Science.gov

Sample records for magnitud del problema

  1. Il problema del litio.

    NASA Astrophysics Data System (ADS)

    D'Antona, F.

    1995-03-01

    Contents: 1. Introduzione. 2. La nucleosintesi del Big Bang. 3. Il litio nelle stelle di popolazione II. 4. I modelli stellari standard. 5. Il litio negli ammassi aperti. 6. Meccanismi di distruzione "non standard". 7. I modelli non-standard applicati alla popolazione II. 8. L'evoluzione Galattica del litio. 9. Quali stelle producono litio? 10. Il litio come elemento chiave per dare un nome agli oggetti stellari più minuscoli. 11. Conclusioni.

  2. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  3. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  4. Estructura orbital en el Problema Restringido Rectilíneo Isósceles

    NASA Astrophysics Data System (ADS)

    Orellana, R. B.

    Para definir problemas en Mecánica Celeste se utilizan diferentes parámetros. El conocimiento de la dinámica del problema para valores particulares de estos parámetros nos permite entender el comportamiento en casos más generales. El Problema Restringido Rectilíneo Isósceles puede ser considerado como el caso límite del Problema de Sitnikov cuando la excentricidad tiende a uno o como el Problema Isósceles cuando la masa central tiende a cero. Se ha compactificado el espacio de fases y analizado la dinámica en el límite. Esto ha permitido separar el espacio de fases en diferentes regiones dependiendo de las clases de órbitas.

  5. Are Earthquake Magnitudes Clustered?

    SciTech Connect

    Davidsen, Joern; Green, Adam

    2011-03-11

    The question of earthquake predictability is a long-standing and important challenge. Recent results [Phys. Rev. Lett. 98, 098501 (2007); ibid.100, 038501 (2008)] have suggested that earthquake magnitudes are clustered, thus indicating that they are not independent in contrast to what is typically assumed. Here, we present evidence that the observed magnitude correlations are to a large extent, if not entirely, an artifact due to the incompleteness of earthquake catalogs and the well-known modified Omori law. The latter leads to variations in the frequency-magnitude distribution if the distribution is constrained to those earthquakes that are close in space and time to the directly following event.

  6. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  7. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  8. Should Astronomy Abolish Magnitudes?

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2001-12-01

    Astronomy is riddled with a number of anachronistic and counterintuitive practices. Among these are: plotting increasing stellar temperature from right to left in the H-R diagram; giving the distances to remote astronomical objects in parsecs; and reporting the brightness of astronomical objects in magnitudes. Historical accident and observational technique, respectively, are the bases for the first two practices, and they will undoubtedly persist in the future. However, the use of magnitudes is especially egregious when essentially linear optical detectors like CCDs are used for measuring brightness, which are then reported in a logarithmic (base 2.512 deg!) scale. The use of magnitudes has its origin in three historical artifacts: Ptolemy's method of reporting the brightness of stars in the "Almagest"; the 19th century need for a photographic photometry scale; and the 19th century studies by psychophysicists E. H. Weber and G. T. Fechner on the response of the human eye to light. The latter work sought to uncover the relationship between the subjective response of the human eye and brain to the objective brightness of external optical stimuli. The resulting Fechner-Weber law states that this response is logarithmic: that is, that the eye essentially takes the logarithm of the incoming optical signal. However, after more than a century of perceptual studies, most intensively by S. S. Stevens, it is now well established that this relation is not logarithmic. For naked eye detection of stars from the first to sixth magnitudes, it can be reasonably well fit by a power law with index of about 0.3. Therefore, the modern experimental studies undermine the physiological basis for the use of magnitudes in astronomy. Should the historical origins of magnitudes alone be reason enough for their continued use? Probably not, since astronomical magnitudes are based on outdated studies of human perception; make little sense in an era of linear optical detection; and provide a

  9. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  10. Magnitude correlations in global seismicity

    SciTech Connect

    Sarlis, N. V.

    2011-08-15

    By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for earthquake magnitudes greater than M{sub w}6.5.

  11. El problema de estabilidad de los sistemas Hamiltonianos multidimensionales

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.

    Se revisarán los aspectos básicos del problema de estabilidad de sistemans Hamiltonianos N-dimensionales, haciendo especial énfasis en los posibles mecanismos que dan lugar a la aparición de ``caos": overlap de resonancias, difusión de Arnol'd y otros procesos difusivos alternativos. Se mencionarán los aspectos aún no resueltos sobre la estabilidad de los sistemas con N > 2. Finalmente, se discutirá cuáles de estos mecanismos podrían tener alguna relevancia en la dinámica de sistemas estelares y planetarios.

  12. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  13. Statistical models for seismic magnitude

    NASA Astrophysics Data System (ADS)

    Christoffersson, Anders

    1980-02-01

    In this paper some statistical models in connection with seismic magnitude are presented. Two main situations are treated. The first deals with the estimation of magnitude for an event, using a fixed network of stations and taking into account the detection and bias properties of the individual stations. The second treats the problem of estimating seismicity, and detection and bias properties of individual stations. The models are applied to analyze the magnitude bias effects for an earthquake aftershock sequence from Japan, as recorded by a hypothetical network of 15 stations. It is found that network magnitudes computed by the conventional averaging technique are considerably biased, and that a maximum likelihood approach using instantaneous noise-level estimates for non-detecting stations gives the most consistent magnitude estimates. Finally, the models are applied to evaluate the detection characteristics and associated seismicity as recorded by three VELA arrays: UBO (Uinta Basin), TFO (Tonto Forest) and WMO (Wichita Mountains).

  14. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India

    NASA Astrophysics Data System (ADS)

    Bora, Dipok K.

    2016-06-01

    In this study, we aim to improve the scaling between the moment magnitude ( M W), local magnitude ( M L), and the duration magnitude ( M D) for 162 earthquakes in Shillong-Mikir plateau and its adjoining region of northeast India by extending the M W estimates to lower magnitude earthquakes using spectral analysis of P-waves from vertical component seismograms. The M W- M L and M W- M D relationships are determined by linear regression analysis. It is found that, M W values can be considered consistent with M L and M D, within 0.1 and 0.2 magnitude units respectively, in 90 % of the cases. The scaling relationships investigated comply well with similar relationships in other regions in the world and in other seismogenic areas in the northeast India region.

  15. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  16. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  17. Puertorriquenos En Chicago: El Problema Educativo Del Dropout

    ERIC Educational Resources Information Center

    Lucas, Isidro

    1974-01-01

    Article written in Spanish. Defines the term "dropout," discusses the characteristics and motivations of Puerto Rican school dropouts in Chicago, and outlines the problems in educating them. (Author/RJ)

  18. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  19. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  20. Solar Variability Magnitudes and Timescales

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  1. Astronomical Limiting Magnitude at Langkawi Observatory

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohd. Zambri; Loon, Chin Wei; Harun, Saedah

    2010-07-01

    Astronomical limiting magnitude is an indicator for astronomer to conduct astronomical measurement at a particular site. It gives an idea to astronomer of that site what magnitude of celestial object can be measured. Langkawi National Observatory (LNO) is situated at Bukit Malut with latitude 6°18' 25'' North and longitude 99°46' 52'' East in Langkawi Island. Sky brightness measurement has been performed at this site using the standard astronomical technique. The value of the limiting magnitude measured is V = 18.6+/-1.0 magnitude. This will indicate that astronomical measurement at Langkawi observatory can only be done for celestial objects having magnitude less than V = 18.6 magnitudes.

  2. Magnitude correlations and dynamical scaling for seismicity

    SciTech Connect

    Godano, Cataldo; Lippiello, Eugenio; De Arcangelis, Lucilla

    2007-12-06

    We analyze the experimental seismic catalog of Southern California and we show the existence of correlations between earthquake magnitudes. We propose a dynamical scaling hypothesis relating time and magnitude as the physical mechanism responsible of the observed magnitude correlations. We show that experimental distributions in size and time naturally originate solely from this scaling hypothesis. Furthermore we generate a synthetic catalog reproducing the organization in time and magnitude of experimental data.

  3. Magnitude and sign correlations in heartbeat fluctuations

    NASA Technical Reports Server (NTRS)

    Ashkenazy, Y.; Ivanov, P. C.; Havlin, S.; Peng, C. K.; Goldberger, A. L.; Stanley, H. E.

    2001-01-01

    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.

  4. The discovery and comparison of symbolic magnitudes.

    PubMed

    Chen, Dawn; Lu, Hongjing; Holyoak, Keith J

    2014-06-01

    Humans and other primates are able to make relative magnitude comparisons, both with perceptual stimuli and with symbolic inputs that convey magnitude information. Although numerous models of magnitude comparison have been proposed, the basic question of how symbolic magnitudes (e.g., size or intelligence of animals) are derived and represented in memory has received little attention. We argue that symbolic magnitudes often will not correspond directly to elementary features of individual concepts. Rather, magnitudes may be formed in working memory based on computations over more basic features stored in long-term memory. We present a model of how magnitudes can be acquired and compared based on BARTlet, a representationally simpler version of Bayesian Analogy with Relational Transformations (BART; Lu, Chen, & Holyoak, 2012). BARTlet operates on distributions of magnitude variables created by applying dimension-specific weights (learned with the aid of empirical priors derived from pre-categorical comparisons) to more primitive features of objects. The resulting magnitude distributions, formed and maintained in working memory, are sensitive to contextual influences such as the range of stimuli and polarity of the question. By incorporating psychological reference points that control the precision of magnitudes in working memory and applying the tools of signal detection theory, BARTlet is able to account for a wide range of empirical phenomena involving magnitude comparisons, including the symbolic distance effect and the semantic congruity effect. We discuss the role of reference points in cognitive and social decision-making, and implications for the evolution of relational representations. PMID:24531498

  5. Magnitude systems in old star catalogues

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoko; Yamaoka, Hitoshi

    2005-06-01

    The current system of stellar magnitudes originally introduced by Hipparchus was strictly defined by Norman Pogson in 1856. He based his system on Ptolemy's star catalogue, the Almagest, recorded in about AD137, and defined the magnitude-intensity relationship on a logarithmic scale. Stellar magnitudes observed with the naked eye recorded in seven old star catalogues were analyzed in order to examine the visual magnitude systems. Although psychophysicists have proposed that human visual sensitivity follows a power-law scale, it is shown here that the degree of agreement is far better for a logarithmic scale than for a power-law scale. It is also found that light ratios in each star catalogue are nearly equal to 2.512, if the brightest (1st magnitude) and the faintest (6th magnitude and dimmer) stars are excluded from the study. This means that the visual magnitudes in the old star catalogues agree fully with Pogson's logarithmic scale.

  6. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  7. Numerical Magnitude Representations Influence Arithmetic Learning

    ERIC Educational Resources Information Center

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  8. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  9. Representations of the Magnitudes of Fractions

    ERIC Educational Resources Information Center

    Schneider, Michael; Siegler, Robert S.

    2010-01-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…

  10. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2016-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration.

  11. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2014-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration. PMID:24965705

  12. Local magnitudes of small contained explosions.

    SciTech Connect

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  13. The Magnitude and Energy of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Purcaru, G.

    2003-12-01

    Several magnitudes were introduced to quantify large earthquakes better and more comprehensive than Ms: Mw (moment magnitude; Kanamori, 1977), ME (strain energy magnitude; Purcaru and Berckhemer, 1978), Mt (tsunami magnitude; Abe, 1979), Mm (mantle magnitude; Okal and Talandier, 1985), Me (seismic energy magnitude; Choy and Boatwright, 1995). Although these magnitudes are still subject to different uncertainties, various kinds of earthquakes can now be better understood in terms or combinations of them. They can also be viewd as mappings of basic source parameters: seismic moment, strain energy, seismic energy, stress drop, under certain assumptions or constraints. We studied a set of about 90 large earthquakes (shallow and deeper) occurred in different tectonic regimes, with more reliable source parameters, and compared them in terms of the above magnitudes. We found large differences between the strain energy (mapped to ME) and seismic energy (mapped to Me), and between ME of events with about the same Mw. This confirms that no 1-to-1 correspondence exists between these magnitudes (Purcaru, 2002). One major cause of differences for "normal" earthquakes is the level of the stress drop over asperities which release and partition the strain energy. We quantify the energetic balance of earthquakes in terms of strain energy Est and its components (fracture (Eg), friction (Ef) and seismic (Es) energy) using an extended Hamilton's principle. The earthquakes are thrust-interplate, strike slip, shallow in-slab, slow/tsunami, deep and continental. The (scaled) strain energy equation we derived is: Est/M0 = (1+e(g,s))(Es/M_0), e(g,s) = Eg/E_s, assuming complete stress drop, using the (static) stress drop variability, and that Est and Es are not in a 1-to-1 correspondence. With all uncertainties, our analysis reveal, for a given seismic moment, a large variation of earthquakes in terms of energies, even in the same seismic region. In view of these, for further understanding

  14. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  15. Measuring radon source magnitude in residential buildings

    SciTech Connect

    Nazaroff, W.W.; Boegel, M.L.; Nero, A.V.

    1981-08-01

    A description is given of procedures used in residences for rapid grab-sample and time-dependent measurements of the air-exchange rate and radon concentration. The radon source magnitude is calculated from the results of simultaneous measurements of these parameters. Grab-sample measurements in three survey groups comprising 101 US houses showed the radon source magnitude to vary approximately log-normally with a geometric mean of 0.37 and a range of 0.01 to 6.0 pCi 1/sup -1/ h/sup -1/. Successive measurements in six houses in the northeastern United States showed considerable variability in source magnitude within a given house. In two of these houses the source magnitude showed a strong correlation with the air-exchange rate, suggesting that soil gas influx can be an important transport process for indoor radon.

  16. Magnitude and frequency of floods in Alabama

    USGS Publications Warehouse

    Atkins, J. Brian

    1996-01-01

    Methods of estimating flood magnitudes for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years are described for rural streams in Alabama that are not affected by regulation or urbanization. Flood-frequency characteristics are presented for 198 gaging stations in Alabama having 10 or more years of record through September 1991, that are used in the regional analysis. Regression relations were developed using generalized least-squares regression techniques to estimate flood magnitude and frequency on ungaged streams as a function of the drainage area of a basin. Sites on gaged streams should be weighted with gaging station data that are presented in the report. Graphical relations of peak discharges to drainage areas are also presented for sites along the Alabama, Black Warrior, Cahaba, Choctawhatchee, Conecub, and Tombigbee Rivers. Equations for estimating flood magnitudes on ungaged urban streams (taken from a previous report) that use drainage area and percentage of impervious cover as independent variables also are given.

  17. A statistical measure of financial crises magnitude

    NASA Astrophysics Data System (ADS)

    Negrea, Bogdan

    2014-03-01

    This paper postulates the concept of financial market energy and provides a statistical measure of the financial market crisis magnitude based on an analogy between earthquakes and market crises. The financial energy released by the market is expressed in terms of trading volume and stock market index returns. A financial “earthquake” occurs if the financial energy released by the market exceeds the estimated threshold of market energy called critical energy. Similar to the Richter scale which is used in seismology in order to measure the magnitude of an earthquake, we propose a financial Gutenberg-Richter relation in order to capture the crisis magnitude and we show that the statistical pattern of the financial market crash is given by two statistical regimes, namely Pareto and Wakeby distributions.

  18. Lamp modulator provides signal magnitude indication

    NASA Technical Reports Server (NTRS)

    Zeman, J. R.

    1970-01-01

    Lamp modulator provides visible indication of presence and magnitude of an audio signal carrying voice or data. It can be made to reflect signal variations of up to 32 decibels. Lamp life is increased by use of a bypass resistor to prevent filament failure.

  19. On the statistical analysis of maximal magnitude

    NASA Astrophysics Data System (ADS)

    Holschneider, M.; Zöller, G.; Hainzl, S.

    2012-04-01

    We show how the maximum expected magnitude within a time horizon [0,T] may be estimated from earthquake catalog data within the context of truncated Gutenberg-Richter statistics. We present the results in a frequentist and in a Bayesian setting. Instead of deriving point estimations of this parameter and reporting its performance in terms of expectation value and variance, we focus on the calculation of confidence intervals based on an imposed level of confidence α. We present an estimate of the maximum magnitude within an observational time interval T in the future, given a complete earthquake catalog for a time period Tc in the past and optionally some paleoseismic events. We argue that from a statistical point of view the maximum magnitude in a time window is a reasonable parameter for probabilistic seismic hazard assessment, while the commonly used maximum possible magnitude for all times does almost certainly not allow the calculation of useful (i.e. non-trivial) confidence intervals. In the context of an unbounded GR law we show, that Jeffreys invariant prior distribtution yields normalizable posteriors. The predictive distribution based on this prior is explicitely computed.

  20. Delta Scorpii unusual brightening to first magnitude

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2016-01-01

    The Be star delta Scorpii with a range of variability between 2.35 and 1.65 in visible light is having an unusual brightening to magnitude mV=0.8, as measured on 31 Jan 2016 at 3:56 UT and 5:36 UT from Lanciano, Italy.

  1. Fast Regional Magnitude Determination at INGV

    NASA Astrophysics Data System (ADS)

    Michelini, A.; Lomax, A.; Bono, A.; Amato, A.

    2006-12-01

    The recent, very large earthquakes in the Indian Ocean and Indonesia have shown the importance of rapid magnitude determination for tsunami warning. In the Mediterranean region, destructive tsunamis have occurred repeatedly in the past; however, because of the proximity of the tsunami sources to populated coasts, very rapid analysis is necessary for effective warning. Reliable estimates of the earthquake location and size should be available within tens of seconds after the first arriving P-waves are recorded at local and regional distances. Currently in Europe there is no centralized agency such as the PTWC for the Pacific Ocean dedicated to issue tsunami warnings, though, recent initiatives, such as the NEAMTWS (North-East Atlantic and Mediterranean Tsunami Warning System), aim toward the establishment of such an agency. Thus established seismic monitoring centers, such as INGV, Rome, are currently relied upon for rapid earthquake analysis and information dissemination. In this study, we describe the recent, experimental implementation at the INGV seismic center of a procedure for rapid magnitude determination at regional distances based on the Mwp methodology (Tsuboi et al., 1995), which exploits information in the P-wave train. For our Mwp determinations, we have implemented an automatic procedure that windows the relevant part of the seismograms and picks the amplitudes of the first two largest peaks, providing within seconds after each P arrival an estimate of earthquake size. Manual revision is completed using interactive software that presents an analysis with the seismograms, amplitude picks and magnitude estimates. We have compared our Mwp magnitudes for recent earthquakes within the Mediterranean region with Mw determined through the Harvard CMT procedure. For the majority of the events, the Mwp and Mw magnitudes agree closely, indicating that the rapid Mwp estimates forms a useful tool for effective tsunami warning on a regional scale.

  2. Maximum magnitude in the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Merino, Miguel; Stein, Seth; Vleminckx, Bart; Brooks, Eddie; Camelbeeck, Thierry

    2014-05-01

    Estimating Mmax, the assumed magnitude of the largest future earthquakes expected on a fault or in an area, involves large uncertainties. No theoretical basis exists to infer Mmax because even where we know the long-term rate of motion across a plate boundary fault, or the deformation rate across an intraplate zone, neither predict how strain will be released. As a result, quite different estimates can be made based on the assumptions used. All one can say with certainty is that Mmax is at least as large as the largest earthquake in the available record. However, because catalogs are often short relative to the average recurrence time of large earthquakes, larger earthquakes than anticipated often occur. Estimating Mmax is especially challenging within plates, where deformation rates are poorly constrained, large earthquakes are rarer and variable in space and time, and often occur on previously unrecognized faults. We explore this issue for the Lower Rhine Graben seismic zone where the largest known earthquake, the 1756 Düren earthquake, has magnitude 5.7 and should occur on average about every 400 years. However, paleoseismic studies suggest that earthquakes with magnitudes up to 6.7 occurred during the Late Pleistocene and Holocene. What to assume for Mmax is crucial for critical facilities like nuclear power plants that should be designed to withstand the maximum shaking in 10,000 years. Using the observed earthquake frequency-magnitude data, we generate synthetic earthquake histories, and sample them over shorter intervals corresponding to the real catalog's completeness. The maximum magnitudes appearing most often in the simulations tend to be those of earthquakes with mean recurrence time equal to the catalog length. Because catalogs are often short relative to the average recurrence time of large earthquakes, we expect larger earthquakes than observed to date to occur. In a next step, we will compute hazard maps for different return periods based on the

  3. Subitizing, Magnitude Representation, and Magnitude Retrieval in Deaf and Hearing Adults

    ERIC Educational Resources Information Center

    Bull, Rebecca; Blatto-Vallee, Gary; Fabich, Megan

    2006-01-01

    This study examines basic number processing (subitizing, automaticity, and magnitude representation) as the possible underpinning of mathematical difficulties often evidenced in deaf adults. Hearing and deaf participants completed tasks to assess the automaticity with which magnitude information was activated and retrieved from long-term memory…

  4. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  5. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  6. The secular variation of cometary magnitude

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.; Daniels, P. A.

