Science.gov

Sample records for maidanak astronomical observatory

  1. Photometric Observation of Young Asteroid Family in 2006-2010 at Maidanak Observatory, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Yoshida, F.; Nozawa, Y.; Ito, T.; Takahashi, S.; Okita, K.; Ibrahimov, M.; Ehgamberdiev, S.; Marshalkina, A.; Karimov, R.; Burhonov, O.; Tillayev, Y.; Hafizov, B.; Yanagisawa, T.; Kurosaki, H.; Yoshikawa, M.; Urakawa, S.; Ohtani, H.

    2012-05-01

    We observed 43 young family asteroids (Karin, Iannini, Veritas) and 7 old family asteroids (Koronis, Themis) at Maidanak Observatory, then determined their rotation period, lightcurve amplitude, B-V, V-R, V-I colors.

  2. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  3. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  4. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  5. Poznan acute Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    This Poznan acute Astronomical Observatory is a unit of the Adam Mickiewicz University, located in Poznan acute, Poland. From its foundation in 1919, it has specialized in astrometry and celestial mechanics (reference frames, dynamics of satellites and small solar system bodies). Recently, research activities have also included planetary and stellar astrophysics (asteroid photometry, catalysmic b...

  6. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  7. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  8. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  9. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  10. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  11. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  12. Lunar astronomical observatories - Design studies

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  13. Astronomical Limiting Magnitude at Langkawi Observatory

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohd. Zambri; Loon, Chin Wei; Harun, Saedah

    2010-07-01

    Astronomical limiting magnitude is an indicator for astronomer to conduct astronomical measurement at a particular site. It gives an idea to astronomer of that site what magnitude of celestial object can be measured. Langkawi National Observatory (LNO) is situated at Bukit Malut with latitude 6°18' 25'' North and longitude 99°46' 52'' East in Langkawi Island. Sky brightness measurement has been performed at this site using the standard astronomical technique. The value of the limiting magnitude measured is V = 18.6+/-1.0 magnitude. This will indicate that astronomical measurement at Langkawi observatory can only be done for celestial objects having magnitude less than V = 18.6 magnitudes.

  14. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  15. Astronomical Site Characterization at the Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Muñoz-Tuñón, C.; Varela, A. M.; Castro-Almazán, J. A.

    2015-04-01

    Roque de los Muchachos Observatory (La Palma) and Teide Observatory (Tenerife) are prime astronomical sites, as confirmed by more than 30 years of intensive site-testing campaigns. The IAC has long been aware of the importance of promoting initiatives for the characterization and protection of the Canarian Observatories. For this purpose, in the late ’80s a Sky Team was created to measure the atmospheric parameters relating to astronomical observations, to design and develop new instruments and techniques for astronomical site testing, and to improve and maintain a high level of instrumentation in site characterization. New instruments and techniques are welcomed by the Observatories.

  16. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  17. Astronomical research at the Hopkins PHOENIX Observatory

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.

    1985-09-01

    After trying astrophotography and radio astronomy it was decided that the best way to do meaningful astronomical research at a small private observatory was by doing photoelectric photometry. Having the observatory located in the back yard of a private residence affors the luxury of observing any time the sky conditions permit. Also modest equipment is all that is needed to do accurate UBV photometry of stars 8th magnitude and brighter. Since beginning in 1980 the Hopkins Phoenix Observatory has published papers on several RS CVn star systems, 31 Cygni, 22 Vul, 18 Tau Per, and has followed the 1982-1984 eclipse of Epsilon Aurigae from its start to the present with over 1000 UBV measurements. In addition the Hopkins Phoenix Observatory has developed several pieces of photometry equipment including the HPO PEPH-101 photometer head and photon counting electronics.

  18. Science with Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Prabhu, T. P.; Anupama, G. C.

    Indian Astronomical Observatory, Hanle, is the high altitude (4500 m above msl) observatory operated by the Indian Institute of Astrophysics, Bangalore. The 2-m Himalayan Chandra Telescope (HCT) installed in the autumn of 2000 as a first step towards a national large telescope is operated remotely from Bangalore. HCT data has resulted in 70 research publications till date, with average citations of 9.2 per paper. Some of the results are described in this brief review. The development of this high altitude site has also attracted other facilities in the area of Very High Energy gamma ray astronomy using atmospheric Čerenkov technique, and also in earth sciences.

  19. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  20. Some Central Asian observatories for the WET

    NASA Astrophysics Data System (ADS)

    Meistas, E.

    1993-01-01

    The Mt. Maidanak Observatory, one of several observatories in the former Soviet Central Asia, is located at an important longitude to fill in the gap in the WET (Whole Earth Telescope) network. The Lithuanian astronomical station on Mt. Maidanak was successfully tested in May 1992 for future WET campaigns. In the September 1992 campaign it provided some useful data for the WET. In February 1993 the observatory was nationalized by the Uzbekistan government, and almost all astronomical activities there have stopped. The future use of this observatory for the WET campaigns is uncertain, but there are some signs that the situation is improving. We have examined the possibility of using other Central Asian observatories for the WET. A contact was established with the Fesenkov Astronomical Institute in Alma-Ata, and in October 1993 WET observations were made at the Assy-Turgen Observatory in Kazakhstan.

  1. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  2. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  3. Bucharest-Nikolaev Astronomical Observatories' Collaboration in Astronomy

    NASA Astrophysics Data System (ADS)

    Pinigin, Gennadiy; Stavinschi, Magda

    2008-09-01

    Scientific collaboration between Bucharest Observatory of the Astronomical Institute (Romania) and Nikolaev Astronomical Observatory (Ukraine), based on the similar research directions and scientific traditions from the beginning of 1990s. The main research field was positional astronomy with compilation of catalogues of star positions in the fields around selected ERS from the CCD observations in Nikolaev and photographical observations in the Bucharest Observatory. Many conferences and workshops, mutual visits of astronomers from both observatories were organized and held in Nikolaev and Bucharest.

  4. The Virtual Astronomical Observatory Users Forum

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Emery Bunn, S.; Astronomical Observatory, Virtual

    2013-01-01

    We present the online forum astrobabel.com, which has the goal of being a gathering place for the collective community intelligence about astronomical computing. The audience for this forum is anyone engaged in the analysis of astronomical or planetary data, whether that data be observational or theoretical. It is a free, community driven site where discussions are formulated primarily around the "question and answer" format. Current topics on the forum range from “Is there a photometry package in Python?” to “Where are the support forums for astronomy software packages?” and “Why is my SDSS SkyQuery query missing galaxies?” The poster will detail the full scope of discussions in the forum, and provide some basic guidelines for ensuring high quality forum posts. We will highlight the ways astronomers can discover and participate in discussions. Further, we view this as an excellent opportunity to gather feedback and feature requests from AAS221 attendees. Acknowledgement: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  5. Astronomical analysis of the taosi observatory site

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.

    2009-01-01

    An ancient observatory was unearthed recently at Taosi site. This paper discussed the figure of the relic, analyzed the relationship between the 12 backsights and calendar date using astronomical method, and compared the simulated observation with theoretic computation. The investigation shows that backsight E2---E12 indicated the directions of sunrise in the whole year, which were roughly equally distributed and offered an unequal calendar system. The backsight E1 indicated the south-end of the moonrise, giving a time symbol of 18---19 years. This building must be a complex of solar observation, time service, solar worship, and sacrificial ritual

  6. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  7. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  8. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  9. User Support in the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Stobie, E.; Seaman, R.; Mighell, K.; Bunn, S. E.; Williams, R.

    2010-12-01

    As we anticipate the U.S. Virtual Astronomical Observatory (VAO) entering its operational phase, support for a growing number of users will become ever more important. The role of VAO User Support will be considered as having responsibility in three key areas: (1) for maintaining and expanding the VAO Help Desk and Web Site, which will give access to any catalogs, services, and tools that the VAO may provide; (2) for conducting aggressive Testing and Readiness Reviews, so that those tools and services will work reliably and will be well documented; and (3) for pursuing deverse opportunities for Training and Advocacy, including tutorials, seminars, and support for advanced use of the VAO. The authors present our view of how such pieces should work together with the hope of receiving feedback from the community to inform the development of program plans for VAO User Support. Funding for the VAO is pending and specific program activities and services are subject to the review and approval of the NSF and NASA.

  10. Astronomical Observatory of Belgrade from 1924 to 1955

    NASA Astrophysics Data System (ADS)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  11. Daytime School Guided Visits to an Astronomical Observatory in Brazil

    ERIC Educational Resources Information Center

    Colombo, Pedro Donizete, Jr.; Silva, Cibelle Celestino; Aroca, Silvia Calbo

    2010-01-01

    This article analyzes the activity "Daytime School Guided Visits" at an astronomical observatory in Brazil with pupils from primary school. The adopted research methodology relied on questionnaire applications and semistructured interviews. The objectives were to identify the influences of the visits on learning of astronomical concepts and on…

  12. Astronomical Data Integration Beyond the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Lemson, G.; Laurino, O.

    2015-09-01

    "Data integration" generally refers to the process of combining data from different source data bases into a unified view. Much work has been devoted in this area by the International Virtual Observatory Alliance (IVOA), allowing users to discover and access databases through standard protocols. However, different archives present their data through their own schemas and users must still select, filter, and combine data for each archive individually. An important reason for this is that the creation of common data models that satisfy all sub-disciplines is fraught with difficulties. Furthermore it requires a substantial amount of work for data providers to present their data according to some standard representation. We will argue that existing standards allow us to build a data integration framework that works around these problems. The particular framework requires the implementation of the IVOA Table Access Protocol (TAP) only. It uses the newly developed VO data modelling language (VO-DML) specification, which allows one to define extensible object-oriented data models using a subset of UML concepts through a simple XML serialization language. A rich mapping language allows one to describe how instances of VO-DML data models are represented by the TAP service, bridging the possible mismatch between a local archive's schema and some agreed-upon representation of the astronomical domain. In this so called local-as-view approach to data integration, “mediators" use the mapping prescriptions to translate queries phrased in terms of the common schema to the underlying TAP service. This mapping language has a graphical representation, which we expose through a web based graphical “drag-and-drop-and-connect" interface. This service allows any user to map the holdings of any TAP service to the data model(s) of choice. The mappings are defined and stored outside of the data sources themselves, which allows the interface to be used in a kind of crowd-sourcing effort

  13. An Astronomical Observatory in the Classroom

    NASA Astrophysics Data System (ADS)

    Lara, L.; Gallego, T.; de La Torre, A.

    We describe a project developed at the University of Granada in collaboration with the Instituto de Astrofísica de Andalucía aimed at using a remote telescope for live astronomical observations from the classroom. Available instrumentation, software and activities are presented.

  14. The Sensitization of French Observatory Directors to Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Le Guet Tully, Françoise; Davoigneau, Jean

    2012-09-01

    An inventory of the heritage of historical astronomical observatories was launched in the mid 1990s as part of a collaboration between the Ministry of Research and the Ministry of Culture. This has produced a significant body of knowledge not only on astronomical instruments, but also on the specificities of astronomical sites and on the architecture of observatories. Other major results of this operation are (i) the development of numerous works on the institutional history of observatories and (ii), at the request of a few directors, the protection as "historical monuments" of some buildings and of collections of instruments. Given that knowledge about astronomical heritage is a prerequisite for proper conservation and intelligent outreach, and given also that the protection of such heritage (as historical monuments) is a major asset that bolsters its cultural value, the long term sustainability of such heritage depends on political decisions and the search for financial support. We shall describe the complex administrative situation of French observatories and outline the various actions undertaken recently to sensitize their directors to astronomical heritage issues.

  15. Required technologies for lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    Each of the major new observatories proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. Telescopes for the lunar surface need to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  16. 400 years astronomical observatory in Jena

    NASA Astrophysics Data System (ADS)

    Schielicke, Reinhard E.

    ``Nam cum aliquod observatorium mihi comparaverim, ... '': ``As I have equiped my observatory now'', Georg Limnaeus, professor of mathematics in Jena from 1588 to 1611, wrote on 24 April 1598, ``I have decided to make friends with some experts by letter; I know from your Prodromus that you are one of them''. The letter was addressed to Johannes Kepler and was related to his first work about the ``Mysterium cosmographicum''. Kepler sent some copies of his paper to Galileo Galilei, Tycho Brahe, Reimar Ursus and also to Limnaeus in Jena from the Frankfurt Book Fair in 1597. Limnaeus gave him - apart from the words expressing praise but which actually were meaningless concerning Kepler's ideas - the information about Brahe Kepler had asked for and which may have promoted his move to Prague. The above mentioned observatory is considered to be the first one in Jena. Astronomy had already been established as a subject since the establishment of the ``Hohe Schule'' in 1548 and since the foundation of the university ten years later. Nothing is known about the instruments and the location of the observatory. Limnaeus did not belong to the taxpaying house-owners of which there exists an index; he obviously rented a flat. To all appearances the correspondence announced was not continued either. For the following centuries the professors Heinrich Hoffmann, Erhard Weigel, Georg Albrecht and Georg Erhard Hamberger are named in the literature running the observatory in Jena. The ``Herzogliche Sternwarte'' fitted out under Goethe's overall supervision in 1813 eventually developed into the university institute of today.

  17. Detroit Observatory: nineteenth-century training ground for astronomers

    NASA Astrophysics Data System (ADS)

    Whitesell, Patricia S.

    2003-12-01

    Detroit Observatory was founded in 1854 at the University of Michigan in Ann Arbor, Michigan, USA, by Henry Philip Tappan, the University's first President. In 2004, the University celebrates Detroit Observatory's sesquicentennial year. Tappan named his creation the "Detroit Observatory" to honour the city's major benefactors. Tappan, who was inaugurated in 1852, was a visionary leader in the history of higher education. The creation of an astronomical observatory was one of his first steps toward the integration of a new scientific course with the traditional classical course of study, following the Prussian model of higher education. Tappan's observatory was built in the frontier state of Michigan at a modest cost, yet it was equipped with the best European and American instruments available. The facility was impressive, but Tappan's success in launching the University of Michigan to the forefront of American astronomical science was achieved through the recruitment of the renowned Prussian astronomer, Franz Brünnow, of the Berlin Observatory. The instruction in precision astronomy Brünnow offered to American students produced some of the most notable astronomers of the era, which led to the recognition of an "Ann Arbor School of Astronomy". Subsequent Directors and Assistants, including James Watson, Mark Harrington, J. Martin Schaeberle, and Asaph Hall Jr., produced students with exceptional talent in astronomy, geodesy, surveying and meteorology. Michigan's talent pool was the widely deployed across the nation. This paper documents and preserves the history, and serves as a focal point for celebrating in 2004 the 150-year milestone in Detroit Observatory's fascinating history.

  18. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  19. Orbiting astronomical observatory-Copernicus. [scientific results

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1973-01-01

    Of the three observatories planned in NASA's OAO program, one, OAO-3, is still in orbit and producing scientifically useful data. The prime experiment is the Princeton telescope spectrometer. Following a brief history of the OAO program, a description is given of the Princeton telescope with its 80-cm primary mirror, and of the spectrometer, which yields a resolution of up to 0.05 A. The spacecraft guidance system is also described. This system initially points the observatory to within a few arc minutes of the target, places the 0.3-arc sec slit on the star in less than 3 minutes, and holds on the star for up to 50 minutes with errors less than 0.05 arc sec. The main scientific results are described under the following categories: (1) the widespread presence of molecular hydrogen; (2) the search for other molecules, including detection of CO; (3) the nature of the interstellar medium as inferred from the detection of various atomic lines; (4) the study of chromospheres in late type stars; and (5) the study of mass loss in binaries and single stars.

  20. Outreach Activities of National Astronomical Observatory of Japan

    NASA Astrophysics Data System (ADS)

    Ono, T.; Watanabe, J.; Agata, H.

    2006-08-01

    The activities on the outreach issues in the National Astronomical Observatory of Japan (NAOJ) are mainly conducted by the Public Relations Center established in June 1998. Its mission is to present the latest findings in astronomy to the public in a manner that is understandable, contemporary, and exciting. For this purpose, we provide a wide range of services and deliver a variety of scientific information through multiple ways. We also maintain an effective partnership with lots of dissemination experts working at the public observatories, the science museums, and the planetariums in Japan. The representative outreach activities in NAOJ are follows. • Telephone service to answer the questions on astronomy (about 10,000 calls a year) • Press release (about 60 a year) to about 100 registered journalists • Press Members' Lounge" for registered journalists • A special seminar for science journalists every year • Service of astronomical ephemeredes, and nautical almanacs. • Weekly news letter service named "Astro-Topics" • Monthly paper magazine "NAOJ news" • Web site service (http://www.nao.ac.jp/) (about 10^7 hits a year) • Open campus or visitor service to the public • Regular star party using a modern 50-cm reflector twice a month • Coordination and cooperation with other astronomical facilities. Such as Public Astronomical Observatory Network (PAONET), Star Week Program

  1. Karl Knorre - First Astronomer of the Nicolaev Observatory

    NASA Astrophysics Data System (ADS)

    Petrov, G.; Pinigin, G.

    Karl Friedrich Knorre was born 28th March 1801 in family of the professor of astronomy of Dorpat university Ernst Knorre. During education in the Dorpat university he got acquantance with the future director of Pulkovo observatory Wilhelm Struve. According passion of K. Knorre for astronomy W. Struwe recommended him to the director position of planned naval observatory in Nikolaev. From the foundation of Nikolaev naval and later astronomical observatory in 1821 K. Knorre was a first director. He made star position observations with the meridian circle, worked as a teacher of astronomy for sea navigators, compiled the fifth page of star map of the Berlin Academy of sciences and headed by all hydrographic determinations on the sea of Asov and Black sea. After 50 years K. Knorre retired 1871 from the Directorship of the Nikolaev observatory and moved to Berlin. Nikolaev astronomical observatory arranges the international scientific conference devoted to the 180 anniversary of NAO and 200's birthday of Karl Friedrich Knorre in 2001.

  2. The Organization and Management of the Virtual Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  3. Education and Popularization of Astronomy at Gunma Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Obayashi, H.

    Gunma Astronomical Observatory is designed for both astronomical research and public use, and was established in April 1999 by Gunma Prefecture, located in Takayama village, about 100 km north-west of Tokyo. It is equipped with all devices and facilities needed to conduct full-scale observational research, including a telescope of 150 cm diameter. Based upon fundamental philosophy of providing every visitor with a real experience, we are also engaged in educational activities that are linked to school or life-long education to spread astronomical observation, as well as observational research activities at our observatory. We are hoping that all of those who visit our observatory come in contact with wonders of their cosmos or the latest information about astronomy; thereby being able to have an opportunity to think about nature, the environment and the future of the human race in general. There are about 30 staff members; 9 of them have the degree of doctor, 12 of them belong to the section of research and education. We had 38 317 visitors in the last year (April 2001 to March 2002).

  4. The Research Tools of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  5. Data Sharing and Publishing Using the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Plante, Raymond; Mishin, D. Y.; LAZIO, J.; Muench, A. A.; Project, VAO

    2013-01-01

    The astronomical research community is now use to accessing data through the web. In particular, we have ready access to large surveys as well as to observations from the major observatories. The latter data is typically available in their raw form and often also as "level 1" products that have undergone basic, standard processing. There exists, however, a vast set of data that is described in the current literature but which is largely unavailable on-line: highly processed data products from which we extract the science results we publish. We refer to this as the "long-tail of astronomical data". Typically, these products are the result of tuned or specialized processing by small teams of scientists. As part of the US Virtual Astronomical Observatory (VAO, usvao.org) project's effort to connect scientists with astronomical data of all types in a network-based research environment, we have taken up a multi-year initiative to capture that missing data and make it available to the community, thereby enabling new "archival" research. We describe a pilot program, in conjunction with community partners, to provide a platform for individual scientists and small research teams to make their data available through the Virtual Observatory (VO). At the core of the effort is a network-based storage space that provides a place for teams to assemble their collections and prepare them for release into the VO. Upon their release, the data collections will be connected to standard VO services that make the data accessible to the myriad VO discovery, analysis, and visualization tools. Once demonstrated in this pilot phase, we plan to assemble a more integrated repository toolkit that allows scientists to take full control of the publishing process and allow other institutions to host repositories. In particular, we are collaborating with the DataVerse project to create a repository platform that is fully connected to the VO web.

  6. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  7. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    NASA Astrophysics Data System (ADS)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  8. An introduction to the Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Cowsik, R.; Srinivasan, R.; Prabhu, T. P.

    2002-03-01

    Situated in the high-altitude cold desert of Changthang Ladakh bordering Himachal Pradesh and Tibet, Indian Astronomical Observatory, Hanle (32o46m46sN, 78o57'51''E; 4500 m above msl), provides excellent opportunities for developing astronomical facilities at a variety of frequencies. In addition, it provides environment and logistics for a range of scientific experiments which be nefit from its unique location. Indian Institute of Astrophysics has built this observatory around a modest 2-m aperture optical/infrared telescope. A 0.5 m telescope will soon be added. A large facility (6.5-8.5 m class infrared/optical telescope) is under consid eration. A 2-m telescope of new advanced technology design has been installed at the observatory in what probably is a record in the speed of execution. The site development, fabrication and installation of the telescope has been accomplished in just about 3 years. The telescope saw its first light on the night of September 26/27 2000 and has been operating with a CCD imager. A larger CCD imager, a faint object spectrograph camera, and a JHK imager are under fabrication. A 1-5 micron imager spectrograph is planned as the next generation instrument. The telescope will be remotely operable from the Centre for Research and Education in Science & Technology of IIA at Hosakote near Bangalore over the next few months. All the necessary infrastructure including 20 kw/h power through generators, 1 Mbps dedicated satellite communication link (to be upgarded to 2 Mbps and a 128 kbps redundant link to be established), liquid nitrogen plant, etc. have been already developed. The Government of Jammu & Kashmir has transferred over 600 acres of land to the observatory. The infrastructure developed for the observatory is already being used for other scientific experiments by national and international institutions. The experiments include determination of atmospheric opcaity at mm wavelengths, geodynamic and seismological experiments, aerosol

  9. Historical Examples of Lobbying: The Case of Strasbourg Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Heck, Andre

    2012-08-01

    Several astronomical observatories have been established in Strasbourg in very differing contexts. In the late 17th century, an observing post (scientifically sterile) was put on top of a tower, the Hospital Gate, essentially for the prestige of the city and the notoriety of the university. In the 19th century, the observatory built on the Académie hosting the French university was the first attempt to set up in the city a real observatory equipped with genuine instrumentation with the purpose of carrying out serious research, but the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. After the 1870-1871 Franco-Prussian war, the German authorities set up a prestigious university campus with a whole range of institutes together with a modern observatory consisting of several buildings and hosting a flotilla of excellent instruments, including the then largest refractor of the country. This paper illustrates various types of lobbying used in the steps above while detailing, from archive documents largely unexploited so far, original research on the two first observatories.

  10. Astronomical Observing Conditions at Xinglong Observatory from 2007 to 2014

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Cheng; Ge, Liang; Lu, Xiao-Meng; Cao, Zi-Huang; Chen, Xu; Mao, Yong-Na; Jiang, Xiao-Jun

    2015-12-01

    Xinglong Observatory of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC), is one of the major optical observatories in China, which hosts nine optical telescopes including the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and the 2.16 m reflector. Scientific research from these telescopes is focused on stars, galaxies, and exoplanets using multicolor photometry and spectroscopic observations. Therefore, it is important to provide the observing conditions of the site, in detail, to the astronomers for an efficient use of these facilities. In this article, we present the characterization of observing conditions at Xinglong Observatory based on the monitoring of meteorology, seeing and sky brightness during the period from 2007 to 2014. Meteorological data were collected from a commercial Automatic Weather Station (AWS), calibrated by China Meteorological Administration. Mean and median wind speed are almost constant during the period analyzed and ranged from 1.0 to 3.5 m s-1. However, high wind speed (>=15 m s-1) interrupts observations, mainly, during the winter and spring. Statistical analysis of air temperature showed the temperature difference between daytime and nighttime, which can be solved by opening the ventilation device and the slit of the dome at least 1 hr before observations. Analysis resulted in average percentage of photometric nights and spectroscopic nights are 32% and 63% per year, respectively. The distribution of photometric nights and spectroscopic nights has a significant seasonal tendency, worse in summer due to clouds, dust, and high humidity. Seeing measurements were obtained using the Differential Image Motion Monitor (DIMM). Mean and median values of seeing over 1 year are around 1.9'' and 1.7'', respectively. Eighty percent of nights with seeing values are below 2.6'', whereas the distribution peaks around 1.8''. The measurements of sky brightness are acquired from the Sky Quality Meter (SQM

  11. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  12. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  13. 22 GHz Water Maser Survey of the Xinjiang Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-jun; Esimbek, Jarken; Wu, Gang

    2012-07-01

    Water masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe for studying high-mass star formation and galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using the 25 m radio telescope of the Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and perform high resolution observations to study the gas kinematics close to high-mass protostars.

  14. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  15. Sendai Astronomical Observatory - Its Renewal and History as an observatory for general public -

    NASA Astrophysics Data System (ADS)

    Watanabe, J.

    2006-08-01

    The Sendai Astronomical Observatory, located in the central part of the Sendai City in the northern part of Japan, is the one of the oldest observatory operated by local government mainly for general public. It has a 41-cm reflector together with a car equipped with a 20-cm refractor for providing chances for remote locations to have astronomical education called "Vega" . It also has a planetarium with a 16-m dome and 200 seats. Open in 1955, it maintained for more than a half century in high level education both to the general public and to school children. Especially all the children in the elementary school visit this observatory at least once as the school program defined in the Sendai city. We are considering a renewal of these facilities along with moving to the new site, Nishikigaoka, to avoid light pollution in the city. The new observatory will have a 1.2-m reflecting telescope, solar telescope, other smaller telescopes for experienced amateur astronomers or people, and a larger planetarium of a 25-m dome with 280 seats. We will introduce the plan of our renewal along with the history of these 50 years.

  16. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  17. Wisconsin's Role in the First Orbiting Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Code, A.

    2005-12-01

    The Orbiting Astronomical Observatory (OAO-II) launched on December 7, 1968, was the first optical observatory to be operated above the earth's atmosphere. It contained two major instruments, the Smithsonian Celescope and the Wisconsin Experiment Package (WEP), composed of ultraviolet photometers and spectrometers. In 1957 the Soviet "Sputnik" Satellite started the race to space. The National Academy of Science circulated a letter drafted by Lloyd Berkner soliciting suggestions for scientific payloads for a 100 lb satellite. The University of Wisconsin was one of the organizations that responded with a proposal for an ultraviolet photometer. Shortly afterwards when NASA came into existence Wisconsin was one of those that received funding for a study of a 100 lb UV photometric telescope. By the time our preliminary design was completed NASA had developed a plan for an astronomical platform to support all varieties of experiments requiring pointing, power and command and data capability and payload weights over 1000 lbs. To adapt to this new dimension we clustered our telescopes and shared the volume with the four telescope of the Smithsonian Celescope. Celescope would look out one end of the spacecraft and the Wisconsin Experiment Package WEP would look out the other end. Since no one had ever done this before both NASA and ourselves had a lot to learn. One feature of our design was redundancy. The clustering contributed to this approach but there was both hardware and software redundancy throughout. This paper will describe elements of the origin of WEP, it's fabrication, operation and scientific yield

  18. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool

  19. Managing distributed software development in the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  20. Observing at the Central American Suyapa Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Pineda de Carias, M. C.

    In June of 1997, within the framework of the VII UN/ESA Workshop on Basic Space Science Workshop held in Tegucigalpa, Honduras, the Central American Suyapa Astronomical Observatory (CASAO) was inaugurated, with the dedication of the Telescope "René Sagastume Castillo", a 42 cm Schmidt Cassegrain Meade LX200 telescope located at Latitude: 14deg 05' N, Longitude: 87deg 09' W and Altitude: 1,077 meters over sea level, for the Central American countries (Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama). In this document we present what has been achieved with this facility, as part of academic activities for outreach, training and now, for research projects in observational astronomy with the international cooperation.

  1. Improved upper winds models for several astronomical observatories.

    PubMed

    Roberts, Lewis C; Bradford, L William

    2011-01-17

    An understanding of wind speed and direction as a function of height are critical to the proper modeling of atmospheric turbulence. We have used radiosonde data from launch sites near significant astronomical observatories and created averaged profiles of wind speed and direction and have also computed Richardson number profiles. Using data from the last 30 years, we confirm a 1977 Greenwood wind profile, and extend it to include parameters that show seasonal variations and differences in location. The added information from our models is useful for the design of adaptive optics systems and other imaging systems. Our analysis of the Richardson number suggests that persistent turbulent layers may be inferred when low values are present in our long term averaged data. Knowledge of the presence of these layers may help with planning for adaptive optics and laser communications. PMID:21263622

  2. Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction.

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Evaluation of interstellar extinction curves over the region from 3600 to 1100 A for 17 stars. The observations were made by the two Wisconsin spectrometers on board the Orbiting Astronomical Observatory 2, with spectral resolutions of 10 and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region from 1800 to 1350 A, and finally a rapid rise to the far-ultraviolet. Large extinction variations from star to star are found, especially in the far-ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20. The observations appear to require a multicomponent model of the interstellar dust.

  3. From research institution to astronomical museum: a history of the Stockholm Observatory

    NASA Astrophysics Data System (ADS)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  4. The Digitation of the Astronomical Plates of Catania Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Catalano, S.; Cigna, M.; Greco, V., Mangano, A.; Marilli, E.; Blanco, C.

    2006-07-01

    To make easily available the great amount of highly valuable information stored in the photographic archives of many Italian Observatories and of the Specola Vaticana, a large-scale National Project to digitize the plates was financially supported by the Italian Ministry of Education (MIUR) (Barbieri et al. 2003, 2004). The contribution of the Catania Astrophysical Observatory and of the Physics and Astronomy Department of Catania University to the Project is to digitize the image plates of the "Carte du Ciel" and of the Astrographic Catalogue obtained from 1896 to 1907. Moreover plates of the 1910 passage of Halley's comet and other plates obtained during the XX Century (Massimino et al. 2004) have been digitized. A set of identical systems, composed of a commercial flat-bed-retro-illuminated scanner, a dedicated personal computer and an acquisition software, has been installed in the Institutes involved in the Project. The main characteristics of Astroplates, a software program developed in Catania, that uses the IDL libraries to manage the astronomical images acquired with the scanner from photographic plates are presented.

  5. The caracol tower at chichen itza: an ancient astronomical observatory?

    PubMed

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-01

    the front of the structure. It may be astronomically significant that the Yucatecan towers fronted in approximately the same direction. Andrews (34) reports the existence of a curious circular building located at Puerto Rico, Campeche, near Xpujil. His crosssectional view of the tower bears a close resemblance to Ruppert's sketch (6, figure 293) of a horizontal section taken through the windows remaining at the top of the Caracol. Hartung (12) has suggested a possible astronomical use for the Puerto Rico tower, but no analysis of the orientation of its "windows," which are much smaller than those of the Caracol, has yet been conducted. Other circular buildings are reported at Ake (20, p. 113) and Isla Cozumel (35, p. 557). We hope that future investigations of the remains of Yucatecan towers will shed further light upon the significance and use of the Caracol as an astronomical observatory. PMID:17759669

  6. An astronomical data mining application framework for virtual observatory

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Dan; Liu, Bo; Gao, Dan; Cui, Chenzhou; Zhao, Yongheng

    2006-06-01

    A new application framework for virtual observatory (VO) is designed for discovering unknown knowledge from thousands of astronomical catalogs which have already released and are accessible through VO services. The framework consist of two new technologies to seamlessly associate data queried from SkyNode supported databases with data mining (DM) algorithms, which either come from third-party software or are developed directly above the framework. The first one is a high level programming language, called Job Description Language (JDL), for describing jobs for data accessing and numerical computation based on web services. The second technology is a computation component standard with both local and web service invocation interface, which is named as CompuCell. It is a universal solution for integrating arbitrary third-party DM software into the framework so as to invoke them directly in JDL program. We implement a prototype with a JDL supported portal and achieve clustering algorithm in CompuCell components. We combine a series of data mining procedures with a data access procedure by programming in JDL on the portal. A scientific research, which recognizes OB associations from 2MASS catalog, is treated as a demonstration for the prototype. It confirms the feasibility of the application framework.

  7. Celescope catalog of ultraviolet stellar observations. Magnetic tape version. [Orbiting Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Davis, R. J.; Deutschman, W. A.; Haramundanis, K. L.

    1973-01-01

    Observational results obtained by the celescope experiment during the first 16 months of operation of NASA's Orbiting Astronomical Observatory are presented. Results of the stellar observations are listed along with selected ground-based information obtained from the available literature.

  8. Nikolaev (Mykolayiv) Astronomical Observatory as the Object of the Ukrainian Tentative List WH UNESCO

    NASA Astrophysics Data System (ADS)

    Pinigin, Gennadiy; Pozhalova, Zhanna

    2012-09-01

    Nikolaev Astronomical Observatory (NAO), one of the oldest scientific institutions of the South-Eastern Europe, was founded as a naval observatory in 1821 for providing the needs of the Russian Black Sea Navy. It is a historical and astronomical complex with a reserved territory of total area 7.1 hectares, situated in the central part of Mykolaiv city, Ukraine. The beginning of scientific research at the Observatory is connected with the activity of Karl Knorre, its first director. From 1912 up to 1991, NAO was one of the Southern departments of Pulkovo Observatory with the main purpose to spread the system of absolute catalogs to the Southern hemisphere and to carry out regular observations of the Solar system bodies. Since 1992 NAO has become an independent leading institution of Ukraine in the field of positional astronomy, dynamics of Solar system bodies, research of near-Earth space, astronomical instrumentation. In 2007, it was inscribed in the Tentative UNESCO List of WH (#5116). The most significant part of the complex is the Main building, which was built in the style of Classicism in 1821--1829 (the monument of architecture #535 in the state registry). Also, the astronomical pavilions (1875, 1913, 1955, etc.) and instruments were preserved. Among them three Repsold instruments: meridian circle (1834), portable circle (1868) and vertical circle (1897). The unique astronomical and navigational devices, the collection of astronomical clocks are present in the observatory museum and the paper archive since the foundation of observatory is preserved.

  9. An ontology of astronomical object types for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Derriere, Sebastian; Richard, André; Preite-Martinez, Andrea

    2007-08-01

    The Semantic Web and ontologies are emerging technologies that enable advanced knowledge management and sharing. Their application to Astronomy can offer new ways of sharing information between astronomers, but also between machines or software components and allow inference engines to perform reasoning on an astronomical knowledge base. The first examples of astronomy-related ontologies are being developed in the european VOTech project.

  10. Astronomical Observations in Asia from Delisle's Manuscripts Preserved in the Paris Observatory Library

    NASA Astrophysics Data System (ADS)

    Débarbat, S.

    Delisle, born in 1688 April 4, is well known as a collector of astronomical data from all over the world. Part of his manuscripts are preserved in the Paris Observatory library. He is said to have collected all available astronomical data at the time he was in activity in France and in Russia where he spent more than twenty years. He had more correspondents and among them, in Asia father Gaubil, of which more than one hundred letters are in the Paris Observatory archives, providing priceless informations to astronomical researchers, historians and others.

  11. Historical survey of the national astronomical observatory in Llano del Hato

    NASA Astrophysics Data System (ADS)

    Martinez Picar, Antonio; Salas Ramirez, Henry

    2007-12-01

    The Centro de Investigaciones de Astronomia (CIDA), the Venezuelan Institute in charge for managing human- and technical resources of the National Astronomical Observatory in Llano del Hato, is one of the younger institutes in its field. However, its foundation is surrounded by a series of curious and interesting eyents that go back to the end of the 18th century. Its equatoriallocation, excellent astronomical equipment and the high-qualified personnel offers a geographical and technical advantage. The paper is a historical oveniew of events, facts and demonstrations of the human activity related to the conception, building and starting the Llano del Hato National Astronomical Observatory.

  12. Photographic Plate Archive of Astronomical Observatory of Ivan Franko National University of Lviv

    NASA Astrophysics Data System (ADS)

    Virun, N.; Pakuliak, L.; Kazantseva, L.

    2012-05-01

    The project of Ukrainian Virtual Observatory is based on the digitization of photographic plate archives, collected during more than 100 years, which together with CCD archieves are expected to form the Joint Digital Archive. The paper presents the description of archieves the historical photographical collections of astronomical observatories of Kyiv and Lviv national universities. The application of flatbed scanners for plate digitization is discussed.

  13. Yangbajing Astronomical Observatory of NAOC in Tibet: a good multi-wavelength site

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Jie

    2015-08-01

    Yangbajing Astronomical Station of National Astronomical Observatories, Chinese Academy of Science (NAOC) is located in Yangbajing Tibet (90°31'50" E 30°06'38" N, 4300m ). It is the first professional observatory operated by NAOC for science project in Tibet. This station was established on August 17, 2011, which means that Tibet has its first astronomical observatory. There are one 3-meter in diameter submillimeter telescope CCOSMA and five 40-50 cm optical telescopes. This could lay a solid foundation for attracting more international cooperation on large telescope projects in Tibet in future. we have already tested the radio, millimeter/submillimeter and optical environment in Yangbajing. The result shows that Yangbajing station is a good desirable multi-wavelength astronomical observation site.

  14. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  15. South African Astronomical Observatory: from 1972 to the Present

    NASA Astrophysics Data System (ADS)

    Warner, B.; Murdin, P.

    2001-07-01

    In the late 1960s the Science Research Council (SRC) in the UK seriously considered closing the Royal Observatory at the Cape of Good Hope (see SOUTH AFRICAN ASTRONOMY), but the observatory (located in Cape Town) was saved by the establishment in January 1972 of a joint agreement between the SRC and the Council for Scientific and Industrial Research (CSIR) of South Africa, whereby the two Councils...

  16. Databases of publications and observations as a part of the Crimean Astronomical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Shlyapnikov, A.; Bondar', N.; Gorbunov, M.

    We describe the main principles of formation of databases (DBs) with information about astronomical objects and their physical characteristics derived from observations obtained at the Crimean Astrophysical Observatory (CrAO) and published in the ``Izvestiya of the CrAO'' and elsewhere. Emphasis is placed on the DBs missing from the most complete global library of catalogs and data tables, VizieR (supported by the Center of Astronomical Data, Strasbourg). We specially consider the problem of forming a digital archive of observational data obtained at the CrAO as an interactive DB related to database objects and publications. We present examples of all our DBs as elements integrated into the Crimean Astronomical Virtual Observatory. We illustrate the work with the CrAO DBs using tools of the International Virtual Observatory: Aladin, VOPlot, VOSpec, in conjunction with the VizieR and Simbad DBs.

  17. The Beginnings of the Astronomical Observatory of the University of Nagyszombat

    NASA Astrophysics Data System (ADS)

    Bartha, L.

    The beginnings of astronomical education and research in Nagyszombat can be traced back to the 17th century. In the middle of the 18th century, astronomical research received a new impetus with the founding of a dedicated astronomical observatory. While the university and its main observatory were moved to the capital Buda in 1777, observations continued in the old observing station at Nagyszombat until 1785. The first director of the observatory, Franciscus X. Weiss (1717--1785) and his assistants (J.N. Sajnovics, F. v. P. Triesnecker. F. X. Bruna and F. Taucher) made a great number of astrometric measurements, i.e. observations of eclipses, the determination of positions of the Moon and planets rep. to bright stars, the last contact of the transit ov Venus (1761) and from the events of Jovian satellites.

