1 gene expression was upregulated following a 120 minute time dose of modal intensity phonation, compared to control, and downregulated after a 120 minute time dose of raised intensity phonation, compared to modal intensity phonation. E-cadherin gene expression was downregulated after a120 minute time dose of raised intensity phonation, compared to control and modal intensity phonation. TEM revealed extensive desquamation of the stratified squamous epithelial cells with increasing time and magnitude doses of vibration exposure. A general observation of lower transepithelial resistance measures was made in tissues exposed to raised intensity phonation, compared to all other groups. Conclusions This study provides evidence of vocal fold tissue responses to varying time and magnitude doses of vibration exposure. Level of Evidence N/A PMID:25073715

  7. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study*

    PubMed Central

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-song; Chen, Fei-yan

    2015-01-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541

  8. Sampling conditions for gradient-magnitude sparsity based image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-03-01

    Image reconstruction from sparse-view data in 2D fan-beam CT is investigated by constrained, total-variation minimization. This optimization problem exploits possible sparsity in the gradient magnitude image (GMI). The investigation is performed in simulation under ideal, noiseless data conditions in order to reveal a possible link between GMI sparsity and the necessary number of projection views for reconstructing an accurate image. Results are shown for two, quite different phantoms of similar GMI sparsity.

  9. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    PubMed

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year. PMID:26812351

  10. Effects of combined apertures on the magnitudes of electric coupling coefficients of combline resonators

    NASA Astrophysics Data System (ADS)

    Pholele, T. M.; Chuma, J. M.

    2014-10-01

    The effects of differently positioned and combined apertures on the magnitudes of electric coupling coefficients of two identical combline resonators are analysed. Coupling coefficient, k-vertical symmetry provides greater negative coupling for apertures less than 50 % opening on the common wall. Combined apertures do not enhance electric coupling. The Γ aperture annihilates electric coupling, whereas T shaped aperture provides reduced negative coupling coefficients compared to single apertures that make up the combination.

  11. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries

    PubMed Central

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006–2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year. PMID:26812351

  12. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes.

    PubMed

    Honda, K; Ohno, S; Tanimoto, K; Ijuin, C; Tanaka, N; Doi, T; Kato, Y; Tanne, K

    2000-09-01

    Excessive mechanical load is thought to be responsible for the onset of osteoarthrosis (OA), but the mechanisms of cartilage destruction caused by mechanical loads remain unknown. In this study we applied a high magnitude cyclic tensile load to cultured chondrocytes using a Flexercell strain unit, which produces a change in cell morphology from a polygonal to spindle-like shape, and examined the protein level of cartilage matrixes and the gene expression of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) and proinflammatory cytokines such as IL-1beta and TNF-alpha. Toluidine blue staining, type II collagen immunostaining, and an assay of the incorporation of [35S]sulfate into proteoglycans revealed a decrease in the level of cartilage-specific matrixes in chondrocyte cultures subjected to high magnitude cyclic tensile load. PCR-Southern blot analysis showed that the high magnitude cyclic tensile load increased the mRNA level of MMP-1, MMP-3, MMP-9, IL-1beta, TNF-alpha and TIMP-1 in the cultured chondrocytes, while the mRNA level of MMP-2 and TIMP-2 was unchanged. Moreover, the induction of MMP-1, MMP-3 and MMP-9 mRNA expression was observed in the presence of cycloheximide, an inhibitor of protein synthesis. These findings suggest that excessive mechanical load directly changes the metabolism of cartilage by reducing the matrix components and causing a quantitative imbalance between MMPs and TIMPs. PMID:11043401

  13. Some constraints on the color-magnitude diagram of giants in the galactic spheroid

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Soneira, R. M.; Morton, D. C.; Tritton, K. P.

    1983-01-01

    The color-magnitude diagram of giants in the Galactic spheroid is shown to be important in determining the number-color histogram of stars brighter than B = 19 mag. This result is demonstrated by comparing a standard Galaxy model with observations of 391 stars in a field in the direction of Aquarius (l = 36.5 deg, b = -51.1 deg). More than 80 percent of the spheroid stars and 40 percent of all stars in this magnitude range and direction are predicted to be giants. At most, a few percent of the spheroid stars in the current sample can lie on the main sequence bluer than the turn-off onto the giant branch near B - V approximately 0.4. The available observations suggest that the blue tip of the horizontal branch of the spheroid must be sparsely populated about a factor of 10 less than would be expected if the color-magnitude diagram of the spheroid were the same as diagrams for any of the globular clusters M3, M13, or M92. The total dispersion in colors (measurement errors and intrinsic dispersion) has a standard deviation in B - V color that is less than 0.2 mag.