    1983-03-01

    This paper calculates the mean variation in absolute magnitude per perihelion passage, ΔH10, for short-period comets from the data of Vsekhsvyatskii and finds a value of 0.30 ± 0.06. Other mechanisms used for estimating cometary decay are reviewed an it is concluded that a more probable value for ΔH10 is about 0.002. Reasons for the discrepancy between these two values are given.

  7. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2016-06-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  8. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  9. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-04-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  10. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-05-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  11. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Saul, J.; Grosser, H.; Wang, R.; Zschau, J.

    2009-04-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake's damage potential. However, many magnitude scales developed over the past years have different meanings. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy ES (e.g. Bormann et al., 2002): Me = 2/3(log10 ES - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. The calculation of ES requires the integration over frequency of the squared P-waves velocity spectrum corrected for the energy loss experienced by the seismic waves along the path from the source to the receivers. To accout for the frequency-dependent energy loss, we computed spectral amplitude decay functions for different frequenciesby using synthetic Green's functions (Wang, 1999) based on the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We analyse teleseismic broadband P-waves signals in the distance range 20°-98°. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake's origin time. Indeed, we use time variable cumulative energy windows starting 4 s after the first P-wave arrival in order to include the earthquake rupture

  12. Apparent magnitude of earthshine: a simple calculation

    NASA Astrophysics Data System (ADS)

    Agrawal, Dulli Chandra

    2016-05-01

    The Sun illuminates both the Moon and the Earth with practically the same luminous fluxes which are in turn reflected by them. The Moon provides a dim light to the Earth whereas the Earth illuminates the Moon with somewhat brighter light which can be seen from the Earth and is called earthshine. As the amount of light reflected from the Earth depends on part of the Earth and the cloud cover, the strength of earthshine varies throughout the year. The measure of the earthshine light is luminance, which is defined in photometry as the total luminous flux of light hitting or passing through a surface. The expression for the earthshine light in terms of the apparent magnitude has been derived for the first time and evaluated for two extreme cases; firstly, when the Sun’s rays are reflected by the water of the oceans and secondly when the reflector is either thick clouds or snow. The corresponding values are -1.30 and -3.69, respectively. The earthshine value -3.22 reported by Jackson lies within these apparent magnitudes. This paper will motivate the students and teachers of physics to look for the illuminated Moon by earthlight during the waning or waxing crescent phase of the Moon and to reproduce the expressions derived here by making use of the inverse-square law of radiation, Planck’s expression for the power in electromagnetic radiation, photopic spectral luminous efficiency function and expression for the apparent magnitude of a body in terms of luminous fluxes.

  13. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  14. An Energy Rate Magnitude for Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Convers, J. A.

    2008-12-01

    The ability to rapidly assess the approximate size of very large and destructive earthquakes is important for early hazard mitigation from both strong shaking and potential tsunami generation. Using a methodology to rapidly determine earthquake energy and duration using teleseismic high-frequency energy, we develop an adaptation to approximate the magnitude of a very large earthquake before the full duration of rupture can be measured at available teleseismic stations. We utilize available vertical component data to analyze the high-frequency energy growth between 0.5 and 2 Hz, minimizing the effect of later arrivals that are mostly attenuated in this range. Because events smaller than M~6.5 occur rapidly, this method is most adequate for larger events, whose rupture duration exceeds ~20 seconds. Using a catalog of about 200 large and great earthquakes we compare the high-frequency energy rate (· Ehf) to the total broad- band energy (· Ebb) to find a relationship for: Log(· Ehf)/Log(Ebb)≍ 0.85. Hence, combining this relation to the broad-band energy magnitude (Me) [Choy and Boatwright, 1995], yields a new high-frequency energy rate magnitude: M· E=⅔ log10(· Ehf)/0.85-2.9. Such an empirical approach can thus be used to obtain a reasonable assessment of an event magnitude from the initial estimate of energy growth, even before the arrival of the full direct-P rupture signal. For large shallow events thus far examined, the M· E predicts the ultimate Me to within ±0.2 units of M. For fast rupturing deep earthquakes M· E overpredicts, while for slow-rupturing tsunami earthquakes M· E underpredicts Me likely due to material strength changes at the source rupture. We will report on the utility of this method in both research mode, and in real-time scenarios when data availability is limited. Because the high-frequency energy is clearly discernable in real-time, this result suggests that the growth of energy can be used as a good initial indicator of the

  15. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  16. Precise Relative Earthquake Magnitudes from Cross Correlation

    DOE PAGESBeta

    Cleveland, K. Michael; Ammon, Charles J.

    2015-04-21

    We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.

  17. Extreme Magnitude Earthquakes and their Economical Consequences

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.

    2011-12-01

    The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.

  18. Strong motion duration and earthquake magnitude relationships

    SciTech Connect

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  19. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Grosser, H.; Saul, J.; Wang, R.; Zschau, J.

    2009-12-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake’s damage potential. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy Es (e.g. Bormann et al., 2002): Me = 2/3(log10 Es - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. We analyse teleseismic broadband P-waves signals in the distance range 20°-98° to calculate Es. To correct the frequency-dependent energy loss experienced by the P-waves during the propagation path, we use pre-calculated spectral amplitude decay functions for different frequencies obtained from numerical simulations of Green’s functions (Wang, 1999) given the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake’s origin time, even in case of great earthquakes. We tested our procedure for a large dataset composed by about 770 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of

  20. Violence against women: global scope and magnitude.

    PubMed

    Watts, Charlotte; Zimmerman, Cathy

    2002-04-01

    An increasing amount of research is beginning to offer a global overview of the extent of violence against women. In this paper we discuss the magnitude of some of the most common and most severe forms of violence against women: intimate partner violence; sexual abuse by non-intimate partners; trafficking, forced prostitution, exploitation of labour, and debt bondage of women and girls; physical and sexual violence against prostitutes; sex selective abortion, female infanticide, and the deliberate neglect of girls; and rape in war. There are many potential perpetrators, including spouses and partners, parents, other family members, neighbours, and men in positions of power or influence. Most forms of violence are not unique incidents but are ongoing, and can even continue for decades. Because of the sensitivity of the subject, violence is almost universally under-reported. Nevertheless, the prevalence of such violence suggests that globally, millions of women are experiencing violence or living with its consequences. PMID:11955557

  1. Extracting parameters from colour-magnitude diagrams

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Campos, F.; Kepler, S. O.; Bica, E.

    2015-07-01

    We present a simple approach for obtaining robust values of astrophysical parameters from the observed colour-magnitude diagrams (CMDs) of star clusters. The basic inputs are the Hess diagram built with the photometric measurements of a star cluster and a set of isochrones covering wide ranges of age and metallicity. In short, each isochrone is shifted in apparent distance modulus and colour excess until it crosses over the maximum possible Hess density. Repeating this step for all available isochrones leads to the construction of the solution map, in which the optimum values of age and metallicity - as well as foreground/background reddening and distance from the Sun - can be searched for. Controlled tests with simulated CMDs show that the approach is efficient in recovering the input values. We apply the approach to the open clusters M 67, NGC 6791 and NGC 2635, which are characterized by different ages, metallicities and distances from the Sun.

  2. Demographic factors predict magnitude of conditioned fear.

    PubMed

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-10-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26151498

  3. Estimating magnitude and duration of incident delays

    SciTech Connect

    Garib, A.; Radwan, A.E.; Al-Deek, H.

    1997-11-01

    Traffic congestion is a major operational problem on urban freeways. In the case of recurring congestion, travelers can plan their trips according to the expected occurrence and severity of recurring congestion. However, nonrecurring congestion cannot be managed without real-time prediction. Evaluating the efficiency of intelligent transportation systems (ITS) technologies in reducing incident effects requires developing models that can accurately predict incident duration along with the magnitude of nonrecurring congestion. This paper provides two statistical models for estimating incident delay and a model for predicting incident duration. The incident delay models showed that up to 85% of variation in incident delay can be explained by incident duration, number of lanes affected, number of vehicles involved, and traffic demand before the incident. The incident duration prediction model showed that 81% of variation in incident duration can be predicted by number of lanes affected, number of vehicles involved, truck involvement, time of day, police response time, and weather condition. These findings have implications for on-line applications within the context of advanced traveler information systems (ATIS).

  4. The magnitude distribution of dynamically triggered earthquakes

    NASA Astrophysics Data System (ADS)

    Hernandez, Stephen

    Large dynamic strains carried by seismic waves are known to trigger seismicity far from their source region. It is unknown, however, whether surface waves trigger only small earthquakes, or whether they can also trigger large, societally significant earthquakes. To address this question, we use a mixing model approach in which total seismicity is decomposed into 2 broad subclasses: "triggered" events initiated or advanced by far-field dynamic strains, and "untriggered" spontaneous events consisting of everything else. The b-value of a mixed data set, b MIX, is decomposed into a weighted sum of b-values of its constituent components, bT and bU. For populations of earthquakes subjected to dynamic strain, the fraction of earthquakes that are likely triggered, f T, is estimated via inter-event time ratios and used to invert for bT. The confidence bounds on b T are estimated by multiple inversions of bootstrap resamplings of bMIX and fT. For Californian seismicity, data are consistent with a single-parameter Gutenberg-Richter hypothesis governing the magnitudes of both triggered and untriggered earthquakes. Triggered earthquakes therefore seem just as likely to be societally significant as any other population of earthquakes.

  5. Extended arrays for nonlinear susceptibility magnitude imaging.

    PubMed

    Ficko, Bradley W; Giacometti, Paolo; Diamond, Solomon G

    2015-10-01

    This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2>0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044

  6. Nonlinear Susceptibility Magnitude Imaging of Magnetic Nanoparticles

    PubMed Central

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2014-01-01

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2 = 0.99, CNR = 84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2 > 0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI. PMID:25505816

  7. Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Allmann, Bettina; Fäh, Donat; Clinton, John

    2010-10-01

    Moment magnitudes (MW) are computed for small and moderate earthquakes using a spectral fitting method. 40 of the resulting values are compared with those from broadband moment tensor solutions and found to match with negligible offset and scatter for available MW values of between 2.8 and 5.0. Using the presented method, MW are computed for 679 earthquakes in Switzerland with a minimum ML = 1.3. A combined bootstrap and orthogonal L1 minimization is then used to produce a scaling relation between ML and MW. The scaling relation has a polynomial form and is shown to reduce the dependence of the predicted MW residual on magnitude relative to an existing linear scaling relation. The computation of MW using the presented spectral technique is fully automated at the Swiss Seismological Service, providing real-time solutions within 10 minutes of an event through a web-based XML database. The scaling between ML and MW is explored using synthetic data computed with a stochastic simulation method. It is shown that the scaling relation can be explained by the interaction of attenuation, the stress-drop and the Wood-Anderson filter. For instance, it is shown that the stress-drop controls the saturation of the ML scale, with low-stress drops (e.g. 0.1-1.0 MPa) leading to saturation at magnitudes as low as ML = 4.

  8. 101 Short Problems from EQUALS = 101 Problemas Cortos del programma EQUALS.

    ERIC Educational Resources Information Center

    Stenmark, Jean Kerr, Ed.

    EQUALS is a teacher advisory program that helps elementary and secondary educators acquire methods and materials to attract minority and female students to mathematics. The program supports a problem-solving approach to mathematics, including having students working in groups, using active assessment methods, and incorporating a broad mathematics…

  9. Influence of Time and Space Correlations on Earthquake Magnitude

    SciTech Connect

    Lippiello, E.; Arcangelis, L. de; Godano, C.

    2008-01-25

    A crucial point in the debate on the feasibility of earthquake predictions is the dependence of an earthquake magnitude from past seismicity. Indeed, while clustering in time and space is widely accepted, much more questionable is the existence of magnitude correlations. The standard approach generally assumes that magnitudes are independent and therefore in principle unpredictable. Here we show the existence of clustering in magnitude: earthquakes occur with higher probability close in time, space, and magnitude to previous events. More precisely, the next earthquake tends to have a magnitude similar but smaller than the previous one. A dynamical scaling relation between magnitude, time, and space distances reproduces the complex pattern of magnitude, spatial, and temporal correlations observed in experimental seismic catalogs.

  10. Exploring the relationship between the magnitudes of seismic events

    NASA Astrophysics Data System (ADS)

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-02-01

    The distribution of the magnitudes of seismic events is generally assumed to be independent on past seismicity. However, by considering events in causal relation, for example, mother-daughter, it seems natural to assume that the magnitude of a daughter event is conditionally dependent on one of the corresponding mother events. In order to find experimental evidence supporting this hypothesis, we analyze different catalogs, both real and simulated, in two different ways. From each catalog, we obtain the law of the magnitude of the triggered events by kernel density. The results obtained show that the distribution density of the magnitude of the triggered events varies with the magnitude of their corresponding mother events. As the intuition suggests, an increase of the magnitude of the mother events induces an increase of the probability of having "high" values of the magnitude of the triggered events. In addition, we see a statistically significant increasing linear dependence of the magnitude means.

  11. Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2012-08-01

    We investigated the functional shape of the earthquake frequency-magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(-βm)q(m) where N(m) is the event number, m the magnitude, exp(-βm) the Gutenberg-Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m - Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume.

  12. Sign-And-Magnitude Up/Down Counter

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1991-01-01

    Magnitude-and-sign counter includes conventional up/down counter for magnitude part and special additional circuitry for sign part. Negative numbers indicated more directly. Counter implemented by programming erasable programmable logic device (EPLD) or programmable logic array (PLA). Used in place of conventional up/down counter to provide sign and magnitude values directly to other circuits.

  13. Symbolic Magnitude Modulates Perceptual Strength in Binocular Rivalry

    ERIC Educational Resources Information Center

    Paffen, Chris L. E.; Plukaard, Sarah; Kanai, Ryota

    2011-01-01

    Basic aspects of magnitude (such as luminance contrast) are directly represented by sensory representations in early visual areas. However, it is unclear how symbolic magnitudes (such as Arabic numerals) are represented in the brain. Here we show that symbolic magnitude affects binocular rivalry: perceptual dominance of numbers and objects of…

  14. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  15. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  16. Numerical Magnitude Processing in Children with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Brankaer, Carmen; Ghesquiere, Pol; De Smedt, Bert

    2011-01-01

    The present study investigated numerical magnitude processing in children with mild intellectual disabilities (MID) and examined whether these children have difficulties in the ability to represent numerical magnitudes and/or difficulties in the ability to access numerical magnitudes from formal symbols. We compared the performance of 26 children…

  17. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  18. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  19. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  20. Binocular disparity magnitude affects perceived depth magnitude despite inversion of depth order.

    PubMed

    Matthews, Harold; Hill, Harold; Palmisano, Stephen

    2011-01-01

    The hollow-face illusion involves a misperception of depth order: our perception follows our top-down knowledge that faces are convex, even though bottom-up depth information reflects the actual concave surface structure. While pictorial cues can be ambiguous, stereopsis should unambiguously indicate the actual depth order. We used computer-generated stereo images to investigate how, if at all, the sign and magnitude of binocular disparities affect the perceived depth of the illusory convex face. In experiment 1 participants adjusted the disparity of a convex comparison face until it matched a reference face. The reference face was either convex or hollow and had binocular disparities consistent with an average face or had disparities exaggerated, consistent with a face stretched in depth. We observed that apparent depth increased with disparity magnitude, even when the hollow faces were seen as convex (ie when perceived depth order was inconsistent with disparity sign). As expected, concave faces appeared flatter than convex faces, suggesting that disparity sign also affects perceived depth. In experiment 2, participants were presented with pairs of real and illusory convex faces. In each case, their task was to judge which of the two stimuli appeared to have the greater depth. Hollow faces with exaggerated disparities were again perceived as deeper. PMID:22132512

  1. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  2. Stress magnitudes in the crust: constraints from stress orientation and relative magnitude data

    USGS Publications Warehouse

    Zoback, M.L.; Magee, M.

    1991-01-01

    The World Stress Map Project is a global cooperative effort to compile and interpret data on the orientation and relative magnitudes of the contemporary in situ tectonic stress field in the Earth's lithosphere. The intraplate stress field in both the oceans and continents is largely compressional with one or both of the horizontal stresses greater than the vertical stress. The regionally uniform horizontal intraplate stress orientations are generally consistent with either relative or absolute plate motions indicating that plate-boundary forces dominate the stress distribution within the plates. Current models of stresses due to whole mantle flow inferred from seismic topography models predict a general compressional stress state within continents but do not match the broad-scale horizontal stress orientations. The broad regionally uniform intraplate stress orientations are best correlated with compressional plate-boundary forces and the geometry of the plate boundaries. -from Authors

  3. Kharkiv Asteroid Magnitude-Phase Relations V1.0

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. G.; Belskaya, I. N.; Lupishko, D. F.; Krugly, Yu. N.; Chiorny, V. G.; Velichko, F. P.

    2010-08-01

    A database of asteroid magnitude-phase relations compiled at the Institute of Astronomy of Kharkiv Kharazin University by Shevchenko et al., including observations from 1978 through 2008. Mainly the observations were performed at the Institute of Astronomy (Kharkiv, Ukraine) and at the Astrophysics Institute (Dushanbe, Tadjikistan). For most asteroids the magnitude-phase relations were obtained down to phase angles less than 1 deg. For some asteroids the magnitudes are presented in three (UBV) or four (BVRI) standard spectral bands.

  4. An empirical evolutionary magnitude estimation for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Wu, Yih-Min; Chen, Da-Yi

    2016-04-01

    For earthquake early warning (EEW) system, it is a difficult mission to accurately estimate earthquake magnitude in the early nucleation stage of an earthquake occurrence because only few stations are triggered and the recorded seismic waveforms are short. One of the feasible methods to measure the size of earthquakes is to extract amplitude parameters within the initial portion of waveform after P-wave arrival. However, a large-magnitude earthquake (Mw > 7.0) may take longer time to complete the whole ruptures of the causative fault. Instead of adopting amplitude contents in fixed-length time window, that may underestimate magnitude for large-magnitude events, we suppose a fast, robust and unsaturated approach to estimate earthquake magnitudes. In this new method, the EEW system can initially give a bottom-bund magnitude in a few second time window and then update magnitude without saturation by extending the time window. Here we compared two kinds of time windows for adopting amplitudes. One is pure P-wave time widow (PTW); the other is whole-wave time window after P-wave arrival (WTW). The peak displacement amplitude in vertical component were adopted from 1- to 10-s length PTW and WTW, respectively. Linear regression analysis were implemented to find the empirical relationships between peak displacement, hypocentral distances, and magnitudes using the earthquake records from 1993 to 2012 with magnitude greater than 5.5 and focal depth less than 30 km. The result shows that using WTW to estimate magnitudes accompanies with smaller standard deviation. In addition, large uncertainties exist in the 1-second time widow. Therefore, for magnitude estimations we suggest the EEW system need to progressively adopt peak displacement amplitudes form 2- to 10-s WTW.