  18. The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  19. The Astronomical Observatory of the University of Coimbra (1772--1799): its Instruments and Scientific Activity

    NASA Astrophysics Data System (ADS)

    Figueiredo, Fernando B.

    2012-09-01

    The establishment of scientific education at the University of Coimbra was one of the most important features of the Reform of the University in 1772. One of the best examples is the creation of the Faculty Mathematics and of the Astronomical Observatory (OAUC) - it was here that Alexandre Gouveia (1731--1808), who would be bishop of Beijing (1785--1808), obtained his degree in Mathematics. The foundation of the OAUC was fundamental in the institutionalization of astronomical science in Portugal, during a period when astronomy, supported by the great theoretical advances of the celestial mechanics and applied mathematics, could finally provide some important solutions to the most prominent scientific problems since Newton (questions about celestial mechanics, navigation, geodesy, etc.). Such questions were also central in the conception and planning of OAUC - the first Portuguese university-based astronomical observatory, although with aspects of a National Observatory. Jose Monteiro da Rocha (1734--1819) was the central personality in the conception, planning and construction of OAUC, as well in its instrument's provision (purchased and assembled throughout the 1780s) and posterior scientific activity. The construction of the OAUC was originally planned for the site of the Castle of the city of Coimbra. In 1775, when only the first floor of the Observatory was built, the construction stopped. However, to fulfill the teaching needs a small provisional Observatory was built inside the courtyard of the University. This provisional Observatory would eventually run for about 15 years! The definitive OAUC was built between the years 1790--99. In this communication we pretend to study the establishment of the OAUC and its primary astronomical collection (a transit instrument, a portable quadrant, a sector, several telescopes, etc.) and how that collection was responsible for the construction plan of the OAUC and the establishment of its Astronomical Ephemeris (1803).

  20. Radioastronomy at the National Astronomical Observatory of Colombia

    NASA Astrophysics Data System (ADS)

    Guevara Gómez, J. C.; Calvo-Mozo, B.; Martinez Oliveros, J. C.

    2015-12-01

    Colombia is located in the northern tip of South America close to the amazon rain forest. This makes astronomical observations in the visible range very challenging, as cloud coverage is relatively high. Hence, radio astronomy becomes a natural and good choice. We present the design, characterization and first results of the Observatorio Astronomico Nacional solar radio spectrograph. This instrument is a Log-Periodic Dipole Array Antenna (LPDA) working between 100 MHz and 1 GHz optimized for solar observations. The radio spectrograph is a working prototype for a more ambitious solar radio interferometer, that will be the first instrument of this kind in Colombia.

  1. The Report on Scientific Research and Technical Work of Shanghai Astronomical Observatory in 2001

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Liang

    2002-01-01

    A brief summary is given on scientific research work of Shanghai Astronomical Observatory in 2001, including achievements obtained in knowledge innovation and basic research, observations and technical development, personal training and introducing, scientific management and service, international corporation and academic exchange, and so on. The main shortage on the work is also pointed out.

  2. Knowing the people who come to public astronomical observatories: The case of Akita prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, N.

    2015-03-01

    The purpose of this research is to know and gain a better understanding of people who come to astronomical observatories and to find out more about their experiences and thoughts on astronomy. To find some of the issues about science communication in astronomy, the author carried out questionnaire research studies involving high school students and junior high school and elementary school teachers.

  3. Using Virtual Astronomical Observatory Tools for Astronomy 101

    NASA Astrophysics Data System (ADS)

    Mighell, Kenneth J.; Garmany, K.; Larson, K.; Eastwood, K. D.

    2009-01-01

    The Virtual Observatory provides several tools that are useful for educators. With these tools, instructors can easily provide real data to students in an environment that engages student curiosity and builds student understanding. In this poster we demonstrate how the tools Aladin and TOPCAT can be used to enhance astronomy education. The Aladin Sky Atlas is a Virtual Observatory portal from the CDS that displays images, superimposes catalogs, and provides interactive access to data. For illustration, we show an exercise for non-science majors in a college-level astronomy course that introduces students to the HR diagram of star clusters. After launching the pre-loaded Aladin applet, students select their own stars, connecting visual cues of brightness and color to the conceptual meaning behind a quantitative HR diagram. TOPCAT can be linked with Aladin on the desktop to let students analyze their data, perform calculations, and create professional-quality graphs. The basic exercise can be easily expanded to address other learning objectives and provides a launching point for students to access, visualize, and explore multi-wavelength data as they continue in astronomy. As a second example, we show an exercise that uses TOPCAT to do three-dimensional plotting of the positions of open and globular cluster to illustrate galactic structure. Detailed information is available at the following website: http://www.noao.edu/staff/mighell/nvoss2008/ . This research was done at the 2008 U.S. National Virtual Observatory Summer School which was held in Santa Fe, New Mexico on September 3 - 11, 2008 and was sponsored by the National Science Foundation.

  4. Site Characteristics of Southern Utah Sites for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Gondolo, P.; Kieda, D.; Lebohec, S.; Martens, S. K.; Ricketts, P.; Springer, R. W.; Zimmer, C.

    2008-12-01

    The University of Utah has recently begun construction of a new 0.8 m optical/IR robotic telescope to be operated as a regional astronomy resource in the Intermountain West. The new Southern Utah Observatory (SUO) will require a high altitude (>3000 m) site with excellent atmospheric seeing, favorable weather conditions, and nearby infrastructure, including road, power, and high speed internet. We have explored six possible sites for the SUO telescope with favorable climate, night sky darkness and infrastructure. Since spring 2007, we have performed detailed measurements of atmospheric seeing at several of these sites, and have identified the preferred site for the SUO telescope at Frisco Peak, UT. Several large (1 sq. mile) areas of State Trust Land are nearby the new SUO telescope site. These large, flat areas may be excellent sites for large area, next generation Imaging Atmospheric Cherenkov Telescopes (IACT) arrays such as AGIS or northern CTA.

  5. A Needs Analysis Study of Amateur Astronomers As Regards To the National Virtual Observatory Outreach

    NASA Astrophysics Data System (ADS)

    Craig, N.; Price, A.; Mattei, J.; Mendez, B.; Hawkins, I.; UC Berkeley Team; AAVSO Collaboration

    2003-12-01

    Astronomy, more than any other science, benefits from the active contribution of Amateur Astronomers, who bring to this field a high degree of skill and dedication. Amateur Astronomers make direct contributions to informal and public education: they present public lectures and courses; organize star parties, international Astronomy Day programs, and special displays in libraries and shopping malls; they write articles and books and produce radio and television programs; they lobby for planetariums, science centers, public observatories, and even NASA satellites. Above all, amateur astronomers convey their enthusiasm for science with dedication and devotion. They represent a unique and exceptional way in which ordinary citizens can support science and education at the grass-roots level. We have conducted a needs analysis survey, with collaboration of The American Association of Variable Star Observers (AAVSO) to identify areas in which the National Virtual Observatory (NVO) Education & Public Outreach efforts can best address the astronomical needs and interest of the amateur astronomical community. We found that above all amateurs want access to the same data the professionals use and in a format that allows them to use the data in their own personal manner. We will discuss the further results of this qualitative and quantitative survey. This study is supported by Science Education Gateway (SEGway) Project, a NASA SR&T (Supporting Research and Technology) Program.

  6. The Material Culture of Nineteenth-Century Astrometry, its Circulation and Heritage at the Astronomical Observatory of Lisbon

    NASA Astrophysics Data System (ADS)

    Raposo, Pedro

    The Astronomical Observatory of Lisbon was founded in 1857 in the sequence of a controversy on stellar parallax measurements involving astronomers from the Observatory of Paris and the Observatory of Pulkovo. The development of this discussion led the contenders to recognize Lisbon as a suitable place to carry out this kind of measurements and to foster the field of stellar astronomy. Some local actors strived to keep up with this wave of international interest and establish a first-rank astronomical institution in the Portuguese capital. In order to fulfil this goal, correspondence was intensively exchanged with leading foreign astronomers and instrument makers. Besides, a Portuguese Navy officer bound to become the first director of the new institution was commissioned to visit several observatories and instrument workshops abroad, and to spend a few years in Pulkovo as a trainee astronomer. Although founded with generous financial support from the Portuguese crown and lavishly equipped and constructed, the Observatory of Lisbon was later affected by limiting budgets and a shortage of qualified personnel. Nevertheless, local efforts to improve instruments as well as observation and calculation techniques enabled its astronomers to yield important contributions to positional astronomy, especially towards the end of the nineteenth century and the beginnings of the twentieth century. The original instruments and spaces of the Observatory of Lisbon, strongly modelled on those of Pulkovo, are very well preserved, constituting an outstanding extant example of a mid-nineteenth century advanced observatory. The history they embody testifies the connectedness of the astronomical heritage worldwide.

  7. LST: The National Space Observatory concept - An observatory for future astronomer involvement in planning and use

    NASA Technical Reports Server (NTRS)

    Roman, N. G.

    1974-01-01

    The Large Space Telescope (LST) will be a unique facility which must be designed to serve the needs of all potential users throughout the world. This requires that a representative group of astronomers work intimately with the engineers in the early design of the telescope and that astronomers continue to be closely involved in the planning throughout the life of the project. Forty scientists are now defining the auxiliary instruments and their operation. Later, others will build instruments and participate in assigning observing time on the telescope, on the basis of the scientific merit of the proposed observation.

  8. The Chandra X-ray Observatory: An Astronomical Facility Available to the World

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2006-01-01

    The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations

  9. Astronomical Education in the Nicholas Copernicus Observatory and Planetarium in Brno

    NASA Astrophysics Data System (ADS)

    Ledvinka, S.; Pisala, J.

    The astronomy can be an ideal vehicle for extending the informal education. The planetariums can be the appropriate choice for an extended education. The science of astronomy has a great advantage over other disciplines and all those attributes can be fully utilised in creation of an educational programs for students and general public. The following article will describe how The Nicholas Copernicus Observatory and Planetarium in Brno dealt with some aspects of the astronomical education.

  10. Forecasting the precipitable water vapour content: validation for astronomical observatories using radiosoundings

    NASA Astrophysics Data System (ADS)

    Pérez-Jordán, G.; Castro-Almazán, J. A.; Muñoz-Tuñón, C.; Codina, B.; Vernin, J.

    2015-09-01

    The atmospheric precipitable water vapour content (PWV) strongly affects astronomical observations in the infrared (IR). We have validated the Weather Research and Forecasting (WRF) mesoscale numerical weather prediction (NWP) model as an operational forecasting tool for PWV. In the validation, we used atmospheric radiosounding data obtained directly at the Roque de los Muchachos Observatory [ORM: ≈2200 metres above sea level (masl)] during three intensive runs and an aditional verification sample of 1 yr of radiosonde data from World Meteorological Organization (WMO) station 60018 in Güímar (Tenerife, TFE: ≈105 masl). These data sets allowed us to calibrate the model at the observatory site and to validate it under different PWV and atmospheric conditions. The ability of the WRF model in forecasting the PWV at astronomical observatories and the effects of horizontal model grid size on the computed PWV and vertical profiles of humidity are discussed. An excellent agreement between model forecasts and observations was found at both locations, with correlations above 0.9 in all cases. Subtle but significant differences between model horizontal resolutions have been found, the 3 km grid size being the most accurate and the one selected for future work. Absolute calibrations are given for the lowest and finest grid resolutions. The median PWV values obtained were 3.8 and 18.3 mm at ORM and TFE, respectively. WRF forecasts will complement the PWV measured by the GPS monitoring system at the Canarian Observatories.

  11. The Rare Book Collection of Capodimonte Astronomical Observatory Will be on the Web: Ancient Science Available to Everyone

    NASA Astrophysics Data System (ADS)

    Cirella, E. O.; Caprio, G.

    2015-04-01

    This paper describes a project for the preservation, promotion, and creation of a website for the rare book collection of Capodimonte Astronomical Observatory. The project, promoted by INAF—Capodimonte Astronomical Observatory, was supported by the Campania Region through European funds. The final component of the project was the publication of a bibliographical catalog, Le Cinquecentine dell'Osservatorio Astronomico di Capodimonte, which was addressed to specialized users, including historians of science and bibliophiles.

  12. The Role of the Virtual Astronomical Observatory in the Era of Big Data

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Hanisch, R. J.; Lazio, T. J.

    2013-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. The rapid growth in the size and complexity of data sets is transforming the computing landscape in astronomy. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of an information backbone that responds to this growth. Such a backbone will, when complete, provide innovative mechanisms for fast discovery of, and access to, massive data sets, and services that enable distributed storage, publication processing of large datasets. All these services will be built so that new projects can incorporate them as part of their data management and processing plans. Services under development to date include a general purpose indexing scheme for fast access to data sets, a cross-comparison engine that operate on catalogs of 1 billion records or more, and an interface for managing distributed data sets and connecting them to data discovery and analysis tools. The VAO advises projects on technology solutions for their data access and processing needs, and recently advised the Sagan Workshop on using cloud computing to support hands-on data analysis sessions for 150+ participants. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  13. San Pedro Mártir Observatory: a competitive astronomical site for the next generation of telescopes

    NASA Astrophysics Data System (ADS)

    Echevarria, J.; Michel, R.; Costero, R.

    2006-08-01

    We review some of the most important aspects of the astronomical Observatory at the Sierra de San Pedro Mártir, in Baja California, México. We put particular emphasis on our own results on seeing evaluation and compare the results with what we considered the best twenty sites in the world. We also compile the results on the San Pedro Mártir site in sensitive aspects like number of clear and photometric nights, scintillation, water vapour content and seismic activity among others.

  14. Digitization of the Archives of Plates of the Italian Astronomical Observatories and of the Specola Vaticana

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Blanco, C.; Bucciarelli, B.; Coluzzi, R.; Di Paola, A.; Lanteri, L.; Li Causi, G. L.; Marilli, E.; Magrin, S.; Nesci, R.; Omizzolo, A.; Rampazzi, F.; Rossi, C.; Stagni, R.; Viotti, R.

    A two-year project to digitize the archive of plates of the Italian Astronomical Observatories and of the Specola Vaticana has started in 2002 with funds from the Ministry of the University and Research. Identical systems, composed by a commercial scanner plus dedicated PCs and acquisition software have been installed in all participating Institutes. The project means to provide high quality photometric sequences with the Campo Imperatore telescopes and to distribute the digitized information via the international Web. This paper concisely presents some of the activities carried out and results obtained so far.

  15. Design of a radial velocity spectrograph for the Moletai Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Jurgenson, Colby A.; Fischer, Debra A.; McCracken, Tyler M.; Stoll, Rebecca A.; Szymkowiak, Andrew E.; Giguere, Matt J.; Santoro, Fernando G.; Muller, Gary

    2014-07-01

    The Yale Exoplanet Laboratory is under contract to design, build, and deliver a high-resolution (R = 60,000) echelle spectrograph for the Moletai Astronomical Observatory 1.65-meter telescope at the Vilnius University. We present a fiber-fed, white-pupil architecture that will operate from 400 to 880nm. The optomechanical design implements a modular approach for stability and ease of alignment that can be reproduced for other telescopes. It will utilize highperformance off-the-shelf optical components with a custom designed refractive camera for high throughput and good image quality.

  16. Preventing Rape of the Observatory: Thoughts on the Urgency of Preserving Historic Astronomical Artifacts

    NASA Astrophysics Data System (ADS)

    Bell, T. E.

    2005-12-01

    "What good is this century-old monster refractor? Sell it and use the money to buy a brand new go-to reflector useful for teaching students and advancing astronomy." So argues logic that is endangering an increasing number of university observatories around the U.S. (if not the rest of the world), even up to the Yerkes Observatory and its 40-inch Clark, world's largest refractor by the acknowledged world's best lens-makers. While most non-historians readily accept the value of preserving our cultural heritage in rare and precious documents (such as the Declaration of Independence), artifacts (such as Stradivarius violins), and institutions (such as the birthplaces of U.S. Presidents), they tend not to think of astronomical observatories as part of cultural heritage-with a result that history is crumbling apace to the wrecking ball. In early October, the Antique Telescope Society convened a special 60-minute session discussing philosophical why's and practical how's of preserving astronomical assets (including historically significant telescopes, observatory buildings, auxiliary equipment used to make observations or calculate results, and libraries of books and papers). This paper will summarize the discussion's key insights - including the assessing and assigning of value to old vs. new telescopes, and the roles of politics, funding and fund-raising, publicity (positive and negative), education, use as a form of preservation, innovative solutions by private collectors (including "half-way houses" for homeless instruments), restoration vs. renovation, special problems facing very large telescopes, and lessons learned from both failures and success.

  17. Irish astronomers eager to use European gamma-ray space observatory

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Space observatories are today helping astronomers discover and understand the furthest reaches of the Universe. But the origin of gamma-ray bursts, brief but extremely powerful explosions, is still one of the great cosmic mysteries. INTEGRAL will be a space observatory whose objective is to gather gamma rays, the most energetic radiation that comes from space, pinpointing and studying their sources with an unprecedented resolution and sensitivity. In addition to tracking down gamma-ray bursts, the observatory will bring much new information on stellar explosions, black holes and the formation of elements. With no other dedicated gamma-ray mission on the horizon, the world's scientists are eagerly awaiting the start of the mission, just 12 months away. Ireland's astronomers and astrophysicists will be privileged users. Professor Brian McBreen of University College Dublin, and Professor Evert Meurs of the Dublin Institute for Advanced Studies (DIAS) and Director of Dunsink Observatory, are both co-investigators for the Optical Monitor Camera (OMC), one of INTEGRAL's four science instruments. Their teams have also contributed to the science analysis software to be used at the INTEGRAL Science Data Centre (ISDC). Professor McBreen, an authority in the field of gamma-ray bursts, was one of the founding fathers of the project in the 1980s that subsequently led to INTEGRAL. The spacecraft is currently undergoing environmental tests at ESA's Technical and Research Centre (ESTEC) in the Netherlands. The launch, on a Russian Proton rocket from Baïkonour, is scheduled for October 2002. Speakers at the press conference will include , Ireland's Minister for Commerce, Science and Technology Mr. Noel Treacy, the President of RIA Professor T.D. Spearman, and Professor David Southwood, Director of Science at the European Space Agency and the Irish co-investigators.

  18. From Amateur Astronomer to Observatory Director: The Curious Case of R. T. A. Innes

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    Robert Innes was one of a select band of amateur astronomers who made the transition to professional ranks towards the end of the nineteenth century. Initially he had a passion for mathematical astronomy, but after settling in Sydney he developed a taste for observational astronomy, specialising in the search for new double stars. He quickly became known for his success in this field and for his publications on solar system perturbations, and with John Tebbutt's patronage managed to secure a clerical position at the Royal Observatory, Cape of Good Hope. Once there he continued to observe in his spare time and to publish, and, with strong support from Sir David Gill, was appointed founding Director of the Transvaal Observatory. By the time he died in 1933, Innes had received an honorary D.Sc. from Leiden University, and had established an international reputation as a positional astronomer. This paper provides an interesting case study of a well-known `amateur-turned-professional', and an example of the ways in which patronage played a key role in nineteenth and early twentieth century Australian and South African astronomy.

  19. The Cornell Astronomical Society: The Student Experience of Running an Observatory

    NASA Astrophysics Data System (ADS)

    Hammer, Michael; Blackburn, B.; Fredricks, J.; Garcia, K.; Poniatowski, A.; Schindler, K.; Wilk, A.

    2014-01-01

    The Cornell Astronomical Society is an undergraduate student-run organization that operates Cornell’s on-campus Fuertes Observatory with the help of members of the astronomy department and local amateur astronomy volunteers. While some of our members study physics or astronomy, the majority of our club members represent a diverse spectrum of majors both inside and outside of other STEM fields. Our primary activity as a club is to host weekly public stargazing nights that are attended annually by over two thousand people in a city of Ithaca that has a population of only one hundred thousand. We train our members to use a variety of telescopes and to open and close the observatory with the ultimate goal of having any one of us able to operate Fuertes individually. We also teach stargazing-related astronomy knowledge and host a weekly public lecture series, in which CAS members give talks on basic, but interesting topics in astronomy. Our club effort has made Fuertes Observatory a true part of the Cornell experience.

  20. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  1. Long-term synoptic observations of the Sun at the National Astronomical Observatory of Japan

    NASA Astrophysics Data System (ADS)

    Hanaoka, Yoichiro

    2013-06-01

    The National Astronomical Observatory of Japan started regular synoptic solar observations about 100 years ago. At the beginning, Ca K spectroheliograms and white-light photographs were taken, and various other types of observations have been added. These historical data have been digitized and are now open at our web site (http://solarwww.mtk.nao.ac.jp/en/solarobs.html). Currently we are operating high-resolution imaging observations in the Hα line, the green continuum, and the G-band. Besides various kinds of imaging observations, magnetic field measurements have been carried out for about 30 years. We recently started to conduct full-Sun spectropolarimetry observations in the lines of He 10830 Å/Si 10827 Å and Fe 15648 Å. These near infrared observations show the magnetic field evolutions in both the photosphere and the chromosphere. In this paper, we present our data, which are expected to contribute to studying the long-term change of the solar activity.

  2. SAO/NASA joint investigation of astronomical viewing quality at Mount Hopkins Observatory: 1969-1971

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Bufton, J. L.; Hogan, D.; Kurtenbach, D.; Goodwin, K.

    1974-01-01

    Quantitative measurements of the astronomical seeing conditions have been made with a stellar-image monitor system at the Mt. Hopkins Observatory in Arizona. The results of this joint SAO-NASA experiment indicate that for a 15-cm-diameter telescope, image motion is typically 1 arcsec or less and that intensity fluctuations due to scintillation have a coefficient of irradiance variance of less than 0.12 on the average. Correlations between seeing quality and local meteorological conditions were investigated. Local temperature fluctuations and temperature gradients were found to be indicators of image-motion conditions, while high-altitude-wind conditions were shown to be somewhat correlated with scintillation-spectrum bandwidth. The theoretical basis for the relationship of atmospheric turbulence to optical effects is discussed in some detail, along with a description of the equipment used in the experiment. General site-testing comments and applications of the seeing-test results are also included.

  3. Measuring light pollution in Beijing and effects on Xinglong Station of National Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    LU, Ligen; ZHANG, Baozhou; AI, Mingze; LIU, Jian; ZENG, Shanshan

    2015-08-01

    A light pollution survey in Beijing has been carried on to assess the quality of the night sky. To measure the absolute luminance of night sky directly, a portable night-sky luminance meter was developed specially for this survey. With a 2-degree field of view, the meter is sensitive only to a narrow cone of the sky and capable of detecting the minimum luminance of 10-6 cd/m2 (equivalent to 27.4 mag/arcsec2). The night-sky brightness was measured at seven sites, of which six are almost in line but with different distances from the city center. The Xinglong Station of National Astronomical Observatory was included to study the impacts of city lightings on an astronomical observatory. The survey shows that night skies at later time (from 0:00 to 3:00) keep mostly unchanged and are evidently darker than earlier time (e.g. the night-sky at 23:00 is about 40% brighter than midnight), which can be attributed to substantial artificial lightings for human activities being turned off after midnight. Moreover, zenith luminance of the night sky decreases with increasing distance from the city center. Compared with the night-sky luminance (21.50 mag/arcsec2) at Lingshan observation site which is closer to the city center, the night-sky brightness at Xinglong Station is a litter brighter (21.37 mag/arcsec2). This indicates that night sky at Xinglong Station has been brightened by outdoor lighting of the county town of Xinglong. The survey shows that either the luminance of zenith dark sky or the average luminance of skies at 45 degree altitude in all directions could be considered as a reasonable indicator of light pollution.

  4. The 2-Meter Telescope of the National Astronomical Observatory Rozhen: Opportunities for GAIA-FUN-SSO

    NASA Astrophysics Data System (ADS)

    Bonev, T.

    2011-06-01

    The 2 meter reflector of the National Astronomical Observatory (NAO) Rozhen offers two main modi of observations: imaging in the Ritchey-Chretien (RC) focus and spectroscopy in the Coude focus. Images can be obtained with two spatial scales: 0.25 arcsec/px or 0.89 arcsec/px. High signal-to-noise, high resolution (up to 35000) spectra are obtained with the Coudé spectrograph. Upgrades of the 2 meter telescope performed in the last years are presented: autoguiding system in 2007, recoating of the optics in 2008, installation of a new telescope control system in 2009. The performance of the 2-m telescope after these upgrades will be illustrated by a sample of observations and the capabilities for observations of Gaia follow-up of SSO will be discussed. Some of the characteristics of the telescope presented here and many more, can be found on the web-site of the National Observatory: www.naorozhen.org.

  5. Twentieth-century astronomical heritage: the case of the Brazilian National Observatory

    NASA Astrophysics Data System (ADS)

    Barboza, Christina Helena

    2015-08-01

    The National Observatory of Brazil was created in 1827. It was initially focused on the practical teaching of Astronomy to the students of military and naval academies. Since the mid-nineteenth century to the early twentieth century it was installed over the ruins of a Jesuit church located in the center of Rio de Janeiro, capital of the Brazilian Empire.Due to the constant complaints of its successive directors, the search for a new site to house the Observatory began in 1911. The new headquarters of the institution were located on the hill of São Januário, a little further but still around the city center of Rio de Janeiro. Its inauguration took place in 1921.The main building of the new Observatory was based on one of the Brazilian pavilions of the Turin Exhibition of 1911, and its architecture can be characterized as eclectic. The pavilions intended to house the many telescopes were scattered in a large wooded area. Since 1985 all these facilities are protected by the Federal government, as a consequence of the same initiative that gave birth to the Museum of Astronomy and Related Sciences, which has the custody also of the Observatory’s former instruments, furniture, and documents.Although built in the early twentieth century the National Observatory new facilities reveal astronomical practices typical of the previous century. One of its most important activities was the determination of the legal time, a task that justifies its location in the urban environment. It was also responsible for the organization of expeditions destined to determine the geographical positions of railroads and the borders of Brazil. For this reason, the Museum of Astronomy has currently more than 3,000 portable instruments. Moreover, these instruments belong to the domain of Astronomy, but also to Geodesy, Meteorology, Electricity. Due to the creation of the Museum of Astronomy, this rich collection is now open to public visitation, and has become the object of scholarly

  6. The ISS as a Testbed for Future Large Astronomical Observatories: The OpTIIX Demonstration Program

    NASA Technical Reports Server (NTRS)

    Burdick, G.; Callen, P.; Ess, K.; Liu, F.; Postman, M.; Sparks, W.; Seery, B.; Thronson, H.

    2012-01-01

    Future large (diameters in excess of approx. 10 m) astronomical observatories in space will need to employ advanced technologies if they are to be affordable. Many of these technologies are ready to be validated on orbit and the International Space Station (ISS) provides a suitable platform for such demonstrations. These technologies include low-cost, low-density, highly deformable mirror segments, coupled with advanced sensing and control methods. In addition, the ISS offers available telerobotic assembly techniques to build an optical testbed that embodies this new cost-effective approach to assemble and achieve diffraction-limited optical performance for very large space telescopes. Given the importance that NASA attaches to the recommendations of the National Academy of Sciences "Decadal Survey" process, essential capabilities and technologies will be demonstrated well in advance of the next Survey, which commences in 2019. To achieve this objective, the Jet Propulsion Laboratory (JPL), NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and the Space Telescope Science Institute (STScI) are carrying out a Phase A/B study of the Optical Testbed and Integration on ISS eXperiment (OpTIIX). The overarching goal is to demonstrate well before the end of this decade key capabilities intended to enable very large optical systems in the decade of the 2020s. Such a demonstration will retire technical risk in the assembly, alignment, calibration, and operation of future space observatories. The OpTIIX system, as currently designed, is a six-hexagon element, segmented visual-wavelength telescope with an edge-to-edge aperture of 1.4 m, operating at its diffraction limit,

  7. Atmospheres in a Test Tube: state of the art at the Astronomical Observatory of Padova.

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R.; Cocola, L.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Barbisan, D.; Billi, D.; Bonato, M.; D'Alessandro, M.; Galletta, G.; Meneghini, M.; Trivellin, N.; Cestelli Guidi, M.; Pace, E.; Schierano, D.; Micela, G.

    At the Astronomical observatory of Padova we are trying to answer some questions about the detectability of biosignatures in the exoplanetary atmospheres, working in the framework of the project Atmosphere in a Test Tube. In particular we are investigating how the presence of photosynthetic biota living on the surface of a planet orbiting in the HZ of an M type star may modify the atmospheric gas abundances. This can be achieved in laboratory with an environmental simulator called MINI - LISA. The simulator allows to modify the temperature and the pressure inside a test chamber, where a selected population of photosynthetic bacteria is arranged. We'll focalize our experiments on the following bacteria: Acaryochloris marina, Halomicronema hongdechloris, Leptolyngbya sp.1 and Chlorogloeopsis fritschii. The first two bacteria are naturally provided with NIR light metabolizers, like Chl-d and Chl-f, while the last two can develop such pigments if grown in NIR light. The experiment will lead us to obtain useful data to be compared with the ones expected either by the future space missions (JWST, ARIEL) and ground based new instrumentation (SPHERE@VLT; GPI@GEMINI; PCS@E-ELT). In this talk we discuss the layout of the experiment and its state of art.

  8. Possible Astronomical meaning of some El Molle findings at the ESO Observatory of La Silla

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Bernardi, Gabriella; Bucciarelli, Beatrice

    2015-08-01

    The slopes surrounding the buildings of the European Southern Observatory at La Silla are known to house several hundred rock engravings dating back to the pre-Columbian populations that once inhabited this region. Although precise archaeological studies are missing since none of these sites has been excavated, these petroglyphs are attributed to people of the El Molle Culture, who around AD 300 had just abandoned their original lifestyle of hunting and gathering and developed more evolved settlements based on herding and farming.While it is difficult to ascertain precisely the meaning of these ancient rock engravings, it seems that a specific astronomical alignment can be attributed to a simple yet peculiar, man-made stone structure, which can be found in the same site. The archaeoastronomical dating of this alignment coincides to that of the petroglyphs. Moreover it allows to highlight a noticeable and intriguing connection with a practical function which appears quite reasonable for the population to whom this structure is attributed.

  9. The French Jesuit Mission to Thailand in the 1680s and the Establishment of a Major Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Soonthornthum, Boonrucksar; Orchiston, Wayne; Komonjinda, Siramas

    2012-09-01

    The first great Thai ruler to encourage the adoption of Western culture and technology was King Narai, and his enlightened attitude led to the rapid development of Thailand. King Narai also had a passion for astronomy, and he pursued this interest by allowing French Jesuit missionaries to set up a large modern well-equipped astronomical observatory in Lopburi Province between AD 1685 and 1687. This was known as the Wat San Paolo Observatory, and King Narai and the missionaries observed a total lunar eclipse on 10 December 1685 and a partial solar eclipse on 30 April 1688. These observations and others made at Wat San Paolo Observatory during the 1680s marked the start of modern scientific astronomy in Thailand. In this paper we discuss King Narai's scientific and other interests, the founding of the Wat San Paolo Observatory, the missionaries who conducted the astronomical programs, their instruments and their observations. We also describe the surviving ruins of the Observatory and their interpretation as a site of national scientific importance in Thailand.

  10. Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary

    NASA Astrophysics Data System (ADS)

    2000-08-01

    of the X-ray background, a glow throughout the universe whose source or sources are unknown. Astronomers are now pinpointing the various sources of the X-ray glow because Chandra has resolution eight times better than that of previous X-ray telescopes, and is able to detect sources more than 20 times fainter. "The Chandra team had to develop technologies and processes never tried before," said Tony Lavoie, Chandra program manager at Marshall. "One example is that we built and validated a measurement system to make sure the huge cylindrical mirrors of the telescope were ground correctly and polished to the right shape." The polishing effort resulted in an ultra-smooth surface for all eight of Chandra's mirrors. If the state of Colorado were as smooth as the surface of Chandra's mirrors, Pike's Peak would be less than an inch tall. "Chandra has experienced a great first year of discovery and we look forward to many more tantalizing science results as the mission continues," said Alan Bunner, program director, Structure and Evolution of the universe, NASA Headquarters, Washington, DC. Marshall manages the Chandra program for the Office of Space Science, NASA Headquarters. TRW Space and Electronics Group, Redondo Beach, CA, is the prime contractor. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, CT, coated by Optical Coating Laboratory, Inc., Santa Rosa, CA, and assembled and inserted into the telescope portion of Chandra by Eastman Kodak Co., Rochester, NY. The scientific instruments were supplied by collaborations led by Pennsylvania State University, University Park; Smithsonian Astrophysical Observatory, Cambridge, MA; Massachusetts Institute of Technology, Cambridge; and the Space Research Organization Netherlands, Utrecht. The Smithsonian's Chandra X-ray Center controls science and operations from Cambridge, working with astronomers around the globe to record the activities

  11. Colloid Microthruster Feed System Development for Fine Pointing and Drag-Free Control of Multi-Year Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Ziemer, John; Mueller, J.; Spence, D.; Hruby, V.

    2014-01-01

    A new Colloid Microthruster feed system, including a propellant tank and redundant Microvalves, is being developed for fine pointing and drag-free operations of multi-year astronomical observatories under the PCOS SAT program. Almost all Gravitational Wave Observatory (GWO) concepts require microthrusters to maintain a drag-free environment for the inertial sensor instrument to meet the mission science objectives. The current state-of-the-art microthruster in the US is the Busek Colloid Micro-Newton Thruster (CMNT) originally developed under the New Millennium Program for the Space Technology 7 (ST7) and ESA's LISA Pathfinder (LPF) technology demonstration mission. The ST7 CMNT design includes a bellows propellant storage tank that is sized to provide up to 90 days of maximum thrust (30 µN). The new propellant tank is based on a blow-down, metal-diaphragm spherical tank design with enough capacity for a 5-year GWO mission. The new feed system will also include the third generation of Busek’s Microvalve, currently being developed under a NASA Phase II SBIR. The Microvalve is responsible for the picoliter per second control of the propellant from the tank to the thruster head, demanding parts with micron-level tolerances, critical alignments, and challenging acceptance test protocols. This microthruster system could also be considered for replacement of reaction wheels for slewing and fine pointing of other astronomical observatories, including Exo-Planet Observatory concepts. The goal of the PCOS SAT effort is to raise the new system to TRL 5 with performance and environmental testing within the next two years.

  12. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Brian L.; Craine, Patrick R.; Craine, Erin M.; Fouts, Scott

    2014-05-01

    Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  13. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example (Abstract)

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Craine, B. L.; Craine, P. R.; Craine, E. M.; Fouts, S.

    2014-12-01

    (Abstract only) Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  14. The Role of Nicholas Copernicus Planetarium and Observatory in astronomical education

    NASA Astrophysics Data System (ADS)

    Ledvinka, S.

    2006-02-01

    The cooperation of Masaryc University and Nicolas Copernicus Observatory and Planetarium in Brno, Czech republic is introduced. Students can use CCD camera and obtain precize photometric data for their practicums. Such possibility is unique in Czech republic.

  15. Algiers, La Plata, Nice: Three Prestigious and Emblematic Astronomical Observatories in the 1880s

    NASA Astrophysics Data System (ADS)

    Le Guet Tully, Françoise; Davoigneau, Jean

    2012-09-01

    We shall describe the political and scientific contexts of the concomitant foundation on three continents of three observatories particularly well equipped instrument-wise: the ``ideal'' observatory erected in Nice by the sponsor Raphaël Bischoffsheim, the one developed in Algiers by the French State in a very good observational site, and the one in La Plata embedded in the urbanistic utopic project for the new capital of the Province of Buenos-Aires. We shall also explore their similarities and differences, especially as regards their instruments and their makers, their scientific aims and training of their staff.

  16. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    NASA Astrophysics Data System (ADS)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  17. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  18. Past and Present of the Synoptic Observations of the Sun at the National Astronomical Observatory of Japan

    NASA Astrophysics Data System (ADS)

    Hanaoka, Y.; Solar Observatory of NAOJ

    2016-04-01

    The National Astronomical Observatory of Japan has a history of about 100 years of regular synoptic solar observations. It started with Ca K spectroheliographic and white-light imaging observations, and shortly afterward, the counting of sunspots was started. Current imaging observations are being carried out in the Hα line, the Ca K line, the G-band, and the green continuum. In addition, the NAOJ has a history of more than 30 years of magnetic field measurements, and now we are conducting full-Sun spectropolarimetry observations. Most of the historical photographic and hand-drawn data have been digitized and are now open at our web site as well as recently obtained data. Here we introduce our data to promote the collaboration in the long-term solar activity study.

  19. A Lunar Far Side Radio Array As The First Astronomical Observatory On The Moon: Precursor Studies

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.

    Setting up an observatory on the Moon could not only give us new views of the uni- verse, but also inspire the billions of people who look at the Moon. The Moon as a site for astronomy has been proposed since at least the mid-1960s when humans began to have access to outer space. The most seriously investigated concept for a Moon-based observatory has always been a very-low-frequency array on the far side for several well-grounded reasons. First, the Lunar far side is recognized as the best site of all for radio astronomy because it is the one location permanently free from the significant artificial and natural interference from Earth. Second, such an observatory will give us a completely new look at the universe by opening up the new frequency window of 50kHz-30MHz, the only part of the electromagnetic spectrum through which the universe has yet to be explored. Third, a simple array of dipole antennas is probably the most technologically feasible observatory to be placed and operated on the Moon. To be able to see astronomy happening from the Moon before we all age another 10 years, we must answer several questions at our earliest opportunities. (1) How far into the far side does the observatory site need to be for the terrestrial interference to be at- tenuated below the background level? (2) How do the electrical properties of the Lunar surface influence the site selection and the antenna design? In particular, how might the subsurface structures reflect radio waves to affect the observation? (3) How much would the Lunar ionosphere affect the observation? To address these questions now, radio wave propagation around the Moon is simulated using Apollo data for dielectric permittivity and loss tangent of the Lunar surface. The results of the simulations are presented. To ultimately identify the best sites and to specify the observatory design, making the following measurements within the next several years is crucial. (1) The level of terrestrial noise at various

  20. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  1. Software for autonomous astronomical observatories: challenges and opportunities in the age of big data

    NASA Astrophysics Data System (ADS)

    Sybilski, Piotr W.; Pawłaszek, Rafał; Kozłowski, Stanisław K.; Konacki, Maciej; Ratajczak, Milena; Hełminiak, Krzysztof G.

    2014-07-01

    We present the software solution developed for a network of autonomous telescopes, deployed and tested in Solaris Project. The software aims to fulfil the contemporary needs of distributed autonomous observatories housing medium sized telescopes: ergonomics, availability, security and reusability. The datafication of such facilities seems inevitable and we give a preliminary study of the challenges and opportunities waiting for software developers. Project Solaris is a global network of four 0.5 m autonomous telescopes conducting a survey of eclipsing binaries in the Southern Hemisphere. The Project's goal is to detect and characterise circumbinary planets using the eclipse timing method. The observatories are located on three continents, and the headquarters coordinating and monitoring the network is in Poland. All four are operational as of December 2013.

  2. A Needs Analysis Study of Amateur Astronomers For the National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Price, A.; Cohen, L.; Mattei, J. A.; Craig, N.