  14. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants.

    PubMed

    Saad, Aline H; DePestel, Daryl D; Carver, Peggy L

    2006-12-01

    The magnitude of drug interactions between azole antifungals and immunosuppressants is drug and patient specific and depends on the potency of the azole inhibitor involved, the resulting plasma concentrations of each drug, the drug formulation, and interpatient variability. Many factors contribute to variability in the magnitude and clinical significance of drug interactions between an immunosuppressant such as cyclosporine, tacrolimus, or sirolimus and an antifungal agent such as ketoconazole, fluconazole, itraconazole, voriconazole, or posaconazole. By bringing similarities and differences among these agents and their potential interactions to clinicians' attention, they can appreciate and apply these findings in a individualized patient approach rather than follow only the one-size-fits-all dosing recommendations suggested in many tertiary references. Differences in metabolism and in the inhibitory potency of cytochrome P450 3A4 and P-glycoprotein influence the onset, magnitude, and resolution of drug interactions and their potential effect on clinical outcomes. Important issues are the route of administration and the decision to preemptively adjust dosages versus intensive monitoring with subsequent dosage adjustments. We provide recommendations for the concomitant use of these agents, including suggestions regarding contraindicated combinations, those best avoided, and those requiring close monitoring of drug dosages and plasma concentrations. PMID:17125435

  15. Flood magnitude and frequency of Chandlers Run at two sites, at Pennsauken Township, New Jersey

    USGS Publications Warehouse

    Dunne, Paul

    1994-01-01

    Six methods were used to estimate the magnitude and frequency of floods at Chandlers Run at the culvert on New Jersey Route 612, and at a second site about 2,100 feet upstream, at New Jersey Route 70 at Pennsauken Township, New Jersey. Flood magnitude and frequency calculated by the six methods, as well as drainage-basin characteristics, are included in this report. The 100-year-flood estimates for the culvert site on Route 612 range from 268 cubic feet per second to 2,050 cubic feet per second. The 100-year-flood estimates for the upstream site at Route 70 range from 246 cubic feet per second to 2,320 cubic feet per second. Flood magnitude and frequency estimates obtained by using the New Jersey Department of Environmental Protection Special Report 38 method and other pre- viously published estimates fall within the range of values estimated by using the U.S. Geological Survey transfer method with data collected from three nearby crest-stage gages.

  16. Fixed-head star tracker magnitude calibration on the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Pitone, Daniel S.; Twambly, B. J.; Eudell, A. H.; Roberts, D. A.

    1990-01-01

    The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission (SMM) is defined as the accuracy of the electronic response to the magnitude of a star in the sensor field-of-view, which is measured as intensity in volts. To identify stars during attitude determination and control processes, a transformation equation is required to convert from star intensity in volts to units of magnitude and vice versa. To maintain high accuracy standards, this transformation is calibrated frequently. A sensitivity index is defined as the observed intensity in volts divided by the predicted intensity in volts; thus, the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity index, analysis is presented that compares the strengths and weaknesses of two possible transformation equations. The effect on the transformation equations of variables, such as position in the sensor field-of-view, star color, and star magnitude, is investigated. In addition, results are given that evaluate the aging process of each sensor. The results in this work can be used by future missions as an aid to employing data from star cameras as effectively as possible.