  5. Comparison of local magnitude scales in Central Europe

    NASA Astrophysics Data System (ADS)

    Kysel, Robert; Kristek, Jozef; Moczo, Peter; Cipciar, Andrej; Csicsay, Kristian; Srbecky, Miroslav; Kristekova, Miriam

    2015-04-01

    Efficient monitoring of earthquakes and determination of their magnitudes are necessary for developing earthquake catalogues at a regional and national levels. Unification and homogenization of the catalogues in terms of magnitudes has great importance for seismic hazard assessment. Calibrated local earthquake magnitude scales are commonly used for determining magnitudes of regional earthquakes by all national seismological services in the Central Europe. However, at the local scale, each seismological service uses its own magnitude determination procedure. There is no systematic comparison of the approaches and there is no unified procedure. We present a comparison of the local magnitude scales used by the national seismological services of Slovakia (Geophysical Institute, Slovak Academy of Sciences), Czech Republic (Institute of Geophysics, Academy of Sciences of the Czech Republic), Austria (ZAMG), Hungary (Geodetic and Geophysical Institute, Hungarian Academy of Sciences) and Poland (Institute of Geophysics, Polish Academy of Sciences), and by the local network of seismic stations located around the Nuclear Power Plant Jaslovske Bohunice, Slovakia. The comparison is based on the national earthquake catalogues and annually published earthquake bulletins for the period from 1985 to 2011. A data set of earthquakes has been compiled based on identification of common events in the national earthquake catalogues and bulletins. For each pair of seismic networks, magnitude differences have been determined and investigated as a function of time. The mean and standard deviations of the magnitude differences as well as regression coefficients between local magnitudes from the national seismological networks have been computed. Results show relatively big scatter between different national local magnitudes and its considerable time variation. A conversion between different national local magnitudes in a scale 1:1 seems inappropriate, especially for the compilation of the

  6. The Effects of Reinforcer Magnitude on Timing in Rats

    ERIC Educational Resources Information Center

    Ludvig, Elliot A.; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated…

  7. The Construction of a Magnitude Estimation Scale of Adult Learning.

    ERIC Educational Resources Information Center

    Blunt, Adrian

    The psychophysical technique of magnitude estimation was used to develop a ratio scale of subjective estimations of adult learning in various adult education activities. A rank order of 26 learning activities and the magnitude estimations in "units of learning" that are expected to occur in each activity were obtained from 146 adult education…

  8. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: 1) representing increasingly precisely the magnitudes of non-symbolic…

  9. Congruency Effects between Number Magnitude and Response Force

    ERIC Educational Resources Information Center

    Vierck, Esther; Kiesel, Andrea

    2010-01-01

    Numbers are thought to be represented in space along a mental left-right oriented number line. Number magnitude has also been associated with the size of grip aperture, which might suggest a connection between number magnitude and intensity. The present experiment aimed to confirm this possibility more directly by using force as a response…

  10. Some Effects of Magnitude of Reinforcement on Persistence of Responding

    ERIC Educational Resources Information Center

    McComas, Jennifer J.; Hartman, Ellie C.; Jimenez, Angel

    2008-01-01

    The influence of magnitude of reinforcement was examined on both response rate and behavioral persistence. During Phase 1, a multiple schedule of concurrent reinforcement was implemented in which reinforcement for one response option was held constant at VI 30 s across both components, while magnitude of reinforcement for the other response option…

  11. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  12. Number Games, Magnitude Representation, and Basic Number Skills in Preschoolers

    ERIC Educational Resources Information Center

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-01-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was…

  13. The Weight of Time: Affordances for an Integrated Magnitude System

    ERIC Educational Resources Information Center

    Lu, Aitao; Mo, Lei; Hodges, Bert H.

    2011-01-01

    In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the…

  14. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  15. Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Toth, Laszlo

    2016-04-01

    The multifractality of the series of magnitudes of the earthquakes occurred in Pannonia region from 2002 to 2012 has been investigated. The shallow (depth less than 40 km) and deep (depth larger than 70 km) seismic catalogues were analysed by using the multifractal detrended fluctuation analysis. The shallow and deep catalogues are characterized by different multifractal properties: (i) the magnitudes of the shallow events are weakly persistent, while those of the deep ones are almost uncorrelated; (ii) the deep catalogue is more multifractal than the shallow one; (iii) the magnitudes of the deep catalogue are characterized by a right-skewed multifractal spectrum, while that of the shallow magnitude is rather symmetric; (iv) a direct relationship between the b-value of the Gutenberg-Richter law and the multifractality of the magnitudes is suggested.

  16. The Effects Of Reinforcement Magnitude On Functional Analysis Outcomes

    PubMed Central

    2005-01-01

    The duration or magnitude of reinforcement has varied and often appears to have been selected arbitrarily in functional analysis research. Few studies have evaluated the effects of reinforcement magnitude on problem behavior, even though basic findings indicate that this parameter may affect response rates during functional analyses. In the current study, 6 children with autism or developmental disabilities who engaged in severe problem behavior were exposed to three separate functional analyses, each of which varied in reinforcement magnitude. Results of these functional analyses were compared to determine if a particular reinforcement magnitude was associated with the most conclusive outcomes. In most cases, the same conclusion about the functions of problem behavior was drawn regardless of the reinforcement magnitude. PMID:16033163

  17. A scheme to set preferred magnitudes in the ISC Bulletin

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Storchak, Dmitry A.

    2016-04-01

    One of the main purposes of the International Seismological Centre (ISC) is to collect, integrate and reprocess seismic bulletins provided by agencies around the world in order to produce the ISC Bulletin. This is regarded as the most comprehensive bulletin of the Earth's seismicity, and its production is based on a unique cooperation in the seismological community that allows the ISC to complement the work of seismological agencies operating at global and/or local-regional scale. In addition, by using the seismic wave measurements provided by reporting agencies, the ISC computes, where possible, its own event locations and magnitudes such as short-period body wave m b and surface wave M S . Therefore, the ISC Bulletin contains the results of the reporting agencies as well as the ISC own solutions. Among the most used seismic event parameters listed in seismological bulletins, the event magnitude is of particular importance for characterizing a seismic event. The selection of a magnitude value (or multiple ones) for various research purposes or practical applications is not always a straightforward task for users of the ISC Bulletin and related products since a multitude of magnitude types is currently computed by seismological agencies (sometimes using different standards for the same magnitude type). Here, we describe a scheme that we intend to implement in routine ISC operations to mark the preferred magnitudes in order to help ISC users in the selection of events with magnitudes of their interest.

  18. Multiscale mapping of completeness magnitude of earthquake catalogs

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Narteau, Clement; Shebalin, Peter; Beauducel, François; Nercessian, Alexandre; Clouard, Valérie; Bouin, Marie-Paule

    2013-04-01

    We propose a multiscale method to map spatial variations in completeness magnitude Mc of earthquake catalogs. The Mc value may significantly vary in space due to the change of the seismic network density. Here we suggest a way to use only earthquake catalogs to separate small areas of higher network density (lower Mc) and larger areas of smaller network density (higher Mc). We reduce the analysis of the FMDs to the limited magnitude ranges, thus allowing deviation of the FMD from the log-linearity outside the range. We associate ranges of larger magnitudes with increasing areas for data selection based on constant in average number of completely recorded earthquakes. Then, for each point in space, we document the earthquake frequency-magnitude distribution at all length scales within the corresponding earthquake magnitude ranges. High resolution of the Mc-value is achieved through the determination of the smallest space-magnitude scale in which the Gutenberg-Richter law (i. e. an exponential decay) is verified. The multiscale procedure isolates the magnitude range that meets the best local seismicity and local record capacity. Using artificial catalogs and earthquake catalogs of the Lesser Antilles arc, this Mc mapping method is shown to be efficient in regions with mixed types of seismicity, a variable density of epicenters and various levels of registration.

  19. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas H. W.; Hosseini, S. Mehran

    2016-06-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  20. Derivation of Johnson-Cousins Magnitudes from DSLR Camera Observations

    NASA Astrophysics Data System (ADS)

    Park, Woojin; Pak, Soojong; Shim, Hyunjin; Le, Huynh Anh N.; Im, Myungshin; Chang, Seunghyuk; Yu, Joonkyu

    2016-01-01

    The RGB Bayer filter system consists of a mosaic of R, G, and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB, GB, and BB) into the Johnson-Cousins BVR filter system (BJ, VJ, and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal, VJcal, and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are (BJ - BJcal) = 0.064 mag, (VJ - VJcal) = 0.041 mag, and (RC - RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  1. Quantifying Heartbeat Dynamics by Magnitude and Sign Correlations

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Ashkenazy, Yosef; Kantelhardt, Jan W.; Stanley, H. Eugene

    2003-05-01

    We review a recently developed approach for analyzing time series with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that time series with identical long-range correlations can exhibit different time organization for the magnitude and sign. We apply our approach to series of time intervals between consecutive heartbeats. Using the detrended fluctuation analysis method we find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications. Further, we study the heartbeat magnitude and sign series during different sleep stages — light sleep, deep sleep, and REM sleep. For the heartbeat sign time series we find short-range anticorrelations, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, for the heartbeat magnitude time series we find long-range positive correlations, which are strong during REM sleep and weaker during light sleep. Thus, the sign and the magnitude series provide information which is also useful for distinguishing between different sleep stages.

  2. Regression between earthquake magnitudes having errors with known variances

    NASA Astrophysics Data System (ADS)

    Pujol, Jose

    2016-06-01

    Recent publications on the regression between earthquake magnitudes assume that both magnitudes are affected by error and that only the ratio of error variances is known. If X and Y represent observed magnitudes, and x and y represent the corresponding theoretical values, the problem is to find the a and b of the best-fit line y = a x + b. This problem has a closed solution only for homoscedastic errors (their variances are all equal for each of the two variables). The published solution was derived using a method that cannot provide a sum of squares of residuals. Therefore, it is not possible to compare the goodness of fit for different pairs of magnitudes. Furthermore, the method does not provide expressions for the x and y. The least-squares method introduced here does not have these drawbacks. The two methods of solution result in the same equations for a and b. General properties of a discussed in the literature but not proved, or proved for particular cases, are derived here. A comparison of different expressions for the variances of a and b is provided. The paper also considers the statistical aspects of the ongoing debate regarding the prediction of y given X. Analysis of actual data from the literature shows that a new approach produces an average improvement of less than 0.1 magnitude units over the standard approach when applied to Mw vs. mb and Mw vs. MS regressions. This improvement is minor, within the typical error of Mw. Moreover, a test subset of 100 predicted magnitudes shows that the new approach results in magnitudes closer to the theoretically true magnitudes for only 65 % of them. For the remaining 35 %, the standard approach produces closer values. Therefore, the new approach does not always give the most accurate magnitude estimates.

  3. Regression between earthquake magnitudes having errors with known variances

    NASA Astrophysics Data System (ADS)

    Pujol, Jose

    2016-07-01

    Recent publications on the regression between earthquake magnitudes assume that both magnitudes are affected by error and that only the ratio of error variances is known. If X and Y represent observed magnitudes, and x and y represent the corresponding theoretical values, the problem is to find the a and b of the best-fit line y = a x + b. This problem has a closed solution only for homoscedastic errors (their variances are all equal for each of the two variables). The published solution was derived using a method that cannot provide a sum of squares of residuals. Therefore, it is not possible to compare the goodness of fit for different pairs of magnitudes. Furthermore, the method does not provide expressions for the x and y. The least-squares method introduced here does not have these drawbacks. The two methods of solution result in the same equations for a and b. General properties of a discussed in the literature but not proved, or proved for particular cases, are derived here. A comparison of different expressions for the variances of a and b is provided. The paper also considers the statistical aspects of the ongoing debate regarding the prediction of y given X. Analysis of actual data from the literature shows that a new approach produces an average improvement of less than 0.1 magnitude units over the standard approach when applied to Mw vs. mb and Mw vs. MS regressions. This improvement is minor, within the typical error of Mw. Moreover, a test subset of 100 predicted magnitudes shows that the new approach results in magnitudes closer to the theoretically true magnitudes for only 65 % of them. For the remaining 35 %, the standard approach produces closer values. Therefore, the new approach does not always give the most accurate magnitude estimates.

  4. Comparison of magnetic probe calibration at nano and millitesla magnitudes

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan A.; Rovey, Joshua L.; Pommerenke, David J.

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of dot{{B}} probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two dot{{B}} probe designs as functions of frequency and field magnitude are presented. The first dot{{B}} probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% {T}/{V {s}} at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% {T}/{V {s}} at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface mounted probe and 12.0% for the hand-wound probe. The

  5. Frequency-Magnitude Relationship of Hydraulic Fracture Microseismicity (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, S.

    2009-12-01

    Microseismicity has become a common imaging technique for hydraulic fracture stimulations in the oil and gas industry, offering a wide range of microseismic data sets in different settings. Typically, arrays of 3C sensors are deployed in single monitoring wells presenting processing challenges associated with the limited acquisition geometry. However, the proximity of the sensors to the fracture network results in good sensitivity to detect small magnitude microseisms (down to about moment magnitude -3 in some cases). This sensitivity allows a comparison of the magnitude-frequency relationship between microseisms attributed to hydraulic fracturing with those related to activation of interaction with a pre-existing fault. A case study will be presented showing a clear change in the frequency-magnitude characteristics as the injection interacts with a known fault.

  6. A reevaluation of the 20-micron magnitude system

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.

    1984-01-01

    The 20-micron infrared magnitude system is reexamined by observing primary infrared standards and seven A V stars. The purpose is to determine whether Alpha Lyr has colors consistent with the average of A0 stars and to determine the relative magnitude of the primary standards to that of Alpha Lyr. The data presented are consistent with the interpretation that the spectrum of Alpha Lyr is a blackbody and that it is a viable flux standard at 10 and 20 microns. The absolute flux density scale, the physical quantity of interest, is found to be consistent with an extrapolation of the Alpha Lyr spectrum from the near infrared on the basis of the comparison of stars to Mars and asteroids. Adoption of a 0.0 magnitude for Alpha Lyr requires that the magnitudes given by Morrison and Simon (1973) and by Simon et al. (1972) be revised downward by 0.14 mag.

  7. Number games, magnitude representation, and basic number skills in preschoolers.

    PubMed

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-03-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision. PMID:18331146

  8. The Effects of Reinforcer Magnitude on Timing in Rats

    PubMed Central

    Ludvig, Elliot A; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated by a symmetric Gaussian function, peak times also were earlier; when estimated by a better-fitting asymmetric Gaussian function or by analyzing individual trials, however, these peak-time changes were determined to reflect a mixture of large effects of BSR on start times and no effect on stop times. These results pose a significant dilemma for three major theories of timing (SET, MTS, and BeT), which all predict no effects for chronic manipulations of reinforcer magnitude. We conclude that increased reinforcer magnitude influences timing in two ways: through larger immediate after-effects that delay responding and through anticipatory effects that elicit earlier responding. PMID:17465312

  9. On the macroseismic magnitudes of the largest Italian earthquakes

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Vittori, T.; Mulargia, F.

    1987-07-01

    The macroseismic magnitudes MT of the largest Italian earthquakes ( I0 ⩾ VIII, MCS) have been computed by using the intensity magnitude relationships recently assessed by the authors (1986) for the Italian region. The Progetto Finalizzato Geodinamica (PFG) catalog of the Italian earthquakes, covering the period 1000-1980 (Postpischl, 1985) is the source data base and is reproduced in the Appendix: here the estimated values of MT are given side by side with the catalog macroseismic magnitudes MK i.e. the magnitudes computed according to the Karnik laws (Karnik, 1969). The one-sigma errors Δ MT are also given for each earthquake. The basic aim of the paper is to provide a handy and useful tool to researchers involved in seismicity and seismic-risk studies on Italian territory.

  10. When Should Zero Be Included on a Scale Showing Magnitude?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2011-01-01

    This article addresses an important problem of graphing quantitative data: should one include zero on the scale showing magnitude? Based on a real time series example, the problem is discussed and some recommendations are proposed.

  11. Magnitude-frequency distribution of volcanic explosion earthquakes

    NASA Astrophysics Data System (ADS)

    Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Mohammad; Aoyama, Hiroshi; Yamada, Taishi; Ripepe, Maurizio; Genco, Riccardo

    2016-07-01

    Magnitude-frequency distributions of volcanic explosion earthquakes that are associated with occurrences of vulcanian and strombolian eruptions, or gas burst activity, are examined at six active volcanoes. The magnitude-frequency distribution at Suwanosejima volcano, Japan, shows a power-law distribution, which implies self-similarity in the system, as is often observed in statistical characteristics of tectonic and volcanic earthquakes. On the other hand, the magnitude-frequency distributions at five other volcanoes, Sakurajima and Tokachi-dake in Japan, Semeru and Lokon in Indonesia, and Stromboli in Italy, are well explained by exponential distributions. The statistical features are considered to reflect source size, as characterized by a volcanic conduit or chamber. Earthquake generation processes associated with vulcanian, strombolian and gas burst events are different from those of eruptions ejecting large amounts of pyroclasts, since the magnitude-frequency distribution of the volcanic explosivity index is generally explained by the power law.

  12. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

    2016-02-01

    Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

  13. A probabilistic neural network for earthquake magnitude prediction.

    PubMed

    Adeli, Hojjat; Panakkat, Ashif

    2009-09-01

    A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gutenberg-Richter inverse power law curve for the n events, the mean square deviation about the regression line based on the Gutenberg-Richter inverse power law for the n events, the average magnitude of the last n events, the difference between the observed maximum magnitude among the last n events and that expected through the Gutenberg-Richter relationship known as the magnitude deficit, the rate of square root of seismic energy released during the n events, the mean time or period between characteristic events, and the coefficient of variation of the mean time. Prediction accuracies of the model are evaluated using three different statistical measures: the probability of detection, the false alarm ratio, and the true skill score or R score. The PNN model is trained and tested using data for the Southern California region. The model yields good prediction accuracies for earthquakes of magnitude between 4.5 and 6.0. The PNN model presented in this paper complements the recurrent neural network model developed by the authors previously, where good results were reported for predicting earthquakes with magnitude greater than 6.0. PMID:19502005

  14. Local magnitude calibration of the Hellenic Unified Seismic Network

    NASA Astrophysics Data System (ADS)

    Scordilis, E. M.; Kementzetzidou, D.; Papazachos, B. C.

    2016-01-01

    A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007-2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

  15. High-orbit satellite magnitude estimation using photometric measurement method

    NASA Astrophysics Data System (ADS)

    Zhang, Shixue

    2015-12-01

    The means to get the accurate high-orbit satellite magnitude can be significant in space target surveillance. This paper proposes a satellite photometric measurement method based on image processing. We calculate the satellite magnitude by comparing the output value of camera's CCD between the known fixed star and the satellite. We calculate the luminance value of a certain object on the acquired image using a background-removing method. According to the observation parameters such as azimuth, elevation, height and the situation of the telescope, we can draw the star map on the image, so we can get the real magnitude of a certain fixed star in the image. We derive a new method to calculate the magnitude value of a certain satellite according to the magnitude of the fixed star in the image. To guarantee the algorithm's stability, we evaluate the measurement precision of the method, and analysis the restrict condition in actual application. We have made plenty of experiment of our system using large telescope in satellite surveillance, and testify the correctness of the algorithm. The experimental result shows that the precision of the proposed algorithm in satellite magnitude measurement is 0.24mv, and this method can be generalized to other relative fields.

  16. Magnitude knowledge: the common core of numerical development.

    PubMed

    Siegler, Robert S

    2016-05-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development. PMID:27074723

  17. Estimation of the magnitudes and epicenters of Philippine historical earthquakes

    NASA Astrophysics Data System (ADS)

    Bautista, Maria Leonila P.; Oike, Kazuo

    2000-02-01

    The magnitudes and epicenters of Philippine earthquakes from 1589 to 1895 are estimated based on the review, evaluation and interpretation of historical accounts and descriptions. The first step involves the determination of magnitude-felt area relations for the Philippines for use in the magnitude estimation. Data used were the earthquake reports of 86, recent, shallow events with well-described effects and known magnitude values. Intensities are assigned according to the modified Mercalli intensity scale of I to XII. The areas enclosed by Intensities III to IX [ A(III) to A(IX)] are measured and related to magnitude values. The most robust relations are found for magnitudes relating to A(VI), A(VII), A(VIII) and A(IX). Historical earthquake data are obtained from primary sources in libraries in the Philippines and Spain. Most of these accounts were made by Spanish priests and officials stationed in the Philippines during the 15th to 19th centuries. More than 3000 events are catalogued, interpreted and their intensities determined by considering the possible effects of local site conditions, type of construction and the number and locations of existing towns to assess completeness of reporting. Of these events, 485 earthquakes with the largest number of accounts or with at least a minimum report of damage are selected. The historical epicenters are estimated based on the resulting generalized isoseismal maps augmented by information on recent seismicity and location of known tectonic structures. Their magnitudes are estimated by using the previously determined magnitude-felt area equations for recent events. Although historical epicenters are mostly found to lie on known tectonic structures, a few, however, are found to lie along structures that show not much activity during the instrumented period. A comparison of the magnitude distributions of historical and recent events showed that only the period 1850 to 1900 may be considered well-reported in terms of

  18. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Page, M. T.; Weiser, D. A.; Goebel, T.; Hosseini, S. M.