    2006-12-01

    Through a combination of qualitative and quantitative processes, a survey was conducted of the amateur astronomy community to identify outstanding needs which the National Virtual Observatory (NVO) could fulfill. This is the final report of that project, which was conducted by The American Association of Variable Star Observers (AAVSO) on behalf of the Science Education Gateway (SEGway) Project at The Center for Science Education at The UC Berkeley Space Sciences Laboratory.

  3. Report On Fiducial Points At The Space Geodesy Based Cagliari Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Banni, A.; Buffa, F.; Falchi, E.; Sanna, G.

    At the present time two research groups are engaged to space-geodesy activities in Sardinia: a staff belonging to the Stazione Astronomica of Cagliari (SAC) and the To- pography Section of the Dipartimento di Ingegneria Strutturale (DIST) of the Cagliari University. The two groups have a share in international campaigns and services. The local structure, consists of permanent stations of satellite observation both on radio and laser techniques. Particularly in the Cagliari Observatory a Satellite Laser Ranging system runs with nearly daily, low, medium and high orbit satellite tracking capability (e. g. Topex, Ajisai, Lageos1/2, Glonass); up to this time the Cagliari laser station has contributed towards the following international campaigns/organizations. Besides in the Observatory's site a fixed GPS system, belonging the Italian Space Agency GPS- Network and to the IGS-Network; and a GPS+GLONASS system, acquired by DIST and belonging to the IGLOS are installed and managed. All the above stations are furnished with meteorological sensors with RINEX format data dissemination avail- ability. Moreover a new 64 meters dish radio telescope (Sardinian Radio Telescope), geodetic VLBI equipped, is under construction not long away from the Observatory. The poster fully shows the facilities and furnishes a complete report on the mark- ers eccentricities, allowing co-location of the different space techniques operating in Sardinia.

  4. An innovative alt-alt telescope for small observatories and amateur astronomers

    NASA Astrophysics Data System (ADS)

    Riva, M.; Basso, S.; Canestrari, R.; Conconi, P.; Fugazza, D.; Ghigo, M.; Landoni, M.; Pareschi, G.; Spanó, P.; Tomelleri, R.; Zerbi, F. M.

    2012-09-01

    This paper want to show an innovative amateur oriented telescope with an unconventional alt-alt conguration. The goal is to make a telescope with good optical quality reducing production costs by adopting a gimbal based mounting to develop an alt-alt conguration suitable for a telescope. Reduce costs while preserving the optical quality is a necessary condition to allow small groups of amateur astronomers, schools and cultural clubs, with reduced economic resources, to acquire an astronomical instrument that encourages learning and advancing astrophysical knowledge. This unconventional mechanism for the realization of a telescope alt-alt provides signicant advantages. The traditional rotary motors coupled with expensive precision bearings are replaced with two simple linear actuators coupled to a properly preloaded gimbal joint and the cell becomes the primary structure of the telescope. A second advantage would be secured by mechanical simplicity evident in the easy portability of the instrument. The frame alt-alt has some limitations on the horizon pointing but does not show the zenith blind spot of the alt-az mount. A dedicated alt-alt pointing and tracking model is under development to be compatible with commercial telescope softwares and with the proposed new mounting.

  5. First observations of the Fabra-ROA telescope at the Montsec Astronomical observatory

    NASA Astrophysics Data System (ADS)

    Muiños, J. L.; Fors, O.; Montojo, F. J.; Núñez, J.; Voss, H.; Boloix, J.; Baena, R.; López Morcillo, R.; Merino, M.

    The Baker-Nunn Cameras (BNCs) were produced by the Smithsonian Institution during the late 50's as an optical tracking system for artificial satellites. One of those telescopes was installed at the Real Instituto Observatorio de la Armada (ROA) in San Fernando (Spain) and managed jointly between these two institutions until 1979, when the Smithsonian transferred the instrument to the ROA. In 2000, due to its excellent mechanical and optical original design, the Observatori Fabra of the Reial Academia de Ciències Arts de Barcelona (RACAB) and the ROA agreed to refurbish the BNC and to install this new facility in a new observatory at 1570 m altitude founded in Catalonia, in the NE of Spain. After the refurbishment period and first test at the ROA the now called Telescope Fabra-ROA Montsec (TFRM) was moved to the Observatori Astronòmic del Montsec (OAdM) on 2010 September. Since then, it is in commissioning period to test both observing modes: remote and robotic. In this presentation we shall show the results of some observational campaigns carried out with the TFRM while it was in commissioning. Mainly the instrument has participated, as an informal partner, in the CO-VI Satellite Tracking Campaign of the ESA's Space Situational Awareness (SSA). These campaigns are experimental observations of Earth orbit objects using existing European telescopes and radars to determine how accurately they can work together. Also some transiting observations of known exoplanets have been conducted. More information in to http://www.am.ub.es/bnc/

  6. George C. Comstock: Wisconsin Astronomer, Observatory Director, Graduate School Dean, and AAS Officer

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1996-05-01

    George C. Comstock, the third director of Washburn Observatory, had a long and interesting career at Wisconsin. Born in Madison, he did his undergraduate work at Michigan under James Watson. From him Comstock learned the classical astronomy of stellar positions and celestial mechanics. He had one year of graduate work at Michigan before going to Madison as Watson's assistant in 1880, and remained after the latter's death as E.S. Holden's assistant. At Wisconsin, Comstock also studied law at the UW Law School in his ``spare time", to have an alternate career path. He was admitted to the bar in 1883 but never practiced. From 1885-7 he was on the Ohio State faculty with a summer working at Lick Observatory; then in 1887 became associate director back at Washburn Observatory. Two years later he succeeded to the full directorship, and kept the post until he retired in 1922 at the age of 67. All Comstock's research was in positional astronomy, and he considered his most important work to be the measurement of stellar aberration and atmospheric refraction. He also measured double stars with the 15-inch Washburn refractor. His main duty at UW was teaching, mostly ``practical astronomy" for civil engineering students. Comstock wrote several text books on astronomy, surveying, and least squares. He was the first head of the UW Graduate School, set up by President Charles R. Van Hise in 1904. Comstock was a highly effective administrator, and did much to build up research at UW. His own most successful students were Sidney D. Townley, Joel Stebbins, and Sebastian Albrecht. Because of his legal training, Comstock was involved as an officer in many scientific societies. He was one of the organizers of the AAS, its first secretary, and later its vice president, then president. He retired in 1922, and was succeeded by Stebbins, whom he helped to bring back to Madison from Illinois. After his retirement, Comstock lived in Beloit until his death in 1934.

  7. Remote Telescope System for Science Education and Small-scale Researches at Bosscha Observatory, Indonesia and at Gunma Astronomical Observatory, Japan

    NASA Astrophysics Data System (ADS)

    Malasan, H. L.; Kurata, T.; Kurabayashi, T.; Taguchi, H.; Indradjaja, B.; Prasetyono, G. I.; Kinugasa, K.

    2006-08-01

    This talk presents the concept of The Gunma Astronomical Observatory-Instititute of Technology Bandung Remote Telescope System (hereafter the GAO-ITB RTS) that has been commisioned in March, 2004. GAO-ITB RTS consists of two 21 cm Schmidt-Cassegrain (f/D=10.0) telescopes, equatorially mounted and supported by Takahashi EM-200 (drive) + GO TO System Temma 2 (control system) connected to a PC through RS 232 C cable. The ITB-side telescope will be situated inside a lightweight sliding roof on the roof of the visitor center at Bosscha Observatory in Lembang. The main software is the Telescope Tracer 98 working under Windows XP that enables chart-based pointing for epoch 2000 or at the observing time, hand-set emulator, and equipped with a database containing SAO, variable star, double star (V ≤ 9.5 mag); Deep sky objects: Messier (110), NGC (7840), IC (5382); and Solar system. Furthermore, with the support of the software TelAgent, web-based remote control can be conducted under Internet Explorer (Ver 5.5 or later). Assigning a static IP address for the mounting system is indispensable. The remote system has been set up to fulfill three basic functions, i.e. command sending through TelAgent, image streaming using web server, and teleconferencing. To support the whole activity, a data communication rate greater than 64 Kbps is needed. The system is currently furnished with TGV-M (811(H)´508(V) pixels, 8.4μm(H) ´9.8 μm(V) @ pixel) camera. Although primarily designed for public distant-learning, the potential of GAO-ITB RTS for high-time resolution photometric observation, such as occultation, and patrol-type observation have been identified and will be explored.

  8. Design of the HEAO main bus shunt regulator. [High Energy Astronomical Observatory solar array

    NASA Technical Reports Server (NTRS)

    Middlebrook, R. D.; Kimble, S. G.

    1976-01-01

    The High Energy Astronomy Observatory (HEAO) is being built for NASA by an American company. The general requirements concerning the HEAO main bus regulator are examined. The bus regulated voltage is 33 V, the maximum shunt current is 45 A, and the regulator output impedance is to be less than 0.5 Ohm from dc to 100 kHz. Loop gain design considerations for the main bus regulator are discussed and a description is given of the general device configuration. Attention is also given to regulator loop design and performance.

  9. VOStat: A Virtual Observatory Web Service for Statistical Analysis of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric; Chakraborty, A.; Babu, G.

    2013-01-01

    VOStat (http://vostat.org), is a VO-compliant Web service giving astronomers access to a suite of statistical procedures in a user-friendly Web environment. It uses R (http://www.r-project.org), the largest public domain statistical software environment with >4000 add-on packages. Data input is by user upload, URL, or SAMP interaction with other VO tools. Outputs include plots, tabular results and R scripts. VOStat implements ~60 statistical functions, only a tiny portion of the full R capabilities. These include density estimation (smoothing), hypothesis tests, regression (linear, local, quantile, robust), multivariate analysis (regression, principal components, hierarchical clustering, normal mixture models), spatial analysis (autocorrelation, k-NN, Riley's K, Voronoi tests), directional data, survival analysis (Kaplan-Meier estimator, two-sample tests, Lynden-Bell-Woodroofe estimator), and time series analysis (autocorrelation, autoregressive models, periodogram).

  10. Austrian-Hungarian Astronomical Observatories Run by the Society of Jesus at the Time of the 18th Century Venus Transits

    NASA Astrophysics Data System (ADS)

    Posch, Thomas; Aspaas, Per Pippin; Bazso, Akos; Mueller, Isolde

    2013-05-01

    The Venus transit in June 1761 was the first one to be observed on a truly international scale: almost 250 astronomers followed this rare celestial event (e.g. Wulff 2012, p. 115), and at least 130 published successful observations of it (Aspaas 2012, p. 423). The present paper deals with the astronomical observatories built by the Society of Jesus in its eighteenth century "Provincia Austriae", at which the 1761 transit could be observed. Five Jesuit observatories are being presented in this context: three in today's Austria, namely, two in Vienna and one in Graz; one in Trnava in today's Slovakia and one in Cluj in today's Romania. Thereafter, we briefly examine which of these observatories submitted any Venus transit observations for publication in the appendix to Maximilian Hell's "Ephemerides astronomicae ad meridianum Vindobonensem" for the year 1762.

  11. New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope

    NASA Astrophysics Data System (ADS)

    Trávníček, Petr; Benzvi, Segev; Boháčová, Martina; Connolly, Brian; Grygar, Jiří; Hrabovský, Miroslav; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nosek, Dalibor; Nožka, Libor; Palatka, Miroslav; sPech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Šmída, Radomír; Vitale, Primo; Westerhoff, Stefan

    FRAM - F/(Ph)otometric Robotic Atmospheric Monitor is the latest addition to the atmospheric monitoring instruments of the Pierre Auger Observatory. An optical telescope equipped with CCD camera and photometer, it automatically observes a set of selected standard stars and a calibrated terrestrial source. Primarily, the wavelength dependence of the attenuation is derived and the comparison between its vertical values (for stars) and horizontal values (for the terrestrial source) is made. Further, the integral vertical aerosol optical depth can be obtained. A secondary program of the instrument, the detection of optical counterparts of gamma-ray bursts, has already proven successful. The hardware setup, software system, data taking procedures, and first analysis results are described in this paper.

  12. Dimensional stability and micromechanical properties of materials for use in an Orbiting Astronomical Observatory.

    NASA Technical Reports Server (NTRS)

    Marschall, C. W.; Maringer, R. E.; Cepollina, F. J.

    1972-01-01

    This paper considers the problem of irreversible dimensional changes of the order of one thousandth of an inch per inch in several candidate materials for orbiting observatories. Although there are a number of potential sources for such dimensional changes, those given major consideration here are applied stresses and residual stresses. Results of room-temperature microyield strength (MYS) and microcreep tests to detect permanent strains associated with both short- and long-duration loading are reported for several engineering materials, including four aluminum alloys (2024, 5456, 6061, and 2014), I400 beryllium, TZM molybdenum, AZ31 magnesium, two titanium alloys (Ti-6Al-4V and Ti-5Al-2.5Sn), 321 stainless steel, a graphite/epoxy composite, and low-expansion glass ceramics. The data indicate that: metallic materials have no true elastic limit; the MYS cannot be predicted reliably from, and is appreciably less than, the conventional yield strength: significant microcreep and stress relaxation can occur at stresses somewhat below the MYS.

  13. The preparation of the measurements at the PDS at the Padova Observatory: Report on an experience with the development of an astronomical data base environment

    NASA Technical Reports Server (NTRS)

    Benacchio, L.

    1984-01-01

    Some software facilities used mainly for information retrieval and analysis at the Padova-Asiago Observatory are discussed. These facilities help guest and resident astronomers to make easier the preparation of plate measurements. The problems connected with the creation, use and management of a data base in a scientific (astronomical) environment are reviewed on the basis of the experience gathered during the last three years. The development plan of the user session environment and its possible applications in a computer network are briefly sketched.

  14. Walter Baade, Dynamical Astronomer at Goettingen, Hamburg, Mount Wilson, and Palomar Observatories

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2002-09-01

    Walter Baade, famous for his astrophysical discoveries, also made many contributions in dynamical astronomy. His thesis at Goettingen University on the spectroscopic orbit of β Lyrae was based on spectrograms his teacher, Johannes Hartmann, had taken at Potsdam years earlier. Immediately on receiving his Ph.D. in 1919, Baade joined the Hamburg Bergedorf Observatory staff, and soon was the sole observer with its 1-m reflector, the largest telescope in Europe. Under its director, Richard Schorr, Baade's main job at first was to obtain direct plates of asteroids and comets for positional measurements. As an incidental part of this observing he discovered many asteroids, eight of which were eventually named, including 966 Muschi (his wife's nickname), 944 Hidalgo, with large orbital semi-major axis, eccentricity, and inclination, and 1036 Ganymed, whose orbit extends inside that of Mars. Baade also discovered a new comet, 1922 II. During the close approach of Eros in 1930 Baade measured its period of light variation, its color, and its mean magnitude. After Pluto was discovered in 1930 he measured its position assiduously, following it as far from opposition as he could. In 1931 Baade moved to Mount Wilson, where he concentrated almost entirely on globular-cluster, supernova, and galaxy research. He saw many asteroid trails on his long exposures but did not report them except for one, 7448 (still not named), which showed a very long trail on a 3-hr exposure of the Crab nebula. At Palomar, using the 48-in Schmidt soon after it went into operation, he dicovered and reported 1566 Icarus, with a very small perihelion distance, and later his second comet, 1955 VI.

  15. The Astronomical Observatory of the Autonomous Region of the Aosta Valley. A professional research centre in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Calcidese, P.; Bernagozzi, A.; Bertolini, E.; Carbognani, A.; Damasso, M.; Pellissier, P.; Recaldini, P.; Soldi, M.; Toso, G.

    The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA), in the Alps at the border with France and Switzerland, is located in the Saint-Barthélemy Valley at 1675 m a.s.l. and 16 km from the town of Nus (AO). Managed by the Fondazione Clément Fillietroz-ONLUS with funding from local administrations, the OAVdA opened in 2003. For the first years its initiatives were focused on public outreach & education. Since 2006 the main activity has been scientific research thanks to an official agreement of cooperation established with the italian National Institute for Astrophysics (INAF). The OAVdA researchers, with Research Grants from the European Social Fund (EU-ESF), have been authors and/or coauthors of several papers on international journals. Here we present in detail the scientific projects developed at the OAVdA and describe some public outreach & education initiatives proposed at the OAVdA and the Planetarium of Lignan, also managed by the Fondazione Clément Fillietroz-ONLUS since 2009.

  16. High Resolution Near-Infrared Spectroscopy of Comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Ogawa, Sayuri; Kobayashi, Hitomi; Kondo, Sohei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Hamano, Satoshi; Yasui, Chikako; Mito, Hiroyuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2014-11-01

    High resolution near-infrared spectroscopic observations of comet C/2013 R1 (Lovejoy) using the WINERED ( 3x10^4) spectrometer on the 1.3-m Araki telescope at Koyama Astronomical Observatory were carried out on UT 2013 November 30. The comet was at 0.91 AU from the Sun and 0.49 AU from the Earth at the observations. This comet was considered to originate in the Oort cloud and became bright in visible from October to December 2013. The newly developed instrument, WINERED, was a cross-dispersed Echelle spectrometer that can cover the wavelength range from 0.9 to 1.3 microns simultaneously. Many emission lines were recorded in the high signal-to-noise ratio spectra of comet Lovejoy. We report the line assignment of the detected emission lines and present our preliminary analysis for CN Red-band system.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018.

  17. The possible astronomical function of the El Molle stone circle at the ESO Observatory La Silla. II: The updated measurement campaign

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto; Bucciarelli, Beatrice

    2014-07-01

    This paper reviews and updates the accounts of a previous article discussing the possible astronomical significance of a peculiar, man-made circular stone structure, located close to the European Southern Observatory in La Silla, Chile, and attributed to the El Molle culture. Thanks to further, higher-accuracy measurements in situ, we can confirm some of the original hypotheses and dismiss others, upholding the main tenets of the original work.

  18. The astronomer Friedrich Viktor Schembor and the Vienna Urania Observatory (The history of the Vienna Urania Observatory from its foundation to its re-opening (1897-1957) / Friedrich Viktor Schembor - a life for astronomy). (German Title: Der Astronom Friedrich Viktor Schembor und die Wiener Urania-Sternwarte (Die Geschichte der Wiener Urania-Sternwarte von ihrer Gründung bis zu ihrer Wiedereröffnung (1897-1957) / Friedrich Viktor Schembor - ein Leben für die Astronomie))

    NASA Astrophysics Data System (ADS)

    Schembor, Friedrich Wilhelm

    The Urania Observatory in Vienna and the life and workings of the Viennese astronomer Friedrich Viktor Schembor are the topics of this volume. The first part deals with the history of the Urania Observatory and its significance as the oldest popular observatory in Vienna for the education of adults. After a short digression on the development of popular educational activities in the 19th century, the efforts are traced that led to the establishment of the Urania Observatory. The second part deals with the biography of the astronomer Friedrich Viktor Schembor (1898-1942). Already at an early age he committed himself as a volunteer for popular education in astronomy. In his time as director of the Urania Observatory, he was able to guide the “Astronomische Gemeinde” (Astronomical Congregation) to scientifically useful results. Because of a vicious disease, he was given only a short time of scientific work at the Vienna University Observatory.

  19. Ondrejov Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Ondrejov Observatory is located 20 miles from Prague in the village of Ondrejov. It was established in 1898 as a private observatory and donated to the state of Czechoslovakia in 1928. Since 1953 it has been part of the Astronomical Institute, Academy of Sciences of the Czech Republic; there are 40 astronomers....

  20. Development and manufacturing of panoramic Stokes polarimeter using the polarization films in the Main Astronomical Observatory of NAS of Ukraine

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.

    2015-08-01

    In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56

  1. The Experience at the University of Puerto Rico with ``The Sky in Your Hands'' and ``The Tactile Moon Project'' from the Astronomical Observatory University of Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Villamizar, G. M. I.; Pantoja, C. A.; Lebrón Santos, M. E.; Ortiz-Gil, A.

    2013-04-01

    This poster describes the collaboration that was originated from the activities of the “International Year of Astronomy 2009” (IYA2009). Beyond 2009 we have continued the collaboration with the outreach specialists from Spain. Two projects have followed, the first was the presentation of the Planetarium Show “The Sky in Your Hands” at the University of Puerto Rico, Río Piedras Campus during 2012. The second project is our participation in the design and development of the 3D Tactile Moon Project for the Blind from the Astronomical Observatory of the University of Valencia, Spain.

  2. Armenian Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A review is given on the Armenian Astronomical Heritage from ancient times to nowadays. Armenian ancient astronomy includes the division of the skies into constellations, rock art, ancient Armenian calendar, ancient observatories (such as Metsamor and Karahunge), records of astronomical events (such as Halley's Comet recorded on Tigranes the Great's coin), ancient names of celestial bodies (planets, stars, constellations), etc. The Medieval Armenian astronomy includes two more calendars, Anania Shirakatsi's scientific heritage, the record of 1054 Supernova, sky maps by Luca Vanandetsi and Mkhitar Sebastatsi, etc. Modern Armenian astronomical heritage first of all consists of the famous Byurakan Astrophysical Observatory founded in 1946 by Viktor Ambartsumian, as well as Yerevan Astronomical Observatory, Armenian Astronomical Society, Armenian Virtual Observatory, Yerevan State University Department of Astrophysics, Astrofizika journal, and brilliant young students who systematically win high positions at International Astronomical Olympiads.

  3. Book review: "Astronomical almanac", 2016, vol. 62. Main Astronomical Observatory of National Academy of Science of Ukraine, Kiev. ISBN 978-966-02-7765-6,2015, 286 p.

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2015-12-01

    The first part of the almanac gives the 2016 calendar, description of calendar systems used by various peoples in the world, ephemerides for the Sun, the Moon, and planets, moments of rising and setting for the Sun and the Moon, planetary configurations, the visibility of planets and Jupiter's satellites on the sky, some data on variable stars, comets, occultations of stars by the Moon and asteroids, meteor showers, eclipses, and other celestial phenomena. The second part informs us on the current state of investigations in some fields of astronomy, and gives some memorable dates in history of astronomy and cosmonautics. The almanac may be used as a handbook by specialists in astronomy and related sciences, by school teachers, students, pupils, amateur astronomers etc.

  4. Astronomical Institute of Athens

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Astronomical Institute of Athens is the oldest research institute of modern Greece (it faces the Parthenon). The Astronomical Institute (AI) of the National Observatory of Athens (NOA) started its observational projects in 1847. The modern computer and research center are housed at the Penteli Astronomical Station with major projects and international collaborations focused on extragalactic ...

  5. Blind Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  6. Amateur Observatories

    NASA Astrophysics Data System (ADS)

    Gavin, M.

    1997-08-01

    A roundup of amateur observatories in this country and abroad, with construction and location details, concluding with a detailed description and architect's drawing of the author's own observatory at Worcester Park, Surrey. The text of the 1996 Presidential Address to the British Astronomical Association.

  7. Union catalogue of printed books of 15th, 16th and 17th centuries in European astronomical observatories.

    NASA Astrophysics Data System (ADS)

    Grassi, G.

    This catalogue deals with the scientific subjects of that historical period such as astronomy, astrology, chemistry, mathematics, physics, historia naturalis and so forth, and contains extremely rare volumes such as the first printed editions of the eminent Arab, Latin, Greek and Persian scientists Albumasar, Albohazen Aly, Aristoteles, Ptolemaeus, Pliny the Elder and Ulugh Beig. In addition the catalogue contains the first works of such great astronomers of the 16th and 17th centuries as Copernicus, Kepler, Clavius, Regiomontanus, Sacrobosco, Mercator, Newton, Gassendi, Galilei and Hevelius, just to quote the most representative ones. The catalogue is followed by a chronological index and an index of printers and publishers.

  8. High-resolution spectroscopy of the CN red system in comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Kondo, Sohei; Hamano, Satoshi; Sameshima, Hiroaki; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Yasui, Chikako; Mito, Hiroyuki; Sarugaku, Yuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2015-11-01

    CN radical has the strong electronic transition moments in optical wavelength region and CN has extensively observed in comets. Especially, the CN violet system (B2Σ+—X2Σ+) has been observed by using high-resolution spectroscopic technique in order to infer the isotopic ratios of carbon and nitrogen in comets via 12C14N, 13C14N and 12C15N. However, the wavelength range for this system (~388 nm) is severely extinct if a comet is close to the Sun (we have to observe the comet at low elevations from the ground-based observatories). On the other hand, CN radical also has the strong electronic transition in near-infrared (~1.1 microns), the CN red system (A2Πi—X2Σ+). Although there are few reports on the high-resolution spectra of this band in comets, this wavelength region is not severely affected by the telluric extinction and considered as the new window for the observations of the carbon and nitrogen isotopic ratios in comets.High resolution near-infrared spectra of comet C/2013 R1 (Lovejoy) using the WINERED (R~3x104) spectrometer mounted on the 1.3-m Araki telescope at Koyama Astronomical Observatory were acquired on UT 2013 Nov 30. The heliocentric and geocentric distances were 0.91 AU and 0.49 AU, respectively. We detected strong emission lines of the CN red system (0,0) at around 1.1 microns. The rotational line intensities of this band approximately follow the Boltzmann distribution at ~300K for our observations. We present the detailed analysis of the CN red system in comet C/2013 R1 (Lovejoy) and discuss about the isotopic ratios in CN.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018 and partially supported by JSPS, 15J10864.

  9. Real and Virtual Heritage Historical Astronomical Plate Archives in Sonneberg, Bamberg and Hamburg Observatories, the Evolution of Astrophysics and their Influence on Human Knowledge and Culture

    NASA Astrophysics Data System (ADS)

    Kunzmann, Björn

    The rise of astrophysics around 1860 introduced new instruments, methods and research areas. Of course, the increasing number of foundations of new observatories around the world starting at that time was forced by that new scientific discipline, too, but especially by the usage of photographic instruments. At the end of the 19th century the formation and development of photographic methods and techniques had reached a level of sufficient stability for productive usage in astronomy and astrophysics, their new instrumrents, methods and goals. The fundamental meaning of star light analysis for astrophysics by increasing discoveries of Variable Stars and the Systematic search for moving Solar System objects had basically driven the beginning of large photographic sky patrols at that time, using photographic glass plates as detectors and information storages. Sky Patrols, especially systematic long-term monitoring of the whole sky or of well defined selected areas and Sky Surveys were (and still are) an important key method that forced the evolution and progress of astrophysics. Important scientific results by famous astronomers, for example Walter Baade, Cuno Hoffmeister and Harlow Shapley depended on the analysis of photographic plates. Today, there are around 50 photographic plate archives world-wide. Most of them, unfortunately, are in a quite poor condition and not yet digitized. Following Harvard College Observatory with an estimated total of 600,000 plates, Sonneberg observatory harbours the second largest archive world-wide (around 300,000 plates) among other large ones in Germany like Bamberg (40,000 plates) and Hamburg (35,000 plates). These plate archives form an important heritage with a total of roughly two million direct plates and some ten or hundred thousands of spectroscopic plates. A lot of progress has been made by transforming this real heritage to a virtual one by systematic digitisation of the plates, but perhaps only 15% of them have been

  10. Analyses of atmospheric extinction data obtained by astronomers. I - A time-trend analysis of data with internal accidental errors obtained at four observatories

    NASA Technical Reports Server (NTRS)

    Taylor, B. J.; Lucke, P. B.; Laulainen, N. S.

    1977-01-01

    Long-term time-trend analysis was performed on astronomical atmospheric extinction data in wideband UBV and various narrow-band systems recorded at Cerro Tololo, Kitt Peak, Lick, and McDonald observatories. All of the data had to be transformed into uniform monochromatic extinction data before trend analysis could be performed. The paper describes the various reduction techniques employed. The time-trend analysis was then carried out by the method of least squares. A special technique, called 'histogram shaping', was employed to adjust for the fact that the errors of the reduced monochromatic extinction data were not essentially Gaussian. On the assumption that there are no compensatory background and local extinction changes, the best values obtained for extinction trends due to background aerosol changes during the years 1960 to 1972 are 0.006 + or - 0.013 (rms) and 0.009 + or - 0.009 (rms) stellar magnitudes per air mass per decade in the blue and yellow wavelength regions, respectively.

  11. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  12. Evaluation in the 19th century - how astronomers were chosen for Gotha observatory. (German Title: Evaluation im 19. Jahrhundert - wie Astronomen für die Sternwarte Gotha ausgesucht wurden)

    NASA Astrophysics Data System (ADS)

    Strumpf, Manfred

    In his testament, Duke Ernst II of Saxe Gotha and Altenburg instituted a foundation for the maintenance of an astronomical observatory. The interest from which the income of the only astronomer should be paid became insufficient in the course of time, especially after the death of Hansen. The government was not willing to increase the financial means but was nevertheless searching for the impossible, i.e. a reputable scientist who would accept a low salary. Scheibner in Leipzig was charged with the search. He missed two contrasting opportunities: on the one side a classical young astronomer in the tradition lines of Gotha (Leo de Ball) and on the other side a wealthy Hungarian amateur who would have brought the new astrophysics to Gotha (Nikolaus von Konkoly).

  13. The Astronomers' Data Manifesto

    NASA Astrophysics Data System (ADS)

    Norris, R. P.

    2006-08-01

    A draft manifesto is presented for discussion. The manifesto sets out guidelines to which the astronomical community should aspire to maximise the rate and cost-effectiveness of scientific discovery. The challenges are not underestimated, but can still be overcome if astronomers, observatories, journals, data centres, and the Virtual Observatory Alliance work together to overcome the hurdles. The key points of the manifesto are: 1. All major tables, images, and spectra published in journals should appear in the astronomical data centres. 2. All data obtained with publicly-funded observatories should, after appropriate proprietary periods, be placed in the public domain. 3. In any new major astronomical construction project, the data processing, storage, migration, and management requirements should be built in at an early stage of the project plan, and costed along with other parts of the project. 4. Astronomers in all countries should have the same access to astronomical data and information. 5. Legacy astronomical data can be valuable, and high-priority legacy data should be preserved and stored in digital form in the data centres. 6. The IAU should work with other international organisations to achieve our common goals and learn from our colleagues in other fields.

  14. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Covey, Rawland; Kodak, Charles

    1999-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at GGAO. It also gives an overview of VLBI activities during the previous year. The outlook lists the tasks planned for 1999.

  15. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2004-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  16. The South African Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics discussed in the Overview of Year 1988 include the following: Supernova in the Large Magellanic Cloud; Galaxies; Ground based observations of celestial x ray sources; the Magellanic Clouds; Pulsating variables; Galactic structure; Binary star phenomena; The provision of photometric standards; Nebulae and interstellar matter; Stellar astrophysics; Astrometry; Solar system studies; Visitors programs; Publications; and General matters.

  17. John Flamsteed and the turn of the screw: mechanical uncertainty, the skilful astronomer and the burden of seeing correctly at the Royal Observatory, Greenwich.

    PubMed

    Spiegel, Richard J

    2015-03-01

    Centring on John Flamsteed (1646-1719), the first Astronomer Royal, this paper investigates the ways in which astronomers of the late seventeenth century worked to build and maintain their reputations by demonstrating, for their peers and for posterity, their proficiency in managing visual technologies. By looking at his correspondence and by offering a graphic and textual analysis of the preface to his posthumous Historia Coelestis Britannica (1725), I argue that Flamsteed based the legitimacy of his life's work on his capacity to serve as a skilful astronomer who could coordinate the production and proper use of astronomical sighting instruments. Technological advances in astrometry were, for Flamsteed, a necessary but not a sufficient condition for the advancement of astronomy. Technological resources needed to be used by the right person. The work of the skilful astronomer was a necessary precondition for the mobilization and proper management of astronomical technologies. Flamsteed's understanding of the astronomer as a skilled actor importantly shifted the emphasis in precision astronomical work away from the individual observer's ability to see well and toward the astronomer's ability to ensure that instruments guaranteed accurate vision. PMID:25833797

  18. On Tokugawa Bakufu's astronomical officials

    NASA Astrophysics Data System (ADS)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  19. Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2011-06-01

    Astronomy has been at the forefront among scientific disciplines for the sharing of data, and the advent of the World Wide Web has produced a revolution in the way astronomers do science. The recent development of the concept of Virtual Observatory builds on these foundations. This is one of the truly global endeavours of astronomy, aiming at providing astronomers with seamless access to data and tools, including theoretical data. Astronomy on-line resources provide a rare example of a world-wide, discipline-wide knowledge infrastructure, based on internationally agreed interoperability standards.

  20. The Knorre astronomers' dynasty

    NASA Astrophysics Data System (ADS)

    Pinigin, G.

    2009-06-01

    We attempt to throw light upon the poorly known astronomical dynasty of Knorre and describe its contribution to astronomy. The founder of the dynasty, Ernst Christoph Friedrich Knorre (1759-1810), was born in Germany in 1759, and since 1802 he was a Professor of Mathematics at the Tartu University, and observer at its temporary observatory. He determined the first coordinates of Tartu by stellar observations. Karl Friedrich Knorre (1801-1883) was the first director of the Naval Observatory in Nikolaev since the age of 20, provided the Black Sea navy with accurate time and charts, trained mariners in astronomical navigation, and certified navigation equipment. He compiled star maps and catalogues, and determined positions of comets and planets. He also participated in Bessel's project of the Academic Star Charts, and was responsible for Hora 4, published by the Berlin Academy of Sciences. This sheet permitted to discover two minor planets, Astraea and Flora. Viktor Knorre (1840-1919) was born in Nikolaev. In 1862 he left for Berlin to study astronomy. After defending his thesis for a doctor's degree, he went to Pulkovo as an astronomical calculator in 1867. Since 1873 Viktor worked as an observer of the Berlin Observatory Fraunhofer refractor. His main research focussed on minor planets, comets and binary stars. He discovered the minor planets Koronis, Oenone, Hypatia and Penthesilea. Viktor Knorre also worked on improving astronomical instrumentation, e.g. the Knorre / Heele equatorial telescope mounting.

  1. The Russian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O. B.; Malkov, O. Yu.; Kilpio, A. A.; Kilpio, E. Yu.; Kovaleva, D. A.; Sat, L. A.

    The Russian Virtual Observatory (RVO) will be an integral component of the International Virtual Observatory (IVO). The RVO has the main goal of integrating resources of astronomical data accumulated in Russian observatories and institutions (databases, archives, digitized glass libraries, bibliographic data, a remote access system to information and technical resources of telescopes etc.), and providing transparent access for scientific and educational purposes to the distributed information and data services that comprise its content. Another goal of the RVO is to provide Russian astronomers with on-line access to the rich volumes of data and metadata that have been, and will continue to be, produced by astronomical survey projects. Centre for Astronomical Data (CAD), among other Russian institutions, has had the greatest experience in collecting and distributing astronomical data for more than 20 years. Some hundreds of catalogs and journal tables are currently available from the CAD repository. More recently, mirrors of main astronomical data resources (VizieR, ADS, etc) are now maintained in CAD. Besides, CAD accumulates and makes available for the astronomical community information on principal Russian astronomical resources.

  2. Astronomical Data Center Bulletin, volume 1, no. 1

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr. (Editor); Nagy, T. A. (Editor); Mead, J. M. (Editor)

    1980-01-01

    Information about work in progress on astronomical catalogs is presented. In addition to progress reports, an upadated status list for astronomical catalogs available at the Astronomical Data Center is included. Papers from observatories and individuals involved with astronomical data are also presented.

  3. The Optici and Mechanici of the Berlin Academy and of its Astronomical Observatory. (German Title: Optici und Mechanici der Berliner Akademie und ihrer Sternwarte)

    NASA Astrophysics Data System (ADS)

    Zaun, Joerg

    Amongst the staff of the Berlin Academy in the 18th century, who have until now been almost completely absent from historical texts, were numerous mechanical and optical technicians. Although only a partial picture can be drawn from the available historical sources, it is clear that the Academy continuously employed a number of instrument makers, and financed their labours generously. Their primary task was the care and repair of the Academy's and its observatory's scientific instruments. Most of this equipment was, in the 18th century, imported from Paris or London.

  4. Graduate Astronomy Education in the Early Days of Lick Observatory.

    ERIC Educational Resources Information Center

    Osterbrock, Donald E.

    1980-01-01

    Discusses Lick Observatory's (University of California) early graduate students and graduate program in astronomy. The history of the Lick Observatory and famous astronomy professors and astronomers associated with the Lick Observatory are also discussed. (DS)

  5. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  6. The League of Astronomers

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Brandel, A.; Paat, A. M.; Schmitz, D.; Sharma, R.; Trujillo, J.; Laws, C. S.

    2014-01-01

    The League of Astronomers is committed to engaging the University of Washington (UW) and the greater Seattle communities through outreach, research, and events. Since its re-founding two years ago, the LOA has provided a clear connection between the UW Astronomy Department, undergraduate students, and members of the public. Weekly outreach activities such as public star parties and planetarium talks in both the UW Planetarium and the Mobile Planetarium have connected enthusiastic LOA volunteers with hundreds of public observers. In addition, collaboration with organizations like the Seattle Astronomical Society and the UW Society of Physics Students has allowed the LOA to reach an even greater audience. The club also provides opportunities for undergraduate students to participate in research projects. The UW Student Radio Telescope (SRT) and the Manastash Ridge Observatory (MRO) both allow students to practice collecting their own data and turning it into a completed project. Students have presented many of these research projects at venues like the UW Undergraduate Research Symposium and meetings of the American Astronomical Society. For example, the LOA will be observing newly discovered globular clusters at the Dominion Astrophysical Observatory (DAO) in Victoria, B.C. and constructing color-magnitude diagrams. The LOA also helps engage students with the Astronomy major through a variety of events. Bimonthly seminars led by graduate students on their research and personal experiences in the field showcase the variety of options available for students in astronomy. Social events hosted by the club encourage peer mentoring and a sense of community among the Astronomy Department’s undergraduate and graduate students. As a part of one of the nation’s largest undergraduate astronomy programs, members of the League of Astronomers have a unique opportunity to connect and interact with not only the Seattle public but also the greater astronomical community.

  7. COMMISSION 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Norris, Raymond P.; Bessel, M. S.; Dluzhnevskaia, O.; Jenkner, H.; Malkov, O.; Murtagh, F.; Nakajima, K.; Ochsenbein, F.; Pence, W.; Schmitz, M.; Wielen, R.; Zhao, Y. H.

    2007-03-01

    The triennial report of Commission V Documentation and Astronomical Data/Documentation et Données Astronomiques covers 2002-2005 activities, and in particular the activities of the five Working Groups: Working Group Astronomical Data; Working Group Designations; Working Group Libraries; Working Group FITS; Working Group Virtual Observatories; and of Task Force for the Preservation and Digitization of Photographic Plates.

  8. Azeglio Bemporad and the Astronomical Popularization between Naples and Catania During the First Forty Years of the XX Century

    NASA Astrophysics Data System (ADS)

    Fulco, M. T.; Olostro Cirella, E.

    The scientific popularization is an important activity in the Research Institutes. In particular, at Capodimonte Astronomical Observatory and at Catania Astrophysical Observatory where in the first half of the XX century the astronomical communication reached its highest expression.