  17. Millenial scale changes in flood magnitude and frequency and the role of changes in channel adjustment.

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Thompson, Christopher; Denham, Robert; Haines, Heather; Sharma, Ashneel; Pietsch, Timothy

    2016-04-01

    With access to only limited gauging records (~ 37 years in eastern Australia), Australia like many parts of the globe is heavily constrained in its ability to meaningfully predict the magnitude and frequency of extreme flood events. Flood inundation data gathered during recent floods (2011 and 213) now forms an essential insight into how landscapes may respond to future floods and to guide planning and policy. This study presents the first singe-catchment flood reconstruction analyses in a region of recognised hydrological variability, as characterised by alternating extremes of floods and droughts. The resultant 'Big Flood' data set consists of a unique combination of high-resolution topographic data on landscape changes during recent floods, and a detailed reconstruction of both the timing and estimated magnitude of past food events derived using OSL dating of flood deposits from a range of sedimentary environments. While distinct flood and drought 'phases' are recognisable over the timescale of several thousand years, the extent to which these reflect changes in flood magnitude and/or frequency remains complicated by catchment-specific geomorphology. Issues of flood sample preservation are discussed in this talk within the context of geomorphic setting and notably non-linear variations in the capacity for channel adjustment. This talk outlines the key factors which must be considered in evaluating the role of climate, landuse change and geomorphology in informing flood risk management in Queensland.

  18. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude

    USGS Publications Warehouse

    Noda, Shunta; Yamamoto, Shunroku; Ellsworth, William L.

    2016-01-01

    We propose a simple approach to measure earthquake magnitude M using the time difference (Top) between the body‐wave onset and the arrival time of the peak high‐frequency amplitude in an accelerogram. Measured in this manner, we find that Mw is proportional to 2logTop for earthquakes 5≤Mw≤7, which is the theoretical proportionality if Top is proportional to source dimension and stress drop is scale invariant. Using high‐frequency (>2  Hz) data, the root mean square (rms) residual between Mw and MTop(M estimated from Top) is approximately 0.5 magnitude units. The rms residuals of the high‐frequency data in passbands between 2 and 16 Hz are uniformly smaller than those obtained from the lower‐frequency data. Top depends weakly on epicentral distance, and this dependence can be ignored for distances <200  km. Retrospective application of this algorithm to the 2011 Tohoku earthquake produces a final magnitude estimate of M 9.0 at 120 s after the origin time. We conclude that Top of high‐frequency (>2  Hz) accelerograms has value in the context of earthquake early warning for extremely large events.

  19. The visual surface brightness relation and the absolute magnitudes of RR Lyrae stars. I - Theory

    NASA Technical Reports Server (NTRS)

    Manduca, A.; Bell, R. A.

    1981-01-01

    A theoretical relation analogous to the Barnes-Evans relation between stellar surface brightness and V-R color is derived which is applicable to the temperatures and gravities appropriate to RR Lyrae stars. Values of the visual surface brightness and V-R colors are calculated for model stellar atmospheres with effective temperatures between 6000 and 8000 K, log surface gravities from 2.2 to 3.5, and A/H anbundance ratios from -0.5 to -3.0. The resulting relation is found to be in reasonable agreement with the empirical relation of Barnes, Evans and Moffet (1978), with, however, small sensitivities to gravity and metal abundance. The relation may be used to derive stellar angular diameters from (V,R) photometry and to derive radii, distances, and absolute magnitudes for variable stars when combined with a radial velocity curve. The accuracies of the radii and distances (within 10%) and absolute magnitudes (within 0.25 magnitudes) compare favorably with those of the Baade-Wesselink method currently in use.

  20. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions.

    PubMed

    Santamouris, M

    2015-04-15

    Urban heat island is the more documented phenomenon of climate change. Information on the magnitude and the characteristics of the canopy layer urban heat island measured in 101 cities and regions of Asia and Australia and collected through 88 scientific articles, are compiled, evaluated and presented. Data are classified in several clusters according to the experimental protocol used and the type of statistical information reported regarding the magnitude of the urban heat island. Results and detailed analysis are given for each defined cluster. Very significant differences on the UHI intensity are found between the clusters and analyzed in detail. The detailed impact of the main weather parameters and conditions on the magnitude of the UHI is also investigated. The specific influence of anthropogenic thermal fluxes as well as of the urban morphological and construction characteristics to UHI is thoroughly examined. The relation between the UHI intensity and the city size is assessed and global relationships of UHI as a function of the urban population are proposed. The seasonal and diurnal variability of the UHI is analyzed and discussed while specific features and conditions like the urban heat island characteristics in coastal cities and the existence of daytime cool islands are explored. Finally, the impact of the selected reference station and its characteristics is considered. PMID:25647373