    2015-12-01

    Key questions with implications for seismic hazard and industry practice are how large injection-induced earthquakes can be, and whether their maximum size is smaller than for similarly located tectonic earthquakes. Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. McGarr (JGR 2014) showed that for earthquakes confined to the reservoir and triggered by pore-pressure increase, the maximum moment should be limited to the product of the shear modulus G and total injected volume ΔV. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network, with an absolute maximum magnitude that is notoriously difficult to constrain. A common approach for tectonic earthquakes is to use the magnitude-frequency distribution of smaller earthquakes to forecast the largest earthquake expected in some time period. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter (GR) distribution for tectonic earthquakes, with no assumption of an intrinsic upper bound. The GR law implies that the largest observed earthquake in a sample should scale with the log of the total number induced. We find that the maximum magnitudes at most sites are consistent with this scaling, and that maximum magnitude increases with log ΔV. We find little in the size distribution to distinguish induced from tectonic earthquakes. That being said, the probabilistic estimate exceeds the deterministic GΔV cap only for expected magnitudes larger than ~M6, making a definitive test of the models unlikely in the near future. In the meantime, however, it may be prudent to treat the hazard from induced earthquakes with the same probabilistic machinery used for tectonic earthquakes.

  19. The Strain Energy, Seismic Moment and Magnitudes of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Purcaru, G.

    2004-12-01

    The strain energy Est, as potential energy, released by an earthquake and the seismic moment Mo are two fundamental physical earthquake parameters. The earthquake rupture process ``represents'' the release of the accumulated Est. The moment Mo, first obtained in 1966 by Aki, revolutioned the quantification of earthquake size and led to the elimination of the limitations of the conventional magnitudes (originally ML, Richter, 1930) mb, Ms, m, MGR. Both Mo and Est, not in a 1-to-1 correspondence, are uniform measures of the size, although Est is presently less accurate than Mo. Est is partitioned in seismic- (Es), fracture- (Eg) and frictional-energy Ef, and Ef is lost as frictional heat energy. The available Est = Es + Eg (Aki and Richards (1980), Kostrov and Das, (1988) for fundamentals on Mo and Est). Related to Mo, Est and Es, several modern magnitudes were defined under various assumptions: the moment magnitude Mw (Kanamori, 1977), strain energy magnitude ME (Purcaru and Berckhemer, 1978), tsunami magnitude Mt (Abe, 1979), mantle magnitude Mm (Okal and Talandier, 1987), seismic energy magnitude Me (Choy and Boatright, 1995, Yanovskaya et al, 1996), body-wave magnitude Mpw (Tsuboi et al, 1998). The available Est = (1/2μ )Δ σ Mo, Δ σ ~=~average stress drop, and ME is % \\[M_E = 2/3(\\log M_o + \\log(\\Delta\\sigma/\\mu)-12.1) ,\\] % and log Est = 11.8 + 1.5 ME. The estimation of Est was modified to include Mo, Δ and μ of predominant high slip zones (asperities) to account for multiple events (Purcaru, 1997): % \\[E_{st} = \\frac{1}{2} \\sum_i {\\frac{1}{\\mu_i} M_{o,i} \\Delta\\sigma_i} , \\sum_i M_{o,i} = M_o \\] % We derived the energy balance of Est, Es and Eg as: % \\[ E_{st}/M_o = (1+e(g,s)) E_s/M_o , e(g,s) = E_g/E_s \\] % We analyzed a set of about 90 large earthquakes and found that, depending on the goal these magnitudes quantify differently the rupture process, thus providing complementary means of earthquake characterization. Results for some

  20. Magnitude Characterization Using Complex Networks in Central Chile

    NASA Astrophysics Data System (ADS)

    Pasten, D.; Comte, D.; Munoz, V.

    2013-12-01

    Studies using complex networks are applied to many systems, like traffic, social networks, internet and earth science. In this work we make an analysis using complex networks applied to magnitude of seismicity in the central zone of Chile, we use the preferential attachment in order to construct a seismic network using local magnitudes and the hypocenters of a seismic data set in central Chile. In order to work with a complete catalogue in magnitude, the data associated with the linear part of the Gutenberg-Richter law, with magnitudes greater than 2.7, were taken. We then make a grid in space, so that each seismic event falls into a certain cell, depending on the location of its hypocenter. Now the network is constructed: the first node corresponds to the cell where the first seismic event occurs. The node has an associated number which is the magnitude of the event which occured in it, and a probability is assigned to the node. The probability is a nonlinear mapping of the magnitude (a Gaussian function was taken), so that nodes with lower magnitude events are more likely to be attached to. Each time a new node is added to the network, it is attached to the previous node which has the larger probability; the link is directed from the previous node to the new node. In this way, a directed network is constructed, with a ``preferential attachment''-like growth model, using the magnitudes as the parameter to determine the probability of attachment to future nodes. Several events could occur in the same node. In this case, the probability is calculated using the average of the magnitudes of the events occuring in that node. Once the directed network is finished, the corresponding undirected network is constructed, by making all links symmetric, and eliminating the loops which may appear when two events occur in the same cell. The resulting directed network is found to be scale free (with very low values of the power-law distribution exponent), whereas the undirected

  1. Zero Magnitude Effect for the Productivity of Triggered Tsunami Sources

    NASA Astrophysics Data System (ADS)

    Geist, E. L.

    2013-12-01

    The Epidemic Type Aftershock Sequence (ETAS) model is applied to tsunami events to explain previously observed temporal clustering of tsunami sources. Tsunami events are defined by National Geophysical Data Center (NGDC) tsunami database. For the ETAS analysis, the earthquake magnitude associated with each tsunami event in the NGDC database is replaced by the primary magnitude listed in the Centennial catalog up until 1976 and in the Global CMT catalog from 1976 through 2010. Tsunamis with a submarine landslide or volcanic component are included if they are accompanied by an earthquake, which is most often the case. Tsunami size is used as a mark for determining a tsunami-generating event, according to a minimum completeness level. The tsunami catalog is estimated to be complete for tsunami sizes greater than 1 m since 1900 and greater than 0.1 m since 1960. Of the five parameters in the temporal ETAS model (Ogata, 1988), the parameter that scales the magnitude dependence in the productivity of triggered events is the one that is most different from ETAS parameters derived from similar earthquake catalogs. Maximum likelihood estimates of this magnitude effect parameter is essentially zero, within 95% confidence, for both the 0.1 m and 1.0 m tsunami completeness levels. To explain this result, parameter estimates are determined for the Global CMT catalog under three tsunamigenic conditions: (1) M≥7 and focal depth ≤50 km, (2) submarine location, and (3) dominant component of dip slip. Successive subcatalogs are formed from the Global CMT catalog according to each of these conditions. The high magnitude threshold for tsunamigenesis alone (subcatalog 1) does not explain the zero magnitude effect. The zero magnitude effect also does not appear to be caused the smaller number of tsunamigenic events analyzed in comparison to earthquake catalogs with a similar magnitude threshold. ETAS parameter estimates from the subcatalog (3) with all three tsunamigenic conditions

  2. Magnitude of perceived depth of multiple stereo transparent surfaces.

    PubMed

    Aida, Saori; Shimono, Koichi; Tam, Wa James

    2015-01-01

    According to the geometric relational expression of binocular stereopsis, for a given viewing distance the magnitude of the perceived depth of objects would be the same, as long as the disparity magnitudes were the same. However, we found that this is not necessarily the case for random-dot stereograms that depict parallel, overlapping, transparent stereoscopic surfaces (POTS). The data from five experiments indicated that (1) the magnitude of perceived depth between the two outer surfaces of a three- or a four-POTS configuration can be smaller than that for an identical pair of stereo surfaces of a two-POTS configuration for the range of disparities that we used (5.2-19.4 arcmin); (2) this phenomenon can be observed irrespective of the total dot density of a POTS configuration, at least for the range that we used (1.1-3.3 dots/deg(2)); and (3) the magnitude of perceived depth between the two outer surfaces of a POTS configuration can be reduced as the total number of stereo surfaces is increased, up to four surfaces. We explained these results in terms of a higher-order process or processes, with an output representing perceived depth magnitude, which is weakened when the number of its surfaces is increased. PMID:25120178

  3. Deep photometry and integral magnitudes of 8 nearby galaxies

    NASA Astrophysics Data System (ADS)

    Georgiev, Ts. B.

    2016-02-01

    We estimated integral magnitudes of galaxies trying to include the contribution of the brightest part of their halos. We performed surface photometry based on (i) concentric elliptical rims, corresponding to the peripheral ellipticity of the image, (ii) median estimation of the mean value of the rim pixels, (iii) apparent radial brightness profiles, corresponding to the rim medians, and (iv) magnitude curves of growth, derived by numerical integrations of the apparent rim profiles, without preliminary background estimation and removal. Furthermore, we used the magnitude curves of growth to determine the integral magnitudes (limited by size and deepness of our frames) and compared them with the total magnitudes in the data base HyperLeda. Also, we used the rim-profiles to estimate the background level far enough from the galaxy center and we build (here—only for trial) the intrinsic radial profiles (with background removal). We apply this photometry on 8 nearby galaxies, observed with CCD in the system BVRC IC by the 50 cm Schmidt telescope of the Rozhen NAO in 2003-2004. We build radial profiles which occur to be as average 1.8 times (1.2-2.5 times) larger than in data base NED and of integral brightness that occurs to be about 1.4 times (1.2-1.7 times) higher than in data base HyperLeda. The relative brightness additions, found here, correlate with the color index and anti-correlate with the luminosity of the galaxy.

  4. Magnitude and phase behavior of multiresolution BOLD signal

    PubMed Central

    Chen, Zikuan; Calhoun, Vince D.

    2010-01-01

    High spatial resolution fMRI provides a more precise estimate of brain activity than low resolution fMRI. The magnitude and phase parts of the BOLD signals are impacted differently by changes in the scan resolution. In this paper, we report on a numerical simulation to show the impact of spatial resolution upon the complex-valued BOLD signal in terms of magnitude and phase variation. We generate realistic capillary networks in cortex voxels, calculate the BOLD-induced magnetic field disturbance and the complex BOLD signals for the voxel and its subvoxels, and thereby characterize the magnitude and phase behaviors across multiple grid resolutions. Our results show that: 1) at higher spatial resolution there is greater spatial variation in the phase of the BOLD signal as compared to its magnitude; 2) the spatial variation of the phase signal monotonically increases with respect to spatial resolution while for the magnitude the spatial variation may reach a maximum at some resolution level; 3) voxels containing large capillaries have higher phase spatial variation than those with smaller capillaries; 4) the amplitude spatial variation at a resolution level increases with respect to relaxation time whereas the phase variation is generally unaffected. PMID:20890375

  5. Correlating Total Visual Magnitude Estimates and CCD Photometry for Comets

    NASA Astrophysics Data System (ADS)

    Kidger, Mark Richard

    2015-08-01

    A key facet of understanding the activity of comets is coverage of their light curve. For some comets such as 2P/Encke there is good light curve coverage from visual observers extending back over many returns over more than 2 centuries. However, in recent years, CCD photometry by amateur astronomers has become the dominant data source and the number of total visual magnitude estimates has reduced sharply, making comparison of recent and historical photometric data for comets increasingly difficult. The relationship between total visual magnitude estimates - dominated by the emission from the Swan bands of C2 - and CCD aperture photometry - dominated by the dust continuum - has been far from clear.This paper compares CCD aperture photometry and total visual magnitude for several recent well-observed bright comets, including C/2014 Q2 (Lovejoy), C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS) using a consistent and homogeneous database of observations from (mainly) Spanish observers. For comets with a 1/r radial coma profile, good agreement is found between CCD aperture photometry and total visual magnitude estimates for a CCD aperture corresponding to a physical coma diameter of ≈105km.The relationship between the coma radial brightness slope and the equivalent physical aperture for CCD photometry to obtain agreement with total visual magnitude estimates is investigated.

  6. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  7. Executive function and magnitude skills in preschool children.

    PubMed

    Prager, Emily O; Sera, Maria D; Carlson, Stephanie M

    2016-07-01

    Executive function (EF) has been highlighted as a potentially important factor for mathematical understanding. The relation has been well established in school-aged children but has been less explored at younger ages. The current study investigated the relation between EF and mathematics in preschool-aged children. Participants were 142 typically developing 3- and 4-year-olds. Controlling for verbal ability, a significant positive correlation was found between EF and general math abilities in this age group. Importantly, we further examined this relation causally by varying the EF load on a magnitude comparison task. Results suggested a developmental pattern where 3-year-olds' performance on the magnitude comparison task was worst when EF was taxed the most. Conversely, 4-year-olds performed well on the magnitude task despite varying EF demands, suggesting that EF might play a critical role in the development of math concepts. PMID:27082019

  8. The magnitude distribution of declustered earthquakes in Southern California

    PubMed Central

    Knopoff, Leon

    2000-01-01

    The binned distribution densities of magnitudes in both the complete and the declustered catalogs of earthquakes in the Southern California region have two significantly different branches with crossover magnitude near M = 4.8. In the case of declustered earthquakes, the b-values on the two branches differ significantly from each other by a factor of about two. The absence of self-similarity across a broad range of magnitudes in the distribution of declustered earthquakes is an argument against the application of an assumption of scale-independence to models of main-shock earthquake occurrence, and in turn to the use of such models to justify the assertion that earthquakes are unpredictable. The presumption of scale-independence for complete local earthquake catalogs is attributable, not to a universal process of self-organization leading to future large earthquakes, but to the universality of the process that produces aftershocks, which dominate complete catalogs. PMID:11035770

  9. Every reinforcer counts: reinforcer magnitude and local preference.

    PubMed Central

    Davison, Michael; Baum, William M

    2003-01-01

    Six pigeons were trained on concurrent variable-interval schedules. Sessions consisted of seven components, each lasting 10 reinforcers, with the conditions of reinforcement differing between components. The component sequence was randomly selected without replacement. In Experiment 1, the concurrent-schedule reinforcer ratios in components were all equal to 1.0, but across components reinforcer-magnitude ratios varied from 1:7 through 7:1. Three different overall reinforcer rates were arranged across conditions. In Experiment 2, the reinforcer-rate ratios varied across components from 27:1 to 1:27, and the reinforcer-magnitude ratios for each alternative were changed across conditions from 1:7 to 7:1. The results of Experiment 1 replicated the results for changing reinforcer-rate ratios across components reported by Davison and Baum (2000, 2002): Sensitivity to reinforcer-magnitude ratios increased with increasing numbers of reinforcers in components. Sensitivity to magnitude ratio, however, fell short of sensitivity to reinforcer-rate ratio. The degree of carryover from component to component depended on the reinforcer rate. Larger reinforcers produced larger and longer postreinforcer preference pulses than did smaller reinforcers. Similar results were found in Experiment 2, except that sensitivity to reinforcer magnitude was considerably higher and was greater for magnitudes that differed more from one another. Visit durations following reinforcers measured either as number of responses emitted or time spent responding before a changeover were longer following larger than following smaller reinforcers, and were longer following sequences of same reinforcers than following other sequences. The results add to the growing body of research that informs model building at local levels. PMID:13677611

  10. Toward Reconciling Magnitude Discrepancies Estimated from Paleoearthquake Data

    SciTech Connect

    N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer

    2012-06-01

    We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationships are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent

  11. Problemas de nervos: a multivocal symbol of distress for Portuguese immigrants.

    PubMed

    James, Susan; Fernandes, Mark; Navara, Geoffrey S; Harris, Sara; Foster, Durwin

    2009-06-01

    This article outlines research on a previous unstudied form of suffering specific to the Portugese immigrant community: problemas de nervos. Thirty-two Portuguese immigrant women (in Waterloo, ON and Boston, MA) were interviewed and each completed a questionnaire. Cluster analysis demonstrated that problemas de nervos has many meanings. The study profiled symptoms, causes and therapies associated with four variations of this culture-specific form of distress: "mal da cabeca" meaning problems with/in the head (e.g., lack of control, visions); " aflição" meaning affliction (e.g., nervous attacks, heart problems); immigration stress (causing sleep disturbances); and, conflicts with others (resulting in pressure within the body). None of the symptom clusters reported matched criteria for a DSM-IV-TR diagnosis, suggesting that problemas de nervos represents an idiomatic rather than universal expression of distress. PMID:19541751

  12. Standard magnitude prize reinforcers can be as efficacious as larger magnitude reinforcers in cocaine-dependent methadone patients

    PubMed Central

    Petry, Nancy M.; Alessi, Sheila M.; Barry, Danielle; Carroll, Kathleen M.

    2014-01-01

    Objective Contingency management (CM) reduces cocaine use in methadone patients, but only about 50% of patients respond to CM interventions. This study evaluated whether increasing magnitudes of reinforcement will improve outcomes. Methods Cocaine-dependent methadone patients (N = 240) were randomized to one of four 12-week treatment conditions: usual care (UC), UC plus “standard” prize CM in which average expected prize earnings were about $300, UC plus high magnitude prize CM in which average expected prize earnings were about $900, or UC plus voucher CM with an expected maximum of about $900 in vouchers. Results All three CM conditions yielded significant reductions in cocaine use relative to UC, with effect sizes (d) ranging from 0.38 to 0.59. No differences were noted between CM conditions, with at least 55% of patients in each CM condition achieving one week or more of cocaine abstinence versus 35% in UC. During the 12 weeks after the intervention ended, CM increased time until relapse relative to UC, but the effects of CM were no longer significant at a 12-month follow-up. Conclusions Providing the standard magnitude of $300 in prizes was as effective as larger magnitude CM in cocaine-dependent methadone patients in this study. Given its strong evidence base and relatively low costs, standard magnitude prize CM should be considered for adoption in methadone clinics to encourage cocaine abstinence, but new methods need to be developed to sustain abstinence. PMID:25198284

  13. Neural processing of reward magnitude under varying attentional demands.

    PubMed

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-01

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. PMID:21295019

  14. The effect of crosstalk on depth magnitude in thin structures

    NASA Astrophysics Data System (ADS)

    Tsirlin, Inna; Wilcox, Laurie M.; Allison, Robert S.

    2011-03-01

    Stereoscopic displays must present separate images to the viewer's left and right eyes. Crosstalk is the unwanted contamination of one eye's image from the image of the other eye. It has been shown to cause distortions, reduce image quality and visual comfort and increase perceived workload when performing visual tasks. Crosstalk also affects one's ability to perceive stereoscopic depth although little consideration has been given to the perception of depth magnitude in the presence of crosstalk. In this paper we extend a previous study (Tsirlin, Allison & Wilcox, 2010, submitted) on the perception of depth magnitude in stereoscopic occluding and non-occluding surfaces to the special case of crosstalk in thin structures. Crosstalk in thin structures differs qualitatively from that in larger objects due to the separation of the ghost and real images and thus theoretically could have distinct perceptual consequences. To address this question we used a psychophysical paradigm, where observers estimated the perceived depth difference between two thin vertical bars using a measurement scale. Our data show that crosstalk degrades perceived depth. As crosstalk levels increased the magnitude of perceived depth decreased, especially for stimuli with larger relative disparities. In contrast to the effect of crosstalk on depth magnitude in larger objects, in thin structures, a significant detrimental effect was found at all disparities. Our findings, when considered with the other perceptual consequences of crosstalk, suggest that its presence in S3D media even in modest amounts will reduce observers' satisfaction.

  15. High magnitude head impacts experienced during youth football practices.

    PubMed

    Young, Tyler; Rowson, Steven; Duma, Stefan M

    2014-01-01

    To reduce the risk of concussion in the 3.5 million youth athletes who participate in organized football leagues in the United States each year, practice structure can be modified to decrease impact frequency and magnitude. The objective of this study is to identify activities that result in high magnitude head impacts in youth football players during practice. The HIT System was used to record the head acceleration magnitude, impact location on the helmet, and time of each impact for each game and practice players participated in. These data were used to quantify the head impact exposure associated with players between the ages of 9 and 11 years. Video footage recorded during each practice and game session was used to identify the activity associated with any impact above 45 g. The incidence rate of high magnitude impacts in various activities were compared by normalizing by the amount of time associated with each activity. It was determined that scrimmages accounted for 0.094 impacts greater than 45 g per minute in practices while contact drills contributed to 0.102 impacts greater than 45 g per minute during practices. The results of this study indicate future youth football practice modifications should focus on both scrimmages and contact drills. PMID:25405410

  16. Children's Sensitivity to Error Magnitude when Evaluating Informants

    ERIC Educational Resources Information Center

    Einav, Shiri; Robinson, Elizabeth J.