  9. Women Astronomers.

    ERIC Educational Resources Information Center

    Warner, Deborah Jean

    1979-01-01

    Traces the role of women in the scientific community in the United States since the mid-nineteenth century. Specific concern is directed towards the education and career opportunities of female astronomers. (MA)

  10. Ancient Chinese Astronomical Technologies

    NASA Astrophysics Data System (ADS)

    Walsh, Jennifer Robin

    2004-05-01

    I am interested in the astronomical advances of the Ancient Chinese in measuring the solar day. Their development of gnomon & ruler, sundial, and water clock apparatuses enabled Chinese astronomers to measure the annual solar orbit and solar day more precisely than their contemporaries. I have built one of each of these devices to use in collecting data from Olympia, Washington. I will measure the solar day in the Pacific Northwest following the methodology of the ancient Chinese. I will compare with my data, the available historical Chinese astronomical records and current records from the United States Naval Observatory Master Clock. I seek to understand how ancient Chinese investigations into solar patterns enabled them to make accurate predictions about the movement of the celestial sphere and planets, and to develop analytic tests of their theories. Mayall, R. Newton; Sundials: their construction and use. Dover Publications 2000 North, John; The Norton History of Astronomy and Cosmology W.W. Norton& Co. 1995 Zhentao Xu, David W. Pankenier, Yaotiao Jiang; East Asian archaeoastronomy : historical records of astronomical observations of China, Japan and Korea Published on behalf of the Earth Space Institute by Gordon and Breach Science Publishers, c2000

  11. Korean Astronomical Calendar, Chiljeongsan

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  12. Astronomical Fourier spectropolarimetry

    NASA Technical Reports Server (NTRS)

    Forbes, F. F.; Fymat, A. L.

    1974-01-01

    Spectra of the Stokes polarization parameters of Venus (resolution 0.5 per cm) are presented. They were obtained at the Cassegrain focus of the 154-cm telescope of the National Mexican Observatory, Baja California, Mexico, July 12 and 13, 1972, with the Fourier Interferometer Polarimeter (FIP). A preliminary, limited analysis of four spectral features and of the CO2 rotational band structures at 6080 and 6200 per cm has demonstrated that spectral polarization is indeed present. These experimental results, confirmed by two series of observations, provide substantiation for this theoretically predicted phenomenon. They also tend to show that the FIP represents a novel astronomical tool for variable spectral resolution studies of both the intensity and the state of polarization of astronomical light sources.

  13. Grand Observatory

    NASA Technical Reports Server (NTRS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  14. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  15. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  16. Development of Mykolaiv Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.; Protsyuk, Yu.

    Results obtained in 2010-2013 on the development of astronomical databases and web services are presented. Mykolaiv Virtual Observatory (MVO) is a part of the Ukrainian Virtual Observatory (UkrVO). At present, MVO consists of three major databases containing data on: astrometric catalogues, photographic plates, CCD observations. The databases facilitate the process of data mining and provide easy access to the textual and graphic information on the results of observations and their reduction obtained during the whole history of Nikolaev Astronomical Observatory (NAO).

  17. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  18. Strasbourg's "Academy" observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The observing post located on the roof of Strasbourg's 19th-century "Academy" is generally considered as the second astronomical observatory of the city: a transitional facility between the (unproductive) turret lantern at the top of the Hospital Gate and the German (Wilhelminian) Observatory. The current paper reviews recent findings from archives (blueprints, inventories, correspondence, decrees and other documents) shedding some light on this observatory of which virtually nothing was known to this day. While being, thanks to Chrétien Kramp (1760-1826), an effective attempt to establish an actual observatory equipped with genuine instrumentation, the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. A meridian instrument with a Cauchoix objective doublet was however recovered by the German observatory and is still existing.

  19. Astronomical kaleidoscope

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    2005-10-01

    The entry contains two Moon eclipses (a picture of a total eclipse and a photo of a penumbral one), photographs of monuments of few greatest astronomers: Nikolay Kopernik, Tiho Brahe and Johannes Kepler, a photo from the JENAM-1995 (Catania, Sicily) as well as photographs of few astronomers related with Moldova and Romania: V. Grigorevskii, N. Donitch, V.Nadolschi, D. Mangeron, two nice clocks in Prague, as well as a map of the Sanctuary in Orheiul -Vechi (Bessarabia) with an supposed ancient calendar.

  20. San Marcos Astronomical Project and Doctoral Prospectus

    NASA Astrophysics Data System (ADS)

    Aguilar, M. L.

    2009-05-01

    The Universidad Nacional Mayor de San Marcos, UNMSM, in Lima, Perú, is the only Peruvian institution working for the peruvian astronomical development as a career since 1970. We are conforming a network with international friend astronomers to invite them as Visiting Lectures to assure the academic level for the future doctoral studies in the UNMSM. The Chancellor of UNMSM has decided that the Astronomical Project is a UNMSM Project, to encourage and advance in this scientific and strategical area, to impulse the modernity of Peru, the major effort will be the building of the San Marcos Astronomical Observatory, with a telescope of 1 meter aperture.

  1. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  2. Astronomer's Proposal Tool

    NASA Technical Reports Server (NTRS)

    Krueger, Tony

    2005-01-01

    Astronomer's Proposal Tool (APT) is a computer program that assists astronomers in preparing their Phase 1 and Phase 2 Hubble Space Telescope science programs. APT is a successor to the Remote Proposal Submission System 2 (RPS2) program, which has been rendered obsolete by more recent advances in computer software and hardware. APT exploits advances associated with widespread use of the Internet, multiplatform visual development software tools, and overall increases in the power of desktop computer hardware, all in such a way as to make the preparation and submission of proposals more intuitive and make observatory operations less cumbersome. APT provides documentation and help that are friendly, up to date, and easily accessible to users of varying levels of expertise, while defining an extensible framework that is responsive to changes in both technology and observatory operations. APT consists of two major components: (1) a set of software tools that are intuitive, visual, and responsive and (2) an integrated software environment that unifies all the tools and makes them interoperable. The APT tools include the Visual Target Tuner, Proposal Editor, Exposure Planner, Bright Object Checker, and Visit Planner.

  3. Astronomical instruments.

    NASA Astrophysics Data System (ADS)

    Rai, R. N.

    Indian astronomers have devised a number of instruments and the most important of these is the armillary sphere. The earliest armillary spheres were very simple instruments. Ptolemy in his Almagest enumerates at least three. The simplest of all was the equinoctial armilla. They had also the solstitial armilla which was a double ring, erected in the plane of the meridian with a rotating inner circle. This was used to measure the solar altitude.

  4. Astronomical superhighways

    NASA Astrophysics Data System (ADS)

    Leach, D. C.

    1995-08-01

    The expansion of data supply has been prolific over the past decade. Publishers of text are only just beginning to consider what the aim of their publications should be in the light of competition from computer databases. Increasingly sources of data are becoming linked into a global network. The modem has revolutionised the way many astronomers interact with the outside world and each other. Access to data sources world wide can now be undertaken with a simple telephone call and a desktop computer.

  5. Asteroid Lightcurve Analysis at the Danhenge Observatory Apr - Aug 2011

    NASA Astrophysics Data System (ADS)

    Coley, Daniel

    2012-01-01

    The lightcurves for three main-belt asteroids, 1413 Roucarie, 3385 Bronnina, and 39890 Bobstephens. All observations were taken from the DanHenge Observatory, one of 13 observatories at Goat Mountain Astronomical Research Station (GMARS - MPC G79).

  6. Chicago's Dearborn Observatory: a study in survival

    NASA Astrophysics Data System (ADS)

    Bartky, Ian R.

    2000-12-01

    The Dearborn Observatory, located on the Old University of Chicago campus from 1863 until 1888, was America's most promising astronomical facility when it was founded. Established by the Chicago Astronomical Society and directed by one of the country's most gifted astronomers, it boasted the largest telescope in the world and virtually unlimited operating funds. The Great Chicago Fire of 1871 destroyed its funding and demolished its research programme. Only via the sale of time signals and the heroic efforts of two amateur astronomers did the Dearborn Observatory survive.

  7. The Norwegian Naval Observatories

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn Ragnvald

    2007-07-01

    Archival material has revealed milestones and new details in the history of the Norwegian Naval Observatories. We have identified several of the instrument types used at different epochs. Observational results have been extracted from handwritten sources and an extensive literature search. These allow determination of an approximate location of the first naval observatory building (1842) at Fredriksvern. No physical remains exist today. A second observatory was established in 1854 at the new main naval base at Horten. Its location is evident on military maps and photographs. We describe its development until the Naval Observatory buildings, including archives and instruments, were completely demolished during an allied air bomb raid on 23 February 1945. The first director, C.T.H. Geelmuyden, maintained scientific standards at the the Observatory between 1842 and 1870, and collaborated with university astronomers to investigate, develop, and employ time-transfer by telegraphy. Their purpose was accurate longitude determination between observatories in Norway and abroad. The Naval Observatory issued telegraphic time signals twice weekly to a national network of sites, and as such served as the first national time-service in Norway. Later the Naval Observatory focused on the particular needs of the Navy and developed into an internal navigational service.

  8. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  9. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  10. Acquirement of the observatory code of Langkawi National Observatory

    NASA Astrophysics Data System (ADS)

    Loon, Chin Wei; Zainuddin, Mohd. Zambri; Ahmad, Nazhatulshima; Shukor, Muhammad Shamim; Tahar, Muhammad Redzuan

    2015-04-01

    Observatory code was assigned by The International Astronomical Union (IAU) Minor Planet Center (MPC) for a permanent observatory that intended to do astrometric CCD-observing program of minor planet or comets in solar system. The purpose of acquiring an observatory code is to document specific details about a particular observation site and the types of instruments used within the observatory. In addition, many astronomical centers and stations worldwide will know there is an active observatory at the particular location and international cooperation program in astronomy observation is possible. The Langkawi National Observatory has initiated an observation program to monitor minor planet, specifically those Near Earth Objects (NEOs) that may bring potentially hazardous to the Earth. In order to fulfil the requirement that stated by MPC for undertaking astrometric CCD-observing program, an observatory code was required. The instruments and methods that applied to obtain the observatory code will be discussed. The Langkawi National Observatory is now coded as O43 and listed in the MPC system, the single worldwide location for receipt and distribution of positional measurements of minor planets, comets and outer irregular natural satellites of major planets.

  11. Observatoriya imeni russkogo astronoma v dalekoj Brazilii. K 100-letiyu so diya rozhdeniya Aleksandra Ivanovicha Postoeva (1900 - 1976) %t An observatory in distant Brazil named after a Russian astronomer (dedicated to Alexander Postoyev (1900 - 1976) centennial anniversary

    NASA Astrophysics Data System (ADS)

    Marques Dos Santos, P.; Matsuura, O. T.

    This is a biographical note on the life of Dr. Alexander Postoyev, a victim of Stalin's purge of Soviet astronomers in 1936 - 1937. Together with his family, he left the Soviet Union in 1943 and lived in Germany as a refugee and a "displaced person" until 1952, when he moved to Brazil. There, he started the second part of his professional career. Thanks to his efforts, the Astronomical and Geophysical Institute (IAG) of the University of Sao Paulo (USP) was for the first time included in programs of international cooperation, thus contributing to the institutional consolidation of IAG/USP as a leading center of astronomical research and teaching in Brazil now.

  12. NRAO Astronomer Honored by American Astronomical Society

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Dr. Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO), received the American Astronomical Society's (AAS) Helen B. Warner Prize on January 11, at the society's meeting in Seattle, Washington. The prize is awarded annually for "a significant contribution to observational or theoretical astronomy during the five years preceding the award." Presented by AAS President Debra Elmegreen, the prize recognized Ransom "for his astrophysical insight and innovative technical leadership enabling the discovery of exotic, millisecond and young pulsars and their application for tests of fundamental physics." "Scott has made landmark contributions to our understanding of pulsars and to using them as elegant tools for investigating important areas of fundamental physics. We are very proud that his scientific colleagues have recognized his efforts with this prize," said NRAO Director Fred K.Y. Lo. A staff astronomer at the NRAO since 2004, Ransom has led efforts using the National Science Foundation's Green Bank Telescope and other facilities to study pulsars and use them to make advances in areas of frontier astrophysics such as gravitational waves and particle physics. In 2010, he was on a team that discovered the most massive pulsar yet known, a finding that had implications for the composition of pulsars and details of nuclear physics, gravitational waves, and gamma-ray bursts. Ransom also is a leader in efforts to find and analyze rapidly-rotating millisecond pulsars to make the first direct detection of the gravitational waves predicted by Albert Einstein. In other work, he has advanced observational capabilities for finding millisecond pulsars in globular clusters of stars and investigated how millisecond pulsars are formed. A graduate of the United States Military Academy at West Point, NY, Ransom served as an artillery officer in the U.S. Army. After leaving the Army, he earned a Ph.D. at Harvard University in 2001, and was a postdoctoral fellow

  13. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  14. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  15. Really Bad Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2009-01-01

    What happens when even Percival Lowell stops believing in your Mars observations? History can be troubling. This I learned while editing the Biographical Encyclopedia of Astronomers (Springer, 2007). There have been astronomers who do not fit our commonly held, and clung to, conceptual model: a sociological system that sifts out generally like-minded and sensible colleagues. I refer to those individuals who (for at least a time) successfully entered the mainstream profession, but now disturb our worldview that says prosperity as a scientist usually is achieved by a rational being holding certain common values. My List of Shame includes examples from each of the last four centuries. Not "crack pot” cosmologists, these were hard-working observers for whom the end justified the means. And they all got away with it. Each person I discuss was vetted by the professional establishment of the day. Yet you will learn how to be fired from a major observatory, banned from prominent journals. But only after damage to the science is done. Be afraid.

  16. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  17. University Observatory, Ludwig-Maximilians-Universität

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The University Observatory of Ludwig-Maximilians-Universität was founded in 1816. Astronomers who worked or graduated at the Munich Observatory include: Fraunhofer, Soldner, Lamont, Seeliger and Karl Schwarzschild. At present four professors and ten staff astronomers work here. Funding comes from the Bavarian Government, the German Science Foundation, and other German and European research progra...

  18. Astronomical Data Center Bulletin, volume 1, number 2

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Warren, W. H., Jr.; Mead, J. M.

    1981-01-01

    Work in progress on astronomical catalogs is presented in 16 papers. Topics cover astronomical data center operations; automatic astronomical data retrieval at GSFC; interactive computer reference search of astronomical literature 1950-1976; formatting, checking, and documenting machine-readable catalogs; interactive catalog of UV, optical, and HI data for 201 Virgo cluster galaxies; machine-readable version of the general catalog of variable stars, third edition; galactic latitude and magnitude distribution of two astronomical catalogs; the catalog of open star clusters; infrared astronomical data base and catalog of infrared observations; the Air Force geophysics laboratory; revised magnetic tape of the N30 catalog of 5,268 standard stars; positional correlation of the two-micron sky survey and Smithsonian Astrophysical Observatory catalog sources; search capabilities for the catalog of stellar identifications (CSI) 1979 version; CSI statistics: blue magnitude versus spectral type; catalogs available from the Astronomical Data Center; and status report on machine-readable astronomical catalogs.

  19. Tools for Coordinating Planning Between Observatories

    NASA Astrophysics Data System (ADS)

    Jones, J.; Maks, L.; Fishman, M.; Grella, V.; Kerbel, U.; Misra, D.; Pell, V.

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wave bands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only a single observatory. Thus, programs using multiple observatories are limited not by scientific restrictions, but by operational inefficiencies. At present, multi-observatory programs are initiated by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among staffs at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming and error-prone, and the outcome of requests is not certain until the very end. To increase multi-observatory operations efficiency, such resource intensive processes need to be re-engineered. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the probability of scheduling all observations.

  20. Some astronomical challenges for the twenty-first century

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1992-01-01

    This paper addresses some of the scientific puzzles that astronomers may face in the next century. Four areas in astronomy are discussed in detail. These include cosmology and galaxy formation, active galaxies and quasars, supernovae and stellar remnants, and the formation of stars and planets. A variety of observatories on the Moon are proposed to attack these astronomical challenges.

  1. Amateur and professional astronomers meet at Mill Hill

    NASA Astrophysics Data System (ADS)

    Poyner, G.

    2000-12-01

    Nearly forty professional and amateur astronomers from around the UK converged on the Mill Hill Observatory of University College, London, on Saturday September 16, for a meeting set up by the Royal Astronomical Society and The Astronomer to promote and exchange ideas on professional?amateur collaboration in astronomy. Fields discussed included variable star research, gamma ray bursters, supernova searching, spectroscopy and minor planet and meteor work.

  2. Architecture of Chinese Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, Chen-Zhou; Zhao, Yong-Heng

    2004-06-01

    Virtual Observatory (VO) is brought forward under the background of progresses of astronomical technologies and information technologies. VO architecture design embodies the combination of above two technologies. As an introduction of VO, principle and workflow of Virtual Observatory are given firstly. Then the latest progress on VO architecture is introduced. Based on the Grid technology, layered architecture model and service-oriented architecture model are given for Chinese Virtual Observatory. In the last part of the paper, some problems on architecture design are discussed in detail.

  3. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald

    2015-01-01

    The path of the total solar eclipse across the United States on August 21, 2017 crosses the Pisgah Astronomical Research Institute (PARI) located in western North Carolina. The partial eclipse begins at about 17:08 UT, followed by the nearly 2 minute total eclipse which begins at about 18:37 UT. The PARI campus includes radio and optical telescopes, as well as earth science instruments that include a seismometer, geomagnetometer, EarthScope Plate Boundary Observatory, time standards, and several weather stations. The instruments stream data to the PARI website and will be available for the eclipse. In anticipation of the 2017 solar eclipse, we present the instruments and infrastructure of the PARI campus. We invite astronomers to explore the use of the PARI campus as a site for their own instruments and/or the use of instruments already located at PARI.

  4. [French astronomical journals an interactivity of the scientific world].

    PubMed

    Vassilieff, Catherine

    2014-01-01

    Astronomical data issued from observatories find multiple uses on land, as well as on sea. Due to their structure and periodicity, scientific reviews are particularly adapted to peer review and sharing of data between astronomers as well as between astronomers and hobbyists. During the 19(th) century regional observatories first gather together professionals interested in the practical applications of the observations and later, under the influence of personalities such as Camille Flammarion, they bring together a larger non-professional audience. Being the epicentre of scientific exchange, the reviews have in the 20(th) century found their place on the websites of academic institutions as well as users forums. PMID:25311894

  5. How I Became an Astronomer

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2001-01-01

    Life as an astronomer has taken me to view eclipses of the Sun from the Gaspe' Peninsula to the Pacific Ocean and the China and Coral Seas, and to observe the stars at observatories across the USA and as far south as Chile. I've also enjoyed working with NASA's telescopes in space, including the Hubble Space Telescope and the International Ultraviolet Explorer. It seems funny to reflect that it all began in the Sixth Grade by a fluke - the consequence of a hoax letter whose author I never identified.

  6. VizieR Online Data Catalog: UBVIHα photometry in NGC 1893 (Lim+, 2014)

    NASA Astrophysics Data System (ADS)

    Lim, B.; Sung, H.; Kim, J. S.; Bessell, M. S.; Park, B.-G.

    2015-03-01

    The observation of NGC 1893 was made on 2009 January 19 using the AZT-22 1.5m telescope (f/7.74) at Maidanak Astronomical Observatory in Uzbekistan. All imaging data were acquired using the Fairchild 486 CCD (SNUCam) with the standard Bessell UBVI and Hα filters. (1 data file).

  7. Astronomical education in Tajikistan. Project TAJASTRO

    NASA Astrophysics Data System (ADS)

    Ibadinov, Khursandkul I.; Rahmonov, A. A.

    2011-06-01

    The centre of astronomy in Tajikistan is the Institute of Astrophysics of the Academy of Sciences of Tajikistan. This institute carries out scientific research and contributes to the preparation of the astronomical staff and to astronomical education. The reform of education in Tajikistan continues and now astronomy is studied in schools (together with physics) and at universities. The Tajik State Pedagogical University resumed in 2007 the training of teachers in physics and astronomy. Since 1999 the Tajik National University (TNU) offers a a specialty in astronomy. In 2006 is restored the Small Academy of Sciences (SAS) of Tajikistan. There is a planetarium in Khujand and in 2006 the Institute of Astrophysics, TNU and the Astronomical Society of Tajikistan, along with the support IBSP/UNESCO, organised the Training Methodical Center (TMC) ``TAJASTRO'' at the Hisar astronomical observatory for students, graduate students, young scientists, and teachers at secondary schools.

  8. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  9. Sojourn in Paris of Hisashi Terao, the first Japanese modern astronomer

    NASA Astrophysics Data System (ADS)

    Nakamura, Tsuko

    2003-08-01

    Through a domestic search as well as the one in Paris, I made clear the early life of Hisashi Terao, the first director of Tokyo Astronomical Observatory, his astronomical education in Paris, and the subsequent relation with the famous painter Seiki Kuroda. In particular, the origin and role of Montsouris Astronomical Training School were discussed.

  10. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  11. Detours to the unification of calendars: The ``Improved Calendar'' (1700 bis 1775) and the foundation of the Berlin Astronomical Observatory. (German Title: Umwege zur Kalendereinheit: Der ``Verbesserte Kalender'' (1700 bis 1775) und die Gründung der Berliner Sternwarte)

    NASA Astrophysics Data System (ADS)

    Kokott, Wolfgang

    The refusal of most protestant communities in Germany and other countries to accept the calendar reform decreed by Pope Gregor XIII in 1582 was finally circumvented by the introduction of an ``Improved (Julian) Calendar''. It did provide for astronomical rather than cyclical calculation of the date of Easter. While for most years both calendars were identical except in name, some conflicts did eventually occur. This led finally, in 1775, to a decision in favour of the Gregorian mode of calculation.

  12. Preservation and maintenance of the astronomical sites in Armenia

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  13. TMT in the Astronomical Landscape of the 2020s

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark; Inami, Hanae

    2014-07-01

    Thirty Meter Telescope Observatory and NOAO will host the second TMT Science Forum at Loews Ventana Canyon Resort in Tucson, Arizona. The TMT Science Forum is an an annual gathering of astronomers, educators, and observatory staff, who meet to explore TMT science, instrumentation, observatory operations, archiving and data processing, astronomy education, and science, technology, engineering, and math (STEM) issues. It is an opportunity for astronomers from the international TMT partners and from the US-at-large community to learn about the observatory status, discuss and plan cutting-edge science, establish collaborations, and to help shape the future of TMT. One important theme for this year's Forum will be the synergy between TMT and other facilities in the post-2020 astronomical landscape. There will be plenary sessions, an instrumentation workshop, topical science sessions and meetings of the TMT International Science Development Teams (ISDTs).

  14. Strasbourg Observatory Archives Revisited

    NASA Astrophysics Data System (ADS)

    Heck, A.

    2002-12-01

    Official talks in France and Germany after World War I were generally of hatred and revenge. Strasbourg Observatory had just changed nationality (from Prussian to French) for the first time (this would happen again at the outbreak of WWII and after the conflict). Documents show that astronomers did not share the general attitude. For example the inventory book started in German was continued in French after 1918. It is moving to see those different handwritings in two different languages on the same pages -- making of that book a unique document in various respects, but also reminding us that the native language of the region was in fact Alsacian.

  15. Acquisitions of the Astronomical Libraries of the Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Ptitsyn, D. A.; Dluzhnevskaya, O. B.; Pomelnikova, N. A.; Ptitsyn, D. A.

    The changes in literature acquisitions of the scientific libraries of astronomical institutes and observatories of the Russian Academy of Sciences during the last years are discussed. The greate role played by western astronomical societies and funds in supplying the astronomical libraries of the FSU with scientific journals is emphasized. The technical facilities of the Russian astronomical libraries are considered in connection with new technology developments in the world-wide exchange of scientific information.

  16. History of the Marseille Observatory

    NASA Astrophysics Data System (ADS)

    Prévot, Marie-Louise; Caplan, James

    The Marseille Observatory was founded in 1702 by the Jesuit order. It was located near the Vieux Port until the 1860s, when it was taken over as an annex to the Paris Observatory, directed by Le Verrier, and moved to its present location on the Plateau Longchamp. It again became independent in 1873. For information on the early history of the observatory we are largely indebted to F.X. von Zach, who spent several years in Marseille, and who was a good friend of J. Thulis, director from 1801 to 1810. Some aspects of the foundation and early history of the observatory, and of the lives of some of the astronomers who worked there, are presented and illustrated. Our collection of old instruments and documents are described.

  17. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  18. Nikolay N. Donitch - the astronomer

    NASA Astrophysics Data System (ADS)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet

  19. Division B Commission 6: Astronomical Telegrams

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Green, D. W. E.; Samus, N. N.; Aksnes, K.; Gilmore, A. C.; Nakano, S.; Sphar, T.; Tichá, J.; Williams, G. V.

    2016-04-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during Honolulu General Assembly of the IAU. It took place on Tuesday, 11 August 2015. The meeting was attended by Hitoshi Yamaoka (President), Daniel Green (Director of the Central Bureau for Astronomical Telegrams, CBAT, via Skype), Steven Chesley (JPL), Paul Chodas (JPL), Alan Gilmore (Canterbury University), Shinjiro Kouzuma (Chukyo University), Paolo Mazzali (Co-Chair of the Supernova Working Group), Elena Pian (Scuola Normale Superiore di Pisa), Marion Schmitz (chair IAU Working Group Designations + NED), David Tholen (University of Hawaii), Jana Ticha (Klet Observatory), Milos Tichy (Klet Observatory), Giovanni Valsecchi (INAF\\slash Italy), Gareth Williams (Minor Planet Center). Apologies: Nikolai Samus (General Catalogue of Variable Stars, GCVS).

  20. The Role of the Observatories

    NASA Astrophysics Data System (ADS)

    Robson, I.

    2005-12-01

    Observatories are the engine room of astronomical outreach. They provide the tools that allow research discoveries to be made in addition to employing many of the research astronomers and public information officers (PIOs). Where accessible, they provide a natural venue for public visits and centres of excellence. They engage in a wide variety of outreach activities in their own right with varying degrees of success, often linked to funding. In all of this, the enthusiasm and high calibre activities of individuals can never be overestimated. We review the above and report the results from a 'health of stock' survey conducted of a large sample of mainly ground-based observatories refl ecting their overall activities and experiences.

  1. Asteroids Observed from GMARS and Santana Observatories: 2011 October- December

    NASA Astrophysics Data System (ADS)

    Stephens, Robert D.

    2012-04-01

    Lightcurves of six asteroids were obtained from Santana Observatory and Goat Mountain Astronomical Research Station (GMARS): 555 Norma, 1028 Lydina, 1123 Shapleya, 1178 Irmela, 3436 Ibadinov, and 6042 Cheshirecat.

  2. Asteroids Observed from GMARS and Santana Observatories: 2011 July - September

    NASA Astrophysics Data System (ADS)

    Stephens, Robert D.

    2012-01-01

    Lightcurves of three asteroids were obtained from Santana Observatory and Goat Mountain Astronomical Research Station (GMARS) from 2011 July to September: 688 Melanie, 1077 Campanula, and (42265) 2001 QL69.

  3. DVD Database Astronomical Manuscripts in Georgia

    NASA Astrophysics Data System (ADS)

    Simonia, I.; Simonia, Ts.; Abuladze, T.; Chkhikvadze, N.; Samkurashvili, L.; Pataridze, K.

    2016-06-01

    Little known and unknown Georgian, Persian, and Arabic astronomical manuscripts of IX-XIX centuries are kept in the centers, archives, and libraries of Georgia. These manuscripts has a form of treaties, handbooks, texts, tables, fragments, and comprises various theories, cosmological models, star catalogs, calendars, methods of observations. We investigated this large material and published DVD database Astronomical Manuscripts in Georgia. This unique database contains information about astronomical manuscripts as original works. It contains also descriptions of Georgian translations of Byzantine, Arabic and other sources. The present paper is dedicated to description of obtained results and DVD database. Copies of published DVD database are kept in collections of the libraries of: Ilia State University, Georgia; Royal Observatory, Edinburgh, UK; Congress of the USA, and in other centers.

  4. Public relations for a national observatory

    NASA Astrophysics Data System (ADS)

    Finley, David G.

    The National Radio Astronomy Observatory (NRAO) is a government-funded organization providing state-of-the art observational facilities to the astronomical community on a peer-reviewed basis. In this role, the NRAO must address three principal constituencies with its public-relations efforts. These are: the astronomical community; the funding and legislative bodies of the Federal Government; and the general public. To serve each of these constituencies, the Observatory has developed a set of public-relations initiatives supported by public-relations and outreach professionals as well as by management and scientific staff members. The techniques applied and the results achieved in each of these areas are described.

  5. Resource Information Management in Chinese Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Li, Chang-Hua; Cui, Chen-Zhou; Li, Lian; Zhao, Yong-Heng

    2008-06-01

    Information technology has been affecting on all fields of traditional scientific research deeply. Virtual Observatory is a typical example of combination of the latest information technologies with astronomy. Taking advantages of advanced information technologies, for example, Grid technology, it aims to achieve the seamless and global access to astronomical information and maximum scientific output of huge modern astronomic datasets. In the process of design and implementation of resource information system for Chinese Virtual Observatory, the authors adopt Open Grid Service Architecture (OGSA) as its infrastructure, and all resources are managed in the system as services. Resource management, especially resource registry and discovery is a key consideration for both Grid and Virtual Observatory, which affects directly on the performance of the whole system. Based on OGSA and one of its implementations, GT3, this paper describes the design and implementation of resource information management system in Chinese Virtual Observatory.

  6. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  7. Sierra Remote Observatories

    NASA Astrophysics Data System (ADS)

    Ringwald, Fred; Morgan, G. E.; Barnes, F. S., III; Goldman, D. S.; Helm, M. R.; Mortfield, P.; Quattrocchi, K. B.; Van Vleet, L.

    2009-05-01

    We report the founding of a new facility for astrophotography and small-telescope science. Sierra Remote Observatories are eight small observatories at 4610' altitude in the Sierra Nevada Mountains of California. The sky brightness during New Moon typically rates 3 on the Bortle scale. Typical seeing is 1.2", with a one-sigma range between 1.0" and 1.6", measured during 2007 June-September. All eight observatories are operated by remote control over the Internet, from as far away as Toronto and South Carolina. The telescopes range in aperture from 106 mm to 16 inches. Color images have so far been published in several magazines (Astronomy, Practical Astronomer, and Sky & Telescope) and on NASA's Astronomy Picture of the Day website. Science programs include time-resolved photometry of cataclysmic variables including the discovery of a 3.22-hour periodicity in the light curve of the nova-like V378 Pegasi, the serendipitous discovery of a previously undesignated spherical bubble in Cygnus, the discovery of three asteroids, and monitoring of Comet Lulin.

  8. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.

    1993-01-01

    SOFIA, (Stratospheric Observatory for Infrared Astronomy) is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.

  9. Protection of the Guillermo Haro Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  10. The Great Astronomical Ear.

    ERIC Educational Resources Information Center

    Hiatt, Blanchard

    1980-01-01

    Presents a description of the world's largest radio/radar antenna, the Areciba Observatory in Puerto Rico. Activities at the observatory are discussed as well as the scientific research in the field of radio astronomy. (SA)

  11. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  12. Technology progress of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Zhao, Yongheng; Zhao, Gang; Zhang, Yanxia

    2002-12-01

    The project of Virtual Observatory (VO) is the result of breakthroughs in telescope, detector, computer and Internet technologies. The combination with the new information technology is the major characteristic of the VO development. Extensible markup language (XML) and Grid as two trends of information technology will be adopted widely in the VO. The VO architecture is based upon the standard layered architecture of Grid. In the paper, technologies related in each layer of the VO architecture are introduced. The global Virtual Observatory provides new chances for Chinese astronomy. Using the abundant resources in the Internet and chances provided by open-source software, Chinese astronomers should cooperate with national IT experts and push the Virtual Observatory projects of China as soon as possible.

  13. Nicolaus Copernicus Astronomical Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  14. Astronomers Working in Industry.

    ERIC Educational Resources Information Center

    Bless, Robert C.; King, Ivan R.

    1981-01-01

    Four scientists, trained as astronomers, describe their astronomical training and present careers in non-astronomy, industrial jobs. They recount some of the differences, positive and negative, between industrial and academic employment, and comment on some of the attitudes they perceive academic and industrial scientists hold toward each other.…

  15. American Astronomical Society (AAS)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Founded in 1899, the AAS is a non-profit scientific society created to promote the advancement of astronomy and closely related branches of science. Its membership consists primarily of professional researchers in the astronomical sciences, but also includes educators, students and others interested in the advancement of astronomical research. About 85% of the membership is drawn from North Ame...

  16. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  17. The Astronomical League

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Stevens, B. L.

    2000-10-01

    Founded over fifty years ago, the League is the largest general astronomy society in the world. It is a recognized non-profit, educational organization, promoting the science of astronomy. This includes astronomical education, research, individual observing of the heavens and coordination between the amateur and professional astronomy communities. The Astronomical League publishes a quarterly newsletter, the "Reflector", which details amateur activities and amateur collaboration with professional astronomers. The League's Observing Clubs hone the skills of the amateur astronomer in using their telescopes. These clubs provide awards to encourge observing and learning the sky. More general awards are presented to encourage amateur astronomy and the science of astronomy. These include the National Young Astronomer Award, amd the Horkheimer Planetary Imaging Award. They also sponsor conventions on both the National and Regional levels. This year's national is in Ventura, California, next year, near Washington, D.C.

  18. Biographical index ``Astronomers of Ukraine'' at the UkrVO portal

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Artemenko, T. G.; Pakuliak, L. K.

    2014-02-01

    The new electronic database developed by the authors and titled "Astronomers of Ukraine" is described as a source of the main biographical data on astronomers of Ukraine from the 15th century until the beginning of the 21st century. The database is an upgrading component of the Ukrainian Virtual Observatory portal and contains the main biobibliographical data and papers concerning astronomers of Ukraine, as well as links to their publications. The existing biographical sources about astronomers in the world are discussed briefly. A list of the principal publications about astronomers of Ukraine is given.

  19. Enthusiastic Little Astronomers

    NASA Astrophysics Data System (ADS)

    Novak, Ines

    2016-04-01

    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  20. AURA and its US National Observatories

    NASA Astrophysics Data System (ADS)

    Edmondson, Frank K.

    1997-04-01

    The subject of this history is the science and politics of the establishment, funding, construction and operation of two important American observatories, the Kitt Peak National Observatory (KPNO) and the Cerro Tololo Inter-American Observatory (CTIO) by the Association of Universities for Research in Astronomy (AURA). The book is written from the unique perspective of Frank K. Edmondson, a former member of the AURA board of directors. Drawing on oral histories, archival material, as well as the author's personal participation from 1956 to the present, this is a personal account of a period of major innovation in American optical astronomy. Will be of interest to historians and astronomers alike.

  1. Observatory ends scientific investigations

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The Orbiting Astronomical Observatory (OAO-3), which was instrumental in the discovery of the first suspected black hole, wound up its scientific investigation at the end of 1980. Spacecraft science operations were terminated after 8½ years of operation. Named Copernicus, OAO-3 performed consistently beyond design specifications and 7½ years beyond project requirements. Its performance profile, according to the NASA-Goddard engineers and scientists, was ‘astonishing.’While formal scientific investigations were ended December 31, a series of engineering tests are still being made until February 15. At that time, all contact with the spacecraft will end. Project engineers are uncertain whether Copernicus will orient itself permanently toward the sun, begin a permanent orbital tumbling action, or a variation of both.

  2. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  3. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  4. Stephanion Observatory. Greek-Ukranian astrolink

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Avgoloupis, S.; Mavridis, L. N.

    2000-09-01

    The Astronomical research developed during the 35 years of action of the Stephanion Observatory is reviewed in this report. During these years scientists from all the Astronomical Institutes of Greece as well as from many other countries conduct astronomical research programs realized in the Stephanion Observatory. The research on the red dwarfs is a dominant part of the scientific work done. The international cooperation of the Greek scientific teams was developed in the frame of this research. The Greek -- Ukrainian scientific cooperation during the last decade in the frame of broader international cooperation as well as the bilateral ones were very prosperous and set the basis of a promising scientific cooperation in the future in the field of Astronomy.

  5. Analyses of atmospheric extinction data obtained by astronomers. II - Seasonal variations in astronomical extinction

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.; Hodge, P. W.; Taylor, B. J.

    1977-01-01

    Archival astronomical atmospheric extinction records obtained from fifteen observatory sites were analyzed by not strictly rigorous statistical averaging procedures in order to obtain sufficiently reliable pictures of the trends and variations in atmospheric transparency for the period 1956-1972. While the northern hemisphere sites reveal definite seasonal variations with maxima occurring during local summer, the southern hemisphere displays little such effect. The only southern hemisphere sites with any variation were in South Africa, where a late winter maximum was observed.

  6. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  7. Astronomical journey to the Skåne district in Sweden

    NASA Astrophysics Data System (ADS)

    Nakamura, Tsuko

    2006-09-01

    In September of 2005, we had a chance to travel to the Skåe district of Sweden. This short paper briefly reports what we saw there, along with historical episodes relating to Lund Observatory, the medieval astronomical clock preserved at the Lund Cathedral, and the Hven island where Tycho Brahe constructed in the late 16th century the first modern astronomical observatory called Uraniborg.

  8. Odessa Astronomical Calendar-2003

    NASA Astrophysics Data System (ADS)

    Karetnikov, V. G.; Mihalchuk, V. V.; Bazey, A. A.; Andronov, I. L.; Volyanskaya, M. Yu.; Garbuzov, G. A.; Komarov, N. S.; Koshkin, N. I.; Pozigun, V. A.; Ryabov, M. I.

    2002-10-01

    The Odessa Astronomical Calendar is intended for a wide range of readers, who are interested in the problems of astronomy and in the applications of the astronomical data. The items, of information, assembled in the Calendar may be useful to professional workers requiring a definition of time of sets and rises of the Sun and the Moon and approach of twilights, as well as to the amateurs astronomers and other citizens. The Calendar may be used for astronomical education at schools, hymnasia, lycea, colleges and institutes. In this issue of the Calendar, besides a description of the main astronomical events of the year and the tables of the positions of celestial bodies and time of observations of astronomical events on the celestial sphere, there are also included sketches on interesting problems of astronomy and, as the appendix, the instruction on observations of comets. The Odessa Astronomical Calendar is published in Russian and is intended for the inhabitants of southern region of Ukraine. The Calendar is published every year with a constant part and series of articles, which change every year.

  9. The Future Astronomical Software Environment progress .

    NASA Astrophysics Data System (ADS)

    Paioro, L.; Garilli, B.; Grosböl, P.; Tody, D.; Surace, C.; Fenouillet, T.; Franzetti, P.; Fumana, M.; Scodeggio, M.

    The OPTICON working group 3.6 in collaboration with international partners and in coordination with the Virtual Observatory, has already identified the high level requirements and the main architectural concepts for a future software environment for astronomical data reduction and analysis (Future Astronomical Software Environment). A special attention has been payed to: a) scalability, to allow the reduction of huge data volumes exploiting the hardware and software parallel architecture, b) interoperability, in order to guarantee the interaction between software coming from different sources and make easy the access to the Virtual Observatory, c) and modularity, to separate the adopted software technology from the specific computational algorithm and allow an independent evolution of the two areas. The proposed concepts have been widely discussed and shared by the astronomical community; however a lot of work still remains to do, mainly: a) the definition of open standards, b) the verification of such standards thanks to at least one reference implementation and practical user cases, c) and the whole must be supported at least by the major international organizations that develop data reduction and analysis software. All this work has led up to the definition of a new proposal for FP7 within OPTICON (where ESO, INAF, LAM-OAMP and NRAO/NVO are actively involved) which we present describing the project in detail and adding a description of the European FASE prototype, developed by INAF-IASF Milano in collaboration with LAM-OAMP (Marseille).

  10. Light Phenomena over the ESO Observatories II: Red Sprites

    NASA Astrophysics Data System (ADS)

    Horálek, P.; Christensen, L. L.; Bór, J.; Setvák, M.

    2016-03-01

    A rare atmospheric phenomenon, known as red sprites, was observed and captured on camera from the La Silla Observatory. This event signalled the first time that these extremely short-lived flashes of red light, originating in the Earth’s upper atmosphere, were photographed from a major astronomical observatory. Further images of red sprites from the La Silla Paranal Observatory sites are presented and the nature of red sprites is discussed.

  11. Status of the Southern Utah Observatory (SUO) 32" Telescope

    NASA Astrophysics Data System (ADS)

    Kieda, David; Springer, R. Wayne; Gondolo, Paolo

    2007-10-01

    The University of Utah is building a new Astronomical Observatory at a high altitude site in Southern Utah. The Southern Utah Observatory (SUO) Telescope will be outfitted with a 32" R-C telescope manufactured by DFM, and will feature optical and IR focal plane instrumentation as well as capability for remote/robotic operations. In this talk, I will describe the status of SUO Telescope Project, including surveys of atmospheric seeing and night sky darkness measured at potential observatory locations.

  12. The Lifetimes of Astronomers

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2015-08-01

    For members of the American Astronomical Society, I collected data on their lifetimes from (1) 489 obituaries published in 1991-2015, (2) about 127 members listed as deceased but without published obituaries, and (3) a sample of AAS members without obituaries or not known to the AAS as being deceased. These show that the most frequent lifetimes is 85 years. Of 674 deceased members with known lifetimes, 11.0 ± 1.3% lived to be 90 or more years. In comparison to the astronomers, the most frequent lifetime for the general population is 77 years, showing that astronomers live an average of 8 years longer than the general population.

  13. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  14. America's foremost early astronomer

    NASA Astrophysics Data System (ADS)

    Rubincam, David Parry; Rubincam, Milton, II

    1995-05-01

    The life of 18th century astronomer, craftsman, and patriot David Rittenhouse is detailed. As a craftsman, he distinguished himself as one of the foremost builders of clocks. He also built magnetic compasses and surveying instruments. The finest examples of his craftsmanship are considered two orreries, mechanical solar systems. In terms of astronomical observations, his best-known contribution was his observation of the transit of Venus in 1769. Rittenhouse constructed the first diffraction grating. Working as Treasurer of Pennsylvania throughout the Revolution, he became the first director of the Mint in 1792. Astronomical observations in later life included charting the position of Uranus after its discovery.

  15. Achievements of the Armenian Astronomy and the Present Activities of the Armenian Astronomical Society

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A report is given on the achievements of the Armenian astronomy during the last years and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, international collaboration, Armenian Virtual Observatory (ArVO), membership in international organizations, grants, prizes, meetings, summer schools, astronomical Olympiads, other matters related to astronomical education, archaeoastronomy, astronomy outreach and ArAS further projects are discussed.

  16. The creation of the International Astronomical Union as a result of scientific diplomacy

    NASA Astrophysics Data System (ADS)

    Saint-Martin, Arnaud

    2011-06-01

    After World War I, the foundation of the International Astronomical Union delimited a space for a new form of internationality, which led to a rapid change in the way astronomical research had previously been pursued. This structure was to be a sort of parliament of astronomical nations which planned to supervise scientific programs and to rationalise inter-observatory cooperation. In this article, I will discuss the sociological aspects of this institutional process and introduce the idea of `scientific diplomacy'.

  17. The Asiago Observatory's reflectogoniometer

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Pernechele, C.; Barbieri, C.

    1999-09-01

    We present the Asiago Astrophysical Observatory reflectogoniometer, a useful instrument which allows to perform laboratory studies of transmitted and diffuse light. In particular the instrument allows a complete characterization of the Bidirectional Reflectance Function (BDRF) for spherical shape samples and of the Transmittance Function for plane samples. The instrument is placed in an optical laboratory of the Asiago Astrophysical Observatory. Data are acquired by a CCD camera, equipped with its own frame grabber card, and analysed by a pc. Image calibration, i.e. the procedure that converts the value of each pixel of a CCD frame in a radiometric quantity, follows the standard sequence used for remote sensing application (bias, dark, flat fielding, distortion corrections, reflectogoniometric calibration, using a reflectometric standard), and it is implemented in a data reduction pipeline. The instrument tests performed until now have confirm that the imaging-goniophotometer is an instrument suitable for the quick characterization of diffusing surfaces in all the tree possible configuration: transmittance measurements (translucent plates), partial reflectance measurements (diffusing sheets), and bidirectional function characterization (coatings and paints). The goniophotometer may have different astronomical and industrial applications: it can be used for the characterization of absorbance properties of paints for baffling in spatial missions, of diffusive properties of flat field panels, of trasmittance properties of different glasses type and of reflective properties of rocks surfaces, like, for example, meteorites samples.

  18. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  19. Decoding Astronomical Concepts

    ERIC Educational Resources Information Center

    Durisen, Richard H.; Pilachowski, Catherine A.

    2004-01-01

    Two astronomy professors, using the Decoding the Disciplines process, help their students use abstract theories to analyze light and to visualize the enormous scale of astronomical concepts. (Contains 5 figures.)

  20. An astronomical murder?

    NASA Astrophysics Data System (ADS)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  1. Illuminating incidents in antipodean astronomy: John Tebbutt and the Sydney Observatory directorship of 1862.

    NASA Astrophysics Data System (ADS)

    Orchiston, W.

    During much of the second half of the nineteenth century John Tebbutt of Windsor Observatory was Australia's foremost astronomer, despite having chosen to remain an amateur when offered the directorship of Sydney Observatory in 1862. In this paper, the circumstances relating to this offer are investigated, and Tebbutt's subsequent relations with Sydney Observatory are critically examined.

  2. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  3. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  4. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  5. A website for astronomical news in Spanish

    NASA Astrophysics Data System (ADS)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  6. Etienne Leopold Trouvelot (1827--1895), the Artist and Astronomer

    NASA Astrophysics Data System (ADS)

    Corbin, B. G.

    2007-10-01

    The French-born artist Trouvelot arrived in the United States in 1855. His interest in astronomy began with his observations and sketches of spectacular auroras in the 1870s. This work drew the interest of Harvard College Observatory astronomers and he was invited to join the staff. Using Harvard's 15-inch refractor and other telescopes, Trouvelot made many drawings of celestial objects. He was invited to Washington in 1875 to use the Naval Observatory's 26-inch Equatorial, at that time the world's largest refractor. In 1881 Charles Scribner's & Sons agreed to publish a portfolio with 15 of his best drawings as chromolithographs. He returned to France in 1882 to work with Jules Janssen at the Meudon Observatory. Unfortunately, in the United States, Trouvelot will always be remembered not for his astronomical art but as the person who introduced the gypsy moth into the country.

  7. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  8. Women Astronomers: Australia: Women astronomers in Australia

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2001-08-01

    Ragbir Bhathal summarizes the role played by women astronomers in Australia's astronomy, now and in the past. Australia has a great tradition in astronomy, from the early observations of Aboriginal people through the colonial drive to explore and understand, culminating in the established excellence of research there today. Women have contributed to this achievement in no small way, yet their contribution has been unremarked, if not ignored. Here I summarize the historical and present state of affairs and look forward to a brighter and more equitable future.

  9. Astronomy and astronomical education in the FSU (Former Soviet Union)

    NASA Astrophysics Data System (ADS)

    Bochkarev, Nikolai G.

    The current situation in astronomy and astronomical education over the territory of the Former Soviet Union is traced. New facilities for radioastronomy are being put into work - the most important of them being the 2 coupled 32-m dishes, VLBI network "Quasar"; a number of observatories are acquiring an international status (in the frame of CIS); INTERNET is becoming available for an increasing number of astronomical institutions. Azerbaijan astronomers have overcome their isolation from the rest of the world and cooperate actively with the astronomical community. All-Russia and international olympics in astronomy for high school students are held and attract participants from increasing number of regions of Russia and other states. The outcome of the 9th JENAM in Moscow and of the events attached to the Meeting is presented.

  10. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  11. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    SciTech Connect

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A. E-mail: russo@strw.leidenuniv.nl

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  12. A Survey of Astronomical Research: A Baseline for Astronomical Development

    NASA Astrophysics Data System (ADS)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A.

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in "astronomical development" with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  13. Ice Observatory

    NASA Astrophysics Data System (ADS)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  14. Conceiving and marketing NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2009-08-01

    In early 1984, the astronomical community’s plans to launch a series of powerful telescopes able to study celestial sources at almost any wavelength were in trouble. The President of the United States had just declared his priority for a Space Station that was bound to be expensive, and Congress could not understand why yet another set of space observatories was needed when others were already being funded. To realize their aims, astronomers would have to advocate their needs much more effectively than in the past.

  15. Introduction to the Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Kessler, M. F.; Sibille, F.

    1989-01-01

    The Infrared Space Observatory (ISO) is an astronomical satellite, which will operate at infrared wavelengths (2.5 to 200 microns) for a period of at least 18 months. Imaging, spectroscopic, photometric and polarimetric observations will be obtained by four scientific instruments in the focal plane of its 60-cm diameter, cryogenically-cooled telescope. Two-thirds of ISO's observing time will be available to the astronomical community. ISO is a fully approved and funded project of the European Space Agency (ESA) with a foreseen launch date of May 1993.

  16. Serbian Astronomers in Science Citation Index in the XX Century

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  17. Flamsteed's stars. New perspectives on the life and work of the first Astronomer Royal (1646 - 1719).

    NASA Astrophysics Data System (ADS)

    Willmoth, F.

    Contents: 1. Introduction: the King's "astronomical observer". 2. Flamsteed's career in astronomy: nobility, morality and public utility (J. Bennett). 3. Astronomy and strife: John Flamsteed and the Royal Society (M. Feingold). 4. Models for the practice of astronomy: Flamsteed, Horrocks and Tycho (F. Willmoth). 5. Flamsteed's optics and the identity of the astronomical observer (A. Johns). 6. Equipping an observatory: Flamsteed and Molyneux discuss an astronomical quadrant (H. Higton). 7. Mathematical characters: Flamsteed and Christ's Hospital Royal Mathematical School (R. Iliffe). 8. "Professor" John Flamsteed (I. G. Stewart). 9. Edmond Halley and John Flamsteed at the Royal Observatory (A. Cook). 10. A unique copy of Flamsteed's Historia coelestis (1712) (O. Gingerich). 11. "Labour harder than thrashing": John Flamsteed, property and intellectual labour in nineteenth-century England (W. J. Ashworth). 12. The Flamsteed papers in the archives of the Royal Greenwich Observatory. (A. Perkins). A summary catalogue of Flamsteed's papers in the Royal Greenwich Observatory archives (compiled by F. Willmoth).

  18. Integrated Access of Distributed and Heterogeneous Astronomical Data Resources

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Tian, Hai-Jun; Gao, Dan; Yang, Yang; Lu, Yong; Cui, Chen-Zhou; Zhao, Yong-Heng

    2008-06-01

    Astronomical data resources have features of long-term accumulation, high volume, distributed storage, and managed by diverse database software. One of the important goals in Virtual Observatory (VO) is to provide a uniform way to access these distributed and heterogeneous data resources for astronomers. A grid solution (Virtual Observatory Data Access Service, VO-DAS) is designed in this paper. Astronomical catalogue data, image data and spectroscopy data, which have different metadata, are wrapped by Open Grid Service Architecture - Database Access and Integration [OGSA-DAI] (DataNode). VO-DAS implements automatic discovery of DataNodes and supports federation data access upon them. This makes it possible for multi-band cross matching of astronomical objects. VO-DAS supports related specifications published by International Virtual Observatory Alliance (IVOA) so that interoperability is achieved. A series of simple and efficient application interfaces are designed for developing versatile high-level applications based on VO-DAS. Two science cases based on VO-DAS confirm its feasibility.

  19. Astronomical surveys and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ -rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ -ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC) in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS), and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  20. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  1. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  2. Chrysanthos Notaras as an Astronomer

    NASA Astrophysics Data System (ADS)

    Rovithis, P.

    The aim of the present work is to emphasize the contribution of Chrysanthos Notaras (16??-1731) in the dispersion of Astronomy in the begining of the eighteenth century. Chysanthos Notaras, Partiarch of Jerusalem (1707-1731), is included among the most educated Greeks of his epoch. Although his first studies were suitable for ecclesiastic offices and religion, (since he studied ecclesiastic low, at Patavio, Italy), he continued at Paris for additional studies in Astronomy and Geography (1700). He became student of G.D. Cassini, who was the Director of Paris Observatory at that time, and he served as observer and astronomical instruments constructor, under Cassini's supervision. Chrysanthos Notaras included the teaching of "Astronomy" as a lesson in the schools of the Holy Sepulchre, in order to disperse the new ideas and knowledge about the earth and the universe among the young students. He published the first International Map (of the known world) in the Greek language in 1700 and in 1716 his book "Intoduction in Geography and Sphericals" was published in Paris. This book, written before 1707, was mainly an introduction to Astronomy and was used by the afterwards authors as an essential and basic manual and offered a lot to the enlightenment of the enslavement Greeks.

  3. A Future Astronomical Software Environment

    NASA Astrophysics Data System (ADS)

    Grosböl, P.; Tody, D.; Paioro, L.; Granet, Y.; Garilli, B.; Surace, C.; Opticon Fase Network

    2012-09-01

    Analyzing data sets in astronomy has become more and more complex and has driven the development of specific tools, functions and tasks. In order to integrate these tools in a global environment and thereby preserving them, the OPTICON Network 9.2 in coordination with US-VAO has outlined requirements, defined an architectural concept and developed a prototype of a Future Astronomical Software Environment (FASE). Important features are support for user scripting (e.g. Python), access to legacy applications (e.g. IRAF, MIDAS), integration with the Virtual Observatory (VO) for access to remote data and computation, and scalability supporting desktops to distributed cluster systems. A first prototype has been implemented and demonstrates the feasibility by offering access to numerous applications (e.g. ds9, ESO CPL pipelines, MIDAS, topcat) from a Python or Unix shell using VO-SAMP as a software bus. A simple packaging system is also provided to allow easy definition and sharing of applications at a Web portal.

  4. Optical observations of meteors in RI Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Shulga, Alexander; Sybiryakova, Yevgeniya; Kulichenko, Nikolay; Vovk, Vasyl

    2015-08-01

    Video observations of meteors at the RI NAO are conducted using meteor patrol, which includes 6 optical telescopes (4 lenses: f = 85 mm, f/1.8; 2 lenses: f = 100 mm, f/2.0) equipped with a TV CCD cameras WAT-902H2 (768×576, 8.6×8.3µ). The field of view of 4 telescopes is 3.2°×4.2° and 2.7°×3.6° for 2 telescopes. System doesn't have any intensifier. Each video system is contained in a hermetic capsule to prevent it from rain and other aggressive meteorological conditions. Cameras work in the interlace mode with rate 50 half-frames per second.During 2011-2014 4135 single station meteors were observed. The mean duration of observed meteor trajectories are in 0.05-0.6 s. Double station observation campaigns has been started in September 2013 and it is still working with baseline 11.8 km. During September 2013 - September 2014 total number of observed meteor trajectories was 1757. Number of double station meteors - 328. The mean accuracy of visible radiant determination is less than 0.5 arc sec, more than 80% of radiates have standard deviation less than 0.2 arc sec.

  5. Orbiting astronomical observatory battery and power system design

    NASA Technical Reports Server (NTRS)

    Ford, F. E.

    1977-01-01

    The battery design of OAO-C (OAO-3) is given and consists of three-20 ampere hour 22 series connected cells in the battery. There are three batteries per spacecraft. The packaging configuration is described. The charging-discharging operations and the voltage potential of the battery system are discussed. Graphs are presented for the voltage limits (battery voltage versus temperature) and end of dark voltages (battery voltage versus ampere-hours discharged) of the battery system used on OAO-3. Data tables are also presented which give a summary of the battery performance and a comparison of OAO-3 with OAO A-2.

  6. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  7. Astronomers Unveiling Life's Cosmic Origins

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  8. Education of American research astronomers, 1876-1941

    NASA Astrophysics Data System (ADS)

    Hall, Robert Dale

    1999-01-01

    The education (particularly graduate education) of Americans who were active in astronomical research between 1876 and 1941 is assessed for its effectiveness in preparing the astronomers for careers in research. This period contains three dynamic changes: the growth of American astronomy in becoming the world's leading community of astronomers, the formation and flourishing of the American model of the graduate school, and the switch of emphasis of research from classical astronomy to astrophysics. Investigations are made of the roles of the astronomers' education in the growth and success of American astronomy and the progressive adoption of new fields of research-observational astrophysics, statistical astronomy, and theoretical astrophysics. Influences on astronomical education in the US are also assessed. The study used biographical information on the education and research careers of 509 scientists who published at least three papers of astronomical research. The data allowed the study of trends in the education of the astronomers. Brief case histories of astronomical education at the most important schools of astronomy, Berkeley-Lick, Chicago-Yerkes, Harvard, Michigan, and Princeton, complemented data of the astronomers. The study found that the loss of courses of elementary astronomy in high schools and colleges due to a report in 1893 had no discernible effect on the growth of the community of astrophysicists, yet contributed to the decline of classical astronomy. Also, the astronomers most responsible for the rise of astrophysics after 1900 were not educated in conventional graduate programs of classical astronomy. Lick Observatory, under W. W. Campbell, reset the prevalent direction of graduate training in the US from classical astronomy to observational astrophysics. Princeton's graduate program was the most effective in producing outstanding astronomers. Its graduates were the only students of the 1920s and 30s with strong backgrounds in physics

  9. Astronomical education in Mongolia

    NASA Astrophysics Data System (ADS)

    Dulmaa, A.; Tsolmon, R.; Lkhagvajav, Ch.; Jargalsuren, Sh.; Bayartungalag, B.; Zaya, M.

    2011-06-01

    The history, current situation, education and future directions of modern Mongolian space science and astronomy is reviewed. This paper discusses recent efforts to develop astronomy education and research capacity in Mongolia with cooperation of the International Astronomical Union. Various capacity-building initiatives in space science including remote sensing in Mongolia are discussed.

  10. Misconceptions of Astronomical Distances

    ERIC Educational Resources Information Center

    Miller, Brian W.; Brewer, William F.

    2010-01-01

    Previous empirical studies using multiple-choice procedures have suggested that there are misconceptions about the scale of astronomical distances. The present study provides a quantitative estimate of the nature of this misconception among US university students by asking them, in an open-ended response format, to make estimates of the distances…

  11. Astronomical Microdensitometry Conference

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A. (Editor)

    1984-01-01

    The status of the current microdensitometers used for digitizing astronomical imagery is discussed. The tests and improvements that have and can be made to the Photometric Data System PDS microdensitometer are examined. The various types of microdensitometers that currently exist in the world are investigated. Papers are presented on the future needs and the data processing problems associated with digitizing large images.

  12. The CAPRI Project: Coordinates for Astronomical Press Release Images

    NASA Astrophysics Data System (ADS)

    Frattare, Lisa M.; Ferguson, B. A.; Summers, F.; Levay, Z. G.

    2009-01-01

    The beauty and splendor of astronomical press release images has made an enormously positive impact with the media and public alike. As a leading provider of astronomical imagery and a major contributor of Hubble Space Telescope press release images, the outreach division of Space Telescope Science Institute (STScI) recognizes the importance of making press release images compliant with virtual observatory standards for inclusion in databases and repositories. Our goal is to make outreach images accessible by virtual observatory applications by calculating World Coordinate System (WCS) data for these images. We provide updated and improved software that allows observatories to easily and accurately transform coordinates on their astronomical press release images, using reference FITS files. The resultant metadata conforms to the Simple Image Access (SIA) protocol established by the International Virtual Observatory Alliance and has been used by popular end users such as Google Sky and World Wide Telescope. Several hundred images from the STScI Office of Public Outreach NewsCenter database have been processed, and their coordinates and other relevant metadata are accessible through an SIA-compliant web service.

  13. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  14. Atmospheric turbulence measurements at Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Liu, Liyong; Yao, Yongqiang; Vernin, Jean; Chadid, Merieme; Wang, Yiping; Wang, Hongshuai; Yin, Jia; Giordano, Christophe; Qian, Xuan

    2012-09-01

    The atmospheric turbulence characteristics are important to evaluate the quality of ground-based astronomical observatory. In order to characterize Ali observatory, Tibet. we have developed a single star Scidar (SSS) system, which is able to continuously monitor the vertical profiles of both optical turbulence and wind speed. The main SSS configuration includes a 40cm telescope and a CCD camera for fast sampling the star scintillation pattern. The SSS technique analyzes the scintillation patterns in real time, by computing the spatial auto-correlation and at least two cross-correlation images, and retrieves both C2 n (h) and V (h) vertical profiles from the ground up to 30km. This paper presents the first turbulence measurements with SSS at Ali observatory in October, 2011. We have successfully obtained the profiles of optical turbulence and wind speed, as well as the key parameters for adaptive optics, such as seeing, coherence time, and isoplanatic angle. The favourable results indicate that Ali observatory can be an excellent astronomical observatory.

  15. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  16. Astronomical researches in Poincaré's and Romanian works

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.; Mioc, V.

    2005-09-01

    Henri Poincaré was not only a honorary member of the Romanian Academy, but also an important collaborator of many Romanian mathematicians and astronomers. It is sufficient to mention Spiru Haret, the first doctor in mathematics at Sorbonne, or Nicolae Coculescu, the first director of the Astronomical Observatory of Bucharest. The 150th anniversary of the birth of the illustrious French personality offered us a good opportunity to study the relations he and two other Poincaré, Raymond and Lucien, had with Romania.

  17. Observer versus software engineer: The dawn of the armchair astronomers

    NASA Astrophysics Data System (ADS)

    Economou, F.; Jenness, T.; Delorey, K. K.; Cavanagh, B.; de Witt, S.; Allan, A.

    2004-07-01

    Traditional ground-based observatories have moved into a new era where the dominant consumers for their data products are astronomers who no longer come out to use the facility themselves. Using the JCMT and UKIRT as an example, we discuss the wide variety of software systems that are necessary for maintaining a high level of scientific involvement for the absentee observer. These include cradle-to-grave flexible scheduling support, advanced data reduction pipelines, VO integration and intelligent agent networks. Is the observational astronomer becoming an endangered species, and does this really matter?

  18. Thomas Kuhn's Influence on Astronomers.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2000-01-01

    Surveys the astronomical community on their familiarity with the work of Thomas Kuhn. Finds that for some astronomers, Kuhn's thought resonated well with their picture of how science is done and provided perspectives on their scientific careers. (Author/CCM)

  19. High School Teachers as Astronomers

    ERIC Educational Resources Information Center

    Sather, Robert

    1977-01-01

    Discusses a joint research program between several high school teachers and solar system astronomers in which data were collected on photoelectric observations of asteroids and minor planets via astronomical telescopes. (MLH)

  20. Preserving and Archiving Astronomical Photographic Plates

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  1. National Virtual Aeronomical Observatory (NVAO)

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Cosby, P. C.; Slanger, T. G.

    2002-05-01

    The Applied Information Systems Research program of NASA's Office of Space Science has indicated its plan to fund SRI's proposal for establishment of the National Virtual Aeronomical Observatory (NVAO). Astronomers' echelle spectrographs are already recording high-resolution survey spectra of optical emissions from excited atoms and molecules in the Earth's night atmosphere, during every hour of every night at numerous locations world-wide. Since 1997 SRI researchers, under support from NSF's Atmospheric Sciences Division, have been finding atmospheric surprises in a small subset of the potentially available sky spectra, collected from a few collaborating astronomers using the Keck telescopes. The NVAO will collect such spectra and make them available to all atmospheric scientists, in standardized formats, with appropriate access and inquiry tools. Students and researchers will be able to perform ``observations" on the ``real atmosphere" from their desktops, either as educational exercises, as publishable research, or as ``dry run" experiments before taking the field. We seek to identify astronomers who might be willing to donate sky spectra. We also want to learn about other telescope and spectrograph capabilities and operations, especially wavelength and intensity calibration and archiving.

  2. Mission impossible: William Scott and the first Sydney Observatory directorship

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    1998-06-01

    The Reverend William Scott (1825-1917) was the founding Director of the Sydney Observatory, and succeeded in acquiring state-of-the art astronomical instruments, establishing a network of country meteorological stations, and conducting a range of astronomical observations. He also worked to promote popular interest in astronomy, and immersed himself in the scientific culture of New South Wales. This paper examines Scott's achievements in astronomy and meteorology, the reasons for his premature resignation in 1862, and the search for his successor.

  3. Community College Class Devoted to Astronomical Research

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Genet, C. L.

    2002-05-01

    A class at a small community college, Central Arizona College, was dedicated to astronomical research. Although hands-on research is usually reserved for professionals or graduate students, and occasionally individual undergraduate seniors, we decided to introduce community college students to science by devoting an entire class to research. Nine students were formed into three closely cooperating teams. The class as a whole decided that all three teams would observe Cepheid stars photometrically using a robotic telescope at the Fairborn Observatory. Speaker-phone conference calls were made to Kenneth E. Kissell for help on Cepheid selection, Michael A. Seeds for instructions on the use of the Phoenix-10 robotic telescope, and Douglas S. Hall for assitance in selecting appropriate comparison and check stars. The students obtained critical references on past observations from Konkoly Observatory via airmail. They spent several long night sessions at our apartment compiling the data, making phase calculations, and creating graphs. Finally, the students wrote up their results for publication in a forthcoming special issue of the international journal on stellar photometry, the IAPPP Communication. We concluded that conducting team research is an excellent way to introduce community college students to science, that a class devoted to cooperation as opposed to competition was refreshing, and that group student conference calls with working astronomers were inspiring. A semester, however, is a rather short time to initiate and complete research projects. The students were Sally Baldwin, Cory Bushnell, Bryan Dehart, Pamela Frantz, Carl Fugate, Mike Grill, Jessica Harger, Klay Lapa, and Diane Wiseman. We are pleased to acknowledge the assistance provided by the astronomers mentioned above, James Stuckey (Campus Dean), and our Union Institute and University doctoral committee members Florence Pittman Matusky, Donald S. Hayes, and Karen S. Grove.

  4. Using Virtual Observatory Services in Sky View

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2007-01-01

    For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.

  5. First lunar flashes detected from Morocco at AGM observatory of Marrakech

    NASA Astrophysics Data System (ADS)

    Moulay Larbi, M. Ait; Daassou, A.; Bouley, S.; Baratoux, D.; Benkhaldoun, Z.; Lazrek, M.

    2013-09-01

    When a projectile at hypervelocity impacts the Moon a transient luminous phenomenon occurs (impact flash). Here we report some results of the analysis of the two first lunar flashes detected from an astronomical observatory based in Morocco.

  6. Precise Astrographic Positions of Minor Planets Obtained at the Poznan University Observatory

    NASA Astrophysics Data System (ADS)

    Matz, D.; Swierkowska, S.

    The paper presents the photographic positions of bright minor planets taken in the years 1984 - 1985 at the Astronomical Observatory of A. Mickiewicz University, Poznań, with a Zeiss refractor (f = 3000 mm, d = 200 mm).

  7. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  8. Astronomers without borders

    NASA Astrophysics Data System (ADS)

    Simmons, Mike

    2011-06-01

    ``Astronomers Without Borders'' is a new global organisational dedicated to furthering understanding and goodwill across national and cultural boundaries using the universal appeal of astronomy and space science. A growing network of affiliate organisations brings together clubs, magazines and other organizations involved in astronomy and space science. Forums, galleries, video conferences and other interactive technologies are used to connect participants around the world. Sharing of resources and direct connections through travel programs are also planned. One project, ``The World at Night'' (TWAN), has become an Special Project of IYA2009. TWAN creates wide-angle images of the night sky in important natural and historic settings around the world, dramatically demonstrating the universal nature and appeal of the night sky. ``Astronomers Without Borders'' is also a leader of the 100 Hours of Astronomy IYA2009 Global Cornerstone Project.

  9. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  10. Demetrios Eginitis: Restorer of the Athens Observatory

    NASA Astrophysics Data System (ADS)

    Theodossiou, E. Th.; Manimanis, V. N.; Mantarakis, P.

    2007-07-01

    Demetrios Eginitis (1862-1934), one of the most eminent modern Greek astronomers, directed the National Observatory of Athens for 44 years (1890-1933). He was the fourth director since its founding, and was responsible for the restoration and modernization of the Observatory, which was in a state of inactivity after the death of Julius Schmidt in 1884. Eginitis ordered the purchase of modern instruments, educated the personnel, enriched the library with necessary and up-to-date books and arranged for new buildings to be built to house new telescopes and accommodate the personnel. Moreover, he divided the National Observatory of Athens into three separate Departments: the Astronomical, the Meteorological and the Geodynamic. D. Eginitis' contribution to Greek society went beyond his astronomical accomplishments. He was instrumental in the adoption of the Eastern European time zone for local time in Greece, and he succeeded in changing the official calendar from the Julian to the Gregorian. Having served twice as Minister of Education, he created many schools, founded the Academy of Athens and the Experimental School of the University of Athens. Eginitis was fluent in French, German and English, and therefore was the official representative of his country in numerous international conferences and councils.

  11. Haystack Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radio astronomy programs comprise three very-long-baseline interferometer projects, ten spectral line investigations, one continuum mapping in the 0.8 cm region, and one monitoring of variable sources. A low-noise mixer was used in mapping observations of 3C273 at 31 GHz and in detecting of a new methyl alcohol line at 36,169 MHz in Sgr B2. The new Mark 2 VLBI recording terminal was used in galactic H2O source observations using Haystack and the Crimean Observatory, USSR. One feature in W29 appears to have a diameter of 0.3 millisec of arc and a brightness temperature of 1.4 x 10 to the 15th power K. Geodetic baseline measurements via VLBI between Green Bank and Haystack are mutually consistent within a few meters. Radar investigations of Mercury, Venus, Mars, and the Moon have continued. The favorable opposition of Mars and improvements in the radar permit measurements on a number of topographic features with unprecedented accuracy, including scarps and crater walls. The floor of Mare Serenitatis slopes upward towards the northeast and is also the location of a strong gravitational anomaly.

  12. Microcomputers and astronomical navigation.

    NASA Astrophysics Data System (ADS)

    Robin-Jouan, Y.

    1996-04-01

    Experienced navigators remember ancient astronomical navigation and its limitations. Using microcomputers in small packages and selecting up-to-date efficient methods will overcome many of these limitations. Both features lead to focus on observations, and encourage an increase in their numbers. With no intention of competing with satellite navigation, sextant navigation in the open sea can then be accessed again by anybody. It can be considered for demonstrative use or as a complement to the GPS.

  13. Astrobiology: An astronomer's perspective

    SciTech Connect

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  14. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  15. Las Cumbres Observatory Global Telescope

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Rosing, W.; Pickles, A.; Howell, D. A.

    2009-05-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a privately-funded observatory dedicated to time-domain astronomy. Our main observing tool will be a homogeneous world-wide network of 12 x 1m optical telescopes, each equipped for both imaging and spectroscopy. We will also continue to operate 2m telscopes in Hawaii and Australia, and we plan to deploy a few tens of 0.4m imaging telescopes for education and for bright-object research. LCOGT has membership in the Pan-STARRS1 consortium, in the Palomar Transient Factory (PTF), and in LSST. In accord with these affiliations, our staff's scientific interests are concentrated in (but not restricted to) the areas of extrasolar planets, extragalactic transients (especially SNe), and pulsating stars. In this poster we describe the observatory in general terms, including its research agenda, its telescope deployment plans and schedule, its notable technical challenges, and its anticipated methods of working with the wider astronomical community. For more detailed information about LCOGT's aims and projects, please see the related posters in this session.

  16. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as

  17. Heavens Open Up for UK Astronomers

    NASA Astrophysics Data System (ADS)

    2002-07-01

    A significant milestone for British and European science occurred today (July 8, 2002) when the Council of the European Southern Observatory (ESO) met in London. At this historical meeting, the United Kingdom was formally welcomed into ESO by the nine other member states. The UK, one of the leading nations in astronomical research, now joins one of the world's major astronomical organisations. UK astronomers will now be able to use the four 8.2-metre and several 1.8-metre telescopes that comprise the Very Large Telescope (VLT) facility located at the Paranal Observatory in the northern part of the Atacama desert in Chile, as well as two 4-m class telescopes and several smaller ones at the ESO La Silla Observatory further south. The UK will also benefit from increased involvement in the design and construction of the Atacama Large Millimetre Array (ALMA), a network of 64 twelve-metre telescopes also sited in Chile, and play a defining role in ESO's 100-metre Overwhelmingly Large Telescope (OWL). Sir Martin Rees , The Astronomer Royal, said, "Joining ESO is good for UK science, and I think good for Europe as well. It offers us access to the VLT's 8-m class telescopes and restores the UK's full competitiveness in optical astronomy. We're now guaranteed full involvement in ALMA and in the next generation of giant optical instruments - projects that will be at the forefront of the research in the next decade and beyond. Moreover, our commitment to ESO should enhance its chances of forging ahead of the US in these technically challenging and high profile scientific projects. UK membership of ESO is a significant and welcome outcome of this government's increasing investment in science". Prof. Ian Halliday , Chief Executive of the Particle Physics and Astronomy Research Council (PPARC), the UK's strategic science investment agency said, "The United Kingdom already participates in Europe's flagship particle physics research and the space science research programmes through

  18. ASTRONOMY: The Virtual Observatory Moves Closer to Reality.

    PubMed

    Schilling, G

    2000-07-14

    Data from decades of observations by dozens of instruments may soon be accessible over the Internet, changing the way that astronomy is done around the world. The National Virtual Observatory will be an electronic web that gives astronomers access to terabytes of celestial data with the click of a mouse. The virtual observatory promises to make possible new analyses of the heavens by weaving together information from facilities around the world--and in space. PMID:17750399

  19. SOFIA's Choice: Scheduling Observations for an Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kurklu, Elif; Koga, Dennis (Technical Monitor)

    2002-01-01

    We describe the problem of scheduling observations for an airborne observatory. The problem is more complex than traditional scheduling problems in that it incorporates complex constraints relating the feasibility of an astronomical observation to the position and time of a mobile observatory, as well as traditional temporal constraints and optimization criteria. We describe the problem, its proposed solution and the empirical validation of that solution.

  20. Influences of German science and scientists on Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Clark, Barry A. J.

    The multidisciplinary approach of Alexander von Humboldt in scientific studies of the natural world in the first half of the nineteenth century gained early and lasting acclaim. Later, given the broad scientific interests of colonial Victoria's first Government Astronomer Robert Ellery, one could expect to find some evidence of the Humboldtian approach in the operations of Williamstown Observatory and its successor, Melbourne Observatory. On examination, and without discounting the importance of other international scientific contributions, it appears that Melbourne Observatory was indeed substantially influenced from afar by Humboldt and other German scientists, and in person by Georg Neumayer in particular. Some of the ways in which these influences acted are obvious but others are less so. Like the other Australian state observatories, in its later years Melbourne Observatory had to concentrate its diminishing resources on positional astronomy and timekeeping. Along with Sydney Observatory, it has survived almost intact to become a heritage treasure, perpetuating appreciation of its formative influences.

  1. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  2. A Case of Racial Discrimination: Azeglio Bemporad, Astronomer Poet

    NASA Astrophysics Data System (ADS)

    Mangano, A.

    2015-04-01

    The stories from our archives do not only speak of scientific progress, tools, and data, but also of the events of the astronomers as men, and how their work is intertwined in their private, political, and social life. In the case of Azeglio Bemporad, who worked at Catania Astrophysical Observatory until 1938, year of purge against Jews in Italy, the painful history of Fascism fully enters our scientific institutions, changing the life of a person who had never dealt with politics.

  3. Young Galaxy's Magnetism Surprises Astronomers

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that

  4. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  5. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  6. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  7. Teaching Astronomy at the UCM Observatory

    NASA Astrophysics Data System (ADS)

    Montes, D.; Zamorano, J.; Gallego, J.; de Castro, E.

    There is a long tradition on teaching Astronomy at the UCM University. Since 1972 it is possible to study Astrophysics at the Faculty of Physics of the UCM. The facilities of the UCM Observatory are improving continuously every year. Nowadays two domes (4 m) are available. The west dome is mainly used for doing solar observations while the east dome is generally used to do night observations. The available instruments allow us to make a small-scaled reproduction of how people work in a large observatory. At the UCM Observatory students of the Astrophysics career do many different kinds of exercises based on the current techniques used by professional astronomers. In addition, during the last years of the career they also have the opportunity of doing a research work under the supervision of a professor.

  8. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    van Belle, Gerard; Prato, Lisa A.

    2016-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its eighth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of new instruments in 2015, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2016 are due by May 1, 2016.

  9. Undergraduate Astronomy Instruction With an Automated Observatory

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael; Littler, Christopher; Weathers, Duncan

    2001-10-01

    The University of North Texas currently enrolls 2400 students per academic year in survey astronomy classes. As one element in our laboratory program, we are developing an automated observatory for use by these students. The UNT Monroe Observatory is located at a dark site approximately 45 miles northwest of Denton (80 miles from the Dallas / Fort Worth Metroplex). We plan 2-4 telescopes in the 36-40 cm range, outfitted with CCD cameras, to be remotely operated from the University in Denton. This automated observatory will permit students to conduct individualized observational astronomy experiments in a manner similar to those employed in astronomical research. These imaging experiments will be the centerpiece of the students' laboratory experience. Our goal is to provide an exemplary laboratory experience for students attempting to meet a natural science curriculum requirement. Currently, the equipment has been procured and the observing site prepared. We anticipate first use during the 2002-2003 academic year.

  10. On astronomical drawing [1846

    NASA Astrophysics Data System (ADS)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  11. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  12. Astronomical Fourier spectrometer.

    PubMed

    Connes, P; Michel, G

    1975-09-01

    A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8-3.5 microm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given. PMID:20154966

  13. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  14. XXXVI Polish Astronomical Society Meeting

    NASA Astrophysics Data System (ADS)

    Różańska, Agata; Bejger, Michał

    2014-12-01

    XXXVI meeting of Polish Astronomical Society was held in Warsaw on Sept. 11-14, 2013. The conference brought together 150 astronomers working in different institutes in Poland and abroad. The highlight of the Congress was the first awarding of the Paczynski's Medal. The first laureate of the Medal is Professor Martin Rees from University of Cambridge. Medal was given by the President of the Polish Astronomical Society prof. Bozena Czerny.