    2010-01-01

    Three experiments examined children's (N = 80; 40; 48) sensitivity to error magnitude as a measure of informants' past accuracy, and indication of future reliability. Experiments 1 and 2 assessed whether, in a forced-choice task, children would evaluate as better and show greater trust in an informant whose previous errors were consistently within…

  17. Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference.

    PubMed

    Thurley, Kay

    2016-01-01

    Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes. PMID:26909028

  18. The Magnitude of Premenstrual and Menstrual Mood Changes in Adolescents.

    ERIC Educational Resources Information Center

    Golub, Sharon; Murphy, Denise

    Frequent mood changes in adolescents are often attributed to the influence of shifting hormone levels. The presence and magnitude of menstrual-related mood changes in adolescent women were examined in 10th and 11th grade females (N=158) who completed the Menstrual Distress Questionnaire (MDQ). Self-reports of the onset date for the next two…

  19. Strategy Use and Strategy Choice in Fraction Magnitude Comparison

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; DeWolf, Melissa; Siegler, Robert S.

    2016-01-01

    We examined, on a trial-by-trial basis, fraction magnitude comparison strategies of adults with more and less mathematical knowledge. College students with high mathematical proficiency used a large variety of strategies that were well tailored to the characteristics of the problems and that were guaranteed to yield correct performance if executed…

  20. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  1. Error magnitude estimation in model-reference adaptive systems

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1975-01-01

    A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.

  2. Fraction Development in Children: Importance of Building Numerical Magnitude Understanding

    ERIC Educational Resources Information Center

    Jordan, Nancy C.; Carrique, Jessica; Hansen, Nicole; Resnick, Ilyse

    2016-01-01

    This chapter situates fraction learning within the integrated theory of numerical development. We argue that the understanding of numerical magnitudes for whole numbers as well as for fractions is critical to fraction learning in particular and mathematics achievement more generally. Results from the Delaware Longitudinal Study, which examined…

  3. Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference

    PubMed Central

    Thurley, Kay

    2016-01-01

    Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes. PMID:26909028

  4. Discriminability and Sensitivity to Reinforcer Magnitude in a Detection Task

    ERIC Educational Resources Information Center

    Alsop, Brent; Porritt, Melissa

    2006-01-01

    Three pigeons discriminated between two sample stimuli (intensities of red light). The difficulty of the discrimination was varied over four levels. At each level, the relative reinforcer magnitude for the two correct responses was varied across conditions, and the reinforcer rates were equal. Within levels, discriminability between the sample…

  5. The Role of Executive Functions in Numerical Magnitude Skills

    ERIC Educational Resources Information Center

    Kolkman, Meijke E.; Hoijtink, Herbert J. A.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2013-01-01

    Executive functions (EF) are closely related to math performance. Little is known, however, about the role of EF in numerical magnitude skills (NS), although these skills are widely acknowledged to be important precursors of math learning. The current study focuses on the different roles of updating, shifting, and inhibition in NS. EF and NS were…

  6. What Is the Meaning of the Physical Magnitude "Work"?

    ERIC Educational Resources Information Center

    Kanderakis, Nikos

    2014-01-01

    Usually, in physics textbooks, the physical magnitude "work" is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, "work" is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is…

  7. Crystal measures short-term, large-magnitude forces

    NASA Technical Reports Server (NTRS)

    Pfeiffer, C. G.

    1965-01-01

    By using the magnitude of piezoelectric crystal response to distortion and compression, this device measures transient accelerations and their rate of change. The invention could be used in a servo control system by supplementing the accelerometer and taking over its function when its range was exceeded.

  8. Bayesian Predictive Distribution for the Magnitude of the Largest Aftershock

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.

    2014-12-01

    Aftershock sequences, which follow large earthquakes, last hundreds of days and are characterized by well defined frequency-magnitude and spatio-temporal distributions. The largest aftershocks in a sequence constitute significant hazard and can inflict additional damage to infrastructure. Therefore, the estimation of the magnitude of possible largest aftershocks in a sequence is of high importance. In this work, we propose a statistical model based on Bayesian analysis and extreme value statistics to describe the distribution of magnitudes of the largest aftershocks in a sequence. We derive an analytical expression for a Bayesian predictive distribution function for the magnitude of the largest expected aftershock and compute the corresponding confidence intervals. We assume that the occurrence of aftershocks can be modeled, to a good approximation, by a non-homogeneous Poisson process with a temporal event rate given by the modified Omori law. We also assume that the frequency-magnitude statistics of aftershocks can be approximated by Gutenberg-Richter scaling. We apply our analysis to 19 prominent aftershock sequences, which occurred in the last 30 years, in order to compute the Bayesian predictive distributions and the corresponding confidence intervals. In the analysis, we use the information of the early aftershocks in the sequences (in the first 1, 10, and 30 days after the main shock) to estimate retrospectively the confidence intervals for the magnitude of the expected largest aftershocks. We demonstrate by analysing 19 past sequences that in many cases we are able to constrain the magnitudes of the largest aftershocks. For example, this includes the analysis of the Darfield (Christchurch) aftershock sequence. The proposed analysis can be used for the earthquake hazard assessment and forecasting associated with the occurrence of large aftershocks. The improvement in instrumental data associated with early aftershocks can greatly enhance the analysis and

  9. Toward Reconciling Magnitude Discrepancies Estimated from Paleoearthquake Data: A New Approach for Predicting Earthquake Magnitudes from Fault Segment Lengths

    NASA Astrophysics Data System (ADS)

    Carpenter, N. S.; Payne, S. J.; Schafer, A. L.

    2011-12-01

    We recognize a discrepancy in magnitudes estimated for several Basin and Range faults in the Intermountain Seismic Belt, U.S.A. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths, Lseg, where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements, D, along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M ~ Lseg, should equal M ~ D). Typically, the empirical relationships are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating Lseg with surface rupture length, SRL. Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M ~ SRL relationship using Lseg as SRL leads to an underestimation of magnitude and the M ~ Lseg and M ~ D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude, Mw, and length, where length is Lseg instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw ~ Lseg results are strikingly consistent with Mw ~ D calculations using paleoearthquake data for

  10. Forecasting magnitude, time, and location of aftershocks for aftershock hazard

    NASA Astrophysics Data System (ADS)

    Chen, K.; Tsai, Y.; Huang, M.; Chang, W.

    2011-12-01

    In this study we investigate the spatial and temporal seismicity parameters of the aftershock sequence accompanying the 17:47 20 September 1999 (UTC) 7.45 Chi-Chi earthquake Taiwan. Dividing the epicentral zone into north of the epicenter, at the epicenter, and south of the epicenter, it is found that immediately after the earthquake the area close by the epicenter had a lower value than both the northern and southern sections. This pattern suggests that at the time of the Chi-Chi earthquake, the area close by the epicenter remained prone to large magnitude aftershocks and strong shaking. However, with time the value increases. An increasing value indicates a reduced likelihood of large magnitude aftershocks. The study also shows that the value is higher at the southern section of the epicentral zone, indicating a faster rate of decay in this section. The primary purpose of this paper is to design a predictive model for forecasting the magnitude, time, and location of aftershocks to large earthquakes. The developed model is presented and applied to the 17:47 20 September 1999 7.45 Chi-Chi earthquake Taiwan, and the 09:32 5 November 2009 (UTC) Nantou 6.19, and 00:18 4 March 2010 (UTC) Jiashian 6.49 earthquake sequences. In addition, peak ground acceleration trends for the Nantou and Jiashian aftershock sequences are predicted and compared to actual trends. The results of the estimated peak ground acceleration are remarkably similar to calculations from recorded magnitudes in both trend and level. To improve the predictive skill of the model for occurrence time, we use an empirical relation to forecast the time of aftershocks. The empirical relation improves time prediction over that of random processes. The results will be of interest to seismic mitigation specialists and rescue crews. We apply also the parameters and empirical relation from Chi-Chi aftershocks of Taiwan to forecast aftershocks with magnitude M > 6.0 of 05:46 11 March 2011 (UTC) Tohoku 9

  11. How are number words mapped to approximate magnitudes?

    PubMed

    Sullivan, Jessica; Barner, David

    2013-01-01

    How do we map number words to the magnitudes they represent? While much is known about the developmental trajectory of number word learning, the acquisition of the counting routine, and the academic correlates of estimation ability, previous studies have yet to describe the mechanisms that link number words to nonverbal representations of number. We investigated two mechanisms: associative mapping and structure mapping. Four dot array estimation tasks found that adults' ability to match a number word to one of two discriminably different sets declined as a function of set size and that participants' estimates of relatively large, but not small, set sizes were influenced by misleading feedback during an estimation task. We propose that subjects employ structure mappings for linking relatively large number words to set sizes, but rely chiefly on item-by-item associative mappings for smaller sets. These results indicate that both inference and association play important roles in mapping number words to approximate magnitudes. PMID:22963174

  12. A Search for 23rd Magnitude Kuiper Belt Comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane

    1997-01-01

    The goal of the project was to identify a statistically significant sample of large (200 km-sized) Kuiper Belt Objects (KBOs), by covering 10 sq. degrees of the sky to a red limiting magnitude m(sub R) = 23. This work differs from, but builds on, previous surveys of the outer solar system in that it will cover a large area to a limiting magnitude that is deep enough to guarantee positive results. The proposed work should provide us with a significant number of 200 km-size KBOs (approx. 20 are expected) for subsequent studies. Such a sample is crucial if we are to investigate the statistical properties of the Belt and its members. It was modified the original research strategy to accommodate unanticipated problems such as the urgent need for follow-up observations,the original goal was still reached: we have substantially increased the number of Kuiper Belt Objects brighter than 23rd mag.

  13. New methods for predicting the magnitude of sunspot maximum

    NASA Technical Reports Server (NTRS)

    Brown, G. M.

    1979-01-01

    Three new and independent methods of predicting the magnitude of a forthcoming sunspot maximum are suggested. The longest lead time is given by the first method, which is based on a terrestrial parameter measured during the declining phase of the preceding cycle. The second method, with only a slightly shorter foreknowledge, is based on an interplanetary parameter derived around the commencement of the cycle in question (sunspot minimum). The third method, giving the shortest prediction lead-time, is based entirely on solar parameters measured during the initial progress of the cycle in question. Application of all three methods to forecast the magnitude of the next maximum (Cycle 21) agree in predicting that it is likely to be very similar to that of Cycle 18.

  14. Sensori-motor spatial training of number magnitude representation.

    PubMed

    Fischer, Ursula; Moeller, Korbinian; Bientzle, Martina; Cress, Ulrike; Nuerk, Hans-Christoph

    2011-02-01

    An adequately developed spatial representation of number magnitude is associated with children's general arithmetic achievement. Therefore, a new spatial-numerical training program for kindergarten children was developed in which presentation and response were associated with a congruent spatial numerical representation. In particular, children responded by a full-body spatial movement on a digital dance mat in a magnitude comparison task. This spatial-numerical training was more effective than a non-spatial control training in enhancing children's performance on a number line estimation task and a subtest of a standardized mathematical achievement battery (TEDI-MATH). A mediation analysis suggested that these improvements were driven by an improvement of children's mental number line representation and not only by unspecific factors such as attention or motivation. These results suggest a benefit of spatial numerical associations. Rather than being a merely associated covariate, they work as an independently manipulated variable which is functional for numerical development. PMID:21327351

  15. MAGNITUDE GAP STATISTICS AND THE CONDITIONAL LUMINOSITY FUNCTION

    SciTech Connect

    More, Surhud

    2012-12-20

    In a recent preprint, Hearin et al. (H12) suggest that the halo mass-richness calibration of clusters can be improved by using the difference in the magnitude of the brightest and the second brightest galaxy (magnitude gap) as an additional observable. They claim that their results are at odds with the results from Paranjape and Sheth (PS12) who show that the magnitude distribution of the brightest and second brightest galaxies can be explained based on order statistics of luminosities randomly sampled from the total galaxy luminosity function. We find that a conditional luminosity function (CLF) for galaxies which varies with halo mass, in a manner which is consistent with existing observations, naturally leads to a magnitude gap distribution which changes as a function of halo mass at fixed richness, in qualitative agreement with H12. We show that, in general, the luminosity distribution of the brightest and the second brightest galaxy depends upon whether the luminosities of galaxies are drawn from the CLF or the global luminosity function. However, we also show that the difference between the two cases is small enough to evade detection in the small sample investigated by PS12. This shows that the luminosity distribution is not the appropriate statistic to distinguish between the two cases, given the small sample size. We argue in favor of the CLF (and therefore H12) based upon its consistency with other independent observations, such as the kinematics of satellite galaxies, the abundance and clustering of galaxies, and the galaxy-galaxy lensing signal from the Sloan Digital Sky Survey.

  16. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  17. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  18. Can we test for the maximum possible earthquake magnitude?

    NASA Astrophysics Data System (ADS)

    Holschneider, M.; Zöller, G.; Clements, R.; Schorlemmer, D.

    2014-03-01

    We explore the concept of maximum possible earthquake magnitude, M, in a region represented by an earthquake catalog from the viewpoint of statistical testing. For this aim, we assume that earthquake magnitudes are independent events that follow a doubly truncated Gutenberg-Richter distribution and focus on the upper truncation M. In earlier work, it has been shown that the value of M cannot be well constrained from earthquake catalogs alone. However, for two hypothesized values M and M', alternative statistical tests may address the question: Which value is more consistent with the data? In other words, is it possible to reject a magnitude within reasonable errors, i.e., the error of the first and the error of the second kind? The results for realistic settings indicate that either the error of the first kind or the error of the second kind is intolerably large. We conclude that it is essentially impossible to infer M in terms of alternative testing with sufficient confidence from an earthquake catalog alone, even in regions like Japan with excellent data availability. These findings are also valid for frequency-magnitude distributions with different tail behavior, e.g., exponential tapering. Finally, we emphasize that different data may only be useful to provide additional constraints for M, if they do not correlate with the earthquake catalog, i.e., if they have not been recorded in the same observational period. In particular, long-term geological assessments might be suitable to reduce the errors, while GPS measurements provide overall the same information as the catalogs.

  19. The magnitude-redshift relation in a realistic inhomogeneous universe

    SciTech Connect

    Hada, Ryuichiro; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp

    2014-12-01

    The light rays from a source are subject to a local inhomogeneous geometry generated by inhomogeneous matter distribution as well as the existence of collapsed objects. In this paper we investigate the effect of inhomogeneities and the existence of collapsed objects on the propagation of light rays and evaluate changes in the magnitude-redshift relation from the standard relationship found in a homogeneous FRW universe. We give the expression of the correlation function and the variance for the perturbation of apparent magnitude, and calculate it numerically by using the non-linear matter power spectrum. We use the lognormal probability distribution function for the density contrast and spherical collapse model to truncate the power spectrum in order to estimate the blocking effect by collapsed objects. We find that the uncertainties in Ω{sub m} is ∼ 0.02, and that of w is ∼ 0.04 . We also discuss a possible method to extract these effects from real data which contains intrinsic ambiguities associated with the absolute magnitude.

  20. The Road to Convergence in Earthquake Frequency-Magnitude Statistics

    NASA Astrophysics Data System (ADS)

    Naylor, M.; Bell, A. F.; Main, I. G.

    2013-12-01

    The Gutenberg-Richter frequency-magnitude relation is a fundamental empirical law of seismology, but its form remains uncertain for rare extreme events. Convergence trends can be diagnostic of the nature of an underlying distribution and its sampling even before convergence has occurred. We examine the evolution of an information criteria metric applied to earthquake magnitude time series, in order to test whether the Gutenberg-Richter law can be rejecting in various earthquake catalogues. This would imply that the catalogue is starting to sample roll-off in the tail though it cannot yet identify the form of the roll-off. We compare bootstrapped synthetic Gutenberg-Richter and synthetic modified Gutenberg-Richter catalogues with the convergence trends observed in real earthquake data e.g. the global CMT catalogue, Southern California and mining/geothermal data. Whilst convergence in the tail remains some way off, we show that the temporal evolution of model likelihoods and parameters for the frequency-magnitude distribution of the global Harvard Centroid Moment Tensor catalogue is inconsistent with an unbounded GR relation, despite it being the preferred model at the current time. Bell, A. F., M. Naylor, and I. G. Main (2013), Convergence of the frequency-size distribution of global earthquakes, Geophys. Res. Lett., 40, 2585-2589, doi:10.1002/grl.50416.

  1. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  2. The magnitude-redshift relation for 561 Abell clusters

    NASA Technical Reports Server (NTRS)

    Postman, M.; Huchra, J. P.; Geller, M. J.; Henry, J. P.

    1985-01-01

    The Hubble diagram for the 561 Abell clusters with measured redshifts has been examined using Abell's (1958) corrected photo-red magnitudes for the tenth-ranked cluster member (m10). After correction for the Scott effect and K dimming, the data are in good agreement with a linear magnitude-redshift relation with a slope of 0.2 out to z = 0.1. New redshift data are also presented for 20 Abell clusters. Abell's m10 is suitable for redshift estimation for clusters with m10 of no more than 16.5. At fainter m10, the number of foreground galaxies expected within an Abell radius is large enough to make identification of the tenth-ranked galaxy difficult. Interlopers bias the estimated redshift toward low values at high redshift. Leir and van den Bergh's (1977) redshift estimates suffer from this same bias but to a smaller degree because of the use of multiple cluster parameters. Constraints on deviations of cluster velocities from the mean cosmological flow require greater photometric accuracy than is provided by Abell's m10 magnitudes.

  3. Typical magnitude and spatial extent of crowding in autism

    PubMed Central

    Freyberg, Jan; Robertson, Caroline E.; Baron-Cohen, Simon

    2016-01-01

    Enhanced spatial processing of local visual details has been reported in individuals with autism spectrum conditions (ASC), and crowding is postulated to be a mechanism that may produce this ability. However, evidence for atypical crowding in ASC is mixed, with some studies reporting a complete lack of crowding in autism and others reporting a typical magnitude of crowding between individuals with and without ASC. Here, we aim to disambiguate these conflicting results by testing both the magnitude and the spatial extent of crowding in individuals with ASC (N = 25) and age- and IQ-matched controls (N = 23) during an orientation discrimination task. We find a strong crowding effect in individuals with and without ASC, which falls off as the distance between target and flanker is increased. Both the magnitude and the spatial range of this effect were comparable between individuals with and without ASC. We also find typical (uncrowded) orientation discrimination thresholds in individuals with ASC. These findings suggest that the spatial extent of crowding is unremarkable in ASC, and is therefore unlikely to account for the visual symptoms reported in individuals with the diagnosis. PMID:26998801

  4. Regional moment: Magnitude relations for earthquakes and explosions

    SciTech Connect

    Patton, H.J.; Walter, W.R. )

    1993-02-19

    The authors present M[sub o]:m[sub b] relations using m[sub b](P[sub n]) and m[sub b](L[sub g]) for earthquakes and explosions occurring in tectonic and stable areas. The observations for m[sub b](P[sub n]) range from about 3 to 6 and show excellent separation between earthquakes and explosions on M[sub o]:m[sub b] plots, independent of the magnitude. The scatter in M[sub o]:M[sub b] observations for NTS explosions is small compared to the earthquake data. The M[sub o]:m[sub b](L[sub g]) data for Soviet explosions overlay the observations for US explosions. These results, and the small scatter for NTS explosions, suggest weak dependence of M[sub o]:m[sub b] relations on emplacement media. A simple theoretical model is developed which matches all these observations. The model uses scaling similarity and conservation of energy to provide a physical link between seismic moment and a broadband seismic magnitude. Three factors, radiation pattern, material property, and apparent stress, contribute to the separation between earthquakes and explosions. This theoretical separation is independent of broadband magnitude. For US explosions in different media, the material property and apparent stress contributions are shown to compensate for one another, supporting the observations that M[sub o]:M[sub b] is nearly independent of source geology. 19 refs., 2 figs., 1 tab.

  5. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGESBeta

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes mb = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  6. Correlating precursory declines in groundwater radon with earthquake magnitude.