  15. Grigor Narekatsi's astronomical insights

    NASA Astrophysics Data System (ADS)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  16. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  17. The Selection and Protection of Optical Astronomical Observing Sites in China

    NASA Astrophysics Data System (ADS)

    Wenjing, Jin; Bai, Jinming; Yao, Yongqiang

    2015-03-01

    Before 1950 there are two observatories, Shanghai and Purple Mountain Astronomical Observatories (SHAO and PMO), and two observing stations, Qingdao and Kunming stations in China. With the requirements of astronomical research, two observatories, Beijing and Shaanxi Astronomical Observatories (BAO and SXAO) and two artificial satellite stations, Urumqi and Changchun, were established about 1960. Based on the current management, now there are 4 observatories, SHAO, PMO, NAOC(National Astronomical Observatories), which was grouped from BAO, YNAO and 2 others, as well as XAO (Xinjiang Astronomical Observatory). The optical 1-2 m class telescopes are being operated at former four observatories. SXAO is changed as National Time Service Center. Because of city expansion as well as the traveling and economic developments, these observatories are suffered severe light pollution. For example, Zo Ce is located at the suburb of Shanghai city. A 40 cm double astrograph was installed in 1900 and a 1.56 m optical reflector have been operated since November 1987. In 1994 the seeing is better than 1 and the night sky brightness in V is about 19 mag/arcsec 2, stars fainter than 20 mag with CCD are visibles. In 2007 a large playground was built in Zô Cè area. The light pollution is severe gradually. The night sky brightness has been increased to 15.8 mag/arcsec 2. The other observatories have similar situation. New site surveys and found new stations to solve the problem. Except the solar and radio stations of each Astronomical Observatory, now there are 3 optical observing sites at PMO (Hong-He, Xu-Yi and Yaoan), 2 at SHAO (Zô Cè and Tian Huang Ping) and 2 at YNAO (Kunming and Gao-Mei-Gu) as well as 1 optical observing site at BAO (Xing-Long). The best observing site is Gao-Mei-Gu, which is selected as the optical observing site of YNAO and where atmospheric turbulence distribution is 0.11 near ground with heights from 6.5m to 2.7m during night. Sky brightness in B and V band

  18. Getting Astronomers Involved in the IYA: Astronomer in the Classroom

    NASA Astrophysics Data System (ADS)

    Koenig, Kris

    2008-05-01

    The Astronomer in the Classroom program provides professional astronomers the opportunity to engage with 3rd-12th grade students across the nation in grade appropriate discussions of their recent research, and provides students with rich STEM content in a personalized forum, bringing greater access to scientific knowledge for underserved populations. 21st Century Learning and Interstellar Studios, the producer of the 400 Years of the Telescope documentary along with their educational partners, will provide the resources necessary to facilitate the Astronomer in the Classroom program, allowing students to interact with astronomers throughout the IYA2009. PROGRAM DESCRIPTION One of hundreds of astronomers will be available to interact with students via live webcast daily during Spring/Fall 2009. The astronomer for the day will conduct three 20-minute discussions (Grades 3-5 /6-8/9-12), beginning with a five-minute PowerPoint on their research or area of interest. The discussion will be followed by a question and answer period. The students will participate in real-time from their school computer(s) with the technology provided by 21st Century Learning. They will see and hear the astronomer on their screen, and pose questions from their keyboard. Teachers will choose from three daily sessions; 11:30 a.m., 12:00 p.m., 12:30 p.m. Eastern Time. This schedule overlaps all US time zones, and marginalizes bandwidth usage, preventing technological barriers to web access. The educational partners and astronomers will post materials online, providing easy access to information that will prepare teachers and students for the chosen discussion. The astronomers, invited to participate from the AAS and IAU, will receive a web cam shipment with instructions, a brief training and conductivity test, and prepaid postage for shipment of the web cam to the next astronomer on the list. The anticipated astronomer time required is 3-hours, not including the time to develop the PowerPoint.

  19. Major Conference about Astronomical Technology in Munich

    NASA Astrophysics Data System (ADS)

    2000-03-01

    Press Conference on Monday, March 27, 2000 Which are the latest astronomical discoveries made with the new 8-10 metre class astronomical telescopes? Will it be possible to construct even more powerful instruments on the ground and in space to explore the near and distant Universe at all wavelengths from gamma-rays to radio waves? Which research areas in this dynamical science are likely to achieve break-throughs with emerging new technologies? These are some of the central themes that will be discussed by more than 600 specialists from all over the world at an international conference in Munich (Germany), "Astronomical Telescopes and Instruments 2000" , beginning on Monday, March 27, 2000. During five days, the modern architecture of the new International Congress Center in the Bavarian capital will be the scene of lively exchanges about recent progress at the world's top-class astronomical research facilities and the presentation of inspired new ideas about future technological opportunities. The conference will be accompanied by numerous on-site exhibition stands by the major industries and research organisations in this wide field. This meeting is the latest in a series, organised every second year, alternatively in the USA and Europe by the International Society for Optical Engineering (SPIE) , this year with the European Southern Observatory (ESO) as co-sponsor and host institution. The conference will be opened in the morning of March 27 by the Bavarian Minister of Science, Research and Arts, Hans Zehetmair . His address will be followed by keynote speeches by Massimo Tarenghi (European Southern Observatory), James B. Breckenridge (National Science Foundation, USA), Harvey Butcher (Netherlands Foundation for Research in Astronomy) and Albrecht Ruediger (Max Planck Institut für Quantenoptik, Germany). The conference is subtitled "Power Telescopes and Instrumentation into the New Millennium" and will be attended by leading scientists and engineers from all

  20. Centre for Astronomical Data and Software at Indian Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Murthy, J.

    2006-11-01

    jmurthy61@rediffmail.com jmurthy@yahoo.com We propose to set up a Centre for Astronomical Data and Software (CADS) at the CREST campus of IIA. A Data Centre is many things. At the most basic level, it is simply a place to warehouse astronomical data but this has led in the past to a sterile environment which may not serve the user. We plan, on the model of the Virtual Observatory, to set up a living centre which will proactively serve the needs of the IIA and, more generally, the Indian astronomical community. IIA has always been a source of data - from Kodaikanal to the Vainu Bappu Observatory (Kavalur) and the Indian Astronomical Observatory (Hanle) - and this will continue into the future with major missions such as TAUVEX or UVIT and with the digitization of the Kodaikanal solar observations. IIA astronomers are further involved with many other missions (SOHO, GALEX, SDSS ...) all with large amounts of data. Our group will serve as a single node for all data related activities in the Institute where other groups or individual scientists will be able to come for help in, primarily, software development. Science will continue to be driven by the scientist but accessory tools and techniques will be developed by CADS. As we develop, we hope to become part of the global Virtual Observatory community.

  1. Lyman Spitzer: Astronomer, Physicist, Engineer, and Mountaineer

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2006-12-01

    NASA's naming of the Spitzer Space Telescope after Lyman Spitzer was a most appropriate choice, recognizing an outstanding scientist who also contributed extensively to space astronomy. As an astronomer he was a leading authority in the physics of both the interstellar medium and stellar dynamics, wrote textbooks for both fields, and guided many research students. As a physicist he conceived the Stellarator for magnetic confinement, managed a laboratory for controlled fusion, and wrote a textbook on plasma physics. As an engineer he led the development of the payload for the successful Copernicus satellite, which fulfilled his 1946 proposal for an extraterrestrial observatory. His mountaineering included first ascents on Baffin Island and in the Canadian Rockies as well as the summit of the challenging Mt Waddington in the Coast Range.

  2. Integral Programme of Basic Astronomic Literacy Development

    NASA Astrophysics Data System (ADS)

    Tignanelli, H.

    2009-05-01

    We discuss the development and optimization of an ongoing educational project involving the whole population of the province of San Luis, Argentina. The core of the project includes activities and resources that capture formal curricular aspects directed towards all levels of teaching. The educational activities related to this project have been benefited by the acquisition of two planetariums made in Argentina, a MEADE 16'' telescope to be operated by remote control from any school-room in San Luis, and a naked-eye observatory with more than 30 pre-telescopic instruments, and other didactic tools specially designed for the teaching of Astronomy. Furthermore, an Internet site to upload all the astronomical activities suggested that has been developed along with a number of didactic and general-interest publications.

  3. Combined ultraviolet studies of astronomical source

    NASA Technical Reports Server (NTRS)

    Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.

    1985-01-01

    As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.

  4. Astronomical application of IR CID technology

    NASA Technical Reports Server (NTRS)

    Rank, D. M.

    1984-01-01

    A portable microcomputer data system was developed to test a 2 x 64-element Si:Bi charge injection device (CID) infrared detector array on the Lick Observatory Shane telescope. An existing 0.5 m spectrograph was used for the tests after modification, and a spectral resolution of 1000 was achieved. Slow device response, due to the low background conditions in the spectrograph were shown. Astronomical data were later obtained, and a device read noise on the order of a few hundred electrons was achieved. The signal to noise ratios of the resulting spectra were about a factor of five lower than what could have been achieved with discrete photoconductive detectors. It is concluded that the CID array is competitive for applications in backgrounds lower than those used in the tests.

  5. Remote observatory access via the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Anderson, Kurt; Georghiou, Georghios

    1992-01-01

    An investigation of the potential for using the ACTS to provide the data distribution network for a distributed set of users of an astronomical observatory has been conducted. The investigation consisted of gathering the data and interface standards for the ACTS network and the observatory instrumentation and telecommunications devices. A simulation based on COMNET was then developed to test data transport configurations for real-time suitability. The investigation showed that the ACTS network should support the real-time requirements and allow for growth in the observatory needs for data transport.

  6. The International Virtual Observatory: Summary of the first decade

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2012-01-01

    International Virtual Observatory is a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that will combine existing databases from ground-based and space-born observatories and make them easily accessible to researchers. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies have been compiled from observations in a variety of wavelengths: optical, radio, infrared, gamma ray, X-ray and more. Each wavelength can provide different information about a celestial event or object, but also requires a special expertise to interpret. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. The International Virtual Observatory Alliance (IVOA) represents 20 national and international projects working in coordination to realize the essential technologies and interoperability standards necessary to create a new research infrastructure. Russian Virtual Observatory is one of the founders and important members of the IVOA. The International Virtual Observatory project was launched about ten years ago, and its major achievements in science and technology in recent years are discussed in this paper. Standards for accessing large astronomical data sets were developed. Such data sets can accommodate the full range of wavelengths and observational techniques for all types of astronomical data: catalogues, images, spectra and time series. The described standards include standards for metadata, data formats, query language, etc. Services for the federation of massive, distributed data sets, regardless of the wavelength, resolution and type of data were

  7. Overview of Virtual Observatory Tools

    NASA Astrophysics Data System (ADS)

    Allen, M. G.

    2009-07-01

    I provide a brief introduction and tour of selected Virtual Observatory tools to highlight some of the core functions provided by the VO, and the way that astronomers may use the tools and services for doing science. VO tools provide advanced functions for searching and using images, catalogues and spectra that have been made available in the VO. The tools may work together by providing efficient and innovative browsing and analysis of data, and I also describe how many VO services may be accessed by a scripting or command line environment. Early science usage of the VO provides important feedback on the development of the system, and I show how VO portals try to address early user comments about the navigation and use of the VO.

  8. Research Note - Absolute UBV Photometry at the Zacatecas Observatory

    NASA Astrophysics Data System (ADS)

    Schuster, W. J.; Parrao, L.; Gonazlez-Bedolla, S. F.; Rios-Herrera, M.; Berumen, M. R.

    1985-12-01

    Atmospheric extinction data, color coefficients, errors of observation and a list of standard and comparison stars are given for UB V photometry at the Astronomical Observatory in Zacatecas. Our observing and reduction procedures are discussed briefly, and our extinction coefficients and observing errors compared with previous values. The uses of these results are mentioned.

  9. The Virtual Observatory: Retrospective and Prospectus

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2010-12-01

    At the ADASS XV in San Lorenzo de El Escorial, Spain, in October 2005, I gave an overview of the accomplishments of the Virtual Observatory initiatives and discussed the imminent transition from development to operations. That transition remains on the horizon for the US Virtual Observatory, and VO projects worldwide have encountered various programmatic challenges. The successes of the Virtual Observatory are many, but thus far are primarily of a technical nature. We have developed a data discovery and data access infrastructure that has been taken up by data centers and observatories around the world. We have web-based interfaces, downloadable toolkits and applications, a security and restricted access capability, standard vocabularies, a sophisticated messaging and alert system for transient events, and the ability for applications to exchange messages and work together seamlessly. This has been accomplished through a strong collaboration between astronomers and information technology specialists. We have been less successful engaging the astronomical researcher. Relatively few papers have been published based on VO-enabled research, and many astronomers remain unfamiliar with the capabilities of the VO despite active training and tutorial programs hosted by several of the major VO projects. As we (finally!) enter the operational phase of the VO, we need to focus on areas that have contributed to the limited take-up of the VO amongst active scientists, such as ease of use, reliability, and consistency. We need to routinely test VO services for aliveness and adherence to standards, working with data providers to fix errors and otherwise removing non-compliant services from those seen by end-users. Technical developments will need to be motivated and prioritized based on scientific utility. We need to continue to embrace new technology and employ it in a context that focuses on research productivity.

  10. Conceiving and Marketing NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2009-01-01

    In late 1984, Dr. Charles P. (Charlie) Pellerin Jr., director of the Astrophysics Division of NASA's Office of Space Science and Applications (OSSA) faced a dilemma. Congress and the White House had given approval to work that would lead to the launch of the Gamma Ray Observatory and the Hubble Space Telescope, but competing segments of the astronomical community were clamoring for two additional missions, the Space Infrared Telescope Facility (SIRTF) and the Advanced X-ray Astrophysics Facility (AXAF). Pellerin knew that Congress would not countenance a request for another costly astronomical space observatory so soon after approving GRO and HST. He also foresaw that if he arbitrarily assigned priority to either AXAF or SIRTF he would split the astronomical community. The losing faction would be up on Capitol Hill, lobbying Congress to reverse the decision; and Congress would do what it always does with split communities --- nothing. Pellerin called a meeting of leading astrophysicists to see how a persuasive argument could be made for both these new observatories and to market them as vital to a first comprehensive inventory of the universe conducted across all wavelength ranges. The group provided Pellerin a rotating membership of astrophysicists, who could debate and resolve issues so that decisions he reached would have solid community support. It also helped him to market his ideas in Congress. Ultimately, the concept of the Great Observatories came to be accepted; but its implementation faced myriad difficulties. False starts, political alliances that never worked out, and dramatic changes of direction necessitated by the Challenger disaster of early 1986 continually kept progress off balance. My paper follows these twists and turns from late 1984 to the announcement, on February 1, 1988, that President Reagan's FY89 budget proposal to Congress had designated AXAF for a new start.

  11. The Pulkovo Observatory in the last 50 years through the eyes of its Learned Secretary Yu. I. Vitinsky.

    NASA Astrophysics Data System (ADS)

    Zhukov, V. Yu.; Soboleva, T. V.

    A solar physicist, a Pulkovo astronomer, Yury Ivanovich Vitinsky (1926-2003) was the author of 210 scientific papers known in both Russia and abroad. He worked in the Observatory for about half a century (1953-2002) and held the office of the Learned Secretary of the Russian Academy of Sciences Main Astronomical Observatory for 35 years (1965-2000). In the last years of his life, Vitinsky brought his recollections that he titled "My Pulkovo" to the Main Astronomical Observatory Archive. His memoirs narrate about problems of the astronomical science, staff members and deeds of Pulkovo, things he thought of an events he was through. This is the half-a-century history of the Pulkovo Observatory in biographies of persons. The writer of the Recollections mentions the names of fifty persons most of whom are the Main Astronomical Observatory staff members that he worked with side by side. The memoirs provide accurate descriptions that are brief yet rather capacious of the author's Pulkovo colleagues, as well as other astronomers. The language of Vitinsky's recollection is good and clear. His memoirs contain moderate balanced views of people and events and provide objective and trustworthy data. "My Pulkovo" is an indispensable biographical source for the historian of the astronomical science, the Pulkovo Observatory and its scholarly staff members of the most recent decades. It is also just an interesting human document. In 2006, Yury Ivanovich would have been eighty.

  12. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  13. Digitization of Archives of Astronomical Plates

    NASA Astrophysics Data System (ADS)

    Omizzolo, Alessandro; Cesare, Barbieri; Blanco, Carlo; Bucciarelli, Beatrice; di Paola, Andrea; Nesci, Roberto

    The photographic plate archives of telescopes around the world contain a veritable treasury of astronomical data. Unfortunately the emulsion is a volatile support and full exploitation of the scientific content is more and more difficult. A large-scale two-year project to digitize the archive of plates of the Italian Astronomical Observatories and of the Specola Vaticana has been started in 2002 with funds from the Ministry of the University and Research following a pilot program funded by the University of Padova in 2001. Identical systems composed by a high quality commercial scanner plus dedicated personal computers and acquisition software (developed initially at DLR Berlin) have been installed in all participating Institutes. Three main goals make up the total project: to provide high quality photometric sequences with the Campo Imperatore telescopes to be used on the scanned plates to perform astrometric measures taking advantage of the large span of time covered by the plates and to distribute the digitized information to all interested researchers via the international Web. This paper presents some of the activities carried out and results obtained so far

  14. Astronomical Site Testing Initiatives in Africa

    NASA Astrophysics Data System (ADS)

    Buckley, David A. H.; Graham, Edward; Vaughan, Richard; Belay, Solomon; Biressa, Tolu

    2015-08-01

    Two astronomical site testing initiatives are beginning in both Kenya and Ethiopia, with the aim of selecting suitable locations in those countries for modest sized (1-2m) optical telescopes.The first project, in Kenya, has initially involved a desk-top study of ~30 years of low resolution (~80 km) meteorological satellite data from the European Centre for Medium Range Weather Forecasting (so called “ERA-reanalysis” data). This was later supplemented by ~2 years of higher resolution (~12 km) United Kingdom Met Office Limited Area Model for Africa (“Africa-LAM”) data, kindly made available by the British Atmospheric Data Centre (BADC).The analysis looked at cloud cover, aerosol distribution, integrated water vapour and wind conditions, On the basis of this study, we determined a number of regions in the north of Kenya, east of the Rift Valley, which show promise as potential observatory sites. We are now in the process of installing Automatic Weather Stations (AWS) at 3 selected sites (~2000-2700 m altitude) to begin monitoring meteorological conditions over the next few years. It is eventually hoped to supplement this study with instrumentation to allow the measurement of sky brightness, local cloud cover and seeing (e.g. with a DIMM system).A similar program of astronomical site testing is due to start in 2015 in the Lalibela region of northern Ethiopia, at three potential dark sky sites with expected relatively low cloud cover, ranging in altitude from ~3600 to 4100 m.

  15. Astronomical Surveys, Catalogs, Databases, and Archives

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.

  16. Science and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dowler, Patrick; Schade, David

    The Canadian Virtual Observatory (CVO) is the cornerstone of a budding international partnership that delivers high quality scientific content and capabilities to the astronomical community. We have developed a uniform astronomical data model to characterise all types of observational data across the entire electromagnetic spectrum; this model enables users to find archive data based on the content and the quality without letting the technology get in the way. We have also developed general purpose source and object catalogs to store information extracted from the data using standard techniques and algorithms. These catalogs are explorable with a variety of scientific tools from a web interface for simple tasks to a programmatic interface for sophisticated analysis involving client and server side processing. Finally all of the data processing and analysis tasks we have executed or will execute are viewable via our processing catalog; links between object and source catalogs processing catalogs and observation catalogs allow users to examine the complete pedigree of every single derived value. Thus the entire system is open to peer review which is the cornerstone of science.

  17. Twitter 101 for Astronomers

    NASA Astrophysics Data System (ADS)

    Gugliucci, Nicole E.; Gay, P.

    2010-01-01

    Twitter is a new media tool that allows users to connect to each other via short 140-character messages, called "tweets", and network with people from around the globe with similar interests. Such a tool is used by science centers, observatories, and space missions to update their "followers” on the latest astronomy news. We present on some of the ways that astronomy can be effectively communicated to the interested public in such a format and highlight the importance of dialog with members of the community. In addition, we introduce some of the many Twitter-related tools for keeping track of a busy account and monitoring your reach.

  18. Immanuel Halton, the astronomer

    NASA Astrophysics Data System (ADS)

    Barber, P. M.

    1996-02-01

    Immanuel Halton was born in Cumberland, studied at Grays Inn, London during the later stages of the English Civil War and, during the Commonwealth, entered the service of Henry Howard, later 6th Duke of Norfolk. He pursued his mathematical and astronomical interests while auditor to the Duke of Norfolk. He met with John Flamsteed, encouraged the latter's interest in mathematics and astronomy and became his first patron, as well as contributing observations to Flamsteed's published works. Immanuel ended his days at Wingfield Manor, Derbyshire. A short biographical piece on Immanuel Halton appeared in the Journal in the early 1950s, consisting mostly of quotations from Flamsteed's 'Self Inspections' and Baily's 'Life of Flamsteed'. 1996 is the 350th anniversary of Flamsteed's birth, and it is hoped that this fuller account will flesh out the bones of his first patron.

  19. Astronomers against Newton.

    PubMed

    Higgitt, Rebekah

    2004-03-01

    Francis Baily's publication of the manuscripts of John Flamsteed, the first Astronomer Royal, provoked a furious response. Flamsteed had quarrelled with Isaac Newton, and described him in terms unforgivable to those who claimed him as a paragon of all virtues, both moral and scientific. Baily was condemned for putting Flamsteed's complaints in the public sphere. However, his supporters saw his work as a critique of the excessive hero-worship accorded to Newton. Written when the word 'scientist' had been newly coined, this work and the debates it provoked gives us an insight into contemporary views of the role of the man of science and of the use of science to back political, religious and moral positions. PMID:15036924

  20. Astronomical tides and earthquakes

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Mao, Wei; Huang, Yong

    2001-03-01

    A review on the studies of correlation between astronomical tides and earthquakes is given in three categories, including (1) earthquakes and the relative locations of the sun, the moon and the earth, (2) earthquakes and the periods and phases of tides and (3) earthquakes and the tidal stress. The first two categories mainly investigate whether or not there exist any dominant pattern of the relative locations of the sun, the moon and the earth during earthquakes, whether or not the occurrences of earthquakes are clustered in any special phase during a tidal period, whether or not there exists any tidal periodic phenomenon in seismic activities, By empasizing the tidal stress in seismic focus, the third category investigates the relationship between various seismic faults and the triggering effects of tidal stress, which reaches the crux of the issue. Possible reasons to various inconsistent investigation results by using various methods and samples are analyzed and further investigations are proposed.

  1. The Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    This 2000 Edition of Sir Patrick Moore’s classic book has been completely revised in the light of changes in technology. Not only do these changes include commercially available astronomical telescopes and software, but also what we know and understand about the universe. There are many new photographs and illustrations. Writing in the easy-going style that made him famous as a writer and broadcaster, Sir Patrick introduced astronomy and amateur observing together, so that his reader gets an idea of what he is observing at the same time as how to observe. Almost half the book is Appendices. These are hugely comprehensive and provide hints and tips, as well as data (year 2000 onwards) for pretty well every aspect of amateur astronomy. This is probably the only book in which all this information is collected in one place.

  2. East Asian astronomical records

    NASA Astrophysics Data System (ADS)

    Stephenson, F. Richard

    Chinese, Japanese and Korean celestial observations have made major contributions to Applied Historical Astronomy, especially in the study of supernovae, comets, Earth's rotation (using eclipses) and solar variability (via sunspots and aurorae). Few original texts now survive; almost all extant records exist only in printed versions, often with the loss of much detail. The earliest Chinese astronomical observations extend back to before 1000 BC. However, fairly systematic records are only available since 200 BC - and even these have suffered losses through wars, etc. By around AD 800, many independent observations are available from Japan and Korea and these provide a valuable supplement to the Chinese data. Throughout East Asia dates were expressed in terms of a luni-solar calendar and conversion to the Julian or Gregorian calendar can be readily effected.

  3. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  4. The North American Astronomical Photographic Plate Preservation & Digitization Center Current Status

    NASA Astrophysics Data System (ADS)

    Osborn, Wayne; Castelaz, M.; Cline, J. D.; Griffin, R. E.; Barker, T.

    2006-12-01

    The North American Astronomical Photographic Plate Center (NAPPC) was established at the Pisgah Astronomical Research Institute in 2004. The goal of the Center is to help preserve astronomical photographic data, first by serving as a long term repository for astronomical plate collections and eventually by digitizing the plate material of interest for research projects. In the three years of existence, the Center has received over 25,000 plates. The largest collections are CTIO 4-m plates, CTIO and Warner and Swasey direct and objective prism Schmidt plates, and U. Michigan spectra. Preliminary catalogues of the plates are being developed and placed on line (http://www.pari.edu/library/astronomical-plate-center). A small source of funding has been secured to support this work. Instructions will be available from the authors on the steps to follow for individuals or observatories wishing to archive plates at the Center.

  5. American Astronomical Society Honors NRAO Scientist

    NASA Astrophysics Data System (ADS)

    2005-01-01

    The American Astronomical Society (AAS) has awarded its prestigious George Van Biesbroeck Prize to Dr. Eric Greisen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The society cited Greisen's quarter-century as "principal architect and tireless custodian" of the Astronomical Image Processing System (AIPS), a massive software package used by astronomers around the world, as "an invaluable service to astronomy." Dr. Eric Greisen Dr. Eric Greisen CREDIT: NRAO/AUI/NSF (Click on image for larger version) The Van Biesbroeck Prize "honors a living individual for long-term extraordinary or unselfish service to astronomy, often beyond the requirements of his or her paid position." The AAS, with about 7,000 members, is the major organization of professional astronomers in North America. " The Very Large Array (VLA) is the most productive ground-based telescope in the history of astronomy, and most of the more than 10,000 observing projects on the VLA have depended upon the AIPS software to produce their scientific results," said Dr. James Ulvestad, NRAO's Director of New Mexico Operations. "This same software package also has been the principal tool for scientists using the Very Long Baseline Array and numerous other radio telescopes around the world," Ulvestad added. Greisen, who received a Ph.D in astronomy from the California Institute of Technology, joined the NRAO in 1972. He moved from the observatory's headquarters in Charlottesville, Virginia, to its Array Operations Center in Socorro in 2000. Greisen, who learned of the award in a telephone call from the AAS President, Dr. Robert Kirschner of Harvard University, said, "I'm pleased for the recognition of AIPS and also for the recognition of the contributions of radio astronomy to astronomy as a whole." He added that "it wasn't just me who did AIPS. There were many others." The AIPS software package grew out of the need for an efficient tool for producing images with the VLA, which was being

  6. Data Centres In The Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, F.

    2006-08-01

    Astronomy has been at the forefront for the development of on-line services, and astronomers routinely retrieve data from observatory archives, information from value-added services provided by data centres, and bibliography from the ADS and electronic journals. The Virtual Observatory aims at going one step further by providing astronomers with seamless and transparent access to data and services, and data centres with a framework to publish their data and services. Many teams size the opportunity and express their willingness to provide VO services in their domains of expertise, such as data compilations or specific tools, including theory data and services. The VO allows astronomers to discover and use resources of interest for their research, and specific tools can be interfaced with more general VO portals. This means that even small teams can have a significant contribution if they choose the proper niche. VO projects are organising themselves to help these new data centres to uptake the VO framework. Traditional data centres also have a role to play in explaining the constraints linked to service quality and sustainability. The VO "Data Centre Alliance" opens exciting new prospects for increasing the sharing of knowledge throughout the community.

  7. Preservation Challenges in North America: Recent Efforts by the American Astronomical Society

    NASA Astrophysics Data System (ADS)

    Schechner, Sara J.

    2012-09-01

    In January 2007 in Seattle, the Council of the American Astronomical Society established the Working Group for the Preservation of Astronomical Heritage (WGPAH) in response to a report from the society's Historical Astronomy Division (HAD). Twelve members of WGPAH are chosen on the basis of their professional qualifications relating to the preservation of sites, astronomical instruments, and historical documents. Two additional members represent the concerns of active research observatories. WGPAH is charged with developing and disseminating procedures, criteria and priorities for identifying, designating, and preserving astronomical structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The Working Group may interact with other academic, international, or governmental organizations, as appropriate to advance the preservation of astronomical heritage. As a founding member of the Working Group, I will speak about both the AAS's initiatives and the leadership it has shown in affirming the value of historical astronomical data, glass plates, instruments, observatories, research papers, and editorial records. I will also describe the challenges faced in preserving these things in North America.

  8. The Development of Mauna Kea as an Astronomical Site

    NASA Astrophysics Data System (ADS)

    DeVorkin, David H.

    2015-08-01

    This is a proposal to hold a panel discussion at the 2015 IAU General Assembly, within the three-day Focus Meeting FM2, “Astronomical Heritage: Progressing the UNESCO-IAU Initiative” August 11-13. We believe the proposal is germane to FM2 in that it is directed to "Recognizing the twentieth-century heritage of astronomy." This panel will consist of a set of moderated and linked talks by individuals who were central to the creation of the Institute for Astronomy at the University of Hawaii, and to building observatory sites both on Haleakala and Mauna Kea. Invited discussants thus far include John T. Jefferies, David Morrison, Alan Tokunaga and Ann Boesgaard. The purpose of the panel discussion will be to provide a platform wherein astronomers will share their recollections and views relating to the history of the establishment of Mauna Kea as an astronomical observatory. They, along with fellow discussants and the audience, will then consider what is critical about this history and suggest steps for adequately preserving and elucidating that history. What were the chief opportunities, challenges and then hurdles to overcome in the identification and then implementation of Mauna Kea as an ideal site, and how did the University of Hawaii become the host institution for its establishment? What was learned from sites established on Haleakela by the U. S. Air Force and the Smithsonian that focused attention on Mauna Kea? How and why did NASA become interested in establishing a large observatory there? And once the site was established and its qualities fully appreciated, how did astronomical institutions from all over the world join to populate the peaks and saddles of the dwelling place of the goddess Poliahu? Each of the invited participants will be encouraged to make extended opening statements relating to their experiences, but at least half of the session will be devoted to structured questions from the moderator, and open discussion during audience Q&A.

  9. Spectral photographic archives of observatories of Ukraine: digital versions

    NASA Astrophysics Data System (ADS)

    Pakuliak, L.; Shlyapnikov, A.; Rosenbush, A.; Gorbunov, M.

    Photographic archives of Ukrainian observatories contain a large number of plates in collections of spectral observations. First attempts to digitize them and to make them available via VO formats and protocols of data transfer and processing were undertaken during last years. The involved observatories are Crimean Astrophysical Observatory (CrAO) and Main Astronomical observatory NAS of Ukraine (MAO NASU).The project of spectral archive digitizing is carried out within the framework of Ukrainian Virtual Observatory - UkrVO. The core of UkrVO is a Joint Digital Archive (JDA) of photographic and CCD observations. On-line databases of spectral photographic collections and their fitting for VO tools set are the further enhancement of the idea of JDA.

  10. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  11. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    NASA Astrophysics Data System (ADS)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  12. Visualizing Astronomical Data with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2013-06-01

    Astronomical data take on a multitude of forms—catalogs, data cubes, images, and simulations. The availability of software for rendering high-quality three-dimensional graphics lends itself to the paradigm of exploring the incredible parameter space afforded by the astronomical sciences. The software program Blender gives astronomers a useful tool for displaying data in a manner used by three-dimensional (3D) graphics specialists and animators. The interface to this popular software package is introduced with attention to features of interest in astronomy. An overview of the steps for generating models, textures, animations, camera work, and renders is outlined. An introduction is presented on the methodology for producing animations and graphics with a variety of astronomical data. Examples from subfields of astronomy with different kinds of data are shown with resources provided to members of the astronomical community. An example video showcasing the outlined principles and features is provided along with scripts and files for sample visualizations.

  13. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights. PMID:24985792

  14. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  15. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  16. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  17. Fostering Student Awareness in Observatory STEM Careers

    NASA Astrophysics Data System (ADS)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  18. Undergraduate Astronomy Instruction with an Automated Observatory

    NASA Astrophysics Data System (ADS)

    Fanelli, M. N.; Littler, C.; Weathers, D.

    2001-12-01

    The University of North Texas (UNT) currently enrolls about 2400 students per academic year in survey astronomy classes. All students complete a 1-credit laboratory course, designed to fulfill a laboratory science curriculum requirement. As one element in our laboratory program, we are developing an automated observatory for use by these students. The UNT Monroe Observatory, located at a dark site 45 miles from campus, has been designed with a roll-off roof covering two (expandable to four) observing stations. Each station consists of a Celestron 14-inch telescope on a Paramount GT-1100 base from Software Bisque, outfitted with an AP7 CCD camera from Apogee Instruments. We intend to remotely operate these stations from the university in Denton. We are developing an integrated astronomy laboratory sequence, employing digital imagery from the remote observatory, multimedia presentations in a planetarium, and table-top experiments in a lab setting. The automated observatory will permit students to conduct individualized observational astronomy experiments in a manner similar to those employed in astronomical research. As of October 2001, we have acquired equipment for two observing stations, prepared the site, completed the building design, and signed a construction contract. We anticipate first use during the 2002-2003 academic year. The UNT Observatory has been funded in part through the National Science Foundation's CCLI grant program, #9950630.

  19. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  20. A National Solar Digital Observatory

    NASA Astrophysics Data System (ADS)

    Hill, F.

    2000-05-01

    The continuing development of the Internet as a research tool, combined with an improving funding climate, has sparked new interest in the development of Internet-linked astronomical data bases and analysis tools. Here I outline a concept for a National Solar Digital Observatory (NSDO), a set of data archives and analysis tools distributed in physical location at sites which already host such systems. A central web site would be implemented from which a user could search all of the component archives, select and download data, and perform analyses. Example components include NSO's Digital Library containing its synoptic and GONG data, and the forthcoming SOLIS archive. Several other archives, in various stages of development, also exist. Potential analysis tools include content-based searches, visualized programming tools, and graphics routines. The existence of an NSDO would greatly facilitate solar physics research, as a user would no longer need to have detailed knowledge of all solar archive sites. It would also improve public outreach efforts. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  1. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  2. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  3. Meaningful metrics for observatory publication statistics

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, Sherry L.; Becker, Glenn E.

    2012-09-01

    Observatories have wrestled for decades with the questions how to measure their importance to the astronomical community, what their scientific impact is, and how their performance in that respect compares to that of other observatories. There is a general sense that the answer is to be found in the publication record - specifically, in the refereed journal articles. However, simple parameters (such as the number of papers) are not helpful, because in isolation (applied to a single observatory) they are meaningless, while in comparison between observatories they are subject to external influences that all but invalidate the comparisons. We were fortunate in having the Chandra X-ray Observatory's bibliographic database with its rich variety of metadata available as a resource for experimenting with more sophisticated metrics. Out of this project we propose a modest set that contains meaningful information when viewed in the isolation of a single observatory as well as in comparison with other observatories. Even so, we urge users not to draw conclusions on the basis of the face value of the comparisons, but only after a serious analysis of potential causes for any differences or similarities. We have designed our metrics to provide useful information in three main areas of interest: speed of publication; fraction of observing time published; and archival usage. The basic measured parameters are the percentage of available observing time published as a function of the data's age, at a few specific age values; the median time it takes to publish observations; and similar parameters for multiple publications of the same observations. Citation of results is a fourth category, but it does not lend itself well to comparisons and defies the search for definite statements.

  4. Instrumentation Design and Implementation at Leuschner Observatory

    NASA Astrophysics Data System (ADS)

    Lanz, A. E.

    2003-12-01

    Telescopes are the primary tool astronomers use to gather data, specifically images of the night sky. UCB Leuschner Observatory is a professional telescope in need of new equipment and general maintenance much like an unused vehicle. The result of this amalgam of modernization is a functioning professional-quality telescope capable of cutting edge, publishable research, primarily for student use. The telescope is expected to be fully functional in September 2003, at which time photometric observations of extra-solar planet transits will begin. This project provided unparalleled opportunities for purchasing and installing optics, developing and integrating software, and working with electronic circuitry that is highly unique. This project was an apprenticeship in telescope mechanics invaluable in a world where many astronomers are merely drivers.

  5. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1989-01-01

    SOFIA will be a three meter class telescope operating in a Boeing 747, offering astronomers routine access to infrared wavelengths unavailable from the ground, and with the means to observe transient astronomical events from anywhere in the world. The concept is based on 15 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA will replace in the mid 1990's. SOFIA's wavelength range covers nearly four decades of the electromagnetic spectrum: from the visible, throughout the infrared and submillimeter, to the microwave region. Relative to the KAO, SOFIA will be roughly ten times more sensitive for compact sources, enabling observations of fainter objects and measurements at higher spectral resolution. Also, it will have three times the angular resolving power for wavelengths greater than 30 microns, permitting more detailed imaging at far infrared wavelengths.

  6. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  7. Virtual Astronomical Pipelines

    NASA Astrophysics Data System (ADS)

    Dave, R.; Protopapas, P.; Lehner, M.

    2007-10-01

    The sheer magnitude of databases and data rates in new surveys makes it hard to develop pipelines to enable both the analysis of data and the federation of these databases for correlation and followup. There is thus a compelling need to facilitate the creation and management of dynamic workflow pipelines that enable correlating data between separate, parallel streams; changing the workflow in response to an event; using the NVO to obtain additional needed information from databases; and modifying the observing program of a primary survey to follow-up a transient or moving object. This paper describes such a Virtual Astronomical Pipeline (VAP) system which is running in the TAOS project. The software enables components in the pipeline to react to events encapsulated in XML messages, modifying and subsequently routing these messages to multiple other components. This architecture allows for the bootstrapping of components individually in the development process and for dynamic reconfiguration of the pipeline as a response to external and internal events. The software will be extended for future work in combining the results of surveys and followups into a global virtual pipeline.

  8. Cosmos, culture and landscape: Documenting, learning and sharing Aboriginal astronomical knowledge in contemporary society

    NASA Astrophysics Data System (ADS)

    Goldsmith, J. M.

    2014-05-01

    This PhD thesis presents Australian Aboriginal astronomical knowledge, its documentation, sharing and communication, with an emphasis on contemporary collaborations. The research is primarily focussed on the Murchison region (associated with Murchison Radio-astronomy Observatory), East Kimberley (Wolfe Creek Crater) and the South West of Western Australia.

  9. Old Star's "Rebirth" Gives Astronomers Surprises

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  10. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that

  11. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  12. Annotations of a Public Astronomer

    NASA Astrophysics Data System (ADS)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  13. Sixteenth Century Astronomical Telescopy

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2001-12-01

    Ophelia in Shakespeare's Hamlet is named for the ``moist star" which in mythology is the partner of Hamlet's royal Sun. Together the couple seem destined to rule on earth just as their celestial counterparts rule the heavens, but the tragedy is that they are afflicted, just as the Sun and Moon are blemished. In 1.3 Laertes lectures Ophelia on love and chastity, describing first Cytherean phases (crescent to gibbous) and then Lunar craters. Spots mar the Sun (1.1, 3.1). Also reported are Jupiter's Red Spot (3.4) and the resolution of the Milky Way into stars (2.2). These interpretations are well-founded and support the cosmic allegory. Observations must have been made with optical aid, probably the perspective glass of Leonard Digges, father of Thomas Digges. Notably absent from Hamlet is mention of the Galilean moons, owing perhaps to the narrow field-of-view of the telescope. That discovery is later celebrated in Cymbeline, published soon after Galileo's Siderius Nuncius in 1610. In 5.4 of Cymbeline the four ghosts dance ``in imitation of planetary motions" and at Jupiter's behest place a book on the chest of Posthumus Leonatus. His name identifies the Digges father and son as the source of data in Hamlet since Jupiter's moons were discovered after the deaths of Leonard (``leon+hart") and Thomas (the ``lion's whelp"). Lines in 5.4 urge us not to read more into the book than is contained between its covers; this is understandable because Hamlet had already reported the other data in support of heliocentricism and the cosmic model discussed and depicted by Thomas Digges in 1576. I conclude therefore that astronomical telescopy began in England before the last quarter of the sixteenth century.