    PubMed

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. PMID:23550908

  7. Hybrid Modelling of the Economical Consequences of Extreme Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Garcia, S.; Emerson, D.; Perea, N.; Salazar, A.; Moulinec, C.

    2013-05-01

    A hybrid modelling methodology is proposed to estimate the probability of exceedance of the intensities of extreme magnitude earthquakes (PEI) and of their direct economical consequences (PEDEC). The hybrid modeling uses 3D seismic wave propagation (3DWP) combined with empirical Green function (EGF) and Neural Network (NN) techniques in order to estimate the seismic hazard (PEIs) of extreme earthquakes (plausible) scenarios corresponding to synthetic seismic sources. The 3DWP modeling is achieved by using a 3D finite difference code run in the ~100 thousands cores Blue Gene Q supercomputer of the STFC Daresbury Laboratory of UK. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. The methodology is validated for Mw 8 magnitude subduction events, and show examples of its application for the estimation of the hazard and the economical consequences, for extreme Mw 8.5 subduction earthquake scenarios with seismic sources in the Mexican Pacific Coast. The results obtained with the proposed methodology, such as those of the PEDECs in terms of the joint event "damage Cost (C) - maximum ground intensities", of the conditional return period of C given that the maximum intensity exceeds a certain value, could be used by decision makers to allocate funds or to implement policies, to mitigate the impact associated to the plausible occurrence of future extreme magnitude earthquakes.

  8. Does low magnitude earthquake ground shaking cause landslides?

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Rosser, Nick; Vann Jones, Emma; Tunstall, Neil

    2015-04-01

    Estimating the magnitude of coseismic landslide strain accumulation at both local and regional scales is a key goal in understanding earthquake-triggered landslide distributions and landscape evolution, and in undertaking seismic risk assessment. Research in this field has primarily been carried out using the 'Newmark sliding block method' to model landslide behaviour; downslope movement of the landslide mass occurs when seismic ground accelerations are sufficient to overcome shear resistance at the landslide shear surface. The Newmark method has the advantage of simplicity, requiring only limited information on material strength properties, landslide geometry and coseismic ground motion. However, the underlying conceptual model assumes that shear strength characteristics (friction angle and cohesion) calculated using conventional strain-controlled monotonic shear tests are valid under dynamic conditions, and that values describing shear strength do not change as landslide shear strain accumulates. Recent experimental work has begun to question these assumptions, highlighting, for example, the importance of shear strain rate and changes in shear strength properties following seismic loading. However, such studies typically focus on a single earthquake event that is of sufficient magnitude to cause permanent strain accumulation; by doing so, they do not consider the potential effects that multiple low-magnitude ground shaking events can have on material strength. Since such events are more common in nature relative to high-magnitude shaking events, it is important to constrain their geomorphic effectiveness. Using an experimental laboratory approach, we present results that address this key question. We used a bespoke geotechnical testing apparatus, the Dynamic Back-Pressured Shear Box (DynBPS), that uniquely permits more realistic simulation of earthquake ground-shaking conditions within a hillslope. We tested both cohesive and granular materials, both of which

  9. Trends in flood peaks' magnitude and seasonality in European transects

    NASA Astrophysics Data System (ADS)

    Diamantini, Elena; Mallucci, Stefano; Allamano, Paola; Claps, Pierluigi; Laio, Francesco; Viglione, Alberto; Hall, Julia; Blöschl, Günter

    2015-04-01

    In the last decade floods seems to have lashed more and more European population, so that more accurate studies concerning flood events tendencies are needed. We present a work in which trends in flood peaks' magnitude and seasonality (in time and space) are analyzed at the European scale: in total 2055 and 4340 stations respectively for magnitude and seasonality are considered along transect lines including entire nations, ranging typically from north to south of Europe. The work is part of the ERC Project "Deciphering River Flood Change". Trend analysis of flood magnitudes is applied to time series longer than 40 years. We find that there is a cluster of stations with negative trends in flood magnitude around the alpine and perialpine area. Positive trends are more frequent in the valleys of the mid Europe. We also use quantile regressions to investigate the behaviour of the highest quantiles, corresponding to floods with the highest return period. The original database is further divided into four classes based on station elevation; the group of catchments between 500 and 1000 m a.s.l. has the most positive trends for the large quantiles. The analysis is further developed by considering the coefficient of variation in 10-years time windows covering the data; the possible presence of trends in the CV is investigated. The obtained results show that there is a global prevalence of positive trend in the CVs, in particular for stations between 500 and 1000 m a.s.l., demonstrating a tendency toward the increase of very large (and possibly very small) annual maxima. To better discriminate the above results we used quantile regressions, able to highlight the trend behaviour of the highest quantiles computed on flood time series, Moreover, the database is divided into four classes based on station elevation. Results show that the group of catchments between 500 and 1000 m a.s.l. has definite and positive trends for the large quantiles. A different branch of this study

  10. Understanding high magnitude flood risk: evidence from the past

    NASA Astrophysics Data System (ADS)

    MacDonald, N.

    2009-04-01

    The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.

  11. Lower-bound magnitude for probabilistic seismic hazard assessment

    SciTech Connect

    McCann, M.W. Jr.; Reed, J.W. and Associates, Inc., Mountain View, CA )

    1989-10-01

    This report provides technical information to determine the lower-bound earthquake magnitude (LBM) for use in probabilistic seismic hazard (PSH) computations that are applied to nuclear plant applications. The evaluations consider the seismologic characteristics of earthquake experience at similar facilities and insights from probabilistic risk analysis. The recommendations for LBM satisfy the two basic precepts: (1) there is a reasonable engineering assurance that the likelihood of damage due to earthquakes smaller than the LBM is negligible, and (2) any small risk due to earthquakes smaller than the LBM is compensated by conservatisms in PSH results for larger earthquakes. Theoretical and empirical ground motion studies demonstrate that ground shaking duration and spectral shape are a strong function of earthquake magnitude. Small earthquakes have short duration and spectral shapes centered at high frequencies as compared to nuclear power plant design spectra which are typical of moderate and large earthquakes. Analysis of earthquake experience data shows damage to heavy industrial facilities, taken as analogs to nuclear plant structures and components, occurs for earthquakes having moment magnitude M larger than 5.1. Probabilistic seismic risk and margins studies show nuclear plant structures and adequately anchored ductile components to be rugged for moderate-size earthquakes with broad design-type spectral shapes. They may, therefore, be considered rugged for small earthquakes. Finally, nonlinear analysis of the damage effectiveness of strong-motion recordings shows that potential damage does not occur for earthquakes smaller than about M5.6. These results support a conservative LBM of M5.0 for application to nuclear power plant PSH assessments. 144 refs., 78 figs., 34 tabs.

  12. Sequence data - Magnitude and implications of some ambiguities.

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Jukes, T. H.

    1972-01-01

    A stochastic model is applied to the divergence of the horse-pig lineage from a common ansestor in terms of the alpha and beta chains of hemoglobin and fibrinopeptides. The results are compared with those based on the minimum mutation distance model of Fitch (1972). Buckwheat and cauliflower cytochrome c sequences are analyzed to demonstrate their ambiguities. A comparative analysis of evolutionary rates for various proteins of horses and pigs shows that errors of considerable magnitude are introduced by Glx and Asx ambiguities into evolutionary conclusions drawn from sequences of incompletely analyzed proteins.

  13. Unexpected downshift in reward magnitude induces variation in human behavior

    PubMed Central

    Jensen, Greg; Stokes, Patricia; Paterniti, Anthea; Balsam, Peter

    2013-01-01

    We investigated how changes in outcome magnitude affect behavioral variation in human volunteers. Participants entered strings of characters using a computer keyboard, receiving feedback (gaining a number of points) for any string at least 10 characters long. During a “surprise” phase in which the number of points awarded was changed, participants only increased their behavioral variability when the reward value was downshifted to a lower amount, and only when such a shift was novel. Upshifts in reward did not have a systematic effect on variability. PMID:23884690

  14. In Brief: China shaken by magnitude 7.9 earthquake

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-05-01

    A magnitude 7.9 earthquake that struck the eastern Sichuan region of China on 12 May 2008 at 0628 UTC has caused more than 22,000 fatalities as of press time, and Chinese government officials have indiciated that this figure could increase to 50,000. The quake also caused severe damage including landslides and cracks to 391 mostly small dams, according to an Associated Press report that cited the Xinhua News Agency and CCTV news. China's Ministry of Water Resources has dispatched several work teams to quake-hit localities ``to prevent dams that were damaged by the earthquake from bursting and endangering the lives of residents,'' the ministry stated.

  15. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  16. Lightcurve Analysis of a Magnitude Limited Asteroid Sample

    NASA Astrophysics Data System (ADS)

    Molnar, Lawrence A.; Haegert, Melissa, J.; Beaumont, Christopher N.; Block, Marjorie J.; Brom, Timothy H.; Butler, Andrew R.; Cook, Peter L.; Green, Allyson, G.; Holtrop, Joshua P.; Hoogeboom, Kathleen M.; Kulisek, Jason J.; Lovelace, Jonathan S.; Olivero, Jeffrey S.; Shrestha, Achyut; Taylor, Jessie F.; Todd, Kenneth, D.; Vander Heide, John D.; van Coter, Samuel O.

    2008-03-01

    Synodic rotation periods and amplitudes for twelve main-belt asteroids observed at the Calvin-Rehoboth Observatory are reported: 285 Regina, 939 Isberga, 1104 Syringa, 1206 Numerowia, 1613 Smiley, 1623 Vivian, 1835 Gajdariya, 3013 Dobrovoleva, 3170 Dzhanibekov, 4411 Kochibunkyo, (5854) 1992UP, and (119245) 2001 QD293. The asteroid 939 Isberga is a binary with orbital period 26.8 ± 0.1 h. Together with five asteroids previously measured these constitute a complete magnitude limited sample which can be used to test for bias in the larger catalog of rotation periods.

  17. A Psychological Model for Aggregating Judgments of Magnitude

    NASA Astrophysics Data System (ADS)

    Merkle, Edgar C.; Steyvers, Mark

    In this paper, we develop and illustrate a psychologically-motivated model for aggregating judgments of magnitude across experts. The model assumes that experts' judgments are perturbed from the truth by both systematic biases and random error, and it provides aggregated estimates that are implicitly based on the application of nonlinear weights to individual judgments. The model is also easily extended to situations where experts report multiple quantile judgments. We apply the model to expert judgments concerning flange leaks in a chemical plant, illustrating its use and comparing it to baseline measures.

  18. The Earthquake Frequency-Magnitude Distribution Functional Shape

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2012-04-01

    Knowledge of the completeness magnitude Mc, magnitude above which all earthquakes are detected, is a prerequisite to most seismicity analyses. Although computation of Mc is done routinely, different techniques often result in different values. Since an incorrect estimate can lead to under-sampling or worse to an erroneous estimate of the parameters of the Gutenberg-Richter (G-R) law, a better assessment of the deviation from the G-R law and thus of the earthquake detectability is of paramount importance to correctly estimate Mc. This is especially true for refined mapping of seismicity parameters such as in earthquake forecast models. The capacity of a seismic network to detect small earthquakes can be evaluated by investigating the functional shape of the earthquake Frequency-Magnitude Distribution (FMD). The non-cumulative FMD takes the form N(m) ∝ exp(-βm)q(m) where N(m) is the number of events of magnitude m, exp(-βm) the G-R law and q(m) a probability function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature often observed in bulk FMDs. Recent results however show that this gradual curvature is potentially due to spatial heterogeneities in Mc, meaning that the functional shape of the elemental (local) FMD still has to be described. Based on preliminary observations, we propose an exponential detection function of the form q(m) = exp(κ(m-Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models (gradually curved and angular) are compared in Southern California and Nevada. We show that the angular shaped FMD model better describes the elemental FMD and that the sum of elemental FMDs with different Mc(x,y) leads to the gradually curved FMD at the regional scale. We show that the proposed model (1) provides more robust estimates of Mc, (2) better estimates local b-values, and (3) gives an insight into earthquake detectability properties by using seismicity as a proxy

  19. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  20. Coastal erosion: Processes, timing and magnitudes at the bluff toe

    USGS Publications Warehouse

    Carter, C.H.; Guy, D.E., Jr.

    1988-01-01

    Five Lake Erie bluffs (one interlaminated clay and silt, three clay-rich diamicts and one shale) were surveyed at about 2-week intervals and after wind storms for up to 5 years. Erosion of the bluff toes along this low-energy coast occurred during northeast wind storms, which produced surges of up to 1 m and surf-zone waves of up to 1.2 m. Wave impact and/or uprush caused quarrying, which removed most of the toe material, and abrasion. There were from 1 to 23 erosion events/sites, with maximum magnitudes of erosion ranging from 12 to 55 cm/event. Timing and magnitude were linked to erodibility, maximum water level, storm surge, storm duration and beach width. A threshold maximum water level and a threshold surge were necessary for erosion. At these thresholds, the beach was submerged and wave energy was directly expended on the toe. Erosion did not take place when there was shorefast ice or when debris slopes shielded the toe from waves. The originally cohesive toe materials are easily eroded when they weather to an essentially noncohesive state. Wave erosion is the crucial erosion process; removal of material from the toe prevents the development of a stable slope. ?? 1988.

  1. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    USGS Publications Warehouse

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-01-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  2. Millennial scale variability in high magnitude flooding across Britain

    NASA Astrophysics Data System (ADS)

    Macdonald, N.

    2014-09-01

    The last decade has witnessed severe flooding across much of the globe, but have these floods really been exceptional? Globally, relatively few instrumental river flow series extend beyond 50 years, with short records presenting significant challenges in determining flood risk from high-magnitude floods. A perceived increase in extreme floods in recent years has decreased public confidence in conventional flood risk estimates; the results affect society (insurance costs), individuals (personal vulnerability) and companies (e.g. water resource managers - flood/drought risk). Here we show how historical records from Britain have improved understanding of high magnitude floods, by examining past spatial and temporal variability. The findings identify that whilst recent floods are notable, several comparable periods of increased flooding are identifiable historically, with periods of greater frequency (flood-rich periods) or/and larger floods. The use of historical records identifies that the largest floods often transcend single catchments affecting regions and that the current flood rich period is not exceptional.

  3. Influence of storm magnitude and watershed size on runoff nonlinearity

    NASA Astrophysics Data System (ADS)

    Lee, Kwan Tun; Huang, Jen-Kuo

    2016-06-01

    The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.

  4. A Study of LFE Magnitudes in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.

    2014-12-01

    We have compiled a comprehensive suite of ~250 low-frequency-earthquake (LFE) templates representing spatially distinct tremor sources on or near the plate boundary in northern Cascadia from northern Vancouver Island to southern Washington. Each template is assembled from 100's to 1000's of individual LFEs, representing a total of over 200,000 independent detections spanning a selection of episodic-tremor-and-slip (ETS) events between 2003 and 2013. On the basis of empirical evidence and analytical arguments, these templates can be considered as band-limited, empirical Green's functions excited from shallow-thrust point sources to station locations corresponding to a collection of temporary and permanent network sites. The high fidelity of template match-filtered detections enables precise alignment of individual LFE time series and analysis of LFE amplitudes. Upon correction for geometrical spreading, attenuation, free-surface magnification and radiation pattern, we solve for station-channel amplification factors and LFE magnitudes for all detections corresponding to a given ETS episode. We will present a spatio-temporal analysis of LFE magnitudes including their variability across different ETS events, their dependence in along-dip location, and their expression in different rupture modes, i.e. main front versus rapid tremor reversals of Houston [2011] versus small scale reversals of Rubin and Armbruster [2013].

  5. Regional moment - Magnitude relations for earthquakes and explosions

    NASA Astrophysics Data System (ADS)

    Patton, Howard J.; Walter, William R.

    1993-02-01

    We present M sub o:m sub b relations using m sub b (P sub n) and m sub b (L sub g) for earthquakes and explosions occurring in tectonic and stable areas. The observations for m sub b (P sub n) range from about 3 to 6 and show excellent separation between earthquakes and explosions on M sub o:m sub b plots, independent of the magnitude. The scatter in M sub o:m sub b observations for NTS explosions is small compared to the earthquake data. The M sub o:m sub b (L sub g) data for Soviet explosions overlay the observations for U.S. explosions. These results, and the small scatter for NTS explosions, suggest weak dependence of M sub o:m sub b relations on emplacement media. A simple theoretical model is developed which matches all these observations. The model uses scaling similarity and conservation of energy to provide a physical link between seismic moment and a broadband seismic magnitude. For U.S. explosions in different media, the material property and apparent stress contributions are shown to compensate for one another, supporting the observations that M sub o:m sub b is nearly independent of source geology.

  6. Los problemas de contenido y de empleo del verbo haber (Problems of Meaning and Use of the Verb "Haber.")

    ERIC Educational Resources Information Center

    Perez Botero, Luis A.

    1975-01-01

    Discusses the derivation, meaning and both past and present uses of the Spanish verb "haber." The verb refers to relationships of possession, duration and existence, and is used as an auxiliary. Extant derivative forms of the verb in other languages and earlier Spanish meanings are noted. (Text is in Spanish.) (CHK)

  7. Temas y problemas del idioma espanol en la prensa (Spanish Language Topics and Problems in the Press).

    ERIC Educational Resources Information Center

    El Brocense; And Others

    1980-01-01

    This section consists of reprints on the following topics: (1) the misuse of "en"; (2) anglicisms; (3) widespread use of vulgar language; (4) an interview with Emilio Criado on Spanish language variation; (5) use of the feminine in professional titles; and (6) Spanish, the national language of Latin American countries. (AMH)

  8. Una formalizacion tentativa del problema de la barrera linguistica (A Tentative Formalization of the Problem of Linguistic Barriers).

    ERIC Educational Resources Information Center

    Zierer, Ernesto

    1971-01-01

    The formulas presented in this paper provide the means for showing the ease with which scientific information can be passed from one language into another. The formulas are based on several factors. The linguistic barrier can be measured to illustrate the relative degree of difference between two languages based on a comparison of vocabulary,…

  9. Aportes del Aprendizaje Basado en Problemas (ABP) en la ensenanza de la Fisiologia Animal en un programa de Zootecnia

    NASA Astrophysics Data System (ADS)

    Reinartz-Estrada, Monica

    Based on difficulties observed on the subject of technical-scientific conceptualization and the integration of theory and practice in learning animal physiology for students in the Animal Science program at the National University of Colombia in Medellin, this research paper proposes a problem-based learning strategy founded on the method of Problem Based Learning (PBL), applied specifically to the issues of thermoregulation and physiological stress in domestic animals. In this case study, a sample size of eight students was presented with a pedagogical problem during the first session that would then be solved during the course. In order to evaluate the process, three surveys were conducted called Level Test Formulations (NF) performed at different times of the trial: one before beginning the topic (NF 1), one after three theoretical classes had been given and before beginning the fieldwork (NF 2), and another one after the end of the process (NF 3). Finally, individual interviews were conducted with each student to know the students' perceptions regarding the method. The information obtained was subjected to a qualitative analysis and categorization, using the QDA Miner program which reviewed and coded texts from the surveys and individual interviews, supplemented in turn, by field observation, analyzing the conceptual change, the theory-practice relationship and the correlation between the variables and categories established. Among the main results obtained, it should be noted that following the implementation of PBL in this Animal Physiology course, support for conceptual change was demonstrated and the formulated problem served as a connector between theory and practice. Moreover, there was a fusion of prior knowledge with newly acquired knowledge, meaningful learning, improvement in the level of conceptualization and an increase in the scientificness of definitions; it also led to problem-solving and overcoming epistemological obstacles such as multidisciplinarity and nonlinearity. As a result of this research, it is recommended that this method be evaluated in other topics related to Animal Physiology, in other sciences, in larger sample sizes, as well as to address the issue of evaluation applied directly to this method. Key words: Problem Based Learning (PBL), conceptual change, integration of theory and practice, significatif learning, animal physiology, thermoregulation, physiological stress.

  10. The color-magnitude distribution of small Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-11-01

    Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the

  11. The absolute magnitude distribution of Kuiper Belt objects

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin

    2014-02-20

    Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power laws. The cold population has a bright-end slope, α{sub 1}=1.5{sub −0.2}{sup +0.4}, and break magnitude, H{sub B}=6.9{sub −0.2}{sup +0.1} (r'-band). The hot population has a shallower bright-end slope of, α{sub 1}=0.87{sub −0.2}{sup +0.07}, and break magnitude H{sub B}=7.7{sub −0.5}{sup +1.0}. Both populations share similar faint-end slopes of α{sub 2} ∼ 0.2. We estimate the masses of the hot and cold populations are ∼0.01 and ∼3 × 10{sup –4} M {sub ⊕}. The broken power-law fit to the Trojan H-distribution has α{sub 1} = 1.0 ± 0.2, α{sub 2} = 0.36 ± 0.01, and H {sub B} = 8.3. The Kolmogorov-Smirnov test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide-field survey data suggest that the brightest few hot objects, with H{sub r{sup ′}}≲3, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.

  12. Magnitude and variation of prehistoric bird extinctions in the Pacific

    PubMed Central

    Duncan, Richard P.; Boyer, Alison G.; Blackburn, Tim M.

    2013-01-01

    The largest extinction event in the Holocene occurred on Pacific islands, where Late Quaternary fossils reveal the loss of thousands of bird populations following human colonization of the region. However, gaps in the fossil record mean that considerable uncertainty surrounds the magnitude and pattern of these extinctions. We use a Bayesian mark-recapture approach to model gaps in the fossil record and to quantify losses of nonpasserine landbirds on 41 Pacific islands. Two-thirds of the populations on these islands went extinct in the period between first human arrival and European contact, with extinction rates linked to island and species characteristics that increased susceptibility to hunting and habitat destruction. We calculate that human colonization of remote Pacific islands caused the global extinction of close to 1,000 species of nonpasserine landbird alone; nonpasserine seabird and passerine extinctions will add to this total. PMID:23530197

  13. Membership probability via control-field colour-magnitude decontamination†

    NASA Astrophysics Data System (ADS)

    Corradi, Wagner J. B.; Maia, Francisco F. S.; Santos, João F. C.

    2010-01-01

    The fundamental physical parameters of open clusters are important tools to understand the formation and evolution of the Galactic disk and to test star-formation and evolution models. However, only a small fraction of the known open clusters in the Milky Way have precise determinations of distance, reddening, age, metallicity, radial velocity and proper motion. One of the major problems in determining these parameters lies in the difficulty to separate cluster members from field stars and to assign membership. We propose a decontamination method by employing 2mass data in the regions around the clusters NGC 1981, NGC 2516, NGC 6494 and M11. We present decontaminated colour-magnitude diagrams of these objects showing the membership probabilities and structural parameters as derived from King-profile fitting.

  14. Magnitude and Distribution of Flows into Northeastern Florida Bay

    USGS Publications Warehouse

    Patino, Eduardo; Hittle, Clinton D.

    2000-01-01

    Changes in water-management practices have been made to accommodate a large and rapidly growing urban population along the Atlantic Coast and to meet the demand for intensive agricultural activities. These changes have resulted in a highly managed hydrologic system consisting of numerous canals, levees, control structures, and pumping stations that have altered the hydrology of the Everglades and Florida Bay ecosystems. Over the past decade, Florida Bay has experienced sea-grass die-off and algal blooms, which are indicators of ecological change attributed primarily to the increase in salinity and nutrient content of bay waters. Because plans are to restore sheetflow in the Everglades wetlands to its natural state, water managers anticipate a change in the magnitude and timing of freshwater exiting the mainland through the creeks that cut through the embankment or as sheetflow into Florida Bay.

  15. Magnitude of visual accommodation to a head-up display

    NASA Technical Reports Server (NTRS)

    Leitner, E. F.; Haines, R. F.

    1981-01-01

    The virtual image symbology of head-up displays (HUDs) is presented at optical infinity to the pilot. This design feature is intended to help pilots maintain visual focus distance at optical infinity. However, the accommodation response could be nearer than optical infinity, due to an individual's dark focus response. Accommodation responses were measured of two age groups of airline pilots to: (1) static symbology on a HUD; (2) a landing site background at optical infinity; (3) the combination of the HUD symbology and the landing site background; and (4) complete darkness. Results indicate that magnitude of accommodation to HUD symbology, with and without the background, is not significantly different from an infinity focus response for either age group. The dark focus response is significantly closer than optical infinity for the younger pilots, but not the older pilots, a finding consistent with previous research.

  16. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  17. THE EXTRAGALACTIC DISTANCE DATABASE: COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-15

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  18. Nonlinear site response in medium magnitude earthquakes near Parkfield, California

    USGS Publications Warehouse

    Rubinstein, Justin L.

    2011-01-01

    Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).

  19. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  20. Reevaluating the two-representation model of numerical magnitude processing.

    PubMed

    Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng

    2016-01-01

    One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models. PMID:26268066

  1. Stress orientations and magnitudes in the SAFOD pilot hole

    USGS Publications Warehouse

    Hickman, S.; Zoback, M.

    2004-01-01

    Borehole breakouts and drilling-induced tensile fractures in the 2.2-km-deep SAFOD pilot hole at Parkfield, CA, indicate significant local variations in the direction of the maximum horizontal compressive stress, SHmax, but show a generalized increase in the angle between SHmax and the San Andreas Fault with depth. This angle ranges from a minimum of 25 ?? 10?? at 1000-1150 m to a maximum of 69 ?? 14?? at 2050-2200 m. The simultaneous occurrence of tensile fractures and borehole breakouts indicates a transitional strike-slip to reverse faulting stress regime with high horizontal differential stress, although there is considerable uncertainty in our estimates of horizontal stress magnitudes. If stress observations near the bottom of the pilot hole are representative of stresses acting at greater depth, then they are consistent with regional stress field indicators and an anomalously weak San Andreas Fault in an otherwise strong crust. Copyright 2004 by the American Geophysical Union.

  2. What is the Meaning of the Physical Magnitude `Work'?

    NASA Astrophysics Data System (ADS)

    Kanderakis, Nikos

    2014-06-01

    Usually, in physics textbooks, the physical magnitude `work' is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, `work' is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is missing. On the other hand, in the history of its creation, `work' was a concept that had empirical meaning from the start. It was constructed by engineers to measure the work (labor) of motor engines, men, and animals. Very soon however this initial meaning seems to vanish. In this article, it will be looked at how `work' is presented in physics textbooks, what was its initial meaning in the history of its formulation, under what circumstances this initial meaning faded, and how elements from the history of its creation can be used in the classroom to teach it.

  3. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  4. Magnitude 8.1 Earthquake off the Solomon Islands

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 1, 2007, a magnitude 8.1 earthquake rattled the Solomon Islands, 2,145 kilometers (1,330 miles) northeast of Brisbane, Australia. Centered less than ten kilometers beneath the Earth's surface, the earthquake displaced enough water in the ocean above to trigger a small tsunami. Though officials were still assessing damage to remote island communities on April 3, Reuters reported that the earthquake and the tsunami killed an estimated 22 people and left as many as 5,409 homeless. The most serious damage occurred on the island of Gizo, northwest of the earthquake epicenter, where the tsunami damaged the hospital, schools, and hundreds of houses, said Reuters. This image, captured by the Landsat-7 satellite, shows the location of the earthquake epicenter in relation to the nearest islands in the Solomon Island group. Gizo is beyond the left edge of the image, but its triangular fringing coral reefs are shown in the upper left corner. Though dense rain forest hides volcanic features from view, the very shape of the islands testifies to the geologic activity of the region. The circular Kolombangara Island is the tip of a dormant volcano, and other circular volcanic peaks are visible in the image. The image also shows that the Solomon Islands run on a northwest-southeast axis parallel to the edge of the Pacific plate, the section of the Earth's crust that carries the Pacific Ocean and its islands. The earthquake occurred along the plate boundary, where the Australia/Woodlark/Solomon Sea plates slide beneath the denser Pacific plate. Friction between the sinking (subducting) plates and the overriding Pacific plate led to the large earthquake on April 1, said the United States Geological Survey (USGS) summary of the earthquake. Large earthquakes are common in the region, though the section of the plate that produced the April 1 earthquake had not caused any quakes of magnitude 7 or larger since the early 20th century, said the USGS.

  5. Gaze direction affects the magnitude of face identity aftereffects.

    PubMed

    Kloth, Nadine; Jeffery, Linda; Rhodes, Gillian

    2015-01-01

    The face perception system partly owes its efficiency to adaptive mechanisms that constantly recalibrate face coding to our current diet of faces. Moreover, faces that are better attended produce more adaptation. Here, we investigated whether the social cues conveyed by a face can influence the amount of adaptation that face induces. We compared the magnitude of face identity aftereffects induced by adaptors with direct and averted gazes. We reasoned that faces conveying direct gaze may be more engaging and better attended and thus produce larger aftereffects than those with averted gaze. Using an adaptation duration of 5 s, we found that aftereffects for adaptors with direct and averted gazes did not differ (Experiment 1). However, when processing demands were increased by reducing adaptation duration to 1 s, we found that gaze direction did affect the magnitude of the aftereffect, but in an unexpected direction: Aftereffects were larger for adaptors with averted rather than direct gaze (Experiment 2). Eye tracking revealed that differences in looking time to the faces between the two gaze directions could not account for these findings. Subsequent ratings of the stimuli (Experiment 3) showed that adaptors with averted gaze were actually perceived as more expressive and interesting than adaptors with direct gaze. Therefore it appears that the averted-gaze faces were more engaging and better attended, leading to larger aftereffects. Overall, our results suggest that naturally occurring facial signals can modulate the adaptive impact a face exerts on our perceptual system. Specifically, the faces that we perceive as most interesting also appear to calibrate the organization of our perceptual system most strongly. PMID:25761338

  6. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  7. VLF study of low magnitude Earthquakes (4.5

    NASA Astrophysics Data System (ADS)

    Wolbang, Daniel; Biernat, Helfried; Schwingenschuh, Konrad; Eichelberger, Hans; Prattes, Gustav; Besser, Bruno; Boudjada, Mohammed; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Friedrich, Martin

    2014-05-01

    In the course of the European VLF/LF radio receiver network (International Network for Frontier Research on Earthquake Precursors, INFREP), radio signals in the frequency range from 10-50 kilohertz are received, continuously recorded (temporal resolution 20 seconds) and analyzed in the Graz/Austria knot. The radio signals are generated by dedicated distributed transmitters and detected by INFREP receivers in Europe. In case the signal is crossing an earthquake preparation zone, we are in principle able to detect seismic activity if the signal to noise ratio is high enough. The requirements to detect a seismic event with the radio link methods are given by the magnitude M of the Earthquake (EQ), the EQ preparation zone and the Fresnel zone. As pointed out by Rozhnoi et al. (2009), the VLF methods are suitable for earthquakes M>5.0. Furthermore, the VLF/LF radio link gets only disturbed if it is crossing the EQ preparation zone which is described by Molchanov et al. (2008). In the frame of this project I analyze low seismicity EQs (M≤5.6) in south/eastern Europe in the time period 2011-2013. My emphasis is on two seismic events with magnitudes 5.6 and 4.8 which we are not able to adequately characterize using our single parameter VLF method. I perform a fine structure analysis of the residua of various radio links crossing the area around the particular 2 EQs. Depending on the individual paths not all radio links are crossing the EQ preparation zone directly, so a comparative study is possible. As a comparison I analyze with the same method the already good described EQ of L'Aquila/Italy in 2009 with M=6.3 and radio links which are crossing directly the EQ preparation zone. In the course of this project we try to understand in more detail why it is so difficult to detect EQs with 4.5

  8. THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX

    SciTech Connect

    Kollmeier, Juna A.; Burns, Christopher R.; Thompson, Ian B.; Preston, George W.; Crane, Jeffrey D.; Madore, Barry F.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen; Simon, Joshua D.; Villanueva, Edward; Szczygieł, Dorota M.; Gould, Andrew; Sneden, Christopher; Dong, Subo

    2013-09-20

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that M{sub V,RRc} = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = –1.59. This is to be compared with previous estimates for RRab stars (M{sub V,RRab} = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M{sub V,RRc} = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (W{sub π}, W{sub θ}, W{sub z} ) = (12.0, –209.9, 3.0) km s{sup –1} in the radial, rotational, and vertical directions with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (150.4, 106.1, 96.0) km s{sup -1}. For the disk, we find (W{sub π}, W{sub θ}, W{sub z} ) = (13.0, –42.0, –27.3) km s{sup –1} relative to the Sun with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (67.7,59.2,54.9) km s{sup -1}. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

  9. Analysis of the magnitude and frequency of floods in Colorado

    USGS Publications Warehouse

    Vaill, J.E.

    2000-01-01

    Regionalized flood-frequency relations need to be updated on a regular basis (about every 10 years). The latest study on regionalized flood-frequency equations for Colorado used data collected through water year 1981. A study was begun in 1994 by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation and the Bureau of Land Management, to include streamflow data collected since water year 1981 in the regionalized flood-frequency relations for Colorado. Longer periods of streamflow data and improved statistical analysis methods were used to define regression relations for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for unregulated streams in Colorado. The regression relations can be applied to sites of interest on gaged and ungaged streams. Ordinary least-squares regression was used to determine the best explanatory basin or climatic characteristic variables for each peak-discharge characteristic, and generalized least-squares regression was used to determine the best regression relation. Drainage-basin area, mean annual precipitation, and mean basin slope were determined to be statistically significant explanatory variables in the regression relations. Separate regression relations were developed for each of five distinct hydrologic regions in the State. The mean standard errors of estimate and average standard error of prediction associated with the regression relations generally ranged from 40 to 80 percent, except for one hydrologic region where the errors ranged from about 200 to 300 percent. Methods are presented for determining the magnitude of peak discharges for sites located at gaging stations, for sites located near gaging stations on the same stream when the ratio of drainage-basin areas is between about 0.5 and 1.5, and for sites where the drainage basin crosses a flood-region boundary or a State boundary. Methods are presented for determining the magnitude of peak

  10. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  11. Magnitude of income-related disparities in adverse perinatal outcomes

    PubMed Central

    2014-01-01

    Background To assess and compare multiple measurements of socioeconomic position (SEP) in order to determine the relationship with adverse perinatal outcomes across various contexts. Methods A birth registry, the Nova Scotia Atlee Perinatal Database, was confidentially linked to income tax and related information for the year in which delivery occurred. Multiple logistic regression was used to examine odds ratios between multiple indicators of SEP and multiple adverse perinatal outcomes in 117734 singleton births between 1988 and 2003. Models for after tax family income were also adjusted for neighborhood deprivation to gauge the relative magnitude of effects related to SEP at both levels. Effects of SEP were stratified by single- versus multiple-parent family composition, and by urban versus rural location of residence. Results The risk of small for gestational age and spontaneous preterm birth was higher across all the indicators of lower SEP, while risk for large for gestational age was lower across indicators of lower SEP. Higher risk of postneonatal death was demonstrated for several measures of lower SEP. Higher material deprivation in the neighborhood of residence was associated with increased risk for perinatal death, small for gestational age birth, and iatrogenic and spontaneous preterm birth. Family composition and urbanicity were shown to modify the association between income and some perinatal outcomes. Conclusions This study highlights the importance of understanding the definitions of SEP and the mechanisms that lead to the association between income and poor perinatal outcomes, and broadening the types of SEP measures used in some cases. PMID:24589212

  12. Uneven Magnitude of Disparities in Cancer Risks from Air Toxics

    PubMed Central

    James, Wesley; Jia, Chunrong; Kedia, Satish

    2012-01-01

    This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10−6. Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods. PMID:23208297

  13. Maxwell's conjecture on three point charges with equal magnitudes

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Lun

    2015-08-01

    Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.

  14. Physics-based estimates of maximum magnitude of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean-Paul; Galis, Martin; Mai, P. Martin

    2016-04-01

    In this study, we present new findings when integrating earthquake physics and rupture dynamics into estimates of maximum magnitude of induced seismicity (Mmax). Existing empirical relations for Mmax lack a physics-based relation between earthquake size and the characteristics of the triggering stress perturbation. To fill this gap, we extend our recent work on the nucleation and arrest of dynamic ruptures derived from fracture mechanics theory. There, we derived theoretical relations between the area and overstress of overstressed asperity and the ability of ruptures to either stop spontaneously (sub-critical ruptures) or runaway (super-critical ruptures). These relations were verified by comparison with simulation and laboratory results, namely 3D dynamic rupture simulations on faults governed by slip-weakening friction, and laboratory experiments of frictional sliding nucleated by localized stresses. Here, we apply and extend these results to situations that are representative for the induced seismicity environment. We present physics-based predictions of Mmax on a fault intersecting cylindrical reservoir. We investigate Mmax dependence on pore-pressure variations (by varying reservoir parameters), frictional parameters and stress conditions of the fault. We also derive Mmax as a function of injected volume. Our approach provides results that are consistent with observations but suggests different scaling with injected volume than that of empirical relation by McGarr, 2014.

  15. Radiocarbon test of earthquake magnitude at the Cascadia subduction zone

    USGS Publications Warehouse

    Atwater, B.F.; Stuiver, M.; Yamaguchi, D.K.

    1991-01-01

    THE Cascadia subduction zone, which extends along the northern Pacific coast of North America, might produce earthquakes of magnitude 8 or 9 ('great' earthquakes) even though it has not done so during the past 200 years of European observation 1-7. Much of the evidence for past Cascadia earthquakes comes from former meadows and forests that became tidal mudflats owing to abrupt tectonic subsidence in the past 5,000 years2,3,6,7. If due to a great earthquake, such subsidence should have extended along more than 100 km of the coast2. Here we investigate the extent of coastal subsidence that might have been caused by a single earthquake, through high-precision radiocarbon dating of coastal trees that abruptly subsided into the intertidal zone. The ages leave the great-earthquake hypothesis intact by limiting to a few decades the discordance, if any, in the most recent subsidence of two areas 55 km apart along the Washington coast. This subsidence probably occurred about 300 years ago.

  16. Magnitude of negative interpretation bias depends on severity of depression.

    PubMed

    Lee, Jong-Sun; Mathews, Andrew; Shergill, Sukhi; Yiend, Jenny

    2016-08-01

    The present study investigated the hypothesis that the magnitude of negative interpretation bias displayed by those with depression is related to the degree of depression they experience. Seventy one depressed participants (scoring 14 and above on the Beck Depression Inventory II) completed tasks spanning three domains of possible negative interpretations: semantic ambiguity; nonverbal ambiguity and situational ambiguity. Regression analyses revealed that just under half of the variance in depressive symptom severity was explained by the combination of negative interpretation bias tasks, with the strongest predictor of depressive symptom severity being negative interpretation of semantic ambiguity when reading ambiguous text descriptions. Subsidiary group analyses confirmed that severely depressed individuals interpreted emotionally ambiguous information in a more negative way than did their mildly or moderately depressed counterparts. These findings indicate that the degree of negative interpretive bias is closely related to depression severity and that bias manifests especially strongly at the most severe levels of depression. Our findings may help us to refine cognitive theories of depression and be helpful in guiding therapy. PMID:27262590

  17. Ultrasound Evaluation of the Magnitude of Pneumothorax: A New Concept

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Nicolaou, S.; Kirkpatrick, A. W.; Hamilton, D. R.; Campbell, M. R,; Billica, R. D.; Dawson, D. L.; Williams, D. R.; Dulchavsky, S. A.

    2000-01-01

    Pneumothorax is commonly seen in trauma patients; the diagnosis is usually confirmed by radiography. Use of ultrasound for this purpose, in environments such as space flight and remote terrestrial areas where radiographic capabilities are absent, is being investigated by NASA. In this study, the ability of ultrasound to assess the magnitude of pneumothorax in a porcine model was evaluated. Sonography was performed on anesthetized pigs (avg. wt. 50 kg) in both ground-based laboratory (n = 5) and micro gravity conditions (0 g) aboard the KC-135 aircraft during parabolic flight (n = 4). Aliquots of air (50-1 OOcc) were introduced into the chest through a catheter to simulate pneumothorax. Results were video-recorded and digitized for later interpretation by radiologists. Several distinct sonographic patterns of partial lung sliding were noted, including the combination of a sliding zone with a still zone, and a "segmented" sliding zone. These "partial lung sliding" patterns exclude massive pneumothorax manifested by a complete separation of the lung from the parietal pleura. In 0 g, the sonographic picture was more diverse; 1 g differences between posterior and anterior aspects were diminished. CONCLUSIONS: Modest pneumothorax can be inferred by the ultrasound sign of "partial lung sliding". This finding, which increases the negative predictive value of thoracic ultrasound, may be attributed to intermittent pleural contact, small air spaces, or alterations in pleural lubricant. Further studies of these phenomena are warranted.