  14. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  15. Infrastructure of the Gemini Observatory control system

    NASA Astrophysics Data System (ADS)

    Gillies, Kim K.; Walker, Shane

    1998-07-01

    Construction of the first Gemini 8-m telescope is well underway. The software that provides the user interface and high-level control of the observatory, the observatory control system (OCS), is also proceeding on track. The OCS provides tools that assist the astronomer from the proposal submission phase through planning, observation execution, and data review. A capable and flexible software infrastructure is required to support this comprehensive approach. New software technologies and industry standards have played a large part in the implementation of this infrastructure. For instance, the use of CORBA has provided many benefits in the software including object distribution, an interface definition language, and implementation language independence. In this paper, we describe the infrastructure of the OCS that supports observation planning and execution. Important software decisions and interfaces that allow Internet access and the ability to substitute alternate implementations easily are discussed as a model for other similar projects.

  16. SOFIA: The Next Generation Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.

    1995-10-01

    The United States and German Space Agencies (NASA and DARA) are collaborating in plans for SOFIA — The Stratospheric Observatory for Infrared Astronomy. It is a 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 45,000 feet. It will permit routine measurement of infrared radiation absorbed by the atmosphere at lower altitudes, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 20 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace. SOFIA will complement the capabilities of other future space missions, and will enable scientists to make observations which would otherwise be made from space.

  17. Strasbourg Observatory in World War II

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.

    During World War II, the Reichsuniversitat Strassburg was installed by the German authorities and Johannes Hellerich (1888-1963) was appointed director of the Observatory. A review of his life and his astro- nomical career as an assistant and professor in Kiel, Hamburg, Strasbourg, and Muenster is given. His activity in Strasbourg from mid-1941 to mid-1943 was focussed on bringing the Observatory into working operations, and on carrying out the monitoring of solar radiation and atmospheric extinction. After being drafted to the army and spending some time as a prisoner of war, he returned to Hamburg to complete a review on variable-star research in wartime Germany. He was called to Muenster University in 1947 to teach astronomy, and, from 1949 onward, to serve as director of the small Astronomical Institute till his retirement in 1954.

  18. Data modeling for the virtual observatory

    NASA Astrophysics Data System (ADS)

    Louys, Mireille

    2015-06-01

    The data modeling effort has played a key role in the Virtual Observatory project, and contributed to the effort to build a common reference framework to describe the necessary information attached to astronomical data: the metadata. Such metadata describe the observing parameters and characterize and qualify the observed measurements. These pieces of information are produced and stored in project archives. Standardizing a homogeneous representation of metadata allows uniform discovery and use of the data in the Virtual Observatory infrastructure. This paper describes the context of data modeling in the VO architecture and shows how data models support requirements on the data access layer and for applications development. How the modeling process has been undertaken is explained with a short overview of the different data models. We also discuss in some detail the lessons learned in this modeling and standardization effort.

  19. The Lowell Observatory Predoctoral Student Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2010-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its fourth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Several projects are available in collaboration with Lowell staff astronomers; we anticipate the availability of an increasing variety of projects over the next years as completion of our new 4.2 meter Discovery Channel Telescope and corresponding instrumentation progresses. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. Currently, three students are enrolled in our program; our first graduate completed the program in August, 2009. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www.lowell.edu/rsch/predoc.php and links therein. Applications for Spring 2010 are due by December 1, 2009.

  20. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  1. Virtual Observatory - India : Information Support For Remote Users

    NASA Astrophysics Data System (ADS)

    Alladi, Vagiswari; Birdie, Christina; Bawdekar, Nirupama; Kembhavi, Ajit; Sheshadri, Geetha

    A Virtual Observatory (VO) seeks to provide a single virtual platform which will provide astronomers easy access to large astronomical data over many different wavelengths. The data are gathered from space-based missions and from ground-based telescopes. VO related projects are being started in India also, and Virtual Observatory-India is the brain child of IUCAA as a collaboration between astronomers and software developers in the country. Specific programs are being developed, and mirror sites of databases are being created. They have received funding from the government. Astronomical Libraries in India will play a major role in this project in the form of Virtual Information Support. The Virtual Information Support (VIS) will serve as a tool for meeting the information needs of the astronomical community in the country, from anywhere at anytime. It will be a major source of support to provide seamless access to the resources held in the astronomy libraries, including the online interactive services. FORSA (Forum for Resource Sharing in Astronomy & Astrophysics) is an informal cohesive group of astronomy libraries in India, which will be the force behind this Virtual Library to share resources and services. The major VIS initiative in 2002 will be the design and implementation of a web site - with features such as newsletter, an integrated library database of all the libraries of the FORSA members, and an online interactive form to facilitate the interlibrary exchange.

  2. Preserving the History of Wesleyan University's Van Vleck Observatory

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy E.; Erickson, Paul; Herbst, William; Redfield, Seth; Williams, Amrys

    2016-01-01

    Since its opening in 1916, the Van Vleck Observatory at Wesleyan University has been dedicated to the joint mission of astronomical education and research. In celebration of the Observatory's centennial year, we are undertaking a number of projects to preserve and chronicle its history. The centerpiece of these efforts has been the renovation of the 20-inch Alvan Clark refracting telescope. Through careful compromise of historical restoration and modernization, we have ensured the future of one of the nation's last large, long-focus refractors well into the 21st century. In addition, we are producing an historical exhibition in the Observatory and online that will open to the public in the spring of 2016. Our exhibition explores the place-based nature of astronomical research, the scientific instruments, labor, and individuals that have connected places around the world in networks of observation, and the broader history of how observational astronomy has linked local people, amateur observers, professional astronomers, and the tools and objects that have facilitated their work under Connecticut's skies over the past 100 years. We are also collecting memories from the community to enrich our exhibition. If you have a story about the Van Vleck Observatory you would like to share with our researchers, please contact one of the authors.

  3. Solar Physics at the Kodaikanal Observatory: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.; Mallik, D. C. V.; Bagare, S. P.; Rajaguru, S. P.

    The Kodaikanal Observatory traces its origins to the East India Company, which started an observatory in Madras "for promoting the knowledge of astronomy, geography, and navigation in India." Observations began in 1787 at the initiative of William Petrie, an officer of the Company, with the use of two 3-in achromatic telescopes, two astronomical clocks with compound pendulums, and a transit instrument. By the early nineteenth century, the Madras Observatory had already established a reputation as a leading astronomical center devoted to work on the fundamental positions of stars, and a principal source of stellar positions for most of the southern hemisphere stars. John Goldingham (1796-1805, 1812-1830), T.G. Taylor (1830-1848),W.S. Jacob (1849-1858), and Norman R. Pogson (1861-1891) were successive Government Astronomers who led the activities in Madras. Scientific highlights of the work included a catalogue of 11,000 southern stars produced by theMadras Observatory in 1844 under Taylor's direction using the new 5-ft transit instrument.

  4. Learning from FITS: Limitations in use in modern astronomical research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.

    2015-09-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships.

  5. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  6. Virtual Observatories, Data Mining, and Astroinformatics

    NASA Astrophysics Data System (ADS)

    Borne, Kirk

    The historical, current, and future trends in knowledge discovery from data in astronomy are presented here. The story begins with a brief history of data gathering and data organization. A description of the development ofnew information science technologies for astronomical discovery is then presented. Among these are e-Science and the virtual observatory, with its data discovery, access, display, and integration protocols; astroinformatics and data mining for exploratory data analysis, information extraction, and knowledge discovery from distributed data collections; new sky surveys' databases, including rich multivariate observational parameter sets for large numbers of objects; and the emerging discipline of data-oriented astronomical research, called astroinformatics. Astroinformatics is described as the fourth paradigm of astronomical research, following the three traditional research methodologies: observation, theory, and computation/modeling. Astroinformatics research areas include machine learning, data mining, visualization, statistics, semantic science, and scientific data management.Each of these areas is now an active research discipline, with significantscience-enabling applications in astronomy. Research challenges and sample research scenarios are presented in these areas, in addition to sample algorithms for data-oriented research. These information science technologies enable scientific knowledge discovery from the increasingly large and complex data collections in astronomy. The education and training of the modern astronomy student must consequently include skill development in these areas, whose practitioners have traditionally been limited to applied mathematicians, computer scientists, and statisticians. Modern astronomical researchers must cross these traditional discipline boundaries, thereby borrowing the best of breed methodologies from multiple disciplines. In the era of large sky surveys and numerous large telescopes, the potential

  7. Leslie Peltier, Amateur Astronomer and Observer Extraordinaire

    NASA Astrophysics Data System (ADS)

    Corbin, B. G.

    2003-12-01

    Leslie Copus Peltier, (Jan. 2, 1900-May 10, 1980) was called "the world's greatest non-professional astronomer" by none other than Harlow Shapley, and also referred to as the "the world's greatest living amateur astronomer". He began observing variable stars on March 1, 1918 with an observation of R. Leonis and at the time of his death had made a total of 132,123 observations of variable stars. These were reported to the AAVSO on a consecutive monthly basis stretching from 1918 to his death in 1980. As of October 2003, he was still on AAVSO's list of the top 25 observers in its history. Born on a farm near Delphos, Ohio, his parents were well read and their home was filled with books on different subjects, including nature guides. As a young man he studied the flora and fauna of the area and in 1915 began his study of the heavens with Vega being the first star he identified. After the purchase of a 2-inch spyglass, his observations of variable stars began to be noticed by professional astronomers and the AAVSO loaned him a 4-inch Mogey refractor; shortly thereafter Henry Norris Russell of Princeton loaned him via the AAVSO a 6-inch refractor, a comet seeker of short focus. He discovered 12 comets, 10 of which carry his name, and 6 novae or recurring novae. His design of the "Merry-Go-Round Observatory" was a novel approach with the whole observatory revolving around the observer while seated in his observing chair. Miami University (Ohio) later donated to him their 12-inch Clark refractor with its dome. His first book, Starlight Nights: The Adventures of a Star-Gazer, appeared in 1965. This autobiography, an ode to the joys of observing both the night sky and nature, was written in beautifully descriptive language that helped lead countless readers into astronomy. Departing from astronomy, in 1977 he published The Place on Jennings Creek. Written in the style of the 19th century naturalist, the book was devoted to his family's home, Brookhaven, and its natural

  8. The New Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as

  9. The Cape Observatory: all Categories of Heritage

    NASA Astrophysics Data System (ADS)

    Glass, Ian S.

    2012-09-01

    In this presentation I will give an outline of the various types of heritage related to the Royal Observatory, Cape of Good Hope, established in 1820 and now the headquarters campus of the South African Astronomical Observatory, located quite close to downtown Cape Town. In terms of tangible, fixed heritage, the campus itself, the domes and the various other buildings are obviously relevant. This category includes the Classical Revival Main Building of 1828 and the McClean dome of 1895 by the leading colonial architect Herbert Baker as well as many other buildings and even the graves of two directors. Tangible movable items include, in principle, the telescopes, the accessory instruments and many pieces of apparatus that have been preserved. In addition, extensive collections of antique paintings, drawings, furniture and books add to the site's cultural significance. Many of the Observatory's archives are still kept locally. The intangible heritage of the Observatory consists for example of its history, its major discoveries, its interaction with the City, its central role in the history of science in South Africa and its appeal as a living cultural institution. Especially notable were the observations by Henderson (ca 1831) leading to the distance of a Cen and the early sky survey known as the Cape Photographic Durchmusterung.

  10. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  11. A Mythological, Philosophical and Astronomical approach of our solar system

    NASA Astrophysics Data System (ADS)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  12. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    -Smithsonian Center for Astrophysics (CfA). "When we understand this system, we will have a much clearer picture of how galaxies are changed by being part of a bigger cluster of galaxies," he added. B1359+154 was discovered in 1999 by the Cosmic Lens All-Sky Survey, an international collaboration of astronomers who use radio telescopes to search the sky for gravitational lenses. Images made by the NSF's Very Large Array in New Mexico and by Britain's MERLIN radio telescope showed six objects suspected of being gravitational-lens images, but the results were inconclusive. Rusin and his team used the VLBA and HST in 1999 and 2000 to make more-detailed studies of B1359+154. The combination of data from the VLBA and HST convinced the astronomers that B1359+154 actually consists of six lensed images of a single background galaxy. The VLBA images were made from data collected during observations at a radio frequency of 1.7 GHz. "This is a great example of modern, multi-wavelength astronomy," said Rusin. "We need the radio telescopes to detect the gravitational lenses in the first place, then we need the visible-light information from Hubble to show us additional detail about the structure of the system." Armed with the combined VLBA and HST data about the positions and brightnesses of the six images of the background galaxy as well as the positions of the three intermediate galaxies, the astronomers did computer simulations to show how the gravitation of the three galaxies could produce the lens effect. They were able to design a computer model of the system that, in fact, produces the six images seen in B1359+154. "Our computer model certainly is not perfect, and we need to do more observations of this system to refine it, but we have clearly demonstrated that the three galaxies we see can produce a six-image lens system," said Martin Norbury, a graduate student at Jodrell Bank Observatory in Britain. "We think this work will give us an excellent tool for studying much-denser clusters of

  13. Geographic Information Processings for Astronomical Site Survey

    NASA Astrophysics Data System (ADS)

    Wu, N.; Liu, Y.; Zhao, M. Y.

    2015-01-01

    The geographic information is of great importance for the site survey of ground-based telescopes. Especially, an effective utilization of the geographic information system (GIS) has been one of the most significant methods for the remote analysis of modern site survey. The astronomical site survey should give consideration to the following geographical conditions: a large relative fall, convenient traffic conditions, and far away from populated areas. Taking into account of the convenience of construction and maintenance of the observatories as well as the living conditions of the scientists-in-residence, the optimum candidate locations may meet the conditions to be at a altitude between 3000 m and 5000 m and within one-hour drive from villages/towns. In this paper, as an example, we take the regions of the Great Baicao mountain ridge at Dayao county in Yunnan province to research the role of the GIS for site survey task. The results indicate that the GIS can provide accurate and intuitive data for us to understand the three dimensional landforms, rivers, roads, villages, and the distributions of the electric power as well as to forecast the tendency of the population and city development around. According to the analysis based on the GIS, we find that the top of the Great Baicao mountain ridge is flat and droughty. There are few inhabitants to distribute around the place while the traffic conditions are convenient. Moreover, it is a natural conservation area protected by the local government, and no industry with pollution sources exists in this region. Its top is 1500 m higher than the nearby village 10 km away, and 1800 m higher than the town center 50 km away. The Great Baicao mountain ridge is definitely an isolated peak in the area of the Yi nationality of Yunnan. Therefore, the GIS data analysis is a very useful for the remote investigation stage for site survey, and the GIS is the indispensable source for modern astronomical site survey.

  14. Virtual Observatory Services at WFAU

    NASA Astrophysics Data System (ADS)

    Holliman, M.; Read, M.; Hambly, N.; Mann, R. G.

    2010-12-01

    The Wide Field Astronomy Unit hosts a large number of Virtual Observatory (VO) services that enable access to both data and processing applications housed on our servers in Edinburgh. These services provide astronomers with a powerful set of tools for obtaining and processing data in ways unattainable through conventional access methods. The services offered include cone search and ADQL access to a number of major databases developed by our data centre such as UKIDSS, SuperCOSMOS Science Archive, and the 6dF Galaxy Survey, and also many mirrors of important databases developed elsewhere, such as SDSS, IRAS, and 2XMM. Images for UKIDSS and SuperCOSMOS are accessible through SIA services. There are useful data processing tools like the STILTS library for table manipulation, a data mining tool for classification using kernel density analysis, and a service for converting VOTables into KML for use in Google Sky. Also hosted are a number of VO infrastructure services like a full registry and VOSpace that enable users to find resources and store data in an online accessible location. WFAU provides secured VO services to the proprietary UKIDSS releases, which are the first secured VO services for a major proprietary data resource in the entire VO. With a limited knowledge of python and a copy of the VODesktop software astronomers can script up workflows that utilize these services to perform complex operations like cross matching between disparate datasets or extracting catalogues from images remotely. Since many of our databases are too large to be downloaded and accessed locally these services make it possible to accomplish complicated tasks online and on dedicated hardware. WFAU’s list of VO services will continue to grow as new IVOA standards are implemented and with the addition of new datasets like the VISTA surveys.

  15. The 1769 Transit of Venus Observatory in Lewes, Delaware

    NASA Astrophysics Data System (ADS)

    Morrison, J. E.; Thurston, G.

    2013-03-01

    The highest priority astronomical problem of the eighteenth century was to determine the distance from the Earth to the Sun, from which the scale of the entire solar system could be calculated. The most promising method of solving this problem was based on precise measurements of the rare event of a transit of Venus across the Sun's disc. The American Philosophical Society of Philadelphia embarked on an extensive transit observation programme for the 1769 transit with observatories at Statehouse Square - now named Independence Square - in Philadelphia, David Rittenhouse's farm in Norriton, Pennsylvania and a temporary site in Lewes, Delaware. The Lewes team had a very short time to establish an observatory capable of observing the transit, to determine the observatory's geographic coordinates and to document their transit observation. The methods they used to determine the observatory's coordinates are examined in detail and the probable location of the observation site is deduced.

  16. A mountain observatory and the Brazilian Astrophysics Project

    NASA Astrophysics Data System (ADS)

    Machado, Cristina de Amorim; Videira, Antonio A. P.

    2015-11-01

    The Brazilian astrophysics project is intimately linked to a scientific institution that came into existence in the 1980s: the National Astrophysics Laboratory. Responsible for enabling the development of Brazilian research in this area, its history dates back to a dream to build an observatory on a mountaintop conceived at an institution formed in the nineteenth century, the Imperial Observatory of Rio de Janeiro, later the National Observatory. It is a story of national and international scientific cooperation, especially in the second half of the twentieth century. This paper tells the story of this dream and how it was transformed into reality in 1980s with the installation of what was then called the Brazilian Astrophysics Observatory, heralding a new era for astronomical research in Brazil.

  17. A British national observatory: the building of the New Physical Observatory at Greenwich, 1889-1898.

    PubMed

    Higgitt, Rebekah

    2014-12-01

    Over its long history, the buildings of the Royal Observatory in Greenwich were enlarged and altered many times, reflecting changing needs and expectations of astronomers and funders, but also the constraints of a limited site and small budgets. The most significant expansion took place in the late nineteenth century, overseen by the eighth Astronomer Royal, William Christie, a programme that is put in the context of changing attitudes toward scientific funding, Christie's ambitious plans for the work and staffing of the Observatory and his desire to develop a national institution that could stand with more recently founded European and American rivals. Examination of the archives reveals the range of strategies Christie was required to use to acquire consent and financial backing from the Admiralty, as well as his opportunistic approach. While hindsight might lead to criticism of his decisions, Christie eventually succeeded in completing a large building - the New Physical Observatory - that, in its decoration, celebrated Greenwich's past while, in its name, style, structure and contents, it was intended to signal the institution's modernization and future promise. PMID:25546998

  18. Astronomers debate diamonds in space

    NASA Astrophysics Data System (ADS)

    1999-04-01

    This is not the first time the intriguing carbonaceous compound has been detected in space. A peculiar elite of twelve stars are known to produce it. The star now added by ISO to this elite is one of the best representatives of this exclusive family, since it emits a very strong signal of the compound. Additionally ISO found a second new member of the group with weaker emission, and also observed with a spectral resolution never achieved before other already known stars in this class. Astronomers think these ISO results will help solve the mystery of the true nature of the compound. Their publication by two different groups, from Spain and Canada, has triggered a debate on the topic, both in astronomy institutes and in chemistry laboratories. At present, mixed teams of astrophysicists and chemists are investigating in the lab compounds whose chemical signature or "fingerprint" matches that detected by ISO. Neither diamonds nor fullerenes have ever been detected in space, but their presence has been predicted. Tiny diamonds of pre-solar origin --older than the Solar System-- have been found in meteorites, which supports the as yet unconfirmed theory of their presence in interstellar space. The fullerene molecule, made of 60 carbon atoms linked to form a sphere (hence the name "buckyball"), has also been extensively searched for in space but never found. If the carbonaceous compound detected by ISO is a fullerene or a diamond, there will be new data on the production of these industrially interesting materials. Fullerenes are being investigated as "capsules" to deliver new pharmaceuticals to the body. Diamonds are commonly used in the electronics industry and for the development of new materials; if they are formed in the dust surrounding some stars, at relatively low temperatures and conditions of low pressure, companies could learn more about the ideal physical conditions to produce them. A textbook case The latest star in which the compound has been found is

  19. Urania in the Marketplace: Observatories as Holiday Destinations

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2015-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by manufacturers of industrial and consumer goods, into advertisements which appeared in popular magazines in America. The domes and telescopes of major observatories were often featured. In some cases, particularly within the Golden State of California, major astronomical facilities (notably the Lick and Mt. Wilson Observatories) were touted as tourist attractions and were publicized as such by tourist bureaus, railroads, and hotels.A particularly interesting example is provided by the Hotel Vendome in San Jose. With completion of the Lick Observatory (and the 36-inch Great Refractor) in 1887, the local business community felt that the city needed a first-class resort hotel. The architectural firm of Jacob Lenzen & Son was hired to design a grand hotel, comparable to those found in locales such as Monterey and Pasadena. The resulting four-story, 150-room structure cost 250,000, a phenomenal sum in those days. Yet, within just fourteen years, tourist demand led to the construction of a 36-room annex. Of course, a great resort hotel would not be complete without the opportunity for excursion, and the Mt. Hamilton Stage Company offered daily trips to the famous Lick Observatory.Farther south, the Mt. Wilson Observatory began construction of its own hotel in 1905.The original structure was destroyed by fire in 1913, and replaced by a second which was used by visitors until 1966.Early examples of advertisements for these observatories, recalling the heyday of astronomical tourism, are presented. A few more recent ones for Arecibo and Palomar are included for comparison.

  20. The Milan-Marseille Future Astronomical Software Environment Prototype

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Paioro, L.; Fenouillet, T.; Surace, C.

    2007-10-01

    The European OPTICON Network 3.6, in collaboration with theUS National Virtual Observatory, is working on the definition of requirements and general architecture of a new scalable and interoperable software environment. Such environment, named the Future Astronomical Software Environment (FASE), is intended to be a common platform for data reduction and analysis applications, supporting and exploiting (but not replacing) new technologies like Virtual Observatory and Grids. The advanced status of the study and design has led to the need of putting such ideas in a concrete form, implementing a first prototype. We present the FASE prototype developed by INAF-IASF Milano and LAM Marseille and the practical application of its engineering to the VIPGI data reduction package. We show the technologies adopted, the problems solved and to be tackled, and possible future developments.

  1. Towards a national astronomy observatory for the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Els, S.; Maree, J.; Al Marri, S.; Al Muqbel, Y.; Yousif, A.; Al Naimiy, H.

    2012-09-01

    The Emirates Institute for Advanced Science and Technology (EIAST) investigated the possibility to setup an astronomical research and outreach center within the United Arab Emirates. The main goals of such a new institution are to raise interest in space research and to ultimately develop a significant research community within the UAE. Such an astronomy center will also require appropriate observatory facilities. In this paper current concepts of such a possible national UAE astronomy observatory will be outlined, and the findings of an initial survey for suitable locations to host the telescopic facilities within the UAE are presented.

  2. The Transformation of Observatory Newsletters - A Gemini Perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu

    2015-08-01

    Astronomical observatories publish newsletters to communicate the observatory’s new discoveries and activities with its user communities, funding agencies, and general public. Gemini Observatory started publishing the newsletter in March 1992. Over the years, it transformed from a no-frills black and white publication to a full-color magazine type newsletter with a special name “GeminiFocus”. Since 2012, the contents of GeminiFocus moved from print to digital with an additional print issue of the Year in Review. The newsletter transformation is in sync with the rapid development of the internet technologies. We discuss here the evolvement of Gemini newsletter and the lessons learned.

  3. Recollections of life as a student and a young astronomer in Germany in the 1920s

    NASA Astrophysics Data System (ADS)

    Brück, Hermann A.; Brück, Mary T.

    2000-12-01

    The author of this essay, Hermann Alexander Brück, Emeritus Professor of Astronomy at the University of Edinburgh and former Astronomer Royal for Scotland, died on 4 March 2000 in his 95th year. He was the last of his generation of astronomers in both Germany and Britain, and among the oldest members, if not the oldest, of the Royal Astronomical Society and of the Astronomische Gesellschaft. Hermann Brück was born in Berlin in 1905 and, as he recounts below, received his education at the Universities of Kiel, Bonn and Munich in 1924-1928. To the end of his life he looked back on his student days in Munich as the most profitable and exciting he ever experienced. From Munich he began his astronomical career at the Potsdam Astrophysical Observatory. These, too, were happy days, destined, however, to be blighted within a few years by the rise of Nazism. In 1936 Brück left Germany, and obtained a temporary Research Assistantship at the Vatican Observatory. From there he went a year later to Cambridge, rising to the rank of John Couch Adams Astronomer and Assistant Director of the Observatory. In 1947, in response to an invitation from Eamon de Valera, then Taoiseach (Prime Minister) of Ireland, he moved to Dublin where he undertook the task of re-founding the defunct Dunsink Observatory under the auspices of the Dublin Institute for Advanced Studies. He moved from Dublin to the Royal Observatory Edinburgh in 1957, taking up the combined post of Astronomer Royal for Scotland and Regius Professor of Astronomy in the University of Edinburgh. He retired in 1975 at the age of 70. Always interested in history, he occupied himself in his retirement with various historical projects. These included writing the histories of the Royal Observatory Edinburgh (The Story of Astronomy in Edinburgh, Edinburgh 1983) and of the earlier Dun Echt Observatory in Aberdeenshire (Lord Crawford's Observatory at Dun Echt 1872-1892, Vistas in Astronomy 35, 1992) as well as a record of his own

  4. Explanatory Supplement to the Astronomical Almanac (3rd Edition)

    NASA Astrophysics Data System (ADS)

    Urban, Sean E.; Seidelmann, P. K.

    2014-01-01

    Publications and software from the the Astronomical Applications Department of the US Naval Observatory (USNO) are used throughout the world, not only in the Department of Defense for safe navigation, but by many people including other navigators, astronomers, aerospace engineers, and geodesists. Products such as The Nautical Almanac, The Astronomical Almanac, and the Multiyear Interactive Computer Almanac (MICA) are regarded as international standards. To maintain credibility, it is imperative that the methodologies employed and the data used are well documented. "The Explanatory Supplement to the Astronomical Almanac" (hereafter, "The ES") is a major source of such documentation. It is a comprehensive reference book on positional astronomy, covering the theories and algorithms used to produce The Astronomical Almanac, an annual publication produced jointly by the Nautical Almanac Office of USNO and Her Majesty's Nautical Almanac Office (HMNAO). The first edition of The ES appeared in 1961, and the second followed in 1992. Several major changes have taken place in fundamental astronomy since the second edition was published. Advances in radio observations allowed the celestial reference frame to be tied to extragalactic radio sources, thus the International Celestial Reference System replaced the FK5 system. The success of ESA's Hipparcos satellite dramatically altered observational astrometry. Improvements in Earth orientation observations lead to new precession and nutation theories. Additionally, a new positional paradigm, no longer tied to the ecliptic and equinox, was accepted. Largely because of these changes, staff at USNO and HMNAO decided the time was right for the next edition of The ES. The third edition is now available; it is a complete revision of the 1992 book. Along with subjects covered in the previous two editions, the book also contains descriptions of the major advancements in positional astronomy over the last 20 years, some of which are

  5. Searching the Heavens and the Earth: This History of Jesuit Observatories

    NASA Astrophysics Data System (ADS)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  6. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  7. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  8. Pulkovo Observatory and its Former Branches in the Crimea and Nikolaev

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.; Abalakin, V. K.; Pinigin, G. I.; Rostopchina, A. N.

    2012-09-01

    The Central Astronomical Observatory at Pulkovo was founded in 1839 for ``providing permanent and, as far as possible, the most perfect observations aimed at the prosperity of Astronomy and necessary for geographic undertakings of the Russian Empire and for ends of the Practical Astronomy as well''. The first director of the Pulkovo was the prominent astronomer F.G.W. Struve (1793--1864). The Observatory was designed by the well-known architect Alexander Brüllow. The three-dome Pulkovo style was propagated over the world. Widely-used methods of astrometric observations along with famous fundamental star catalogs were developed in Pulkovo. The Observatory has kept the leading position in Russia up to date, conducting research in all major areas of astronomy -- astrophysics, solar physics, radio astronomy, astrometry, celestial mechanics, etc. In 1908, the south branch of Pulkovo Observatory in Simeiz (Crimea) was organized, where both systematic observations in search of new comets and minor planets, photometric and spectroscopic observations of stars and galaxies were started. These observations yielded fundamental results concerning rotation of stars, structure of galaxies, the role of magnetic field in interstellar medium. In 1945 Crimean Astrophysical Observatory of USSR Academy of Science (now Scientific Research Institute ``Crimean Astrophysical Observatory'', Ukraine) was founded on the base of the Simeiz department. Now it is a leading astronomical institution in Ukraine. Areas of research at CrAO are solar physics, chemical composition and activity of stars and their surroundings, extragalactic studies, geo-dynamics, small bodies in the Solar System and in the near-Earth space, instrumentation for ground-based and space astronomy. In 1912, Nikolaev branch of Pulkovo Observatory was organized on the basis of the oldest in Russia Naval Observatory in Nikolaev, which was founded in 1821 by Admiral A. Greig, chief commander of the Black Sea Fleet. Regular

  9. Dreamtime astronomy: development of a new indigenous program at Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Wyatt, Geoffrey; Stephenson, Toner; Hamacher, Duane W.

    2014-07-01

    The Australian National Curriculum promotes Indigenous culture in school education programs. To foster a broader appreciation of cultural astronomy, to utilise the unique astronomical heritage of the site, and to develop an educational program within the framework of the National Curriculum, Sydney Observatory launched Dreamtime Astronomy - a program incorporating Australian Indigenous culture, astronomy, and Sydney's astronomical history and heritage. This paper reviews the development and implementation of this program and discusses modifications following an evaluation that was conducted by schools.

  10. Virtual Educational Observatories: Project CLEA in the 21st Century

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Snyder, G. A.

    2004-12-01

    Computerized simulations of astronomical instrumentation along with user-friendly analysis tools provide a versatile and effective way to introduce students to the methodology of astronomy. Recent efforts by Project CLEA (Contemporary Laboratory Experiences in Astronomy) have produced a new modular exercise on solar rotation, with exercises on transits of mercury and venus and on x-ray astronomy in the works. We focus on an ongoing effort, currently in an advanced beta version, to produce a "virtual educational observatory", VIREO, which departs from the modular approach. VIREO is a simulated multi-wavelength observatory including optical, radio, infrared, and x-ray instrumentation and a very large-all-sky database. The VIREO software provides an environment under which a wide variety of astronomical exercises can be carried out, from observations of asteroids, to searches for high-redshift quasars using a multi-slit spectrograph. This research was sponsored by the National Science Foundation and Gettysburg College.

  11. Interference in astronomical speckle patterns

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1976-01-01

    Astronomical speckle patterns are examined in an atmospheric-optics context in order to determine what kind of image quality is to be expected from several different imaging techniques. The model used to describe the instantaneous complex field distribution across the pupil of a large telescope regards the pupil as a deep phase grating with a periodicity given by the size of the cell of uniform phase or the refractive index structure function. This model is used along with an empirical formula derived purely from the physical appearance of the speckle patterns to discuss the orders of interference in astronomical speckle patterns.

  12. Digitization of Historical Astronomical Literature

    NASA Astrophysics Data System (ADS)

    Corbin, B. G.; Coletti, D. J.

    In the late 19th and early 20th centuries, much of the important research in astronomy generally appeared in observatory publications which were distributed by observatories throughout the world. Much of the data is still in demand (observations of variable stars, cometary observations, solar phenomena, etc.), but complete sets of these publications are held by few libraries. The information is often not easily accessible because significant portions of the material are brittle and in danger of being lost. The U.S. Naval Observatory (USNO) Library, and the Harvard College Observatory's Wolbach Library (HCO) hold almost complete sets of these series in their collections. Digitization of these historical collections will preserve them for posterity, improve access, reduce retrieval time, and reduce the risk of the information disappearing through disintegration, mutilation, or theft. A pilot project is currently in progress.

  13. The Einstein Observatory: A New Public/Private Observatory Complex for Community Education and Scientific Research

    NASA Astrophysics Data System (ADS)

    Sowell, J.

    1999-12-01

    The Development Authority of Cherokee County (Georgia) is leading a public/private partnership of business/industry professionals, educators, and university scientists that seeks to develop a national prototype educational and scientific research facility for grades K-12, as well as college-level research, that will inspire our youth to become literate in science and technology. In particular, the goal is to make this complex a science, math, and engineering magnet learning facility and to raise the average SAT scores of local area students by 100 points. A dark-site mountain, nestled on the foothills of the Blue Ridge Mountains at the northern-most edge of Atlanta, will become the home for the "Einstein" Observatory. The complex will have four telescopes: one 50-inch, one 24-inch, and two 16-inch telescopes. Each telescope will have digital cameras and an optic-fiber feed to a single, medium-resolution spectroscope. All four telescopes will be electronically accessible from local schools. Professional astronomers will establish suitable observational research projects and will lead K-12 and college students in the acquisition and analysis of data. Astronomers will also assist the local area schoolteachers in methods for nurturing children's scientific inquiry. The observatory mountain will have 100 platform locations for individual viewing by visiting families, school groups, and amateur astronomers. The Atlanta Astronomer Club will provide numerous evening programs and viewing opportunities for the general public. An accompanying Planetarium & Science Center will be located on the nearby campus of Reinhardt College. The Planetarium & Science Center will be integrated with Reinhardt College's theme of learning focused upon studying the past and present as a basis for projecting the future.

  14. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    NASA Astrophysics Data System (ADS)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  15. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  16. Astronomical Interlibrary Cooperation: The Long and Difficult Plan for Coordinated Acquisition of Journals -- the Italian Case

    NASA Astrophysics Data System (ADS)

    Gasperini, A.; Abrami, L.; Olostro Cirella, E.

    2007-10-01

    Until 2002, the Italian astronomical observatories were independent research institutes. Their libraries, though different in their origins and history, shared common bibliographical materials, users and aims. This situation prompted a first experience of unofficial cooperation between astronomical observatory libraries, which produced outstanding results, in particular a detailed survey of the nature, cost and use of scientific journals. Starting from 2002, when the 12 observatories merged into a single institution, the National Institute for Astrophysics (INAF), the experience of cooperation between the libraries became official. The INAF headquarters, in fact, has recently established the Library Documentary and Archive Service of the National Institute for Astrophysics (SBDA-INAF) in order to have a centralized astronomical bibliographical service and to promote cooperation among libraries. At the end of 2004, following the INAF rearrangement, 5 Institutes of the National Research Council (CNR) joined the still new organization introducing further complications. In this work we explain all the problems faced by a working group to elaborate an efficient plan of coordinated acquisition of journals: the difficulties in coordinating 17 different sites distributed over the whole national territory, the not so easy negotiation with the publishers, the choice between e-only or print & online and, last but not least, the psychological impact on the scientific community. The cooperation among Italian astronomical libraries was a plan begun many years ago and has continued through various events over the years. This presentation takes into consideration the various stages of our project focusing on some crucial aspects.

  17. Integrating the IA2 Astronomical Archive in the VO: The VO-Dance Engine

    NASA Astrophysics Data System (ADS)

    Molinaro, M.; Laurino, O.; Smareglia, R.

    2012-09-01

    Virtual Observatory (VO) protocols and standards are getting mature and the astronomical community asks for astrophysical data to be easily reachable. This means data centers have to intensify their efforts to provide the data they manage not only through proprietary portals and services but also through interoperable resources developed on the basis of the IVOA (International Virtual Observatory Alliance) recommendations. Here we present the work and ideas developed at the IA2 (Italian Astronomical Archive) data center hosted by the INAF-OATs (Italian Institute for Astrophysics - Trieste Astronomical Observatory) to reach this goal. The core point is the development of an application that from existing DB and archive structures can translate their content to VO compliant resources: VO-Dance (written in Java). This application, in turn, relies on a database (potentially DBMS independent) to store the translation layer information of each resource and auxiliary content (UCDs, field names, authorizations, policies, etc.). The last token is an administrative interface (currently developed using the Django python framework) to allow the data center administrators to set up and maintain resources. This deployment, platform independent, with database and administrative interface highly customizable, means the package, when stable and easily distributable, can be also used by single astronomers or groups to set up their own resources from their public datasets.

  18. The Taiwan Extragalactic Astronomical Data Center

    NASA Astrophysics Data System (ADS)

    Foucaud, S.; Hashimoto, Y.; Tsai, M.-F.; Kamennoff, N.; TWEA-DC Team

    2013-10-01

    Founded in 2010, the Taiwan Extragalactic Astronomical Data Center (TWEA-DC) has for its goal to provide access to large amount of data for the Taiwanese and International community, focusing its efforts on Extragalactic science. In continuation with individual efforts in Taiwan over the past few years, this is the first stepping-stone towards the building of a National Virtual Observatory. Taking advantage of our own fast indexing algorithm (BLINK), based on a octahedral meshing of the sky coupled with a very fast kd-tree and a clever parallelization amongst available resources, TWEA-DC will provide, from spring 2013, a service of “on-the-fly” matching, between on-site and user-based catalogs. We will also offer access to public and private raw and reducible data available to the Taiwanese community. Finally, we are developing high-end on-line analysis tools, such as an automated photometric redshifts and SED fitting code (APz), and an automated groups and clusters finder (APFoF).

  19. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  20. Research, Education, and Outreach at the Oakley Observatories

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard

    2013-05-01

    Rose-Hulman Institute of Technology is a four-year college specializing in undergraduate engineering, science and mathematics education. Rose students have a strong interest in anything space-related. In the early days of the space age, Rose established a campus observatory to collect data on man-made satellites. In 2000, a new observatory was completed and named the Oakley Observatory. The new observatory was designed primarily for education and outreach, but we have successfully used it for minor planet astrometry, and photometry of minor planets and variable stars. Rose-Hulman students have discovered 33 main belt asteroids. Faculty, Rose students, and local high school students have worked together to publish more than 350 minor planet lightcurves. To supplement the campus observatory, The Oakley Southern Sky Observatory was completed in 2007 near Siding Spring in New South Wales, Australia. OSSO makes it possible to observe the southern sky, and it has much less cloud cover, as well as, significantly darker skies than our campus. Rose-Hulman offers an area minor in astronomy and all of the astronomy courses are available to all majors as technical electives. Classes are normally filled to capacity. Finally, we also use the campus observatory for public outreach. We host scout troops, school classes and many other types of groups who want to look through a telescope. We also hold public open houses for special astronomical events such as the transit of Venus.

  1. Operations with the FUSE observatory

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Kruk, Jeffrey W.; Moos, Henry W.; Oegerle, William R.

    2003-02-01

    The Far Ultraviolet Spectroscopic Explorer satellite (FUSE) is a NASA Origins mission launched on 1999 June 24 and operated from the Johns Hopkins University Homewood campus in Baltimore, MD. FUSE consists of four aligned telescopes feeding twin far-ultraviolet spectrographs that achieve a spectral resolution of R=20,000 over the 905-1187 Å spectral region. This makes FUSE complementary to the Hubble Space Telescope and of broad general interest to the astronomical community. FUSE is operated as a general-purpose observatory with proposals evaluated and selected by NASA. The FUSE mission concept evolved dramatically over time. The version of FUSE that was built and flown was born out of the "faster, better, cheaper" era, which drove not only the mission development but also plans for operations. Fixed price contracts, a commercial spacecraft, and operations in the University environment were all parts of the low cost strategy. The satellite performs most functions autonomously, with ground contacts limited typically to seven 12-minute contacts per day through a dedicated ground station. All support functions are managed by a staff of 40 scientists and engineers located at Johns Hopkins. In this configuration, we have been able to achieve close to 30% average on-target science efficiency. In short, FUSE is a successful example of the "faster, better, cheaper" philosophy.

  2. Science Operations of the International Ultraviolet Explorer (IUE) Observatory

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to support competitively selected astronomical research program. Through the IUE program, researchers make IUE observations, have their scientific data reduced in a meaningful way, and receive data products in a form amenable to the pursuit of scientific research. The IUE Observatory is key to the program since it is the central control and support facility for all science support functions within the IUE project.

  3. SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Castro-Neves, Margarida; Draper, Peter W.

    2014-02-01

    SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

  4. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  5. Cultural Heritage of Observatories and Instruments - From Classical Astronomy to Modern Astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Until the middle of the 19th century positioal astronomy with meridian circles played the dominant role. Pulkovo Observatory, St. Petersburg, was the leading institution for this kind of research. The design of this observatory was a model for the construction of observatories in the 19th century. In addition, in Hamburg Observatory and in some other observatories near the coast, time keeping and teaching of navigation were important tasks for astronomers. Around 1860 astronomy underwent a revolution. Astronomers began to investigate the properties of celestial bodies with physical and chemical methods. In the context of “classical astronomy”, only the direction of star light was studied. In the 1860s quantity and quality of radiation were studied for the first time. This was the beginning of modern “astrophysics”, a notion coined in 1865 by the Leipzig astronomer Karl Friedrich Zöllner (1834-1882). It is remarkable that many amateurs started this new astrophysics in private observatories but not in the established observatories like Greenwich, Paris or Pulkovo. In Germany this development started in Bothkamp Observatory near Kiel, with Hermann Carl Vogel (1841-1907), strongly influenced by Zöllner. An important enterprise was the foundation of the Astrophysical Observatory in Potsdam, near Berlin, in 1874 as the first observatory in the world dedicated to astrophysics - a foundation that inspired others. Important innovations and discoveries were made in Potsdam. The new field of astrophysics caused, and was caused by, new instrumentation: spectrographs, instruments for astrophotography, photometers and solar physics instruments. In particular, the glass mirror reflecting telescope was recognised as a more important instrument than a large refractor; for the new observatory in Hamburg-Bergedorf a 1-m reflector, the fourth largest in the world, made by Zeiss of Jena, was acquired in 1911. Another change was made in the architecture, the idea of a park

  6. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  7. Astronomers Gain Clues About Fundamental Physics

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  8. The new 2meter RCC Telescope in the Northern CAucasus (3100m) for Modern Astronomical Research

    NASA Astrophysics Data System (ADS)

    Tarady, V.; Yatskiv, Ya.

    A new 2 meter Ritchey-Chretien-Coude telescope in the Northern Caucasus is expected to be ready for astronomical research in late 1995. The telescope is located on the Terskol peak (near Elbrus) with the altitude of 3100 meter. The low atmospheric water vapour content and the high air transparency in the ultraviolet region allow us to infer that the Terskol peak is one of the best sites in Europe for astronomical ground observation. The mean seeing is about 1 arcsec at the Terskol peak. The main parameters of the optical system are as follows: * equivalent focal length is 16000 mm for the Ritchey-Chretien system and 72000 mm for the Coude system; * diameter of the field free from vignetting is 108' for the Ritchey-Chretien system and 5' for another one; *spot concentration is 80% inside the 0.5" circle. The new telescope will be used in investigating the fundamental problems of the star brightness variability, physics of stars and galaxies, studying the planet and satellite atmosphere dynamics. The precise astrometrical problems can also be solved with this telescope. The telescope will be equiped with the following detectors: -CCD Echelle spectrograph in the Coude focus; - astronomical infrared Fourie spectrometre; -digital panoramic polarimeter; -panoramic spectrophotometer with Fabry-Perot interferometer. This project is realized by the joint efforts of the Main Astronomical Observatory in Kiev (Ukrainian Academy of Sciences) and the International Centre for Astronomical and Medical-Ecological Investigations. Proposals for Scientific observation at the Terskol Observatory are encouraged.

  9. Simple Astronomical Theory of Climate.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1979-01-01

    The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)

  10. An Astronomical Data Analyzing Monitor

    NASA Astrophysics Data System (ADS)

    Teuber, D.

    ThP need for exchange of programmes and data between astronomical facilities is generally recognized, but practicable concepts concerning its realization are rare. Standardization of data formats through FITS is widely accepted; for (interactive) programs, however, identical hardware configurations seem to be the favoured solution. As an alternative, a software approach to the problem is presented.

  11. Astronomical searches for nitrogen heterocycles

    NASA Astrophysics Data System (ADS)

    Charnley, Steven B.; Kuan, Yi-Jehng; Huang, Hui-Chun; Botta, Oliver; Butner, Harold M.; Cox, Nick; Despois, Didier; Ehrenfreund, Pascale; Kisiel, Zbigniew; Lee, Ying-Ying; Markwick, Andrew J.; Peeters, Zan; Rodgers, Steven D.

    We have conducted extensive astronomical searches for the N-bearing ring molecules pyridine, quinoline and isoquinoline towards the circumstellar envelopes of carbon-rich stars, and for interstellar pyrimidine in hot molecular cores. Here we report the derived upper limits on the column densities of these molecules, and summarize the current status of these observations.

  12. Astronomical Photography for the Classroom.

    ERIC Educational Resources Information Center

    Hulme, Kenneth S.

    1981-01-01

    Describes class projects involving astronomical photography. Includes a description of how to make an astrocamera or convert a pocket camera into one suitable for astrophotography, film choices, and phenomena to photograph, such as star trails, meteors, the sun, and the moon. (DS)

  13. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  14. John Couch Adams, the astronomer.

    NASA Astrophysics Data System (ADS)

    Foster, N.

    1989-03-01

    The planet Neptune was discovered more than 140 years ago. The circumstances of the discovery gave rise to great controversy, and very nearly led to an international incident between Britain and France, but this was only one of John Couch Adams' many contributions to astronomical science.

  15. Brazilian Participations in the International Astronomical Search Collaboration

    NASA Astrophysics Data System (ADS)

    Rojas, G. A.; Dalla-Costa, L. J.; Kalmus, A. T.; Kroth, E. C.; Matos, M. F.; Silva, A. L.; Silva, G. G.

    2014-10-01

    International Astronomical Search Collaboration (IASC) is an international educational project between universities, schools, observatories and research institutions. Its main objective is to enroll high school and college students in the monitoring and discovery of asteroids and Near Earth Objects (NEOs), especially Potentially Hazardous Asteroids. The methodology consists in the analysis of astronomical images obtained in several observatories in North America and Hawaii. The images are distributed throughout the school network and the results must be delivered in a 72-hour timeframe. Since 2010 Brazilian universities and schools have joined IASC, resulting in over a dozen new asteroids found (3 of them NEOs), and hundreds of measurements for already known asteroids. A major event in this collaboration was the All-Brazil Asteroid Search Campaign, which was conducted in September 2012. 2013 marks the fourth year of Brazilian participations in IASC, with one important milestone: the third straight appearance of a Brazilian institution in the Pan-STARRS campaign, which uses the PS1 telescope in Haleakala, Hawaii. We will present a summary of the overall results, as well as the latest news from 2013 campaigns. We will discuss the impact promoted by the past events, such as how the interest in astronomy changed before and after the campaigns, and it has helped the students to choose their future careers.

  16. Mingantu, 18th-Century Mongol Astronomer and Radioheliograph Namesake

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2013-01-01

    The 18th-century Mongol astronomer Mingantu (1692-1765) has been honored with a city named after him and a nearby solar telescope array. During the IAU/Beijing, my wife and I went to the new Chinese solar radioheliograph, the Mingantu Observing Station, in Inner Mongolia, ~400 km northwest of Beijing, a project of the National Astronomical Observatories, Chinese Academy of Sciences. It currently contains 40 dishes each 4.5 m across, with a correlator from Beijing. Within a year, 60 2-m dishes will be added. We passed by the 12-century ruins of Xanadu (about 20 km north of Zhangbei) about halfway. The radioheliograph is in a plane about 1 km across, forming a three-armed spiral for interferometric solar mapping, something colleagues and I had carried out with the Jansky Very Large Array, taking advantage of the lunar occultation before annularity at the 20 May 2012 solar eclipse. In the central square of Mingantu city, a statue ~10-m high of the Mongol astronomer Mingantu appears. Its base bears a plaque ~1-m high of IAU Minor Planet Circular MPC 45750 announcing the naming in 2002 of asteroid 28242 Mingantu, discovered at a Chinese observatory in 1999. Mingantu carried out orbital calculations, mapping, mathematical work on infinite series, and other scientific research. He is honored by a modern museum behind the statue. The museum's first 40% describes Mingantu and his work, and is followed by some artifacts of the region from thousands of years ago. The final, large room contains a two-meter-square scale model of the radioheliograph, flat-screen televisions running Solar Dynamics Observatory and other contemporary visualizations, orreries and other objects, and large transparencies of NASA and other astronomical imagery. See my post at http://www.skyandtelescope.com/community/skyblog/newsblog/ specfically Astro-Sightseeing_in_Inner_Mongolia-167712965.html. We thank Yihua Yan for arranging the visit and Wang Wei (both NAOC) for accompanying us. My solar research

  17. A leading nineteenth century instrument-maker in Norway and his astronomical and geodetic instruments

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjorn Ragnvald

    2004-12-01

    Christian Holberg Gran Olsen introduced the European continental standards of scientific instrument making into Norway in 1861, following a four-year tenure with A. & G. Repsold, Hamburg. This paper lists and discusses the major astronomical and geodetic instruments made by Olsen. The geodetic instruments are now in museums or in university storage. The first universal instrument was extensively used to carry out the Norwegian part of the European Geodetic Arc 1863-1878, both as a theodolite and as a transit instrument for astronomical observations at selected geodetic stations. Other instruments contributed to the mapping of Norway. Olsen's last model was used to determine the position of Fridtjof Nansen's polar ship Fram during its three-year expedition (1893-1896) in the Polar Sea. It was also used on other Norwegian polar expeditions during the next thirty years. A copy was made for the first winter expedition to Antarctica, with Belgica in 1897-1899. The first astronomical refractor by Olsen (with a 10.8-cm Steinheil objective lens) was made for Bergen Observatory in 1869. Its current whereabouts have been investigated, but the instrument has not been found. Two larger refractors have been successfully searched for. A 13.2-cm Merz refractor with mounting by Olsen, made for the University Observatory in Christiania (Oslo) in 1883, exists in refurbished condition. The largest refractor, with a 36.0-cm objective lens by Olsen (7 metres focal length), was the centrepiece in what appears to be the first astronomical observatory in Europe founded and operated exclusively for the public on a commercial basis. When erected in 1885, the refractor of the Peoples' Observatory in Oslo was unsurpassed in size in Scandinavia, even at professional observatories.

  18. Gotha - the instruments of the observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Around 1800 the Gotha observatory was an international center of astronomy and was the most modern astronomical institute with respect to its instruments 1. Duke Ernst II of Sachsen-Gotha-Altenburg (1745-1804) used the following instruments in his private observatory at castle Friedenstein in Gotha; it should be emphasized that all instruments were coming from London - England was the center of instrument making in the 18th century 2: A 18-inch quadrant made by Sisson, London; a small 2-ft transit instrument made by Ramsden, London [DM 67751]; three Hadley sextants; an achromat heliometer made by Dollond, London [DM 67750]; a 2-ft achromat refractor made by Ramsden, London [DM 67754]; a Gregory reflector made by Short, London [Gotha] and several clocks. In 1787, Franz Xaver von Zach (1754-1832) planned a new observatory outside of Gotha on the top of hill Seeberg, financed by the Duke (building 36000 Taler, instruments 20000 Taler; for comparison: the director got several hundreds Taler/year). The focus of research was astrometry, time keeping, geodetic and meteorological observations. Most of the instruments came from the leading instrument makers of that time: A southern and a northern quadrant; a 8-ft transit instrument made by Ramsden, London, 1788 [DM 67743 a-c]; a 7-ft Herschel reflector [DM 67483]; a 2-ft vertical circle made by Cary, London, 1796; a 8-ft circle made by Ramsden, London, 1800; a 3-ft vertical circle made by Trougthon, London, 1800; a 3-ft equatorial refractor made by Dollond, London, 1796 [DM 67745 a, b]; a 3-ft equatorial refractor made by Schroeder, Gotha [DM 67746 a, b]; a 3-ft double refractor made by Dollond, London [DM 67747]; a 10-ft refractor mady by Dollond, London, 1796; a 2-ft comet seeker made by Baumann & Kinzelbach, Stuttgart [DM 67755]. By analyzing the instrumentation, we can see around 1800 a change in the kind of the instruments on one hand from quadrants and sextants to the vertical circle and on the other hand from the

  19. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    On 6 April 2011, the ESO Paranal Observatory was honoured with a visit from the President of the Czech Republic, Václav Klaus, and his wife Livia Klausová, who also took the opportunity to admire Cerro Armazones, the future site of the planned E-ELT. The distinguished visitor was shown the technical installations at the observatory, and was present when the dome of one of the four 8.2-metre Unit Telescopes of ESO's Very Large Telescope opened for a night's observing at Cerro Paranal, the world's most advanced visible-light observatory. "I'm delighted to welcome President Klaus to the Paranal Observatory and to show him first-hand the world-leading astronomical facility that ESO has designed, has built, and operates for European astronomy," said ESO's Director General, Tim de Zeeuw. President Klaus replied, "I am very impressed by the remarkable technology that ESO has built here in the heart of the desert. Czech astronomers are already making good use of these facilities and we look forward to having Czech industry and its scientific community contribute to the future E-ELT." From the VLT platform, the President had the opportunity to admire Cerro Armazones as well as other spectacular views of Chile's Atacama Desert surrounding Paranal. Adjacent to Cerro Paranal, Armazones has been chosen as the site for the future E-ELT (see eso1018). ESO is seeking approval from its governing bodies by the end of 2011 for the go-ahead for the 1-billion euro E-ELT. Construction is expected to begin in 2012 and the start of operations is planned for early in the next decade. President Klaus was accompanied by the Minister of Foreign Affairs of the Czech Republic, Karel Schwarzenberg, the Czech Ambassador in Chile, Zdenek Kubánek, dignitaries of the government, and a Czech industrial delegation. The group was hosted at Paranal by the ESO Director General, Tim de Zeeuw, the ESO Representative in Chile, Massimo Tarenghi, the Director of Operations, Andreas Kaufer, and Jan Palous

  20. Operations Staff Astronomer - Deputy Head of the Paranal Science Operations Department

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Assignment: The Science Operations Department at ESO's Paranal Observatory (PSO) is responsible for all aspects of the direct support of observing operations of the VLT, the VLTI, and in the future, of the VST and VISTA, so as to optimize the scientific output of this world leading astronomical facility. The department currently comprises 26 operations staff astronomers, 14 telescope instrument operators, and 5 data handling administrators, as well as, for the functional part of their assignment, 15 postdoctoral fellows of ESO's Office for Science. Further recruitment is planned once all auxiliary telescopes of the VLTI, VST and VISTA become operational.

  1. Engaging Students through Astronomically Inspired Music

    NASA Astrophysics Data System (ADS)

    Whitehouse, M.

    2011-09-01

    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  2. Sharing Images Intelligently: The Astronomical Visualization Metadata Standard

    NASA Astrophysics Data System (ADS)

    Hurt, Robert L.; Christensen, L.; Gauthier, A.

    2006-12-01

    The astronomical education and public outreach (EPO) community plays a key role in conveying the results of scientific research to the general public. A key product of EPO development is a variety of non-scientific public image resources, both derived from scientific observations and created as artistic visualizations of scientific results. This refers to general image formats such as JPEG, TIFF, PNG, GIF, not scientific FITS datasets. Such resources are currently scattered across the internet in a variety of galleries and archives, but are not searchable in any coherent or unified way. Just as Virtual Observatory standards open up all data archives to a common query engine, the EPO community will benefit greatly from a similar mechanism for image search and retrieval. A new standard has been developed for astronomical imagery defining a common set of content fields suited for the needs of astronomical visualizations. This encompasses images derived from data, artist's conceptions, simulations, photography, and can be ultimately extensible to video products. The first generation of tools are now available to tag images with this metadata, which can be embedded with the image file using an XML-based format that functions similarly to a FITS header. As image collections are processed to include astronomy visualization metadata tags, extensive information providing educational context, credits, data sources, and even coordinate information will be readily accessible for uses spanning casual browsing, publication, and interactive media systems.

  3. Etienne Leopold Trouvelot, 19th Century Artist and Astronomer

    NASA Astrophysics Data System (ADS)

    Corbin, B. G.

    2002-12-01

    Etienne Leopold Trouvelot, born in France in 1827, came to the United State with his family in 1855, settling in Massachusetts. He supported his family as an artist, but became interested in astronomy after observing and sketching auroras in the 1870s. When astronomers at Harvard saw the quality and detail in these drawings, they invited him to join the staff and use their telescopes for observation and making drawings of celestial objects. In 1875 the U. S. Naval Observatory invited him to Washington to use the 26 inch refractor, at that time the world's largest refractor. Through the years he made more than 7000 drawings which were highly regarded by astronomers who saw them, especially for the fine detail of the drawings. Trouvelet wanted to publish a portfolio of some of the best drawings and approached Charles Scribner's Sons, publishers in New York. The 15 drawings he chose were produced as chromolithographs, and the set was published in 1881 selling at \\$125. Very few complete sets remain in institutions today, and one set sold at auction within the last few years for many times the original price. However, Trouvelot will always be remembered not for his astronomical artistry but as the person who introduced the gypsy moth into the United States. In his attempt to bring better silk producing caterpillars into the country, some egg masses escaped and the rest is history.

  4. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2011-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its fourth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, to exoplanet science, to stellar populations and dwarf irregular galaxies. First light with the observatory's new 4.2 meter Discovery Channel Telescope is expected in 2011, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. Currently, five students are enrolled in our program; our first graduate completed the program in August, 2009. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2011 are due by May 1, 2011.

  5. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Prato, L. A.

    2012-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its fifth year, this program provides unique research opportunities to graduate students in good standing and currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics from astronomical instrumentation to icy bodies in our solar system, exoplanet science, and stellar populations and dwarf irregular galaxies. The Observatory's new 4.3-meter Discovery Channel Telescope is on track for first light by mid-2012, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. Currently, three students are enrolled and three have successfully completed their thesis work at Lowell and moved on to postdocs and astronomy jobs elsewhere. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2012 are due by May 1, 2012.

  6. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2015-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.2 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2015, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2015 are due by May 1, 2015.

  7. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2013-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its sixth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully seen first light in May, 2012, and is on track to commence science operations in 2013, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2013 are due by May 1, 2013.

  8. The Lowell Observatory Predoctoral Fellowship Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.; Shkolnik, E.

    2014-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2014, making this a particularly exciting time to do research at Lowell. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2014 are due by May 1, 2014.

  9. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  10. The International X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2009-01-01

    The International X-Ray Observatory, a joint NASA-ESA-JAXA effort, is a next generation X-ray telescope that will answer many fundamental questions in contemporary astrophysics such as how do supermassive black holes influence galaxy evolution and how do galaxy clusters evolve (and how does this constrain dark energy and dark matter)? As a powerful astronomical observatory, IXO will also address questions ranging from the neutron star equation of state to the distribution and dynamical state of intergalactic material. X-ray spectroscopy, polarimetry, and timing studies provided by IXO's instruments will give detailed measures of abundances, temperatures, densities, magnetic fields and gravitational potentials. These measurements will be complementary to the next generation of observatories such as ALMA, JWST, and future ground-based optical-NIR telescopes. This mission will be ready for launch in the 2020-2021 timeframe and will launch on an Atlas V or Ariane V launch vehicle to L2. It employs a deployable optical bench to achieve the 20 meter focal length and a suite of five instruments. This talk will describe the motivating science for this mission as well as the spacecraft, instruments and optics

  11. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  12. Education and Outreach Opportunities in New Astronomical Facilities

    NASA Astrophysics Data System (ADS)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating

  13. Astronomical Heritage in the National Culture

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  14. ISO Results Presented at International Astronomical Union

    NASA Astrophysics Data System (ADS)

    1997-08-01

    Some of the work being presented is collected in the attached ESA Information Note N 25-97, ISO illuminates our cosmic ancestry. A set of six colour images illustrating various aspects have also been released and are available at http://www.estec.esa.nl/spdwww/iso1808.htm or in hard copy from ESA Public Relations Paris (fax:+33.1.5369.7690). These pictures cover: 1. Distant but powerful infrared galaxies 2. A scan across the milky way 3. Helix nebula: the shroud of a dead star 4. Supernova remnant Cassiopeia A 5. Trifid nebula: a dusty birthplace of stars 6. Precursors of stars and planets The International Astronomical Union provides a forum where astronomers from all over the world can develop astronomy in all its aspects through international co-operation. General Assemblies are held every three years. It is expected that over 1600 astronomers will attend this year's meeting, which is being held in Kyoto, Japan from 18-30 August. Further information on the meeting can be found at: www.tenmon.or.jp/iau97/ . ISO illuminates our cosmic ancestry The European Space Agency's Infrared Space Observatory, ISO, is unmatched in its ability to explore and analyse many of the universal processes that made our existence possible. We are children of the stars. Every atom in our bodies was created in cosmic space and delivered to the Sun's vicinity in time for the Earth's formation, during a ceaseless cycle of birth, death and rebirth among the stars. The most creative places in the sky are cool and dusty, and opaque even to the Hubble Space Telescope. Infrared rays penetrating the dust reveal to ISO hidden objects, and the atoms and molecules of cosmic chemistry. "ISO is reading Nature's recipe book," says Roger Bonnet, ESA's director of science. "As the world's only telescope capable of observing the Universe over a wide range of infrared wavelengths, ISO plays an indispensable part in astronomical discoveries that help to explain how we came to exist." This Information Note

  15. Global Health Observatory (GHO)

    MedlinePlus

    ... repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the SDGs ... relevant web pages on the theme. Monitoring the health goal: indicators of overall progress Mortality and global ...

  16. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  17. Golden legacy from ESA's observatory

    NASA Astrophysics Data System (ADS)

    2003-07-01

    ISO was the first space observatory able to see the sky in infrared light. Using its eyes, we have discovered many new phenomena that have radically changed our view of the Universe. Everybody knows that when something is heated it glows. However, things also glow with a light our eyes cannot detect at room temperature: infrared light. Infrared telescopes do not work well on the Earth’s surface because such light is absorbed by the atmosphere. ISO looked at the cold parts of the universe, usually the 'cold and dusty' parts. It peered into clouds of dust and gas where stars were being born, observing for the first time the earliest stages of star formation. It discovered, for example, that stars begin to form at temperatures as low as -250°C or less. Scientists were able to follow the evolution of dust from where it is produced (that is, old stars - the massive 'dust factories') to the regions where it forms new planetary systems. ISO found that most young stars are surrounded by discs of dust that could harbour planets. The observatory also analysed the chemical composition of cosmic dust, thereby opening up a new field of research, ‘astromineralogy’. With ISO we have been able to discover the presence of water in many different regions in space. Another new discipline, 'astrochemistry', was boosted when ISO discovered that the water molecule is common in the Universe, even in distant galaxies, and complex organic molecules like benzene readily form in the surroundings of some stars. "ISO results are impacting most fields of astronomical research, almost literally from comets to cosmology," explains Alberto Salama, ISO Project Scientist. "Some results answer questions. Others open new fields. Some are already being followed up by existing telescopes; others have to await future facilities." When ISO's operational life ended, in 1998, its observations became freely available to the world scientific community via ISO’s data archive. In May 2003 the

  18. Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Big Bear Solar Observatory (BBSO) is located at the end of a causeway in a mountain lake more than 2 km above sea level. The site has more than 300 sunny days a year and a natural inversion caused by the lake which makes for very clean images. BBSO is the only university observatory in the US making high-resolution observations of the Sun. Its daily images are posted at http://www.bbso.njit.e...

  19. Benjamin Apthorp Gould and the Founding of The Astronomical Journal

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    1998-05-01

    The origin and vicissitudes of The Astronomical Journal are inextricably bound up with the extraordinary career of Benjamin Apthorp Gould (1824-1896), the first American to obtain a PhD in astronomy (at Gottingen). Returning to Cambridge in 1848, Gould joined an informal group known as the Lazzaroni, who were determined to bring professional standards to American science. Gould devoted much of his life to professionalizing American astronomy, and his founding of the AJ was part of this strategy. Beginning on 2 November 1849, Gould's AJ was issued at irregular intervals, seldom shorter than two weeks and occasionally much longer, such as the two-month gap in 1851 when Gould had gone to the solar eclipse in Europe. About 20% of the space was devoted to asteroids, then the hot topic in astronomy. The 11th issue announced the discovery of the 11th asteroid; by March of 1853, 23 asteroids were known, and Gould editorialized about the "threatened consumption of astronomical energies." In 1856 the trustees of the newly-founded Dudley Observatory agreed to support the financially struggling AJ, and volume 5 (1856-58) bore the Albany dateline though printing continued in Cambridge. Gould's ill-fated directorship of the Dudley Observatory lasted only a year in Albany itself, and volume 6 was again edited in Cambridge. The Civil War then brought a 25-year hiatus to Gould's journal. In 1870 Gould went to Argentina, where he founded the Argentine National Observatory in Cordoba; he returned to Cambridge in 1885, and very shortly thereafter resumed publication of the AJ (in November, 1886). He continued his editorship for a decade, producing volumes 7-16; his last issue, vol. 17, no. 4, is dated just two weeks before his death. As his successor, Seth Chandler wrote, "Of all the great enterprises of his life, this is the one which he has most cherished."

  20. The application of artificial intelligence to astronomical scheduling problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  1. The Virtual Observatory for the Python Programmer

    NASA Astrophysics Data System (ADS)

    Plante, Raymond L.; Fitzpatrick, M. J.; Graham, M.; Tody, D.; Virtual Astronomical Observatory, US

    2014-01-01

    The web of astronomical data centers that we refer to as the virtual observatory (VO) has led to the development of a variety of web and desktop applications that can discover and download data from most archives around the world. These are made possible by standard interfaces which archives provide and the applications understand that provide a common way to search for information and retrieve discovered datasets. For some applications, retrieving data through the VO is simply an extra feature that enhances the main purpose of the tool. Despite the accessibility to VO data provided by such tools, the VO offers greater flexibility to developers that access the standard services directly within their own software. This applies not only to those who build tools but also to research astronomers that create highly-customized scripts for data analysis. One of the goals of the US Virtual Astronomical Observatory (VAO) project is to make the VO more accessible to both tool developers and astronomer-programmers. To this end, we announce the release of two products with a special focus on supporting access to the VO via Python. PyVO (http://dev.usvao.org/pyvo) is a pure Python library built on Astropy (astropy.org) that can be used to discover data in the VO. In particular, one can search the registry for archives with data, search archives for images and spectra, and query remote catalogs and spectral line databases. While it provides full support for the VO standards, its API is designed to make processing the most common types of queries simple without requiring knowledge about the underlying standards. It also makes available the full power of Astropy for processing tabular information. VOClient (http://dev.usvao.org/voclient), which provides scripting and programming libraries for a variety of languages, also supports Python programming. While the two products share a common API, VOClient provides higher level interfaces that assist with managing data from many

  2. NRAO Astronomer Wins Prestigious Guggenheim Fellowship

    NASA Astrophysics Data System (ADS)

    2010-04-01

    Dr. Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, has been awarded a prestigious Guggenheim Fellowship, according to the John Simon Guggenheim Memorial Foundation. The Guggenheim Foundation describes its fellowships as "mid-career" awards "intended for men and women who have already demonstrated exceptional capacity for productive scholarship or exceptional creative ability in the arts." Frail, 48, has worked at the NRAO for more than 20 years, first as a postdoctoral fellow, and then as a staff scientist. He received his bachelor's degree in physics from Acadia University in Nova Scotia, and his Ph.D in astronomy from the University of Toronto. Frail is best known for his landmark contributions to the understanding of gamma ray bursts, making critical measurements that provided key insights into the mechanisms of these superenergetic and once-mysterious explosions. He also has made important contributions to the understanding of other astronomical phenomena, including pulsars and their neighborhoods, supernova remnants, and magnetars. In 1992, he was the co-discoverer, with Alex Wolszczan, of the first planets outside our own solar system. "We congratulate Dale on this well-deserved honor that recognizes not only his past achievements but also his potential for exciting scientific work in the future," said Dr. Fred K.Y. Lo, NRAO Director. "We're very proud to see one of our scientists receive such a great honor," Lo added. Frail is one of 180 recipients of this year's Guggenheim Fellowships, chosen from some 3,000 applicants. The fellowships were established in 1925 and past recipients include photographer Ansel Adams, author Saul Bellow, former Secretary of State Henry Kissinger, and chemist Linus Pauling. 102 Guggenheim Fellows have subsequently won Nobel Prizes, and others have received Pulitzer Prizes and other honors. As a Guggenheim Fellow, Frail intends to intensify his research in the areas of pulsars

  3. Enabling Remote and Automated Operations at The Red Buttes Observatory

    NASA Astrophysics Data System (ADS)

    Ellis, Tyler G.; Jang-Condell, Hannah; Kasper, David; Yeigh, Rex R.

    2016-01-01

    The Red Buttes Observatory (RBO) is a 60 centimeter Cassegrain telescope located ten miles south of Laramie, Wyoming. The size and proximity of the telescope comfortably make the site ideal for remote and automated observations. This task required development of confidence in control systems for the dome, telescope, and camera. Python and WinSCP script routines were created for the management of science images and weather. These scripts control the observatory via the ASCOM standard libraries and allow autonomous operation after initiation.The automation tasks were completed primarily to rejuvenate an aging and underutilized observatory with hopes to contribute to an international exoplanet hunting team with other interests in potentially hazardous asteroid detection. RBO is owned and operated solely by the University of Wyoming. The updates and proprietor status have encouraged the development of an undergraduate astronomical methods course including hands-on experience with a research telescope, a rarity in bachelor programs for astrophysics.

  4. Mead Observatory WebCasts: Public Outreach to the World

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hood, J.; Williams, R. N. M.; Cruzen, S.; Johnson, C.

    2010-01-01

    The Real-Time Interactive Solar Observatory (RISO) is a web portal that allows educational institutions from around the world to log into and control the solar telescopes and cameras at Columbus State University's Meade Observatory. RISO's technology has also allowed the observatory to stream webcasts for special astronomical events on the web allowing for a larger public audience. This poster will present the tools used for the webcasts and review some of the results from previous webcasts. We will also discuss some of the future paths of RISO and the technology associated with RISO and how this will be able to provide public outreach to a much larger audience. Support for RISO and the webcasts has been provided by NASA through the Georgia Space Science Grant Consortium.

  5. World Space Observatory - Ultraviolet mission: state of art 2016

    NASA Astrophysics Data System (ADS)

    Sachkov, Mikhail; Gomez De Castro, Ana; Shustov, Boris M.

    2016-07-01

    The WSO-UV (World Space Observatory - Ultraviolet) project is intended to built and operate an international space observatory designed for observations in the UV (115 - 300 nm) range, where some of the most important astrophysical processes can be efficiently studied. The observatory includes a 170 cm aperture telescope capable of high-resolution spectroscopy and long slit low-resolution spectroscopy with the WUVS instrument; moreover UV imaging will be available with cameras. WSO-UV is a Russian led mission that will be operating in high Earth orbit (geosynchronous with inclination 51.^o6) for five+five years grating access to the UV range to the world-wide astronomical community in the post-Hubble era. Spain is a major partner to the project. Updated information of the WSO-UV project is provided periodically in the COSPAR meetings. Henceforth, this review provides a summary on the project, its status and the major outcomes since the last COSPAR Assembly.

  6. BART 2001--2004: An intelligent robotic observatory

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Kubánek, P.; Nekola, M.

    2005-07-01

    BART is a robotic observatory located at the Astronomical Institute in Ondřejov, Czech Republic. It is a relatively low-cost (25 cm + two wide-field lenses) device developed for rapid follow-ups of GRBs. Since 2001 when it started to observe, it has done several such observations. Meanwhile, photometric monitoring tasks are performed, using an intelligent selection algorithm. Not only the telescope is automatic, the entire observatory does not require human presence: system prepares the schedule, observes, registers the images and stores them into database without human intervention: human assistance is reduced to maintenance and weather checking. BART is a primary developing platform for RTS2, the robotic telescope operation software, which allows for unattended observation as well as control of the entire observatory.

  7. Ukrainian Virtual Observatory (UkrVO). The Goals, Structure, and Tasks

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Pakuliak, L. K.; Protsyuk, Yu. I.

    2010-10-01

    The main points of the conception of the Ukrainian virtual observatory (UkrVO) are presented. We consider the main goal as the creation of the UkrVO organizational structure in the form of the Consortium of the Ukrainian observatories, which are owners of the unique astronomical data collections. There are also other goals of the UkrVO: creation of registry for all Ukrainian astronomical resources in accordance with IVOA standards; creation of joint data archive (JDA) for all photographic, CCD and radio observations of celestial bodies, which have been accumulated at observatories of Ukraine since 1890; creation of control system for access to the registry and the JDA; development of the JDA in accordance with the IVOA standards, which allow us to present uncoordinated data archive from different observatories of Ukraine in homogeneous form; promotion of wide access to UkrVO astronomical recources at national and international levels; development of Ukrainian astronomical educational recources. The place and role of virtual observatories in the "space mission data "ground-based telescopes" relation are discussed. We describe the main components of the scientific astroinformatics resource of the UkrVO, among which are photographic archives (including the unique historical archives from 1890 to 1945), archives of CCD and spectral observations of celestial bodies, catalogues and databases obtained with ground-based telescopes, and space mission data processed at Ukrainian observatories. We determine the primary problems in the creation of the UkrVO as the national center of astronomical and space data in the IVOA frame. The resolution of the problems demands new approaches to IT-support of the UkrVO and to the development of its educational subsystem.

  8. Directory of astronomical data files

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This Directory of Astronomical Data Files was prepared by the Data Task Force of the Interagency Coordination Committee for Astronomy (ICCA) in cooperation with the National Space Science Data Center (NSSDC). The purpose of the Directory is to provide a listing which will enable a user to locate stellar and extragalactic data sources keyed along with sufficient descriptive information to permit him to assess the value of the files for his use as well as the status and availability of the compilations.

  9. Armenian Astronomical Society Annual Activities in 2014

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    A report is given on the achievements of the Armenian astronomy during the last year and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, annual meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, summer schools, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, astronomy outreach and ArAS further projects are discussed. The present meeting, BAO Science Camp, ArAS School lectures are among 2014 events as well.

  10. Conceptual approach to astronomical problems

    NASA Astrophysics Data System (ADS)

    Skvortsov, N. A.; Avvakumova, E. A.; Bryukhov, D. O.; Vovchenko, A. E.; Vol'nova, A. A.; Dluzhnevskaya, O. B.; Kaigorodov, P. V.; Kalinichenko, L. A.; Kniazev, A. Yu.; Kovaleva, D. A.; Malkov, O. Yu.; Pozanenko, A. S.; Stupnikov, S. A.

    2016-01-01

    New technical capabilities have brought about the sweeping growth of the amount of data acquired by the astronomers from observations with different instruments in various parts of the electromagnetic spectrum. We consider conceptual approach to be a promising tool to efficiently deal with these data. It uses problem domain knowledge to formulate the tasks and develop problem-solving algorithms and data analysis methods in terms of domain concepts without reference to particular data sources, and thereby allows solving certain problems in general form. We demonstrate the benefits of conceptual approach by using it to solve problems related to search for secondary photometric standard candidates, determination of galaxy redshifts, creation of a binary and multiple star repository based on inhomogeneous databases, and classification of eclipsing binaries.We formulate and solve these problems over specifications of astronomical knowledge units such as photometric systems, astronomical objects, multiple stars, etc., and define them in terms of the corresponding problem domains independently of the existing data resources.

  11. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  12. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1986-01-01

    KAOS (Kuiper Airborne Observatory Scheduler) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  13. Denver's Pioneer Astronomer: Herbert Alonso Howe (1858-1926)

    NASA Astrophysics Data System (ADS)

    Howe, H. J.; Stencel, R. E.; Fisher, S.

    1999-05-01

    Herbert A. Howe arrived at Denver University (DU) to teach autumn 1880 classes, in math, astronomy and surveying. Howe established himself with clever solutions to the Kepler problem for orbit determinations in thesis work at Cincinnati Observatory. Riding the economic expansion of Colorado gold and silver mining in 1888, the University accepted a proposed gift of a major observatory, offered by Denver real estate baron, Humphrey Chamberlin. The result features a 20 inch aperture Alvan Clark refractor, which still ranks among the largest telescopes of the era. With the observatory building ready, the Silver Panic of 1893 -- when the US Congress dropped silver reserves from the currency basis -- burst the Denver economic bubble. Chamberlin was unable to complete payments on the balances due. Clark and G.N.Saegmuller (Fauth and Co.) at personal expense, delivered on the optics and telescope assemblies in 1894, but would wait for repayment. Sadly, this fiscal crisis affected DU for over a decade. Professor Howe, while observatory director, found himself consumed as Dean and Acting Chancellor for a young, struggling university, at the expense of the astronomy future that had looked so bright in 1892. Absent the Silver Panic, Howe would have probably been given an endowed chair in astronomy, as promised by Chamberlin. The complexion of American astronomy at the time of the birth of the American Astronomical Society in 1899 might have been different, in terms of US observing sites, etc. We are fortunate to have extensive Prof.Howe's daily diaries now in the University archives. These describe Howe's view of progress on the observatory, meetings with astronomy notables, plus vignettes of the life and times of Denver and the nation. Grandson, Herbert Julian Howe rediscovered their existence and is summarizing them in the form of a biography entitled: The Pioneer Astronomer. DU archival records contain numerous original letters from late 19th century astronomy luminaries

  14. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  15. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  16. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  17. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  18. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  19. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  20. The Astronomical Museum: A tool for the teaching of Natural Science

    NASA Astrophysics Data System (ADS)

    Goldes, G.; Bózzoli, M.; Yapura, O.; Rivarola, C.

    The outlines of "Pte. D.F. SARMIENTO - DR. B. A. GOULD" Astronomical Museum, recently dedicated at the National University of Cordoba`s Observatory, are presented. This new museum will articulate its activities with the existing university net of science museums. The exhibits and scripts of the Museum will have a conception and design aimed to serve as a powerful educational tool. The Museum will have two main bases: history and scientific vulgarization, which will be related in order to show how present scientific knowledge is the result of historical processes. The relationships between astronomy and other disciplines will be pointed out. Although the Museum will be open for general public, a guided visit system, specially devoted for scholars, will be operated. The features of the new circuit: ASTRONOMICAL MUSEUM - PORTABLE PLANETARIUM - ENVIRONMENTAL OBSERVATORY are also described.