  18. FPGA-specific decimal sign-magnitude addition and subtraction

    NASA Astrophysics Data System (ADS)

    Vázquez, Martín; Todorovich, Elías

    2016-07-01

    The interest in sign-magnitude (SM) representation in decimal numbers lies in the IEEE 754-2008 standard, where the significand in floating-point numbers is coded as SM. However, software implementations do not meet performance constraints in some applications and more development is required in programmable logic, a key technology for hardware acceleration. Thus, in this work, two strategies for SM decimal adder/subtractors are studied and six new Field Programmable Gate Array (FPGA)-specific circuits are derived from these strategies. The first strategy is based on ten's complement (C10) adder/subtractors and the second one is based on parallel computation of an unsigned adder and an unsigned subtractor. Four of these alternative circuits are useful for at least one area-time-trade-off and specific operand size. For example, the fastest SM adder/subtractor for operand sizes of 7 and 16 decimal digits is based on the second proposed strategy with delays of 3.43 and 4.33 ns, respectively, but the fastest circuit for 34-digit operands is one of the three specific implementations based on C10 adder/subtractors with a delay of 4.65 ns.

  19. Reprint of: "Demographic factors predict magnitude of conditioned fear".

    PubMed

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-12-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26608179

  20. The bright end of the color-magnitude relation

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Cora, S. A.; Bassino, L. P.; Smith Castelli, A. V.

    We investigate the origin of the color-magnitude relation (CMR) followed by early-type cluster galaxies by using a combination of cosmological N- body simulations of cluster of galaxies and a semi-analytic model of galaxy formation (Lagos, Cora & Padilla 2008). Results show good agreement be- tween the general trend of the simulated and observed CMR. However, in many clusters, the most luminous galaxies depart from the linear fit to ob- served data displaying almost constant colors. With the aim of understand- ing this behaviour, we analyze the dependence with redshift of the stellar mass contributed to each galaxy by different processes, i.e., quiescent star formation, and starbursts during major/minor and wet/dry merger, and disc instability events. The evolution of the metallicity of the stellar component, contributed by each of these processes, is also investigated. We find that the major contribution of stellar mass at low redshift is due to minor dry merger events, being the metallicity of the stellar mass accreted during this process quite low. Thus, minor dry merger events seem to increase the mass of the more luminous galaxies without changing their colors.

  1. Size matters: Perceived depth magnitude varies with stimulus height.

    PubMed

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2016-06-01

    Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity. We used three estimation techniques: a virtual ruler, a touch-sensor (for haptic estimates) and a disparity probe. We found that depth estimates were significantly larger for the bar stimuli than for the disc stimuli for all methods of estimation and different configurations. In a second experiment, we measured perceived depth as a function of the height of the bar and the radius of the disc. Perceived depth increased with increasing bar height and disc radius suggesting that disparity is integrated along the vertical edges. We discuss size-disparity correlation and inter-neural excitatory connections as potential mechanisms that could account for these results. PMID:27180656

  2. Metal-Organic Coordination Number Determined Charge Transfer Magnitude

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I.; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2014-03-01

    By the appropriate choice of head groups and molecular ligands, various metal-organic coordination geometries can be engineered. Such metal-organic structures provide different chemical environments for molecules and give us templates to study the charge redistribution within the metal-organic interface. We created various metal-organic bonding environment by growing self-assembly nanostructures of Fe-PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) chains and networks on a Au(111) surface. Bonding environment dependent frontier molecular orbital energies are acquired by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. H.-H. Yang, Y.-H. Chu, C.-I Lu, T.-H. Yang, K.-J. Yang, C.-C. Kaun, G. Hoffmann, and M.-T. Lin, ACS Nano 7, 2814 (2013).

  3. Order of magnitude reduction of fluoroscopic x-ray dose

    NASA Astrophysics Data System (ADS)

    Bal, Abhinav; Robert, Normand; Machan, Lindsay; Deutsch, Meir; Kisselgoff, David; Babyn, Paul; Rowlands, John A.

    2012-03-01

    The role of fluoroscopic imaging is critical for diagnostic and image guided therapy. However, fluoroscopic imaging can require significant radiation leading to increased cancer risk and non-stochastic effects such as radiation burns. Our purpose is to reduce the exposure and dose to the patient by an order of magnitude in these procedures by use of the region of interest method. Method and Materials: Region of interest fluoroscopy (ROIF) uses a partial attenuator. The central region of the image has full exposure while the image periphery, there to provide context only, has a reduced exposure rate. ROIF using a static partial attenuator has been shown in our previous studies to reduce the dose area product (DAP) to the patient by at least 2.5 times. Significantly greater reductions in DAP would require improvements in flat panel detectors performance at low x-ray exposures or a different x-ray attenuation strategy. Thus we have investigated a second, dynamic, approach. We have constructed an x-ray shutter system allowing a normal x-ray exposure in the region of interest while reducing the number of x-ray exposures in the periphery through the rapid introduction, positioning and removal of an x-ray attenuating shutter to block radiation only for selected frames. This dynamic approach eliminates the DQE(0) loss associated with the use of static partial attenuator applied to every frame thus permitting a greater reduction in DAP. Results: We have compared the two methods by modeling and determined their fundamental limits.

  4. Refining the Magnitude of the Shallow Slip Deficit

    NASA Astrophysics Data System (ADS)

    Xu, X.; Tong, X.; Sandwell, D. T.; Milliner, C. W. D.

    2014-12-01

    Geodetic inversions for slip versus depth for several major (Mw > 7) strike-slip earthquakes (e.g. 1992 Landers, 1999 Hector Mine, 2010 El_Mayor-Cucapah) show a 10% to 40% reduction in slip near surface (depth < 2 km) compared to the slip at deeper depths (5 to 8 km). This has been called the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions used incomplete data that do not go close to fault so the shallow portions of the slip models were poorly resolved and generally underestimated. In this study we improve the geodetic inversion, especially at shallow depth by: 1) refining the InSAR processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU using a correlation mask and allowing a phase discontinuity along the rupture; 2) including near-fault offset data from optical imagery and SAR azimuth offsets; 3) using more detailed fault geometry; 4) and using additional campaign GPS data. With these improved observations, the slip inversion has significantly increased resolution at shallow depth. For the Landers rupture the SSD is reduced from 45% to 16%. Similarly for the Hector Mine rupture the SSD is reduced from 15% to 5%. We are assembling all the relevant co-seismic data for the El Major-Cucapah earthquake and will report the inversion result with its SSD at the meeting.

  5. Increasing urban flood magnitudes: Is it the drainage network?

    NASA Astrophysics Data System (ADS)

    Zahner, J. A.; Ogden, F. L.

    2004-05-01

    It has been long thought that increases in impervious area had the greatest impact on urban runoff volume and increased flood peaks. This theory was recently challenged by a study in Charlotte, North Carolina that concluded that the increase in storm drainage connectivity and hence hydraulic efficiency played the greatest role in increasing flood magnitudes. Prediction of hydrologic conditions in urbanized watersheds is increasingly turning to distributed-parameter models, as these methods are capable of describing land-surface modifications and heterogeneity. One major deficiency of many of these models, however, is their inability to explicitly handle storm drainage networks. The purpose of this research is to examine the effect of subsurface storm drainage networks on the formation of floods. Factors considered include changes in network topology as described by the drainage width function and the relative importance of improved drainage efficiency relative to imperviousness. The Gridded Surface/Subsurface Hydrologic Analysis (GSSHA), a square-grid (raster) hydrologic model that solves the equations of transport of mass, energy, and momentum, has been modified to include storm drainage capability. This has made it possible to more accurately model the complexity of an urban watershed. The SUPERLINK scheme was chosen to model flow in closed conduits. This method solves the St. Venant equations in one dimension and employs the widely used "Preissmann slot" to extend their applicability to storm sewer flow. The SUPERLINK scheme is significantly different from the Preissmann scheme in that it is able to robustly simulate traditional flows as well as moving shocks. The coupled GSSHA SUPERLINK model will be used to simulate the effect of a subsurface drainage network on an urbanizing catchment.

  6. Hippocampal vulnerability and subacute response following varied blast magnitudes.

    PubMed

    Sajja, Venkata Siva Sai Sujith; Ereifej, Evon S; VandeVord, Pamela J

    2014-06-01

    Clinical outcomes from blast neurotrauma are associated with higher order cognitive functions such as memory, problem solving skills and attention. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure and is focused on the acute response (<3 days). In an attempt to expand the understanding of neuropathological and molecular changes of the subacute response (7 days post injury), we used an established rodent model of blast neurotrauma. Three pressure magnitudes (low, moderate and high) were used to evaluate molecular injury thresholds. Immunohistochemical analysis demonstrated increased cleaved caspase-3 levels and loss of neuronal population (NeuN+) within the hippocampus of all pressure groups. On the contrary, selective activation of microglia was observed in the low blast group. In addition, increased astrocytes (GFAP), membrane signal transduction protein (Map2k1) and calcium regulator mechanosensitive protein (Piezo 2) were observed in the moderate blast group. Results from gene expression analysis suggested ongoing neuroprotection, as brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and Mn and CuZn superoxide dismutases (SOD) all increased in the low and moderate blast groups. Ongoing neuroprotection was further supported by increased SOD levels observed in the moderate group using immunohistochemistry. The gene expression level of glutamate aspartate transporter (GLAST) was upregulated in the low, but downregulated in the high blast group, while no changes were found in the moderate group. Overall, the data shown here provides evidence of a diverse neuroprotective and glial response to various levels of blast exposure. This mechanistic role of neuroprotection is vital in understanding ongoing cellular stress, both at the gene and protein levels, in order to develop interventional studies for the prognosis of injury. PMID:24726403

  7. Magnitude of Interfractional Vaginal Cuff Movement: Implications for External Irradiation

    SciTech Connect

    Ma, Daniel J.; Michaletz-Lorenz, Martha; Goddu, S. Murty; Grigsby, Perry W.

    2012-03-15

    Purpose: To quantify the extent of interfractional vaginal cuff movement in patients receiving postoperative irradiation for cervical or endometrial cancer in the absence of bowel/bladder instruction. Methods and Materials: Eleven consecutive patients with cervical or endometrial cancer underwent placement of three gold seed fiducial markers in the vaginal cuff apex as part of standard of care before simulation. Patients subsequently underwent external irradiation and brachytherapy treatment based on institutional guidelines. Daily megavoltage CT imaging was performed during each external radiation treatment fraction. The daily positions of the vaginal apex fiducial markers were subsequently compared with the original position of the fiducial markers on the simulation CT. Composite dose-volume histograms were also created by summing daily target positions. Results: The average ({+-} standard deviation) vaginal cuff movement throughout daily pelvic external radiotherapy when referenced to the simulation position was 16.2 {+-} 8.3 mm. The maximum vaginal cuff movement for any patient during treatment was 34.5 mm. In the axial plane the mean vaginal cuff movement was 12.9 {+-} 6.7 mm. The maximum vaginal cuff axial movement was 30.7 mm. In the craniocaudal axis the mean movement was 10.3 {+-} 7.6 mm, with a maximum movement of 27.0 mm. Probability of cuff excursion outside of the clinical target volume steadily dropped as margin size increased (53%, 26%, 4.2%, and 1.4% for 1.0, 1.5, 2.0, and 2.5 cm, respectively.) However, rectal and bladder doses steadily increased with larger margin sizes. Conclusions: The magnitude of vaginal cuff movement is highly patient specific and can impact target coverage in patients without bowel/bladder instructions at simulation. The use of vaginal cuff fiducials can help identify patients at risk for target volume excursion.

  8. The effects of reinforcement magnitude on skill acquisition for children with autism.

    PubMed

    Paden, Amber R; Kodak, Tiffany

    2015-12-01

    We examined the effects of reinforcement magnitude on skill acquisition during discrete-trial training. After conducting a magnitude preference assessment, we compared acquisition during conditions with large and small magnitudes of edible reinforcement to a praise-only condition. Although all participants showed a preference for the large-magnitude reinforcer, preference did not predict the magnitude that produced the fastest skill acquisition. PMID:26281795

  9. Application of linear statistical models of earthquake magnitude versus fault length in estimating maximum expectable earthquakes

    USGS Publications Warehouse

    Mark, Robert K.

    1977-01-01

    Correlation or linear regression estimates of earthquake magnitude from data on historical magnitude and length of surface rupture should be based upon the correct regression. For example, the regression of magnitude on the logarithm of the length of surface rupture L can be used to estimate magnitude, but the regression of log L on magnitude cannot. Regression estimates are most probable values, and estimates of maximum values require consideration of one-sided confidence limits.

  10. Magnitude-range brightness variations of overactive K giants

    NASA Astrophysics Data System (ADS)

    Oláh, K.; Moór, A.; Kővári, Zs.; Granzer, T.; Strassmeier, K. G.; Kriskovics, L.; Vida, K.

    2014-12-01

    Context. Decades-long, phase-resolved photometry of overactive spotted cool stars has revealed that their long-term peak-to-peak light variations can be as large as one magnitude. Such brightness variations are too large to be solely explained by rotational modulation and/or a cyclic, or pseudo-cyclic, waxing and waning of surface spots and faculae as we see in the Sun. Aims: We study three representative, overactive spotted K giants (IL Hya, XX Tri, and DM UMa) known to exhibit V-band light variations between 0.m65-1.m05. Our aim is to find the origin of their large brightness variation. Methods: We employ long-term phase-resolved multicolor photometry, mostly from automatic telescopes, covering 42 yr for IL Hya, 28 yr for XX Tri, and 34 yr for DM UMa. For one target, IL Hya, we present a new Doppler image from NSO data taken in late 1996. Effective temperatures for our targets are determined from all well-sampled observing epochs and are based on a V - IC color-index calibration. Results: The effective temperature change between the extrema of the rotational modulation for IL Hya and XX Tri is in the range 50-200 K. The bolometric flux during maximum of the rotational modulation, i.e., the least spotted states, varied by up to 39% in IL Hya and up to 54% in XX Tri over the course of our observations. We emphasize that for IL Hya it is just about half of the total luminosity variation that can be explained by the photospheric temperature (spots/faculae) changes, while for XX Tri it is even about one third. The long-term, 0.m6 V-band variation of DM UMa is more difficult to explain because little or no B - V color index change is observed on the same timescale. Placing the three stars with their light and color variations into H-R diagrams, we find that their overall luminosities are generally too low compared to predictions from current evolutionary tracks. Conclusions: A change in the stellar radius due to strong and variable magnetic fields during activity

  11. Variation of SEP event occurrence with heliospheric magnetic field magnitudes

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2009-05-01

    Recent work based on nitrate abundances in polar ice cores has shown that large fluence solar energetic (E>30MeV) particle (LSEP) events during the spacecraft era of observations (1960-present) are diminished in comparison with those of some preceding eras detected in the ice cores dating back to 1561. McCracken et al. [McCracken, K.G., Dreschhoff, G.A.M., Smart, D.F., Shea, M.A. A study of the frequency of occurrence of large-fluence solar proton events and the strength of the interplanetary magnetic field, Sol. Phys., 224, 359-372, 2004] have reported an inverse correlation between LSEP events and the magnitudes of the associated reconstructed heliospheric magnetic fields (HMF). A physical working model by McCracken [McCracken, K.G. Changes in the cosmic ray and heliomagnetic components of space climate, 1428-2005, including the variable occurrence of solar energetic particle events, Adv. Space Res., 40, 1070-1077, 2007a; McCracken, K.G. High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future, Space Weather, 5, S07004, 2007b] is that the lower HMF and coronal magnetic field B imply that fast coronal mass ejections (CMEs) produce shocks with enhanced Alfvenic Mach numbers MA and higher compression ratios r, leading to shock production of more numerous and energetic LSEP events. From a possible decline of the HMF over the next several solar cycles he has urged a watch for a return to the environment of high-frequency, high-fluence LSEP events preceding the current spacecraft era. His LSEP event watch involves three independent questions about (1) the physical model, (2) the prediction of decreasing solar-cycle sunspot numbers and heliomagnetic fields, and (3) the inferred anti-correlation between LSEP events and HMFs. Here we discuss observational evidence bearing on the last question and find little support for the claimed LSEP-HMF anticorrelation.

  12. Magnitude and Carbon Consequences of Forest Management in North America

    NASA Astrophysics Data System (ADS)

    Masek, J.; Kurz, W.; de Jong, B. H.

    2009-12-01

    The carbon balance of forests depends on the type, frequency and severity of recent disturbances (carbon source) and the rate of recovery from past disturbance (carbon sink). Harvest and land cover conversion represent significant forest disturbance agents over much of North America. For example, pine forests in the southeastern US are typically harvested at ~20 year intervals, and may occupy about half the regional landscape, resulting in regional landscape turnover rates of 2-3% per year. Inventory data are the primary source for quantifying information on harvest and conversion in the U.S., Mexico, and Canada. Recent inventory data from these countries indicate timber production of 424 million cu m, 163 million cu m, and 7 million cu m, respectively, with significant year-to-year variability associated with wood products demand and timber price. Areas affected by harvest activity vary as well, with 3.97 Mha (million hectares) and 1.04 Mha affected by harvest in the US and Canada, respectively. Forest cover conversion (deforestation) is thought to be relatively minor in the US and Canada, but recent estimates suggest that forest and woodland cover in Mexico declined by 300-500 Kha/yr during the 1990’s. Recently, satellite remote sensing data products on forest change have been generated that complement the traditional inventory approach. These products are particularly useful for “wall-to-wall” estimates of forest conversion and tracking small disturbances. The type and severity of disturbance cannot be easily determined using satellite observations, however, and therefore some care must be taken to reconcile these products with ground-based data. In this talk we review available resources for characterizing “carbon relevant” information on the magnitude (area, type of activity) of forest management in North America, and attempt a first-order comparison between remote sensing and inventory estimates. We also discuss strategies that might be employed to

  13. Maximum Earthquake Magnitude Assessments by Japanese Government Committees (Invited)

    NASA Astrophysics Data System (ADS)

    Satake, K.

    2013-12-01

    earthquakes. The Nuclear Regulation Authority, established in 2012, makes independent decisions based on the latest scientific knowledge. They assigned maximum credible earthquake magnitude of 9.6 for Nankai an Ryukyu troughs, 9.6 for Kuirl-Japan trench, and 9.2 for Izu-Bonin trench.

  14. The Effects of Reinforcement Magnitude on Skill Acquisition for Children with Autism

    ERIC Educational Resources Information Center

    Paden, Amber R.; Kodak, Tiffany

    2015-01-01

    We examined the effects of reinforcement magnitude on skill acquisition during discrete-trial training. After conducting a magnitude preference assessment, we compared acquisition during conditions with large and small magnitudes of edible reinforcement to a praise-only condition. Although all participants showed a preference for the…

  15. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  16. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  17. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  18. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  19. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  20. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  1. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  2. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  3. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  4. 48 CFR 836.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... magnitude of construction projects. 836.204 Section 836.204 Federal Acquisition Regulations System... CONTRACTS Special Aspects of Contracting for Construction 836.204 Disclosure of the magnitude of... must identify the magnitude of a VA project in advance notices and solicitations in terms of one of...

  5. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  6. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  7. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  8. 48 CFR 36.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnitude of construction projects. 36.204 Section 36.204 Federal Acquisition Regulations System FEDERAL... Aspects of Contracting for Construction 36.204 Disclosure of the magnitude of construction projects. Advance notices and solicitations shall state the magnitude of the requirement in terms of...

  9. 48 CFR 436.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnitude of construction projects. 436.204 Section 436.204 Federal Acquisition Regulations System... Special Aspects of Contracting for Construction 436.204 Disclosure of the magnitude of construction..., inclusive of options, to best describe the magnitude of the solicitation....

  10. The Effects of Numerical Magnitude, Size, and Color Saturation on Perceived Interval Duration

    ERIC Educational Resources Information Center

    Alards-Tomalin, Doug; Leboe-McGowan, Jason P.; Shaw, Joshua D. M.; Leboe-McGowan, Launa C.

    2014-01-01

    The relative magnitude (or intensity) of an event can have direct implications on timing estimation. Previous studies have found that greater magnitude stimuli are often reported as longer in duration than lesser magnitudes, including Arabic digits (Xuan, Zhang, He, & Chen, 2007). One explanation for these findings is that different…